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INTRODUCTION

The functions of chemical engineers are to develop, design,

and/or operate chemical processes to transform economically raw

materials into products suitable for use by human beings. Opti-

mization is defined as the design and operation of processes in

such a way that the maximum profit may be obtained.

Practically every chemical plant consists of a large number

of interconnected process units. To design the whole plant, it

is necessary to select the process parameters and the operating

variables for each unit. There often are restrictions on the

ranges of operating variables, and qualities and quantities of

raw materials, or the minimum requirements on the qualities and

quantities of the products. The optimization of chemical proc-

esses hence is a problem of oxtrema with a large number of

variables, often coupled with inequality constraints. Many

methods, e.g., differential calculus, calculus of variations,

dynamic programming, and the maximum principle, have been

developed to solve the extremal problems. However, most of

these methods become less suitable for use as the number of the

variables of the function to be extremized increases, or when

inequality restrictions are imposed. Dynamic programming and

the maximum principle are the two methods derived to attack such

mult i -variable problems.

It is convenient to define certain terms before introducing

the notions of dynamic programming and the maximum principle.

(1) Stages represent the units of a process, time periods,
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or any real or abstract notion, in which certain transformations

are talcing place.

(2) State variables arc those variables which are trans-

formed in the stages.

(3) Control variables are those variables which can be

manipulated to achieve desired transformations of state variables

in a stage.

(k) Performance equations arc those equations which

describe the transformations of the state variables in a stage.

(5) A simple system represents several stages connected

in series, in which the output from one stage becomes the input

to the next stage,

(6) A complex system is a group of stages joined in a form

of a branch or loop.

(7) A homogeneous system is a system in which all stages

have the same performance equations.

(8) A heterogeneous system is a system in which there are

two or more different performance equations.

(9) The objective function of a system is a function or a

functional to be maximized or minimized by manipulating the

control variables.

(10) The dimension of a system is the number of state

variables, other than the objective function, on which the

magnitude of the objective function depends.

The underlying idea of dynamic programming, first Introduced

by Bellman (1) is represented by the principle of optimality,

which states, "An optimal policy has the property that whatever
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the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the

state resulting from the first decision." By means of this

principle and the method of interpolation, a multi-stage decision

problem is replaced by a sequence of single stage decision pro-

blems, for which the solution is drastically simplified. Using

the methods of dynamic programming, Aris has solved a variety

of problems concerned with chemical reactor design (2) and a

cross-current extraction problem (3); Roberts has formulated the

catalyst replacement problem (J|) and the control of a batch

reactor (5); Rudd has Investigated the reliability in chemical

system design (6) and the optimal use of limited resources (7).

A dynamic programming model for countercurrent flow processes

has been developed by Dranoff et al (8). Mitten and Nemhauser

(9) have applied the techniques of dynamic programming to multi-

stage mass transfer and solid separation processes, as well as

heterogeneous and complex systems.

I-Jhile the use of interpolation makes dynamic programming a

powerful tool, it also introduces error which is often neither

negligible nor easy to estimate. Another difficulty encountered

in dynamic programming is its immense computer memory requirement

which increases exponentially t^ith the dimensions of the system.

In order to circumvent these practical difficulties, a method

which avoids the use of. interpolation is needed. This is pro-

vided by the maximum principle. The optimization technique

based on this principle is less well known. It appears, however,

to offer many computational advantages over the method of
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dynamic programming by overcoming the difficulties mentioned

ab ove

.

The principal purpose of this thesis Is to develop further

the method of optimization based on the maximum principle,

following the line suggested by Katz (10), (11), (12)^ Into a form

particularly suitable In the optimal design of multi-stage

chemical processes. Its use will be Illustrated In detail by

applying It to several concrete examples.



THE MAXIMUM PRINCIPLE

The maximum principle was first developed for continuous

processes by the Russian mathematician Pontryagln (13).

Recently, Katz (10), (11) has presented a discrete version of

PontryagLn»s maximum principle for simple homogeneous systems.

It will be explicitly shown In this section that Katz's formu-

lation can be extended to heterogeneous systems with product

recycle, In which performance equations are different from stage

to stage.

An N-stage process Is schematically represented In Fig. 1.

n" th
XT , 1 = 1, 2, . . ., S, are the state variables leaving the n

stage and 9^, p = 1, 2, . . ., t, the control variables at the

n stage. Each stage transforms the state variables according

to the equations:

X
l " F

l
(X
!T

1; e
r } (1)

1 = 1, 2, . . ., S n = 1, 2, . . ., N

Here the notation FT (x," ; ©£) Is a shortened form representing

_n , n-1 n-1 n-1 n n ^n, _, .

F. (x. , Xp , . . ., x ; &-, © , . . ., ©
t

) . It ].s to be

noted that pj (x?; &
1
), F^ (xj

1
; 9^), . . ., pj (xj"

1
* ©

N
) , are

---The superscript, n, Indicates the stage number. Exponents

will be written with parentheses, such as (x ) , to distinguish

them from superscripts.
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different functions of the same variables xf 1
and 9

n
,k r'

n=l, 2, ..., IT.

The feed enters the sy stem aba rate q, while the recycle

stream Is fed back at a rat e r. The mixing conditions are

represented by:

J> , t N.
1 = 1, 2, . • « , o (

f
where x are the values of

k
state variables in the feed.

The problem Is to find the sequence of 9 , subject t o the

constraints, l? < 9 < 7 ;>P P ^P
n = 1, 2, . . . , 11; p = 1, 2, • • • >

F
t, which will minimize x .m

Suppose that the minimIzing sequence of control actions Is
*-j

__
found to be e , and the corresponding state variables x, , then:

*"n _n , n'-'l TH%
C i

\

' L = 1 2 c n = 1, 2, • • . , IT

and

? = P° (x
f J)

i i
lav V 1 = 1, 2, • • • $ S c

If independent small perturbations of 9
x

are made at
p

each

stage,
Jr

P P fp (5 )

n = 1, 2, . . ., N; P - 1, 2, • • • .
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the disturbances will alter the values of x t

n n n
x = x +£ y +
i i

J
i

2
0(€ ) (6)

n = o, 1, . . . , N;
•

i := 1, 2, . • • > S

satisfying x = P. (x, ; © ). i

Com*>ining equations

, a „n , n-1
i y

i

= F
i

(\ :

_,n n-1

(1), (3),

© ) - P
r i

n. n

V " F
i

©
n

) + 0(<
r

and (6 ) gives

:

© ) + 0(6
r

r i

n = 1, 2,

2
)

., N (7)

n-1
(x
k

, n-i
(\ '

:

2
) • •

- Fj (x
k ;

Expanding the first diffe rence iDn the right s ide of equation

(7) in powers of ty

^n , n-1 n.
F
i

(\ ; V "

about x

„n , n-f.Fix •

i
K

k '

gives

:

0°) =
r

1* -<
n" 1

J-l J

n
»p

t S
. n-1
(x
k ;

> X
J

Agai

+ 0(€
2

)

can be expanded in powers Of <<f about ©

(8)

i

•

n n-1 n
v

F, (xv ; © )

n,
L r

j

, •



N-n , n-1 _n» v „n , n-1 n, ,2 n , n-1 .n,
d ?1 (x ; 9p ) »p

t
(x , «»

p
) t n

JP
L

(x
k

; »)
+ 2— €^

n-1 -0=1
r P „ n-1 x n

J P

+ 0(€ ) (9)

n , n-1 n n-1 n
Assuming that F. (x ; © ) depend smoothly on x and © so

L k r k r

2
that the terms OU ) may be dropped, then combination.' of equa-

tions (7), (8), and (9) gives:

n , n-l n
t _ _

r
ey" = £ ay""

1 SP
i ^ ; ^ + F? (?*,• «

n
) - p" (T^i ?

i j=i 3 -—j- l k r i k r

i = I, 2, . . ., 3; n - 1, 2, . . ., IT (10)

A new set of variables z. is defined to satisfy the differ-

ence equations

:

_ n , n-1 n.

Z
L

=
ft
-*-—^ \ (ID

i « 1, 2, . . ., S; a = 1, 2, . . ., N

Multiplying equation (10) by z. yields:
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n n £- , n-1
£ y z = X. £y

L x 3=1 J

VT_,n , n-i n, x
n n

Z + Z
• 9

P (x
i 1 l» i k r

>

(12)
n , n-1 n

i = 1, 2, . . ., S; n = 1, 2, . . ., N

Summing both sides of the above equation gives:

n , n-1 ~n\

£ £ <ry* z? - Z r r ey"
1 l k r

z
n

n=l 1=1 l I- n=l 1=1 j=l J ^"n^ L

.

T\T O f \

(13)

II s n

n=l 1=1 x

n , n-1 a n . "n- 1 n
J © )

r

But the first term of the right side of the above equation can be

reduced by the fol lowing steps :

n

\

! »r ) n

a s s± r £ *<

n n-l

n-l* p
i <

x
k ' <

r. —=—=—

—

n=l 1=1 j=l

-.-£ 21 <y*
„ v n , n-1

-1 £ *F
L

(xk

n=l j=l 1=1 >3F

2 s n _;

= SI Z. ej,
n=lj=l 3

L n-1 4L S

J n=l 1=1

n-1 n-1
(lii)
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Substituting equation (lit.) into equation (13) and

rearranging yields:

. JL S n n n _ L n-1 K S n f „ -i^rr a
6 I Z (y, I, - y, z, ) = Z. 2_ z I P. (x ; © )

n=l 1=1 L
5- L L n=l W U 1 k

n i>rr n
- P. (x ; © )

l k r

Plence, the equation may be simplified to:

r

i

2- (7. z - y z ) m 21 Z z P (x ; 9 )

=1 L J- J- 1 n=li=l lU ^ *

Combining equations (2), (I4), and (6) gives:

f IT f T 2
. €y = P (x ; x ) - P. (x J x ) + 0( e ) (16)

i. i k k i k k

Expanding the difference in powers of 6j about x and

, f
' N. IT

assuming that P (x , x ) depend smoothly on x so that the
1 k k k

terms 0( 6 ) can be dropped, it is obtained that:

, f IT,

ey = Z. «y —i £ £_ (17)

o X.
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Substituting equation (17) into (lj?) gives

/

N _IT
SI y 2-

i=i L L

s s
- z r

, t . TT,

1=1 j=l
L

J

\

J

N S

n=l i=l

n
z.

«

L

n n-1 n n . n-1 n.
P, (x, ; 9 ) - P (x ; 9
k L k r i k rj

Interchanging the dummy variables, i and j, in the second

term on the left side yields:

s N^ y.
1=1 I

2
\ i

o x „0 , f "IT, v

3=1 3
d

*i

JL JL n^ £ 2 P (x ; 9 )

n=l 1=1 L L L r

n / n'-l n.
(13)

By imposing on the z»s the conditions

IT
z. -

N /
f

f .0
IFj <V

3-1 3 ^
= £

1m (19)

where 5"

im
is the Kronecker delta, equation (18) becomes:

67 = 2-
m n.

>_ H z F (x ; 9 ) - P x ; 9 20
= 1 1=1 L

L L k r i k rV

The 9 being the sequence that minimizes x ,' the effect ofr m

the perturbation represented by equation (5) can only be to make
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*y^ ^o (2i)

Combining equations (20) and (21) gives:

I J. n f „n , n-l n
N

n , n-l "n.l ^£ £"iK (x
k •• V - F

i <
x
k =Vj i0 (22 »

n = 1, 2, . . ., N

Now Ln equation (22)
;

the perturbed control actions 9
n

are
r

independent of each other. It may be concluded that each terra

of equation (22) containing a set of independent variables ©
a

>nust itself be non-negative; thus

| 'I {<^ # -
"l^ #) * <*>

s

r
i=

Hence the procedure for finding the minimizing sequence ©
n

,

n
P

P = l, 2, . . . , t, is to choose © to minimize the function
P

^ n n , n-l _a.
Z. z F (x ; © )

£_]_ l i k r

That is, © must be selected from either (1) those

satisfying

1 z?^£lO =0> n <Qn n

1=1 L *©* ^P p /p

or (2) ©
n = ?

n

P 7
p

or (3) &_ =
>?,

n = *n
P /p
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whichever makes H z? F? (x, ; ©
n
), n = 1, 2, . . ., N and

1=1 L l * l?

p = 1, 2, . . . , t, the smallest.

The general algorithm for finding the minimizing sequence

of control actions can be written down compactly In terms of the

Hamiltonian formalism introduced by Pontryagin (13).

Let

H
n

= Z z
n
F^ (x*-

1
; 9

a
)

j=l J J k r

then:

x
n

IX

n-1
. ^ H

n

bxZ-i'

_0 , f n.

I
_ £ z

gj
(xk ; xk )

i=l J
- N

" (210

= 1
im

bx

n n
9 are determined where II = mln
P

n = 1, 2, . . ., N; l. — 1, 2, . . . , S

;

p = 1, 2, . . ., t

If the maximizing sequence of control actions Instead of

the minimizing sequence Is to be decided, the basic algorithm,

equation (2k) f remains unchanged except that the equation

II = mln Is replaced by H
n = max.
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It can be seen that the simplification In computation

Introduced by the maximum principle Is similar to that by

dynamic programming. Instead of choosing all N sets of 9 's
r

simultaneously, only one set Is determined at a time.

V/lth some modification, this basic algorithm is applicable

to a variety of problems. The modifications required in two

typical cases will be briefly outlined.

1. Problems with fixed end point specifications.

Suppose that, for the system described by equation (1) and

(2), it is desired to choose the sequence of the sets of control

actions q\ n = 1, 2, . . . , N; p = 1, 2, . . ., t, to minimize

N
xj\ while keeping the final values of certain others of the x's

at preas signed values, for example

N N N N

3 3 7 7
]

by:

To solve this, the conditions, equation (19), are replaced

z, - ZZ z .
—J S &-«4 (26)

1 3-1 J'

} X
N 10, 1 ji m, 3, 7

The missing conditions for 1=3,7 are made up by equation

(25). This modification is verified by noting that

N N
y = y =0
3 7

vr 3 n dP. (x, , X, I

and thus the conditions z. - t z. -1 * k = o for 1 = 3,7
1

.1=1 J
v .

w
>*l
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included in equation (19) are redundant for the Isolation of y^

from equation (18).

2. Problems with choLce of Initial values.

Suppose that some of the initial values of the x's, say

x{, x;\ and xz, are not prescribed, and It Is desired to choose12 5

these missing Initial values as well as the sequence of control

actions, to minimize xN . The problem may be solved by Imposing
m

an additional condition,

f S o^ P
l^

x
k ; x

k^ , , n t t9f\x 2T z, —-—= — = rain, j = 1, 2, 5 (27)

to the basic algorithm, equation (2k),

The addition of this condition is confirmed by observing
r

that when x^ , i = 1, 2, 5, are not preassigned, equations

(4), (16), and (17) must be modified to:

and

S u IF. (xk ; x, ) 5- f aP, (xk ; x,)
*y. = X fry. —t S £_ + * fey. —i £ JL- (30)

1
J=1 J a? J - 1. 2, * * >3

J °

p f '

'

11. '

where <:y x
x

- x
^ o' 3
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Accordingly, equation (23) becomes

,§- nf_n .^^T n n, _n ,
n-T n.) ,37 f

2_ z F (x ; 9 ) - ?. (x ; 9 ) +*Z. 74-
i=l ^ l k r L k *V

J
- 1, 2, 5

S }pj (*£• xj)

1=1 L

>s*
J

f
Since y,, j s 1, 2, 5 are independent of each other and of

„ «J

9
l

, it may be concluded that
P

f I- >
p
? <*£ 5

€-y. Z. 3, , i = 1, 2, 5 must all be non-
J i=l I . -f

negative. That is

x . 2_ z . —- ^_ < x 2_ z
J i=l L .-7 3 i=l L

. T
*>x. ^ *•

.1 J

J = 1, 2, 5

which are equivalent to equation (27).

For the process without product recycle, r is equal to zero,

and equation (2) reduces to

„0 ._£ JT, f
X
i

= P
i

(\ ; X
k

}
=

*. i = 1, 2, . . ., S (2a)

and the basic algorithm, equctLon (2k), becomes:



ET « Z z. P. x ; ft )

n-1 >

H

n
z = -,
l N n-1

f
X = X
1 L

N r
I. B i.

c\

im
x.

© are determined where H s rain

n = 1, 2, . . . , N;

p = 1, 2, . . ., t

L — J. j £ j • • » , o ,

18

1

f (2W

The mod Lf Led condLtLons, equation (26), for the problem with

fixed end point specifications become:

IT c
1, 1 = m

z. =\
1 10, L fi m, 3, 7

(26a)

The additional condition, equation (27), required by the

problem with choices of Initial values, Is changed to:

f
x z = nun 1, 2, 5 (27a)
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APPLICATION TO OIE-DIMEMSIOHA.I SYSTEMS

In this section the general working equations will be

derived, and the general computational scheme will be discussed

for a special class of one-dimensional systems. Several con-

crete examples will be worked out in detail to illustrate the

use of the algorithm.

General Equations : The special class of one-dimensional

systems which are to be investigated is a homogeneous system

with product recycle, containing one state variable described

by'O

x£ = F (x^"
1

; ©
n

) n « 1, 2, . . ., N (3D

in which a sum of a certain arbitrary function of x , over all

N ,

stages of the system, such as 21 G-(.x
n

; ©
n

) , is to be
n=l l

maximized. The mixing condition is given by

f N

x = i 1 (32)
q + r

This problem can be reduced to the standard form by intro-

ducing a new state variable, x~, satisfying

n n-1 „. n-1 ^n sx
2
= x

2
+ G(Xl ; 9*), x

2
= (33)

n = 1, 2, . . . , N



It can be shown that "51 G(x l

; 9
n

) = x . Now the problem
n=l 1 2

is transformed into one In which It Is desired to maximize x
?

of

a system described by the performance equation represented by

equations (31) and (33).

According to the basic algorithm, equation (2b), a new set

of variables Is Introduced;

n-1 _ 1 n 1 _n
2
1 73^1 Z

l
+

v n-1 Z
2

* x
l

* x
i M3U)

z
2

- z
2 ; n = 1, 2, . . ., N

,*lth the final conditions being:

i
" q^T? z

i
z
2

(3 ^ }

Substituting equation (35) Into equation (3lj) gives

2

and

z? = 1; n a 1, 2, . . ., N (36)

n _ x
WCx?"1

, 9
n

)
n

^(x"-1
, 9

n
)

z
i

= ~T^

—

z
i
+ ~""^—

•

(37)
* *i -a x.

n 1, 2, . . ., N

The Hamlltonlan becomes:

K
n =z£f (xj-

1
; 9

n
) +G(xJ-

1
; *

n
) + x^ 1



21

Assigning that the stationary solutions x^ill represent the

knmaxima, 9 may be found where:

j.__n n W*?"
1

; d
n

) 3GU?"
1

; 9
n

)"K _ z
n 1 + 1 Q

i)9
n 1

^)9
n ^9 Q

n
The solution for z Ls:

n
« - -

>. _, / n-1 _n»^G(x ; 9 )

v
'_, , n-1 _h.

*F(x., ; © )

q = 1, 2, . . ., N (38)

insertion of equation (33) into equation (37) gives:

^GUj-1
; 9n ) *G(xJ; 9

n+1
)

<)9
II

* 9
n+1

. , n n+1, v . n n+1iF^; 9 ) ^G( Xl ; © )

\~t n_ l ^. n N ^ , n n+1,
^?(x

L
; 9 ) ^P(x

1
; 9 ) &

n
x. } X

n

^9
n

"a©
n+1

n = 1, 2, . . ., N-1 (39)

and

^G(x°;'9
1

)

z = . ^ 1

1
>P(x°; 9

1
)

hF(x°; 9 1 ) ^G(x°; 9
1

)

,—

±

+ i

h \ °
d X,

^9"

(39a)

Equation (39) can be written in a compact form in terms of

Jacobian as follows:
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XKx^1
, »») >(a(x;i •*x

), »(»;i s*1
))

n . . n+1 n,
£9 > (© , x

x
)

, n-1 n. v . n ~n+l.

£ 9 3 9

Substituting equations (33), (39), and (39a) Into equation

(35) gives:

^G(<"S 9
IT

) ( >G(x°; 9
1

)
>

X
, _,., 1 - - - * -=»

^ © _ r &GUJ; 9
1
-) WxJ; 9

X
) 3 9~

5 P(xf\- ©*) q + r
4X° d x° >F(xJj 9

1
)

. A" V . 1 '

:

} 9 d © '

$0)

N-1 N" W
By assigning values to both x and 9 , the value for x

can be computed from equation. (31). The result is then sub-

stituted into equation (32) to calculate x.. , which is, in turn,

Inserted into equation (liO) to obtain © . The values for both

x and 9 can also be calculated by iterative applications of

equations (31) and (39). The procedure is repeated until the

values of x° and © computed by both ways are equal.

If the process is operated without recycling, r vanishes

and equation (liO) reduces to

•^(xf
1

; ©
F

)

,

— n ()|0a)
<>
9"

Then, by assigning a
N" IT-l Fvalue to x,, both x and 9

V

can be
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obtained by solving equations (31) and (liOa) simultaneously; and

the corresponding values for x., can be calculated by iterative

uses of equations (31) and (39). The procedure is repeated until

the computed value of x? is equal to the initial value xl. It is

worthwhile to note that for each assigned value of :•:;', the

corresponding values of©?, n=l,2, .,,, N computed are the

optimal control actions corresponding to the initial condition

x~ obtained in each run of trial calculations.

For the problem with a prescribed end point xl , equation
1

(IiO) is deleted for both recycling and non-recycling processes.

IT "JWith x. given, the value for ft
J

can be computed from equation
- r -|

(31) by assigning a value to x . The corresponding value for

x° is obtained by iterative utilizations of equations (31) and

(39). The result is directly checked with the given x* for the

non-recycling process. For the recycling process, the computed

x° is substituted into equation (32) to calculate :: , which is

then compared with the given value. The trial calculations are

repeated until the computed value matches the given one. As in

the case of a free end point, the sequence of 9
n

, n = 1, 2, . .,

IT computed, for each assumed value of x? , is the optimal

sequence corresponding to the initial condition x? obtained in

each run of trial calculations.

The application of these working equations and the compu-

tational scheme will be illustrated in the following two

examples.

Cross -current Extracti on Process : The problem of wash
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water allocation in a stagewisc cross-current extraction system

without recycle has been solved with dynamic programming by

Amundson, Arts, and Rudd (3), and with a non-imbedding technique

by Converse (11;.). As has been stater? before, the method of

dynamic programming has the disadvantages that it requires a

largo amount of computer memory and that it may introduce a

considerable error due to Interpolation. While Converse's non-

imbedding technique may reduce the memory requirements and avoid

interpolation, its computation time is much longer than that of

dynamic programming and will increase rapidly with the increase

in the number of stages in the system.

Rudd and Blum (15) have shown that the dynamic programming

tables for the process without recycle obtained by Aris et al.

(3) can be used without modification to determine the optimal

operating conditions for a process with recycle. It was

recently pointed out by Jackson (16) that Rudd's method is in

fact fallacious. Jackson discredited the assumption, made by

Rudd and Blum, that the process of determining optimal conditions

in the recycle system is mathematically equivalent to the one of

optimizing the sub-process of the forward stream and matching

conditions at the recycle point. However, it should be noted

that the first part of this assumption is not to be doubted.

The incorrect results arise from assigning values to the initial

conditions for optimizing the sub-process. The assignment of

specific values to the initial conditions in each trial calcula-

tion is tantamount to assuming that the initial conditions are

independent of the choice of operating conditions, which is
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contrary to the fact. Actually, optimizing a recycle process is

raatherktically equivalent to optimizing the forward sub-process

with variable initial conditions, which are dependent on the

operating c one itions

.

In the following passages, the optimization problem of the

process with product recycle will be solved by the application

of the recursion relation of equation .(39), and it will be shown

that the process without recycle is a special case of the

process with recycle.

A schematic diagram of the process under consideration is

presented in Fig. 2. The process consists of N equilibrium

stages through which a solvent containing a solute passes. A

portion of the end product is fed back to the first stage, at a

flow rate r. The solute is extracted from the solvent by the

addition of wash water at each stage. The solvent and wash water

are assumed immiscible. The solvent flows from stage to stage

at a rate (q + r) . The state variable is the concentration of

solute X-. The control variable at each stage is the amount of

wash water w. The performance equation may be obtained by a

material balance for the solute about the n stage:

n n-1 n. n _ _ „ . , .

,

".,_ = x - v u ; n = 1, 2, . . ., H (lil)

Here v = w /(q + r) , and u
a

is the concentration of solute

in the wash water leaving the n " stage, which is in equilibrium

with the raffiliate.

The gross return from the process is the total amount of

solute extracted by the wash water. The costs are those



z

z-

Ji"

a

z-S
X

26

c

z —X

»

c—
X

c

1c—
X

.

-

M

CM—
X

HIl

(/)

C/>

<D
O
O
a.

c
o
o
o

X
o

£ 1
3 O

in
>-

S £o £

x

CO



27

associated with the wash water. The net profit, which is to be

maximized, is then:

P = q ('/ - X?) -XI Wn (i-2)
}- *- n=l

where X is the relative cos I; of wash water.

The solute concentration of the nixed stream which enters

the first stage of the process is:

f ,
H

x = L_ i (1,3)
1 q + r

Solving equation (lj3) for ;:
J

, and substituting the result into

equation (L;.2) gives:

IT
N n

P = (q + r) (x^ - x
J

) -X 21 wn (1,1;)
1 x n=l

which is the net profit for the sub-process within the recycle

stream. It is clear that the optimization problem for the

process with recycle is equivalent to the problem for the sub-

process within the recycle stream, in which it is desired to

maximize P in equation (hh) > by the proper choices of wn
,

n = 1, 2, . . ., IT, subject to the initial condition, equation

(lj..3), and the performance equation, represented by equation (kl)

.

Prom equation (kl) it is seen that

£ rf-l - x*) = x _ x* m I v* u
*

n=l l 11 1 n=1

Inserting this into equation (lib.) gives:
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â + r n=l

n, n
v (u -A) (1<5)

• By defining a nex* set of ' state variables
n

X
2

satisfying

,.n s n-1
"2 -'2

n, nv (u

n

-A);

= l,

x
2
=

2, . . ., IT

(¥>)

it can be shown that
q

p
+ r

x~. Thus the optimization problem

is now transformesd Into one In which x;> Is to be maximized by

the proper choice:S of V i-j C- $ • • • | N f in a system

described by equations (hi), (14-3) , and (k6).

If the phase i equll ibriurr: l relation Is given by

u = $ (:c
1

) (ltf)

equations (kl) and (ij.6) can b e rei-jrltten as :

x
n = pfxn-l. v

n
) (itf)

n .n-1

2 2

n-1
X
l

"

n

K
1

= 1,

1 n n
; v ) - *v

P TV*& j • • . •

(I|9)

Comparing equation (I).9) with equation (33), It is : seen that

O f^" 1
; v

n
)

n-
~ X

l

l -n n-1 n. n
x ; v

)

->v (5o)

Differentiating equatlon (lil) with respect to
n

V gives

:
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. n n

__1 = - un - vn £H 1 (51)
v n . n , n

Substituting equations (L.7) and (Ii8) Into (51) » and then solving

for gives:

o v *

n-1 n. . n-1 n .r n.
^P(x

x
; v ) |(x

1
)

(52)

l + v
l

~L-

CI T
I *). -

v «/ n~l n.
*F(x. ; v )

The expression for ± may be obtained in a similar
n-1

* x
l

way. Thus, differentiating equation (1|1) with respect to x"

and then combining with equations (I|7) and (L8) gives:

\ «/ n-1 n.
&F(x ; v )

HP (53)

n O^)
1 + v —_—i_

= n
dx.

1

v _. n-1 n. N
n-1 n

dG(x
J v ) <'G(x J v )

The expressions for ~ and —v are obtainedh ^ x-

by differentiating equation (50) with respect to v
11

and x^
1 ""

and

. _. n-1 n. . , n-1 n.
bF(x, ; v ) ^G(x ; v )

then substituting for -i and =—

,

from
\ n v n- l
•v h x
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equations (52) and (53) respectively . The results are:

n-1 n v * _, n-1 q. n-i n. v _, n-i n
i)G(x

1
j v ) JP(x ; v )

ta)

n c|C:J)
1 + v"

H
> Hi n - X
G(x

1
; v )

= l -
&F

L

. n-1ax
x i

A

(55)

= i - L

i + v
n li!il

dx.

inserting equations (52) through [^$) into equation (39) yields:

1 + vn jLLil = _i_L (S6)
, n t, n+1.
dx

1
§>(x

l
)

Solving equation (I|.l) for v gives:

n-1 n

n4)

Substituting equation (57) into equation (56) and solving for

n-1
x. ' gives the following recursion relation:



n-1 n

T n
dj(xl )

dx;

\

JifiL
„. n+1
f(x )

-1
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(58)

a = 1, 2, . .. ., N-1

Inserting equations (52) through (55) Into equation (Uo), and

then combining with equation (57) yields:

N-1 N
x
1
+

dx.
N

T%
f<*">

q+r ^"iiJ
(59)

?he computational procedure for finding the optimal sequence
_n

of v , n = 1, 2, . . ., ITj Is similar to that given In the

paragraphs follox>rlng equation (LlO). However, the calculation

for this particular case Is simpler, because equation (58)

contains only one state variable. For a 3-stage process,

equation (59) becomes

:

x.
1

a|<4, 1
L

»

, 3
dx.

>
><y

"
qip

^"jfi)?)
(59a)

Letting n = 1 in equation (55) and Inserting for x from equa-

tion (Li 3) gives:



f 3 T, 1*
q X + V Xi 1 fi(x )

1
,

l = * + -

1-

o + r 1 i

dx"

- 1

32

(60)

When n = 2, equation (58) five

i 2 $(*?) r'.$(*?)

$(xf)'

.•t. — i>.

—2

—

dx.

- 1 (61)

ITow Lt Ls seen that these three equations contain only three

12 3
Independent variables, namely, x,, x , and x:. Hence, the

simultaneous solutions of these equations will give the optimal

values for state variables xl", x , and XI. The value for x

can be recovered from equation (1+3). The optimal wash water

allocation Is then determined by equation (57).

It Is clear that the process x^lthout recycle may be reduced

from the process with recycle by letting r = 0. Thus the initial

condition, equation (Ii3)> becomes

f
*1

= X
l

and equation (59) reduces to

!T-1

dxT

A ir/*^ i
f<*,>

(59b)



33

while the recursion relation, equation (58), remains unaltered.

The computational procedure is simplified considerably for non-

recycling process. By assigning a value to xt;, the value for

x* Is computed by equation (59b) and the corresponding value

lor xV is obtained by the Iterative uses of equation (58). The

trial calculations are repeated until the computed value of x

f n
becomes equal to x . As before, the values of x' , n = 1, 2,

. . ., ""^computed in each run of the trial calculations are the

optimal state variables corresponding to the Initial conditions,

11
x^j, obtained in each run. The optimal values of v are then

recovered from equation (57).

The numerical examples illustrated in References (3) and

(15) are recalculated here by means of equations (58) through

(61). The phase equilibrium data used are given in Table 1.

In Table 2 the results are compared with those of References (3)

and (15). For the process without recycle, the slight discrep-

ancy between the results obtained by the two different methods

may be due to the fact that slightly different equilibrium data

are used in the calculations and may also be due to interpolation

error inherent in the dynamic programming. It has been mentioned

that the results obtained by Rudd and Blum for the process with

recycle were incorrect, and it can be seen from the table that

the profit calculated by the maximum principle is 3 »U percent

higher than that computed bjr Rudd and Blum.

The simple case with a linear equilibrium relation x.. = un

can be solved analytically. Equation (1[7) becomes:

u = £(X ) = JL
1 /
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TABLE 1

Equilibrium Data

u X

0,000 0,000

0.027 0.010

0.050 0.020

0.073 0.030

0.09U O.OkO

0.119 0.050

0.138 0.060

0.153 0.070

0.163 0.080

0.170 0.090

0.173 0.100

0.176 0.110

0.178 0.120

0.179 0.130

0.179 O.lIiO

0.180 o.i5o

0.180 0.160

0.TB2 0.170

0.186 0.180

0.192 0.190

0.200 0.200
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C omparison of the Results

ObtalLne d by th e Kaxi mum Principle and Dynamic Programming

Maximum Dynamic
Principle Programming

(1) Wit]lout re eye le

n = 1, X
a

: 0.20, X= 0.'0$

'/ash V.
rat;i*p Allocat ion

Stage 1, w
1

0.657 0.6!l7

Stage 2, w
2

0.279 0.281..

St 3, w
3

0.263 0.260

Profit
—

^

0.1071 0.1075

(2) Wit!i recycle

o = 1, r = l^ = 0.20, A == 0.05

Wash Water Allocat ion

Stage 1, W
l

0.5105 0.610

Stage 2, w
2

0.3339 O.MiO

Stage 3, w
3

0.2977 0.k20

Profit 0.1007 0.097U



Substituting this relation Into equation (5>8) gives:

36

n-1
'I

vn

H
n M

x
l
+
~-J-

.n \

-ZL. - i
n+T

"l

Lch caa be simplified

n,2
(,,)

n-1 n+3.
n = 1, 2, . . . , 17-1

'he general solution of this finite difference equation Is:

n t,/»\nx = jn(A) ; n = , 1 , . . . , r>T
( 62)

where A and B are two consl to be determined by the Initial

and final conditions. Thus, substituting equation (62) Into

equations (I|3) and (59) gives:

_ a

4 +
bI? e;

"'

t 63 /

and

(A)""
1
» 3(A)

{I A" b(A) NJ
" *+p (*"

~

5AM ( 6M

Combining these two equations yields:

(-^--)
2

(A)
21

q+r

f

(4_)
2
il (A )

1+* AA

T+

1

TT

"^ (A) +1 =

and
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o „f
jr.+r- JL

1 - J£- (A)
q+r

(66)

value of A may b btainec from equation (65). The

result is then substitute-: into equation (66) to compute B. The

are then recovered fro on (57) as

vn =JUL{\ - I) (67)

Since v is independent of n, it may be concluded that the

optimal policy is to distribute the wash water equally to ail

stages

.

The profit is obtained by inserting equations (62) and (67)

into equation (h.$) '

jl . = t m (
i _ x) (ml - a! = liiLLiJilli - $g + 1^\q+r n=l/ S\ < ZL J 7T / nn AY/"" ' q + r f 1 - (A)

J

(63)

For the process without recycle, r vanishes and equation (65)

reduces to

(A)
If+1 mX

::.

which when solved for A gives

A = (£*)

::
1

1

::+Y

(69)



Equation (66) reduces to

f
13 = X

Equations (62), (67), and (63) become:

38

n

*? = x
i v-x

l

(70)

Vn m
(/)

N -/vfr+T

a ; -A (7D

and

= ** + yx- (N+l) f (/*T (a)
it xj

1

(72)

The Continuous Flow Stirred Tank Reactor with a Single

Reaction: The problem is to choose the sequence of temperature

and holding time so that a given conversion be achieved from a

given feed state with the least total holding time.

The equation for a single reaction may be written as

Z d.k. = o
1=1 x L

(73)

Here <a , the stoichiometric coefficient of A., is positive

if A., is a product.

If c' is the concentration of A. in the n
l

reactor and &
a
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th
Is the holding time, a material balance for A about the n

reactor gives (see Pig. 3):

n

n = 1, 2, . . .,11 (?!]-)
n n-1

,c = c + 9

dc

dt '

The extent of reaction x may be defined as:

x

c. - c.
L LO

(75)

where c. is the concentration in a certain fixed reference
10

state. Equation (7l|.) can be written in terms of the extent of

reaction as

:

n

n = 1, 2, . . ., IT (76)
dx

n n-1 _n I.
x
i
= x

i
+ 9

?nr ;

Assuming that the pressure is constant, the rate of reaction

will be a function of temperature, T, and concentrations, c..

But from equation (75) » Lt is seen that concentrations are linear

functions of the extent of reaction; hence, the rate of reaction

can be expressed as a function of temperature and the extent of

reaction. Consequently, equation (76) becomes:

:* = X*"
1
+V\r (xj; T

n
)

,

n 1, 2, . . ., N (77)

By defining

n n-1 n
x„ x„ + © ;
2 2

n = 1, 2, . . . , IT (78)

o
= (79)
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It can be shown that x Ls equal to the total holding time, I.e.,
2

ISn . The optimization problem is nox-j formulated as one in which

x^ is to be minimized by the proper choices of 9 and T*
1

,

ti s'l, 2, . . ., K, with the initial and final conditions:

x? = a?, x° = 0, and J* = a* (80)112 11
and the performance equations represented by equations (77) and

(78).

It has been known from experience that the optimal tempera-

ture policy with a single reaction has a disjoint characteristic,

that is, the temperature should always be chosen so that the rate

of reaction will be as large as possible at each stage. This

can be shewn mathematically as follows.

Solving equation (77) for x? gives:

*1 ' P
l
(x

i"
1; ^ ^ (81)

The Hamiltonian for the system is:

TTn n -n / n~l ~n mn x n , n-1 ^n.=
1 11 J J J + Z

2
(X

2 * ?

The optimal choice of the temperature will be found where

n-1 „n „n,
b
„n

_

.iP^J \- ©
u

; T
u

)

= zT x x = (82)
>Tn

X
*>Tn

Differentiating equation (77) with respect to T
n
yields :



Li.2

. . ll-l n n.
* F

1
(X

1 5
S »' T ) n

^T
n

= 9

Jr(x j T ) 2>r(x ; T )

_ + —
^T

n
x.
n

(83)

n
By combining equations (82) and (83) and noting that 9^0 and

z? ^ 0, it may be concluded that

ir(^j T
n

)

(810

This shows that the temperature should be chosen so that

the rate of reaction be as large as possible at each stage.

Denoting this maximum value by R(x^), equations (77) and (81)

become

:

^- 1 =x^-9n R(x^); n = 1, 2, . . . , N (85)

n _, n-1 n.
x m P(x

x
; 9 )j n = 1, 2, . . ., N (86)

Comparing equation (78) with equation (33), it is seen that

G ( X^-
1

; ©
n

) = ©
n

(87)

and therefore that:

. , n-1 n,
^G(x

1
; 9 )

29 n
= 1 (88)



c> G ( x ; 6 )

a xn
=

U3

(89)

It Ls seen by comparison that equation (85) can be obtained

from equation (1|1) by substituting 9
n for v

11
and -R(x ) for u .

frpc*?-
1

; 9
n

) >n4ml
i

»
n

)

Accordingly, both i-^ and ~-^ can be procured

2>e
n bxn-1

from equations (52) and (53) by the same substitutions, thus:

>F(4
-1

S
**> R(^)

^9
n

1-9n ^l'
(90)

dx
n

and

fcFU*"
1

; 9
n

)

<>x
H-r

1-0n «<*?>
(91)

dx
l

Inserting equations (88) through (91) into equation (39) yields:

1-9
dR(x^)

n 1

dx»

R(xJ)

1 .

nTTT
n = 1, 2, . . ., IT (92)

R(x
x )

Combining equations (85) and (92) gives:



hh

RU*)

n-1
r

X

n
x
1
+

R(x?)
i.

R(x
1 )

1
- 1

/

dR(xJ)
(93)

dxa

As before, the optimal values of x.,, n 1, 2, . . ., IT

may be found by the repetitive uses of equation (93), together

with the Initial and final conditions given by equation (80).

The optimal holding time for each reactor may be recovered from

equation (05).

Suppose that the rate of reaction can be written as:

s
i ^1

r(x ; T) = k (T)ir (c + d x )
1 1 j_ io i l

- k (T) IT (c
f

+ of. x
t )

?l
io i 1'

(9J+)

where £ , . . . , 3 and /., ...,)' are exponents denoting the

order of the forward and backward reactions with respect to each

suedes. It will be further assumed that Y. - 6 = d . which is
l • r.i i

true for elementary reactions, k and k are, according to

Arrhenious 1 law, functions of T only and have the form

k. = k
l0

exp (- E^RtJ ;
i = 1, 2 (95)

Applying equation (81|) to equation (9)i) gives:

^'T(x i T) , s
j fti = 1 I E

x
k ~rr (c

L
+ <*, x.) - E k rr (c. + of, x ) I

= (96)



which can be reduced to:

k (T ) Eg d,
JLJL. = K (T ) = -1 it" (c. + A. x ) (97)
k2 (Tm)

™>
Ei x I0 LI

Here T represents the temperature which maximizes the rate of

reaction for exothermic reaction.

An explicit expression for T nay be obtained by letting

(-ah) = S
p

- E. , and substituting equation (95) into equation

(97):

, y k E o s o^O"1

I.-¥ IIrrT ( 'i.
w

i
,!

i» J
"- (98)

k
10 1

x '

If there Is restriction on the temperature of the form

T < T ^ T'"", then T = T when the value of T given by equation

(98) lies below T , and T = T* when it lies above T*".
-"- m

When T lies in the range (T„ , T"'), substituting equation
m *"*

(98) into equation (9lj) gives:

H^) = kw exp
[^ in *L* * (c^ + \ *l> 'J

3 ^
77" (c- + «*. x4 )

L - k e

I
V lo Li' 20

f -E k E s o/ .^

. TT (0 + 0/ x ) \ (99)
]_

LO L 1

Letting p = E^/t-AH), equation (99) can be simplified to:



1*6

R(x
1

)
rs k

10

k E s oli s

2°_£ -n- ( c + ^ X ) ' IT (c + (* X
L ^Y 1 L0 L l /* 1 Lo I l

h

f k S S n/ I I s

-k . 20, 2 -rr ( C . + d x.) • -rr (c,
20 1 k E i i-o 3. 1 J 1

** 10 1

Y<

o
+

*i V

w.A'^^f^.s

IT (c. + <* x )
3.0 11 ft***E

2 J

which finally reduces to:

p+1 p
(P+D (k

2Q )

F

p+1
a A'
TT (C l0 + ^ X

t )r(x ) = -ML-. -12. (100)

In case of a first-order reversible reaction A- - A
p
= 0,

with c, A/c = and c po/c = 1, equation (100) becomes:
10' '20' "0

R(xn ) = c o Q P(-i)
'01' '0 ' " *c,

(101)

, %P ,kln ,P+
1 x.

where c = c + o ; Q = —LLL— • \
1{JJ ; and P (-1)

(p+i)' (k
20r

X-j^ _p X^
]_+p Xn

'

(~) (1 - q— ) . Letting * = -i, equation (101) becomes:
'0 '0

R(x
l

) = c
Q
q (J)"

P
(1 -J)

1*1
(102)

Substituting equation (102) into equation (93) gives:



1 5 / + p I™ i- 5
n+ J

n = 1, 2, . . ., ff-1 (103)

The use of this recursion relation is illustrated by the

following numerical example.

It is desired to find the optimal temperatures and holding

times to increase c. from g. molc/c.c. to 0.8 g. mole/c.c. in

a three-tank reactor sequence for a first-order reversible

reaction A. - A. « 0, with the following kinetic data:

E, = 9.2 Koal/g. mole

E =12.5 Kcal/g. mole

k
1Q

= 10^ Min"
1

k9n = 10 7
* 3 Min"

1

c
20
=1 g. mole/c.c.

The values for p and Q are computed from the given data as

P = 2.79

Q = O.IL1I8 Min"
1

trial calculations, the optimal values for x are obtained as

By the iterative applications of equation (103), and a few

r

3

j
1
= 0.5914-5

t
2 = 0.7365;

hence

:
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c. =

c» =

1 = ° g. molo/c.o.

I
= 0.591*5 g. mole/c.c.

I
= 0.7365 g. molo/c.c.

3 - 0.8 g. mole/c.c.c< -

Substituting the values of c , Q, and p Into equation (101)

gives

:

R(*J)
0.1I|.18 '

( 1 - j
n

)

( 5
n

)

7 '

3.79

g. mole/c.c. • mln,

Prom equation (85), the holding time can be expressed as

G
n = J. 1_

R<**)

If n = 1, the following is obtained:

1 1

a 1 -
X
l " X

l
X
l " *1 (5^)

2 ' 79
: 0~~" =

O.lklo *
" 71779

= 29.9 mln.;

R^) (1 -I n )'

2 3
Similarly, 0"" = 66.8 mln., and © = 106 mln. For this particular

case, equation (98) reduces to

T
n =

3 - E
2 1 1661

~m (£±i^ Jl.) m 107 - 9 ^

and consequently:



,1 _ TOO 'U

T
d

= 291.5° k

T3 a 27l!.l° k

lt9
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APPLICATION TO HETEROGENEOUS SYSTEMS

A heterogeneous system is defined as a system in which there

are two or more different performance equations. It has been

mentioned previously that optimization of such a system can also

be accomplished by the direct application of the basic algorithm,

equation (2h). As an illustration, the optimal design for a

multi-stage chemical process with parallel redundancy will be

determined by the use of this algorithm.

Pig. k shows a multi-stage system in which a primary raw

material is reacted with a secondary specie in the first stage

to produce an intermediate product which is then fed to the

second stage and reacted with another secondary specie and so

on through the entire system.

Suppose that the secondary species are all quite unstable

and cannot be stored and therefore must be produced upon demand

by special reactions. All the intermediate products of the

reactions are also assumed to be unstable. Then it is clear

that, if a secondary specie is not available on time at any

stage, the entire processing system will fail.

Failure is a stochastic phenomenon and therefore can be

considered from a probabilistic point of view. The probability

that the n
L secondary specie will be available on time is

called the reliability of the n stage and represented by R .

The reliability of the whole system, R , is the probability that

all N secondary species are available on time (6), (17); thus:
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n

n=l

If the process x^hich produces a certain secondary specie

falls frequently, it would he advisable to produce more than one

batch of that specie to increase the probability that it will be

available on time. The production of more than one batch to

reduce the effects of failures is named paralled redundancy.

Suppose that bn batches of the n secondary specie are

prepared. Since only one batch is needed, bn - 1 batches are

redundant. The probability that s single batch will fail is

1 - Rn . Thus, the probability that all b
n batches will fail is

equal to (1 - Rn )

bn
. Hence, the probability that at least one

batch will succeed is 1 - ( 1 - Rn )
b which Is by definition the

reliability of the n stage with Its redundancies. Thus, the

reliability of the entire system can be represented by

R
s
=

nT1
C
1 - CI -Rn

) J (105)

Since b > 1 and R
n < 1, it can be shown that

i - (1.- Rn )

bfl
> R

n

which indicates' that the reliability of the system is increased

by the use of parallel redundancy.

Let P^ be the profit obtained if the performance of the

entire system is successful. The expected profit for the system

is then expressed by PR . Let C
n be the construction cost of

one reactor for the production of the n secondary specie,
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(the cost Ls properly distributed over the life of the process),

and
a

be the operation cost. Then, the net profit for the

entire system is:

P = P R - i (C
n
+

n
) b

n
(106)

S s n=l

The optimal parallel redundancy is the design which

maximizes the net profit. It is to be noted that the expression

for the net profit actually must Include the construction and

operation costs of the reactors in the main line for the pro-

duction of the intermediate and final products, as well as the

cost of the raw material, enterlag the first stage. However,

these costs are independent of the number of redundant reactors

and hence it can be seen that the optimal design of parallel

redundancy can be based on the net profit expressed by equation

(106), considering only those costs associated with redundancy.

Piudd (6) has applied the method of dynamic programming in

determining the optimal redundancy. Although dynamic programming

is used for reducing the computational labor, it is felt that

construction of the dynamic programming table at each stage is

still a tedious task. The maximum principle is found to be

more suitable for this particular problem.

To formulate this problem in the standard form, two state

variables are introduced, satisfying the following relations:

X
l
=

"l"
1
^ 1 " (1 " Rn) ^ ; n = 1, 2, . . ., v (107)



&
n

*2
= x*""

1 - (C
n
+ n

) b
n

; n = 1, 2, . . ., N (108)

JJ -

2
r*" 1 - (C

N +
1T

) b
H

+ P .x^f 1 - (1 - R
IT

}

bIT

j (109)
2 S 1 ^ "*

,-0 _
*1

~ 1 (110)

(111)

It should be noted that the values of R , C , and are

different for different n; hence, the performance equations are

different from stage to stage. It should also be noted that the

th
performance equation at the N ' stage for x~ is quite different

from thosei at the other stages. Thus the process represented by

these performance equations is a heterogeneous system.

It can be seen that ;c^ is the reliability of the sub-system

consisting of the n upstream stages; and that x^ is equivalent

to the net profit represented by equation (106). Consequently,

the proble;m is now transformed into one in which xp1

is to be

maximized by the proper choices of b
n

, n = 1, 2, . . ., IT.

According to the basic algorithm, equation (2lj), z? and zp1

are defineid as

:

z^ 1
Z
l

= (l - (1 - R
n

)

b
J
z*j n =1, 2, . . ., H-l (112)

11-1
Z
l
4-d.RV1

) z
l
+p

g
£- (I-hV^Jz* '(113)

-r
1 = ZpJ n = 1, 2, . . ., N (IILl)

*
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Since z = 0, z
iT = 1, equations (113) and (llU) become:

(l - (1 - R*)
b

) (115)

z
n = 1; n = 0, 1, . . ., BT (116)

The Hamlltonians are:

n n n-lf. ,- r>
n \b

n
">

,
n-1 . n n n

H = z. x- ^l-(l-R)
J
+ x - (C +0)b

n = 1, 2, . . ., TT-1

and

H:I = x|-
X

- (G
11

+ O
1
') b

H Pg^"1
( 1 - (1 - rV")

'

The maximum may be found whore

is! = - z* x?-
1

(i - R
n

)

btl m (i - n
n

) - (c
n + o

n
) = o (117)

I b 1 l

and

^L. (C
*
+ N

) -Pxf 1 - -»^'-- - ~
W

- «T + O
1
') - Pa x, (1 - P, )

u
In (1 - R ) = (118)

The solutions of equations (117) and (118) for z^ and P are
1 g >

respectively:

n C
n +

n

; n = 1, 2, . . ., N-1
1

x^- 1
(i -RV

n
in (1 -Rn )

(119)



P = - _ ^_i_o
(120)

S
xf

1 (1--R»)^ in (1 -R 1T
)

Combination of equations (10?), (112), and (119) gives:

n-1n-1 „n-l
n-2 _ n-lf IClll+JL 1) m (1 - ift /-

x
l .. A

n = 2, 3, . . . , N-1

Combining equations (107), (115), and (120) yields:

f N-1 17-1 TT t^" 1

x
I-2 _ ..IT-1

|
. (C

1
'

4- 0" X
) in (1 -RIT

) /
*! _ A

1
.* ^ (C* +

iT

) in (1 -R 1
'

1"1
)

^ x* 1

(121)

(122)

It can be seen that equation (122) may be generated from

equation (121) by letting n =. 17.

The optimal design for parallel redundancy then can be

determined by the following procedure.

Ey assigning a value to x_, the values for x" and b can

be obtained by solving equations (107) and (120) simultaneously,

and the corresponding value for x can eventually be calculated

by iterative applications of equation (121). The procedure is

repeated until the calculated value for x is equal to 1. The

values of b are then recovered from equation (107). As in the

case of cross-current extraction without recycle, the computed

values of x,, n = 1, 2, . . ., N are the optimal state variables

corresponding to the value of x?, obtained in each run of trial
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calculations. It should be noted that jP represents the

reliability that the raw material will be available on time and

hence can be any number between zero anc\ one.

The same numerical example illustrated in Reference (6) is

recalculated by the procedure described. The process under

consideration consists of three stapes, in xjhlch reactions

proceed as follows:

Stage 1 ¥ + A,-*X

Stage 2 X + A
p
—*-Y

Stage 3 Y + A,-*- Z

The profit associated with the final product Z is P = 10.

The reliabilities and costs of operation are:

sL cfL ol
Stage 1 1/3 0.1 0.1

Stage 2 1/2 o.5 o.5

Stage 3 3A o.5 o.5

The results of calculation, after being rounded off, are

b = 7, b2 = 3> and b^ - 2, which are exactly the same as those

obtained by the use of the dynamic programming algorithm.
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NOMENCLATURE

a = a given value of the state variable.

A = a constant in equation (62).

A.
i

= the i chemical specie.

b = number of batches

,

E = a constant in equation (62).

c = concentration.

c = c + c
lo 2o

= construction cost.

E = activation energy.

H = the Hamiltonian.

AH s 1<! - V
^1 fi2'

It = reaction rate constant.

K kl/k2«

R = total number of stages.

= operation cost.

P = EjA-AH).

? = net profit.

P = gross profit.

o. = flow rate of the feed.

/, vP+1
( P )

p (k
io>

,TH-1 p
(p+i)- (k

20y

r = flow rate of the recycle stream.

r(::; T) = reaction rate.

R = the ideal gas law constant.

i
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7;

s

— reliability of the entire system.

= reliability of the n stage.

R(x) S3 the reaction rate at T = T .

s r= total number of state variables.

t = total number of control variables.

T temperature.

T
ra

= the optimal temperature.
*

u = concentration of solute in extract.

V = w/(q + r)

.

w = flow rate of wash water.

v = raw material.

x = state variable.

X = the optimal value of x.

V S3 an intermediate product.

y S3 perturbation of the state variable.

V = an intermediate product.

2 = a variable introduced in the basic algorithm,

equation (21+.).

2 = final product.

Greek Letters

(A = stoichiometric coefficient.

£ = order of the forward reaction.

y = order of the backward reaction.

^ = the Krone eker delta.

^ S3 a small number.

i the lower bound of the control variable.
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*! = the upper bound of the control variable.

& = control variable.

A" = the optimal value of 9.

A = relative cost of wash water.

A 1 = constant In linear phase equilibrium relation.

[p = perturbation of the control variable.
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The major purpose of this work Has to develop a method of"

optimization particularly suitable for the design of multi-stage

chemical processes. A basic algorithm for optimizing multi-

stage heterogeneous systems with product recycle was derived as

an extension of the maximum principle, which was originally

proposed by Pontryagin for continuous processes, to the discrete

systems

.

It was found that the discrete version of the maximum

principle offers many computational advantages over the method

of dynamic programming, because it avoids the use of interpola-

tion which usually leads to an immense computer memory require-

ment and considerable interpolation error. The discrete version

of the maximum principle proved to be a very convenient and

powerful tool in many cases, especially for the systems with

product recycle.

The general working equations and the computational scheme

are presented for a special class of one -dimensional systems,

to which many industrial processes belong. The working equa-

tions, consisting of a recurrent relation and a final condition,

can be easily applied to practical problems. To illustrate the

use of these equations, the following two problems were x^orked

out in detail.

(1) Cross-current extraction process: The working equa-

tions were first derived for the system with product recycle,

and then reduced to the case without recycle. Generally, a

numerical method must be used to obtain the final solutions for

the process with a non-linear phase equilibrium relation. For



the simple case of a linear phase equilibrium relation,

analytical solution is obtainable.

(2) The continuous flow stirred tank reactor with a' single

reaction: This is a system with two control variables —

temperature and holding time. The well-known disjoint charac-

teristic of the optimal temperature policy was proved

mathematically by means of the basic algorithm. A recurrent

relation was derived for the calculations of the optimal holding

times.

The application of the basic algorithm to the optimization

of heterogeneous systems is also illustrated by the design of

parallel redundancies in chemical processes.


