AN IMPLEMENTATION OF
4 SOFTWARE ENGINEERING PROJECT MANAGEMENT SYSTEM:
A TOCL FOR
A PROTOTYPE SOFTWARE ENGINEERING ENVIRCNMENT

by

OLIVER BERT CASTLE

B. 8,, Miami University, Oxford, Ohio, 1973

A ﬂASTER'S REFORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

EANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

Major Professor

LD A11202 o1,
2663 : 8313
R ACKNOWLEDGEMENTS
/987
<C BY
¢ £
This Master's Report is dedicated to my Lord, who arranged
my circumstances and gave me the motivation to see it

completed.

A special thanks to Dr. David Gustafson for his detailed
review of this report and his guidance and help throughout
the course of the implementation. I would also like to
thank Dr. William Hankley and Dr. Virgil Wallentine for

their time and advice.

I am indebted to my mother for teaching me the joy of
learning and the value of education. Alsc, 2 sincere thank
you to my lovely wife, Janice, for her patience and constant

support.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

AN IMPLEMENTATION OF
A SOFTWARE ENGINEERING PROGJECT MANAGEMENT SYSTEM:
A TOOL FOR
A PROTOTYPE SOFTWARE ENGINEERING ENVIRONMENT

CHAPTER ONE- OveWie”-o-oouo ----- ese v Ssservanv o .
1wl IntroductioN..s.esesmemsemvmimeoesssssssss svmms s

1.2 Computer Systems Evolution and Project
Management. oo reessosntossscsssossanannonanacnsosns

1.3 Fifth-Generation and Beyond.eeeveeeosonons ace mrenmapate
1.4 The DoD STARS ProOgrale . osseoeecescessoscssssoasasses
1.5 Project Management and Beyond.eeeeeereeeesenann R
CHAPTER TWO = RequirementsS.....ciceeeveccennnenonas ceeae
Zw] IDEroduetioneees ¢esans vasauen cectesasasennanns

2.2 RequirementS...cecesssesceevrosscnconnnsncanns o wrwe

2.2.1 Interactive Processing RequirementsS.........

2.2.2 Graphic Generation RequirementS....eeeesvees
2.3 Interfaces: Software/Hardware....esvececsccsssncnss
2.4 Validation Criteri@.cecesccscecsocseecnsenacssnanss
CHAPTER THREE = DeSiglessesecsconsorsonsnasnnnse cessaons
3.1 Introductioliececeeececaceoossvanosnnnsasasns sivsvia
3.2 Design .DeclBloNSewemmen ¢ s sasvmiimaeiasd § 655 00k

3.3 Structured Design TeChNiquUeS.esevessecsesacsooncens

3.4 Data and File OrganizatioNieseecececeees T
3.5 Input and Qutput.seveseceoncens # ST e § S
CHAPTER FOUR = SUMAIY .0 eocesoecosoressooosasannssss 3 8w
BEFERENCES, «v.« ¢ o o 4 2 » siswwaucaie VRS B 8 e W e e SR e
AfPENDICES............................

14
14
14
15
18
18
19
20
20
20
20
27
28
29
32
37

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Program/Module Design: interact.pececcecees
Program/Module Design: grafgéf.Pssescccnses
Data Structure: Activity Dat@.c.seecevcsones
Data Structure: Label File.cevoseereneneans
Data Structure: Budgeted Manhours File.....
Data Structure: PERT Time Fil€...veeseersse
Bar Charts.csssssesvencnsnncrsassnanssnanse
Source Code: interact.Picecescrsasosnranssos
Source Code: grafgeN.Peiccesnarsrnsssssnosns
Graphics CommandS....vessvscaverrrravenncsa
Shell CommandS.scececcovssasssssscccocnoasss
User's Guide.sseesssncessssssnssssnaannanes

Manual Page DescriptionS.e.cesveccveccsssas

- ii -

38
40
41
42
43
4y
45
46
60
63
64
66
68

Figure 2-1.
Figure 2-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figur'e 3-7 .

LIST OF FIGURES

Project Management Menu Screel.sesscavereas
Avtivity Display . sewwssassss s ssses s smmaegs

Hierarchy Block Diagram of Project
Management System ...ceevocevscrnssnscccaas

Hierarchy Block Diagram of Interactive
Processing Software Component....essvveeess

Hierarchy Block Diagram of Graphic
Generation Software Component.,..ceceenccsas

Program Flow Chart of interact.pPrscecssccss

Program Flow Chart of grafgen.pPececercecscs

- iii -

16

17

22

23

24
25
26

LIST OF TABLES

TABLE 1-1. Evolution of Computer SystemS...eeesssssesss y
TABLE 1-2, FGCS Project Schedul€.sieseessscccsssaneness 8
TABLE 1-3. Software Engineering Tools and Methods...... 11
TABLE 2=4. Interfaces: Software/Hardware........eeses.. 18

TABLE 2-5. Project ObjectiveS.iceecccsesccrsssassaaness 19

- iV =

CHAPTER ONE - O '

1.1 Introduction

There are two major research and development projects which
could have a great effect on both the traditional von
Neumann computer systems and the software development
enviromment. One is fifth-generation computer systems
(FGCS) project and the other the STARS program. The United

States and Japan are the two major participants.

The Japanese aim to develop by 1990 a prototype FGCS which
will be a knowledge information processing system and
processor. The plan for the project has been documented in
a series of reports [JIPDC, 1981]. Also nearly every
technical publication has had an article of FGCS in the last

two years.

The U,S. Department of Defense (DoD) has consistently moved
to advance computer technology, such as the VHSIC--very high
speed integrated circuit [Sumney, 1982] and Ada® [Carlson-
Druffel-Fisher-Whitaker, 1980], [Freeman-Wasserman, 1983]
programs, Now the U.S3, has begun a program to develop

sof tware techniques call STARS--Software Technology

supporting the development of Adaptable, Reliable Systems.

®# Ada is a trademark of the U.S. Department of Defense.

This Master's report documents the development of the
Project Management System, that will provide features for a
prototype of a software development enviromment suitable for
either FGCS or the STARS effort introduced in opening
paragraphs. The Project Management System is an interactive
system that maintains a data base of manhours by project
activities. The system calculates cumulative manhours to
completion by activity and tracks remaining manhours by
activity. In addition to generating an output activity
status report, graphic displays are constructed on either a
graphic display terminal or a plotter. Graphic displays
include a bar chart of manhours allocation against remaining
manhours by activity and a bar chart showing PERT time

estimates to allocated manhours for each activity.

The remainder of this chapter presents a literature survey
of FGCS and STARS., This survey will discuss issues related
to the project-=Project management, the FGCS project, and
the STARS program. The literature survey first discusses
the parallel evolution of project management and generations
of computer systems., This evolution is depicted both in
terms of hardware and application areas. Next surveyed is
the the DoD STARS program. The survey addresses the
rationale behind the program. Project management is
discussed as one of the major technical areas within the

STARS program noting Japan's interest in project mangement.

The remaining chapters of this Master's Report address the
major areas within the development of the implementation
Project Management System. Each chapter focusing on a
particular area in the implementation. Chapter Two contains
the requirements for the Project Management System
implementation. Here we clearly and precisely describe each
of the essential requirements of the implementation and the
external interfaces. CHAPTER THREE presents the design of
the Project Management System. Discussed are design
decisions, techniques, data and file organization and I/0
(input and output). Finally, the Master's Report concludes
with the author's summary and general impressions of the

project as a whole,

1.2 Computer Systems Evolution and Project Management

The context in which software has been developed and the
need for project management is closely coupled to three
generations of computer system evolution. Table 1-1 depicts
the evolution of computer-based systems both in terms of
application area [Pressman, 1982] and hardware
characteristies [Lord, 1983]. Better hardware performance,
smaller size, and lower cost have precipitated more
sophisticated systems. Computer system generations have
moved from slow vacuum tube predecessors to fast

microelectronic devices [Ovorne, 1979], [Toffler, 1978].

S T N e T
1t e e e e e R R

First-Generation (1951-1960)
hardware: characterized by the vacuum tube
application area: batch orientation, limited distribution,
custom software

Second-Ceneration (1960 to mid-1970's)
hardware: characterized by the transistor
application area: multiuser, real-time, product
sof'tware

Third-Generation (mid-1960's to early 1970's)
hardware: characterized by microminiatur integrated circuit
fabrication techniques

Fourth=-Generation (mid 1970's -)
hardware: characterized by "plug compatible"
application area: consumer computing, office automation,
data collection

e T e T Ty O L T T o T
44+ttt Tt R e e e e

TABLE 1-1. Evolution of Computer Systems

During the first-generation, hardware underwent continual

change while software was viewed by many as an afterthought.
Few systematic methods existed for computer programming.

Sof tware development was virtually unmanaged., When projects
were managed, it was not until schedules slipped or costs
escalated. Software was custom designed for each
application and had a relatively limited distribution.
Design was an implicit process performed in one's head and
rarely controlled or documented. During the first-

generation 1little was learned about project management.

Second=-generation computer systems introduced new concepts
of human-machine interaction. Multiuser systems,
interactive techniques, and real-time systems led to new
levels of both hardware and software techniques. The
second=-generation was characterized by the introduction of
product software, i.e. programs developed to be sold in a
multidisciplinary market. This increased growth in computer
systems software carried with it management problems.
Problems assoclated with how we develop software, how we
maintain a growing volume of existing software, and how we
can expect to keep pace with a growing demand for more

sof tware had to be resolved., Software development was out of
control. There was a management problem, This situation
led to what has been called the software crisis [Pressman,
1982]. The term "software engineering” was coined during

this time too,

Third=-generation of computer system was an architectural
departure from its predecessors, Microminiature integrated
circuit fabrication techniques resulted in the availability
of complex logical functions and embedded intelliéence at
low cost. While advances in hardware inereased
dramatically, our ability to deal with increasing complexity
and still produce software on time and within hudget had not
kept pace. The software crisis heightened. As a response
to the software crisis, project management began to be taken
seriously. Fundamental research in systems development
began. Software management and development aids were

proposed.

Progression to fourth-generation computer systems
[Hessinger, 19841, [Cochran, 1983] has been an evolution of,
not a departure from, third-generation concepts. The
significant advances in what has been termed Very-large-
scale intergration, commonly referred to as VLSI is
resulting in more densely packaged components and is
premitting very dense RAM (random access memories) memories.
This microminiaturization permits increasingly more powerful
devices to be packaged in smaller physical space. Equally
important is the fact that the new technology results in
lower costs and hence, lower prices. These lower prices are
justification for new software applications with vast market

potential [Weil, 1982]. There became an increased use of

sof tware engineering techniques and automated sof tware
development tocls. The transition from a technical to a
consumer marketplace demands professionalism that can be

accomplished only through project management.

1.3 Fifth-Generation and Beyond

Transition to fifth=-generation computer systems and beyond
has already begun. In October 1981, Japan's Ministry of
International Trade and Industry (MITI) sponsored a
conference to announce a new national project. Alongside
national projects in supercomputering [Marbach, 19831],
[Norrie, 1984] and roboties [Togai, 1984], there would be a
effort to develop a new generation of computers known as the

fifth-generation computer systems or FGCS [Moto-oka, 1982].

FGCS is being developed predominately for use with knowledge
information processing systems, They are expected to come
into wide spread utilization in the 1990s [Moto-oka, 1982],
[Treleaven-Lime, 1982]. These knowledge information
processing systems or KIPS, will be able to reason, learn,
associate, and make inferences [Duda-Gaschnig, 1981]. This
type of nonnumeric data processing will regquire a departure
from the conventional architectures found in today's
computers to new architectures [Moto-oka, 1983]. Computer
scientists in Japan have designed a ten year research and

development plan in three stages given in Table 1-2.

= N T e T

Stage 1

3 years for idea development
Stage 2

I years for prototyping
Stage 3

TABLE 1-2. FGCS Froject Schedule
The FGCS project involves research and development teams
from the academic, industrial, and governmental sectors and
deals with several key technologies, including software
engineering project management. The need to produce
software and hardware of such a large-scale and complex
project requires the development of new tools and techniques
in software engineering project management. The complexity
of the end product, FGCS, has also necessitated a new
approach to managing the development process. By 1990,
Japan's software engineering technology, project management

in particular, may rival that of the U.S. [Kim, 1983].

1.4 The DoD STARS Program

The United States Department Of Defense (DcD) has a
development effort called the STARS program (Software
Technology for Adaptable, Reliable Systems) [Druffel-
Redwine=Riddle (2), 1983]. This program is intended to
improve software embedded in mission-critical systems by
initiating a coordinated research and development program to

improve the software development enviromment.

Virtually every system in the current and planned military
inventory makes extensive use of computer technology. Being
an integral component which controls mission-critical
functions, software has become an essential element of our
whole defense system. References both emphasize the
importance of software to the DoD and the difficulties
caused by the current state of practice [DoD, 1982], [DoD,

19831].

The need to manage this software as a critical component of
defense systems over their life cycle has finally been
recognized. A general awareness of this need as an
institutional problem requiring special attention within the
Office of the Secretary of Defense has intensified as

sof tware problems have reached toFlevel DoD management
visibility [De Roze-Nyman, 1978]. Consequently, DoD has
undertaken the STARS program, The overall objective of the
STARS program, to improve sof tware practice by improving the
envirorment, involves three specific objectives [Druffel-
Redwine-Riddle (1), 1983]. They are to increase the level of
expertise, improve and develop sof tware tools, and increase
their use. Edith Martin, deputy under secretary of defense
for research and advanced technology, has documented in
detail the STARS strategy for accomplishing those cobjectives
[Martin, 1983]. Briefly, the DoD plans to exploit available

technology by building on existing methods and techniques,

10

while at the same time, supporting research and development
in software engineering, including the area of project

management.,

Although the STARS program evolved primarily from a DoD need
fo manage its software, it is highly relevant to the entire
sof tware community., Similar to the Japan's fifth-generation
computer systems project, it represents a major commitment
of resources. These efforts, the establishment of software
life cycle management policy and practices (Software
Engineering Institute®*#) and the development and application
of new software technology will be a major driving force in

software technology for the next five to ten years.
1.5 Project Management and Beyond

Most software projects fail. They are plagued with a number
of problems leading to schedule and cost overruns,
dissatisfied users, or error-prone production systems.
Sometimes these problems are technical, but more often they
are managerial in nature [Keider, 1974]. Software
engineering technologies have addressed many of the major

issues in software production [Kernighan-Plauger, 1976]. 2

#% Study Report on the DoD software Engineering Institute,
Institute for Defense Analysis, Washington, DC. Sept.
1983.

11

variety of software engineering tools, techniques, and
methods, shown in Table 1-3 [Beck=-Perkins, 1983], are
commonly available for requirements and designs.
Improvements and developments in the managerial aspect of
software engineering have not kept pace with advances in the
technological aspects. An interesting article [Thayer-
Lehman, 1977] addresses this by asking the question: "What
is the state-of-the-art in software engineering project
management today?". Although the need for project
management is apparent, research in the area of software
engineering has been deficient [Cooper, 1978]. Project
management, within the DoD's STARS program is taking the
initiative and reflects this in its objectives to enhance
project planning, provide improve communications and develop

project management expertise [Lubbes, 19841].

e e A S R S e e e W RN AR e e S e e e A e A
S e s TR S E S S S S S S S E SRS R E NS S S S S EE R R RS RS Es s s EsEEE =

A. Requirements B. Design
HIPO Jackson Method
SADT Warnier Method
SREM Structured Design
PSL/PSA Abstract Data Types

T T T L e T
B R s T

TABLE 1-3, Software Engineering Tools and Methods

The United States is not alone in realizing the importance
of project management. In addition to the highly publicized
FGCS project, Japan has been pursing the so called software

factory.

12

The Toshiba Corporation a leading Japanese manufacture in
the electric industry, has a software factory which they
call SWB which stands for "software workbench system"
[Matsumoto, 1980]. SWB is a software factory containing
approximately 2000 employees and an integrated software
development and test tool system. SWB is characterized by
the fact that their software products are application

sof tware for use in strict real-time conditions such as
nuclear power stations, chemical process plants, and steel
relling mills. Therefore, software engineering project

management is a major concern of the factory.

The Hitachi Software Engineering Co., popularly known as
HSEK, has developed a permanent staff and production methods
to expand its world market [Tajima-Matsubara, 1984]. HSK
has exported two major software tools to the U.S.: HIDCC, a
hierarchical documentation writer, and SHC, a shorthand
Cobol: Another software tool HSK is considering for export
is STAMPS, a standardized modular programming system. As
the leading Japanese software house, HSK is widely reputed
for its project management. Its average system consists of

50,000 lines of code, Their application software

development is mostly, Cobol-based.

For the project manager to be able to control any given
project with many activities, it is essential that he has

up=to=date information on the current state of progress at

13

all times. He needs a way of tracking the myriad of detail:s
that are found in large projects. Specifically, the project
manager needs to know what's happening through monitoring
and reporting to successfully managed a project through its
life cycle. Project menitoring and reporting involves
breaking the project into a series of activities. Then the
status of the project could be assessed. It requires
maintaining a detailed schedule for all the activities
showing interrelationships among them and what impact a
problem in completing a particular activity will have on the
schedule of the total project. Finally, it involves
defining and implementing a system for collecting and
updating activity status data on a timely basis, so that
problems can be quickly recognized and resolved. A Project
Management System is needed. To response effectively to
this need, the proposed system must meet certain

requirements discussed in the following chapter.

14

0 = i ent

2.1 Introduction

This chapter describes the essential requirements of the
Project Management System and the external interfaces.
Also, it defines what the system is to do. It does not

address the process of producing the software products.

2.2 Requirements

A Project Management System will be developed for the
project manager to aid in management and control of a
project throughout the software life cycle. It must provide
flexibility in the access of and maintenance of information.
The Project Management System must be able to access
activity data by specific field and also be able to

reference individual activities easily.

Sof tware engineering project management has become the
center of attention because of the potential penalties that
can be incurred due to lack of project management. 4 survey
of software engineering revealed that project success is
related to planning, organizing, and control [Thayer-
Pyster-Wood, 1980], [Thayer-Pyster-Wood, 1982]. To this
end, software teams have used a variety of techniques to

manage the development effort. The Program Evaluation

16

Review Technique, more commonly call PERT, and the Gantt
chart are the approaches most often used for this purpose.
Therefore, techniques from these two methods will be
incorporated into the system. From PERT a form of network
analysis will be performed and from Gantt, project
management charting; that is, bar charts with vertical bars,

the length of which is propeortional to time.

The Project Management System must be made available for use
interactively, with batch reporting on-request. Since the
Project Management System will perform interactive
computing, human factorsrmdst be considered. All
information displayed to the terminal operator should be
user-friendly, and concise for ease of use. To ensure this,
it must require only minimal response from the terminal

operator,

The Project Management System was identified as having two
sof tware components, interactive processing and graphic

generation, They are discussed in the next two subheadings.
2.2.1 Interactive Processing Requirements

The Interactive processing will be menu driven(see Figure
2-1), The terminal operator will follow a prompt and

response format. Clear, concise prompts that reguire very
short responses of the terminal operator will be required.

This will assure speed and efficiency of each interactive

16

session. Menu selections are to consist of six functions,

they are ADD, UPDATE, DELETE, INQUIRY, PRINT, and EXIT.

PROJECT MANAGEMENT
MENTU

[1] ADD [2] INQUIRY [3] DELETE
[4] PRINT [5] UPDATE [6] EXIT

ENTER YOUR SELECTION:

- - - ——— - e e ———

Figure 2=1. Project Management Menu Screen

These functions will provide flexibility in data entry,
access, and maintenance of activity data. Each of the six
functions will require specific inputs from the terminal
operator and will generate specific outputs to the terminal

operator.,

The ADD function of the menu will be selected to add a
unique activity to the system. The terminal operator will
be prompted for activity code, activity description, start
date, completion date, manhours, PERT times, predecessor

activities, and successor activities.

To aid in the following discussion, refer to Figure 2-2,
which illustrates a sample activity display from the Project

Management System.

17

project management
activity report

code: 1 programmer: smith
activity description :feasibility study

start date:840101 completion date:840131
manhours...
budgeted hrs. § 150 expended hrs., : 20

remaining hrs. 130 cumulative hrs. 150

pert times...
optimistic: 150 pessimistic:200 most likely:175

predecessors: successors:
0 2
0 0
0 0
a 0
0 0

Figure 2-2. Activity Display

The UPDATE function of the menu screen is for updating
individual fields of existing activity in the system. Fields
for update are the same as for the ADD function with the

exception of the activity code which can not be revised.

The INQUIRY function will display activity data by activity
code while PRINT displays the entire activity file to a

subfile for a subsequent hardcopy listing.

The DELETE function when given an activity code will
display and then delete the activity. Lastly, the EXIT

function of the menu screen will terminate the session and

18

output an updated activity file,

2.2.2 Graphic Generation Requirements

The Graphic generation component of the Project Management
System will generate two vertical bar charts from the
activity Master File. One bar chart will show budgeted
manhours(planned) versus remaining manhours by activity.
The second vertical bar chart will show budgeted manhours

versus PERT time estimates by activity.

2.3 Interfaces: Software/Hardware

Next listed in Table 2-4, are references to software and
hardware interfaces for the implementation of the Project

Management System.

e A S M S S e e M e S B S e e S e e e N A e e mE e
R

=Berkeley Pascal
=UNIX###
Operating System
=Graphic Facilities on the UNIX Operating System

Hardware:
=Perkin-Elmer
8/32 at Kansas State University Computer Science
Department
-Plexus P/85 Computer
-Retro-Graphics Terminals
-Scltec Servogor Plotter 281

- S S N R R e e T M S S S e A S M A e S S e e e e e e e
B e

TABLE 2=4, Interfaces: Software/Hardware

19

2.4 Validation Criteria

DPescribed in the following are all the relevant objectives
to be used as validation criteria at completion of the

implementation to recognize a successful implementation.

-To allow a project's activity data be modified on the
basis of each independent activity as near as possible
to the time of its occurrence,

=Process input activity data in any sequence.

-Provide on-line data entry and inquiry.

=Provide for on-request reporting.

-Frcm a behavioral viewpoint, make project manager's job
more satisfying, by allowing him to deal with activity
data as they occur.

-Provide for ease of use.

=Reduction of voluminous reports

TABLE 2-5. Project Objectives

#%#% Trademark of AT&T Bell Laboratories.

20

CHA - Design

3.1 Introduction

The chapter describes the design process of the Project

Management System.

3.2 Design Decisions

The Project Management System was designed for use under the
ONIX operating system at the EKansas State University (KSU)
Computer Science Department. The UNIX Operating System,
being a de facto standard for minicomputers along with its

availability, influenced that design decision.

Berkeley Pascal [Joy-Graham-Haley 1980] was selected as the
implementation language. It was chosen because of
availability and extensive use at KSU. An additional

advantage of Pascal is portability.

3.3 Structured Design Techniques

The Project Management System was designed by using the
top-down structured design technique. The overall design
was planned using a hierarchy block diagram which depicts
information as a series of multilevel blocks organized as a
tree structure, Figure 3-3 represents the Project
Management System subdivided into two components "graphic

generation” and "interactive processing." These two

21

components are then further refined in Figure 3-4 and Figure

3=-5.

| Project !
| Management |
| System |
i d
e —————— +
!
1
1
|
1
|
|
]
+= o i i +
1 |
] 1
I |
| 1
i |
i |
m—————————— ——— B TSP
! Interactive | | Graphic f
| Processing ! { Generation i
! I ! i
f——————————— ——— B SR +
i I
| !
| |
I |
e e —————— + mmmeem e ————— +
!MENU] | Graphie Fac. |
| Screen ! | on UNIX OS |
i i | |
+— -—— + e —— +

Figure 3-3. Hierarchy Block Diagram of Project Management
System

23

e ——— +
I MENTU i
| Sereen i
i !
]]
1 1
O St +
!
i
H
!
!
i
+= + e e e e +
! ADD Func. ! | DELETE Func. |
H ' i '
————————————— + B T Terep— +
e ————— fm———————————— +
! UPDATE Func. | ! PRINT Funec. |
! ! ! H
mmeee e ————— + e ————— +
e T T + e T +
| INQUIRY Func.| i EXIT Func. |
| i H i
e e + e ———-— +

Figure 3=U4. Hierarchy Block Diagram of Interactive
Processing Software Component

Figure 3-5.

fmmmmm———————— +
| Graphic Fac.|!
| on UNIX 0S |
| |
mm——m—m———— +
i
g
[
1
I
i
]
i
e s e —————— m—m————— +
i d
1 1
1 1
] |
] 1
e —————— + e ———— +
| Budget vs.] | PERT Est. vs.|
! Remaining MH | { Budget MH :
{ Bar Chart i { Bar Chart H
! i i g
e ——— - e —— e ——— +

Hierarchy Block Diagram of Graphic Generation
Sof tware Component

24

25

The module specifications were then designed from the
diagrams, For the interactive processing component of the
system, one module (interact.p) was coded to perform all
data management and interactive tasks. A program flow chart
of interact.p is given in Figure 3-6. A program/module
design specification was developed that includes all input,
output, and functional specifications. See Appendix & -

Program/Module Design: interact.p.

Terminal
Operator

interact.p

v

Activity Activity
Status Master
Report File (New)

Figure 3-6, Program Flow Chart of interact.p

26

The graphic generation component defined in the requirements
required the development of a module (grafgen.p) to output
formated data for the graphic facilities. See Figure 3=-7
for program flow chart. The program/module design
specification can be referenced in Appendix B -

Program/Mcdule Design: grafgen.p.

Activity
Master

File

grafgen.p

PERT Time
File

Figure 3=T. Program Flow Chart of grafgen.p

27

3.4 Data and File Organization

The next step in the design phase was the design and
organization of the data. The system requirements and
output requirements previously developed in the requirements
were the basic source of information to this step. Files
were set up which include an Activity Master File and three
subfiles which include a Label File, Budgeted Manhours File,

and Pert Time File.

The Activity Master File is a sequential file. It contains
all the activities of the project. File creation and
maintenance is via on-line data entry. When an activity is
created, a unique code will be manually assigned. The
activity record will contain that unique code number, a
description of the activity, and other required information.
Once established on file the code will be the access key.

Refer to Appendix C for data structure.

The remaining three files--Label, Budgeted Manhours, and
PERT Time, are sequential transient files. They are system
generated containing extracted data from the Activity Master
File formated for the graphic facilities, Extracted data
includes x axis labeling information, budgeted manhours,
remaining manhours, and PERT time estimates. BRefer to

Appendices D, E, and F for data structures.

28

3.5 Input and Cutput

The design also included a menu screen listing the six
required functions. The terminal operator may select any
one of the six functions. From there the design prompts the
terminal operator through the session returning him to the
menu screen for another session. In this way, no necessary
information can be missed. Refer to Figures 2-1 and 2-2 for

a layout of the menu screen, and an activity data display.

29

CHAPTER FOUR - Summary

In this Master's Report, we presented the development and
implementation of the Project Management System. This
implementation was part of a series of Master's
implementation projects to provide tools and features for a
prototype of a software development enviromment that would
be suitable for either the Japan FGCS project or the U.S.

DoD STARS program,

In CHAPTER ONE, we presented the results of a literature
survey of FGCS and STARS, two major research and development
efforts, pointing out relationships between the

implementation=-Project Management System and the literature.

The implementation requirements and design were addressed in
CHAPTER TWO and CHAPTER THREE, respectively. We discussed
what the implementation had to do to be helpful, what the
validation criteria was, and also how the requirements

influenced the design.

Up until now, computer industry's emphasis has been on the
technical aspects of software development, with very little
research in the area of software engineering project
management. 4s a result, development problems have
persisted, Hopefully, the research and development efforts
of the U.S. STARS program and the Japan FGCS project will

produce and promote the use of effective software

30

engineering project management techniques.

Future work on the Project Management System could address
deficiencies that time did not permit to be considered in
this first implementation. Some of these areas are

discussed below.

From a run time standpoint, the graphics package executes
satisfactorily except for the mapping of the plot files to
the plotter. Currently, the plot files have to be copied
from the 8/32 to the Plexus to access the graphic
facilities, This could be seconds or an hour depending on
network traffic. Since the plotter is connected directly to
the 8/32, another network copy form the Plexus to the 8/32
is required to finally plot the bar charts. Better hardware
and software system configuration would eliminate the

network copies and reduce total elapse time.

Access security is not explicitly provided by the Project
Management System, but is implicit in the UNIX Operating
System. An authorized user is one that has a valid user
name and password. This entitles a user complete access to
the Project Management System. The user could add, update,
delete, or inquire at will. Changes to the software to

password protect each function would be appropriate.

In contrast to full screen display, this implementation

supports line by line display. With lipne by line there is

ER

the problem of scrolling off the screen. Software changes
to implement full screen would be substantial, but

conceivable.

In closing, the author was very pleased to have had the
opportunity to work on the project. The literature survey
provided an increased awareness of research and development
oceurring in software engineering project management and
computer systems. Also the project provided the opportunity
to learn and use Berkeley Pascal and the Graphic Facilities

on the UNIX Operating System,

32

REFERENCES

[Beck-Perkins, 1983]

Berk, L. L. and T. E. Perkins, "4& Survey of
Sof tware Engineering Practice: Tools, Methods, and

Results, " IEEE ction on Software
Epngineering, Vol. SE-9, No. 5, September 1983, pp.
541-561.

[Carlson=Druffel-Fisher-Whitaker, 1980]

Carlson, W., L. Druffel, D. Fisher, and D,
Whitaker, "Introducing Ada," Proc. ACM, Oct. 1980,
pp 263-271.

[Cochran, 1983]

Cochran, H.T., "Fourth-Generation Languages,”

Computerworld, Vol. 17, No. 244, June 15,1983, pp.
47-50.

[Cooper, 1978]

Cooper, J4. D., "Corpeorate Level Sof tware
Management, " IEEE Iransactions on Software
Engipeering, SE-4, No. 4, July 1978, pp. 319-326.

[De Roze-Nyman, 1978]

De Roze, B, C. and T. H. Nyman, "The Software Life
Cycle = A Management and Technological Challenge
in the Department of Defense," IEEE Transactions
on Software Epgineering, Vol. SE-4, No. 4, July
1978, pp. 309-317.

[DoD, 1982]

"Report of the DoD Task Force on Software

Problems, " Office of the Deputy Upder Secretary of
Defense (Research .and Advanced Techpology),
Washington, DC, July 1982,

[DoD, 1983]
"Sof tware Technology for Adaptable, Reliable

Systems (STARS) Program Strategy," Department of
Defense, National Technical Information Service,

33

Springfield, Va., Stock No. AD A128981, Lar. 1983.
[Druffel-Redwine-Riddle (1), 1983]

Druffel, L. E., S. T. Redwine, Jr., and W. E.
Riddle, "The STARS Program: Overview and
Rationale, " uter, Vol. 16, No. 11, Nov. 1683,
pp. 21=29.

[Druffel-Redwine-Riddle (2), 1983]

Druffel, L. E,, S. T. Redwine, Jr., and W. E.
Riddle, "The DoD Stars Program, " Computer, Vol.,
16, No. 11, November 1983, pp. 9-11.

[Duda-Gaschnig, 1981]

Duda, R. O. and J. G, Gaschnig, "Knowledge=-Based
Expert Systems Come to Age," Byte, Vol. 6, No. G,
Sept. 1981, pp. 238-281.

[Evans-Piazza-Dolkas, 1983]

Evans, M. W., P, Piazza, and J. B. Dolkas,

Principles of Productive Software Management,
Wiley-Interscience, New York, N. Y., 1983.

[Frank, 1983]

Frank, W. L., "PIPS: A New Revolution in the
Making?" C s Vol. 17, No. 15, April 11,
1983, pp. 49.

[Freeman-Wasserman, 1983]

Freeman, P. and A, I. Wasserman, "Ada
Methodologies Concepts and Requirements,™ ACM

Sof tware Engineering Nctes, Vol. 8, No. 1, Jan.
1983, pp. 4-12.

[Hessinger, 1984]
Hessinger, P. R., "Strategies For Implementing
Fourth-Generation Sof tware," Computerworld, Vol.
18, No. 8, Feb, 2, 1984, pp ID/1-ID/11.

[JIPDC, 1981]
Japan Information Processing Development Center,

"Proceedings, International Conference on Fifth-
Generation Computer System," Oct., 1981.

34

[Joy-Graham=-Haley, 1980]
Joy, W. N., S, L, Graham, and C. B. Haley,
Berkelev Pascal User's Manual, Version 2.0,

October, 1980. Computer Science Division,
University of California, Berkeley 94720.

[Keider, 1974]

Keider, S. P., "hy Projects Failed," Datamation,
Vol, 20, No. 12, Dec. 1974, pp. 53-55.

[Kernighan=-Plauger, 1976]

Kernighan, B, W, and P. J. Plauger, Software
Tools, Addison-Wesley, Reading, Mass., 1976.

[Kim, 1983]
Kim, K. He, "A Look at Japan's Development of
Sof tware Engineering Technology," Computer, Vol.
16, No. 5, May 1984, pp. 26-37.

[Lord, 1982]
Lord, K. W., CDP*##%#% Feview Manual A Data
Processine Handbook, Van Norstand Reinmhold, New
York, N. Y., 1983.

[Marbach, 1983]

Marbach, W. D., "The Race to Build A
Supercomputer, ™ Newsweek, July 4, 1983, pp. 58-64.

[Martin, 1983]

Martin, E. W., "Strategy for a DoD Software
Initiative, " Computer, Vol. 16, No. 3, Mar. 1983,
PP. 52-59.

[Matsumoto, 1980]

Matsmoto, Y., et al., "SWB System: A Software

#8#% "CDP" and "Certificate in Data Processing" are
registered trademarks of the Institute for Certification
of Computer Professionals (ICPP).

35

Factory, " Softyare Engipeering Epviromments, H.
Hunke, ed., North-Holland, New York, 1980, pp.
305‘318&

[McClure, 19811]

MeClure, C. L., Managing Software Development and
Maiptenance, Van Norstand Reinhold, New York, N.
Y., 1981.

[Moto-oka, 1982]

Moto-oka, T., ed., Eifth-Generation Computer
Systems, North-Holland, Kew York, 1982.

[Norrie, 1984]

Norrie, C., "Supercomputers for Superproblems: A
Architectural Introduction," Computer, Veol. 17,
No. 3, March 1984, pp. 62-T4.

[Osborne, 1979]

Osborne, A., Running Wild-The Next Industrial
Revolution, Osborne/McGraw-Hill, New York, N. Y.,
1979.

[(Pressman, 1982]

Pressman, R. S., Software Engineering A
Practitioner's Approach, McGraw-Hill, New York, N.
Y.’ 1982'

[Sumney, 1982]

Sumney, L. W., "VHSIC: A Promise of Leverage,"

IEEE Spectrum, Vol. 10, No. 10, Oct. 1982, pp.
93-94,

[Tajima=Matsubara, 1984]

Tajima, D. and T. Matsubara, "Inside the Japanese
Sof tware Industry,™ Computer, Vol. 17, No. 3,
March 1984, PP. 3“'_1"3'

[Thayer-Lahman, 1977]

Thayer, R. H. and J. H. Lehman, "Software
Engineering Project Management: A State-of=-the-Art

Report,™ A Collection of Technical Papers, in AIAA

Computers in Aerospace Conference, (Oct. 31 - Nov.

36

2, 1977), pp. 153-167.
[Thayer-Pyster=Wood, 1980]

Thayer, R.H., A. Pyster, and R.C. Wood, "The
Challenge of Software Engineering Project
Management, " Computer, Veol. 13, No. 8, Aug. 19380,
pp. 51-59.

[Thayer-Pyster-Wood, 1982]
Thayer, R. H., A. Pyster, and R.C. Wood,
"Walidation Solutions to Major Problems in

Sof tware Engineering Project Management,"
Computer, Vol. 15, No, 8, Aug. 1982, pp. 65-77.

[Toffler, 1980]

Toffler, A., IThe Third Waye, Morrow Publishers,
New York, N. Y., 1980.

[Togai, 1984]

Togai, M., "Japan's Next Generation of Rcbots,"
Computer, Vol. 17, No. 3, March 1984, pp. 19-25.

[Treleaven-Lime, 1982]
Treleaven, P, C. and I. G. Lime, "Japan's Fifth
Generation Computer Systems," IEEE Computer, Vol.
15, No. 8, Aug. 1982, pp. 79-88.

[Weil, 1982]
Weil, U., Information Systems In The 80's

Products, Markets, and Venders, Prentice-Hall,
Englewood Cliffs, N. J., 1982.

APPENDICES

37

38

PROGRAM/MODULE DESIGN
PROGRAM NAME: interact.p
PURPOSE: Interactive processing and PERT Analysis

NARRATIVE: This is a Berkeley Pascal program. It provides
the interactive user with a menu screen of the following six
functions:

ADD, UPDATE, DELETE, INQUIRY, PRINT, and EXIT

These functions will provide for entering, maintaining,
inquiring, and reporting of activities. Reference Figure
for screen layout.

In addition, all subsequent actions between terminal
operator and system is by prompts. At the coneclusion of
each function (with the exception of function EXIT) the
terminal operator is returned to the menu screen for another
selection,

Calculations are performed on the Activity Master File for a
PERT analysis and remaining manhours.

The PERT analysis is perform by cumulating each activities
budgeted manhours with all that activity's predecessor
activities for a total cumulative ianhours. The second
calculation, remaining manhours, is the difference between
budgeted manhours and expended manhours.

There are two inputs defined by the following variables:
standard file input
oldfile

Three outputs files are defined by the following variables:
standard file output
newfile
printout

The standard file input is used for input from the terminal
operator during an interactive session. The oldfile defines

39

the current Activity Master File for processing.

OQutput form the programs to the terminal operator is through
standard file output. The newfile variable defines the
updated Activity Master File. while printout defines the
Activity Report generated by the print function,

4o

4 i - 0 e i 3 e

PROGRAM/MODULE DESIGN
PROGRAM NAME: grafgen.p
PURPCSE: Extract data for graphics generation.

NARRATIVE: This is a Berkeley Pascal program. It inputs the
current Activity Master File and outputs three subfiles of
extracted information in the proper formats for graphics
generation.

The input file current, Activity Master File, is defined
through the standard file input. Three output files are
defined by the following variable:

lablfile
budfile
pertfile

Variable lablfile contains the activity code and
descriptions for axis labeling. Variable budfile contains
budgeted manhours and remaining manhours. Variable pertfile
contains budgeted manhours and Pert time estimates.

b1

Appendi - Stru : Activit

The Activity Master File is a sequential text file. It
contains all acetivity data for a project on the Project
Management System. The following represents a file layout.

Record type

Activity Record

Activity Code: A two digit user defined code assigned to
an activity.

Activity Description: Description of activity up to up to
thirty characters in length.

Start Date: Starting date of activity. Format of
YYMMDD.

Completion Date: Completion date of activity ; Format of
YYMMDD.

Budgeted Manhours: Allocated manhours for the activity.

Expended Manhours: Latest expenditure of ranhours against
the activity.

Remaining Manhours: System calculation of the difference
between budgeted manhours and expended
manhours.

Optimistic Time: PERT time assigned to the activity, what
it would be take if everything went right.

Pessimistic Time: PERT time assigned to the activity, what
is would take if everything went wrong.

Mest Likely Time: estimate.
Programmer Last Name: Personnel assigned to activity.
Predecessors: Predecessor activities; up to five.

Successors: Successor activities; up to five.

b2

The Label File is a sequential text file. It contains
information for labeling the x axis of bar charts produced
by the Project Management System. The fcllowing represents
a file layout.

Record type
Label ERecord
Activity Code: Numerical code assigned to the activity.

Activity Description: Description of activity

The Budgeted Manhours File is a sequential text file, It is
used as a plotting file for bar chart construction. Tie
following represents a file layout.

Record type
Budgeted Manhours Record

Bar Number: Positional value of bar fcr bar chart
generation

Bucgeted lMarnours: Allocated manhours for the activity

Bar Lumber: Positional valiue of bar fcr bar chart
generation

Remaining Manhours: Calculated value of budgeted manhours
less expended manhours

uy

The PERT Tiie File is a sequential text file. It -t used as
a plot file for bar chart construeticn., The follow:ing
represents a file layout.

Record type
Pert Tice Record
Bar Number: Positional value for bar chart generation
Budgeted Manhours: Allocated manhours for the activity
Bar Number: Positional value for bar chart generation

Pert Time Estimate: (optimistic + pessimistic + 4¥most
likely) 7 6)

A

€

di

G =

B

45

45a

450

400

350

300

250

200

150

100

50

BUDGET US REMAINING MANHOURS BY ACTIVITY

450

400

350

300

250

200

150

100

45b

>
o, U % UG N o R
¢ % VU, 9
G I N R R T
P IS > Ry G S
%, G, % T
% & %,
<

BUDGET US PERT ESTIMATED MANHOURS BY ACTIVITY

46

program interact(input, output, cldfile, newfile, printout);
label

100;

const

blank = ' ';
maxtab = 99;

maxpre
maxsuc

n n
w
we

type

activityrecords =
record

code:
desc:
sdte:
cdte:

integer;
array [1..30] of char;
integer;
integer;

budhrs:
exphrs:
remhrs:
cumhrs:
opttme:
pettme:
mlktre:

integer;
integer;
integer;
integer;
integer;
integer;
integer;

var

pemr: array [1..10] of char;

pre: array [1..5] of
record
predec: irteger
end;
suc: array [1..5] of
record
succes: iiteger
end
end;

printout, oldfile, newfile: text;

onerecord: activityrecorcs;
userdata: activityrecords;

table: array [1..maxtab] of activityrecords;

W, X, ¥, 2: integer;

recordsread, recordswWwritten: integer;
field, selecticn, numberofrecords: integer;

answer: char;

procedure skiplines;
begin
for x := 1 to 3 do
writeln
end; { skiplines }

procedure sort(numberofrecords: integer);
(* sort records by code #)
var
workspace: activityrecorcs;
i, j: integer;
begin
for 1 := 1 to numberofrecords - 1 do
for j := 1 to numberofrecoras - i do
if table[jl.code > table[j + 1].code
then begin
(® swap [j] and [j+1] #)
workspace := table[jl;
table[j] := table[j + 1i;
table[j + 1] := workspace
end
end; { sort }

procedure enterdesc;
begin
with userdata do begin
writeln('enter description: ');
for x := 1 to 30 do
desc[x] := blank;
x := 0;
wiile not eoln and (x < 30) do begin
X 1= x + 1;
read(desec[x])
end;
readln;
table[w].dese := desc
end

end; { enterdesc }

procedure entersdte;
begin
with userdata do begin
writeln('enter start date as yymmdd:');
readln(sdte);
table[w].sate := sdte
end

end; { ertersdte }

48

procedure entercdte;
begin
with userdata do btegirn
writeln('enter coupletion date as yymndd:');
readln(cdte);
table[w].cdte := cdte
end

end; { erntercdte }

procedure enterhrs;

begin
with userdata do begin
writeln(!' enter wanhours');
writeln('budgeted expended remaining
cumulative');
readln(budhrs, exphrs, remhrs, cumhrs);
table[w].budhrs := budhrs;
table[w].exphrs := exphrs;
table[w].remhrs := remhrs;
table[w].cumhrs := cumhrs
end
end; { enterhrs }
procedure entertme;
begin
with userdata do begin
writeln(" enter pert times');
writeln('optimistic ;estimistic most like.y');
readln(opttme, pettme, mlktre);
table[w].opttme := opttme;
table[w].pettme := pettme;
table[w].mlktce := nmlktie
end

end; { entertme }

procedure enterpgmr;
begin
with userdata do begin
writeln('enter programmer last name');
for x := 1 to 10 do
pgmr(x] := blank;
X := 0
while not eoln and (x < 10) do begin
X 1= % + 1;
read(pgmr[x])
end;
readln;
table[w].pgnr := pgmr

end

end; { enterpemr }

procedure enterpre;

begin

with userdata do begin

end

for x := 1 to 5 do
pre[x].predec := 0;
for x := 1 to 5 do
table[w].pre[x].predec := 0;
writeln
('enter predecessor activities for code',
table[w].code);
writeln('are there any? enter y or n');
read(answer);
readln;
X 3= .03

wiile (answer = 'y') and (x < maxpre) dc begin

X 1= X + 1;
writeln('enter predecessor:');
read(pre[x].prede.);
readln;
table[w].pre[x].predec := prelx].preaec;
writeln
('more predecessors for', tatle[w].code,
P?', ' entery cr n'):

readln{answer)

end

end; { enterpre }

procedure entersuc;

begin

with userdata do begin

for x := 1 to 5 do
suc[x].succes := 0;

for x := 1 to 5 do
table[w].sue[x].succes := 0;

writeln

('enter successor activities for code',

table[w].code);

writeln('are there any? enter y or n');

read(answer);

readln;

X = o

while

(answer = 'y') and (x < maxsuc) do begii

X 1= %X + 1;
writeln('enter successor:');

read(suc[x].succes);
readln;
table[w].suc[x].succes := suclx].succes;
writeln
("more successors for', table[w].code,
'?2', ' entery or n');
readln(answer)
end
end
end; { entersuc }

procedure display;

begin
writeln(' ');
writeln
('code:', table[w].code, ° "
'programmer: ', tablelw].pgmr);
writeln

('activity description :', table[w].desec);
writeln(' ');
writeln('start date:?, table[w].sdte: 6,
i completion date:',
table[w].cdte: 6);
writeln(' ');
writeln('manhours...');
writeln('budgeted hrs. :', table[w].budhrs,
' expended hrs. :',
table[w].exphrs):
writeln('remaining hrs. :', table[w].remhrs,
' cumulative hrs.:',
table[w].cuchrs;
writeln(' ');
writeln('pert times...'):
writeln('optimistic:', table[w].opttme: 3,
' pessimistic:', table[w].pettme:
' most likely:', table[w].nlktie:
writeln(' ');
writeln

La) Ly

writeln
(! predecessors: ', ! ', 'succes:zors: ');

for x := 1 to maxsuc ¢o begin
writeln("® ', table[w].prelx].preccc, ',
table[w].suelx].succes)
end;
skiplines
end; { display }

procedure print;
begin

writeln(printout, ' ');
writeln(printout, 'coce:', table[w].code,

T]

s 'programmer: ', table[w].pgur);
writeln(printout, 'activity description :',
table[w].desec);
writeln(printout, ' ');
writeln
(printout, 'start date:', table[w].sdte: 6,

! completion date:',
table[w].cdte: 6);
writeln(printout, ' ');
writeln(printout, 'manhours...');
writeln(printout, 'budgeted hrs. iy
table[w].budhrs,

expended hrs.:', table[w].exp..rs};
writeln(printout, 'remaining hrs. :',

table[w].remhrs,

' cumulative krs.:', tanble[wl.cunhrs);
writeln(printout, ' ');
writeln(printout, 'pert times...');
writeln
(printout, ‘optimistic:', table[w].opttime: 3,

' pesstimistie:', table[w].pettme: 3,
' post likely:', table[w].mlktue: 3);

writeln(printout, ' ');

writeln(printout, '==-——cccemmmc e ccccaaa
---------- 1Y

writeln(printout, ' predecessors: ', ' ',

'successors: ');

for x := 1 to waxsuc co begin

writeln
(printout, ' ', table[wl.pre[x].predec,
' ', table[w].sue[x].succes)
end;
skiplines

end; { print }

procedure calculate;
(* calculate hour s #)
var
X: integer;
begin
for x := 1 to maxtab do begin
table[x].remhrs := table[x].budhrs - table[x].
exphrs;
table[x].cumhrs :
table[x].cumhrs :
budhrs;
for y := 1 to maxpre do

0;
table[x].curhrs + table[x].

if table[x].prelyl.predec < 0 then begin
z := table[x].prel[yl.precec;
table[x].cumhrs:=table[x].cumhrs +
table[z].cumhrs
end
end
end; { calculate }

(#*mainline code#¥)
begin
writeln(' program interact started ');
reset(oldfile);
rearite(newfile);
rewrite(printout);
numberof records := naxtab;
recordsread := 0;
recordswritten := 0;
(* read oldfile into table %)
while rot eof(oldfile) do begin
read{oldfile, onerecora.code);
with onerecord do begin

for x := 1 to 30 do
desc[x] := blank;

X = 0;

while

not eoln(oldfile) and (x < 30) do begin

X =X + 13
read(oldfile, desc[x])

end;

readln(oldfile);

readln(oldfile, sdte);

readln(oldfile, cdte);

readln

(oldfile, budhrs, expirs, remhrs, cuchrs);
readln(oldfile, opttme, pettme, mlktre);

for x := 1 to 10 do
penr{x] := blank;

X := 0

while

not eoln(oldfile) and (x < 10) dc begin

X 1= X + 1;
read(oldfile, pgmr{x])

end;

readln(oldfile);

for x 1= 1 to 5 do
pre[x].predec := 0;
for x := 1 to 5 do

sue[x].succes := 0;
for x := 1 to 5 do
read(oldfile, pre[x].preucc;;
readln(oldfile);
for x := 1 tc § do
read{oldfile, suc[x].succes);
readln(oldfile)
erd; ‘
recordsread := recorcsread + 1;

(# insert in table by code #)
W := onerecord.code;
if (w > 0) and (w <= maxtab) then
table(w] := onerecord
end;
(# calculate cumulative hour: #)
calculate;
(# interactive computing #)
100:
skiplines;
writeln('emeeecmcecce e e '}
writeln(' pro ject managercent!');
writeln(' menu'j;
writeln(' ');
writeln('[1] add [2] inquiry [3] delete');
writeln('[4] print [5] update [6] exit');
writeln(*' ');

writeln(enter your selection:');
writeln('-eececcccccaccccccnccccnemccm e e e ')
read(selecticn);

readln;

while (selection > 6) or (selection < 1. dc tegin
writeln('invalid selection. try again');
writeln('enter your selection');
read(selection);
readln
end;
(! add®)
if selection = 1 then begin
skiplines;
writeln('mode: add');
writeln('enter activity code:');
y = g
while y <> 0 do begin
with userdata do begin
(# following loops if code is out of range 1-99 #)
w = 0
while (w < 1) or (w > maxtab) do begin
read(code);
readln;
W := userdata.code;

54

if (w > 0) and (w <= naxtab) then
(* range ok? #)
if table[w].code = 0 then begin
table[w].code := w;
writeln('code:', w, '...is new')
end else begin
writeln('code', wy '...is
already on file');
writeln('enter zctivity code');
W o= 999
end (* set out of range ¥)
else begin
writeln('code', w, ' ic. invalid');
writeln('enter activity code!')
end
end;

table[w].code := useraata.code;
enterdesc;
entersdte;
entercdte;
enterhrs;
entertme;
enterpgmr;
enterpre;
entersuc;
writeln('are you finish? enter y or n');
readln(answer);
if answer = 'y' then
y =
else
writeln('enter activity code:')
end
end;
calculate;
writeln('add mode ended')
end;
(*update#)
if selecticn = 5 then begin
skiplines;
writeln('moce: update');
writeln('enter activity code:');
y =1,
z = 1;
while y <> 0 dc begin
with usercata do begin
(*# followirg loops if code is cut of range 1-99 #)
W i= 03
while (w € 1) or (w > maxtab) do begin
read(code);
readln;

St]

W := userdata, code;
if (w > 0) and (w <= raxtab) then
(% range ok? #)
if table[w].code = 0 then begin
writeln('code:', w, '...is does
not exist');
writeln('enter activity code:');
w = 999
end else begin
(*# set out of range ¥)
writeln('code', w, '...is
on file');
display
end
else begin
writeln('code', w, ' is invalid');
writeln('enter activity code:')
end
end;

writeln(' field selection');
writeln(' '};
writeln{'[1] description'};
writeln('[2] start date');
writeln('[3] completion date');
writeln('(4] manhours');
writeln('[5] pert times');
writeln('[6] programmer last name');
writeln('[7] predecessors');
writeln('[8] successors');
writeln(' ');
while z <> 0 do begin
writeln('enter field number:');
read(field);
readln;
while
(field > 8) or (field < 1) do begin
writeln('invalid field number.
try again');
read(field);
readln
end;
if field = 1 then
enterdesc;
. if field = 2 then
entersdte;
if field = 3 then
entercdte;
if field = 4 then -
enterhrs;
if field = 5§ then

entertme;

if field = 6 then
enterpgmr;

if field = 7 then
enterpre;

if field = 8 then
entersuc;

writeln

('are you finish with this code?

enter y or n');

readln(answer);

if answer = 'y' then
z =0

end;

z 3= 13 (# reset interloop ¥)
writeln('update another activity code?
enter y or n');
readln(answer);
if answer = 'n' then
y 5= 0
else (* continue #)
writeln('enter activity code:')
end
end;
calculate;
writeln('update mode ended')
end;
(* print report %)
if selection = 4 then begin
writeln(printout, ' ',
'project managemnent');
writeln(printout, ! ty !
activity report');
for w := 1 to maxtab do
if table[w].code <> 0 then begin
print
end;
writeln('print mode ended')
end;
(* activity inquiry ¥)
if selection = 2 then begin
skiplines;
writeln('mode: inquiry');
writeln('enter activity code: ');
writeln('to terminate...enter code 0');
y =13
while y <> 0 do begin
read(userdata. code);
readln;
y := userdata.code;

56

57

W := userdata.code;
(* range check ¥)
if (w > 0) and (w <= maxtab) then
(* find code %)
if table[w].code = userdata.code

then begin
(®# output inquiry #)
writeln(' v
'project management');
writeln
(' te o status imguiry');
display
end else

writeln('code not found')
else
writeln('code is invalid');

if y = 0 then
writeln('inquiry mode ended')
else
writeln('enter activity code:')
end
end;

(# activity del et e %)
if selection = 3 then begin
skiplines;
writeln('mode: delete');
writeln('enter activity code: ');
writeln('to terminate...enter code 0');
y =13
while y <> 0 do begin
read(userdata. code);
readln;
¥y := userdata.code;
W := userdata.code;
(* range check #)
if (w > 0) and (w <= maxtab) then
(* find code ¥)
if table[w].code = userdata. code

then begin
(®* output inquiry #)
writeln(' 'y
'project management');
writeln
(' L delete report');
display;

(# delete record #)

table[w].code := 0;

writeln('record sucessfully delete')
end else

writeln('code not found')
else

writeln('code is invalid');

if y = 0 then
writeln('delete mode ended')
else
writeln('enter activity code:')
end;
calculate
end;

(* sort activity in table by code and write to newfile #)
if selection <> 6 then
goto 100;
begin
calculate;
sort(numberof records);

for w := 1 to maxtab do
if table[w].code <> 0 then begin
with table[w] do begin
write{newfile, code);
for x := 1 to 30 do
write(newfile, desec[x]);
writeln(newfile);
writeln(newfile, sdte);
writeln(newfile, cdte);
writeln(newfile,
budhrs, exphrs, remhrs, cumhrs);
writeln
(newfile, opttme, pettme, mlktme);
for x := 1 to 10 do
write(newfile, pgmr[x]);
writeln(newfile);
for x := 1 to 5 do
write(newfile, pre[x]l.predec);
writeln(newfile);
for x := 1 to 5 do
write(newfile, suc[x].succes);
writeln(newfile)
end;
recordswritten := recoraswritten + 1
end;
writeln('newfile successfully written');
writeln
(* old record count was ', recordsread);
writeln
(' new record count is ', recordswritten);
writeln('program interact ended')
end

end.

59

60

program grafgen(input, output, lablfile, budfile, pertfile);

const

type

var

blank = ' ';
maxtab = 99;

maxpre
maxsuc

n u
($)]

activityrecords =
record
code: integer;
desc: array [1..30] of char;
sdte: integer;
cdte: integer;
budhrs: integer;
exphrs: integer;
remhrs: integer;
cumhrs: integer;
opttme: integer;
pettme: integer;
mlktme: integer;
pgnr: array [1..10] of char;
pre: array [1..5] of
record
predec: integer
end;
sue: array [1..5] of
record
succes: integer
end
end;

lablfile, budfile, pertfile: text;
onerecord: activityrecords;

X: integer;

pertest: integer;

recordsread, recordswritten: integer;

procedure writelabel;

(* write labels #)

begin
with onerecord do begin
write(lablfile, code: 3);

for x := 1 to 30 do
write(lablfile, desc[x]);
writeln(lablfile)
end
end; { writelabel }

procedure writeremhrs;
begin
(* write PERT File #)
with onerecord do begin
write(pertfile, recordsread);
writeln(pertfile, budhrs);
write(pertfile, recordsread);
pertest
:= (opttme + pettme + 4 * mlktme) div 6;
writeln(pertfile, pertest)
end
end; { writeremhrs }

procedure writebudhrs;
(* write budget hours #)
begin
with onerecord do begin
write(budfile, recordsread);
writeln(budfile, budhrs);
write(budfile, recordsread);
writeln(budfile, remhrs)
end
end; { writebudhrs }

begin
writeln('program grafgen started ');
rewrite(lablfile);
rewrite(budfile);
rewrite(pertfile);
recordsread := 0;
recordswritten := 0;
(* read from the standard input #)
while not eof do begin
read(onerecord, code);
with onerecord do begin

for x := 1 to 30 do
desc[x] := blank;

x := 0;

while not eoln and (x < 30) do begin
X =X + 1;
read(dese[x])

end;

readln;

readln(sdte);

61

end,

end;

end;

62

readln(cdte);
readln(budhrs, exphrs, remhrs, cumhrs);
readln(opttme, pettme, mlktme);

for x := 1 to 10 do
pemr[x] := blank;

X =03

while not eoln and (x < 10) do begin
X =X + 1;
read(pgmr[x])

end;

readln;

for x := 1 to 5 do
pre[x].predec :

for x := 1 to 5 do
sue[x].succes := 0;

for x := 1 to 5 do
read(pre[x].predec);

readln;

for x := 1 to 5 do
read(suc[x].succes);

readln

u

0;

recordsread := recordsread + 1;

writeremhrs;
writelabel;
writebudhrs;
recordswritten := recordswritten + 1

writeln('all files successfully written');

writeln(' in record count was ', recordsread);
writeln(' out record count is ', recordswritten);
writeln('program grafgen ended')

Jbudcmmd

hist -xa,b $1 | label -b,x,r-45,F$2 | title -v"budget vs=
remaining manhours by activity" | td

budplot

hist -xa,b $1 | label =b,x,r=45,F$2 | title -v"budget vs
remaining manhours by activity™ | sd | splot

pertommd

hist -xa,b $1 | label -b,x,r=-U45,F$2 | title -v"budget vs
pert estimated manhours by activity" | td

berplot

hist -xa,b $1 | label -b,x,r~45,F$2 | title -v®budget vs
pert estimated manhours by activity"™ | sd | splot

A i) c

£Lxecpms

echo

echo interactive processing
echo

px pms

echo

echo graphic generation?
echo enter: execgen

echo

echo hardcopy report?

echo enter: execprint

£xecgen

echo

echo graphic generation

echo

px gen < newfile

echo

echo network copy to ksuplx?! started
echo when prompted enter: login name and password
echo

echo lablfile:

netep lablfile ksuplxl:lablfile

echo

echo budfile:

netecp budfile ksuplxi:budfile

echo

echo pertfile

netcp pertfile ksuplxl:i:pertfile

echo

echo network copy to ksuplxl ended
echo

echo now wait for messages from ksuplx1

execprint
cat printout | lpr
budgetbar

budemmd budfile lablfile

Dbudgetplot

budplot budfile lablfile

64

bertbar
pertommd pertfile lablfile
pertplot

perplot pertfile lablfile

65

66

PROJECT MANAGEMENT SYSTEM
User's Guide

Zntroduction

This discussion provides the basic information you need to
get started on the Project Management System.

Logging In
Type command: execpms

When you have logged in successfully, the system will
display the menu screen,

Adding Activity

To add new activity to the system, select function [1] ADD,
The system will then prompt for the activity data, After
successfully adding the activity record, the system will
prompt for the addition of another activity record. A
negative response will return you to the menu.

Updatipg Activity

To update existing activity select funetion [5] UPDATE. The
system will then display a numbered list of fields for
possible update and a prompt for an activity code. Enter
your activity code. The system will then prompt for a field
to be updated. Enter the appropriate field number from the
numbered list of fields. The system will then prompt for
the update. After successfully updating the field, the
system prompts for more updating. A negative response will
return you to the menu.

Deleting Activity

To delete activity, select function [3] DELETE. The system
will then prompt for an activity code. After successfully
deleting the activity record, the system will prompt for
another activity code for deletion., A negative response
will return you to the menu.

Activity Imguiry

67

To inquire, select function [2] INQUIRY. The system will
then prompt for an activity code. After successfully
displaying the activity record, the system will prompt for
another activity code for display. A negative response will
return you to the menu.

Hardcopy Report

To obtain a hardcopy of all activity in the system, select
function [4] PRINT. The system will output all activity
records on file, then return you to the menu.

To Exit

To exit frow the system, select function [6] EXIT. The
system will terminate the session.

Geperating Bar Charts

To generate bar charts, type command: execgen

The system will prompt for user name and password to copy
plot files from the 8/32 to the Plexus computer. From the

Plexus execute the following instructions.

Constructing bar chart "Budget versus Remaining Manhours by
Activity"

Type command: budgetbar, for CRT image.

Type command: budgetplot, for plotter hardcopy.

Constructing bar chart "Budget versus PERT Estimated
Manhours by Activity"

Type command: pertbar, for CRT image.

Type command: pertplot, for plotter hardcopy.

68

NAME
execpms = Project Management System
SINOPSIS
execpms
DESCRIPTION

The Project Management System is an interactive system
that maintains a data base of manhours by project
activities. The system calculates cumulative manhours to
completion by activity and tracks remaining manhours by
activity. In addition to generating an output

activity status report, graphic displays are constructed on
either a graphic display terminal or a plotter. Graphic
displays include a bar chart of manhours allocation
against remaining manhours by activity and a bar chart
showing PERT time estimates to allocated manhours for
each activity.

FILES
standard file input
standard file output
oldfile
newfile
printout
SEE ALSO
execgen, execprint, budget[bar, plot],
pert[bar, plot]
BUGS

none

69

JNAME
execprint = Project Management System
"pctivity Status Report®
SINOPSIS
execprint
DESCRIPTION

This part of the Project Management System prints a hardcopy
of report titled "Activity Status Report" from a print image

file.

FILES
printout
SEE ALSO
execpms, execgen, budget[bar, plot],
pert[bar, plot]
BUGS

none

70

NAME
execgen = Project Management System
Graphics Generation
SINOPSTIS
execgen
DESCRIPTION

This portion of the Project Management System extracts
from the Activity Master File and outputs three
subfiles in the proper format for graphics generation.
These subfiles are then copied (netep) from the 8/32 to
the Plexus for actual bar chart construction.

FILES
newfile
lablfile
budfile
pertfile
SEE ALSO
execpms, execprint, budget[bar, plot],
pert[bar, plot]
BUGS

none

71

NAME
budget - Project Management System
Graphics Generation -
"Budget versus Remaining Manhours by Activity"
SYINOPSIS

budget[options]
DESCRIPTTON

This part of the Project Management System constructs a bar
chart of budget versus remaining manhours by activity.
Options and their meanings are as follows:

bar = CRT image

plot = plotter hardcopy

FILES

lablfile
budfile

SEE ALSQ

execpms, execgen, execprint, pert[bar, plot]

none

72

NAME
pert - Project Management System
Graphics Generation =
"Budget versus PERT Time Estimates by Activity"
SINOPSIS
pert[options]
ES 0

This part of the Project Management System constructs a bar
chart of budget versus PERT time estimates by activity.
Options and their meanings are as follows:

bar - CRT image

plot - plotter hardcopy

EILES

lablfile
pertfile

SEFE ALSQ

execpms, execgen, execprint, budget[bar, plot]

none

AN IMPLEMENTATION OF
A SOFTWARE ENGINEERING PROJECT MANAGEMENT SYSTEM:
4 TOOL FOR
A PROTOTYPE SOFTWARE ENGINEERING ENVIRONMENT

by

OLIVER BERT CASTLE

B. S., Miami University, Oxford, Ohio, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1984

This Master's Report documents the rational, development,
and implementation of a software engineering project
management system that would provide features for a
prototype of a software development enviromment suitable for
the Japanese Fifth-Generation Computer Systems (FGCS)
project, the United States Department of Defense (DoD) STARS
(Software Technology supperting the development of
Adaptable, Reliable Systems) program, or other future

development envirorments.

The Project Management System is an interactive system that
maintains a data base of manhours by project activities.

The system calculates cumulative manhours to completion by
activity and tracks remaining manhours by activity. In
addition to generating an output activity statué report,
graphic displays are constructed on either a graphic display
terminal or a plotter. Graphic displays include a bar chart
of manhours allocation against remaining manhours by
activity and a bar chart showing PERT time estimates to
allocated manhours for each activity. The implementation

tool is Berkeley Pascal under the UNIX® Operating System on

A trademark of AT&T Bell Laboratories.

the 8/32 Computer at Kansas State University Computer

Science Department.

