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Abstract 

Boron phosphide, BP, is a III-V compound semiconductor with a wide band gap of 2.0 

eV that is potentially useful in solid state neutron detectors because of the large thermal neutron 

capture cross-section of the boron-10 isotope (3840 barns).  

In this study, cubic BP crystals were grown by crystallizing dissolved boron and 

phosphorus from a nickel solvent in a sealed (previously evacuated) quartz tube. The boron - 

nickel solution was located at one end of the tube and held at 1150°C. Phosphorus, initially at the 

opposite end of the tube at a temperature of 430°C, vaporized, filling the tube to a pressure of 1–

5 atmospheres. The phosphorus then dissolved into solution, producing BP. Transparent red 

crystals up to 4 mm in the largest dimension with mostly hexagonal shape were obtained with a 

cooling rate of 3°C per hour. The crystal size decreased as the cooling rate increased, and also as 

growth time decreased. The characterization with x-ray diffraction (XRD) and Raman 

spectroscopy established that the BP produced through this method were highly crystalline. The 

lattice constant of the crystals was 4.534 Ǻ, as measured by x-ray diffraction. Intense, sharp 

Raman phonon peaks were located at 800 cm
-1

 and 830 cm
-1

, in agreement with the values 

reported in the literature. The FWHM for XRD and Raman spectra were 0.275° and 4 cm
-1

 which 

are the narrowest ever reported and demonstrates the high quality of the produced crystals. 

Energy dispersive x-ray spectroscopy (EDS) and scanning electron microscope (SEM) also 

confirmed the synthesized crystals were cubic BP crystals, with a boron to phosphorus atomic 

ratio of 1:1. Defect selective etching of BP at 300ºC for two minutes with molten KOH/NaOH 

revealed triangular and striated etch pits with low densities of defects of ~4 x 10
7
 cm

-2
 and 9.2 x 

10
7
 cm

-2
 respectively.  

The BP crystals were n-type, and an electron mobility of ~39.8 cm
2
/V*s was measured. 

This is favorable for application in neutron detection. Scaling to larger sizes is the next step 

through gradient freezing and employing a larger crucible. 
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Chapter 1 - Introduction 

 Motivation 

Demand for neutron detectors has surged as a result of increased efforts to stop nuclear 

proliferation and terrorism, but production of helium-3, a critical element in the most common 

neutron detectors, has not kept pace; existing 
3
He stockpiles are quickly dwindling (1). Helium-3 

is a rare isotope that strongly interacts with thermal neutrons; its thermal neutron capture cross-

section is 5330 barns (2). It is formed when tritium, a heavy isotope of hydrogen that is used to 

enhance the yield of nuclear weapons, decays. Since 1988, tritium has not been produced and 

helium-3 is now only obtained from dismantled or refurbished nuclear weapons, which has led to 

reduced helium-3 production levels (3). Furthermore, due to long term stability problems like gas 

leakage and the inconvenience of replacing pure helium-3 gas, the gas-filled detectors operate at 

close to atmospheric pressure, therefore reducing its detection efficiency. Highly pressurized 

large tubes are needed to get a notable electronic signal when a neutron interaction occurs, which 

results in significant complications in field applications (4). To overcome these problems, 

alternatives are currently in the early stages of development and researchers are pursuing several 

promising leads for solid state thermal neutron detector concepts (1).  

Solid-state devices have potentially improved efficiencies compared with gas-filled 

devices because of the increase in the density of the material (4). Furthermore, they will have a 

more robust, and compact design, which makes it easier for routine deployment and air transport. 

Table 1-1 shows the elements that have relatively significant thermal neutron capture cross-

sections, and their high-energy charged particles produce from their reactions with neutrons.  

 

Table 1-1: Comparison of elements useful for the neutron to charged particle reaction (2) 

Isotope 

(% abundance) 

Charged 

Particle Produced 

Q Value 

(MeV)* 

Thermal neutron capture 

cross section (barns) 

State of 

material 

10

B (19.9) 
7

Li, α  2.78 3840 Solid 

6

Li (7.59) 
3

H, α 4.78 973 Solid 

3

He (0.000137) 
3

H, p 0.765 5400 Gas 

*Q Value is the kinetic energy released in the decay of the particle at rest.  
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Boron-10 (
10

B) is an excellent neutron absorber with a large thermal neutron capture 

cross-section of about 3840 barns. This compares favorably with the solid element with the next 

highest thermal neutron cross section which is 
6
Li (less than 1000 barns). When 

10
B reacts with 

thermal neutrons, two nuclear reactions occurs (2): 

10
B + n → 

7
Li (0.84 MeV) + 

4
He (1.47 MeV) + γ (0.48 MeV)    (94%)                   (2) 

10
B + n → 

7
Li (1.02 MeV) + 

4
He (1.78 MeV)                              (6%) 

Both of these reactions produce high energy Li and He (alpha particles) ions. Each 

neutron captured in a 
10

B-containing semiconductor will create a large number (~1.5 x 10
6
) of 

electron-hole pair as the energetic ions pass through the material. The created charge is large 

enough to be detected without any amplification. Hence, 
10

B compound semiconductors can be 

used in the form of Schottky, pn, or pin diodes for fabrication of thermal neutron detectors.  

Several 
10

B solid-state thermal neutron detectors concepts have been presented over the 

years. One of the earlier concepts presented was a layered structure with 
10

B material as the 

neutron converter on top of a semiconducting material as the charge-collector (5), (see Figure 

1-1).  The efficiency of this 
10

B coated device structure was limited because the travel range of 

the charged alpha particles and Li ions is approximately 3μm in 
10

B, but, a film thickness of 

50μm is needed to absorb most of the neutrons. To improve the efficiency of the 
10

B coated 

device, fabrication of pillared devices as shown in Figure 1-1b have been reported, where arrays 

of pin Si pillars are impregnated with a conformal coat of 
10

B to increase the probability of 

neutron capture and alpha particle-spawn electronic signals (4). Although this improves the 

overall efficiency from 5% to 25% (4), further improvements are possible. To achieve the 

maximum efficiency possible, the neutron-converter and the charge-collector materials are 

integrated into a single material (seen in Figure 1-1c), which is a 
10

B-containing semiconductor, 

such as boron carbide (6), boron nitride (7), and boron phosphide (8). The outstanding features of 

cubic BP are a high charge carrier mobility, and n- and p-type conductivity. These are important 

for quick transport and collection of the charged particles, and a space charge region to separate 

mobile charges, which makes it a good fit for neutron detectors application (1). 
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Figure 1-1: Diagrams of neutron detectors depicting (a) a 
10

B conversion coating on a Si pn 

junction diode; (b) alternating narrow pillars of 
10

B for conversion and Si for charge 

collection; and (c) single 
10

BP crystal as both the neutron-converter and collector. The dots 

represent the 
10

B-neutron reaction 
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 Goal 

In order to fabricate a device using a high quality BP crystal with low charge trap 

densities, it is best to establish a bulk BP crystal growth technique. The goal of this study is to 

grow reasonably large BP crystals of high structural quality and low residual impurity 

concentrations. Having large crystals will make it easier to fabricate devices, and high structural 

quality and low impurity concentrations are necessary to obtain the best electrical properties.   

 Crystalline Boron Phosphide 

Boron phosphide (BP) is a III-V compound semiconductor with a wide band gap of 2.0 

eV. Its synthesis was first reported in 1891 by Henri Moissan (9). Although the structure and 

composition of the BP produced was unknown, Moissan reported preparing BP by reacting 

boron halides with phosphorus. Over the years, there has been little interest in the applications of 

BP; its development has been considerably slower than other III-V compounds because of its 

unusual properties and the difficulties of preparation of single crystals with high structural 

quality. Recently, as new controllable synthesizing techniques emerge, BP, because of its high 

thermal conductivity, chemical stability, mechanical strength, and charge mobility, has been 

considered for application in electronic devices that can operate in extreme conditions of high 

temperature, and under intense radiation (10, 11).  

 Structure 

Although boron phosphide had existed for many years, its wasn’t until 1957 that Popper 

et al (12) determined it has a zinc-blende structured crystal.  BP, usually referred to as cubic 

boron phosphide or boron monophosphide, has the zinc blende structure made up of light 

elements of boron and phosphorus that exhibits strong covalent bonding because the electro-

negativities of boron and phosphorus are almost exactly the same. Its lattice constant is 4.538Å 

(11, 13–16) which is similar to that of both 3C-silicon carbide (SiC) 4.36Ǻ, and gallium nitride 

(4.51Ǻ for cubic GaN (17)). BP also has a compact crystal structure because of the small atomic 

radius of boron (0.82 pm) which gives it a great stability advantage over other III-V compounds 

(Al – 1.18 pm, Ga -1.26 pm, In -1.44 pm, P – 1.06 pm)  (18). These stabilizing effects leads to a 

larger orbital overlap and a higher ionization energy (11). Although BP has high stability, it 

decomposes to boron subphosphide, B6P (aka icosahedral boron phosphide, B12P2) at elevated 
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temperatures (> 1100ºC) and low phosphorus pressures (<1 atm) by losing phosphorus. Figure 

1-2 illustrates the crystal structures of both boron phosphides. 

B12P2 has a rhombohedral unit cell containing 12-boron atom icosahedra at each of its 

eight vertices with a pair of phosphorus atoms in the center (19).  The phosphorus atoms are 

bonded to each other and to three adjacent icosahedrons. The icosahedral structure has an 

unusually strong three-center covalent bonding between its boron atoms, the result of electron 

deficient bonding: where two valence electrons are shared between 3 atoms (19). This feature in 

the structure of B12P2 makes it extremely stable and also chemically inert, with a high melting 

point of 2700K. However, its unique bonding structure changes some of its properties and adds 

some special effects (20). For example, it usually has a p-type conductivity, while cubic BP can 

be either p- or n-type. The band gap is 3.3eV as opposed to 2.0 eV (21, 22) for cubic BP. And 

finally, it “self-heals” when bombarded with radiation (20). Both BP and B12P2 can be 

thermodynamically stable compounds depending on the process conditions. BP is favored at 

relatively high phosphorus vapor pressures, while B12P2 is favored at low phosphorus vapor 

pressures and high temperatures.     

 

Figure 1-2: Crystal structures of (A) cubic BP and (B) icosahedral B12P2 
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 Electrical and Physical Properties 

As with other group III-V compounds, cubic boron phosphide (BP) has been of interest 

because of its semiconducting properties. When compared to other III-V semiconductors, 

crystalline BP has several distinct properties that make it useful for niche electronic devices (13).  

Its wide band gap gives it a low intrinsic conductivity at room temperature. It also has a high 

melting point, greater than 3000°C (11), which makes it an ideal candidate for high temperature 

electronic devices. And as mentioned previously, the 
10

B isotope has a large thermal neutron 

capture cross section that is suitable for neutron detectors. 

Table 1-2 compares some properties of cubic BP with some group III-V and IV 

compounds used for devices.  

 

Table 1-2: Selected properties of some III-V and IV compounds (23–27) 

 BP GaN AlN InN GaAs Si 3C-SiC 

Structure Z.b Wurtzite Wurtzite Wurtzite Z.b Diamond Z.b 

Band gap (eV) 2.0 

(Indirect)  

3.4 

(Direct) 

6.2 

(Direct) 

1.89 

 

1.4 1.1 2.39 

(Indirect) 

Lattice constant, a, c 

(Ǻ) 

4.538 3.189 

5.185 

3.112 

4.982 

3.540 

5.705 

5.653 5.431 4.3596 

Density, (g/cm
3
) 2.94 6.1 3.26 6.88 5.32 2.33 3.17 

Mohs hardness 9.3    4.5 7 9.2-9.3 

Thermal expansion 

coefficient (10
-6

K
-1

) 

~3.6 5.59 5.3  6.0 2.6 3.9 

Melting point (ºC) >2000 >1700 3000 1100 1238 1415 2730 

Thermal conductivity 

(W/cm*K) 

4.0 1.5 2  0.46 1.5 3.2 

Refractive index 3.4    3.3 3.42 2.55 

 

Compared to other boron compounds, crystalline cubic BP has several advantages that 

are essential for electronic devices. First, BP is one of the few boron-based compounds that can 

be doped to produce both p and n-type conductivity (28); unlike the icosahedral pnictides, 

B12As2 and B12P2,  which have always been reported to exist with p-type conductivity (19). BP 

also has relatively high charge mobility. Studies have reported that the hole mobility of doped 

BP ranges from 20-350 cm
2
/V-sec (29) and the electron mobility from 107- 120 cm

2
/V-sec (10), 

depending on the crystals’ impurity and defect concentration. The high charge mobility of BP is 
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important for charge transport, and it is good enough for efficient operation of electronic devices. 

Table 1-3 shows typical properties of boron-based compounds. 

Table 1-3: Typical properties of some boron-based compounds (13, 16, 27, 29–36). 

 BP B4C BAs B12P2 B12As2 cBN 

Color Reddish 

brown, 

transparent 

Orange, 

yellow 

Dark 

brownish 

black, blue, 

transparent 

Amber, 

transparent 

Black, 

golden 

Structure Cubic Rhombo-

hedral 

Cubic Rhombo-

hedral 

Rhombo-

hedral 

Cubic 

Lattice 

constant, a, 

c, (Ǻ) 

4.538 

 

5.987 

11.841 

4.777 5.987 

11.841 

6.156 

11.929 

3.615 

Melting 

point (ºC) 

>2000 2450  2120 2027  

Band gap 

(eV) 

2.0 

(indirect) 

2.5 1.46 3.35 3.34 6.4(indirect) 

Resistivity, 

(Ω-cm)  

p-type, 10-

12.5 

n-type, 

0.15-2.5 

0.1-10 p-type, 

0.01 

p-type, 

5.2e+4, 

9.2e+4 

p-type, 10
4
-

10
5
 

p-type, 1-

1000 

n-type, 1-

1000 

Mobility 

(cm
2
/V sec) 

Holes 

Electrons 

20-350 <1 100-400 50 80 0.2-4 

107-120   

Thermal 

conductivity 

(W/cm-K) 

4.0 0.29-0.67  0.38 1.2 4-7 
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 Crystal Growth Methods of BP 

It is difficult to synthesize crystalline BP from the melt due to its high phosphorus vapor 

pressure at its melting temperature. Hence, over the years, many other methods have been 

employed to synthesis BP crystals including chemical vapor deposition (CVD) (37, 38), 

chemical vapor transport (CVT) (13, 30), flux growth (39), and high-pressure, high temperature 

growth methods (11, 14, 21). Of these, CVD and flux growth methods have been the most 

widely used because of their ability to produce BP crystals at relatively low temperatures 

(<1400°C).  

 Chemical Vapor Deposition (CVD) 

One of the most reported techniques used for BP synthesis is the CVD method for 

epitaxial film growth on silicon (Si) (29, 32) or much less common growth on hexagonal silicon 

carbide (SiC) (40) substrates. Thin BP films are produced from gas phase reactants in an open 

system as illustrated in Figure 1-3. The BP deposition can be carried out using thermal 

decomposition of hydride - diborane (B2H6) and phosphine (PH3) in a hydrogen atmosphere or 

by using the thermal reduction of halides - boron tribromide (BBr3) and phosphorus trichloride 

(PCl3) mixtures with hydrogen gas.  

                                                            (1) 

For the thermal decomposition of hydrides, B2H6 (1% in H2) and PH3 (5% in H2) are 

introduced as reactants into a fused quartz tube chamber leading to BP deposition on a substrate 

placed on a susceptor externally heated by an RF generator. With the chamber wall water cooled 

to minimize gas phase reaction, the substrate is heated to temperatures ranging from 950 to 

1250ºC. At such high substrate temperatures, the phosphorus partial pressure needs to be higher 

than that of BP’s vapor pressure (40); therefore the flow rate of PH3-H2 is at least several times 

that of the B2H6-H2 to insure the formation stoichiometric BP and not B12P2 (29). The outcomes 

of BP deposition can be an amorphous, polycrystalline or single crystal film, with p-type or n-

type conductivity depending on the variation of the PH3-H2 flow rate ratio to B2H6-H2 and also 

substrate temperature (29).  

HClHBrBPHPClBBr

HBPPHHB

Heat

Heat

333

622

233

2362




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When using BBr3 and PCl3 as reactants, the apparatus is basically the same as with B2H6 

and PH3, but the carrier gas is bubbled through two constant temperature bubblers containing 

liquid BBr3 and PCl3 to pick up these vapors (40).  

BP films are typically deposited on Si and SiC substrates, but mismatch of the film-

substrate properties like lattice constants and thermal expansion coefficient creates stresses, 

defects and contamination from the substrate, thus degrading the quality and properties of the BP 

films. Silicon substrates have a large lattice mismatch of 16%, but are the most common 

substrates used for epitaxial growth because they are readily available with n or p-type 

conductivities, inexpensive, exists in many orientations, and also can be selectively removed 

from deposited BP film (31, 32, 41). Quality BP films are grown at high temperatures (>950ºC), 

but at these temperatures silicon diffuses into the deposited BP films, thus, degrading its 

electrical properties (42). Rough surface morphology and cracking in BP films is typical due to 

the strains caused by the lattice mismatch and the difference in thermal expansion coefficients of 

BP and Si (42).  The strain causes the BP film to bow after the removal of silicon (31). The 

lattice mismatch of BP on SiC is much smaller, about 4%. SiC is thermally stable and inert with 

a high melting point of 2730ºC, and is therefore much less likely to contaminate the deposited 

BP film. Also, the thermal expansion coefficient of SiC and BP are very close when compared to 

Si (27), as shown in  

Table 1-2. The high cost of high quality SiC and its inability to be chemically removed 

substrates has limited SiC use.  

It is relatively easy to dope films in the CVD technique. However, it is difficult to grow 

really thick (> 50 μm) films by CVD, and the defect densities are much higher in the thin films 

compared to bulk crystals.  
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Figure 1-3: Schematic illustration of a CVD reaction chamber 
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 Flux Growth 

The flux growth method avoids some of the problems associated with the CVD method 

like lattice mismatch and thermal expansion coefficient differences between the grown film and 

the substrate. Like the melt growth technique, it also involves liquids but uses a solution that is 

heated to high temperature to form a homogeneous liquid. The melt growth technique usually 

has higher growth rates and has no contamination from a solvent. Flux growth is relatively 

simple, and achieving high phosphorus vapor pressure is also possible.  

In the flux growth method, the material to be crystallized is dissolved in a solvent and 

then crystallization occurs as the solution becomes critically supersaturated (43) as shown in 

Figure 1-4. Supersaturation is promoted either by cooling the solution or by a transport process 

in which the solute is dissolved in a hotter region where the solubility is greater and precipitated 

in a cooler region, where the solubility is reduced (43). The key advantage of using a solvent is 

that crystal growth occurs at a lower temperature than the melting temperature of the solute. 

Additional advantages to flux growth are that the growing crystal is not exposed to steep 

temperature gradients and also the crystal can grow without any mechanical or thermal 

constraints (43). When compared to crystals from CVD method, it often results in a better crystal 

quality with respect to stresses and defects. However, this method has some disadvantages, like 

substitutional or interstitial incorporation of solvent atoms or ions into the crystal, microscopic or 

macroscopic inclusions of impurities, non-uniform doping, and a slow growth rate (43). The flux 

growth method can produce high quality large size crystals for electronic devices with careful 

attention to the choice of solvent and the experimental conditions for stable growth (43). 

 

Figure 1-4: Schematic depicting precipitated crystals from solution in flux growth method. 
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In this study, bulk BP crystals were grown by the flux method, using a molten metal 

solvent to dissolve boron and phosphorus at lower temperatures (< 1200ºC). BP crystals 

precipitate when the solution is cooled. In this process, it was important to know which solvent 

has the best solubility of boron or boron compounds, low vapor pressure, and the least reactivity 

with boron. Platinum, nickel, copper, iron, and their phosphides are all potential solvents capable 

of dissolving boron at lower temperatures (14, 28, 39, 44, 45). Several studies have reported 

producing 1-8mm sized BP crystals by dissolving BP powder in a copper, nickel, or their 

phosphides (Ni5P4, Cu3P) at high temperatures (1200-1400ºC) and pressure (2-18 atmospheres) 

(39, 45). A summary of some of these studies of BP growth by flux method is shown in  
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Table 1-4. Yamamoto et al (44) grew up to 3 mm size BP crystals in Cu solvent, and 

were able to prove that the crystal size was a function of the growth temperature. At elevated 

temperatures, phosphorus vapor pressure above atmospheric is needed to form BP to and not 

B12P2. To prevent this, Kumashiro et al (45) employed high pressure of 18 atm to grow BP 

crystals  at 1400°C. Chu et al (39) grew BP at a lower temperature of 1200°C with a much lower 

pressure of 1-5 atm. He also introduced a technique where the Ni2P-BP-P solution was rotated 

during growth to form a homogeneous mixture. The technique insured that all BP powder 

dissolved in the solution; as a result, larger crystals were grown.  

Nickel solvent was preferred in this study because of the high boron solubility, which is 

Ni-45at.%B at eutectic temperature of 1018°C (see binary phase diagram in Figure 1-5) (46), and 

also it is cheaper compared to platinum (which is also a good solvent). Instead of adapting the 

rotation technique reported by Chu et al (39) to form a homogenous mixture, the nickel and 

boron eutectic solution was held at a growth temperature for various periods of times in the 

absence of phosphorus vapor; this will be referred to as the soak time. Phosphorus vapor was 

then transported to the nickel-boride (Ni-B) solution where it reacted with the dissolved boron to 

form BP crystals at lower pressure (1-3 atmospheres) and growth temperature (1150°C). Since 

the size and purity of the crystals are essential for fabrication of neutron detectors, the effects of 

parameters such as the soak time, growth temperature dwell time, cooling rate, and source 

material purity, were studied to optimize the conditions for stable growth, produce high quality 

and purity and large size crystals at the adapted lower growth temperature and pressure. 
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Figure 1-5: The nickel boron binary phase diagram. The liquid phase is maintained down 

to the eutectic temperature of 1018°C (55mol% Ni) (46). 
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Table 1-4: Summaries of other studies of BP growth by flux method. 

Solvents Solution 

temperature 

Phosphorus 

pressure 

Max. 

crystal 

size  

Growth 

time 

Comments References 

Cu 1180-

1270°C 

_ 3 mm 24 hr. Size as a 

function of 

temperature 

Yamamoto et al 

(44) 

Cu3P 1400°C 18 atm. 5 mm 120 hr. BP powder 

as source 

Kumashiro et al 

(45) 

Ni2P 1200°C 1-5 atm. 5-8 mm 4 weeks Solution 

rotated at 

120 rpm 

Chu et al (28, 34, 

39) 

_ _ _ 1 mm _ Slow cool Stone et al (14) 

Ni 1250 1 atm. 5 mm _ Gradient 

cooling 

Iwami et al (37, 

47) 
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Chapter 2 - Experimental 

The main focus of this project is the flux growth of cubic BP crystals using nickel as the 

solvent in a sealed vacuum quartz tube. This closed system was necessary to maintain the vapor 

pressure of sublimed phosphorus. There are many benefits associated with this technique, such 

as the ability to produce large and well-orientated crystals. Unlike the CVD technique, crystals 

produced are highly crystalline, and have no structural constraints and minimal defects.  Nickel 

was chosen as a solvent because of its relatively low cost and its ability to dissolve large amounts 

of boron.  

The unintentional incorporation of impurities into the crystals is a concern, not only the 

solvent, but also impurities in the tube and source materials. Oxygen and carbon are of particular 

concern. The use of high purity source materials (B, Ni, & P) may reduce the amount of 

impurities in the produced BP crystals. Also, the introduction of oxygen-savaging material like 

aluminum or titanium at elevated temperature could reduce the oxygen content of the crystals. 

Therefore, experiments were conducted to understand techniques that would lead to high quality 

bulk BP crystal. This work describes the synthesis of bulk BP crystals through nickel-fluxed 

melt. X-ray diffraction, Raman spectroscopy, photoluminescence spectra, energy dispersive x-

ray spectroscopy (EDS) and scanning electron microscope (SEM) were used to characterize the 

BP crystals produced. Lastly, simple devices were fabricated and tested. 

 

 Materials and Methods 

 Crystal Growth 

In a conventional experiment, 10.42g (0.178mol) and 1.57g (0.145mol) of pure nickel 

and boron powders respectively, which is approximately the eutectic composition of boron and 

nickel binary system, were mixed in a pBN sample boat.  10g (0.322mol) of pure phosphorus 

powder was then placed in the closed end of a quartz tube, which is enough to form a 1:1 

stoichiometric BP ratio, as well as 1:1 NiP ratio. Next, the sample boat containing B-Ni powder 

mixture was placed in the center of the quartz tube (already containing phosphorus). After 

loading the sample into the quartz tube, the quartz tube was connected to a vacuum system (see 
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Figure 2-1) and heated with heating tape to about 125°C while under vacuum to remove volatile 

impurities. The system was evacuated by the mechanical pump to a pressure of 10
-4

 torr and then 

purged twice with argon. After purging, the system was evacuated to 10
-4

 torr again, and then 

was vacuumed overnight to about 10
-6

 torr with the turbo pump. The quartz tube was then sealed 

under vacuum and placed into a multi zone furnace as illustrated in Figure 2-2.  

 

Figure 2-1: PBN boat with boron and nickel in a quartz tube (containing phosphorus) 

connected to a vacuum system. The system was evacuated to a pressure of 10
-6

 torr with a 

mechanical pump and a turbo pump.  
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Figure 2-2: Schematic diagram of the flux growth process. (Top) Initially, reactants are 

positioned in an evacuated quartz tube at room temperature. (Bottom) BP crystals 

precipitate as sublimed phosphorus reacts with dissolved boron at elevated temperatures. 

 

To allow the boron to completely react with nickel before reaction with phosphorus 

occurs, the end containing nickel and boron was first heated to and allowed to dwell for 24 hours 

(soak time) at 1150°C, while the other end containing red phosphorus was slowly heated to 

430°C within 24 hours.  Figure 2-3 illustrates soak and dwell times with temperature versus time 

plot for the hot and cold zones of the furnace. The phosphorus end temperature was heated to 

430°C to keep the system’s phosphorus pressure at between 1 - 3 atmospheres. It was important 

for the vessel pressure to not exceed 3 atmospheres because its rupture pressure at room 

temperature is between 5 to 6 atmospheres and less at elevated temperatures. The temperature - 
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pressure relation for phosphorus was calculated using Antoine’s equation (see Equation 3) which 

is in good agreement with experimental measurements done by Iseler et al (48) and Bachmann et 

al (49). The Antoine coefficients for phosphorus are A = 8.18302, B = 2718.69, and C = 

81.7464. In addition, studies done by Bachmann et al (49) suggests that phosphorus sublimes as 

P4 molecule from the 430°C zone, but dissociates to P2 species at the 1150°C zone which creates 

a non-ideal behavior for phosphorus vapor (49). The plot of phosphorus vapor pressure as a 

function of temperature is shown in Figure 2-4. 

                                                                                    (3) 

The solution temperature was held at 1150°C for an extra 28 hours and then was cooled 

to 1000°C at a rate of 3°C per an hour. The whole system was then quench cooled to room 

temperature. A few experiments were conducted at various soak times (0, 24, 36, and 52 hr.), and 

also dwell times (0, 52, 72, and 96 hr.) for different cooling rates (3, 10 and >500°C/hr.), as 

shown in Table 3-2 and Table 3-3. 

 

Figure 2-3: Temperature vs. time plot of the hot and cold zones explaining dwell and soak 

times. 
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Figure 2-4: Calculated phosphorus vapor pressure as a function of temperature. Pressure 

of the system is controlled by phosphorus temperature. 

After crystal growth, while equipped with appropriate PPE (face shield and thermal 

gloves) to prevent any incident from white phosphorus build-up in the quartz tube, the sample 

boat was carefully pulled out of the quartz tube. The nickel phosphide ingot imbedded with BP 

crystal, was etched in aqua regia (a mixture of nitric acid and hydrochloric acid, with a 

volumetric ratio of 1:3) overnight to remove the nickel phosphide away from the crystals at room 

temperature. The resulting crystals were then examined using optical microscopy, and 

characterized with defect selective etching (DSE), x-ray diffraction (XRD), Raman spectroscopy, 

photoluminescence, and energy dispersive spectrometer (EDS). 

 Materials 

Both low and high purity source materials were used in our crystal growth experiments. 

The low purity source materials were used to establish the process and to study the growth rate 

and mechanism, while the high purity source materials were employed to grow higher purity 

crystals. Some information about the source materials is summarized in Table 2-1. The purities 
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quoted by the vendors are usually for metal basis only, and does not include the carbon or 

oxygen. Only Ceradyne provides isotopically pure boron; the other vendors sell only natural 

abundance boron (20% 
10

B and 80% 
11

B). 

Table 2-1: Purity of source materials used for crystal growth. 

Material Purity % Carbon/oxygen Supplier Form Isotope 

Boron 99 C→0.35% 

O2→2.02% 

Materion powder Natural 

abundance 

Boron 97.79  Ceradyne powder Boron-10 

Nickel 99.9 C→0.088% 

O2→0.1% 

Acros 

Organic 

powder Natural 

abundance 

Phosphorus 99  Sigma 

Aldrich 

powder  

Nickel 99.995  Materion 3x3 pellets  

Nickel 99.999  (C<100ppm) Alfa-Aesar powder  

Boron 99.9999 (UHP) C→0.084% 

O2→1.63% 

Ceradyne powder Boron-11 

phosphorus 99.9999  Acros 

Organic 

chunks  

 

Boron and nickel source materials mixtures were contained with two different types of 

sample boats: pyrolytic boron nitride (PBN) and alumina sample boats are shown in Figure 2-7. 

These boats (both 10 cm long) contained fewer impurities and didn’t impede the growth of 

crystals in anyway, or show signs of degradation or deformation during crystal growth. They 

were ideal for quality crystal growth. 

Some information on additional equipment such as the furnace and the vacuum system 

utilized in this study is summarized in Table 2-2. 

  



22 

 

Table 2-2: Summary of equipment utilized during experiments. 

materials Base 

pressure 

Max 

temperature 

size Note  Figure 

Vacuum 

system 

Edward 

roughing pump 

10
-3

 torr   Equipped with 

thermocouple 

and ionic 

pressure 

gauges 

Figure 

2-1, 

Figure 

2-6 
Varian turbo 

pump 

10
-6

 torr  

Four zone 

Furnace 

MoSi2 heating 

elements (3 

zones) 

1 atm. 1550°C  Equipped with 

R-type 

thermocouples, 

and 

programmable 

controllers 

Figure 

2-5 

Resistance wire 

heating elements 

(1 zone) 

1100°C 

Reactor Quartz tube  5 atm. 

(rupture 

pressure) 

1683°C 

(softening) 

1215°C 

(annealing) 

27 mm 

ID x 30 

mm OD 

x 700 

mm long 

Fused at one 

end 

Figure 

2-1 

Sample 

boats 

Pyrolytic boron 

nitride (PBN) 

  10 cm 

long 

PBN boats 

were most 

employed 

Figure 

2-7 

Alumina 
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Figure 2-5: Photographs of the four-zone tube furnace and the controller used in the flux 

growth of BP crystals. 

 

 

Figure 2-6: Schematic of the vacuum system used for evacuating the quartz tube. 
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Figure 2-7: Photograph of the alumina and pBN sample boats used for crystal growth (each 

square is 0.25” x 0.25”). 

 

  

 

 Characterization of BP 

The BP crystals were characterized by several analytical techniques. The surface 

morphology, elemental composition, and defects, were analyzed using optical microscopy, defect 

selective etching (DSE), scanning electron microscopy with energy-dispersive x-ray 

spectroscopy, x-ray diffraction, Raman spectroscopy, and photoluminescence spectroscopy. To 

successfully fabricate BP electronic devices, their electrical properties should be known. 

Therefore, current-voltage (IV), capacitance-voltage (CV), and Hall-effect measurements were 

employed to characterize the electrical properties. 
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 Defect Selective Etching 

Defect selective etching (DSE) of BP crystals was done to identify defects like edge and 

screw dislocations, and to estimate defect densities in the samples. In this technique, etch pits are 

formed on the crystal as a result of the etchant being more reactive at areas with defects or 

impurities. Thus DSE is useful for evaluating the crystal quality through measurement of etch 

pits per unit area. 

BP is chemically inert to aqueous acid and alkalis, but can be preferentially etched by a 

molten mixture of KOH and NaOH to reveal defects (28). Molten KOH and NaOH have been 

successfully employed by many investigators to study III-V compound at various etching 

temperatures (30, 40, 50–54). In this study, etching experiments were done to determine the 

optimum temperature and time to reveal the defects on the grown BP crystals. BP crystals were 

submerged in a eutectic molten mixture of KOH and NaOH (~50 mol% each) with a melting 

point of 170°C contained in a vitreous carbon crucible. Crystal samples were first etched for one 

minute at temperatures ranging from 300 to 475°C, to determine the optimum etching 

temperature. Then a time evolution experiment was conducted at the optimum temperature of 

325°C for times of 2 to 10 minutes. Samples were subsequently examined by optical and 

electron microscopies to determine etch pit sizes, shapes, and densities. The goal was to produce 

individual etch pits that did not merge together, and which could be readily seen with an optical 

microscope. Pit sizes 5-10 μm across were optimal. 

 Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy 

A FEI Nova NanoSEM 430 with an energy-dispersive x-ray spectrometry (EDS) 

attachment was utilized to characterize the surface morphology of the cubic BP crystals, examine 

the etch pits produced by selective etching, and provided elemental mapping analysis. 

SEM captures images by scanning the sample with focused electron beam and detecting 

the emitted secondary and reflected backscattered electrons. Primary electrons are emitted 

thermionically through an electron gun (field-emission gun) (55). When these incident electrons 

come in contact with sample surface, secondary electrons are emitted and are subsequently 

collected and analyzed by a detector. One of the commonly used detector is the Everhart-

Thornley detectors (ETD) (56). Figure 2-8 shows features in a typical SEM system. 
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The samples also emit characteristic x-rays during electron beam bombardment. Since the 

emitted X-ray wavelengths are unique to each element, the x-ray detector in the attached EDS 

analyses the samples to create an elemental composition of the surface.  

If the sample is electrically insulating, surface charging can occur repelling the incident 

electrons and degrading the image quality. Applying a conductive layer can reduce the surface 

charging. Since the SEM imaging and contrast depends mainly on the emitted secondary 

electrons, thin conductive layer (~1-2nm) of gold was sputtered on BP samples using a Hummer 

Sputtering system with a gold target.   

 

Figure 2-8: Depiction of typical SEM system. Primary electrons generated by the electron 

gun are incident on the sample, generating secondary electrons and x-rays. These signals 

are used to generate an image of the surface morphology and elementary composition. 
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 X-ray Diffraction  

The x-ray diffraction (XRD) patterns to study the preferred orientations of the produced 

crystals in this study were taken with a Rigaku MiniFlex II powder x-ray diffractometer which 

has a Cu Kα x-ray source (λ = 0.154056 nm). The patterns were then analyzed with PDXL XRD 

software to identify diffraction peaks. 

XRD studies the atomic arrangements, preferred orientation, crystallographic planes and 

the lattice constant of a crystalline solid (57). An incident beam of x-rays is scattered by planes 

of atoms producing a diffracted x-ray beam. The atoms diffract the x-rays at an angle θ to the 

plane, as shown in Figure 2-9 where the horizontal lines represent crystal planes. The diffracted 

x-ray beams are then detected and counted. The equation known as Bragg’s law, nλ=2dsinθ 

gives a relationship between the x-ray wavelength λ, inter-planar spacing d, the incident angle θ, 

and order of reflection n (1, 2, 3…). By scanning a sample over a range of incident angles, the 

diffracted x-rays are used to obtain the inter-planar spacings which are unique for every material. 

 

Figure 2-9: The Bragg diffraction condition for x-rays by crystal planes with incident 

angle-θ, the distance (d) between crystal planes is determined from Bragg’s law. 
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 Raman Spectroscopy 

Raman spectroscopy is a non-destructive vibrational spectroscopic technique that can be 

employed to analyze organic and inorganic materials and measure the crystallinity of solids 

(55)(58). Raman spectroscopy relies on an intense monochromatic light source incident on a 

sample, which interacts with optical phonons on the sample’s surface creating higher or lower 

photon energy shifts. This interaction is known as Raman-shifted scattering. The reflected 

scattered light and intensities of Raman-shifted wavelengths are easily detected and analyzed 

with a photo-detector to match known wavelengths for identification.  

In this study, Martin Kuball’s research group at the University of Bristol, United 

Kingdom, and Vikas Berry’s research group at Kansas State University obtained Raman spectra. 

Table 2-3 summarizes some of the reported Raman shifts for BP from the literature. BP has been 

widely reported to have characteristic transverse optical (TO) phonon peak at 800cm
-1

 and a 

longitudinal optical (LO) phonon peak at 830cm
-1

.  The spectrum collected was then compared 

with the data presented in literature.  

Table 2-3: Raman peak positions reported for BP 

Raman shift, cm
-1

 FWHM, cm
-1

 Sample Reference 

TO LO 

800 827 17 BP microcrystals 

(CSVT) 

(13) 

806 - 200 Amorphous BP films (22) 

- 

- 

828.6 

846.2 

- 

- 

Natural BP 

Isotope BP 

(32) 

799 828.9 10 BP platelets (59) 

 

 Electrical Characterization 

For useful electronic devices to be fabricated from BP crystals, it is important to 

understand its electrical characteristics and operating parameters such as charge mobility, 

resistivity, conductivity type, and majority carrier concentration. There are various techniques 

available to study the electrical characteristics of semiconducting materials like current –voltage 

(I-V) measurement, capacitance-voltage (C-V), and Hall effect measurements, and deep level 
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transient spectroscopy (DLTS), to determine the resistivity, carrier concentration, threshold 

voltage, breakdown voltage, built-in potential, mobility, contact resistance, barrier height, 

dielectric constant, depletion width, interface states, carrier lifetimes, and deep level impurities 

of a semiconductor. To exploit these electrical properties, the semiconductor material can be 

made into simple devices like Schottky barrier diode and/or ohmic device. Schematic diagrams 

of such devices are shown in Figure 2-10. 

 

Figure 2-10: Perspective view of a Schottky diode and an ohmic device. In this study, 

Schottky barrier contacts were made with gold (Au) while ohmic (linear) contacts were 

made using aluminum (Al). 

 

Making these devices requires the formation of Schottky barriers and ohmic contacts on 

the surface of the BP crystals. In this study, Schottky barrier (rectifying) contacts were made 

with gold (Au), and aluminum (Al) as the ohmic contact (non-rectifying). The BP Schottky 

diodes and ohmic devices were characterized using I-V, C-V, and Hall-effect measurements. 

 1.2 mm
2
 ohmic contacts for both the Schottky diodes and the ohmic devices were made 

by sputtering 5000Ǻ thick aluminum on clean surfaces of BP crystals, and then annealing in 
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vacuum with a rapid thermal annealing system (RTA) at 400ºC for 1min. The annealing diffuses 

some of the aluminum into the BP crystal which promotes low resistance between the metal 

layer and the crystal (60). 1 mm
2
 Schottky barriers were made by sputtering 5000Ǻ thick Au on 

top surface of the crystals through a Si wafer shadow mask. These metals were deposited using a 

Perkin-Elmer plasma sputter system model 4400 equipped with Au and Al targets. All contacts 

made were courtesy of researchers at LLNL. Devices were mounted on a header and wire 

bounded to the external package connectors. A packaged Schottky diode is shown in Figure 

2-11. 

 

Figure 2-11: Packaged diode with Au contact faced down against Ag epoxy tape. Wire 

contacts on the Au & Al contacts were made with Ag epoxy and 0.001" Au wire 

 

I-V measurements on both the Schottky diodes and ohmic devices, and C-V 

measurements on just the Schottky diodes were done using a KEITHELY Model 4200-SCS 

semiconductor characterization system. I-V measurement is typically a plot of electrical current 

through a device with a corresponding voltage bias across it. This shows how a device would 
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behave as a circuit. I-V plot obtained from the Schottky barrier diodes were used to extract the 

ideality factor η, leakage current, and turn-on voltage. Figure 2-12 shows mock I-V 

characteristics plots of a Schottky diode indicating where to extract information. The ideality 

factor η can be obtained from the slope of the semi-log I-V plot by applying equation (4):  

                                                                                            (4), 

where q is the elementary charge = 1.602 x 10
-19

 C, k is the Boltzmann constant = 1.38 x 10
-23

 

J/K, T is the absolute temperature in Kelvin, V is the bias voltage in volts, and I is the current 

across the diode in amps.  

 

Figure 2-12: Semi-log and direct I-V characteristics of a Schottky diode. 

 

I-V measurement on an ohmic device (resistor) should display a linear increase in current 

for all voltages across it. In other words, the resistance is totally independent of the polarity or 

magnitude of the applied voltage bias (60).  The plot of the voltage bias against the current flow 

through an ohmic device will produce a straight line, as shown in Figure 2-13. The slope of the 

linear I-V plot was equal to the total resistance RT of the ohmic device in ohms (Ω), which also is 

the sum of the two contact resistances Rc and the sheet resistance Rs, i.e. . The 

sheet resistivity of the semiconductor, ρsh, was also calculated by measuring the resistance as the 

distance between contacts varies, as illustrated in Figure 2-14.  
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Figure 2-13: I-V characteristics of an Ohmic device. The slope is equal to the total 

resistance (RT) of the material. 
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Figure 2-14: Steps necessary to calculate the sheet resistivity, ρsh. 

 

The majority charge carrier concentration, NB, built-in potential Vbi, and dielectric 

constant εBP, were revealed from the C-V measurements (60). The capacitance of an Au-BP 

Schottky diode was measured as a function of applied voltage at room temperature. Using the 

capacitance versus voltage plot, the dielectric constant of BP was calculated from the maximum 

capacitance per unit area using equation (5).  

                                                                                                       (5) 

Where Cmax is the maximum capacitance per unit area (F/cm
2
),  is vacuum permittivity 

= 8.854 x 10
-14

 F/cm, W is the semiconductor width, and  is the dielectric constant of BP. A 

linear plot was obtained from the C
-2

 versus applied voltage plot, where the intercept at C
-2

 = 0 

corresponds to the built-in potential of the Au-BP Schottky diode. The slope of the linear plot 

W
C BPo

max

o
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was applied to the equation (6) to obtain the majority charge carrier concentration NB, which is 

assumed to be constant.  

                                                                           (6) 

 

One of the most important parameter of a semiconductor is the charge mobility μ. It 

describes how strongly the motion of an electron is influenced by an applied electric field (60). 

Mobility μ, along with resistivity ρ, and charge carrier concentration can accurately be 

determined using the Hall effect measurement. The Hall effect measurement involves studying 

the transport of free carriers in a semiconductor while applying a voltage bias as well as a 

magnetic field (61). Figure 2-15 depicts the Hall effect setup where a constant current I flows 

along the x-axis in the presence of a magnetic field applied in the z-direction. Mobile electrons 

or holes in the semiconductor drift away from the current direction toward the y-axis, resulting in 

an excess surface electrical charge on this side of the semiconductor. This charge results in the 

Hall voltage, a potential drop across the two sides of the sample (62).  

 

Figure 2-15: Hall effect schematic diagram of the applied voltage and magnetic field, and 

the generated electric field (Hall voltage). 

 

To determine the mobility μ of a semiconductor, the Hall voltage VH needs to be 

measured from known values of current I, magnetic field B, and q (1.6*10
-19

C) which are used to 

calculate the sheet density ns of charge carriers in the semiconductor using ns = IB/q|VH|  (62). A 
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negative Hall voltage implies that the majority charge carriers are electrons while a positive 

measurement suggests holes are the majority carriers. The sheet resistance Rs is determined using 

the Van der Pauw technique. Van der Pauw showed that two resistances RA and RB 

corresponding to two terminals shown in Figure 2-16, are related to the sheet resistance Rs 

through the equation (7). RA and RB are obtained using equation (8). 

                                                                                                 (7) 

                                                                                            (8) 

 

 
Figure 2-16: Van der Pauw technique for obtaining sheet resistance Rs. 

Once the sheet resistance Rs is calculated, the mobility μ can then be determined using the 

equation (9). 

                                                                                              (9) 

The Hall effect measurements in this study were done on a BP crystal using a Lakeshore 

Hall effect measuring system. The BP crystal used had an array of ohmic square contacts made 

by first depositing a 10nm adhesive layer of chromium, and then a 200nm layer of gold through a 
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TEM grid shadow mask using E-beam deposition courtesy of researchers at NIST (shown in 

Figure 2-17). The measurement on the BP crystal provided much needed mobility, carrier type, 

and sheet resistance of the synthesized BP. 

 

Figure 2-17: BP crystal with an array of Cr-Au ohmic contacts 
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Chapter 3 - Results and Discussion 

 Crystal Growth Analysis  

Red, transparent and mostly hexagonal-shaped BP crystals were obtained in this study. 

The crystals were randomly distributed throughout the ingot, and sometimes formed in geodes 

surrounded by a Ni5P4 shell as shown in Figure 3-1. The crystals varied in size and morphology. 

The specific cooling rate did have an impact on the distribution, morphology and size. 

Experimental factors that affect the growth of BP crystals are presented in the following sections.   

 

Figure 3-1: (A) Interior of a geode shell containing many BP crystals; (B) Outside shell of 

the geode; (C) BP crystals imbedded in nickel ingot 
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 Boron-Nickel-Phosphorus Composition 

Experiments were conducted with several boron, nickel, and phosphorus compositions. 

Although nickel and boron powder were mixed in amounts to produce a eutectic composition of 

55 mol. % of nickel and 45 mol.% of boron, typically a quarter of the boron powder didn’t 

dissolved. It remained as powder that was separated from the ingot (see Figure 3-2). If the B-Ni 

solution contains less than 55 mol. % of nickel, some of the boron reacts with the nickel and 

phosphorus but most of the boron was unchanged (see Figure 3-3). A homogenous mixture is 

achieved when 45 mol. % of boron in nickel is reacted with phosphorus (shown in Figure 3-4), 

which is the eutectic composition for B-Ni binary system (63).  

When there was insufficient phosphorus (less than 49 mol. %) in the tube, black crystals 

(shown in Figure 3-5) formed with a few red crystals. In this case, the dissolved boron is 

deprived of phosphorus from the formation of nickel phosphides. The formed crystals and the 

nickel ingot were analyzed with XRD. The XRD patterns in Figure 3-7 prove that Ni5P4 and 

B12P2 were formed in these instances. 49 mol. % of phosphorus is required for the formation of 

stoichiometric BP and Ni5P4. Experiments conducted with the appropriate composition (2:3:5 

mol ratio of B: Ni: P) produced red and transparent BP crystals as shown in Figure 3-6. The 

XRD pattern of the red crystals obtained (shown in Figure 3-8) matched that reported for BP 

[peak from (111), (200), (220), (311), and (222) planes] consistent with those reported in 

literatures (12, 22, 38, 45, 64). The preferred orientation of the BP crystals was the (111) plane, 

which has a peak FWHM of 0.275° demonstrating its high crystallinity. 

The SEM image with EDS mapping of a BP crystal as shown in Figure 3-9, shows the 

morphology of this 1.5 mm single crystal contained flat facets. The EDS compositional analysis 

of a BP crystal was 74 wt% (49.8 at %) for phosphorus and 26-wt% (50.1 at %) for boron, 

demonstrating the stoichiometry of boron to phosphorus has a 1:1 ratio.  

The black and red crystals were compared using Raman spectroscopy. Figure 3-10 shows 

the Raman peaks of a BP crystal compared to the crystal in Figure 3-5A incorporated with B12P2. 

These Raman spectra of BP, done by Vikas Berry’s group at KSU, shows a convoluted shift at 

833 cm
-1 

which is a combination of the characteristic transverse optical (TO) and longitudinal 

optical (LO) phonon peaks known to be at 800 cm
-1 

and 830 cm
-1

, respectively (13). The B12P2 

spectra had peaks that corresponds to the characteristic peaks reported in literature (65, 66). 

Another Raman spectra of BP in Figure 3-11, done by Martin Kuball’s group at University of 
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Bristol, illustrates the not-convoluted Raman peaks of a BP crystal with the TO peak at 800 cm
-1

 

and LO peak at 830 cm
-1

. The FWHM of the LO peak is 4 cm
-1

 showing the high-ordered 

crystallinity of the produced crystals.  
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Table 3-1 summaries the results obtained from various reactant compositions. 

 

 

Figure 3-2: An experiment with 3:5:2 mole ratios of boron, nickel and phosphorus, 

respectively, with soak time of 36hr, dwell temperature of 1150°C, and cooling rate of 

3°C/hr.  The ingot containing relatively high amount of nickel easily separated from the 

boron.  
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Figure 3-3: An experiment with 3:3:4 mole ratios of boron, nickel and phosphorus, 

respectively, with soak time of 36hr, dwell temperature of 1150°C, and cooling rate of 

3°C/hr.  Some boron powder didn’t react with nickel and phosphorus. 

 

 

Figure 3-4: An experiment with 3:4:3 mole ratios of boron, nickel and phosphorus, 

respectively, with soak time of 36hr, dwell temperature of 1150°C, and cooling rate of 

3°C/hr.  Boron completely reacted with nickel and phosphorus. 
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Figure 3-5: (A) black crystals incorporated in BP crystal. (B) Black crystals formed where 

there was insufficient phosphorus. Subsequent XRD and Raman spectroscopy 

demonstrated these were B12P2 crystals. 
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Figure 3-6: BP crystals formed with 2:3:5 mol ratio of B: Ni: P at dwell temperature of 

1150°C, dwell time of 72hr, soak time of 12hr, and cooling rate of 3°C/hr.  

 



44 

 

 

Figure 3-7: XRD patterns comparing products from an experiment where dissolved boron 

is deprived of phosphorus from the formation of nickel phosphides. Top two patterns show 

the formation of nickel phosphide and icosahedral boron phosphide (black crystals). 
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Figure 3-8: A characteristic XRD pattern from a BP crystal. The crystal planes associated 

with each peak are labeled. 

 

 

Figure 3-9: (left) SEM images of a 1.5 mm BP crystal showing its facets, (right) EDS 

mapping of BP crystal surface illustrating 1:1 ratio of boron to phosphorus where green 

and red indicate boron and phosphorus respectively. 
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Figure 3-10: Raman spectroscopy comparison of BP crystal and BP with B12P2 crystals. 

B12P2 crystals were formed from an experiment where the dissolved boron was deprived of 

phosphorus from the formation of nickel phosphides.  
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Figure 3-11: Raman spectra from a pure BP crystal with the TO peak at 800 cm
-1

 and LO 

peak at 830 cm
-1

.  
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Table 3-1: Summary of B: P: Ni compositions used in some experiments and the resulting 

crystal sizes. 

Ternary Compositions – 
B:P:Ni 
(Mol %) 

B in Ni 
(Mol %) 

Largest 
Crystal Length 

(mm) 

comments 

B P Ni 

22.5 50 27.5 44.9 1.7  

29.4 34.9 35.7 45.1 1.2  B dissolves, but not enough 
P2. Black crystals formed 

29.8 30.7 39.5 42.9 0.8 Most B dissolves 

35.9 37.6 26.5 57.6 0.4 Some B dissolves 

28.3 19.7 52 35.2 N/A Most of P reacts with Ni  

16.5 23 60.5 21.4 N/A Too much Ni promotes 
separation 

 

 Phosphorus Pressure 

The amount of phosphorus in the system is not the only factor that affects the 

stoichiometry of the BP crystals formed, its vapor pressure is also important. As discussed in 

Chapter 2, if the vapor pressure of sublimed phosphorus is less than 1 atmosphere, phosphorus 

reacts with boron and nickel, but it dissociates from boron phosphide (forming no crystals or 

only B12P2). Most of the phosphorus then deposits at the cooler end of the reaction vessel (quartz 

tube) after the experiment (as shown in Figure 3-12). Since the pressure of phosphorus in the 

system is controlled by the temperature, the cooler end of the quartz tube had to be kept slightly 

above 430°C to achieve a reaction pressure of 1-3 atmospheres. Above 450°C, the phosphorus 

vapor pressure is above 5 atm (see Figure 2-4) which can expand and rupture the quartz tube as 

shown in Figure 3-13. The rupture occurs at the hotter end of the quartz tube where the expanded 

phosphorus gases (expands from P4 to 2P2) exerts more force on the softened quartz tube walls. 
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Figure 3-12: phosphorus deposited on quartz tube walls 
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Figure 3-13: Ruptured quartz tube caused by high phosphorus vapor pressure. The tube 

diameter expanded to more than twice its original size before breaking. 

 Boron-Nickel Mixture Soak Time 

The impact of the soak time, the time allotted for the nickel-boron solution to form before 

introducing phosphorus vapor was studied in several experiments. In cases where the phosphorus 

vapor was created and introduced to the B-Ni mixture without any soak time, almost no BP 

crystals formed. Apparently, the formation of Ni5P4 impeded the growth of BP crystals. Several 

experiments were conducted at various soak time and cooling rates (see Table 3-2) to prove that 

soak time really does effect the size of the crystals. Figure 3-14 shows a plot of maximum BP 

crystal size grown with a constant cooling rate of 3°C/hr. versus soak time. The largest BP 

crystals, sizes of up to 2.5 mm, were produced at the longest soak time, 52 hr, with a dwell time 

of 72 hours. Probably more boron is dissolved with longer soak times, and this contributes to 

larger BP crystals forming.  



51 

 

 

Figure 3-14: The maximum crystal length versus soak time with constant growth 

temperature (1150°C) and cooling rate (3°C/hr.) kept relatively constant 

 

Table 3-2: BP crystal size as a function of cooling rates and soak times. 

Dwell time constant at 72 hr. 

  Soak times at 1150°C (hr.) 

cooling 
rate  0 hr. 24 hr. 36 hr. 52 hr. 

500°C/hr. 0mm 0.2mm 0.5mm 1mm 

10°C/hr. 0.4mm 0.8mm 1.2mm 1.5mm 

3°C/hr. 1mm 1.2mm 2.2mm 2.5mm 
 

 Reaction Temperature Dwell Time 

Another set of experiments examined whether the time allowed for phosphorus reaction 

with the B-Ni mixture had any effects on the growth of BP crystals. Table 3-3 summaries the 

results of crystal growth carried out at constant soak time of 36 hr. with varying cooling rates and 
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dwell times. The maximum crystal size increased with the dwell time. The largest crystal, length 

of 4 mm, was obtained with a soak time of 36 hr. and a dwell time of 96 hr. This result suggests 

that with more time the phosphorus can completely diffuse into the B-Ni solution. Figure 3-15 

shows the plot of crystal sizes grown at various dwell times with a constant cooling rate of 

3°C/hr. and growth temperature of 1150°C. 

Table 3-3: BP crystal size as a function of cooling rates and high temperature dwell times. 

Soak time constant at 36 hr. 

cooling rate  Dwell times at 1150°C (hr.) 

 0 hr. 52 hr. 72 hr. 96 hr. 

500°C/hr. 0 mm 0 mm 0.5 mm 1 mm 

10°C/hr. 0 mm 1 mm 1.5 mm 2.5 mm 

3°C/hr. 0 mm 1.2 mm 2.5 mm 4 mm 
 

 

Figure 3-15: Crystal length versus dwell time with constant growth temperature (1150°C) 

and cooling rate (3°C/hr.). 
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 Reaction Cooling Rate 

The cooling rate also affected the crystal size. Plots of the crystal length for three cooling 

rates are presented in Figure 3-16 and Figure 3-17. Granule size crystals (<<1 mm) were formed 

at high cooling rates (>10 ºC/hr.), while slower cooling rates produced larger crystals formed. 

Thus, it is safe to say that slow cooling rates allow the already formed BP nuclei to act as seeds 

to form bigger crystalline structures.  

 

Figure 3-16: Crystal size versus soak time for three cooling rates. The crystal size increases 

with the soak time and decrease with cooling rate. 
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Figure 3-17: The crystal size at various dwell times for three cooling rates. 

 Additional Characterization Results  

 Defect Selective Etching (DSE) 

The defect selective etching temperature and time was optimized by utilizing 50:50 

eutectic mixtures of KOH and NaOH as an etchant. The crystals were etched within a minute at 

temperatures above 325°C, but weren’t visibly etched at 300°C. The crystals were first visibly 

etched within two minutes at 300°C and etched faster above 325°C. BP didn’t etch below 300°C 

but revealed lots of etch pits above 325°C after one minute. The etchant produced triangular and 

striated etch pits on two different crystal planes, probably (111) and (100).   

Studies to optimize the etch temperature were done first at temperatures between 300°C 

and 475°C for one minute. For this amount of time the crystals were etched at 325°C, 350°C, 

425°C, and 475°C. SEM images of the results are shown in Figure 3-18. The etch pit edges were 

rough and the overlapped when etched between 325°C and 475°C. At 475ºC, the etching is very 

aggressive and is no longer selective, based on Figure 3-18D. Thus, such conditions were too 
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aggressive to accurately determine the EPD. Etching above 325°C is too high a temperature for 

one minute. Although at 300°C etching for one minute did not produce any etch pits, pits were 

seen after two minutes. Images of the same crystal before and after etching at 300°C for 2 

minutes are shown in Figure 3-19.  Both triangular and striated etch pits were observed on 

different facets of the crystal. SEM image of the crystal (seen in Figure 3-20) has some 

overlapping etch pits, but it was good enough to obtain an average EPD.  The calculated average 

EPD of the triangular and striated etch pits were ~4 x 10
7
 cm

-2
 and 9.2 x 10

7
 cm

-2
 respectively. 

For other semiconductors such as GaAs, InP, and GaN, the polarity of the close-packed 

planes can be distinguished by etching. For example, the N-polar (0001) GaN plane is reactive 

while the Ga-polar plane is essentially inert. Etch pits were observed on two facet of the BP 

crystals. If the etching behavior of boron phosphide is similar to other boron semiconductors, the 

boron polarized facets on the boron phosphide will always develop etch pits (67). The (111) 

plane in a zinc blende structure could be either B-polar or P-polar. The B-polarity is (111) while 

the P-polar surface is (  ̅̅̅̅  ). This makes it easy to distinguish the different facets of a BP crystal. 

Ideally, DSE should produce sharp edges and flat surfaces that correspond to slow 

etching crystallographic planes. Such well-defined features are produced with the DSE of other 

semiconductors such as GaN, SiC, and GaAs. The shape of the etch pits formed is determined by 

the specific crystal plane being etched and the slow etching planes that intersect the surface. 

Inverted tetrahedrons and pyramids are common to cubic symmetry (or zinc-blende) DSE etched 

(111) and (100) planes respectively. Rectangles occur on the (110) planes. The same general 

shapes are visible after etching BP crystals, but the edges of the features are rougher and less 

defined. 
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Figure 3-18: SEM images of BP etched in eutectic KOH/NaOH at (A) 325°C, (B) 350°C, (C) 

425°C and 475°C for one minute. 
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Figure 3-19: Microscope images of BP before etching at 300°C under low magnification 

(top), etched at 300°C for 2 minutes revealing triangular etch pits (middle) and striated 

etch pits (bottom). 
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Figure 3-20: SEM image of two different facets of a BP crystal etched at 300°C for 2 

minutes. (Top) Triangle-shaped pits formed on what is probably a (111) facet, (bottom) 

rectangle-shaped pits formed on what is probably a (110) plane. The string-like features 

are probably residual KOH-NaOH remaining on the surface of the sample. 
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 Electrical Analysis 

The I-V measurement of an Au-BP Schottky device is shown in Figure 3-21. The device 

had rectifying behavior which is evident from the plateau between -2V to +0.5V. This is typical 

for a diode.  I-V plot along with its semi-log plot (seen in Figure 3-22) was employed to compute 

the turn-on voltage, ideality factor, and leakage current density of the diode. Rectifying behavior 

is desired because small fluctuations of voltage in this region during operation of a neutron 

detector will not produce any significant change in current. Therefore, only current changes due 

to interaction with neutrons will be measured. The turn-on voltage of the devices is around 0.9V, 

had an ideality factor of 2.4, and a leakage current density of 0.40 μA*cm
-2

.
  
The high ideality 

factor (η = 1 for ideal) of the device results from compensating impurities in the BP crystals, 

which reduces the resistance, R in the diode. 

 

 

Figure 3-21: I-V measurement of an Au-BP Schottky diode showing a rectifying behavior. 
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Figure 3-22: Semi-log I-V plot of an Au-BP Schottky diode. 

 

The resistivity, ρsh of the BP crystals was also calculated from a I-V measurement. 

Measurements were made between the 1-2, 1-5, and 1-6 Au-Cr ohmic contacts on a BP crystal 

(shown in Figure 3-23). The I-V plot in Figure 3-24 shows that the slope which is the inverse of 

the resistance, decreases as spacing between the contacts increases. This is also illustrated in the 

plot of contact distance against resistance in Figure 3-25.  The contact resistance was 0.0964 

Ω*cm
2
, and the resistivity of the BP crystal was approximately 0.0136 Ω*cm which is well 

within the range reported in literature between ~ 10
2
 to 10

-4
 Ω*cm (10, 31, 32).   
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Figure 3-23: A SEM micrograph of a BP crystal with numbered Au-Cr ohmic contacts for 

resistivity and Hall-effect measurements. 
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Figure 3-24: I-V plots between ohmic contacts at various contact spacings on a BP crystal. 
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Figure 3-25: Ohmic contact spacing length on a BP crystal versus its resistance. The 

resulting slope is the resistance and the y-intercept is the contact resistance of the crystal 

shown in Figure 3-23. 

 

The result of the capacitance measurement for Au-BP Schottky device at various voltages 

is shown in Figure 3-26. The device was fully depleted at a reverse bias of -0.5 V demonstrating 

low-voltage operations. The plot of capacitance showed signs of hysteresis as positive and 

negative voltage sweeps during data collection showed different results. The hysteresis behavior 

could be the result of high charge trapping caused by impurities in the crystal. This made it 

difficult to calculate the dopant density, and dielectric constant of the Au-BP Schottky device. 

Several researchers have reported values of the dielectric constant and dopant density to be 

between 6.9-11 and ~10
15

-10
18 

cm
-3

 respectively (36, 42, 68–70). The linear relation of 1/C
2
 with 

the voltage is shown in Figure 3-27. The extrapolation of the line to the voltage axis intercept 

gives a value for the built-in potential of the device of 0.64 volts. This means that any external 
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current (from the neutron interaction) passed through the Schottky device will develop about 

0.64 volts across it.  

 

Figure 3-26: Capacitance versus voltage measurement of the BP Schottky diode. The 

response was slightly different as the voltage was swept in the opposite direction leading to 

hysteresis. 
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Figure 3-27: 1/C
2
 versus applied voltage bias for Au-BP Schottky diode. 

 

Further electrical evaluation was done on the BP crystal shown in Figure 3-23 utilizing a 

Hall-effect measurement with a magnetic field of 5 kG at room temperature. The crystal had n-

type conductivity with a resistivity of 0.0137 Ω*cm, the same as result calculated using 

resistance at various contact spacings. The highest carrier mobility and the lowest carrier 

concentration of the BP crystal were ~39.8 cm
2
/(V*s) and 1.141 x 10

19
 cm

-3 
which is similar to 

the  results reported in literature (10, 11, 29, 71) for BP grown through other methods without 

any intentional doping of the crystal. The mobility is high enough to quickly move and collect 

electrons and holes created from neutron interaction before they recombined or are trapped (72). 
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Chapter 4 - Conclusions and Recommendations 

The goal of this research was to grown cubic BP crystals that could be used in neutron 

detectors. Some parameters such as the growth conditions, and reactant compositions, as well as 

the structural characterization, and electrical properties of the crystals were examined. 

At a growth temperature of 1150°C, with a boron and nickel eutectic composition 

(45at.%  boron), the longer the soak time the more homogeneous the solution became. Since 

boron and nickel phosphides are formed when phosphorus vapor interacts with the metal 

solution, a reasonable amount of phosphorus (>40 mol. %) along with vapor pressure greater 

than atmospheric (but not greater than the reactor’s rupture pressure) was required to insure the 

formation of stoichiometric BP and also the nickel phosphide side product. Larger crystals, with 

dimensions up to 3 mm x 4 mm x 1 mm, were obtained from experiments with  an extended 

reaction time (dwell time at 96 hr.), and also a slow cooling rate (<3°C/hr.) than from 

experiments with no reaction time and fast cooling rate. Applying these parameters to a large 

scale of crystal growth may yield larger size crystals (>1 cm
3
) which will make device 

fabrication of neutron detectors easier. 

X-Ray diffraction showed that the BP crystals are highly crystalline. The FWHM of the 

narrowest peak, (111), is 0.275° which is the narrowest ever reported. This demonstrates the high 

quality of the produced crystals.  

The Raman spectroscopy of the crystals showed intense, sharp phonon peaks located at 

800 cm
-1

 and 830 cm
-1

, in agreement to values reported in the literature. The FWHM of the 830 

cm-1 peak is 4 cm-1 which also shows that the crystals are high quality crystals. 

Defect selective etching of BP crystals at 300°C for 2 minutes in molten eutectic mixture 

of KOH and NaOH produced low densities of triangular and striated etch pits of about 4 x 10
7
 

cm
-2

 and 9.2 x 10
7
 cm

-2
 respectively on different facets of BP crystals. These different facets 

which are believed to be the (111) B and (100) faces of BP crystals would require further 

investigation. Calibration is needed to make it clear what defect is associated with the etch pits 

formed. Possibilities include edge screw and mixed dislocations. 

The electrical characteristics of the produced crystals were measured with I-V, C-V, and 

Hall-effect measurements. I-V measurement of a diode made for a BP crystal, showed a 

rectifying behavior with, a turn-on voltage of 0.9V, a leakage current density of  0.4 μA*cm
-2

, 
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and an ideality factor of 2.4. A built-in potential of 0.64 volts was calculated from the C-V 

measurement of the diode. Hall-effect measurement revealed that the crystals produced were n-

type carriers with a charge mobility of 39.8 cm
2
/(V*s), a carrier concentration of 1.149 x 10

19 

cm
-3

, and resistivity of 0.0137 Ω*cm. Although properties needed for neutron detection such as, 

high charge mobility, high resistivity and low operation voltage were achieved, the crystals have 

high ideality factor, and below normal electrical properties. This can be credited to impurity 

concentrations in the crystals and also the metal contacts. There could be more optimization of 

the metal contacts. I think this could be a big source of the problem.  

Future study will surely include producing larger, higher purity quality BP crystals. 

Measuring the impurity concentrations is the first step, and then reducing their concentration is 

next. This can be done by starting with higher purity source materials and introducing oxygen 

absorbing metal (such as Ti, Al) in the reaction vessel during a scaled-up flux growth, or by 

using crystals grown through flux growth as substrates for epitaxial growth of BP crystals with 

less lattice constraints and easily controlled doping. Higher purity crystals will improve BP’s 

electrical properties so it can be applied in neutron detection. Thus, a more precise elemental 

analysis is recommended to track improvements of the crystal purity. Although 4 mm sized 

crystals are sufficient enough for neutron capture, scaling up to produce larger crystals will allow 

for easy handling and easier device fabrication.  
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Chapter 5 - Appendix 

 Flux growth of boron phosphide (BP) crystals procedure 

 Purpose 

The goal of this experiment is to grow BP crystals of high structural quality and low 

residual impurity concentrations using the flux growth method. 

 Hazards 

Red phosphorus is one of the source materials employed in this project. It comes in 

powder form or 1-5mm chunks. It is a flammable solid, and will ignite at sudden impacts. At 

normal temperature and humidity, red phosphorus reacts slowly with water vapor and oxygen in 

the air to form phosphine gas, which is extremely toxic; therefore it should be handled carefully 

with minimum exposure to air. 

White phosphorus is formed in the sealed quartz tube during high temperature 

experiments. It is highly flammable and pyrophoric (self-igniting) upon contact with air and is 

toxic (causing severe liver damage on ingestion). The fumes of combustion of phosphorus 

consist of phosphorus pentoxide (P4O10), which is also highly toxic if inhaled. It is recommended 

to wear appropriate personal protective equipment (PPE) (shaded face shield, apron and thermal 

gloves), and also to work under a high performance fume-hood when opening a quartz tube 

containing white phosphorus. 

Quartz tube pressure is very important to monitor during experiments. The rupture 

pressure of the quartz tube is rated as 5 atmospheres at room temperature. An overpressure of the 

quartz tube during experiments will result in rupture, thus causing an explosion due to white 

phosphorus being exposed to air. To avoid such accidents, one end of the sealed quartz tube is 

kept at a temperature between (but no more than) 430-450°C, which keeps the tube’s pressure 

between 1-3 atmospheres during experiments.  
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 Procedure 

First, slowly add pure phosphorus powder (or chunks) to the fused end of a 25mm ID x 

28.8mm OD x 500mm long quartz tube. Next, mix boron and nickel powder in a Pyrolytic boron 

nitride boat, and place the boat into the quartz tube. 

Next, connect the quartz tube to a vacuum system, and heat with heating tape to about 

100°C to remove adsorbed water and other volatile impurities. Evacuate the system while it is 

heated overnight to pressure of about 10
-6

 Torr. Seal the quartz tube under vacuum using a 

hydrogen and oxygen torch. And then place the sealed tube in a multi zone furnace.  

Slowly heat up the end containing nickel and boron to 1150°C within 12 hours, while 

simultaneously heating the end containing phosphorus to 430°C within 24 hours. Hold the 

temperature of the nickel and boron end at 1150°C for 24 hours and then cool to 1000°C at a rate 

of 3°C per an hour. Quench cool the whole system to room temperature.  

After growth, with the appropriate PPE and under a fume hood, cut the quartz tube open 

with a diamond saw, and let the tube vent. Pull out the nickel melt containing the BP crystals 

from the tube and put it in Aqua Regia (a mixture of nitric acid and hydrochloric acid, at 

volumetric ratio 1:3) overnight to etch the nickel away from the crystals at room temperature. 

Finally, rinse the leftover crystals with water and let air dry.  

 


