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INTRODUCTION

A common problem in business and industry today is the accurate

estimation of the level of inventory necessary to meet some future

demand. In some situations this task may be quite critical. This can

best be explained using an example. Since this research concerns the

floral industry, let us use as an example the demand for a floral product.

Consider a plant which has a growing period of two months from the

time it is first planted until it is ready to be sold. In order to

know how many plants to start now, we must have some idea of how many

will be needed for sale two months from now. If we underestimate this

future demand, we will not have sufficient plants in stock that are

ready for sale. Conversely, if we overestimate future demand we will

have too many plants and may be forced to sell them at a loss or even

throw them away. Thus we see that it is desirable to be able to fore-

cast this future demand with the confidence that this forecast will not

be too far from the actual demand two months after planting. The impor-

tance of forecasting can be seen almost anywhere an inventory is main-

tained.

The logical basis for a forecast of demand for any item is the

demand history of that item. Normally, such past demand data is in the

form of a time series, a sequence of observations made at specific and

equal time intervals. There are several ways in which future demands

may be interpretted from this time series. Among these methods, subject-

ive reasoning is probably the simplest. This is merely the opinion of



an experienced manager of what demand will be. Other methods include

statistical regression and graphical curve fitting. All of these

methods nay be classified as statLc; that is, they deal in some way with

fitting a curve to the data as it now exists. Perhaps a more realistic

approach is to give the recent data more weight than older data on the

assumption that this newer data more accurately foretells the behavior of

demand in the future. Methods employing such weighting factors may be

classified as dynamic. The moving average is one approach to weighting.

This method takes an average of the last N data values as a forecast of

demand for the next sampling interval, where N is some pre-determlned

number of sampling intervals. Notice that if N is large we consider

much past data, and if N is small we put the emphasis on only the most

recent data. Thus we may control the rate of response of this forecast-

ing system by varying N. If we wish to include all past data, we may use

the general exponential smoothing technique. This is the method used for

this research. General exponential smoothing gives data taken k periods

in the past the weightaSk^ where a and B are constants and their sum equals

one. Now we may control the system response rate to changes in the data

by varying the value of B, known as the discount factor.

General exponential smoothing essentially fits a least squares curve

to the weighted time series. By least squares we mean that the curve

is determined In a manner that minimizes the sum of weighted square

residuals, or fitting errors. This method provides added adaptability

to changes in the data by re-evaluating the model coefficients at each

sampling interval. Let us illustrate the meaning of this statement. We



may describe the time series by:

x(t) = 5(t) + e(t)

where x(c) = the past data time series at time t

£;(t) = the systematic component of x(t) at time t

e(t) = some random variation of x(t) from 5(t) at time t.

We are assuming, of course, that the time series contains some mathemat-

ically describable process ^(t). We wish to formulate a model to describe

C(t) of the form

x(t) - E a (t) f (t)

i=l

where x(t) = C(t), if the model above is the correct one

f (t) = a deterministic function of time

= the i''^ fitting function

a^(t) = the least squares coefficient of f.(t).

Now, by a re-evaluation of model fit we mean that general exponential

smoothing re-computes the least squares fitting function coefficients

of the model at each sampling interval. In this updating procedure the

error made on the previous forecast is taken into account. Thus, we

may note several advantages of general exponential smoothing over the

methods discussed earlier. First, it accounts for all past data.

Secondly, exponential smoothing gives the investigator more immediate

control over the forecasting system response rate. As is noted in the

text to follow, this method also requires less data storage once it is



started, since all past data contained in one word of information. A

fourth advantage of general exponential smoothing is the re-evaluation

of the least squares coefficients in the light of each additional amount

of data.

The methods used here are taken primarily from Smoothing, Forecasting

and Prediction of Discrete Time Series by Robert Goodell Brown (2) . All

computations are performed on the IBM System 360/50 digital computer at

Kansas State University. The data used consists of four discrete time

series of demand for potted plants:

(1) Wholesale demand for chrysanthemums in monthly dollar receipts.

(2) Retail demand for chrysanthemums in monthly dollar receipts.

(3) Wholesale demand for lilies in daily plant sales.

(4) Wholesale demand for poinsettias in daily plant sales.

All time series were taken from the sales records of Manhattan Retail

and Wholesale Floral Companies in Manhattan, Kansas. Chrysanthemums

are sold throughout the entire year, while lilies and poinsettias are

seasonal items, sold only during the Easter and Christmas seasons,

respectively.

This particular data was used due to the interest of the author.

Having been employed by Manhattan Floral Company for several years, the

author feels that he has a greater understanding of the problems involved

in this area than in any other. In addition, data from this source

could be more easily obtained and verified.



1. REPRESENTATION OF THE TIME SERIES

1.1 Form of the Time Series Model

A time series is a set of observations taken at specific points in

time, usually at equal intervals. The analyses that follow assume that

the time series involved may be separated into two components, systematic

and random. The systematic component can be represented as a determinis-

tic function of time. Thus, the time series may be represented mathemat-

ically as:

^ = ^t + ^t

where

X = the actual time series observation at time t.

E,^ = the systematic component of the observation at time t.

Ej^ = the random component of the observations at time t.

The distribution of the random component of the time series, Ej., possesses

the following properties:

E[ej] - Expected value of e^ -

E[Ej • c^_j] = for ji^O

- 0^ for j-0

where a is the variance of the random noise distribution. Successive

samples of the random component are assumed to have no serial correlation.

Having defined e^ as random with a mean value of zero, we make no



attempt to describe it. So, in order to represent the time series x
,

except for the random variation, e , we must be able to describe the

systematic component, Cj. Once we are able to describe C^, we may pre-

dict future values of Xj^, since ?(. is a function of time only and time

Is always known for the future.

To better visualize the time series, let us look at the plot shown

below.

x(t)
•

..---'

,^y

/^-^ past time future time

Fig. 1:1:1 Plot of hypothetical time series

This is the plot of a time aeries x on the vertical axis, versus

time on the horizontal axis. Xj. may be any time series for which we

wish to predict future values.

The following are a few of the methods that may be employed to

attack this forecasting problem:

1. Subjective estimate

2. Graphical curve fitting

3. Statistical regression analysis

A. Simulation

5

.

Moving averages

6. Exponential smoothing.



For reasons that will be explained in sections 1.2 and 1.3, we may

classify the first three methods above as static methods, and the last

three as dynamic methods.

1.2 Static Methods of Time Series Representation

The first of the static methods, subjective estimate, implies an

opinion, guided by reason, experience, and judgment, of what x^. will be

for a particular point in time, t. This prediction would normally be

made by a person or persons familiar with the time series involved. It

is not based on any particular analytical foundation.

Graphical curve fitting may be accomplished by merely observing the

time series plot, like the one in Figure 1:1:1, and drawing a representa-

tive curve through the data points shown in the "past time" section of

the plot. These points are actual data gathered from past performance

of X. .

By extending this curve into "future time" a prediction of the

future values of x^^ may be made. This method, though not totally subjec-

tive, may fail to adequately represent any cyclic fluctuation inherent

in the time series.

Probably the major analytical method of static time series analysis

is statistical regression. This method attempts to formulate a model

that will describe the systematic component of the time series, 5^.. The

model may contain any independent variables that are known exactly for

all future time. It is up to the investigator to choose the proper terms

and their form within the model. Statistical regression techniques are



used to determine the proper coefficients of the terms in the model.

These techniques will give coefficients that effect a minimization of

the sum of squared residuals, S, for the time series values given

(Appendix A)

.

S - E [x - X ]

t-0

N = the number of data values given

Xf " the actual time series value for time t

X = the time series value for time t as determined from

the model.

Although this method minimizes the sum of the squared fitting errors for

the data given, it makes no provision for a change in the general form

of the time series through time. As is true with all static methods of

time series representation, statistical regression makes no attempt to

reevaluate the model coefficients at each point in time to reflect the

forecast error made in the previous prediction.

1.3 Dynamic Methods of Time Series Representation

Simulation techniques attempt to formulate a process model that will

behave like the actual process over some specified period of time. For

example, we attempt to establish probability distributions that are

representative of the variables contributing to the process, such as

demand, production, etc. These distributions will generally be based on



past behaviour of the actual process, if such data is available. By

using a model to simulate the true process over some period of time, we

may gain an insight as to what values the variables will exhibit in the

future.

Normally we would expect the more recent values in the time series

to be more representative of future values than the older data. The last

two dynamic methods to be discussed account for this probability by paying

much attention to recent data and little or no attention to older data.

This important feature of dynamic methods of time series representation

allows the estimates, x to reflect a change in the form of the time

series as time progresses.

The moving average is a simplified form of dynamic time series repre-

sentation. For purposes of illustration, consider a time series for which

the systematic component may be represented as a constant process.

where

x^ = the observed time series value for time t

a^ = 5(t) = the value of a constant process at time t

Ej = the random variation from the true process at time t.

It will become clear in the explanation that follows that a^. may actually

change slowly with time. Since this is a dynamic representation, this

change in the true process will be accounted for in the analysis.

Since we have defined the systematic component of the time series,

5j, as a deterministic function of time, we may construct a function, or
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model, that will describe the time series, except for a random variation,

5^. In this case a is our model of the true process, with time as the

only independent variable.

As an estimate of ap^.^^, we might take an average of all the observa-

tions, X , up to the present time, T. So,

t=0

where

a = the estimated value of the true process, a , at
T+1 "^

time t = T + 1.

A better estimate of a„^, might be an average over only the most recent

N observations. This is what is known as a moving average M^. Now,

t+1

't-1 ^ -^t
~ "^t-N

M = the moving average of x over the most recent

N observations, or the moving average of

period N.

M^ minimizes the sum of squares of differences between the most recent

N observations and our estimates a of the process model. Note that

when N is large we are giving more weight to older data than when N is
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small.

The moving average, though it is a dynamic method of forecasting,

still has two important limitations. First, it does not consider all

past data, and gives equal weight to the observations that it does con-

sider. Second, it is difficult to change the response rate of a system

based on moving averages. Though the system response is based on the

value of N, it would be difficult to alter a record system based on a

particular N value. Also, if there are significant changes in the true

process through time, the moving average will give highly unsatisfactory

forecasts.

Again for purposes of illustration, suppose that we lost all our

data, except the value of the previous moving average M.j._-, • Then, by

this same scheme, our best estimate for x^^^. would be,

N

ix.j, + (I - |) Mj,.^

where

H- = an estimate of M„.
T

This process is known as "smoothing." Now let,

1
" = N

S^(x) - Mj..
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We now have

where

S^(x) = axj. + 3S^_^ (x)

S|.(x) = the smoothed value of x at time t.

S , , N
= the smoothed value of x at time t-1.

t-l(x)

a = the smoothing constant

3 = the discount factor

a and B are not exactly the same as — and (1 - i) , tut are similar to

them. We shall see their significance later in this chapter. Note here

that.

a, g ; 1

a + B = 1.

This operation, carried out over a sequence of observations, is called

exponential smoothing. To see this effect going back in time we merely

expand our original smoothing equation.

S^(x) = axj. + 6S^_^(x)

= axj. + 3[ax^_^ + 6S^_2(x)]

2
ax + ciBx

j^
+ a6 x

+ B X .

o
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The exponent of B increases geometrically as we go back in time. So, the

weight given the initial x value, x , after k observations is 8 . Hence,

we call this exponential smoothing.

This procedure offers several advantages over the methods discussed

earlier. First, all the past data is taken into consideration. The

older the data is, the less weight it receives when determining Sj.(x).

Also, we may change the response rate of the system by merely altering

a, the smoothing constant, or B, the discount factor. So, for B small,

we are giving more weight to past data than if B were larger. If 6 is

large, then, the system will adjust more quickly to a wide fluctuation

in the observations. The third advantage of smoothing is that all past

data is presented by only one value, S(.(x), instead of N observations

as in the case of the moving average. Lastly, exponential smoothing

minimizes the weighted sum of squared residuals (Appendix B)

.

So far in our discussion, we have been dealing with the simplest

of processes, the constant process. Let us now consider a general model

of the true process.

x(t) = a^(t) f^(t) + a^Ct) f2(t) + . . . + a^(t)f^(t) + e(t)

n
= I a,(t) f (t) + c(t)

1-1

where

th

, (t) = the coefficient of the i^^h fitting function at time t.

f (t) = the i"-" fitting function at time t

See section 2.1 for a discussion of allowable fitting functions. In this
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expression the systematic component of the time series Is represented by

I a.(t) f (t),

1=1

which then represents the model of our system. The fitting functions are

deterministic functions of time. In the case of the constant process,

we had only one fitting function whose value was the constant, 1. The

coefficients a.(t) are treated as constants over any local period of time.

Nevertheless, the underlying process 5 (t) can be going through a slow

random walk with respect to one or more of the coefficients. As will be

shown later, the exponential smoothing procedure accounts for this.

For future reference, let us write the general time series represen-

tation in matrix notation. '

x(t) = I a (t) f (t) + e(t)
1=1

a'(t) f(t) + (t)

where

a(t) =

a^(t)

a^Ct)

a_(t)

, and f(t) = f2(t)

f (O

Hence

x(t) - a'(t) f(t).
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It should be apparent at this point that the first requirement in

the formulation of a forecasting procedure for a time series Is the

proper choice of the fitting functions that make up the model. There

are several guidelines we may follow in making this choice. These guide-

lines are discussed in the next chapter.

The exponential smoothing procedure will be dealt with In much

greater detail In Chapter III.
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2. DATA ANALYSIS

2.1 Choice of Fitting Functions for the Model

In the first chapter we described the systematic component of the

time series. C is composed of fitting functions, f.(t), and their

corresponding coefficients, a (t) . In matrix notation this is

e^ = i(t) = a'(t) f{t)

In this chapter we shall discuss some methods for determining the proper

fitting functions to be used in the model, x .

The time series data with which we are dealing dictates the form

of the model fitting functions. The problem arises in determining from

the data those fitting functions that will best describe the process

inherent within the time series. A discussion of the possible fitting

function forms will serve to clarify the alternatives available. Keep

in mind that, by definition, the fitting functions must be known exactly

for future time.

Brown (2,58) classifies time series models into four groups:

1. Algebraic models

2. Trancendental models

3. Composite models

4. Regression models.

The first of these classifications, algebraic models, takes in all

polynomial functions of time, including the constant model with which

we dealt in Chapter 1. Our forecast in the case of a constant model,

or polynomial model of degree zero, is
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x(t:) = a(t) f(t)

= a(t) t°

•= a(t) (1)

x(t) = a(t)

where a(t) = an estimate from the smoothing process of the fitting func-

tion coefficient. As we shall show in Chapter 3, the coefficients are

re-estimated by the exponential smoothing technique each time additional

data has become available. Thus we allow for gradual changes in the

process described by our model. This model might be used to represent a

time series that changes gradually, if at all, from a constant value. A

pictorial example of this type of process is shown in Figure 2:1:1. The

plot is not shown as a smooth line because of the random variation contri-

buted by £(t), the "noise" element In x(t)

.

x(t)

Fig, 2:1:1 Constant process time series

Going one step further, consider the case where the time series

exhibits a nearly linear form, as in Figure 2:1:2. A first degree poly-
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noraial model

x(t)

Fig. 2:1:2 Linear process time series

would probably describe this process adequately. So,

f^(t) = 1

and

f^U) = t

x(t) = I a At) i At)
1-1

aj^(t) (1) + a^Ct)!

where

a(t)

a(t) f(t)

"a^(t)~

a2(t)

_ _

and f(t) = Ip

Again, the plot shows, as always, the existence of some random "noise"

in the data.

We may similarly formulate a polynomial model of any desired degree.

Let us describe an n*" degree polynomial model as one containing a constant
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term and a polynomial of degree n-1. Then, an n degree polynomial

model would be,

x(t) =
j: a. (t) £ (t)

i=l ^ ^

a^(t) (1) + n^Mt + a^Wt'-

21

a(l:)t
n-1

(n-1)

1

where

a(t) fCc)

a^(t)

a(t) 33(1)

a_(t)

and f(t) =

1

t/11

t2/21

t"-V(n-i):

Note that the (n-1) degree polynomial model requires the estimation of

n fitting function coefficients.

Brown (2, 53) notes that the number of observations in the span

covered by the model should be several times the number of degrees of

freedom, n. Logically, forecasts based on only a few observations would

be very unreliable.

The question now arises as to what degree of polynomial is appropriate
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for a particular time series. If the observations may be exactly repre-

sented by a polynomial of degree n, i.e. no "noise", that degree may be

determined by successive differences. In this case,

= t
= °

We denote a first difference as

and a second difference as

= ^(t) -2^(t-l)+S^'-^>

Thus, a difference of order k is simply

\ = ^t « - \-l^

If the appropriate polynomial is of degree n, the difference A will

be identically zero. In the more practical case in which e is not

zero, the (n + 1) st differences of the data A x will average zero

over time, if the process 5 is a polynomial of degree n. The variance

of the differences will grow as the sum of squares of the binomial

coefficients in the expansion of A x. So, if e has a variance a , the

values A x will have variance

a^[2(n+l)]l/[(n+l)l]^
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2
This variance is larger than a for n+1 > 5 (Brown, 2, 63).

In many cases the proper polynomial degree may be determined by

merely inspecting a plot of the data versus time. Statistical least

squares regression analysis is another very useful method of attaining

this end. This last approach will be mentioned in our discussion of

trend analysis.

Brown's second classification of time series models, transcendental

models, is characterized by two sub-classifications:

a. Exponential models

b. Trigonometric models

These two will be dealt with separately.

An exponential function may be used to describe a process in which

the rate of growth is proportional to the state of growth in time, like

compound interest. Here, the change in value from 5/ % to C(t+1) may be

expressed as a constant percentage or C (t) , for any t. The form of 5

for a process which is a simple exponential function is

Note that

5(t-l) = ka''"^

at)/e(t-l) = kaVkat-1

where

a constant in the short run.
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This simple model, when plotted on semilogarithmic paper, will define

a nearly straight line with slope log a, since

log e.^) = log k. + t log

The general form of the exponential model is

where

5(t) = x(t) = k^(^)a' + k2(J)a'^"^b + Y^i^) a!'~\'^

. j_ 1 / t , t-n+L n-1
+ . . . + k ( ,)a T)

n n-1

V (t-k)lkl

is the binomial coefficient of the (k+l)st term in the expansion of

(a+b)^

To describe processes which are periodic, it is most convenient to

use the second of the trancendental model types, trigonometric models.

By periodic we mean a process whose time plot shows repetitive patterns.

The length of time between similar sequence patterns is called the

period. Perhaps the best graphical examples of this phenomenon are the

x(t)

Fig, 2:1:3 Sine wave with amplitude A and period p
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sine and cosine wave forms.

There are several familiar causes of cyclical variations in an

economic time series. Davis (3, 26) mentions some of these, a few of

which are mentioned below. Perhaps most obvious cause for this phenome-

non is found in the seasons of the year. A 12-month period usually

results from this seasonal variation. A second common pattern in economic

data is the "AO-month cycle" which corresponds to that of our national

economy. Davis also mentions a 15-20 year "building cycle" shown by many

production series. We cannot expect these cyclical variations to be

completely uniform, since in nearly every case, we are dealing with

human conduct.

The theory of Fourier series provides the basis for time series

representation by trigonometric models. Fourier showed that any reason-

able periodic function of time can be represented by taking a sufficient

number of terms in the series

5(t) = A^ + A^cos[^(t-a^)] + A2Cos[^(t-a2)]

+ . . . + A^cos[^ (t-aj^)] + . . .

where

A , A , A_, . , . A , . . . - constants,
o 1 2 n

Applying the identities

r~2 r
VAC + B' =• amplitude

arctan -rrr " phase angle
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we may transform our equation for 5(t) Into a series of sines and

cosines.

at) = A^ + A£ Sin^ + A- sin^ + . . .

where

and

, _ .. 2kTit ,+ Aj^ Sm -^ +

+ B'^ cos ^ + B^ Cos ^ + . . .

+ Br Cos^ +

p/k = the periods of the cycles represented by each sine-

cosine pair

K' ^V ^2 K' ^2' constants.

As before, we could write this model in the form

e(t) = x(t) = E a (t) f (t)

1=1

= a- (t) f(t)

where

a'(t) =

^2

and f(t)

Sin 2Tit/P

Cos 2iit/P

Sin 4Tit/P

Cos 4Tit/P
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Again note that the coefficients are time-dependent to allow for grad-

ual changes in the process. Thus they must be re-estimated periodically

as additional data is made available. By including two terms, sine and

cosine, for each cycle period, we allow the origin of time and the mean

to be arbitrary; i.e., we allow for a difference in phase angle. Obser-

ving the process at discrete sampling intervals, the highest frequency

that can be detected is the Nyquist frequency such that there are two

observations per cycle. Brown (2, 74) warns us that trigonometric

models should be used only where there is a known underlying cause for

a periodic time series form.

Having described the basic mathematical time series forms in their

pure states, we move now to the consideration of more practical examples.

This brings us to Brown's third time series model classification, com-

posite models. These present nothing new, except the combination of

the previous models, algebraic and transcendental. The methods of

exponential smoothing make it possible to estimate coefficients for any

model composed of terms that are sums or products of algebraic and

transcendental functions of time, in any combination whatsoever.

An example may best serve to illustrate the utility of such a com-

posite model. Consider the hypothetical, though typical, curve shown

in Figure 2:1:4.
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x(c)

Fig. 2:1: A Hypothetical time series plot

There are several obvious elements in the process which describes this

time series. First, the model will probably contain constant and linear

terms to show the starting point and apparent linear trend of the series.

In addition to these terms, a pair of cyclic terms with period k will

probably be necessary. Since the amplitude of the cyclic variation

appears to be increasing, we may want to Include the product of a poly-

nomial term and a pair of trigonometric terms. Thus far, we have

formulated the following representation for the time series, x(t).

x(t) = tCt) + e(t)

= x(t) + e(t)

= Z a (t) f.(t)

i-1

^_, 2iTt
, „ 27It

" a, + a.t + a. Sin —; ^ a, Cos —;

—

12 3 k 4 k

„, 27lt „ 2TIt
+ a.t Sin -;— + a.t Cos ^;

—

5 k 6 k
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2-nt
a^ + a^t + (^^ + ajt) Sin -^

+ (a, + a.t) Cos —r— •HO IC

where 4(t) = x(t), if our model is the correct one

a. = constant for i = 1, 2, . , .,6, for the short run.

In actual practice, a. = a (t) ; that is, we must estimate the fitting

function coefficients from our smoothing process. So, ^ (t) = x(t) only

if we estimate a,(t) accurately and our model is the correct one. If

it is felt necessary, additional terms can be included in the process

model, such as a higher harmonic to the cyclic component. It may seem

at first glance that we should try to describe J (t) as accurately as

possible; however, as Brown notes, for each degree of freedom added to

the model the work required to estimate the coefficients will approxi-

mately double, and the computing time will increase proportionally to

3
n .

The fourth and last of Brown's time series model classifications

is regression models. This classification covers a wide group of linear

forecast models of the form

5(t) = a,f, (t) + a,f,(t) + . . . + a f (t)11 z / n n

where f . (t) can be any arbitrary function at all. Many times the

fitting functions will be one or a combination of "leading" series

related to x(t). Brown offers several arguments against the use of

regression models. First, there seems to be no statistical test which
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can be applied to the model. Secondly, one usually doesn't know the

independent series long enough in advance to be useful in a forecast. :

Finally, the computational techniques involved are considerably less

efficient than those of exponential smoothing with algebraic and tran-

scendental types of fitting functions. As we will show in a later section,

the efficiency of computation in exponential smoothings depends on the

mathematical relationships between fitting function values at different

sampling intervals. We can not establish such relationships when the

fitting functions are arbitrary time series.

2.2 Trend Analysis

By trend, or secular trend as it is more commonly called, we mean

"...that characteristic of the series which tends to extend consistently

throughout the entire period" (Davis, 3, 15). The period referred to in

this definition is the total time covered by the available data. Trend

analysis is an attempt to determine this secular trend in the time series.

It is performed on the data for several reasons:

1. To determine the polynomial component of the time series model.

2. To aid in detrending the time series for the auto correlation

and spectral analyses to be discussed in the next two sections

of this chapter. By detrending we mean to reduce the series

in such a manner that the residual fitting errors will have an

expected value of zero.

3. To aid in identification of any amplitude growth that may be

occurring within the cyclic components of the time series.



29

Davis goes on to describe four of the more commonly encountered

trend forms in economic time series analysis. The first of these is the

straight line trend, described by a first degree polynomial on t, time.

Another common trend type is a straight line fitted to data plotted on

a logarithmic scale. This type corresponds to the simple exponential

model discussed earlier. He calls the third trend line type a "logistic

curve" or "curve of growth". This curve is more applicable to a descrip-

tion of the growth of new industries and population series. It may be

described as a transition line between a lower initial level of x(t), to

a stable "saturation" point on a higher level. The logistic curve is repre-

sented mathematically by

Ut) = -

where

1 + e-h'

K , K, = constants

C(t) = only the trend component of the time series in this

The form of the logistic curve is shown in Figure 2:2:1.

Ut)

Fig. 2:2:1 Example of logistic curve
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The last of the trend lines described by Davis is the familiar

moving average

.

We may consider C Ct) as being composed of two components, trend

and periodic.

C(t) = trend + periodic

= T + P

where

T = the trend component

P = the periodic component

and both T and P are deterministic functions of time. We wish to describe

T so that we may study P more closely by performing the following operation:

x(t) = e(t) + e(t)

= T + P + e(t)

P + c(t) = x(t) - T

As noted earlier, the periodic component is expressed as a series of sines

and cosines. These trigonometric functions, however, may be expanded into

a series of polynomial terms.

Sin y = y - ^ + ^Zl + 2_ _
. . .

where

cosy = l-^ + .^j

2k¥t , ,

y = as before.
P

Here we can see the danger of mixing the trend and periodic components,
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especially when high degree polynomials are used to describe trend. Unless

we are cautious, we may remove part of the periodic variation when we are

detrending the time series. This would probably lead to grave forecast

errors later on. A plot of the trend line with the actual observations

may aid the investigator in avoiding this pitfall.

In order to illustrate the detrending process, let us consider an

ideal model of the form

271

1

x(t) = 5(t) = a, + a.t + (a, + a^t) sin
L Z Jo p

. / , N
2TVt

+ (a, + a,t) cos —

—

4 6 p

where £(t) is always zero. This time series is shown graphically in

Figure 2:2:2.

<(t)

Fig. 2:2:2 Ideal time series with no random variation

In this example we may identify the process components as

T = a^ + a^t

P = (a„ + a^t) sin + (a. + a.t) cos
J J p 4 o p
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The detrended data will have the form of P alone, as shown in Figure 2:2:3.

Fig. 2:2:3 Detrended form of ideal time series above

The series now has an expected value of zero. Thus, it is easier to

Identify the cycles present in the data and any growth in amplitude that

may be occurring. The detrended data may then be subjected to autocor-

relation and spectral analysis to determine the periodic components

present. Polynomial regression (Appendix C) is perhaps the best method

to use in detrending the data, and it is the method used in this research.

2.3 Autocorrelation Analysis

Though "detrending" aids in the identification of periodic compon-

ents, it is usually still inadequate. Random noise and the superposition

of one harmonic upon another often make it impossible to recogniEe all

of the periodic components present in the process involved. Autocorrel-

ation analysis is one method of manipulating the data to indicate
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(1) Wliether or not a process exists in the detrended data

(2) Whether or not the data contains periodic components

(3) At least the largest periodic component detectable in the data

(4) Any Icig relationship between data values a certain time period

apart in the time series

By applying the "detrending" techniques of the previous section,

our data is now in the form

x^(t) = P + e(t) = x(t) - T

where x.(t) = the detrended form of the data and P and T are the periodic
d

and trend components of the time series, respectively. Since x (t) now

has an expected value of zero, by the principal theorem of Fourier we

may write

x^(t + k) ; x^(t)

where k = the period of the fundamental periodic component of the series.

This equation assumes, of course, that a periodic component exists,

without any amplitude growth. The fundamental periodic component here is

the largest detectable period in the available time series data.

Autocorrelation analysis utilizes a function known as the average

lagged product, which may be written as

T

t=k+l ^ '^
'^

T - 1 - k

where k is the lag, or period of time between the time series values
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whose products we are summing. This average lagged product, performed

on a sequence of numbers whose expected value is zero, is the autocovar-

iance for lag k, R (k)

.

I X4l(t)x,(t-k)

XX
T - 1 - k

The variance of a sequence of numbers whose expected value is zero is

T

ox/ =
^1^ x^(t)VN

where N = the total number of observations.

This is just Rxx(O), the average lagged product for a lag of k = 0.

2
Rxx(O) = .

xd

Note here that the function Exx(k) will always be symmetrical, so that

Rxx(-k) = Rxx(k)

The normalized form of the autocovariance function Rxx(k) is simply

„,, , _ Rxx(k)

Since Rxx(O) > Rxx(k) for any k,

- 1 < (k) < + 1

and

P(0) = + 1.
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For essentially random noise p (k) will be nearly zero for all k^O, and

p(0) = 1. So if no periodic component exists in the data, a plot of

the autocorrelation function against the lag k would appear as shown in

Figure 2:3:1.

Fig. 2:3:1 Autocorrelation function for time series with no

period component

p(k)is shown in Figure 2:3:1 as p (k) to indicate that this is a computed

value subject to random variation. Since Rxx(k) is symmetrical, P (k)

will also be symmetrical, and we need only plot P (k) for k>0 to study

the autocorrelation function. The standard deviation of the computed

-I'

autocorrelation coefficients, P (k) , is a = (T-k-l)'^ for a sample of T

observations. Brown warns us that the autocorrelation coefficients

should be treated as zero unless they are clearly greater in magnitude

than the standard deviation, a . He also says that the maximum lag should

not exceed kmax = T/20. This restriction may be too tight to follow in

practice, since to study a yearly cycle this means that at least twenty

years of monthly data would be necessary.

It may be helpful at this point to discuss the possible interpreta-
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tions that may be made from the autocorrelation function plot. Consider

the plot shown in Figure 2:3:2. The pattern shows a

1.0

P(k) o

-1.0

Fig. 2:3:2 Example of an autocorrelation function

trough at six months, a peak at twelve months, and inflection points

at three months and nine months. This is indicative of the existence

of a twelve month periodic component in the data. The squared nature

of the trough and crest are indications that higher harmonics may be

present also. Consider now the plot in Figure 2:3:3. Notice again the

apparent twelve month periodic.

1.0

p(k)

-1.0

12 15

Fig. 2:3:3 Example of an autocorrelation function
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However, notice also the smaller peak at six months and the cosine

wave-like form of the curve between k = 1 and k = 6. This Indicates

that a six month harmonic may also be included in the periodic component

of the process.

We may sunmiarize the autocorrelation analysis procedure in the

following steps:

(1) Detrend the time series.

(2) Compute autocorrelation function, P (k) , for the desired lag

values, k.

(3) Plot k versus P (k)

.

(4) Analyze and interpret the plot in (3)

.

It may be noted here that the more completely we detrend the data,

the sharper will be the peaks on the autocorrelation function plot, and

hence, the more easily we may recognize the existing periodics. We must,

of course, be careful not to remove any periodic variation by mistaking

it for trend.

Autocorrelation analysis is especially advantageous when the time

series may be described using fitting functions which are previous values

of the same time series k observations in the past. This is referred to

as an autoregressive model. For time dependent periodic components

another analytical technique has attributes not offered by autocorrelation

analysis. This latter technique, harmonic analysis, is discussed in the

following section.

2.4 Harmonic Analysis

Recall from Section 2.1 that, according to the fundamental theorem
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of Fourier series, any reasonable periodic function of time with zero

mean can be represented arbitrarily closely (Brown, 2, 396) by taking

terms from the infinite Fourier series

,(t)=|A^+ I A^Cos(Sf)+
"

B^SlnC^).
n=l n=l

- a < t < a

where

A , B = constant coefficients
n n

A = constant (zero for the detrended data)
o

a = one half the range of the main, or longest, period,

The coefficients A and B may be computed from the following integrations:
n n

A = i / x(t)Cos(22^)dt
n a a

B = i ; x(t)Sin(J^)dt
n a a

The period, p, and amplitude R, of the nth harmonic term may be written

2a
?„ = -;:

= v/?T

The periods represented in this Fourier series make up the Fourier

sequence , Chat is

,
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2a, 2a, 2a 2a,

12 3 n

The advantage of the Fourier sequence is revealed in the following

identity:

R^ + R^ + R3 + • • • + ^n + • • = 2"

where o = the variance of the data series, 5 (t)

.

Thus we see that the ratio R^/2a gives us the fractional variation,

or energy, explained by the inclusion of the nth harmonic term in our

time series model. Our goal in describing the periodic components of

the data is not, however, to fit a Fourier series to the data. Rather

we wish to determine the periods which the time series possesses and,

if possible, determine the contribution of each of these periods in

describing the time series. It is conceivable that one or more of these

periods would not be included in the Fourier sequence. Hence we may

define harmonic analysis as the technique of determining the principal

harmonic elements of a given set of data.

For our purposes, a better sequence of periods to study is the

arithmetic sequence

1, 2, 3, 4 a.

This sequence may also be used to describe the time series data, though

the energies for these periods are no longer additive. We may now

describe the time series in the form
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£(t)=|A + t ApCosC^) + f BpSln(^)
p=l ^ P=l

where A , B = the coefficients of the harmonic terras for a period of p.

P P

It is helpful, for reasons to be discussed later in this section, to

subject the detrended data to the harmonic analysis rather than the

raw time series data. Since the detrended data may be written

x,(t) = P + e(t)
d

and the periodic component, P, has a zero expected value, we may now

write

P = E A Cos(^ + I B Sin(^).
P=l P P p=l P P

.

We may determine the amplitudes of the periodic terms from the following

formulas

:

A = |t I x,(t)Cos(^)
P ^ t=l

P

> ^' 2 t
B =^ E x,(t)Sln(-—

)

p N j.^^ d p

\= /A^TT^p p

where N' is chosen equal to the largest integral multiple of p In the

total number of observed data values, N.

Having determined the values, R, of the amplitudes of the harmonics

in the arithmetic sequence, we wish to compare their magnitudes. This
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will give us a relative measure of the contribution of each harmonic

to the description of x^(t). The most widely used method of compaisson

is the "periodogram," introduced by Sir Arthur Schuster (1851-193A)

2

(Davis, 3, 31). A "periodogram" Is the graph of R^ or R^ against p.

Graphs of R versus p have been employed throughout this research.

This graph will contain peaks above the periods corresponding to

harmonics present in the data, x^(t). Generally, the higher the peak,

the more significant is that particular harmonic in describing the

periodic component of the process. Hence, inclusion of that harmonic

in the time series model will account for a greater decrease in error

variation than would a harmonic with a lower peak.

Consider the hypothetical "periodogram" shown in Figure 2:4:1.

From this graph

300

R 200
P

100

J p (months)

12 4 6 8 10 12

Fig. 2:4:1 Hypothetical harmonic analysis periodogram
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we may infer that a periodic component with P = 12 months should probably

be included in our time series model. Also, a six-month harmonic may be

desired in the model.

We may obtain some idea of the effect of the inclusion of certain

periodic terms in the time series model by computing a per cent reduction

in error variance for x^(t). For example, let a^, be the variance of

the detrended data, and let 0^., be the variance of detrended data minus

the periodic terms we wish to include. For the example in Figure 2:4:1

this would be: .

x,(t) = p + E(t)
d - :

, .1 <

x/(t) = x^(t) - P'

where

p' = Ag cos (^) + B^ sin(-g-)

+ A^2 Cos (^) + Bi2 ""^TI^

Now we may write
2

°x d
E ,= 100[1 - H5—

]

xd

where

E = the per cent reduction in ,
due to P'.

P'

Ideally we would like our "periodograms" to exhibit sharp peaks

for the harmonics that should be included in the time series model.

Since our data still contains some random variations, sharp peaks are not
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always possible. By working only with the detrended data, we lessen

the chances of misinterpretation of the graph. Inclusion of the trend

component in the harmonic analysis may give erroneous peaks on the

graph, or hide harmonics that should have been Included in the model.

Even after trend is removed from the data, careful interpretation of

the "periodogram" is essential. A very broad peak, such as that shown

in Figure 2:4:2, suggests the existence of more than one harmonic.

300

200

100

16 12

Fig. 2:4:2 Example of periodogram with broad peak

Existing periods of very low frequency may often be handled adequately

by the adaptive nature of the smoothing process.

We may see from this discussion that harmonic analysis not only

identifies the harmonics existing in the time series, but also indicates

their relative contributions in describint the process. Nevertheless,

it is still subject to error and misinterpretation. Probably a wise

procedure is to perform both the autocorrelation and harmonic analyses,
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so that one may serve as a check on the other.

-,i^.—-.n--:.-^-J
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3. FORECASTING THE TIME SERIES

3.1 Justification for Exponential Smoothing

We have derived a simplified formulation of the exponential smoothing

process in section 1.3 of Chapter 1. In deriving the expressions shown

there, we were dealing with the simplest of time series models, the

constant process. It was shown that the function S^(x) was a good estimate

of the value. of the process at time (t+1) . For this model we had only one

fitting function, t^it) = 1, where

Kit) = a(t) f^(t)

= a(t) (1)

x(t) = a(t)

Thus we see that once we have formulated a good model of the true process,

we use exponential smoothing to estimate the coefficients, a^(t)
,

of the

fitting functions in the model.

To bring us up to date, let us briefly review our progress at this

point:

(1) The time series may be described as

x(t) = T + P + e(t)

where

T = the trend component

P = the periodic component

e(t) = the random variation. Both T and P are determin-

istic functions of time.
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(2) By means of polynomial regression we may determine the fitting

functions in T.

(3) We may determine the fitting functions in P through autocorrela-

tion and harmonic analyses.

(4) Now, through exponential smoothing, we may estimate the coeffi-

cients of all the fitting functions in the time series model,

and then make forecasts of future values of the time series.

From our previous development of exponential smoothing we arrived

at the expressions

S^M = aXj, + BS^_^(x)

2
= «Xj. + Ci3x^_^ + aB Xj._2 + . . .

+ ag"x + . . . + e*^ X
t-n o

S^(x) = a\ S'^ x^_^ + 6\
n=0

where

S (x) = the exponentially smoothed value of x(t) up to

time t.

a = smoothing constant

S = 1-a = discount factor.

Note in this expression once again the advantages offered by exponential

smoothing:

(1) Data is weighted to reflect decreasing importance with increasing

age.
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(2) All past data is included in the statistic S (x) , where t is

taken to be the present time.

(3) Storage of past data requires only the retention of the current

value of S (x)

.

As a criterion for justification of the exponential smoothing process,

we shall say that, if the expected value of S(x) equals the expected

value of X, the procedure is justified. Thus, S (x) is a valid method

for estimating a. (t) , the constant process fitting function coefficient.

So, we may say

E[S(x)] = E[« I b'^x^ , ] + E[e"x ] .

k=0 """ °

The last term shown, EfS^x ], is zero, since S is a number less than one.
o

Now,

E[S(x)] = E[a I b\ ]

k=-0
'^"''

a Z b'' E[x ]

k=0
^'^

E[x]a E 6^

k=0

Z B is the summation of a converging geometric series. It has the

k=0 ^
value rr^ for an infinite number of terms. So,

E[S(x)] = E[x] a Jig
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= E[x] -
a

E[S(x)] = E[x]

and the procedure is justified. In addition to the advantages cited

above, the response rate of exponential smoothing is quite flexible and

the computations simple, as will be shown in later discussions. Note also

another characteristic of the smoothing process. Let us rearrange the

previous expression for S (x) as shown below.

Sj.(x) = ax^ + 3S|._^(x) ...

= aXj, + (l-a)Sj._^(x)

= Sj._^(x) + a(X|. - S^_^(x))

The second expression on the right is merely the current observation, x ,

minus the estimate of x at time t-1, S
-,
(x) , all multiplied by the

smoothing constant. So, this is a measure of the error of the previous

forecast. Hence, the smoothing procedure updates the coefficient esti-

mates to adjust for the previous estimation error. The accuracy of the

procedure may be inferred from the fact that the function S(x) minimizes

the weighted sum of squared residuals (Appendix B) .

3.2. Discounted Multiple Regression

Until now, we have been working with a time series that may be repre-

sented by a constant process. We now wish to consider a more practical

example, where the process is composed of an arbitrary set of functions.

For these fitting functions we determine values of the coefficients that
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miniciize the weighted sum of square residuals, as before.

Consider again the general process mentioned in section 1.3.

S(t) = a^(t)f^(t) + a^Mi^it) + .

+ a (t)f (t)
n n

Z a (t)f(t)

i=l

where

£(t) = the process, or the time series minus random noise

f
.
(t) = the i fitting function evaluated at time t

a.(T) = the i fitting function coefficient estimated at

time T.

The fitting functions may be any deterministic functions of time, as

long as their values are known exactly for the present and for the time

in the future for which a forecast is desired. This restriction allows

the inclusion of:

(1) Simple mathematical functions of time.

(2) Empirical functions that satisfy the restriction.

(3) Previous observations of the dependent time series.

Having determined the fitting functions to be used, we must estimate their

coefficients so that the desired x-value may be obtained from

x(t) = .^^ a.(t)f .(t)

= a'(t)f(t)
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where a(t) and f(t) are n-component column vectors evaluated at time t.

Recall that the process C (t) may change slightly over a long period of

time without injecting significant error into the smoothing process.

Over the short run, however, we may treat the coefficients as constants

and obtain a least squares estimate of their values from the exponentially

discounted data.

The forecast of x for ^ periods into the future, considering the

present time as t, would then be

x(t+T) = a^(t)f^(t-K) + a^Mt^(.t-t^)

+ . . . + a (t)f„(t+T)

i!l
a.(t)fi(t+^)

a'(t)f(t+T)

where

a.(t) = a least squares estimate of a.(t) based on the

weighted data, x, from t = up to the present

time, t.

f (t+x) = the i' fitting function evaluated at the future

time, t+''^ for which the forecast is desired.

We are assuming that the estimates, a (t) , based on all past data, are the

best that we can obtain. The least squares estimate of a^(t) is similar

to a multiple regression solution; however, in this case, we are minimizing

the discounted sum of squared residuals



51

I 3-'[x(T-j) - E a.(T)f (T-j)]

where

T = present time.

Hence, we call this procedure "discounted multiple regression.

The ensuing discussion will show the technique for finding these

least square estimates of the coefficients. First, the following defin-

itions should aid the understanding of the procedures that follow.

X = [x^, x^, Xj x^]

= all past observed time series values up to the present

time T.

= al X T row vector.

f(t)

fj_(t)

f2(t)

f^(t)

an n X 1 column vector of the n fitting

functions evaluated at time t.

a(t)

a^(t)

a^Ct)

.(t)

an n X 1 column vector of fitting

coefficients for time t.
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5^(t)

fj^(l) f^(2) f^m

f^d) £,(2) . . . f2CT)

f^(l) f^(2) . . . f^(T)

= an X T matrix with elements f.(t) in the i row and the

th
t column.

a(t) is our least squares estimate of a(t) and is of the same vector form

as that shown above for a(t). Since we have defined the time series

estimate as

x(t) = a'(t) f(t)

we may denote the corresponding residual as

e(t) = x(t) - x(t)

= x(t) - a'(t)f (t)

Now the discounted sum of squared residuals would be

T

Z w^t)e^t)
t=l

where

w(t) is the t diagonal element of a T x T matrix W(t)

.

W(t) = w(l)

w(2)

w(T)
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where

w^ (T-j) = B^ j = 0, 1, 2, . . ., T-1.

Now, it we define a row vector of residuals, e(t),

e(t) = x(t) - a'(t)S^(t),

then the discounted sum of squared residuals Is

S = [e(t)W(t)] [e(t)W(t)]'
a

= [x(t)W(t) -a'(t)^(t)W(t)] [x(t)W(t) -a'(t)5'(t)W(t)]'

for a particular set of coefficients a(t). To minimize this sum, we need

to select a(t) such that

^^^ = 0.
3a(t)

This expression gives us n simultaneous linear equations which can be

solved for the n coefficients a.(t). As shown in Appendix B, the solution

to this expression is

a'(t) = x(t)W(t)W'(t)?''(t)F"^(t)

where

F(t) =^(t)W(t)W'(t)?''(t)

= an n X n syiraaetrical matrix

As long as T>>n, F(t) will have an inverse. If we define a data vector

g(t) as

t'(t) = x(t)W(t)W'(t)5^(t)

then

a'(t) = g'(t)F"''-(t).
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Note that F(t) does not depend on the data. It does, however, depend on

time, and must be updated at each sampling interval. Looking at one

element in the matrix F(t)

,

T-1
Z

where

i-i

Fik(T) = I B^f^(T-j)fj^(T-j)

T = present time, we see that It may be updated by

F.k(T+l) = f .(T+l)f, (T+1) +

T-1
I B^f .(T-j)f, (T-j)

So, generally, F(t)f'(t) + BF(t-l)

Since F(t) 5^ F(t-l), then F~-'-(t) ?! F"-'-(t-l) and a new f" must be computed

at each sampling interval. Reference to an expression for the i data

vector component at time T,

T-1 ,

I

j=0

T-1 .

g.(T) = I S^x(T-j)f (T-j),
1 j_n

indicates that g(t) may be updated at each sampling interval by

g(t) = x(t)f (t) + 6g(t-l)

where

t = the new present time value

t-1 = the previous time period.

So, having updated F(t) and g(t) and after a sufficient amount of data
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has been gathered to allow the existence of F~ (t) , we may estimate a

by

a'(t) = gCt)F"^(t)

and make a forecast of future observations by

xCt+T) = a-(t)f(t+T).

3.3 Construction of the Transition Matrix

We can simplify the computations of the previous section considerably

If we place a restriction on the class of fitting functions; that is,

the vector of fitting function values at time t+1 must be a linear combin-

ation of the values of these functions at time t. Specifically, we can

define an n x n matrix L with components L such that

f^(t + 1) = L^^f^(t) + L^2^2^t) + . . . + L^^fJt)

f^Ct + 1) = L^.f^Ct) + L^^f^Ct) + . . . + L^^f^Ct)

^n^^ + " = ^1^1^'^ "
"n2^2(^) + • • • + \,f,M

f(t + 1) = L f (t)

The transition matrix, L, must have an inverse, as will be shown later.

The only fitting functions which satisfy this restriction are

(1) Polynomials

(2) Exponentials

(3) Sinusoids
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once we know £ (o) and L. we may find f(t) for any t since,

f(t) = Lf(t-l)

= L[Lf(t-2)]

= L^f (o)

The matrix L may be constructed, by inspection of the fitting functions

desired, according to rules regarding each allowable class of fitting

functions

.

For a polynomial of degree n, L is an (n + 1) x (n + 1) matrix with

ones on the diagonal, ones in the first element to the left of the

diagonal and zeros everywhere else.

1

1 1

1 1

; ij

where L has n + 1 rows and n + 1 columns. The mathematics involved in

updating L requires that polynomial fitting functions now be of the form

f (t) = -^ t(t-l) (t-2)
n nl

. (t-n + 1)

.

As mentioned earlier, for a trigonometric fitting function the sine

and cosine term of each harmonic must both be Included to account for any

phase angle shift. There are two basic forms which the corresponding

transition matrix may take. For example, suppose we want L for the
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trigonometric pair

f (t) = sinut

f^Ct) = cos'^t

L would be the 2x2 matrix

_^.cosu sinuj.

-sintu costi)

If we want to include this same harmonic, but with linearly growing ampli-

tude as well, the fitting functions would be:

f (t) = sinuit

f (t) = cosut

f (t) = t sinut ^' .

' •

f ,(t) = t cosut

and L would be the 4x4 matrix

COSOJt sinwt

sinut COSLJt

cosuit sinut costot sinut

slnut cosut -sintot coswt

The elements of L always take the same position relative to the diagonal

of L, no matter what the size of L. So, for models which include many

fitting functions or combinations of fitting functions, the transition

matrix may be constructed by stacking the simple matrices shown along

the diagonal of L. All other elements will be zeros. For the construc-

tion of exponential transition matrices, refer to Brown (2, 166).
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3.4 Adaptive Smoothing

Observing the restriction placed on f (t) in the previous section

and moving the origin of time to the most recent observation, we may now

write

xCt+t) = £-(T)2(t)
,

., ,-. ,.. .

'

'

;.

This shift in time is reflected only in the fitting functions, so that

their values depend only upon the increment of time into the future for

which a forecast is desired, x still shows the actual time to which the

forecast applies, and a shows the total data upon which it is based, all

data up to time t. So, if we shall always be forecasting one time period

into the future, t = 1, we need to compute f(T) = f(l) only once.

The sum of squares to be minimized now is

T

Z S^[x(T-j) -f'(-j)a(T)]^.

Differentiating the weighted sum of squared errors with respect to a(t)

and setting the result equal to zero as before, we obtain

I(t) = F"^(t)g(t),

where

and

J=0

t

g, (t) = Z B^f . (-j)x(t-j)
j=0

Again this assumes that sufficient observations have been made for F(t)
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to have an inverse, that is, at least n observations where F(t) is an

n X n matrix.

At each sampling interval, we must again update g(t) and F(t) .
Since

both are functions of f(t), and f(t) has a different time origin than in

discounted multiple regression, the updating procedure will not be the

same as before. The data vector may be expressed

t

g(t) = x(t)f(o) + l B^f(-j)x(t-j)

Since

f(-j+l) = Lf(-j), or f(-j) = L"^f(-j+l),

t . ^

g(t) = x(t)f(o) + Z B^l" f(-j+l)x(t-j).

j = l

If we change the index of summation to k = j - 1, the data vector recur-

sive relationship becomes

g(t) = x(t)f(o) + BL"-'-g(t-l)

where the coefficients of x(t) and g(t-l) no longer depend on time and

thus become program constants. The matrix of fitting functions may also

be computed recursively by

t

F(t) = :: e^f(-j)f'(-j)
j=o

= F(t-l) + s'f(-t)f'(-t)

When the fitting functions are restricted to trigonometric functions or

polynomials, approaches zero faster than f(-t) grows, since B < 1.
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Thus, F will reach a steady state value after a sufficient number of sam-

pling intervals, and does not require any further updating. Once steady

state has been reached we may write

F(t) = F(t-l) = FC-)

If one of the fitting functions is of the form f(t) = e , steady state

may be reached only if B<e~ ^
. In the case of trigonometric and polynomial

models, the fastest growing function will be the highest degree polynomial

term present. If this term is t , then

7 + 5.1n

(1-3)°-"

= the number of sampling intervals necessary to reach

steady state (Brown, 2, 170),

where the convergence criterion is that the largest quantity added to

any element of F is less than 10 times the previous value of that

element

.

Having reached steady state, we may estimate the coefficients by

a(t) = F"^g(t)

where F is no longer time dependent. The forecast would then be computed

from

i(t+T) = 2'(t)f(T)

= [F"^g(t)]'f(T)

= g'(t)F"^f(T)

= g'(t) c (t)
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where c(t) is a column vector dependent on the values of the fitting

functions at time i, but not on absolute time. Note that only one matrix

inverse will be necessary as long as B, t, and the fitting functions are

not changed, so the computations have been greatly simplified. When

additional data is available, we must merely update g(t) and compute

x(t+T).

3.5 Derivation of General Exponential Smoothing

We have said that F will converge to a steady state and may be

handled as a program constant if: (1) successive fitting function values

may be generated by a fixed transition matrix L, that is, f(t+l) = L f(t);

(2) the origin of time for the fitting functions is taken as the most

recent observation. Furthermore, the data vector, g(t), may be defined

recursively from the previous values of its n components, g(t-l), and the

new observation. We wish now to minimize the computational effort required

in obtaining successive estimates of the coefficients, a(t)

.

If there were no random noise in the data, and we had developed a

model to describe the process exactly, we could recursively evaluate a(t)

from a'(t-l). In this case x(t) = x(t), so

x(t) = I'(t-l)f(l) = x(t)

x(t) = a'(t-l)f(l)

= a'(t-l)Lf(0)

Note also that

x(t) = a'(t) f (0)

Equating the last two equations,
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a'(t)£(o) = a'(t-l)L£(0)

So.

a^(t) = a^(l;-l)L and we may obtain the value of the next

observation, that at time t, from

i(t) = a'(t-l) f(l)

= a'(t-l)L^(0)

= a'(t)f(0)

We cannot expect the data to conform exactly to the model of the process,

however. Each observation will differ from the corresponding forecast

by an amount e

,

e(t) = x(t) - x(t).

If this fitting error can be taken into account in successive estimates

of the coefficients, we may still obtain a recursive relationship for a.

In order to account for these fitting errors, we shall define an n com-

ponent smoothing vector, h, which depends only on .f and the fitting

functions.

h = = F f (o) = the smoothing vector.

h may also be treated as a program constant for a particular S and a
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particular model.

As in the previous discussions, the minimum discounted squared

residual is satisfied when

a(t) = F~^g(t)

where F~ is used in its steady state. This may also be written

g(t) = Fa(t). ,•

If we substitute this expression into the recursive relation for g(t)

obtained in the previous section, we have

Fa(t) = x(t)f(o) + eL'-'-Fa(t-l)

or

a(t) = x(t)F"-'-f(o) + 6F"V-'-Fa(t-l)

Note that the coefficients of both x(t) and a(t-l) are time independent,

and that F~ f (o) is h, the smoothing vector. By manipulating the

equation that defines F, it can be shown that

f'-'-l'-'t = L' - hf'(l)

= the coefficient of a{t-l) in the expression for

a(t) above.

Now we may write

a(t) = hx(t) + L'a(t-l) - hf '(l)a(t-l)

But
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f (l)a(t-l) = x(t),

so,

a(t) = hx(t) + L'a(t-l) - hx(t)

- L'a(t-l) + h[x(t) - x(t)]

a(t) = L'a(t-l) + he(t).

Thus we have a recursive relationship for a that accounts for prtvious

fitting errors.

3.6 Summary of General Exponential Smoothing

The relationships used are valid only for trigonometric and poly-

nomial models, and exponential models satisfying the restriction mentioned

earlier (Section 3.4). The general forecast equation is

x(t+T) = a'(t)f(T).

The fitting function coefficients may be obtained recursively by

a(t) = L'a(t-l) + he(t)

where

h = F'-'-f (o).

The fitting function vector nay be obtained recursively if necessary by

f(t) = Lf(t-l).

Appropriate choices of 3 and the initial conditions, a(o),are important

to all the methods discussed. These problems will be discussed in the

following chapter.
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4. CHOOSING THE SMOOTHING CONSTANT AND THE INITIAL COEFFICIENT VECTOR

A.l Effect of Data on Discount Factor Choice

There are essentially three ways by which we may control the effici-

ency with which our forecasts follow the actual data:

(1) Choice of the model

(2) Choice of the discount factor

(3) Choice of the initial conditions.

The first control was discussed at length in an earlier chapter. At this

time we wish to develop some guidelines to follow in choosing 6 , our second

control over the model efficiency. The literature suggests some general

rules that should be followed in making a B choice, however, prior research

in this area appears to be inadequate. Consequently, much of the research

presented in this thesis is based on the effect of B in describing the true

process.

Initially, our choice of a discount factor should be based on the

nature of the data and our expectations of future data. If the deviations

from our model of the process seem to be mainly random fluctuations, then

a large B value will probably be appropriate. This will put more emphasis

on older data and, hence, tend to smooth out the effect of the fluctuations

of the actual data on our forecasts. If, on the other hand, these fluctu-

ations are large in magnitude and do not seem to imply a revision of the

model, a small 3 will put greater weight on more recent data, and allow the

model to react more quickly to these fluctuations. In terms of the fore-

casting system response to the actual data, we may say:
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(1) For large values of S, system response rate is low;

(2) For small values of 6, system response rate is high.

If the investigator expects the appearance of a new pattern in the future

values of the actual data, i.e., if he expects relatively large changes

in the fitting function coefficient values, again a small g should be used

to allow quick response.

We shall defer discussion of actual numerical values of B until a

later section. We wish first to develop some general guidelines on the

range of B, as dictated by the data. As in numerous other problems we

are faced with two conflicting criteria by which we judge the efficiency

of our S choice, that is,

(1) Ability to respond to fluctuations in the true process

(2) Ability to smooth out random fluctuations in the data.

A smaller 6 gives quicker response to fluctuations in the true process,

but also gives more drastic response to the random fluctuations.

4.2 Average Age of the Data

Brown (2, 116) warns that if you must use a B smaller than 0.7, a

larger than 0.3, you may actually need a different model, specifically,

a constant model. He feels that with B < 0.7 the response rate is so

high that a constant model may be quite adequate. It may be that an

undetected periodic in the data forces the use of a high S . Again we

may use a more reasonable value of the discount factor if we alter the

model to include the necessary periodic fitting functions. We may infer

from these observations that it would be wise to know what the weighting
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factors will be for specific 3 values. Broun (2, 107) has presented

"average age of the data" to aid the investigator in grasping the meaning

of a particular 13 value. We shall apply average age only to a constant

model for now. In Section 4.4 we will see how this term applies to more

complicated models. We may define the age of the data as being one for

the present observation, two for the previous observation, three for the

one before that, and so on. So, the observation N sampling intervals age

will have age N. If we multiply the age of each data value used in fore-

casting by the weight received by that data, we have a figure representing

the average age of all the data used. Hence, for a moving average of

period N,

k = i (0) + i (1) + i (2) + . . . + i (N-1)

k =^
2̂

where

k = average age of the N data points

— = the weight received by each data point

Applying this to exponential smoothing, we see that the weight given to

data n sampling intervals old is ag . Hence, the average age of the

data would be

k = a(o) + aB(l) + aB^(2) + . . . + a6^(T)

T
= a I Bn

"

n=0
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where

T = the total number of observations used in making the

forecast.

If T is large, that is, if we have much data from which to make a fore-

T ~
cast, B will be very small. We may then approximate k by letting T

approach infinity without introducing significant error into the calcu-

lations (Brown, 2, 135). So,

a E n^
n=0

'-^
"•(1-3)

a6

a

k = B/a .

We might want to define an exponential smoothing process as being equiv-

alent to a moving average with the same average age of the data. That

is.

S N - 1

N - 1

N + 1

1 + B 1 +
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This, of course, would only apply to exponential smoothing with a constant

model of the process.

4.3 System Response to Standard Input Signals

We may gain some feeling for the effect of 3 on the system by analyzing

the system response to various standard input signals. The inferences to

be dratjn are only of a general nature, since the constant process model

assumed here would often be inadequate.

Before we study system response, it is necessary to establish a few

definitions. Any discrete, linear, time-invariant system can be completely

described by its impulse response (Brown, 2, 112). All of our discussions

have been based on the assumption of discrete data, that is, data taken

only at specific and equal time intervals. Linear implies the following

system characteristic regarding input to and output from the system;

If input X- (t) produces output y. (t) , and input x„(t) pro-

duces output y^(t), then input ax (t) + bx„(t) will produce

output ay (t) + by„(t), where a and b are constants.

The system is time-invariant if a particular input signal will cause the

same system output at any time, t.

A unit impulse signal may be as shown in Figure 4:3:1.

1.0

x(t)

Fig. 4:3:1 Unit impulse function
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It may be written as

x(t) = 1 t =

x(t) = t j«

where

x(t) = the input signal

t = time.

Since we have not defined our exponential smoothing system for negative

time, we may assume a time range of <t < ". Let h(t) be the unit impulse

response of the system t periods after the unit impulse input. The

response of a linear system, y(t), to an arbitrary signal x(t) may be

expressed as

y(t) = I x(n)h(t-n)
n=-«>

Since our system is undefined for t<0.

y(t) = Z x(n)h(t-n)
n=0

= x(t)*h(t)

where the symbol * implies a convolution of the sequence [x(t)] with the

sequence [h(t)]. Note from the previous equation that for a linear

function of past data, as in exponential smoothing with a constant model,

h(t-n) = aw(t-n) = a3 .

Hence,
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y(t;) = a I x(n)w(t:-a) .

k=0

So, having found an expression for the unit impulse response for exponen-

tial smoothing, ue may find the system response to an arbitrary input x(t)

.

First, let us simplify the computations by transforming the convolu-

tion equation above. The Z-transform (Appendix D) is particularly conven-

ient for this analysis, since the convolution becomes a multiplication in

the Z-doraain. The Z - transform, F(Z), may be written

F(Z) = I f(n)z''

n=-«>

where

f(n) = the function to be transformed

F(Z) = the Z - transform of f(n).

Note that the previous equation for y(t) may now be expressed as a multip-

lication,

Y(Z) = X(Z)'H(Z)

where

Y(Z) = the Z- transform of y(t)

XCZ) = the Z- transform of x(t)

H(Z) = the Z- transform of h(t).

Once we have found Y(Z), we may apply an inverse transform to obtain y(t)

.

The system response, y(t) , is determined below for several standard inputs.

For a unit impulse input at time zero, as described above, we may

write
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Now,

So,

X(2) = E x(n)Z
n=0

l'Z° + + + . .

- 1

H(Z) = Z aB"z" = a E e"z"
n=0

"^l4^^

n=0

Y(Z) = X(Z)-H(Z)

^ • '='^1::^^

Y(Z) = !• !:. aeV
n=u

y(t) = aS>\

Hence, y(t) for a unit impulse input is precisely the weight given to

the data. Note that the system response is dependent upon our choice of

£, and hence of a. This effect may be seen in Figure 4:3:2.

x(t),y(t)

1 n

x(t)

) \~—y(t)

n I 1 1
^^^~T--^

-2 -1 1 2 3 A 5

Fig. 4:3:2 System response for unit impulse input to a constant process
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For lower values of 3 the system will adjust back to its original state

at a faster rate, since w(t-n) = 3 will decrease at a faster rate than

it would for a higher 6 value.

Suppose the input signal is a unit step, as shown in Figure 4:3:3,

1.0

x(t)

J I I I L.

Fig. 4:3:3 Unit step function

This may be written

x(t) =0 t <

x(t) =1 t > 0.

Determining the Z -transforms

x(z)=X ^"•^"^ilz

H(2)
1-6Z '

We now have

Kow,

^(^^ = (i=z)-^iril)



I y(n)z" = C !: z")-( Z agV)
n=0 n=0 n=0

I aZ £ B

n=0 k=0
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and

y(t) = 1

^ tt(l-e ) ,n

n=0
" ^-3

t+1

Note again the effect of B on y(t). For lower S values the system will

adjust to the input at a much faster rate. This effect is shown in

Figure 4:3:4.

30.

Periods 20

to rise
to 90%

of step. 10

1.0

Fig. 4:3:4 Effect of discount factor on system response to a unit

step input

Since exponential smoothing gives some weight to all past data, it will

never actually reach the step, but approaches it asymptotically as

shown in Figure 4:3:5.
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1.0.

K(t), y(t)'

y(t:)

-. x(t)

Fig. 4:3:5 System response to unit step input

Through the same procedure we will find that for a ramp input signal

x(t) = t» t_> t,

y(t) = t -^ d-s'^).

Again we see the dependence of system response on our choice of the dis-

count factor.

Summarizing our observations of system response characteristics,

let us re-iterate once more the general rule regarding our discount

factor choice:

The lower our choice of B, the higher will be the system response rate.

4.4 Equivalent Discount Factor

Ue may describe an exponential smoothing process as having an order

equal to the number of coefficients in the corresponding model or the

number of coefficients to be estimated. The constant process model with

which we have been dealing represents first order exponential smoothing.
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Let us make the safe assumption that smoothing of any order n includes

, th ,

a constant process term in the model. There is some g tor n order

smoothing that will give the same estimate for the constant term as S^

in single smoothing with a constant model.

Consider the response of a system to a unit impulse input at time

zero. The estimate of the constant term coefficient, a (t) , is given

by

;,(t) = 1 - b;;

for exponential smoothing of order n (Brown, 2, 147). We may now equate

the a (t) estimates for single smoothing and smoothing of order n.

;^(t) = 1 - B^ = 1 - b;;

Hence, the equivalent discount factor is defined by

B^ = b" .

1 n

Thus, if B is the discount factor used in an n order exponential
n

smoothing process, a S equal to B would give the same estimate of a^(t)

in single smoothing. Stated another way, if S. is the discount factor

used in single smoothing, a B equal to

B =Bt^"n 1

will give the same a (t) in n order exponential smoothing.
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We infer from this discussion Chat an n order snoothing system

will have response characteristics similar to a first order system with

an equivalent discount factor. Let us reiterate the major inference to

be drawn here:

A smaller B gives more weight to more recent data than does a larger

$ value,

4.5 Choosing the Initial Coefficient Vector

Exponential smoothing always requires some initial condition from

which to start the smoothing process. This logically entails some initial

estimate of the coefficients of the model fitting functions, or a(0).

Again we must note that very little conclusive research on the choice of

a(0) was found in the literature. The relative merit of an accurate choice

is a subject for debate, however, since the need for accuracy here is

greatly dependent upon our choice of the discount factor and the amount of

past data available. For example, if we have very little past data at the

time the smoothing process begins, we may want to estimate a(0) as accurately

as possible to shorten the length of time necessary for the smoothing

system to stabilize in the light of new data. On the other hand, if we

have ample past data, the smoothing system will have more information from

which it may stabilize before making a forecast. The dependence of a(0) on

3 may be expressed generally in this v;ay:

If you are very confident that your estimate of a(0) is a good

one, use a large 3, since quick system response to errors in a(0)

will probably not be necessary. Conversely, if you have very
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little confidence in your initial estimate, use a smaller S,

so the system may adjust to the possible error more quickly.

There are several means of obtaining the initial coefficient estimate.

If the investigator is thoroughly familiar with the process Involved, he

may be satisfied with a subjective estimate of a(0). He may employ a

graph of past data against time to estimate the initial conditions. Perhaps

the most logical approach is to use the least squares regression coefficients.

This, however, requires some past data, the more the better. If we have

no past data, we may be able to compare the process with another one for

which we have ample data. This might be true in a case where x(t) repre-

sents demand for some new product. Past data on a similar product may

serve as a good predictor of a(0) for the new product.

Brown (2, 194) presents a scheme for estimating the initial coeffic-

ient values for models containing a constant and some periodic terms.

First, if the constant coefficient is a (t) , let a (0) be the average of

the past data over any number of full cycles. Let a„(t) and a_(t) be

the coefficients of a pair of periodic terms for a period of p defined by

the fitting function pair for which we want coefficient estimates. If

there are several cycles of past data available, average corresponding

data samples across them. If there are no data, estimate the cyclic

pattern. By one of these methods we obtain a sequence of p numbers

X, , x_, . . ., X . The initial coefficient estimates are then obtained12 p

from
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where

and

a„(0) = — i; X sin ^^ k.
2 p k=l k p

2 P - 2Tr

3 P k=l '^ P

p = the number of sampling intervals in the period under

study

k ranges from 1 to p.
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3. GATHERING THE DATA

5.1 Time Series Requirements

The general exponential smoothing techniques developed earlier

require the formulation of some model that is representative of the tlirie

series for which we want a forecast. Generally, the forecaster cannot ade-

quately determine the fitting functions to be included in this model with-

out some analysis of past data. Data analysis may also aid the forecaster

in making a good initial coefficient vector choice. Such analyses were

treated in previous chapters.

The past time series data must conform to the analyses for which it

will be used. So, it should be discrete data, taken at specific and

equal sampling intervals, from the present time back to some past time.

Furthermore, the data should be in a form, i.e., dollars, gallons, etc.,

that is easily manipulated and Interpreted. Consistency of the data is

vital in that a particular time series value should truly represent the

time series process for some particular sampling interval.

Data exhibiting such characteristics is not always readily available.

Ideally, a forecaster would want to design the record-keeping system

from which he will obtain the time series. Unfortunately, this is not

always possible, and we must use what data is available at the present

time. There are, however, some alternatives to the manner in which the

data Is manipulated. It may be desirable to transform the data. By doing

so we may produce a more meaningful series, or one that is more easily

predicted. Transformation of data can usually be performed by some
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mathematical operation, such as a multiplier, log, etc.

Suppose the time series for which we want forecasts is incomplete,

or not always available. We may find that there is some related time

series that may be more easily predicted. If there is some functional

relationship between the two series, we can obtain the desired forecast

from a forecast of the related series.

Another possibility is sub-classification of the time series. It

may be easier to forecast separate parts of a time series and sum these

forecasts to get a forecast of the whole. This, of course, would involve

more work than a single forecast, but the need for accuracy may warrant

such a procedure.

In our discussion of model types (Section2.$ , we implied a further

forecasting alternative. We may be able to find one or a combination of

other series that acts as a leading series to the one which we want to

predict. That is, this other series may serve as an indicator of what the

original series will look like a certain number of sampling intervals in

the future. In this case we may wish to use an autoregressive model in

the adaptive smoothing technique mentioned earlier.

5.2 Actual Data Used

The data used in this research consists of four time series taken

from the Manhattan Wholesale and Retail Floral Companies of Manhattan,

Kansas. These time series represent demand for four types of plants

produced by Manhattan Wholesale:

1. Potted chrysanthemums sold only through Manhattan Ifljolesale.



82

2. Potted chrysanthemums sold only through Manhattan Retail.

3. Potted poinsettias sold through Manhattan Wholesale.

4. Potted lilies sold through Manhattan Wholesale.

Chrysanthemums are produced and sold throughout the year. The two time

series related to this product group represent end-of -month dollar receipts

on sales of these plants. The latter two products are sold strictly on

a seasonal basis. Poinsettias are sold only as a Christmas season item,

while lilies are sold only as an Easter plant. Data on seasonal items is

in number of pots sold per day.

Both the chrysanthemum time series extend over a period from September,

1958, to May, 1957, inclusive. This gives a total of 105 observations, or

more than eight complete yearly cycles. Figures reflect the actual

receipt of payments during a month for chrysanthemum sales. So, a figure

does not necessarily represent the sales that occurred during a particular

month, since not all buyers pay their bills promptly each month. Neverthe-

less, this was the only data available on these sales at the time of this

research. This fact may explain the high noise level of the data, as we

shall see later. Plots of the data are shown in Appendix E.

It should be noted here that the data available at the time a fore-

cast is desired will probably be anything but ideal. Hence, future data

compilation should be altered, if necessary, to best reflect the character-

istics of the data for which a forecast is desired.

The retail receipts chrysanthemum time series shows some growth.

This can probably be attributed to a combination of inflation and market

expansion. However, the market in the case of retail sales is probably
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nearly saturated, since it is confined mainly to Manhattan alone. The

wholesale chrysanthemum time series shows a much greater growth trend.

Most of this is due to market expansion. The wholesale market at present

includes numerous cities other than Manhattan. Though many of the cities

to which deliveries now go are near saturation, the market as a whole is

not.

The poinsettia time series, also plotted in Appendix E, covers the

demand periods for the years 1963 through 1966. Thus, four complete sets

of data were available. The market area is roughly the same as for

wholesale chrysanthemum sales. The demand period per year for poinsettias

was arbitrarily set as the thirty-five days immediately preceding Christmas

Day. Since the earliest purchase date for the data used was thirty-three

days before Christmas, all data is included within the range of the thirty-

five day period, and we have a total of 140 observations. Normally,

deliveries were not made on Sundays, so the data shows a fluctuation about

the zero line, unlike the two series previously discussed.

The lily time series. Appendix E, has a form similar to that for the

poinsettias, as might be expected. The data also covers the sales periods

for the years 1963 through 1967. This time, hoxv'ever , a demand period of

fourteen days before Easter is large enough to include all of the data.

Hence, we have 70 observations.

The market growth may be seen in these seasonal items, poinsettias

and lilies, in the form of an amplitude growth rather than a trend line.

For these items the data available was more complete; that is, it was

broken down by customer. Hence, we are able to segregate the market for
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poinsettlas and lilies in some fashion, if desirable. By comparing the

total number of potential buyers (usually retail florists) in each city with

the number to whom we now deliver, the local market saturation becomes

apparent. We might interpret this to mean that unless new market areas are

exploited, the growth of sales may level off somewhat.

Since all of the customer outlets are in essentially the same geo-

graphic area, segregation by geographic area was not feasible. Though

most cities in the market area are saturated, there are one or two larger

cities in which relatively few outlets buy from Manhattan Floral l-Jhole-

sale Company. Hence, segregation of customers by city size is meaning-

less. Data was not available by which segregation by customer size could

be performed.

Another point should be clarified before we continue. The existing

productive capacity of the Manhattan Floral Wholesale Company is nearing

full utilization, so much further market expansion would be impossible

without an expansion of productive capacity also.

The possibility of correlating some independent variable or variables

with a particular time series was also looked at briefly. The obvious

problem here is finding a time series that has a high correlation with

one of the afore mentioned series, and is also known for future time.

In addition, assuming a related series is available we incur the added

expense of keeping multiple data records. Such a series, though none

could be found, would have enabled the application of adaptive smoothing

with an auto-regressive model.

Due to the data limitations presented above, all time series were
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used in the form in shich they were gathered. The following chapter con-

tains the results of the application of general exponential smoothing to

these four time series.
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6. DISCUSSION OF RESULTS

6.1 Experimental Procedure

All four time series were initially plotted (Appendix E) . The forms

of the resulting curves were noted in order to gain some insight into the

fitting functions that should be included in the models for each time

series process. In addition, detrending, auto-correlation> and harmonic

analyses were performed on each time series. From the results of these

analyses and from intuition, various models were proposed. These models

were then used in the general exponential smoothing techniques for various

initial conditions, various initial fitting function coefficient vectors,

and a range of discount factor values.

In applying general exponential smoothing to a time series, the

steady-state F-matrix was first determined, for the particular ^ and a(o),

from the data given. Then, using the methods discussed in Section 3.5,

forecasts were made for all sampling intervals for which data was actually

available. So, starting at time zero, a forecast was made for the first

time series value and compared to the actual value at observation one.

Based on this comparison, a forecast was then made for time series value

two, and compared to actual value two, and so on. Each forecast was pro-

jected one sampling interval into the future. Forecasts were performed

only for time series values for which actual data existed. In this way

we could measure the relative efficiency of a particular model - initial

condition - discount factor combination. Note that it would be impossible

to measure the accuracy of a forecast for which no actual data existed.
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A discussion of the various efficiency criteria follows.

Generally, the experimental procedure for a single time series may

be summarized as follows:

(1) Plot the time series against time.

(2) Perform a detrending analysis.

(3) Perform an auto-correlation analysis.

(4) Perform a harmonic analysis.

(3) Formulate various models to be tried.

(6) Determine the F-matrix,

(7) Use general exponential smoothing to forecast the original

time series. Do this for various values of a(o) and S.

(8) Compute the efficiency criteria for each exponential smoothing

iteration.

(9) Compare the results and draw conclusions.

6.2 Efficiency Criteria

In order to evaluate and compare the forecasting efficiency of the

models used, it is necessary to establish certain efficiency measurement

methods. The obvious approach to this problem is to measure the accuracy

of fit of the general exponential smoothing process using a particular

model-initial condition-discount factor combination. With this goal in

mind, the following efficiency criteria were proposed:

9

(1) Variance of the forecasts, a

(2) Standard deviation of the forecasts, a^

.

(3) Mean error, e



(4) Mean absolute error, |e|

(5) Mean percent error, e%.

—2
(6) Variance of the error, oc .

(7) Error standard deviation about the mean error, o—

.

2
The first criterion above, 0_, is not truly the variance of the

forecasts, but the variance of the fitting errors about zero. The compu-

tations necessary to determine the true forecast variance are quite

lengthy, so this simple computation has been used instead (Brown, 2, 393).

We shall call the former quantity a forecast variance to distinguish it

from the error variance about the mean error, which is defined later.

So, let us compute the variance of the forecasts as:

N
2 2

0^ = I el /N
1=1

where

X. = the i actual observation

X. = the exponential smoothing forecast of the i

observation

N = the total number of data points observed and forecasted.

Similarly, we may now estimate the standard deviation of the forecasts as:

^2-

The mean error may be computed from
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N
= E e./N.

i=l
^

Note that e may be positive or negative. If we consider a shortage and

a surplus as being equally detrimental, we may prefer to look at the

mean absolute error, jel, or

171= I 1..I/N.
i=l

A similar error measurement method is the mean per cent error, e%, or

e% = 100- I ^^^ I N.

i=l i

The difference between this efficiency criterion and the mean absolute

error needs emphasis. |el is in the same units as the original time series,

whereas e % is a percentage of the actual data. Thus, when
|
£ .1 is small,

£,% may be quite large if x. is also small. The converse is also true.

The variance of the error is a true variance computed relative to

the mean of the errors. It may be written:

2 -2
a- = I (e. - e) /N
^ i=l "

Then a— is merely the square root of the variance above, lio— . Note that

if there were no noise in the data, and if our model truly described the

process, then 0"— would be identical to a , since e would be zero.
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Not all of the criteria above were studied. Since variance and

standard deviation basically represent the same error characteristic,

only standard deviation was analyzed. Thus, we are left with five

efficiency criteria with which to compare various models:

(1) Standard deviation of the forecasts.

(2) Mean error,

(3) Mean absolute error.

(A) Mean percent error.

(5) Error standard deviation about mean error.

Mean error proved to be difficult to interpret and, consequently, it was

discarded as an efficiency criterion. The mean error over the entire

range of available data represented such a small percentage of the corres-

ponding time series average that a and 0— were nearly identical. Hence,

the standard deviation of the forecasts was also discarded as an efficiency

criterion.

6.3 Computer Programs

All computations were performed on the IBM System 360/50 digital

computer at Kansas State University, The programs used are shown in

Appendix F. The most important of these programs are:

(1) AUTODET

(2) POWSPEC

(3) PLOTOOl

(4) EXPOSMO

AUTODET first detrends the original time series using a first degree
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polynomial. It then computes the auto-correlation coefficients of the

detrended data for all lags specified by the user. POWSPEC uses the

detrended data from AUIODET to perform a harmonic analysis on the time

series. It computes values of a periodogram for the periods specified

by the user. The autocorrelation function and periodogram may then be

plotted using PLOTOOl.

EXPOSMO is the computer program which performs the general exponen-

tial smoothing process. Inputs to the program include the original

time series, the initial coefficient vector, the transition matrix, and

the values of the discount factor the user wishes to try. The program

computes and lists the transition matrix, the F and F-inverse matrices,

the smoothing vector, the variances of the coefficients in the model,

the forecasts, and the error criteria values. In addition, the program

outputs a plot against time of the actual, forecast, and error data.

EXPOSMO, AUTODET, and POWSPEC are taken from programs written by

Mr. Raymond Miller, a former student at Kansas State University. For

a more complete explanation of their operation refer to his thesis (Miller

,

7, 65). Only minor changes were made to AUTODET and POWSPEC. Significant

changes were made to the input-output structure of the exponential

smoothing program written by Miller in developing EXPOSMO. The basic

computational procedure, however, was not altered.

6.4 Effect of the Initial Coefficient Vector

Two approaches to choosing the initial coefficient vector were tried.

In one approach the model coefficients determined in the least squares
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detrending process were used. Recall that in detrending we used first

degree polynomial regression, so coefficients were computed only for the

two corresponding polynomial fitting functions. In the initial coeffic-

ients were used when applicable; all other initial coefficients were set

at zero.

The other choice of initial conditions was purposely made to be

erroneous; that is, initial coefficients were purposely set far from

their proper values. The resulting exponential smoothing fitting errors

were very large for earlier sampling intervals.

Efficiencies around the best value of the discount factor (the 6

which minimizes the efficiency criteria for that model) are similar for

either initial coefficient vector choice; however, for the second choice

the degree of error increases very rapidly as we move away from this

best B. Thus, when a bad choice of initial conditions is made, the

system is less stable, making the proper choice of the discount factor

more critical.

6.5 Model Identification Notation

Throughout the remainder of this text, it will be convenient for us

to develop a shorthand notation for identification of the various models

used. Basically, for all models the fitting functions used fall into one

of three general categories:

(1) Cyclic terms

(2) Polynomial terms

(3) Combination of cyclic and polynomial terms.
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Cyclic terms are sine and cosine function pairs for some specific integral

period. We shall denote such terms as Cp, where C tells us that both a

sine and cosine fitting function are included and p is the number of

sampling intervals taken as the period for these functions. Thus, the

notation C 12 would indicate that the following terms are included in the

model

;

^. .ZTTt
, „ 2Trt

If more than one pair of cyclic terms is present, they will be written

Si' ^2' Pn' °'

a.Sin^ + a.^ cos^ + a.^,Sir^
1 pi 1+1 pi i+2 p2

+ a . ,
„Cos—r- + a ,

,
, Sinr— + a . ,

,Cos .

1+3 p2 1+4 pn 1+5 pn

Polynomial fitting functions include all terms of the form shown

in Section 3.3. In all of the models containing polynomial terms, a

complete polynomial of some degree is used. Note that a polynomial of

degree zero designates the inclusion of a constant fitting function only.

We shall denote polynomials as Pd , where P stands for polynomial and d

is an integer designating the degree of the polynomial used. Thus, the

notation P3 tells us that the following terms are present in the model:

a^ + a^^t +^ t(t-l) +f2 t(t-l)(t-2).
6

By combinations of cyclic and polynomial terms, we mean the product
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of such fitting functions. These combination fitting functions are

encountered in only one form In this research, that Is, the product of

a cyclic pair and time, t. Since such terms produce linearly increasing

values for the amplitude of the sine and cosine functions, we may refer

to them as amplitude growth terras, or more simply, growth terms. We

shall designate such terms with the notation Gp, where G indicates growth

terms and p is the period of the cyclic terras to which this linear ampli-

tude growth is applied. Thus, G6 tells us that the following terms are

included in the process model:

>o- 2Tit
, ^„ 2TTt

a . tSm —7— + a
. ,

, tCos—7— .

1 6 1+1 6

Models containing terms from more than one of the categories discussed

above may be designated in the same fashion, with commas separating the

fitting function notations of different categories. So, the notation C6,

12, P2, G12 stands for the following time series process model:

'''
2i;t

x(t) = a^ + a^t + -^ t(t-l) + (a^ + a^t)Sin-^

+ (a^ + agt)Cos ^ + a^Sin^it

+ agCos^ .

The notation described in this section will be used throughout the

remainder of this text, as well as in Appendix E. In addition, all

values discussed will be the equivalent single smoothing value, regardless

of the order of the model involved (Section 4.4),
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6.6 Wholesale ChrysanChemura Receipts Time Series

All tables and figures are contained in Appendix E. Hence, in

referring to a specific table or figure, only the appropriate table or

figure number will be given to avoid unnecessary repetition of the

appendix reference.

The wholesale chrysanthemum receipts time series are shown in Fig. E-1.

Note the growth trend of the curve. This tells us that some degree poly-

nomial should probably be included in the model of this time series. The

autocorrelation analysis, the results of which are shown in Fig. E-2,

has peaks at 6 and 12 month periods, or lags. Thus we probably need to

include at least the 6-month cyclic function pair, since the highest

autocorrelation function value occurred at this period. Fig. E-2 also

shows minor peaks at 21, 27, and 34 months. Due to the limitation in the

number of observations available, we should put greater weight on the

lower period peaks, if they appear significant. The squared nature of

the peaks indicates that harmonics may be present.

The harmonic periodogram on this time series (Fig. E-3) exhibits

peaks, in order of decreasing magnitude, at 6, 21, 8 and 10, 4, 26, and

17 months. Again we reject the higher periods due to the inadequacy of

the data. Notice that the 12-month periodic coefficient is of a very

low magnitude relative to the others. Since chrysanthemums are sold

throughout the year, we would expect this periodic to be more significant.

The 6-month periodic has a sharp peak, confirming the previous analysis.

It seems that the 12-month peak in the autocorrelation function plot was

merely a reflection of the 6-month periodic in the data. The harmonic
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analysis 'becomes unstable as it nears the Nyquist frequency (Section 2.4)

for this data, as we would expect. At a period of 35 months, for example,

there are only 3 data points upon which to base the value of R. This is

obviously not an adequate representation. Note, however, that even if a

periodic does exist at 35 months, the period is long enough that it can

probably be handled adequately by the adaptive nature of the general

exponential smoothing process.

The various models tried on the wholesale chrysanthemum time series

are listed in Table E-2. In analyzing results of the various model-

discount factor combinations, let us consider each efficiency criterion

in order. The model efficiency results have been plotted according to

three general classifications:

(1) Cyclic models and combination models with polynomials of degree

one or zero;

(2) Strictly polynomial models;

(3) Combination models with polynomials of degree greater than one.

This method of classification is justified by the similarity of the plots

for models within the same model group above. So, we shall first discuss

each efficiency criterion as it relates to each model classification. We

may refer to the model classifications above as, respectively;

(1) Cyclic models,

(2) Polynomial models,

(3) Combination models.

Table E-2 shows the values of Ie], mean absolute error, and a— ,
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error standard deviation, for the models and ^'s tried. All of the

cyclic models exhibit a unique minimum \£\ for a .f of about O.AO or 0.45

(equivalent first order^). This must be interpretted only as an approx-

imate best S -value, since it was not economically feasible to cover a

large number of values of the discount factor due to computer time

requirements. Nevertheless, this range of best-f's is considerably

different from that anticipated by Brown (2, 179). Brown indicates that

a £ less than 0.7 will rarely be necessary.

The order of efficiency by model and by model classification is also

shown in Table E-2. The best of the cyclic models was C12, 5, PI. It

seems significantly better than the other cyclic models on both the l£l

and Cg- plots, perhaps due to its relative simplicity. Though adding

amplitude growth to the 12-month periodic in this model did not improve

it over the original model, it was still better than the same model with

amplitude growth on the 6-month periodic. This fact seems to contradict

the results of the harmonic analysis which shows the 12-month periodic as

insignificant. The inclusion of other periodic terms in the cyclic models

did not improve the |£l and <>"— values. One model was run with only a

zero degree polynomial. It gave high values for the efficiency criteria,

Indicating that the inclusion of polynomial terms is aiding the model

efficiency. Other model results are shown in Figures E-4 and E-5.

Polynomial models of the third, fourth, and fifth degrees were

applied to the wholesale chrysanthemum receipts data. Though Figures E-6

and E-7 show very similar minimum efficiency criteria for all three models,

we may note that the fifth degree model is more stable. The efficiency
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values for this higher degree polynomial do not diverge from the minimum

value as rapidly as for the other two models. This is a desirable charac-

teristic since the consequences of choosing a bad 3 value will be less

grave for the fifth degree model. As shown, the best polynomial model,

P5, produced the best forecasts for fi
= 0.7. It is doubtful whether

higher degree models would give sufficiently better results to warrant

the expense for additional computer time. It is not surprising that a

polynomial of such a high degree as the fifth degree is necessary to

describe the time series when we consider that it must account for the

cyclic movements within the data.

Among the many combination models tried (Table E-2) C6, 8, P5 gave

the best efficiency criteria values. Models containing higher degree

polynomials were generally better, as shown in Figures E-8 and E-9. The

combination of trigonometric fitting functions that performed best was

that with periods of 6 and 8 months. Recall that these were identified

as the most significant periodics in the harmonic analysis. The assoc-

iated 3 for greatest efficiency with this model was 0.6. This model,

C6, 8, P5 was also the best model among all models tried. The inclusion

of amplitude growth on periodic terms was detrimental to the efficiency

of the models in which this was tried.

6.7 Retail Chrysanthemum Receipts Time Series

The retail monthly chrysanthemum receipts time series plot (Fig. E-10)

shows some growth trend, but this growth is not nearly as explicit as

Chat in the wholesale receipts time series. This is probably due to the

fact that market expansion is not as extreme, since Manhattan Floral
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Retail deals mainly in Manhattan, Kansas alone. Thus, we might suspect

that a polynomial of a degree less than the fifth will perform adequately

for this data. Again, the data is very noisy, since we are using dollar

receipts to represent sales per month. We pointed out earlier that these

monthly money receipts are not necessarily for sales in that particular

month.

The autocorrelation analysis on the retail receipts time series

(Fig. E-11) indicates cyclic behavior for periods of 12, 24, 8, and 6

months. These peaks on the autocorrelation function plot are not clear.

Their squared form suggests the presence of further harmonics in the data.

The harmonic analysis on this time series (Fig. E-12) shows peaks at

periods of 6, 12, 4, and 8 and 10 months respectively, in order of decreas-

ing magnitude. Again, this plot appears to degenerate at periods greater

than 35 months due to the inadequacy of the data.

The models tried in the general exponential smoothing of this data

are listed in Table E-4. The best performing cyclic model was C12, 6, 4,

PI, as shown in Figures E-13 and E-14. It appears from these cyclic models

that all three periods (12, 6, 4) are significant enough to warrant inclu-

sion in the model. Models containing periodic terms with growing amplitudes

did not perform as well as the same models without amplitude growth. Most

cyclic models performed best for 6 = 0.8. The best cyclic model, however,

performed better for B = 0.6.

Again, third, fourth, and fifth degree polynomial models were tried

(Figures E-15 and E-16) . Just as for the wholesale receipts time series,

the fifth degree polynomial model gave better forecasts than the other two.
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The efficiency curves, hotrever, are very close for the fourth and fifth

degree polynomials. For these models the best B was 0.8, just as for the

cyclic models.

Only one combination model (012, 6, P3) was tried on the retail

receipts time series. This model performed better than all others mini-

mizing |e] and a— for B = 0.8 (Figures E-17 and E-18) . The periodica

contained in this model are those indicated by the harmonic analysis as

being the most significant.

6.8 Lily Time Series

Figure E-19 is a plot of the potted lily sales time series for yearly

demand periods of 14 days each. This time series is considerably different

from the previous two. Instead of an obvious trend line, we see a devia-

tion upward from the zero demand line. The data appears to be strongly

periodic in nature, exhibiting amplitude growth on the periodics present.

The autocorrelation analysis of the lily data shows peaks at 14 and

5 days. The peak at 14 days is squared and unclear, indicating harmonics.

The harmonic analysis shows periodics for 7 and 14 days. From this result

we may suspect that the 5-day periodic in the autocorrelation analysis

actually occurs for a 7-day lag. The 14-day peak in the harmonic analysis

is also squared. The 7-day peak, on the other hand, is very sharp. Thus,

in this analysis, as well as in the autocorrelation analysis, the 14-day

peak may actually be a reflection of the 7-day peak, and not a separate

periodic.

Table E-6 contains a list of the models used in attempts to forecast
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the lily time series. All of the cyclic models (Figures E-22 and E-23)

minimized the efficiency criteria at ^ = 0.8, This best ^ is considerably

higher than for both the wholesale and retail chrysanthemum receipts time

series. Perhaps this is due to the absence of excess random variation in

the lily data. If this is the casual factor, the lily time series would

not have to respond as quickly to changes in the actual data; that is,

the lily data models would perform as well with higher values of the dis-

count factor.

All of the cyclic models tried performed similarly. Two models, C14,

7, PI, G14, 7 and C14, 7, PI, may be identified as being slightly more

efficient than the others. Note that these two models are identical except

for the amplitude growth of the first one. Adding amplitude growth does

not appear to affect the model performance one way or the other in the long

run. This is somewhat surprising since the data plot (Fig. E-19) shows

apparent amplitude growth in the actual data. It may also seem surprising

that, in nearly all cases, a first degree polynomial performed more

efficiently than PO. The periodic components present in the two models

cited above are those indicated as significant by both the autocorrelation

and harmonic analyses.

It did not seem feasible to run any models composed strictly of poly-

nomial fitting functions, since this data appears to be mainly cyclic in

nature. Hence, we shall move on to a discussion of combination models.

The combination model results are tabulated in Table E-6 and plotted

in Figures E-24 and E-25. Again, the two periodic terms, 14 and 7-day

periods, aid the model performance. Since both models gave similar results,
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the addition of a higher degree polynomial had very little affect upon

model performance. The fact that we need polynomial terms at all is

somewhat surprising. The combination model, C14, 7, P2, was slightly

better than the best cyclic model noted earlier. It produced troughs on

the efficiency criteria plots at B = 0.9, again higher than the wholesale

and retail receipts best 6 values.

6.9 Poinsettia Time Series

The poinsettia data plot (Fig. E-26) is very similar to the lily

data plot. Recall that the demand period each year chosen for this data

is 35 days in length. This demand period always terminates on the same

date of the year, December 25, instead of the same day of the week, Easter

Sunday in the case of the lily time series. Because of this fact, week-

ends will occur at different locations within the demand period from year

to year. Since deliveries are rarely made on Sundays, the data will

probably contain a 7-day periodic. However, this periodic, aw well as

any others, will be obscured due to the "week-end effect" pointed out

above. Hence, we may expect some additional noise in this data, not

encountered in the lily time series. Just as for the lily data, we should

expect the best poinsettia time series model to contain cyclics with

growing amplitudes. Recall, however, that our suspicions were not entirely

verified by the experimental results of the lily time series models.

The autocorrelation function plot for the poinsettia time series

(Fig. E-27) indicates cyclics at periods of 31, 33, 6, and 28 days. These

periods are not easily explained unless we consider the "week-end effect"
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upon the data. With this In mind, we may probably interpret the 31 and

33-day peaks as reflections of the expected 35-day periodic. Similarly,

the 6-day peak should probably be taken as an indication of a 7-day, or

weekly, cycle. The harmonic analysis (Fig. E-28) is also very obscure.

Nevertheless, we may interpret the peaks at 32 and 8 days as periodics of

35 and 7 days respectively, since these two periodics seem to be the

logical choices for the data.

Table E-8 lists all the models and their resulting efficiencies for

the poinsettia data. All of the cyclic models used gave very similar

minimum error results (Fig. E-29 and E-30) . However, some models were

more stable than others. The best performing cyclic model was C35, 7,

PO, at a discount factor value of 0.8. Models containing amplitude growth

terms were generally loss stable than those without these terms. Still,

they seem to give almost equal performances at 6 = 0.8. The periodic

functions included in these models are those interpretted as significant

from the autocorrelation and harmonic analyses. PO gave better results

than PI as we hypothesized from the time series plot.

Again, no polynomial models were run. The most efficient combination

model used was C35, 7, P2, as shown in Figures 3-31 and E-32. The tendency

for this time series was toward the lower degree polynomials, as evidenced

by both the cyclic and combination models. C35, 7, P2 gave minimum error

at 6 = 0.9.

The best model overall for the poinsettia time series was the cyclic

model C35, 7, PO. We must keep in mind, however, that all models, cyclic

and combination, gave very similar results.
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Mean pei-cent error was computed for the best model in each model

classification for both the retail and wholesale chrysanthemum time series.

For each of these models eZ covers a range of 6 values. The results of

these computations are shov.-;i in Table E-9 and Figures E-33 and E-34, This

efficiency crxtC' .^^^rees very closely with the results shown by |c
j
and

a— . For both time series the combination models gave the lowest £% for

3 values of 0.6 (wholesale) and 0.8 (retail). The mean percent error

figures are relatively high due to the very high noise level of these

data. c% could not be computed for the lily and poinsettia data since

both of these time series contain zero demand observations.

6.10 Notes on Harmonic Analysis

Throughout the data analyses above it appears that harmonic analysis

gives a clearer identification of the periods in the data than does auto-

correlation analysis. However, for extremely noisy data, even harmonic

analysis is quite obscure.

The analysis is performed on detrended data. This detrended data is

merely the residuals from a first degree polynomial regression on the

original time series. Since the object of detrending is to remove the

trend from the data, some time series may require polynomial regression

of a higher degree than the first. Brown (2, 72) warns that detrending

with higher degrees is likely to remove some of the cyclic variation in

the data. This is undoubtedly true for cyclics with very long periods,

but detrending with high degree polynomials may actually aid in the

identification of short period cyclics. Such was the case in this research.
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The wholesale receipts data was detrended with second, third,

fourth, and fifth degree polynomial regression. The residuals from each

of these regressions were used to obtain harmonic analysis periodograms

(Figures E-35, E-35, E-37, E-38) . The higher degree detrending seemed

to emphasize the major cyclic periods and de-emphasize the minor ones.

This effect is seen as sharper peaks at the major periods and a leveling

of the less significant period peaks. It is doubtful that a polynomial

regression of a higher degree would have aided the investigation further,

since the fifth degree polynomial fits the wholesale data trend quite

well.
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7. CONCLUSIONS

From the discussions in Chapter 6 we may conclude that for a partic-

ular time series and a particular model of this time series, there is a

unique value of the discount factor that maximizes model efficiency. We

may define maximum efficiency as the minimization of the three efficiency

criteria proposed in Chapter 6, that is, standard deviation of the fore-

cast, mean absolute error, and error standard deviation about the mean

error. The nature of the data and form of the model are major factors

contributing to the value of minimum error discount factor. If the time

series is very noisy, S must be lower to allow the model to respond more

quickly, and vice-versa. Moreover, if the model is not appropriate, that

is, does not describe the time series process well, S must again be low

to allow quick model response to changes in the actual data.

For the two chrysanthemum receipts time series studied, the most

efficient value of B was lower than expected. For the wholesale data

cyclic models it was O.A. This fact seems to contradict the findings

of Brown (2, 116), who implied that 6 should never be less than 0.7.

These two chrysanthemum time series contained excessive noise, however.

The lily and poinsettia time series models performed best for a discount

factor value of 0.8. Since these time series contained less superimposed

noise than those for chrysanthemums, the 3 value is higher, as expected.

The inclusion of polynomial terms in the models of all the time

series studied tended to cause the most efficient value of B to be higher

than for models that were mainly cyclic. This may be seen in the

classifications made on the models used, that is, cyclic, polynomial.
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and combination. In general, the minimum error B values were smaller

for cyclic models than for polynomial models, and smaller for polynomial

models than for combination models. It may be that combination models

were more appropriate xi\ describing the time series encountered in this

research. Though the most efficient models for the retail receipts and

poinsettia time series were not combination models but cyclic models,

it may also be that the appropriate combination model was not tried.

The model classifications used in this research were justified by

the error criteria plots. Models within the same classification produced

curves belonging to the same family on the error criteria plots; further-

more, different model classifications produced different families of

curves. Models within the same classifications also produced best results

for a unique 6 value. These phenomena hold for a particular time series.

The efficiency criteria plots for the retail and wholesale receipts

time series were quite similar, as were the same plots for the lily and

poinsettia time series. The plots of these two pairs of time series,

however, differed from each other. Recall that the former time series

pair dealt with items sold throughout the year, while the latter pair

dealt with seasonal items. The inference here is that the demand charac-

teristics of the product studied may affect the proper choice of the

discount factor. By demand characteristics we mean whether the product

has constant demand, seasonal demand, whether it is a luxury, a necessity,

etc.

Of the methods used to determine the initial coefficient vector,

one method was slightly superior. This method used the coefficients
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determined by the detrending analysis as initial coefficients for

polynomial fitting functions, and zeroes as initial coefficients for

all other fitting functions. The use of other initial conditions,

even completely erroneous initial conditions, did not affect the best

B choice. The general exponential smoothing process adapted well to

inaccurate initial condition choices. It produced efficiencies for

some of the error criteria almost equivalent to those with accurate

initial condition choices for the same models. The main effect of a

bad choice of the initial coefficient vector was to make the choice of

6 more critical; that is, the trough on the error criteria plots was

much narrower when the initial conditions were improperly chosen.

The periodic analyses used, autocorrelation analysis and harmonic

analysis, were quite reliable in detecting periodics in the data.

Harmonic analysis gave a clearer indication of what these periodics were

than did autocorrelation analysis. When the trend movement in the time

series was apparently of a higher polynomial degree than the first,

detrending with higher degree polynomial regression gave sharper and more

clearly defined peaks at the major periods in the periodogram, while

leveling off the less significant peaks.

In order to make an accurate forecast of the time series studied

in this research, it is felt that better data will have to be acquired.

The two chrysanthemum receipts time series contain excessive noise, while

the lily and poinsettia time series do not cover a sufficient number of

past cycles. It should also be noted here that there is still much to

be learned about general exponential smoothing before this technique can

be most efficiently used in forecasting.
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APPENDIX. A. DERIVATION OF STATISTICAL REGRESSION EQUATION

Let us suppose that we have a series of n discrete observations

y(t) which we wish to describe by some model. We assume that the time

series y(t) is composed of some process plus superimposed random varia-

tion, (k-1) . We have at our disposal related independent variables

X (t) which we may use to estimate y(t). Thus we may write

y(t) = y(t) + £(t)

=
6jj

+ Sj^x^Ct) + 82X2^^) + . . .

+ ViVi(^^ + ^^'>

where

y(t) = the value of the original time series at time t

y(t) = our estimate of y(t)

x.(t) = the i independent variable at time t

g = a constant
o

3. = the coefficient of x.(t)w^
i^

c(t) = the error of our estimate at time t

= y(t) - y(t).

We may write this equation in matrix notation as

where

Y = x6 + e

yd)

y(2)

y(n)

= an n X 1 column, vector of time series

observations
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1 x^(l) Vi^i)

1 x^(2) . . . Xj^_^(2)

1 x^(n) . . . Xj^_^(n)

= an n X k matrix of independent variables

"k-1

a k X 1 column vector of coefficients

e(l)

e(2)

:(n)

= an n X 1 column vector of fitting errors

We wish to determine the vector independent variable coefficients

that minimize the sum of squared errors. So, let us first determine

this squared residual sum, S.
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S = I CD^ = e'£

i=l

where

e' = the transpose of e.

Note that we may write £ thusly:

e = Y - XS

So,

S = (Y - X6)' (Y - X3)

= (Y- -e'X-) (Y - XB)

Multiplying this out, we find that

S = Y'Y - Y'XB - g'X'Y + B'X'X3

= Y'Y - 2B'X'Y + B'X'XS

= Y'Y - 2(Y' X)B + B'X'XB .

If we find the derivative of S with respect to B, and set the result

equal to Eero, we may solve for B.

II
= -2X'Y + 2X'X6 =

X'Xb = X'Y

Hence

b = (X'X)"''' X'Y

is our least squared residuals estimate of
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APPENDIX B. DERIVATION OF EXPONENTIAL SMOOTHING EQUATION

Let us suppose that we have discrete time series x(t) which is

composed of some tirae-model-dependent process plus random variation.

This may be written;

x(t) = Kit) + e(t)

where

x(t) = the time series observation at time t

^(t) = the value of the time-dependent process at time t

e (t) = random variation at time t

We wish to approximate f;(t) by a linear function of time, x(t).

x(t) = I a.(t) f.(t)

i=l
where

x(t) = our estimate of 5(t)

f .(t) = the i fitting function evaluated for time t

a,(t) = the coefficient of the i fitting function.

The fitting functions are all deterministic functions of time.

The equation above may be written in matrix notation as:

x{t) = a'(t)f(t)

where

a(t) a^(t)

a^Ct)

a„(t)

an n X 1 column vector of fitting

function coefficients
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f(t) =

f (t)

an n X 1 column vector of fitting

functions

Substituting this back into the exquation for x(t), and again using

matrix notation, we may write:

X = X + e

= a'^+ e

where

X = [x(l), x(2), .... x(I)] = a 1 X T row vector of

data observations up to

time T.

i = [x(l). i(2), . . ., x(T)]

= a 1 X T row vector of estimates of x(t) given by

the model

^ f^(l) f^(2) . . . f^{T)

f2(l) ^2^^'^ f^m

f (t) f (2) . . . f (T)
n n n

an n X T matrix of fitting functions
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e = [e(l), e(2), . . ., e(T)]

= a 1 X T row vector of residuals

= X - X .

We wish to determine the coefficient vector, a, that minimizes the

weighted sum of squared residuals. In exponential smoothing the time

It

series observation k periods in the past is given weight =6 . We shall

define a I x T matrix W in which W , is the square root of the weight

given the observation (T-i) sampling intervals age, and all off-diagonal

elements are zero. Now we may express the weighted sum of squared

residuals as

S = eW(eW)'

Since

e = X - a'5^, we may write

S = eW(eW)' = (xW - a'^W) (xW - a'S'W)'.

The vector of fitting function coefficients that minimizes this weighted

sum of squared residuals may be determined from the equation (Brown, 2, 392),

^= 0.
3a

So,

and

S = xWW'x' - a'S'WW'x'

-xWW'S^-'a + a"^\n<''^'&

3S
= - xWW'^' + a'^W5^'
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To simplify the equation above, let us make the following definition:

= an n X n symmetrical matrix of weighted fitting

functions

g = [-xm'^']' = an n X 1 data vector.

Now, the previous equation reduces to

g' = a'F

a- = g'F"-"-

where

T must be > n for F to exist.

This vector of fitting function coefficients minimizes the weighted sum

of squared residuals.
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APPENDIX C. POLYNOMIAL REGRESSION

Suppose we have a discrete ciine series of T observations y(t) to

which we wish to fit a polynomial of degree (k - 1). We nay express a

polynomial of degree (k - 1) on time as:

pCt) = 1 + t + t^ + . . . + t''"-'-

where

t = time.

This polynomial, evaluated for t from to T, may be compactly expressed

in the form of a T x k matrix X,

111 ,k-l

k-1
1 2 A • • • 2

1 T T^ . • t''"-'-

where

X. .
= the element of X contained in row i and column i

= (i)
J-1

We wish to describe an observation y(t) by

k-i
y(t) = E S.t + c(t)

i=0
^

where

y(t) = the time series observation made at time t.
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6. = the coefficient of t for any t.

£:(t) = the fitting error at time t.

In matrix notation this equation would be

Y = X3 + E

where

Y = a T X 1 column vector of time series observations.

X = the T X k matrix defined earlier.

6 = a k X 1 column vector of polynomial term coefficients.

£ = a T X 1 column vector of fitting errors.

The vector S must be chosen such that the sum of squared residuals

e(t) is minimized. The least squares estimate of B, b, is given by

(Appendix A)

,

b = (X'X)"''" X'Y

= a k X 1 column vector of least squares estimates of B.

So, having determined b, we may write the resulting regression estimates

as:

Y = Xb

where

Y = a T X 1 column vector of (k - 1) degree polynomial

regression estimates for y(t).
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APPENDIX D. THE Z-TRA.NSFORM

The Z-transform is a useful technique for the analysis of a linear,

discrete, time-invariant system (Brown) . By discrete we mean a sampled

data system. The linearity of a system may best be described by the

following:

For input = x (t) , then output = y.(t).

For input = x,(t), then output = y„(t).

Now, when input = a x. (t) + b x^Ct), where a and b are constants,

the system is linear if

output = a y.(t) + b y^Ct).

A system is said to be time-invariant if input x(t) causes output y(t)

regardless of the value of t.

If we let f (n) be any function defined for discrete intervals, we

may define its Z-transform, F(2), as

F(Z) = E f(n)z" .

n=-~

This transform is especially useful in representing convolutions.

A convolution may be defined as

y(t) = I x(n) n(t-n)
n=-to

= K(t)*h(t)

where

x(t) and h(t) are sequences of observations.

In the case of system response analysis, x(t) may be the input signal.
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and h(t) the response to a unit Impulse t periods after its input.

Taking the Z-trans£orm of both sides of the convolution equation, we

may see that a convolution in the time domain is replaced by a multip-

lication, a much simpler mathematical operation, in the Z-domain.

Y(Z) = X(Z) • H(Z)

Y(Z) = the Z-transform of y(t)

X(Z) = the Z-transform of x(t)

H(Z) = the Z-transform of the impulse response h(t)

= the transfer function.
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APPENDIX F. - TABLES AMD FIGOHSS

Each timo sorios model referred to In this appendix 5s olasslflod into

one of tho follov.'ino: three oatep;ories:

(l) Cyolioal Models - modols -.Thloh contain trlgouometrio fitting funo-
tions and polynomials of def;ree loss than tvro.

(Z) Polynotc.ial "odols - models which contain only polynomial fitting
functions.

(3) Combination Ii'odels - nodols which contain trlf^onometric fitting
functions and polynomials of degree greater than one.

Model components are indicated according to the following notation:

Cn P2. Pk. Pn. °Pl. P2. Pic

v^here Pi, n = integers.

This symbolic notation is interpretted as follows:

Cp, , pg, Pj^ indicates that the model contains both a sine an

fitting function for each of the integral period
and cosine

itting function for each of the integral periods, pi, pj,
and Pv-

Pjj indicates that the model contains fitting functions corresponding to
all of the terms of an n dogree polynomdal,

''Pl> ^2t Pv;
indicates the inclusion of linear amplitude growth on each
of the sine-cosine pairs in the m.odsl "or periods of pj, po,
and pij. These terms are just trigonometric fitting functions
multiplied by time, t.

If a Eodel does not contain fitting functions of the C, P, or G type, the coi~

responding symbol (C, P, or G) is omitted in the notation for this model.
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TABLE IDE;JTIFICATICN CKAHT

TABLE HUldBER DESCRIPTIQIT

E-1 Monthly Vniolesale Chrysanthomun Iteoeipts

Actual and Da trended Time Series.

S-2 Wholesale Chrysanthemum Receipts Tino Series

Models Tried and fesulting Efficiencies.

E-3 Monthly Retail Chrysanthemum Receipts Actual

and Dotrended Time Series.

E-4 Retail Chrysanthemum iteceipts Time Series

Kodels Tried and fiesultinj Efficiencies.

E-5 Lily Daily Sales Actual and Detrended Tine

Series.

S-6 Lily Time Series I'odels Tried and Pasultlng

Efficiencies.

E-7 Poinsettia Daily Sales Actual and Detrended

Time Series.

E-8 Poinsettia Sales Time Series yodels Tried

and iiesulting Efficiencies.

E-9 Kean Percent Error Values for Selected i'odels

of "I'.'holesale and Eatail Chrysanthemum Tins

Series

.
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FiaU:ffi IDKHTIFICATICfl CHART

The tabla below is provided as a reforenoe to all of the figures which

follow.

FIGURE NI'MBER DESC^IPTIOtl

E-l Vfholesalo Wonthly Chrysanthemum feoeipts Ti-e

Series Plot.

E-2 Autooorrslation Function for Tfholesale Chrysan-

thomum ifeoeipts Data.

E-3 Periodogram for T/holesale Chrysantheraun Racaipts

Data.

E-4 I/ean Absolute Error Versus Discount Factor for

T/holesale Chrysanthemum Data--Cyolio Models.

3-5 Standard Deviation of Error Versus Discount

Factor for V/holesale Chrysanthemum Data

—

Cyclic l!odels.

E-6 Koan Absolute Error Versus Discount Factor for

Tfholesale Chrysanthemum Data—Polynomial l^odals.

E-7 Standard Deviation of Error Versus Discount

Factor for V/holesale Chrysanthemum Data— Poly-

nomial Hodels.

E-8 Kean Absolute Error Versus Discount Factor for

Wholesale Chrysanthemum Data— Com.bination Vodels.

E-9 Standard Deviation of Error Versus Discount

Factor for V/holesalo Chrysanthem.um Data--Coa-

bination Models.

E-10 Ifetail Monthly Chrysanthemum tteceipts Tina

Series Plot.

E-11 Autocorrelation Function for Retail Chrysanthe-

mum fecoipts Data.

E-1?. Periodogram for Retail Chrysanthemum Receipts

Data.

E-13 Mean Absolute Error Versus Discount Factor for

Ifetail Chrysanthemum Data— Cyclic i'odels.

E-14 Standard Deviation of Error Versus Discount
Factor for totail Chrysanthemum Data—Cyclic

Vodols.
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FISURE ia!!/BFJR DaSCRIFTIO:!

E-15 Mean Absolute Error Versus Discount Factor for

Retail Chrysanthemum Data— PolyTionlal Fodels.

E-16 Standard Deviation of Error Versus Discount

Factor for Pjjtail Chrysanthemum Data— Poly-

nomial l'*odels-

E-17 Mean Absolute Error Versus Discount Factor for
Retail Chrysanthemum Data— Combination Vodel.

E-18 Standard Deviation of Error Versus Discount
Factor for Retail Chrysanthemum Data~Conibina-
tion I'odol.

E-19 Lily Daily Sales Tims Series P]ot.

E-20 Autocorrelation Function for Lily Data.

E-21 Periodogram for Lily Data.

E-22 Mean Absolute Error Versus Discount Factor for
Ifetail Lily Data—Cyclic r-Todels.

E-23 Standard Deviation of Error Versus Discount
Factor for Retail Lily Data— Cyclic l^odels.

E-24 Mean Absolute Error Versus Discount Factor for
Lily Data—Combination Models.

E-25 Standard Deviation of Error Versus Discount
Factor for Lily Data—Combination J'odels.

E-26 Poinsettias Daily Sales Time Series Plot.

S-27 Autocorrelation Function for Poinsettia Data.

E-28 Periodogram for Poinsettia Data.

E-29 Mean Absolute Error Versus Discount Factor for
Poinsettia Data— Cyclic I'odels.

3-30 Standard Deviation of Error Versus Discount
Factor for Poinsettia Data— Cyclic Models.

E-31 Mean Absolute Error Versus Discount Factor for
Poinsettia Data—Combination Models.

E-32 Standard Deviation of Error Versus Discount
Factor for Poinsettia Data—Combination Models.
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FIOURE NUMBER D5SCRTPTI0N

S-33 Wean Percent Error Vsrsus Discount Factor for

Best I'Jholssale Chryaanthomum Time Series J.'odela.

E-34 Mean Percent Error Versus Discount Factor for

Best Retail Chrysanthemum Time Series i.'odals.

E-35 Periodo,=;ram for TOolosale Chrysanthemum Data

Usin,"; Second Degree Polynomial .%?;rosslon

Residuals.

E-36 Periodogram for Wholesale Chrysanthemum Data

Uslnp, Third Dajrea Polynomial Regression
Residuals.

E-37 PeriodO£;ram for TiTiolesale Chrysanthemum Data

Usint; Fourth Degree Polynomial Regression
Residuals.

E-38 Periodosran for I'lTiolesale Chrysanthemum. Data

Using Fifth Degree Polynomial Rsgrossion

Residuals.
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PERIOD ACTUAL DETRENDED

I. 27(4.C(;OCCCOO .
23C.<;'t£21b't8

27S.CC0CCC00 ,
i£e.ee'iuce23

2S3.COCCCC0C I23.t2t7e223
lye.COOCCCCO 5.76904297
373.C0Cr.CC0n l'^7. 7 l I2fi'i'.5

261 .coccccon iob.eG2S'i<; i<;

7, 570.C0CCC00C 2 t 6 . S«;'><3 A 72 7

a. .1/.6.C000COCC o9.s3aoe5<;4

g. 566.0nCCCOOC SSK.'.e0'46a7E

IC. A73.0CCCCC00 ii2.'.225<}2 le

,1. 4C3.CCCnCCC0 -VC.63b0C')77

12. SAq.CCOCCCCO 32.20712e91

13. £30.CC0CC0Cn 7C.215S117:

^4. 7cO.C00CC0C0 1S7.15163513

15. , 1 ICO.CCCCCCOO ASA. 1337gQC£

16. qji.COCCCCCO 2 3 J . C7 6 1 St 62

17. E4A.C0CCC0C0 -li;7.yeiA3CC5

le. 1039.COCCCOOO 263.96069336

IS. 521.0CCCCCCO 132.9C306091

2c. ic.e.coccccco 206.eA5iQ9sa

21. 1053.000(.COOO 142.75759766
^

22. ISA3.000CC00C 595.72973633

23.
" 13eO.C0CCCC00 3e9.e7lU7SC0

2i,. 1S09.CCCCCC00 475,61401367

25. IcSl.CCCCCOCO 574.556 64 063

26. 1601.CCCCCCC0 4ei-49fc77930

27. 2719.C00CCCC0 . I 5 b t . 4 A 1 1 6 2 1 1
,

15S4.C0CCC000 246.38305664 .

1772.CCCCCCCO S23. 32543945

e76.CCCCC0C0 -415.73193359

3i. 1 142.C0C0C0CO -I92.7e977966

32. 1404.C0CCCCC0 26.15234375

33. l64e.CnuCC000 227.C9A7112C

3^. . ie37.C0CCCC0C 173.03664998
.

35. 1553.C0CCC000 SC.97924fcC5'

36. 1177.0CC0C0OC -373.07636914
1361 .COOCCCOO -232.13623047
195C.CC0CC0C0 3l3.eOb66AC6
1943.C00OCCOn 263. 74229102

1337. COOCCCOO - J £S . 3 0932 6 1

7

HI, 1143. COOCCCOO -622.36 7 16750

H2. 1061 .CCCCCOCO -727.42504883
143b. COOCCCOO -416.46266602
IS'iA. COOCCCOO -3AQ.S4U2a3?0
i43d.aoccccon -499.59790039
1247.CC0CCtC0 -733.6So00bf 6

;47. 1 1 ?1 .CCOCCCOn -652. 7136^305
1291. COOCCCOO -7?5. 77124023
834.CC0CC000 -12/S.S2<;a5 7 42

979. CCCCCOCO - 1 1 7 3 . 6 Ufa 7 1 e 75

51. Iclfc.OCCCCCOO -1

1

79.y44b«C0e

52. 74H.COCCC00O - 1 A v 1 . C 024 4 I 4

1

TABLE E-1

Monthly Wholesale Chrysanthemum Hsoelpts

Actual and Detrended Time Series

28
29
30

37.
38.
39.
40>

43.
'4 4.
4E.
46.

48.
49.
50.
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RIOD -ACTUAL DETHENDED

53. 1 '150.00000 COO -832.0598 1445
HI. 976.0000C00C -1349. 1 1 7675 78
S5. ICOl .CCCCCUOO -1367. I75;j37 1 1

. 56. 1193.00 00000 -1216.23339844
57. 10 2 4.0 000000 -14 30.29077148
58. Z028.COOCCOOO - 4 e9. 34 8 63281
59. 774

.

OOCOCOOO -1 7Ce.40625CC0
' 60. 1 IIJI .COOCCOOO - 1 422.40435547
61. 1356.0 0000UO -1270.52 197246
62. 2408. COOCCOOO -261.37958984
63. 1624 .COOCCOOO -1088.63720703
64. 1860. OOOCO COO -895.69531250
6S. 22 lO.OOOCCCOO -588. 75292969
66. 1701. COOCCOOO -1 140.81 079102
67. 2944 .COOOtOOO 59.13159180
68. 2404.00000000 -523.92602539
6q. 2684. COOOC COO -2=6.98388672
70. 3568.00000 00 553.9580078

1

7J. 2826. COOCCOOO -23 1 .09934998
72. 16S9. 00 000000 -1401. 15fc98242
73. 2C77.0000COOO - 1 066.21484375
74. 2658.00000000 -528.272/0508
75. 4306. OOCOCOOO 1 076.66943359
76. 3604. COOCCOOO 33 1 .61 18164

1

T'-. 4 1 16. OOCOCOOO 800.554 19922
78. 3102. COOCCOOO -256.503662 1

1

79. 2878.00000000 -523.56127930
80. 4ac6.ooccccco 136 1 .38061523
81 . 3422 .COOCCOOO -65.67t74255
82. 4 196. COOCCOOO 665.26538086
83. 34 ja.coooccoo - 135.79223633
84. 3e63.0000CflOO 46. 14988708
85. 3970. COOCCOOO 310.09228516
86. 5S26. OOCOCOOO 1823.03442383
87. E575.0C0CCO00 1828.97656250
88. 4956. QOOCCOOO 1 166.918701 17
89. 3450. COOCCOOO -382. 13842773
90. 4620. OOCOCOOO 744.60346680
91. 42S6 .OOCOCOOO 337. 74584961
92. 4369.00000000 407.687744 14
93. 5469. COOCCOOO 1 4o4. 63012695
94. 6 117. COOOOOOO 20b9. 57250977
95. 4546. OOCOCOOO 455.Sl4a9i!5B
96. 34i:a. OOCOCOOO -645.54296875
97. 4 238.00000000 6 1.40234375
98. 4200. COOCCOOO -1 9.C5625C00
99. 4C3 1

.

OCOCCOOO -23 1 . 7 1484375
100. 534 I

.

CCCCCCOO 1 35.22656250
10 1. 3712.00 00000 -636 .828 125C0
102. 369 7.00OCCOC0 -694. 8867 1 875
103. 4673. OCOCCOOO 238.0546 8 750
104. 3557.00000000 -92 1 .00390625
105. 4368.00000000 - 153.06250000

TABLE E-1 (cont'd.)
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PERIOD ACTUAL DETRENDSD

I. :o 1 .Gouccoor; .lou.t, /'.•jC')7 7

3, 2<4'i .Curi;C()L;C 2'.2. 7 1 777 J'li

A. Kt>7.(l(:of.CCOO S'jS.2'>t.'»';<,83
"5."" "

J i'j .(jouocdou ajr.cf- jfi37 n ~

6. 3'ib.0U0CGi:OO 362 .'.3030273

7, 1'1',-j . CCCLt; tU<l 4'»2 . l-Cf OSCti*

-8. irt). CCOOCOOO 32 I .SfOolCSS
. 1 4 1 . Ci; U C C r. C 1 c' 7 . 1 '.j 3 j 6 '1 '^ s

10. 2'i5.0i:i;r.C(;00 2'iC . /re 1 96?')

11. 30 7.01.100CC00 302 .2';i.TifJ3'Jf;

12. 1.J 1 .01, i,CCOl,C l'lb.P7 1<*2<J'Wi

1 ,T . 2oL' . CmCOI.'CoC Z'.,t .'t'ljfi'i fit

It,, /,',,' .CCCCCCCC. ' " '("^O.C I<.3b7l2

Ifj. J.'i7 .COOOCtOlJ 3'tO .bciVl 1 1 J3

It,. 3'. •3.0 00 ICC J3c.lMt.2 10'J

17.
'

'. 1 4 . Oc;Oi.0C(.O <ioe. 73^1 J73CC
If., .1 ', u . C C i; '. 3 <; . 3 f: 7 1 2 r"; I

l<j. a73.CC(.ilOOCC -ju'. .e7S..i<i-<S3

JU. 27 1 .OOOi CI 00 ?o;' .'1^; 3').':5c

21. 2t;i. OCOOCOOU 2 /- ? i 2'i i. j,; 20

22. . K;."- . COC( COCO 1 (2 . 'j^76'jt;2'j

23. 2t'7.r,p0t OCOL 277.17010602
,2'). 2 37.00000000 2t't .7'i.;0'f'<;4C

2 5, 'J ;i r . O (K) '." C: fj 'i 1 . 3 1 i ft 2 4 6 '1

26. .1 1 1 . coc;ro, 000 't02 . ra /6';b3i

27. y^'j.OOOCOOOO 7 3/. 'it.Ol:03 36

?t). 25 I .COOfCOCC 2 J>i. o33J7o';7

2 9. ' 2 >: P . G r. C 2. C 'V . (. c r. 7 1 2 r. ?

30. 3 /J. 00 (J GOO . 3o-0 . 1 7c.'t<. ccC

,-!l. 3cf .COOOOOOO 3 /A .7S0':)765t

32. Ar.o.COCCCCCO ( j2. 32373CA7
33. 320.00000000 3 5 . HUo^A C;23

3A .
' 336.0(;oOOC.OC 32l.4i',c;7 3CCC

30. --
2i: I .COCCCOCO ? Ct . Ct I 7A S Ci

'

36. 26? .OOCCCOPO 2b3 . I ^ 3'i J 37

3 7. 3 1 2 . C CH, r C C C 2 ? c. I »' c 7 7 3 *:

TiK. 33S.C0OCr.COC ' 3 3 e . 75027 73 A
-

3Q. AJS.OOCOOCOO 'I 1 .. .33203 1 2.'o

^C. iro.OllOOOCOO 1C?.'K:4;:30';3

41. - -" - ?2r, .OOOOCOOO 30c' .47705C7e
42. 3O'..CO00Ct 00 2-.o.05004r'fi3

43. S4O.CC00CC0O 52 1 . C2-..3 1 -i 45

44. ,;';:>. CGtOOOOO ' ^270. l<iL,312D0 "

45. 1 /c .C0(. 00^.00 'l jc. 7f 7)4/(34

^e. 223.'l;iOCi-CoO 203 . 7'-0 :if 09 l

47. i-jo .G0( i croc 1 I'i .<} 131^:275

4S. 1 J3.CC0''. OOOO I 72 .4>:.bSCy3 J

4'J. 3( I; . li!.'.. ore ' < i:r i.O'-.K J4^C 1

50. ?ti7. Oi.O'.-CC.OO PC; .£306 l'j;'3

'jl. i:-;4 .COOCorOO 232.20Jc713?
52. 1 2 I . OO'OCl 00 >il: . 7 7i.."i0.vy

.TABLE E-3
Konthly Ifetail Chrysanthemum ffeoelpts Actual

and Detrended Time Series
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PERIOD ACTUAL DETRENDED

^'^' 1 •! I . or (, ( or rn

^'^ • i' 1
') . Oi.CCCOOO

3(3 •

I 1 t .J 'If.'- 2;. 73

1 ..i . '('.L't 1 'St-<;
ccc(;C(-,i:o 3yi.r,.;i,Ac,:L'-.

t'' J-'. .C(:ocr,f;(,o ;>f, . <.„"i.. <;., 3o'*•
_ .C7.c^o(,<.rt>c U', .; i;'i,.-.,c,-

55. - 3c.7.occ,<-(:( CO T. 1 .y^/,,-,?jt.i
60.

Cl;L(CCCfl .1: J.O /(I /U703
'-'^'^'^

' 10/'.(,'.7/3ijoO

(13

6''. 1

^'5. " 3C 1 . cr( (,ciu.rj

'"''• 'i7 1 . 0(. OCOCOC

if 1 . Pr l'^'i7070
P3'/. 7<;i"-,t|Ci^7

6h. --• ?A;'.OOOCCCOO - ?lJ.'i3l.JI7If.
6t;

70.
ir 3 'j . c i; c n

71. 177.
72. lu^i.ccc
73. f9/i
7'..--- ^ - 3J.3
75. . 3df,,

7'=. 2'i 3. COOOtl CO
77. 'f.i .COCOCtOO
7". 'I 1 7.00UCCC00
7^. 'I 1 ft. OCl ('COOO

?0b.:,llld6'i26
«? lb. CC J'iCS-jS

I '. o .(.bciit'^' 15
''•'-u" 1 i3.2ri;/'21?5

oc;(,cr.ico ?i:2 .c o i orssg
C(.(,(,CfOC " 2'^7-37377'530
uoi.cccoc 3J3.<-.'.t,i'a<;o6

i: I 2 . i 1 'y
i.' 1 (J y i'

.^c<-, . c<. 1 /'<j(.ee

2c;3.tf.<.u62S0
f' .237&CCSe

0. -- iic.ccccrcr.o 3'-.^ .cusosftl'?
f' ' . 2 . U C C C (;

S2.
^J. 3ofc .COCrjOl CD

232.(;i;CCCC00 210.
1 /'t.3., 2301396

^ 4 <J '( 8

•.)'273'/ J 7b
'

S'". 2rb.C0C(;(:C.(;C 2jC.lCfcl->

fie .

07.
es.
e'3.

TO.

2(3.UQC0CC0v;
23 1 . ecu C CO 1

tC?' .CCCCOf 00

'''e.£.t.723£32a

/4 . 2iib'»C 71
!70. t'l 7.J2CS5

jr.r .QOCOCCCO 3(jC.3Q0625CC
2t,h.0Ci.cCC0<; ^'.7.'i<0272CqOl .CCOCIXOO 3'j2.';3b04/,53

^'- '"l2.UC0('CCv)O '.J3. IOt.3<i<'-4i|
'^'- eoc.CfKViCOOO 36C.cPC6c:405-
'"• '•57.CiC0CCCCG '.I7.?53ub.Ml
'"*• 2i,?.Cf;UfiCCC0 2'a.L263fc35C
^r- " i76.ocr.ccrro - i3b.3.:;qoo20fi

f 277,OCCfcCOO a3b. ',71011=65

'J-
«12.C0c0f0OU 37C.t,',j..*S31
cub.occcoc'oc- b^', .ne6<;';22-
'

' 00:CCC00 3M2.6i;-;<.b3I3

, r , ._ 3,Vo.2C171ft75
:'• V57.cnrf,:ooc - - /..-jj. c3^7 1 ceo ^

J'"^-
"OS.OCCCCOCO '•-l<;.'.Co<Jt;2',?

O0c;i)OCOC
i'. ,'.-V7S-;c'0.-.7

3f<;.CCCnC0C0 34«.i522460'J -

IP.
Tl.

'''f- '<.";. CCOGO(;c<;

I IJ 3 .

1 4

"J*^. '1 7vi.cconcc;oc
•I 31. 12'jCC0CC

TABLE E-3 (cont'd.)
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PERIOD ACTUAL

1. 0.0
2. 0.0
3. 2C.CCQ0CCC0
4. 19O.OC00CCOO

; S. _ ,

0.0
e.

' lo.ccoccooo
7. 0.0
8. CO
<3.

'"
' 0.0

10. 7i .coocccoo
11. 335.CCCCCC00
12.

" CO
13. .2C0CCCCC00
lA. 0.0
IS. " 0.0
1 £ . . C

17. _ 16.0000COCO
18. ' 57.oaoccooo
19. 12.CCC0CCC0
20. le.ccocccoo
2 1. 16 1 .COCCCCCC
22. CO
23. CO
24. 220

.

OCOCCCOO
25. 0.0
26. 2a9.CCO0CCCO
27. 0.0
2 a. CO
2 9. ; CO
30." 3. OCOCCCOO
31. 6.CCCCC0C0
32. 16.00CCCCC0
33. 62.C0CCCOOO
34. 217. COOCCCOO
35. _ CO
'36. ' CO
37. 20<;.CCCGC0C0
38. 195.00000000
39.' "" 335. COOCCCOO
40. ICCOOCCCCO
41. _ _ CO
"42. '"'

'
' CO

4'3. CO
44. 31.CC00CCC0
45. ~ 23. OCOCCCOO
'4 6. 17. OCOCCCOO
47. 177.0CCCCC00
48. 227.000CCC00
49. i7.cnccccoo
S0« 17.00COCOOO
'

-
' TABLE E-5

Lily Dally Sales Actual and

DETHEKDED

- 1

-2
1 (j

Iti'i.

-t.
2.

-e.
-10.
-II.
S<3.

32 1 .

-IS.
3.

-17.
-le.
-20.
-s.
3A.

- 12.
-7.
13A.
-27.
-29.
169.
-3 1 .

2bfc.

-3A .

-3S.
-36.

' - 2 ^ .

-33.
-2'*,

2C.
173.
-itt,

-4
162
146
26
-40
-5 1

-S3
-54
-21
-33
-4 1

1 1 7

166
-44
-46

26 4 69258
5 2 9 7 8 6 11

2053070

1

9404 1443
3?')'t676e

,41063881
.65425377
, I 1914730
.36404 179
.351 05896
.08593750
. 17872143
.55639553
.70648083
.9733734 1

.2382965 1

.50316909

.23 190308

.C3297329

.29786567

.43 ?2?534

.82 765 198

. 09254456

.64 2 56287

.6223 1445

. 1 1254833

. 1521 1487

.41 7C0745

.68188477

.94 6 77734"

.2 1 166992

.47659202

.258499 15

.99362 183

.27125549

.53614607
, 19692663
.93403625
.66870 1 17

.5957 1836

.6606 1096

. 12551880

.29041 138

.65530396

.92018 127

. 18507385

.SSC0C3Cb

.2650952 I

"

97976685
24465942

Dotranded Time Series
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PERIOD ACTUAL DETHENDED

51. 172.CCCt,CCC0 107.*'^0<1J274

5 J

.

1 s . c (; L! c c c; c - /< ? . / 7 '4 '. s o e «

53. 2S-O.C0OCCCCO 3i^i-.?e0'. 'iQJZ

'j!,, /P.CCCCCCOC q.ty'j754C5

2S. 17.CCCCCC00 -£2.S601Z?31
56. 17.CCCCC000 -;S3.e3'iCl'teq

57. 12.CCCCCCC0 - £ C . O? t T£ 2 7

3

Sa. 3F.CCCCCOC0 -3S-3fi3H1531

Sq. 'ii, .CCCCCOCO -2C.t2e7C7e9
6C. ^A.ocooccco - J 1 .cs^'jesz 1

61. cG.coocccoo ii.a'iisoe<3e

£2. 2 1 3.C0CCCC00 1 3 'l
.

'J 7 1 6 1 4 36

63.
6't.

65. Z23.CCCCCCCC 1 SC . 7? 1 <7 2 1 39

cc. i^P.GCQCCCCO IbS. 51702881

07. 2C7.CC0CCCa0 122.25212C97

ee. 2fco.occcccco i7'5.<;t;722e3S

eg. ^ie.COOCCCOO .-ii l ,2776'iti93'

70. 0.0 -ee.s'iaszezs

22.C0CCCCCO -37.Ceci27e2C
22.CCCCCCC0 -oe .<;53186C4

y

TABLE E-5 (oont'd.)
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PERIOD il,OTnAL D.ETRBNDED

J2.
—i-

34.

16.
37.
3f-'.

-3-J-.--

-v+-.-—

'it.

rt-

O8f-.70

-W^ -?-4^

.);.:? 3

-l:

CD
C.U

J 7. L CC 1 C V"

Zi' ^L?7'iA

-i Lu. A'.n I'j'j?'-!

- L i 3. 'i^;^? "''.'?'!

-Llo.^ C (7 II'

t l ' .(.>;l^ J J ' +-
-•)';. 6 fi f 3 'i b C C

-J4-

il.C Lf '., '-.; -1 !

.

;3-.l!

• i :2 f

-
: M.L.I I -Hr3^-

-L- L.0'.< ^7 ^-I

- 1 'r ? .

2 I'- LL'. 6f.4-

1«0

-^4-„ i-T':.-

" " ' ~
' TABLE E-7

Poinaettia Daily Sales Actual and Dstrended Time Series
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PERIOD ACTUAL DETRENDED
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Of the proj^rirr.s listed in i'vis Jippandi:-:, Al i'CCET, PCVSTSC, and EXPOS"0

ai-o rcsvisions o" progr?j?3 originally v/ritton by fhj-nioni Miller (7, 65). Tlie

Con;putsr prof;;rr.ns usod vere:

(1) M-ICDSri

(£) l'0',V3Pi;C

(3) AUTCPLT

(4) PLCTOOl

(5) expos: :o

(fl) 1-ATREGH

AUT0D3T p2rX'orm5 E first do;-;re3 polynoirdal rsgressicn on lh3 orii^iinal time

serios. Tiio resultiuj residuals fonr. t:is dstroAded tiina series f rem v.'hioh

tho pro»;rarr! ootr.putos an autonorrolation function for spsoified lag valres.

PCTSPSO uses tho dotrended timi sories from. Al'TCDBT to perform a har.'Tionia

analysis for spooifitid poriods. It computss ths coefficients of har?-ionios

in the arithrietio trii^onoir.etrio sequence explained in Section £.4, The re-

sulting ooeffiCiient values nay be used to construct a poriodogran for the

tice ssriss. AVTOPLT plots the orlf^inal and dstronded tire series froa

AUTODET. PLCTOOl produces autocori'elatjo:! functi.on and periodor.ram values^

ooDiputod in Al'TODST and PO..0PEC, respectively.

EXFCSrO perfor.-iS the jjeneral exponential STiOothing process on the orig-

inal ti;ii.? series. At each samplinf;; jxitprral a forecast is T^ade of the next

tire series value. Each fcrncast is based on all data vo to that particular

point in time. In addition tc the tin-.s series itself, tha following data must

be fed into this proc;ran:

(1) !hinb^? r of observations and number of .T^odel fitting functions.
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(?) Initial ooaffioiant vaotor.

(3) Input fotT.iat for trfjisition matrix.

(4) Transition ratrix.

(0) Irput fonnat for time series.

(g) Valu'js of discount factor to be tried.

For a mora ooipprshoisivo explanation of AIJTODET, POV,'S-EC, nnd EXPCSVO

refer to tha master's thosis by Millar, (7, C5) . liATRE'GR is j'jst a general

regression pro^rsjn* T?i9 niatrix of independent variables nay be of any desir-

ab}e form. This proj^ran outputs &s\ analysis of variance table and a plot

containint^ the actual, ostirriated, and residual time series.
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cor.'PVTr'R noo;i!.r ids'itifioatio;' cvi-.ri

Tho list ^3^ovf is provid-3d cs r. rsforc^ioe tc all of tha oon'.p-jter prosrairs

which folloTx:

F_l AUTODiST - detronds the orlsinsl timg sgriss

and ooiTiputes the autocorrelation

function,

F-2 POVfSPSC - ooKiputos psriodio term ooaffioionts

for an arithmotio sequence of periods.

F_3 AUTOPLT - Plots original and detrsnded tiyre

sories from ATJTODST.

F-4 PLOTOL'l - plots o'.itooorralation function from

ArTODET and pariodogram from PC'SPSC.

F-5 EXPCSrO - Exponentially smoothos the original

time series for any model and dis-

count factor.

F-6 MATffiGR - pprfonns a inultlple regression for in-

dependent variables of any desired

form.
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k:£«D( 1 . j) J. !!

ALL TWz 5b;. -iOU

C'VLL T:»r MJ( 1^

SUI- = C .

DO I P I = 1 . N

r,ui-. = ru:-* <{ l )

D-N
A';dAN= ( SU .. ) /

SX^O.O
DO Jl ^ 1 , N

X ( I ) = X ( I ) - ' ^'

J sz = :;>: + (,<(!))

sx= ( :.x/L)) J* .

DO 1 ? 1 = I . )

£ X( I )=-X( I )/SX
P =

T^-0.
5/ =0.0
CU 1 31 = I .. i

T / = 1 Z < X ( I)

3 £ .'• = 5 Z (- < ( I ) i *

T ( ! ) =: T/--x; I )

r ( 1 ) = r= .' - < ( \

!

C ( 1 )
=1 '.

i! - < ( 1 )

G( 1 ) -^GZ- U I)

DO I -: P =,'.

L = iM-i'+ 1

K=. p-;
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r(p)=> (
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' ) = 1. (

GC )--:.,(

LH., 1 -J
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C ( t' ) ^ C .0

tJf 1 1, 1 = 1

,

f.'N-= I
'
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it c ( H )
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-
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!
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.
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11 Tfj-r../, r ( ;; TH thI'j. ts

1 hf,-:r.v. r ( i.T.:.).-,)

r.i.('.v = o
". =;

'.) Y =

SUV.XY =

ssox=o
00 50 I =1 . J

!'i \r>( 1 , 6) ( AX( I ) ) _
c —

I

30 .Y = r,ui:YfS

ssaY = ssi;Y + st*?
SU • XY = SU^ XY t A X ( I ) »3
r.ij' x-f.ut.-xi- \x c I )

E.0 r.sr.Kir.riC <vAX( i )t*?

Oi'Ti'Z -iOcL)

» UT'e

.•- ^ I T F

'•2 =

J) C- 6 C

K( I )

'. - I r ::

.-.- [ Ti-

£:mO

•s ( su • K Y ) - ( E u; X )«{•" u • Y ))/((-)*( s i.a r ) - ( su..

(:i,<i)CAi)

(?.<•)( 1 1 )

( .^ . 1 I )

(2.11)
ZU-:K/-I - A H-( 3U'Y/N) .

I = I . ^i

= ^X[ I ) - \\*S ~ AS
" -- -

( 3, 1 ) ( X( n ,Aa( I ) )

(.' 1 ) ( <( I ) .AX(J^) ) _
-I

' '"

Ifi?.) )

AUTCDET, (ooLitM,)
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_ Cir-'END 1CNX( iGC ) . 1 ( I CC ) ,C ( 1 CC ) .-J ( ICC ) _ _

I fr.rim{]2)
•'

i' I- L. r !
- (. T ( : F 2 C . ? . 2 I 1 C )

2:' Ft;';',-.-AT (rsc.e) '

_ _ ^ _

f^ 1 = 2 . lii I Z'i? 7

!^.:«c ( 1 . 1 ) vD
INC=NC

nci8l=l.ND
JL l!r »C ( 1 , JJ )X( I

)
^

CCr>.T = C.O
CC3I = 1 ,^D

_a CC\T = CC:'.Ttx( 1 ) _1 ^_ __ _
ccNT = cci-.r/r\c '

"
"

'

'

C«t + «*CALCLLHTi; Th:" FCUT-ilEK CCiI FP I C li£N T S

_ _ C05CN=l.Llt' _ _
A(N)=0.0 "

"

""
.

E ( \ ) = C .

TCU = N

NR = N '

" ~ '^''-
- -

^ I E = K

of. K>^ = NQ + ,VIS

t* CCMINLt
,_ CCIOl-iiK'i ~ V "

F = l-1
i3(N)=S (r^) +S I,\ (2.*p I *F/TCL ) *.< ( I )

A (IS )=/! (I. ) tecs ( 2 .iPI *F/TCb ) «X ( I )

"

4C CO.NTINLL
ANR=KR
bt\ ) = ( 2 .VANr< ) ?r3 (K)
A(Ki) = (?./AN:i)»/»(N)

_ W(M = ( A (\ )*<.^4b (^ ) *+i ) ii.S
" V.HITt ( 3 ,2 ) A (>, ) ,t ( K ) .r. < N ) ,X .NH

V. M I T C ( 2 . 2 ) A ( N ) , L ( N ) , w ( r ) , \ , K hi

tit CGNrlNUli
STCP ' '~ "

FNC

PSDGiV.I.' NO. F-

POr.'SPSC



190DIMENSION XCiCC ) . CUT ( 101 ) .YFH( I n . ANG(g) _.

1 FG"!VAT (212)
Z FCr-^AT (ZF2C.e)
3 FC4.VAT ( £5> . 37hACTL."- ( 1 ) . C ; T k:^.NC£0 ( 2 ) CATA VS. TIVE/)
4 FCHN'AT (F5.C.2F2C .e )

5 FC«r-'AT (SI- T I^E . lOX .eFACTCAL . 1'4X , 3t-CElBEiNiDtD/)
WFAD (l.l) S,NL

^

HEAD (1,2) ( X ( I+2*N ) ,X( i *N ) , !- 1 ,N) '
"

CO ICC 1= I .N
:OX(I) = I ___ _ _ 1_

ViRITE (3.5) "
~

URITE (3.4) ( X( I ) .X ( I ^^) .x( I t2*K) . 1 = I .N)
VlR t TE (3,3)
CALL PLOT ( I ,X,N,3.NL ,0 )

~

ST(JP

END

PRCarii IJ6.. F-3J
AUTOPLT
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c Fi ) PL'JT cr itTC rorFTi. • .'

c h- = L'vr-:, .. = 1 i .M. r'j cci:f.
C i\ - PLLT TK JC..:=^^';C '"ATA

C LAG = vatr. \= l,-; = 2'3 = -i
- — -• -• -

IM vl:J ti:\ ,'( 1 -G ) . J
( ^. C ) ,L,i, I( 1 C 1 ) . v.- • ( 1 1 ) . AKG (-7)

1 f .'• AT ( I J )

" 2 FC'7;'..T (r 1 c .C,F 2C .2 )
--..--.

.J fun,' AT (
31= -c . y .r I u.c )

'( r (J '.. A T ( r 1 . 3 f .- • 7

)

5 rOii' AT ( J). , !.IL 1 G? . 1 C/ . : Oh At TC CC^^FE/)
'

6 Fr,).'»r ! I (.t F'< fcLiiivCY , 1 (.' < , ;fa , it'.< .^j-.^j .it.x.iHW /)
';«:^n ( i , i ) r^

" ' - >='C\n (1,3) (.M [).!'( I ••-), 1 = 1 .N ) -

> < 1 T = < .3 , -3 )

i-: ; 1 T S (3,2) ( P ( 1 ) , |J
( I t N ) , I = 1 , i\ )

Call '""Lcr ( l .P ,:s,I', c , c )
"

i'C4C ( 1 , I ) \

'(i4n (1,J) ( A ( 1 fN ) , A( I + 2i.'0 , -.( ltjt\ ) , A( I ) , 1 = 1 ,M)
' ..'Jl T= { 3, J ) '

VM-iiri (3,>») ( • ( I ) .A ( I +\ ) , '< ( 1 +:?< N ) , A( H 3^..N ) , ! = I ,N )

CAUL PLUT ( 2, A,,s, 4 , /-J ,0)
STOP — -

PBOGFat.' HO, F-4
PLOTOOl

'
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-Cj r( 10 JO) .PLr( doa)
•riTTr7iTVcurCi'c.'r~

F K ( I . 1 ) . F ( 1 c , 1 ) ,

<Cr\-<. ( 10 )

"xT^ C oT
ci ( 1 1, ) . ^ ( I . 1 ) . T i-

( t (

^:--T(l'. ), XF--'T(1,.!)

D I'l- •i'3 I U:J rt^T^cl . ^J'C TeT( 200")

DDUHLiT IJ^lCISIUN F.FK.Cl.Cll
FD^.'-AT (ilJ)
F crr;:fAT^ TTrl'y.^'y)

~

FO 11>:\T I 1 ;iA4)

FU?r:AT- (Fd.3)

DC 'Kr.s Ui\
••l;^J';IG^l

"Z'lSlC 1

!::-:'3[i) VI

DI, •-IlJ'ilCV

.•;' js I CN
n-INR ruN

.. c ( I n . I ) . H ( I . 1 )

10)

FU:!.'.,AT (in , 1 CF 1?. 7)

NN I = I

^^HTolTTi") n'o.nl,
[F(i-:n ) 1 3. 1 .1, 1 4

^ A T 'U X " )

• N.

i-:tiAl)( 1 .

i:5A0( 1

s-:ad( 1

i) (cun.Ai
J) FMT
F-T) ( ( Tt. ( I .

:hk( r )

,

1=1 ,\)

J) . 1=1 .N)

J)

.

;:-^i r!-;( 3, 5) '
^

DO 15 I=1,N

LJ_''i^ [ Tr: ( 3 , 6 ) ( T " ( I ,

r^FTViJTiVT) xFvT
C .iF.AC CJ THr. Q gSEKvA T ICNS

;JEAD( I , xf;:t ) (X(l),
rcu

1 = 1 .,JD)

PI
ii:

= 3.141:
.n( 1 ,'4 ) ah;-, fa

IF( 4f;CT4) 1? , 12,ri
C r.AV;-. TM1-: INITIAL VALUCS CF TH.f CUiNSTAryTS

^ ^^K
^lli _L'i' ^ ' * '- V*l-iJ,-S CF rnu PITTING FUNCTIONS

II no 16 1 = 1 rs^

A( I , 1 ) = A0( I , 1 )

^l c Cl(I)=Cu[(I)
~calC . < ,C1

,

*AY (.-ao.MOij",

CALLMATINVCF ,N)
CALL^Vf-:C(F. \C , N , H , jet T \ )

C 4 1 < « vF o Y" THC V :'Af'Tfy

CALLV -A^!! <( FK .F ,rj)

CALL FOMC-.T ( -JiND ,CI , A 1 , >

.CI' . ry ,ci3cTA,f"k , AG, Al , Ae>£TA,CO'

i i'idJX ,^), T'-

UC SO II = l..\0
rJLI (II) = II

PLT ( IJ^^^lO ) = x(ll)
"pltTi I flTS^jT) =~-friTTri~)
"LT( 1 It:^i.^;n) = xdii - fcsti

50 I'l.T ( I I t .i*.NU ) = 0.0

.F .H.FCST)

I)

CALL tJLOT

KNN = \NJNt 1

CO J C 10
2 CO'\tTJlJF

ZC, TO t)

3 'THi'

(N-. . PLT.MC ,5,--IL ,0 )

LSil
PROGtoL' SO. F-5

EXPOSI'O
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~.U.:!''<C'UTI ^•^ 7AY (^0 ,\TCL . -JtA,", .Tl . 'N . CH< , r V i CC-T A , Fi< , F , AC . A 1 . ALi-^

ICuI )

bi •K-Nnic-; r:<( 10 , 1 u) , Ti \ ( 1 c , iG)
D I ,-.::.MS r DJ \ ( 10 , I ) , 1 ( 1 , 1 ? ) . : u n' . 1 n ) , F { I . I II ) . C.J I ( 1 )

L;I''.i:;>:3ICni <( iici ) .ci ( l o ) , ^ ! < i j . i ) .h ( i o , i ) , ^c t i g , i ) , r." ( i o . i o )

rjiMsrjsio 1 Ai=( Id. 1

)

COU JI.!; P<=CIStlJ\ F.FK.CI.Cll
I FO^.v.AT (• F-v.ATt!l X • )

AP = ( 1 ./rN)
c 'i^^^rI^:i h:..j^ r:-t F -.-iTwix is '-fsc ALCULATtc .virn a ne^, sSta

67 06-: rA = ( A^^-: TA ) i«AP
C^ !': IA.-I r I ALi .i'l THE VECfG.? CF FITTINo hUNCTIO^S ANO CGMSTAMTS

C[(I)=CQI(I)
42 AA( [ , 1 )=AC( I . I

)

C CUKPUT.: THci F MATRIX h\Jf! ONE MGOt:ir~AND~ffNT~STfA~
r)i;;i I = 1 ,W
DL|- J= 1 ,i-i

f^{ I . -J)=C.
li r ( I , J ) = . c

RCFA= 1 .0
CNr= 1

.

;-3 DO !0 [ = 1 .N
30 J ( 1 . t ) =A ( I . 1 )

7-
eo'to 1-1 ,N

:• = I

ci< I J) = M I . i)fd( 1 . j)*(-^i:ta)
10 CQMTI ^ll;E

DD43I=l .\

DJA-lj = r/ , \

43 CI 1 < I .J )=C 1 ( 1 , J )*l.STA
I F ( K - I ) o J . 1 J , o 6

_£*^*j;;fCHjx:< JI^SC CC -^V^IPOEJ^CE OF THC F t.'«T<l:< AT liACH SOTH ITC'JATIUN
C«*i.*i.ThIS «:uri.C CmTzckS CnTi'l Pr^l^i v3s~ArT"~cUET'HNT^^vhlcT~"iS^0T~T"f m^
C*t.l-.*<-I ZFi)

c(i iF( c •: r-50 . 1 1 1 .4 4 . 1 a

4 4 C N T = .

DO 30 1=1 .

M

f = I

OOiC J=:', \'

u-:n:' = i-( 1 , J)
A.MiJ.v^Cl (I.J)
•^A r In^ANU.'/'JdMI-r

1K( R •. T lu- . CCCCO 1 ) OO.KC . 16

-ctt**iTMr. F '/Ar-;i/ vlZijt Tht cc<vFq,:,7-.c.-: c^^iteria .vhfn rms cccu>!s ri-e
C * * ' ' » F ' .^ T ^ 1 N' IS CI,'- PL- TEC .3y CYl,•^;:rvY M-,0 Ti-'E P^CG'JA:., ChEC<S
C » 4 * * t T O 3 h E I F"~fT,T:~S A NGE ' uF~";3lrf A^'Tl .< ;.~rE tKr^a~irfSlrD

0U.3 7I=^.^J
i_=I-] EXrcS).-n (cont'd.)
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D0a7J=l ,u

3 7 r I I . J ) = F ( J I )

: •-• I T ;-: I 3 , 1 )

2ti i- <lT.t ( !. i ) (f-(I,J), J=l,\)
GO TP 'f'J

Cttt**CKl Ti=^ f* IS -Kir I-LT ^NI) tJQl^KAL lTii^AriG\ CC^TI:^lUeS
10 ~(^50I = ^,;^!

.v= f
"

1>050 J = --!.\

FK( t . J )=FK( I , J ) +C I 1 ( I , .1)

SO f- ( I , J )=h ( I . J) to 1 ( I . J)

Cf + ti*^C./ unCMi; Tr-.f: vrcrG< r.K FITTING FUNCTIONS USING THE L MATRIX
0031 1=1 ,N

.3 1 A f ( t , 1) = .

00 >0I = 1 . ^

OIJ50 J=l ,•!

001001= 1 .N
AA( 1 , 1 ) = ^F( I . 1 )

ion A( 1 , 1 )=AF( 1,1)
C?:»**»THIS IS \ •JOtrli-vL- FOv CD JVi; .iTlNG THE VICTOR Cr FITTING FUNCTT'.
CJ^S *«*F;j.J T TG THF v^rCTGJ -; V VLU'^ T 10 KCH -T

lJoTJTi^T.T-.

CK = Chi;( I )

rF( CK- l.)63,i.i.t3
S'j ^( I . n=-i( I . 1 )

63 Ci' s:ti<^iui;

C SAVC F(l) FL)-1 fg:-!i:cast

IF ( K- 1 ju^.ai', >j;d

2i' ()G6;!I =1 .N
^l(I.l)=^^(I.l)
"CCTr I ltuT2

F-rTA = [)L',£rA»Bi:TA

c-jt=cmti-i .

i^-K ( 1

GO Ttl 99
Ij CU'ITI-JUE

EXFOSHO (cont'd.)
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r.Ui.HQUT l-iZ:- \ T riv{C.'<)
"T I 'iu^rn Tc; J "cTi i; , 1 vT,'^ ( Vi^) ~,V ( i ..

O'lUiiL- M'.-c I s 1 jt, r.F-'< ,ri ,C! 1

,

ALL=C( 1,1)
OCl /w. .', c J=l ,\.vi

•1 ' 4 (, V ( J ) = cJlTTTR T7ALL"
V(N)=I ./ALL
DO ')Ci<10 I -1 ,N(.'l

IT'TS iTT
CI >l 1 =C( I:j I , 1 )

iJU y:i-jO j = 1 ,:.r-i

a j -J c ( I , J ) = c ! r^i"r.rnrT~:^^~c i"PTi'* vi xr
JT5n C( I ,M) = (-1 .C)4CIPl 1 tV(N)

DO f)i,6 J = l ,N
>co c(^rTri"vrTr

_EXPOSiro Co_ontld..)
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su:-.>^i;ijT I i.7 V?- Aril y.(FK ,r ,.\)

7ri'7^fjTriT,N~F (iimoi .i^Ki id;TO)
c;l vF^i^ !0 JVJ { 1 c. ic )

oi'E-i'". 1 UNVl ( I >: , 1 u)

m re -ca r ( ///I o.< . JvM THr 7A.M>Kc:; or thi cct£Fr ic i:z\rs i;

oil i^yiTT^'i

DUI4 J=l .N

I -'» V s t I , J ) = .

oci 1 (-1 ,^i

vj ( ;; , I )=--( K , J ) *FK( J, I ) + V2 (K , I )

OtJl 3 1 = 1 ,N
UIH 3J = 1 ,\

Vl "(TTTr57r."l)

'JO 121 = I .N
Df)iaK=i ,N
0U12J=1,M

'

V I ( K , I ) = 1/ ;: ( < . J ) *F ( J . I ) + V H < . I )

'.•;.< I TF ( 3, 7 /? )

OCI12 2v<=l ,
•)

if.t^lTlK 3. 7d J) V 1 ( K.K)
RETUWJ
liMO

„JXPOSJAQ_i.cfint_' d

,
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H V i;c (
r

', A c . N . H , 11 .- .1 r 4 )

T-Ti . n:T taq rr(r.T jtm' ( t o7n vi^f

a

u v r

s

;CIUI0 w F.FK.Cl ,ci 1

".u j-'iiij r I :i

I Fc^-^riA r (
•

7^7 HC-- 'AT ( /,'/ 1 X, lf;h T.

4'i't rtr^MAT cm , i ooi 3. 5)

OSq FC-l".Ar( ///iOX.6H G£TA=.!^9.f>)

l)03il =t ,'-1

(1"

OIVcNSIC-J SvcoTHInG 1'

vcCTi:

: I .N

a .-I

'j13

O i? 'J

H( 1 . n =

0Lyj43J =

^R't"rr)"^ii~rrnT~r"rrrJT*ATr(~j"m~
CCNTINUE

*V.^ITi: TMi CFFiECTIVc oETA
«T-MfF(3,l) N

vr^l Till 1 ,;iS9)Gt;i:r4

-.'lITt: F l;j./E:^SF

3.3 J

~C"~ri7T

DIJ 3.i 3t = 1 . M

v. M T!i( !, i':4 ) (i

JT
( I , J ) . J = I . N )

)

-; I T';;( 3. 7ci>( n( I ,

ETUtJW
NO

EXP03V0 (cont'd.)
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SU'Ji^dUTlN:! FC>!CSr ( N , NO i C I . » 1 . < . *nfi T A , wi-l , Ti-! . F . H , FC5T )

~o rMfZ N'si"d'T*F c s"r c'To 5 o"y ,>:TT{ so bvirc i av i o
y
"rc

c

f rroT . vr( ro

T

i
)' tat i o ,t r

DI>;EN=;I0 JX( ZOO) ,H( 10. 1 ) .Cl ( 10 1 . T:-'( 1 . 10 ) .Ci F( 10 ) , CIL( 10 )

ui'.'EN'iin ; T T-- ( ic, 10) . PCTt:«(20o)
~oou>rDErT= i"^:i2ricK^rVF< ."cr.cTiT '

'

1 FO-;:iAr (• sto u^v FG^^^CAGrs i -s '.hi a. it/)

2 FO-e.'-'\T (• rSAU E-Ji^O'* IS '.rli'.'i//

3 Ki'^.VAT (• MEAN AL'SQUOTil i-lKCK IS '.Fia.o/)
4 FUl'»MAT (• VA<14NCe OF THE E.fnC.J 1-5 •.F15.6/)
b FOi^f'.AT ( STD DK« '.t'CLT NCAN CT ThJ EfiiJC-i IS '.FlS.e/)
6

7

FWHAT (• S ro UCV AfiUUT ii-J^a (If TH- criUd'^ IS *.F12.0/)
FORMAT <• .-F. \N PFliCFNT E?.-'C:< '. ^, ".ri2.S/)

222 FU ?;. AT( ///I < . 3U- THI-; VAiMAf.C^" GF THE FO:^EC ASTS= , F I 3 . 5/ 1 h 1 )

107 |-ov,iA r( l-;.F jc. 7 .rao.a ) r

lOU FQt^fVArt IX, ntl NEU FQ'-JECAST )

101 FQ ?MA r( IX , 1 IH rCDEL NO . - . I ? , 20X . 6H aETA=,F4.3)
lya FO-»r.A r( 1 /,i:Oh<">*TH£ Efii-iU) IS*** )

urn FO:^MAT(ajh PCMCD Oli S^:'< V A T I CN FCHECAST
1 CUM. Fiii^GR nCT. Ehfi-iCl! )

EUhJOfJ

c

lO'i

ICn
FC'"<,'" A T ( 1 .1 , F I J . I , F I'j . 2 . F 1 i . 2 , P 1 -J . 2 . F 1 o . 2 )

Ftl-!liAT(24H SUV CF -SOUA'JE OF d R,<a-<= . F 1 5 . J )

pmNr CUT THE MnaEL nc. aud heta fck this F -UTWIX
WrJtTt:( .1.101 ).V|J, AMET A

c ViAKi-: THE Tf(ANSPGSF CF THE Ti^AlS I T I Hi 1 MATRIX
SUM=O.C
su;';a = o. o

5Ui'!X = 0.0
SU^'lMtl = 0.0
SUVPCT =0.0
5EDSC =0.0 .

.

Oa42'lI=l,\

I

42M
0G42'>J= 1 .N

TTM( I , J)=Tf;{ J,l )

c r- AM-: THE FHTiEC^ST
Wrt I rE( T.O ? 1 )

'Otl l'HK= 1 . -JO

t = 0.0
LIU'l ! t- 1 ,M

ZM = C [ ( I )iA 1 ( I , 1 )

Tl\ z=-r + ;;.j

Fcar( K )r

c calculat:- th= z^.'A}'i

OHK) = .<(a) - I
;5cTF'vTi.r)=^'^CeRCK:i)/Xi^^> ;^ 1 JO .~r

C CALCJLAT.: TH- Cir-.L.l.ATI Vf: Iffji
SUM = su" f ,--!;(-•;) *J.<(:<>

' Gu'^iA"^r":;i!"->.r V" ^ukT
F,UVAe = SiJ.-'AO + A:i3i -•'(<) )

Su:PCr = SO'-J'tT t PCI--->(<)

~C * i it" i^rlv LT:TiL aT' ~il-r6 ~"S"o I

~
~Ji^"' ~T"h

E" ~ 0~

J

"i)zuvX f ; r:' N J

suf-ix = suy <t a: { < )

C U.^DAF: the CO\ST\:iTS
U044--i [ = 1 . \

4 4 'J C I E ( I ) = . y

i:ij i'i4 ! = I , ,

9 4 4 C I L ( n =CI L ( I ) t T T ( I . J ) C ! t

DO'32;. ! = 1 .'I EXPOSm (cont'd.



CI ( 1 ) = CIU( I )

CONTI-NlJt-:

E'^y - SUMA/ND

H( : , 1 ).!.£!( K) 199

SU.".A.'3CTeH(K) )

ASCKH = SUVAil/fU)
PEk'M = SU.MPCr/Ni)

00 20 1 = 1. 40

VAKE = s=r)So/r;ii

SOEVE = S()C! r( VAJ~ 1

"SQ.<trsUM'/ND)
!)

SDgV

V)i-II TE ( J, lOo ) ( SUV)
' C^* *V* C'^L.OTirS'TT~fHo" " V ViT A N C

e

VA'i=SUV/ KD
SDFST = SOJTlVAf^)

QF THS FUi^ECiVSTS

»tMTF( i. iiP. ) VAi(

WRITE (.1.1) 301-- ST
WH I TE ( J,? ) EHM
'AIM TE( 3. 1)

W^ITEIS.A)
ViRITEC J.'3)

AtlEHN'

VAi<E

SDEVE
aHITE( J.O )

WHITCI 3.7)
^ETUK'.M

SDEV

END

E3CP0SM0 (opnt'd.)„



5 _^ 200_
SUoi"U;UT ! -Ih PUoi (NO, A,N.:' ,nL f-.i: j

l)I"CMnlO -J OU r ( 1 on . Yl' )( 1 1 ) , ANG( U . AC n
c

;> >^0!".M(1H . F 1 1 . 'I , i.il+ .lOlAl)
"! r-c r-i,r ( m- )

5 KOJMATC lOA I

)

7 FLT-'MAT(ti( ,l6:<.101h + + + 1-

l + + +
:

^ + < )

H FmHAT( IMC , '1 < , I ir- 1 0. 4 )

'I FU^.MaT (1H , [hit , 1 o.< . 1 I a 1 )

c
c
c

c

I F ( ' 1 5 ) 16, I 'i , 10

c

C SGK'T BA"")" v/Ar-lI AfcLI OAIA IN ASC^IMUKG Ci-iOfER

C
10 oc; 10 1 = 1 .^;

DCJ l'^ J=I ,'

iF(A(n-\(j)) I'*. I'l.ii

TT~U= I- 1

LL=J-^;
DO 12 K=i,,;
L = l_ + -J

L.L-LL^^;
r- = A (I.

)

A ( 1. ) n'' t LL )

12 A(LL)=F
I'l COJTl'lUi^
^._„ _^._.-._._.^

C

C Ti_;ST NLL
~C

lo iri-lLL) P.O. l>i.£0

c i-'.;rM riTLc
c

_ __^-,—
--J-J fT?-"("57 \~)Tvi

'

c
C OKVi-LCP dLaD:; AN^) digit: r-Z.i P'3I\riK3

r-%£.'llNO l.'

utit T' ( 111 , J )

i^CAU ( 1 i ) t)LA^:K , ( AfJi; ( ! ) , I - I. . ^)

)

c
C Fi-;r. re ','_': fc-! ja'sc va; i •jl-:

' ~~
/.'ryz'^C-T'iO'n-^Ti i" l/frT: \r( ji.l-~i ) T"

c

c Finn GCAL- f-t:" c»(, s '.-.; a -
i '.eLK;

"
' EXPOSMO (ocnt'd.)
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V- AX = Y,VI :j

'.Tl '40 J= '! , y2
IF( '\( J )-Y." [;-.) da,i'>,26

ii: in .\( .1 )-y;- Ail "»i'o7<roT3"d"~

L'( YMIN = A( J)
GO TO AO

^0~YT.'.\X'HaTjT~:
'lO CU-!ri:JUE

Y5C^L=( Y'l'iX-Y.vi.'i)/! CO.O

C FIND fiASti VA«IA'3LS P i? I ^1 T PCSITICN
c

XF_< = A( Jl"

(1Y = i1- 1

1 = 1

i a r = I -

1

XiJ^'^XH + FtXSCAL
~rr rA ( L J -X.MT" 'FO , i. -5 , TCT

c
C FIND C,'GES-VAV I AciLES

A<) l. s\. = o

so IF (L-N) :3I.5 1,tiO

'ji DO '--i i/=i,uri
Sfj IHJK 1 >;) =:.LA^JK
37 DO 60 J= t , ^Y

JP=( ( A(LL)-Yt. IN j/YOCADt I .

GUr( JI') = A'JG( J)

L=L+I

c
ir(LSV.) 62.Lil,0)2

"'l^i"^TT^rr.iVi:l~XpTr,TciTTrf7T7lZ^r,TTnT"
Lr.w=i
rF( a(l)->:?-!-xS(;al ) 30,^o,tiO

IF ( Ad. J-XPJ-xaCAL} 'jO. "0,dC

7U" "^"rnT-Tr3V3")
fiO 1 = 1 + 1

IK( I-^JLL) .-ts,.;/* .a-i

"Tv*^ X .' ) =M IT)

GO TO -iT

c pt' l-,T C(C
c

tic - r<
1[ rhi: 1.7)

' YP. ( 1 :l = Yy. IN
on 90 <M=1 .Q

' c ?. ; - V A >i f A H L ! S J U ''
L-; -I -

90 YP'(KNM)=YP->(i^\)4-YSCAL*I0.0
EXPOSVO (cont'd.)
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YPi^l 1 1 )=y\:\x _

tiiru-!--!

_EX.PCS;iP_ (opnt • d_il

.
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cu'rr,r.ic\ xf Y(o ) , ji- ', M c ) , j.w:; ( •. ) , mV. ) ,!.'i;x^:V ( f

)

DIf-EKCU'N Yh.i r i ir.C ) .PLT ( V;G )

_ _DU--E\s\c-. ^(icc), i( 1 1
.^

) . '( 1 cr )_

cir'e'vE i(;\ itz:,i::\ i vc ) .px( ioc ) .i-:^/. i tci. ) ,r-xxx ( 2(, Cj )

I r c 'w,, r ( 1 6. 1 J )

i' ri^^;.'M (;-b.O) J

J rcji'i- /\ r ! iH'vc'. '<,:'('!-',>:. xLv; :
". cj- v.\ u ;-.nc;.' )

« r cj-',';».t ( iHC , 3 <, i<;hiiji. Kii j'^ v . -j '. it it.i. .7x,;Hr:Er,u!;- uf . 7v . t-t ru;- (k.

_ 1 .''H.'-'rtAN . lox . 5^i2£/ jjx , 7;iF;;'7.:nL;- .'^x . ''hscu -I'.i-S . /• < . enrcui.'"'^ vx . S h v..i.t

5 Fpflf ATI J'CH.I.' nLC TIJ UFG' ; /J": I I ,f. . 1 i^< . ! i: . F 1 ' . S i F 1 7 . J . F 1 - • S )

e rU3hM(3?H D=VI/iTIi.\ ^. CUT M'-T.-ir':'^. IC\ , I6.F 1 7.b ,f" I 7.0/// )

7 fC-i.'-'nTC inC , 4h-'J(: = ,K 1 . 'j . ' CX .tl-^^i^.F IT .5 . l_t'Xl' '• Ij^L" T - F 1 ( .
'.' . 1 C < ' >

, 5 , 1 C X , 'IH!,', =,FlC.-;/Cl- i; ; =,flO.=;j
( i!-.i-/.j-4x ,;' ;ii.,,£cc ;.=i;k I T It: V of- - = situAL/)
(jho. jx, I'.hsci; <cr ^r-^ ^/^ : [ \ n l:.. . 7 < . s.i-n':'3 iEf ^ ^ .7x ,': nsi.' ur

1 X .ih'VCAN. 1 ex , 1HF/3.1X . /f'KIJcHF.rjC .. . -iX , ?HSCUai. = S t 7X . tl-SCUAVfc , /x. thVAL
2)

le_Fr; <.' AT (I4H0_ lack CF FIT.lf--; lc.FI^.5.F17.'i.F13.b)
".^•cp. i-'x , i t ,r I '.b .F 1 7.5//)

GF.TlN'.Ti: "FS 1 CU'-L/

)

11 -,, F 1 C .

le 1 (jT.- M
17 ft-'r AT

I<:j f C^l' ' T ( 1 3H PbHC ,";i if^'l

?C FC:«r.'AT ( 7F I ^.s)
il F U^'f'AT ( T<.l' ACTL.iL

2r FC:'-i!-AT (F?r,./-.)

ct VTAO (1.1) N ,KC
1 F ( ^. ) ? Cj4 . ? C •i . 9 5_
l^F'i^D ( 1 ,J) ( VY( I ) i

nr, A'.-n : = ! .k
xx( I ) = 1 . c

XX( I+N) - I

XI = I

XX( I +2*t.<) - X !<*?
XXC I+3*N) = XI**3
XX(It4*K) = X£**A

aoc XX( I+SSN) = X I**b
CALL GTP.iD < XX. XX , XPX .\ ,o .C )

CALL GTP^^Il C YY. YY ,YPY ,N, I , 1 )

CALL GTI^-VD ( XX . YY.yPY ,N.6 , I )

CALL 'lll'j (XPX.fj.DCT , JV. ; 1 . J ,V;

CALL GTP,'0 ( XPX , XI'Y .r .: ,6 . 1 )

CALL GTP.'O ( _. .XPY.QPXPY.o, 1 . 1 )

YSIJS; = O.C
DC, IOC K=l ,N

ICO Y S U !: = Y = U I' t Y V ( K )

IN = \

CFAC = ( YSUy**2 ) /TN
_Cr.SDK_= 'JPXPY(J| -CFAC
.^G>-S - CS'iO'J

CS'-.T!. = YPY ( 1 ) -JPXPY(l)
ijL'';^s, = c-;r^iL/(^TN-6)

J-''l - 5

J'VL = N-6
F V IL = ^ : !' S / ;£U^ S

V i'< I r :: (3.3)
Wi-'IT'^ 1:3.<*i

>>/iT': 1; 3 , =i

;

1 J -1 G . C J S -!

n ' ! T : 1: 3. J

:

! .)-.'L .CiG -(L

^ UT : (: i ."

;

1 r ( 1 ) .(,(

ai'j ?co 1 = 1,. \

( * ) ,L ( j) .;:( t>)

pb3gru' no. f-5
i;atr2Gs
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It ^^ I T*'.' ( 3 M X .; ( 5 * N + [ ) * iJ ( '!

)

uii 301 J = I .w

J'Ol_-'LT(J) = 'M.~±J)
DC 2C? --^l.K

3C2 Pl-T ( >< * V ) = Y Y ( i< )

mi ?C3 L=l .\ ^

~2C3 .^LT(L *;>*. ) = VI-ATCl)

c XL,- 'l; r ( N : ."LT ,\ , ) ,:> 3, 1 )

or -TCO 1 = !.N
3t;C '!;SIO( I )iYY( I ) - YHATCn

V « Tin ! ? . ; 2 r ( .'Ts I C ( 1) I = 1 . \ )

GC TC ';s

_acj4_ sjnp

c
C SUP.^CUT I Ki; GTP«0
c
C PL.'^rr'SH

.C PPr->LLT IPLY 4 jirKEi^AL JwlJQ^iJ<_ _ii'^ Jj
C GtiVE.; -iL .' AT'tl J<

c
_C UJ^AiiE ^

C CALL GTP>iC( 'l.a .!' .Is •!.' .L)

c
C DhSC^IPTIl.K CF P'K,tl\r = TZfiS

C a" -~ KA.vr^CF > I kET INPUT ".'-'ATPIX

C E. - KAIE CF SECCM/ IKPLT ^^TPIX
C K - NAr h_ CF (JLTPLT J- M-!_I X

C N - N L ! h: c R OF P P V- S IN l^ »U. C e

C h' - KUreEF (JF CCLLINS IN A AND SCv

c L - ml; f.'Ci; LF ccll'-k: in ~ anc r

c
C R e V iMi K s

c wATPix R cannct he in if," sa;'= l ccati cn as NAr-^lX A_

C N'AT^atX R CANNCT f£ IN The SAf-L LCCATIC\ AS ;.lAI-iIX F

C ALL VATKICES ycST Be SICPci: AS C = NFftAL r-^ATfilCES

c
C SLbPOLTI.N^S AKD FLNCTIl.N SLbP -^i;.' ^ AI' E =;fCLISlI;

C NLNc
c
C KETHUO
C ^•ATPIX T^ANSPtr.'; or A IS NLT ACTUALLY CALCULATFD. IN'Fr';AC

C FLFf/^NTS CF yAT-^IX A A.^f TAKirv CClIVNaISF kATFF.? THA N

C ^icv7.\ I EC F C"~PcVf7/ULT i PL ICAl !CN [- Y : A T J I X E.

c

C ^

SLe'JrLl I N-Z GTPi^ C ( A , t , ^ ,M .
.'• .L )

Lll'--E-<Sn \ AJ I CO )
,J-

( 1 fiO) , V ( 1 cc
)

MATRSGH (cont'd.)
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1^=0

_ Il=-N
.

1 J=C
'

^ ' •'^z.'.'i^'^

DCi 1 c; .J=l ,1'

Ji^L^-*J _
H { I p ) = c '

nu 1 c [=1 ,N

ij=ij+i

IC i^( !H ) = 5( I n +«( t J) tii( la )

^(GnjKj^

FND .

c ' .".
. ,.;,

c
c

?_'^'i ''f'-dL^-^i- "jhy_^
C

' ' - -

C PLWOSP
C INVI4TAyATtiI.<
c
C USAT£
_C C ALL^ t' IJ\ V_( A tj^tp iL ,^J
C '

"^ '"" '" '

C DESC>^IPTIC^ CF P^<A:^t.rziS
.c ^--"--'-'^^y--'^''*. !:'"'_•., ,p'ij_f <cvci: in ccyp'jTA riC N anc ^c.pl,\c-c i

C «£SLLTAi\T IKVE^it. "
'

^

e N - C !-! e : i C F .• A T R I < A

_C i)_ - J? e S LL T AM Oi X li ) .''_ I N /IN 1^
C 1. - HL^K J-Crci CF L'f.N.GTH N 1

C y - v.CRK viCrCR CF LtNGTh \

_C

C RS.VARKS ~
C VAT^ilX A yoST f? A Gi=\';-^A|. VUT)-fI>!

c

C NC\;£

jC
;

_
C M'iTMCD

"

C THf! STANCI-JU GAUSS- JC«L'A\ .vzrhCC IS UTfiC. THE L't T'r- .' I \ AM
_£ J 3 ALSC j:ALi^L\TeO^ A_ i;;:rC^INJVNr CF iF-'C INCICATSS Tt-AT
i: TH£ yMiilx 13 SIK.luLA'J^
c
c

,

c

D_If'E\S ir.N A ( 1 Co ) !_( ^ ) ..•' (2 )

:C IF A Dfn.dLtr PDECISICN VFJSl'.N C f" "r F f
3

" -^C U f I NT Is"cFrrrPSc\ TF
C C PJ COH...N 1 SHCLLO iiC -Ili.v.-y^D F,;L.y THE CCUFLE P-'ECISICN
.C __ STATEVFNT v.HlCH FCLLQaS.

KATRESR (cont'd.)
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c
c ccunLE p-;ecisu:n a,d.hig\ ,h:lc
jC

C Th£ : rusr AL'n h; Pr-frM\-i: ri-CK CCLrLL P-hCISin\ ET ATrl-'C. rj

C APPEARING IN CTUti'^ "CU^1^^S tSCC I ,N CCNJLNCTiCI^ V I Th ThIS
C RCUTIKE.
c
C THE DHUBLJ PKfcCIPlCK VLHEICN CF THIS :>UhSCL,TIkE f-L'ST ALPC
_C CCNTAIN DCXbLC PREJCIPIC^K FO-; T ^J AN FL.\C TJj; NS . AbS IN STATEvEN'
C 10 VUSr BE CI^ANGEC TO UAHS.
c
c

c
C SFAPCh FC'^ LAfJoeST rLEf-'ENT

c
0=1 .tl

NK=-N

^ DO 80 K=1.N
_NK=NKt\
L(kV=k
^,(K) =K
KK=Nt;tK
e'lGA = A"{K<)

DO 2C J=<,N
IZ =N*(J-I)

._

DC 2C I=K,N
IJ=I Zf

[

IC IF( AOSdUGA)- ACSCACIjn) i;
' 13 13 IGA=4"( IJ)

L(K)=I
^^(_K )=J

20 CONTINUE
c

C JJ\TEJ<ChANGE CCftS

C '
•

'

J=L(K)
IF ( J-K ) 3b . 35.25

iS KIsK-N
DO 30 1 = 1 ,N
K I=KI tN
VcLD=-A(Vn
Jl=Kl-K<J
A ( K I ) = A ( J n

30 A ("JI ) VhCLD
c

: C IK T li 1^Oh a n G E_ C C LL ;• .N S

c '

35 l=;^(<)
IF ( I-< ) H5, 4 i , 32

3a JP = Nt ( I- 1 )

DC 40 J= 1 ,K

JK^NKtJ

VlATEEGH Coont'd.
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Jl=jp+j
HCLD--A(JK)
.1 ( JK )=A( JI ) _

10 I ( JI ) =hCLb
c

C DlVlCf CCLL"K SY "'I^IJS PIVCT (VALU? CF FIVCT ELE^EnT IS

C CCNTAINCD IN "f IGA )

c
_5_5 lF(eiG_A| tb.'ib,'iS_

__
46 D=0.0

Jte DC 55 I_=1,N
'

IF( I-K j 50,33 .'oO^
" '

[

5C IK=NKtI
A( IK )JA ( IK ) / ( -C IGA

)

SS CCNTINUe "

c

C n E UCE F AT R IX
C

" - -

DO 65 1=1 ,N
IK=NK«I _
H'GLb=A( IlO
I.J = I-N
00 65 J=l ,N

IJ=I J+N
lr(!-K) 6 0,65,60

CL IF( J-K ) 62,6 5,62
i-JJi'J^ I J-J +K _

A( I J )=HCLO*A{ KJ r+M I J)
fS CQNTINLE

C^ _
c D I V i DE '^ c A ij Y pTVcT
c

J<J = I1-N

00 75 J=l,"i.i

K J=K J+N
n^( J-<^ 70. 7S,yO

7r A(K.J ) =A ( K J)/bICA
75 CCNTIN-LE

C
c PHCcucr cr pivcts
c

_D=^DJ'f_I_GA^ _
c

"
" ' ' '""

C REPLACE PIVCT UY ;!ec I P.TC CiL
C

A ( K K- ) = 1 . / h' I G A

CO CnMTIMUh
c
c FINAL <cn AND c c L u y frTrrTtfi^cTi

A

XgI;
c

K=N

MATREGR (cont'd.)
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IOC 1- =(K-1 )

1 F ( K ) 1 'j G 1 3 I. . 1 t

J Ci I=L( f )

I F ( I - ". ) 1 2 . 1 Z t .

jr7 = N*t l-l )

ro lie j=i fN

JK= JC+

J

hUI.O = * ( JK )

J I =JK + J

A( JK)=-A( J I )

1 1 _ A { J

1

1 =1 inLc

120 J=v( K )

1F( J-K ) 1 CO , 1 CC

,

liibK I=K--N

DO 130 I =1 .N

K I = K I + N

IIGLO = A( K[ )

A(<I )=-A( JI )

nr. A( J 1 ) -HOLD
GC TO 100

150 RETUr^N
END

MATREGR (cont'd.)
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The ability to forecast with reasonable accuracy the future demand

for an item of production has value anywhere that an inventory must be

maintained. This research investigates one approach to the problem of

forecasting, general exponential smoothing.

The logical basis for forecasting the future demand of an item is

the demand behavior of this item in the past. Such past behavior may

be summarized in the form of a time series, a sequence of observations

of demand taken at specific and equal intervals of time. We assume

that this time series is composed of a systematic component, which may

be described by a linear combination of deterministic functions of time,

and random variation. The deterministic functions of time are known as

fitting functions, and their sum, along with the appropriate fitting

function coefficients, makes up the model of the time series.

Assuming that recent data is more representative of the future

time series, we wish to weight the data, giving the most recent obser-

vations more weight than older data. We do this by assigning a weight

It
a6 to an observation made k sampling intervals before the present time,

where ex and 6 are constants whose sum is unity. Now, we may control

the general exponential smoothing response rate by merely varying B,

the discount factor. When 6 is smaller, we give recent data more

weight, and the forecasting system may respond more quickly to changes

in the actual data.

General exponential smoothing fits a least squares curve to the

time series much like statistical regression. It does this by determin-

ing the fitting function coefficients in the model that will minimize



the sum of weighted squared residuals. The main differences between

these two methods are that general exponential smoothing operates on

weighted data, and the fitting function coefficients are re-computed each

time new data becomes available. Hence, this process is able to adapt

to small changes in the true time series process.

To simplify the computations involved in making a forecast, the

fitting functions must consist of: (1) trigonometric functions, (2) poly-

nomial functions, (3) some exponential functions, (4) mathematical combin-

ations of the first three types. In addition to this restriction, the

number of time series observations available must be at least equal to

the number of fitting function coefficients to be computed.

General exponential smoothing offers several advantages over other

fore-casting methods: (1) Response rate is easily controlled; (2) All

past data is considered and contained in one word of information; (3)

Model coefficients are re-computed at each sampling interval.

The data used herein consists of four time series of demand for

plants produced and sold by Manhattan Wholesale and Retail Floral Companies.

For each time series various combinations of models and discount factors

were tried in an attempt to determine the combination that best forecasts

the time series. Forecasts were evaluated on the basis of three efficiency

criteria: standard deviation of the forecasts, mean absolute error, and

standard deviation of the error. The effects of model and discount fac-

tor choice on fore-casting efficiency were also studied in an attempt to

gain a clearer understanding of the general exponential smoothing techni-

que.

^



All computations are performed on the IBM System 350/50 digital

computer at Kansas State University.


