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Abstract 15 

Superparamagnetic iron oxide nanoparticles were functionalized with a quasi-monolayer of 11-

sulfoundecanoic acid and 10-phosphono-1-decanesulfonic acid ligands to create separable solid acid 

catalysts.  The ligands are bound through carboxylate or phosphonate bonds to the magnetite core.  The 

ligand-core bonding surface is separated by a hydrocarbon linker from an outer surface with exposed 

sulfonic acid groups.  The more tightly packed monolayer of the phosphonate ligand corresponded to a 20 

higher sulfonic acid loading by weight, a reduced agglomeration of particles, a greater tendency to remain 

suspended in solution in the presence of an external magnetic field, and a higher catalytic activity per 

sulfonic acid group.  The particles were characterized by thermogravimetric analysis (TGA), transmission 

electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform 

spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), and 25 

dynamic light scattering (DLS).  In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles 

(PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-

sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs.  The 

activity of the acid-functionalized nanoparticles was compared to the traditional solid acid catalyst 

Amberlyst-15 for the hydrolysis of starch in aqueous solution.  Catalytic activity for starch hydrolysis was 30 

in the order PSNPs > CSNPs > Amberlyst-15.   Monolayer acid functionalization of iron oxides presents 

a novel strategy for the development of recyclable solid acid catalysts. 

Introduction 

Oil resources are non-renewable, and the expanding economies of 

the world will require renewable material sources and processing 35 

methods if economic development is to be sustainable.  

Fortunately, the world’s annual production of biomass is greater 

than 170 billion metric tons, and three fourths of that material is 

carbohydrates, which are thought to be a potential feedstock for a 

sustainable world chemical industry in the future1.  One key to 40 

this sustainable chemical market is the development of 

manufacturing processes which inexpensively achieve the 

necessary material outputs without degrading the environment.  

Current industrial processes, mainly involving petrochemicals, 

consume more than 15 million tons of sulfuric acid every year as 45 

a non-recyclable catalyst2.  Replacing sulfuric acid with reusable 

acid catalysts would be a major achievement towards the goal of 

sustainable, environmentally-friendly chemical production.  

 Biofuel production often requires the same acid and base 

catalysts that are used in other industrial processes, significantly 50 

increasing the production costs and environmental impacts of 

such commodities3.  For example, the hydrolysis of cellulose into 

glucose is efficiently catalyzed by sulfuric acid, but the cost 

associated with waste separation and disposal has prevented an 

economically efficient large-scale saccharification of cellulosic 55 

materials4.  A heterogeneous catalyst capable of efficiently 

catalyzing cellulose hydrolysis at mild conditions could reduce 

the costs associated with waste disposal and enable large-scale 
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utilization of cellulosic biofuels. Typical solid acid catalysts 

include sulfonated silicas, zeolites, hetero-polyacids, and ion-

exchange resins2,5.  Stability in water at elevated temperatures 

remains an important challenge.  A recent addition to the family 

of solid acid catalysts is the material composed of 5 

superparamagnetic iron oxide cores, typically surrounded with an 

organic polymer or silica shell6–12.  Superparamagnetism provides 

a facile method of separation which offers these solid acids an 

advantage over those which require centrifugation or filtration12.  

This paper details a new approach for preparing an acid 10 

functionalized superparamagnetic solid acid catalyst: attaching 

molecules containing acid groups directly to the iron oxide 

surface in a monolayer.   

 One way to attach acidic ligands is to choose ligands that have 

two acids groups: one that can bind to a metal oxide, such as 15 

magnetite, and one that will eventually serve as the catalytic site.  

Portet et al.13 attached di-sulfonic acids to magnetite leaving one 

sulfonic acid group exposed to solution.  However, using a 

sulfonic acid to bind to magnetite is not optimal due to the 

sulfonic acid group's weak binding affinity toward the magnetite 20 

surface14,13,15.  The binding strength of typical functional groups 

to a magnetite surface is given by the order:  

phosphonic>carboxylic>hydroxyl>sulfonic16,15. While 

phosphonic acids form the strongest bonds to magnetite, they 

have been associated with substantial decreases in magnetic 25 

properties17, although there is some disagreement18.   

 This paper demonstrates that a single ligand can contain a 

functional group for binding to the nanoparticle surface and an 

additional catalytically active sulfonic acid group facing outward 

into solution.  This approach takes advantage of differences in the 30 

binding affinity of magnetite for different functional groups.  In 

this research, carboxylic/phosphonic acids attach to the magnetic 

particle and a sulfonic acid group extends away from the particle 

toward the surrounding solution.  The sulfonic acid group is, 

therefore, available for catalysis.  The hydrocarbon chains 35 

separating the carboxylic/phosphonic groups from the sulfonic 

acid group have hydrophobic ligand-ligand interactions which are 

thought to reduce core-solvent interactions and provide some 

shielding of the carboxylic/phosphonic acid-magnetite bonds 

from chemical attack and subsequent ligand dissociation.  The 40 

structure of the functionalized particles is indicated in Figure 1. 

 
Figure 1: A diagram of the CSNP material composed of a magnetite core, 

carboxylate-magnetite bonds, an alkane layer, and an outer surface with 

exposed sulfonic acid groups. 45 

 The activity of these acid-functionalized nanoparticles is 

demonstrated through their use in two acid-catalyzed reactions: 

hydrolysis of sucrose to glucose and fructose, and hydrolysis of 

starch to glucose5.  The activity of magnetite nanoparticles bound 

to carboxylic and phosphonic acid ligands are compared with that 50 

of a common solid acid catalyst, Amberlyst-15.  Furthermore, the 

reusability of the acid-functionalized nanoparticles is 

demonstrated by following their activity over multiple uses. 

Experimental  

Synthesis of 11-sulfoundecanoic acid and 10-phosphono-1-55 

decanesulfonic acid  

11-sulfoundecanoic acid was synthesized from 11-

bromoundecanoic acid and sodium sulfite according to a 

previously published procedure19.  The 11-bromoundecanoic acid 

was combined with sodium sulfite in a 10:1 ratio and the reagents 60 

were heated at 50°C for 1 hour, 70°C for 2 hours, 80°C for 6 

hours, then 90°C for 3 hours.  The product was separated from 

solution by first lowering the pH to 5 with HCl and filtering 

under vacuum at 50°C, then placing the filtrate in an oven for one 

week at 80°C to fully oxidize the sodium sulfite impurity salt into 65 

sodium sulfate.  The baked precipitate was then placed in 

concentrated hydrochloric acid solution and centrifuged to 

precipitate the purified ligand and leave the remaining sodium 

sulfate and sodium bromide in the acid solution.  Full oxidation 

of the sodium sulfite is necessary to ensure that hydrochloric acid 70 

addition does not produce dangerous sulfur trioxide gas.  The 

centrifugation was repeated three times.  Then, the precipitated 

ligand was vacuum dried overnight at room temperature to 

remove excess HCl.   

 10-phosphono-1-sulfonodecanic acid was synthesized as 75 
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illustrated in Figure 2†.  Briefly, the intermediate compound 

1,10-dibromodecane was synthesized from 1,10-butanediol by 

heating in hydrobromic acid at 100°C for 48 hours.  After the 

reaction, it was extracted with chloroform, washed with brine, 

stirred over sodium bicarbonate, then filtered and passed through 5 

Na2SO4.  The obtained compound was purified by column 

chromatography on silica gel, yielding 1,10-dibromodecane as 

white crystals.  The 1,10-dibromodecane was heated to 155°C in 

an oil bath under argon, then triethylphosphite was added 

dropwise over 8 hr.  Cooling to room temperature produced a 10 

white precipitate, which was separated by filtration and purified 

by flash column chromatography.  Diethyl(10-

bromodecyl)phosphonate was then heated in a saturated solution 

of Na2SO3 at reflux for one hour then at 120°C until the solvent 

evaporated.  The residue was then slurred with CH3OH under 15 

reflux and the hot solution was filtered.  The filtrated was then 

evaporated and the residue acidified with hydrobromic acid and 

refluxed for 48 hours.  Evaporation of the acid under reduced 

pressure produced a pale-black powder.   

20 

 

Figure 2. Sequence of steps20–22 used to prepare 

diethyl(sulfonyldecyl)phosphate (4). 

Nanoparticle synthesis and functionalization  

Iron oxide nanoparticle cores were prepared using a modification 25 

of Massart’s precipitation method23,24.  Iron (II) chloride and iron 

(III) chloride in a 1:2 molar ratio were precipitated with 

ammonium hydroxide at 80°C, heated for 30 minutes, and then 

sonicated for 20 minutes.  1g of the synthesized di-acid ligand 

was added to 1g of the sonicated particles, and the mixture was 30 

sonicated for 10 minutes, then heated to 95°C for 30 minutes.  

The 95°C particles were sonicated for an additional 10 minutes, 

then returned to the oil bath.  After 24 hours of stirring at 95°C, 

the solution was allowed to return to room temperature under 

constant stirring for 12 hours, then reheated to 95°C and stirred 35 

for another 24 hours, and then again allowed to return to room 

temperature.   

 Washing at room temperature was achieved by repeatedly 

mixing the nanoparticles with water and magnetically extracting 

the particles from solution.  The washwater was initially clear and 40 

then on subsequent washes became darker as the particles became 

increasingly difficult to separate from solution.  As the 

concentration of unbound ligand in the supernatant decreased 

during the washing process, the supernatant did not become clear 

in the presence of the neodymium supermagnet (with field 45 

strength of 3661 Gauss).   

 After 5 washes, the PSNP supernatant, which was not clear, 

was measured by DLS as 50 nm agglomerates.  The separable 

particles, when re-suspended, also measured as 50 nm 

agglomerates.  Increasing the concentration of re-suspended 50 

particles did not increase the measured size of particle 

agglomerates, possibly indicating that individual particles were 

present in solution, instead of agglomerates.  The combined 

supernatant/particle mixture was then subjected to centrifugation 

(10,000 rpm for 1 hour at 4°C).  The supernatant was discarded, 55 

and the centrifuged solid was then re-suspended in DI water and 

vigorously agitated for 5 minutes.  The centrifugation-washing 

was repeated twice more.   

 Washing the CSNP particles five times gave a suspension 

which was not fully separable by the supermagnet.  After a few 60 

days of sitting at room temperature, the particles had 

agglomerated to the stir bar magnet, leaving a clear supernatant.  

They were washed another 5 times by supermagnetic particle 

separation to further remove unbound ligand.  The PSNPs and 

CSNPs were not dried after washing.  Instead, a washed catalyst 65 

solution of known catalyst dry weight concentration was added to 

DI water to obtain reaction solutions.   

 

Catalyst Characterization 

To calculate the acid loading of all catalysts, 0.05 grams (dry wt.) 70 

of wet catalyst solution were titrated with 0.01 M NaOH solution.  

For TGA, the samples were analyzed in a PerkinElmer Pyris1 

TGA (Norwalk, CT).  Approximately 5 mg of each sample was 

heated under a nitrogen atmosphere from 50°C to 600°C at a rate 

of 10°C/min.   Transmission electron microscope (TEM) images 75 

were used to estimate the size distribution of the nanoparticles. A 

model CM100 TEM (FEI Company, Hillsboro, OR), equipped 

with an AMT digital image capturing system, was operated at 

100 kV. The images were taken of dispersed particles deposited 

from aqueous solutions by contacting a drop of liquid with 80 

Formvar/ carbon-coated, 200-mesh copper grids (Electron 

Microscopy Sciences, Fort Washington, PA) for 30 seconds at 

room temperature. Nanoparticle mean diameters were calculated 

from the TEM images using the software ImageJ, available from 

the National Institute of Health.  Particle agglomerate data was 85 

taken on a ZetaPALS Zeta Potential Analyzer (Brookhaven 

Instruments Corporation) with hydrodynamic light scattering.   

 XRD analysis was conducted using a Rigaku MiniFlex II 

desktop x-ray diffractometer, using a fixed time scanning method 

with a 0.01° step size and 6 seconds counting time at each step.  90 

The phase composition of the nanoparticles was estimated using 

the relative intensity ratio method within Rigaku’s PDXL 

software.  Crystallite sizes were calculated using the Scherrer 

formula. The crystallite size is used as an approximation of the 

magnetite particle size, as described by other investigators23.  95 

Diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) was conducted on a Thermo Nicolet NEXUS 870 

spectrometer with a ZnSe window, operated by the software 

program OMNIC.  Samples were dried at 50°C for 48 hours.  

KBr was used for a background scan, then immediately added to 100 

a spec of dried sample, ground up by mortar and pestle, and 

returned to the cell for analysis. ICP-OES was conducted with a 

Varian 720-ES ICP Optical Emission Spectrometer.  Standards 

were prepared from stock solutions of Fe, S, and P, and used for 

calibration.  The lines selected for each element were Fe 259.94 105 

nm, P 178.29 nm, S 181.97 nm. 
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Catalytic Activity Measurement 

 

Sucrose hydrolysis was conducted by 80 °C for 6 hours in a 

sealed vial with magnetic stirring, using 0.05g of catalyst and 

0.1g of sucrose in 5g of water.  Reaction temperature was 5 

controlled using an oil bath held at constant temperature, with 

reactor temperature periodically checked with a temperature 

probe.  After the completion of each run, the catalyst was 

separated either by supermagnet or by centrifugation.  Fresh 

sucrose and 5g of water were placed in the reaction vessel, which 10 

was returned to the oil bath for the next round of reaction.   To 

test the reproducibility of the sucrose experiments, three runs 

were conducted on three different CSNP samples.  Control runs 

with no catalyst present showed no conversion.  

 For starch hydrolysis, 0.002g (dry wt.) of PSNPs, 0.017g (dry 15 

wt.) of CSNPs, or 0.0006g Amberlyst-15 were added with 0.09g 

starch and 5g of water so as to yield an acid site:starch:water mol 

ratio of 1:200: 100,000 for Amberlyst-15 and 1:400:200,000 for 

the CSNPs and PSNPs.  In a sealed glass tube with magnetic 

stirring at 300 rpm, the mixtures were placed in an oil bath at 20 

130°C for 24 hours.  CSNPs and PSNPs were both separated by 

centrifugation at 10,000 rpm for 1 hour at 4°C.  The centrifuged 

catalyst was combined with 5g of water and 0.09g of starch and 

returned to the reaction vessel for the next run.  To estimate the 

variability of the experimental setup, 3 runs with fresh 25 

Amberlyst-15 were run, and a standard deviation of 3.7% was 

found.  Control runs with no catalyst present showed no 

conversion. 

 Sugar analysis was conducted using an HPLC RCM-Ca+2 

monosaccharide column (300 × 7.8 mm; Phenomenex, Torrance, 30 

CA) with a refractive index detector.  The HPLC was calibrated 

to external standards for sucrose, glucose, fructose, and maltose, 

using 80°C deionized water at a flow rate of 0.6 mL/minute.  

During HPLC analysis, samples were alternated with known 

standards to ensure accuracy of the measurements. 35 

 

Results and Discussion 
 

Catalyst Characterization 

DRIFTS spectra of the ligands, CSNPs, and NaOH neutralized 40 

PSNPs are shown in Figure 3.  RSO3
- and RPO3

- groups appeared 

around 1050 and 1180 cm-1 due to asymmetric and symmetric 

vibrations, respectively17.  Both NPs have a peak at 1467 cm-1 

corresponding to the CH2 scissoring bend17.  CSNPs, PSNPs, and 

the 11-sulfoundecanoic acid show a peak around 1556 cm-1 which 45 

may be due to sodium sulfonate.  The sodium in the CSNPs may 

originate from sodium impurity in the synthesized 11-

sulfoundecanoic acid, while sodium in the PSNPs comes from the 

addition of NaOH to a limited supply of catalyst.  For CSNPs, an 

overlapping peak at 1544 cm-1 is due to asymmetric COO- 50 

stretching.  The CSNP peak at 1626 cm-1 corresponds to COO- 

symmetric stretch.  The distance between the asymmetric and 

symmetric COO- peaks being less than 110 cm-1 is an indication 

of chelating bidentate attachment25 or chelating mononuclear 

attachment26.  When carboxylic acid COOH groups are 55 

uncoordinated, a peak around 1710 cm-1 is present27,28.  The peak 

for free carboxylic acid is observed in the 11-sulfoundecanoic 

acid.  The lack of this peak in the spectrum of the CSNPs 

indicates a lack of free COOH.  The alkane chain vibrations 

appear at 2852 and 2921 cm-1 for PSNPs, with CSNPs showing 60 

corresponding peaks at 2850 and 2918 cm-1.  The NP alkane 

vibrations are at lower wavenumbers than the corresponding free 

acids, indicating confinement and ordered packing on the particle 

surfaces29.  The ligands and NPs all had a broad OH vibration 

band between 3200 and 3600 cm-1 (not shown). 65 

 
Figure 3. DRIFTS spectra of the a) CSNPs b) 11-sulfoundecanoic acid c) 

NaOH neutralized PSNPs d) 10-phosphono-1-decanesulfonic acid 

 

 TGA results for both PSNPs and CSNPs are shown in Figure 70 

4.  By 200oC, the CSNPs had lost about 1% of its weight, and the 

PSNPs had lost about 2%.  Some of the weight loss may be due 

to water.  For CSNPs, the total weight loss was 5.6% by weight.  

If this entire weight loss is ascribed to ligand desorption and 

decomposition, it corresponds to a sulfur content of 0.69%, or 0.2 75 

mmol/g sulfur in the CSNPs.  That is higher than the acid loading 

of 0.08 mmol H+ per gram as determined by titration of the 

CSNPs.  For the PSNPs, the weight loss during TGA was 18.7%, 

and the titrated acid loading was 0.65 mmol H+ per gram.  The 

ligand loading calculated from titration of the PSNPs is roughly 80 

in agreement with what is indicated from TGA.  During TGA of 

functionalized iron oxide nanoparticles, it is thought that some 

carbon remains on the particle surface due to incomplete 

decomposition of the organic ligands, and the formation of 

graphitic species26.   85 

 
Figure 4. TGA graph of catalyst weight % vs. the temperature (°C).  The 

total weight loss is a) 5.6% for the CSNPs and b) 18.7% for the PSNPs 
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 We can further understand how the acid-containing ligands 

pack on the surface by using particle surface area to estimate the 

packing density. The packing density of the ligand layer on the 

particle surface is important for many reasons.  A more tightly 5 

packed full monolayer will obviously result in a higher acid site 

density on the outer surface and a higher ligand loading by 

weight.  Additionally, a tightly packed ligand layer may be more 

likely to protect the magnetite layer from oxidation and a 

corresponding reduction in magnetic properties.  Prevention of 10 

magnetite degradation, along with the loss of acid groups, is a 

primary concern in the design of acid functionalized iron oxide 

nanoparticles.  The average particle diameter for the bare 

particles was estimated at 10.5 nm from the Scherrer equation.  

For phosphonate ligand heads taking up 0.24 nm2, this 15 

corresponds to a monolayer loading of 0.76 mmol/g, which is 

slightly higher than the phosphonic acid loading of 0.65 mmol/g 

indicated from titration.  Some researchers believe that 

phosphonates bind in a tridentate fashion30 but others suggest 

only bidentate binding17.   20 

 X-ray diffraction results (Figure 5) indicate significant 

differences in the iron oxide phase compositions of CSNPs and 

PSNPs.  Magnetite and maghemite are present in both CSNPs 

and PSNPs, with PSNPs showing substantially higher maghemite 

content.  Additionally, the goethite phase of iron oxide is present 25 

in the PSNPs but not in the CSNPs or bare particles, as 

demonstrated by the XRD peaks at 21.18°, 33.20°, 39.93°, 

41.16°, 50.65°, 53.16°, 58.98°, and 61.29°, which are marked on 

Figure 5.  Carboxylic acids and other ligands are thought to 

rearrange the surfaces of metal oxide nanoparticles31,32.  This 30 

does not necessarily mean a degradation of magnetic 

properties33,18. PSNP and CSNP diameters are estimated as 10.9 

and 11.5 nm, respectively. 

 
Figure 5. XRD for a) PSNPs after 18 hours of starch hydrolysis at 130°C 35 

b) PSNPs as synthesized c) CSNPs after 18 hrs starch hydrolysis at 130°C 

d) CSNPs as synthesized e) bare particles.  Lines denote goethite peaks. 

 

Catalysis of starch and sucrose hydrolysis 

 40 

The conversion of sucrose for three different CSNP samples over 

multiple consecutive runs is shown in Figure 6.  The CSNP 

catalytic activity increases through the first 4 runs, using 

centrifugation for separation of particles between runs.  After the 

4th cycle, the catalyst was refrigerated and stored for one week 45 

before being used again in recycle reactions 5-9, with magnetic 

particle separation.  Sucrose conversion for trials 5-9 is relatively 

constant at ~60%. As seen in Figure 6, the increasing activity 

over the first four recycles was noted for three different CSNP 

samples, providing strong evidence that this was a real trend. 50 

 
Figure 6. CSNP sucrose activity at 80 °C using 0.05 g catalyst, 0.1 g 

sucrose, and 5g water. 

 An increase in catalytic activity during recycle runs is unusual.  

One possible explanation for this trend is that some ammonium 55 

may have remained coordinated to the sulfonate groups after 

synthesis and become detached during the catalytic runs.  

Another possibility is that changes in agglomerate size may 

impact the catalytic activity.  In aqueous solutions of 

functionalized iron oxide nanoparticles, agglomeration often 60 

decreases at higher temperatures34.  

 The de-agglomeration of CSNPs was observed in TEM 

images, as shown in Figure 7.  On the left, the agglomeration of 

primary particles leaves only a single non-agglomerated particle 

to be seen in the TEM image.  In the image on the right, 6 hours 65 

of sucrose hydrolysis at 80°C has caused the agglomeration to 

decrease significantly.   

 
Figure 7. TEM images of CSNPs deposited a) at room temperature in 

pure water b) from an aqueous 80°C sucrose solution after a 6 hour 70 

reaction. 

 

 The CSNP de-agglomeration during sucrose reactions was also 

b 
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measured with DLS, by adding drops of hot reaction solution to a 

heated cell containing 70oC sucrose solution. These conditions 

were chosen to minimize agglomerate changes during the DLS 

measurement of the reaction mixture.   DLS measurements of the 

CSNPs taken at the beginning and end of a 6-hour sucrose 5 

reaction indicated that the initial effective agglomerate size of 

3000-4000 nm was reduced to less than 1000 nm by the end of a 

reaction cycle.  The necessary dilution for DLS measurement 

may have caused some de-agglomeration. 

 The PSNP catalytic activity for sucrose hydrolysis is shown in 10 

Figure 8 for 17 consecutive 6-hour runs.  Catalyst separation was 

achieved by using an external magnetic field in runs 1-13 and by 

centrifugation in runs 14-17.  As seen in Figure 8, conversion is 

between 40 and 50% for the first four runs, but then shows a 

decrease to less than 20% by the 13th run. This decrease is due to 15 

the loss of magnetic particles in the recycling process.  PSNPs are 

quite stable in solution, so a certain amount is not able to be 

extracted even by the high powered magnet. Figure 9 is a 

photograph of the supernatants following reaction and removal of 

PSNPs with the magnet.  The darker colors observed are an 20 

indication that some PSNPs remain in the supernatant. 

 To understand whether the loss in activity noted over 13 runs 

was entirely due to the loss of PSNP particles or whether some 

other deactivation was occurring, the supernatants collected in the 

first 13 runs were centrifuged to recover more of the suspended 25 

catalyst for reuse. The recovered catalyst was combined with the 

catalyst that had been magnetically recovered successfully.  The 

recombined catalyst was then used in further reactions.  As seen 

in Figure 8, PSNP conversion returned to over 40% for runs 15-

17, indicating that the catalyst had not been deactivated.  30 

 At this time, it is not possible to eliminate the detachment of 

ligands as partially responsible for the lower conversion noted for 

recycle runs 5-13.   The phosphonate-magnetite bond is expected 

to be quite strong, so we do not expect ligand loss from the 

monolayer.  For runs 15-17, centrifugation was used to recycle 35 

the PSNPs.  A conversion above 40% for all recycle runs 

indicates that centrifugation is superior to magnetic separation 

when recycling the PSNPs.  This might be an indication that the 

magnetic character of the magnetite core is damaged by the 

attachment of the phosphonate ligands.  This is supported by the 40 

XRD data that shows the presence of a new iron phase goethite 

(α-FeOOH) in addition to substantially increased maghemite 

(Fe2O3), after phosphonate ligand attachment. 

 
Figure 8. PSNP sucrose activity for reactions 1-17 at 80 °C using 0.05 g 45 

catalyst, 0.1 g sucrose, and 5g water. 

 
Figure 9. 6-hour sucrose reaction supernatants with PSNPs remaining in 

suspension in the presence of a powerful magnetic field. 

 The PSNPs are not easily separated from solution.  50 

Centrifugation is more effective, but neither centrifugation nor 

magnetic field is able to achieve complete separation of particles 

from supernatants.  This may be due to a combination of factors 

such as increased hydrophilic character from the increased 

number of sulfonic acid groups, increased hydrophilic character 55 

due to the more highly packed and less exposed lipid layer, 

decreased agglomerate sizes resulting in smaller effective 

magnetic force per particle, and possibly decreased particle 

magnetic strength.  PSNPs titrated to a pH of 7 gave distinct 

TEM images: individual particles averaged 5.2 nm, and 60 

agglomerates of larger particles averaged 12.9 nm.   

 ICP was used to gain some information about the atomic 

composition of the supernatants after catalyst removal. These 

data (shown in Table 1) indicate a ratio of iron to phosphorus that 

is around 2:1 for the combined supernatants of runs 1-13, and 65 

around 4:1 for the individual supernatants of runs 14-16.  For a 

monolayer of 10-phosphono-1-decanesulfonic acid calculated 

using a ligand head area of 0.24 nm2, the Fe:P ratio varies from 

15 to 58, for 5nm and 20 nm particles, respectively. 

 70 

Run Fe(ppm) P (ppm)  S (ppm) 
  1 to 13 20 9 9 

14 19 5 5 
15 47 10 12 
16 26 6 8 

 

Table 1.  ICP data for the inseparable catalyst remaining in 

solution after 6 hour sucrose runs. 

 

 The incomplete separation of particles from solution, 75 

combined with the correlation between ligand loading and 

particle size, makes the interpretation of ICP data difficult.  A 

shift in Fe:P ratio can reflect not only a change in the relative 

amounts of free ligand and particles, but also in the diameter 

distribution of particles which remain suspended.  The ICP data 80 

seems to indicate that some excess ligand is lost, although this 

does not result in a decrease in catalytic activity after the initial 4 

runs.  The trend of catalytic activity increase seen for the CSNPs 

may be present in the PSNPs as well, but counteracted by the loss 

of excess ligand.  The issue of incomplete catalyst recovery in the 85 

PSNP sucrose runs may complicate an accurate assessment of the 

catalytic activity.   

 To compare the activity of CSNPs vs. PSNPs, the starch 

hydrolysis data may be more useful since centrifugation is used to 

maximize catalyst recovery after each reaction.  Acid site 90 

turnover frequency (moles of glucose formed per mole of acid per 

hour) for PSNPs, CSNPs, and Amberlyst-15 is shown in Figure 

10. The PSNPs show the highest activity for starch hydrolysis, 

surpassing the CSNPs and Amberlyst-15.  The increased ligand 

loading achieved using the phosphonic acid attachment 95 

apparently also results in an outer surface whose acid sites are 
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individually more active.  Unfortunately, there is a trade-off 

between the benefits and downsides of a more highly hydrophilic 

outer surface.  Even in centrifugation, the PSNPs leave the 

supernatant visibly darkened with the presence of particles.  The 

presence of particles was again confirmed with ICP data showing 5 

the presence of iron, sulfur, and phosphorus in the post-

centrifugation supernatants.  The downside of decreased catalytic 

recovery is a significant one.  If larger particles are more easily 

recovered, the lower acid loading by weight may be a reasonable 

trade-off.  Further research should investigate monodisperse 10 

particles for activity and recycle potential. 

X 

Figure 10. TOF [mol glucose (mol H+) -1 hr -1] for three runs of 24 hour 

starch hydrolysis at 130°C 

 For both the CSNPs and PSNPs, the activity seen is an average 15 

over particles of significantly different radii and surface 

curvature.  Beyond the immediate geometrical trends, the smaller 

particles are likely to behave differently from larger ones.  For 

example, smaller iron oxide nanoparticles have been seen to form 

more tightly packed monolayers than larger particles25.  This may 20 

compound the effect of increased surface area and further 

increase the weight loading of ligand on smaller particles.  

However, since phosphonic acids bind more strongly than 

carboxylic acids to magnetite, the monolayer density as a 

function of particle size may be less pronounced in PSNPs than in 25 

CSNPs.  Another interesting effect of the nanoparticle curvature 

is the tendency to push acid groups closer together at larger 

particle sizes35.  It is unclear whether this effect increases acid 

site activity36 or decreases it35.   

Conclusions 30 

Monolayer acid funtionalized iron oxide nanoparticles have the 

potential for facile recyclability, high acid loading, high acid site 

catalytic activity, and stability in aqueous solutions at elevated 

temperatures.  CSNPs have been shown to possess an interesting 

trend of increasing catalytic activity through initial catalytic 35 

reactions, likely because of deagglomeration of particles at the 

high temperatures of reaction.  PSNPs have higher acid loading 

and acid site activity compared to CSNPs, but lower recyclability.  

The analysis of PSNP data is complicated by incomplete catalyst 

recovery and variations in ligand loading between various particle 40 

sizes.  Future work should explore functionalizations of 

monodisperse iron oxide particles to evaluate the optimal particle 

size which results from the tradeoff between recyclability and 

acid site loading/activity. 
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