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CHAPTER I

Introduction

This thesis is an investigation of the electric charge distribu-

tion among aerosol particles in a bipolar atmosphere. The aerosol par-

ticles considered here have radii greater than 1 x 10 |m] but usually

less than 1 x 10 [m] . The particles may be radioactive emitting beta

rays. This radiation both ionizes atmospheric molecules and affects

the charge on the particle. Furthermore, the atmosphere may be per-

meated by an electric field whose magnitude, in absence of significant

ionization, may range up to, or be on the order of, 10 [Vm ].

The particle charge distributions have been calculated previously

under various conditions by different methods. These methods differ

in the calculation of the ion-particle attachment coefficients. Bricard

has calculated the attachment coefficients for stationary particles

with radii greater than 1 x 10~ [m] in the absence of external electric

fields. Fuchs and Bricard have extended these calculations to approx-

imate the attachment coefficients for stationary particles with radii

on the order of 1 x 10~8 [m]. These theories include effects due to

the free flow of the ions one mean-free path length from the surface

of the particle. Gunn has calculated the attachment coefficients for

the case involving large external electric fields, where the diffusion

of ions is negligible. Klett has approximated the attachment coef-

ficients for the case where a weak external electric field is added to

the continuum equations used by Bricard . Precise definitions concer-

ning the regions where the above calculations are valid will be presen-

ted in Chapter III.



Another approach to the calculation of the particle charge distri-

bution has been presented by Keefe, Nolan, and Rich. They argue that

the aerosol particles may be considered in charge equilibrium according

to the Boltzmann law. It will be illustrated in Chapter V that the

more recent experiments agree with this formula.

The study of the particle charge distributions involves first

examining the rate equations for the charge transfer interactions among

the radioactive particles, ions, electrons, cloud droplets, and neutral

gas molecules. These rate equations are examined in Chapter II. Chap-

ter III contains an examination of the ion-particle attachment coef-

ficients which govern the particle charge distributions. The method

used to calculate the steady-state charge distributions is explained

in Chapter IV. Asymptotic formulae for the particle charge distribution

in various cases are then developed along with the mean charge and vari-

ance. Comparisons with the numerical and experimental results follow

in Chapter V.



CHAPTER II

Rate Equations for Charge Transfer Interactions Among Radioactive

Particles, Ions, Electrons, Cloud Droplets, and Neutral Gas Molecules

An overview of relevant interactions may be obtained by considering

one radioactive particle and the physical phenomena in its immediate

vicinity. The particle is considered at rest relative to the atmosphere

and may emit beta rays with a typical energy of l[MeV]. The beta rays

collide with gas molecules, ejecting secondary electrons and creating

positive ions, with an average energy loss of 33.7[eV] per ion pair.

The electrons then combine with gas molecules to form negative ions.

The above species all interact with themselves and the cloud drop-

lets. The rate equations governing the concentration of the various

species can most easily be divided into three categories: 1) the rate

equation governing the concentration of free electrons in the atmosphere,

2) the rate equations governing the concentrations of singly-charged

ions, 3) the rate equations governing the concentrations of the charged

radioactive particles.

The concentration of free electrons in the atmosphere is determined

both by their production rate and by their attachment rate to other

atmospheric species. The production rate depends upon both the primary

beta decay and the secondary electron production. Secondary electrons

are occasionally released in collisions between a primary electron and

a gas molecule. These collisions leave behind a positive ion-electron

pair and cost the primary an average energy of 33.7[eV] . The free

electrons may then attach themselves to neutral gas molecules, aerosol

particles, cloud droplets, and other atmospheric ions. The rate equation



for the concentration of free electrons can be written symbolically as

n =q -(an +a'n+6N + yC)n , (2.1)
e ne o o o e

3-1 3-1
where q [m s ] is the volumetric production rate of electrons, a [m s ]

is the electron attachment coefficient to neutral molecules of concen-

-3 3 -1
tration n [m ], a '[m s ] is the electron attachment coefficient to

o o
-3 3-1

atmospheric ions of concentration n[m ], B[m s ] is an effective elec-

_3
tron attachment coefficient to particles of concentration Nfm ] (summa-

3-1,
tion over charge states has been suppressed), and yTni s ] is an effec-

tive electron attachment coefficient to cloud droplets of concentra-

tion C[m ] (summation over charge states has been suppressed). The

steady state solution is obtained by setting n = 0, it follows that

n = q (a n + a 'n + BN + yC)"
1

. (2.2)
e ne o o o

By examing the relevant magnitudes of attachment rates (see appendix A),

we find n = q (a n )~
. This concentration is attained over a charac-

e ne o o

teristic time scale t = n q . Based upon the reactions enumerated by
e e

Phelps , the effective attainment rate at a temperature of 275° [K] and

pressure 7.95 x 10 [Pa] is a n = 5 x 10 [s~ ]. Now if we contemplate
o o

l ft — ^ —1 ft — 3
values of q < 10 [m~ s~ ] , we find that n < 2 x 10 [m ], which isne e

several orders of magnitude less than the ion concentration (see fig. 1)

Hence free electrons may be ignored under these conditions.

_3
The concentrations of the singly charged ions n. [m ] are governed

by the production rates, ion-ion recombinations, and ion attachment to

both particles and droplets. The production rate of the negative ions

is governed by attachment of free electrons onto the gas molecules,

a n n[s 1. However, the production rate of the positive ions will be
o o r



given by the particle beta-decay rate q[s ]. This is due to creation

of a positive ion and an electron by the primary beta particle. The

3 -1
accepted value for the ion-ion recombination coefficient, a.

.

[m s ] , is

—12 3 —1 8
1.6 x 10 [m s ] . The ion-ion recombination rate per unit volume is

-3 -1 -3 -1 -3 -1
represented by a.n.n„[m s ]. If we let B, . [m s ] and 6 9 . [m s ]llz ±,j z , j

represent the coefficients for attachment of positive and negative ions,

respectively, to particles with j electronic charges, then the total

attachment rate of small ions to particles with total concentration

_3
N[m ] may be written symbolically as

CD 00

m = I 6, ,N , and B'N 5 £ 6 9
,N . (2.3)

-j=_oo »1 J -i=_oo »J J

A detailed discussion of the calculation of these coefficients 6. . is
*» J

given in Chapter III. In the same spirit the attachment of small atmos-

_3
pheric ions to cloud droplets with total concentration C[m ] and charge

states j , each with concentration C . , can be represented by

00 00

yC = I y, ,C , and Y 'C =
I y C . (2. A)

j=_oo X »J J j=_oo Z »J J

The rate equations can now be expressed as

n
l

= q " (a
i
n
2
+ 6N + YC)n

l '
(2,5)

and

n„ = a n n - (a.n. + 6'N + Y'C)n_ . (2.6)
l o o e l 1 I

The steady-state ion concentrations are determined by setting

n
1

= n9
= 0, and by introducing the approximations q=ann,8-B',

and y - Y*« The only physical solutions occur when n- = n„ (Appendix B)

with



n
1

= X (2a
i
)"1 [(l + 4aiqX

"2
)
1/2

- 1] , (2.7)

where x - 6N + yC is an overall ion attachment rate. It is instructive

-2
( » ]

-1*1/2

_2
to note that when the ion production rate is large (i.e. 4a. qx

" >> 1)

the ionic recombination dominates over attachment and n = (qa. )
'

.

In the opposite limit the attachment dominates over recombination and

n = qx . The discussion here will be restricted to cases for which

-2 -1 1/2
4a. qx » 1, that is n s (qa. ) . Equilibrium ion concentrations

are shown in Figure 1.

The rate equations, which govern the concentrations of charged

radioactive particles, are developed by considering the activity per

particle, A , and the ion-particle attachment rate. The concentration

_3
of particles with charge state j , N [m ], can be affected in six ways.

A particle with (j-1) charges may beta decay, increasing the charge on

the particle by one electron and become a j particle. A particle with

j charges may decay and become a (j+1) particle. The ion-particle attach-

ment also changes particles in and out of a j state to and from a (j-1)

and a (j+1) state. Hence we need to solve coupled rate equations of the

form

N
j

" A
p
(Nj-rV + e

i,j-l
n
l
N
j-l " 6

l,j
n
l
N
j
+ 6

2,j+l
n
2
N
j+l

" e
2,j

n
2
N
j

'

(2.8)

along with the conservation of the total concentration of particles
oo

N = 1 N. . We expect that for a given physical system we can find a

j_00 3

fixed £ » 1, such that for all j > £, N. = 0. This enables us to delete

all equations for N . - , and N_j_^, where j >_ £. Furthermore, we should

delete all terms involving transitions to and from (£ + 1) and (£ - 1)

states. Hence we delete the term (-A N. - 8, n n-.N. + B_ „.,n-N...

)

p £ 1 , £ 1 x, 2 , Z+l 2 £+1



in the equation for N
£

, and the term (A N
£-1 + &

1 _£_i
n
i
N
_£_i

" e2,-£
n
2
N-P

in the equation for N . The remaining system of (2A + 1) equations,
~l

i

along with the relation N £ N , can be solved analytically in the

j=-£ J

steady-state to obtain a recursion relation of the form

6
2, J+iVJ+i "

(e
i,3

n
i
+
V"j

• <2 - 9)

A detailed discussion of the coefficients $
±

. will be given in Chapter

III. The recursion relation (2.9), which expresses the principle of

detailed balance, is the fundamental starting point for calculating

the particle charge distributions in Chapter IV.



Figure 1.

Equilibrium ion concentrations as a function of the ion production

rate and ion attachment rate.
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CHAPTER III

Ion-Particle Attachment Coefficients

The scheme used to calculate the ion-particle attachment coefficients,

—3 —1
8. . [m s ], can be motivated as follows. We first define the 8. .

i»j 1 »J

through the equation

N. = 8, .n.N. , (3.1)

_3
where N.[m ] is the concentration of particles with j electronic char-

— -3
ges, and n [m ] is the uniform background concentration of the ionic

species "i". Then, if I [s~ ] is the total current of an ion of type
i

»

J

•

"i" to a particle with j charges, we must also have N = I .N.. Hence,

the ion-particle attachment coefficient must be given by 8 . . I . . (n.)

The problem reduces to one of calculating I . . . To do this we assume a

stationary particle with j electronic charges immersed in a sea of ions

with overall background concentration n. and n„. In the steady-state

the ion concentrations will vary as a function of distance from the

particle. Hence the current is given by

kj-Pt&w* •
(3.2)

-fc —2 —1
where J [m s ] is the current density of ions of type i, and S is any

closed surface enclosing the entire particle. The calculation of J.

has been done for three cases of interest: 1) no externally applied

electric field E [Vm ] , 2) a weak external electric field (eE a(kT)~ « 1)

,

o o

and 3) a strong external electric field (eE a(kT)~ » 1). In all cases

the space charge in the vicinity of the droplet will be considered so

disperse as to be negligible.

10



The case with no externally applied electric field has been done

by Bricard
1

. The calculation of I
±

. is obtained by solving the steady-

state source-free continuity equation V • J. " 0, with

where D. [m 8 ] is the diffusion coefficient for ions of type i,

n (r,j)[m ] is the concentration of ions of type i, s^^ is +1 (-1) for

2 -1 -1
positive (negative) ions, e[C] is the unit electronic charge, y.Jm V s ]

is the electrical mobility of ions of type i, and E is the radial elec-

tric field due to the charge on the spherical particle. The accepted

macroscopic boundary conditions are n (a,j) - and n^(*,j) n^ where

a[m] is the particle radius. For particles with radii larger than

o

1 x 10 [m] the image forces between the ion and perfect-conductor par-

9 10
tide can be neglected '

. In this case the ion-particle attachment

coefficients are given by

B
±

=
1
4wfl>

1
I
1*(J) , (3.4)

where

I
±*CJ)

= 2bj {exp(2jbSi ) -l}"
1

, (3.5)

and 2b is defined by

2b = e
2
(4ire akT)"

1
, (3.6)

o

where e is the permitivity of free space. It is instructive to note

that 2bj is a ratio of a characteristic electrostatic potential energy

of a spherical conductor of radius a and with charge ej , to a charac-

teristic thermal energy kT.

The case involving a weak (eE a(kT) « 1) externally applied elec-

trie field has been investigated by Klett . The source-free steady-

11



state continuity equation is used to calculate n.(r,j). The form for

J. is identical to (3.3). However in this case E is the electric field

surrounding a charged spherical conductor in an external field E . Due

to the analytic complexity of the problem, one must resort to the method

of matched asymptotic approximations. The solution depends on two

naturally arising nondimensional physical quantities a = eE a(kT)~ , and
o

t = 2bj, where 2b is defined as in (3.6). The parameter a is the ratio

of a characteristic electrostatic potential energy due to the external

field E , to the characteristic thermal energy kT. Both the "inner"

solution, where diffusion dominates over conduction due to the external

electric field, and the "outer" solution, where conduction due to the

external electric field dominates over diffusion, are calculated to

first order in a. The matched inner solution is used to calculate the

ion-particle attachment coefficient. To first order in a the result is

e
±ij

- 8
±
47raD

1
Tl

1 "(J) , (3.7)

where

V'(j) If i
s.ax

{
exp(-s x)

2(l-exp(-s
iT))J

[l-exp(-s
i
t)

<

(3.8)

Klett further argues that these formulae are valid for a s 4.

The case involving a large (a >> 1) externally applied electric

3field has been investigated by Gunn . In this case ion diffusion to

the droplet is negligible and the current is calculated from Ohm's law,

X
i,j

= G
i / ^ (J) * ^ ' < 3 ' 9 >

where a
±
[V m s ] is the electrical conductivity of the ion through

the medium, E(j)[Vm ] is the electric field surrounding a charged

spherical conductor in an external field E* , and the integration over

12



S is carried out over only that part of the particle for which the cur-

rent is into the particle. Gunn's result is

6, .
= 3ira

2
a,E (en,)~

1
{l-(l/3)s,E,E

~1
}
2

, (3.10)
i»J i o i I j o

where

E. H je(4Tre a
2 )"1

. (3.11)jo
It should be emphasized that Gunn's result is valid only where the

linear form of Ohm's law is applicable.

We have developed all of the formulae for the 6. .'s by using the

macroscopic laws for diffusion and conduction of ions. Particles which

have dimensions smaller than, or on the order of, a mean free path

length for ion-molecular collisions do not obey the continuum or macro-

scopic laws for diffusion and conduction. Hence, the 6. ,'s for these

particles may be quite different. This aspect is discussed in greater

detail in Chapter V. However, it should be noted that once the B. .'s
1 » J

have been specified, the particle charge distributions still may be

calculated according to the prescription to be given in Chapter IV.

13



CHAPTER IV

Particle Charge Distributions In the Steady-State

The information for determining the particle charge distribution

is contained in the rate equations for the charge transfer interactions

among the ions, electrons, neutral gas molecules, and radioactive par-

ticles. Steady-state particle charge distributions can be calculated

from the recursion relation (2.9).

6
2,j+l

n
2
N
j+l " <*l pj»l

+ A
p
)N

j
(2.9)

Given the 3. ., which were developed in Chapter III, the first step is

to solve (2.9) for N -N ~
. By using this ratio in a telescoping pro-

duct we can form:

N N N N

VO N
Q ^ Nj _ 2

I
(4.1)

The normalized charge distribution is then given by

V'-'Vo'^'V^^-Vo"
1

, lVo'\
-1

/—

o

(4.2)

This distribution may be evaluated numerically. Several normalized

charge distributions have been calculated for various values of activity,

electric field, and particle radius. These results will be illustrated

in Chapter V.

An alternative to the numerical approach is to study the charge

distributions under appropriate asymptotic limits. There are two physical

mechanisms, radioactive decay and ion attachment, which can increase the

positive charge on the particles. The relative magnitude of the associated

14



rates determines whether the particle activity or the ion diffusion and

conduction processes dominate the particle charging. Hence, we distin-

guish between two main cases of interest:

Case A - low activity (A (6. .n.)~ « 1)
P J-» J *

Case B - high activity (A (B, ,n.)~ » 1)

The particle charge distributions are developed by rewriting

(2.9) for the two cases as:

(Case A)

N.N. ~1 = B, , .11.(6, 4
n9

)"1 (l + A (8. , ,n )

_1
) , and (4.3)

j j-1 l.j-1 1 2,j 2 p 1,3-1 1

(Case B)

Yi-1
1 = A

P
(e

2, j
n
2
)

"
1(1 +

^l.j-lVp"^ (4 ' 4)

a A (B, .n,)"
1

. (4.5)

In both cases, A and B, we have two subcases. The first subcase in-

volves a weak external electric field (a = eE a(kT)~ << 1). The second
o

subcase involves a strong external electric field (a » 1) , applicable

where the linear form of Ohm's law is valid and ion-diffusion currents

to the particle are negligible. One should be careful with Case B,

since a strong external electric field is difficult to maintain in a

highly ionized atmosphere. The case where E can be included in the

weak external electric field case by taking the limit when a approaches

zero.

The first step to derive the particle charge distributions is to

form the product (4.1), and then the normalized charge distribution

N N~ , which is given by (4.2). The four formulae for the particle



charge distributions are calculated in the following order: 1) low

activity and a weak external electric field, 2) low activity and a

strong external electric field, 3) high activity and a weak external

electric field, 4) high activity and a strong external electric field.

All cases involving low activity (A (6. .n.)~ «1) are developed
P -L» J *

from (4.3). By using (4.3) and (4.1), we may express the general formula

for all low activity cases in the form:

^Nq"1
= p

J S T , (4.6)

-1 3 -1
where we have defined p = n-iiu , S

. = II (f5, o.i^o £ ^' an<*

J i
^~J-

I. s II (1 + A (B, . ,n.) ). The problem is to evaluate S. and T. in
J £=1 P 1»*-1 1 3 3

an appropriate asymptotic form for the cases involving the weak and

strong external electric fields. The case involving the weak external

electric field is developed by using the 6. . defined by (3.7). By

anticipating that bj « 1, we have to first order in a (Appendix C)

S = rr
j (bj)"

1
exp{-bj

2
(l -(l/2)a)} sinh (bj) , (4.7)

and
T. = 1 + 2bA e ja

"1
= exp {2bjA e a

~1
} , (4.8)

J poJ l
^ J pol

where a. S ev.n. is the electrical conductivity, and ri = D.D„

By combining all the factors we have

N.N = rr
5 (bj)"

1
sinh(b;j)exp {-bj

2
(l-(l/2)a) + 2bjA

p
e
o
a
1

"1
} , (4.9)

which can be rewritten by letting bj << 1 and sinh(bj) = bj . Hence

we have

NjN^1
= exp{j£n(n) - bj

2
(l - (l/2)a) + 2bjA

p
e
o
o
1

"1
} . (4.10)

16



It should be mentioned that when A =0, and a » 0, (4.9) is identical
P

to the formula derived by Sal'm . Now, by using (4.10), we can com-

plete the square in the exponential and approximate NN by

00

NN
_1

= /(N N
_1

)dj . (4.11)

We then obtain

N N = (N.N
'1

)(NN
"1)~1 = (2TT(Aj)

2 )~1/2exp{-(j-j)
2
/(2(Aj)

2
)} , (4.12)

where

j = (2b)"
1
(1 + (l/2)a)[£n(D

1
D
2

"1
) + A E^"1

] , (4.13)

and

(Aj)
2

= (2b)"
1
(1 + (l/2)o) . (4.14)

It is of interest to note that when A = the charge distribution is
P

4
the same one derived by Klett , and when a 0, we obtain the same dis-

tribution derived by Bricard .

The case involving low activity and a strong electric field is de-

veloped by using the 3. . defined by (3.10). We must approximate S. and

2
, -1

T. in (4.6). By using the high field approximations y S e (8trc a)

-1 2 -1 -1
•(eaE ) << 1, and K = A (3ira o.E e ) « 1, we can approximate S.

o p 1 o j

and T. by (Appendix C)

S
j

= (n
2
n
1

"1
)
J exp {-(4/3)yj

2
+ jte(a

1
a
2

"1
)} , (4.15)

and

T = exp(jK) . (4.16)

By combining all terms, S, and T
.

, we have the approximation

17



N
j
N

Q

1
= exp{-(4/3)YJ

2
+ j Unfc^" 1

] + K) } .
(A. 17)

Now, by completing the square in the exponential, using the approxima-

tion (A. 11), we arrive at a charge distribution in the same form as

— 2
(4.12) with a new j, and (£j) , given by

i^lnCo.o'h + A e a
"1 (A- 18)j = 3tte aE e'-^nCc.o,) + A e a, ,o o 12 p o 1

and

(Aj)
2

= 3Tr eoaEo
e
_1

. (4.19)

Comparisons of the above formulae with actual numerical calculations,

involving weak electric fields, can be found in Chapter V. It is in-

P
teresting to note that when A = 0, and o a

9
= 1, the result for j

3
agrees with that derived by Gunn (Appendix C)

.

The cases involving high activity (A (B- .n
1
) « 1) are developed

by using (4.5). The case involving a weak electric field (a << 1) is

developed by using the 8. . defined by (3.7). The telescoping product
*i 3

for N.N now has an entirely different structure given by
2

Vo"
1= VoV1

*
CjI)

"
ls

J
Tj"

1

'
(4 - 20)

where S. and T. have entirely new definitions given by

j

S = n U-exp(-2b£)} , (4.21)
J £-1

and

j -1
T = H {1 - ab£[l-exp(2bA)] > . (4.22)
J 1=1

Also, to obtain (4.20), the definition of electrical mobility and the

Einstein relation were used to obtain the equation 8bn iraD = a„e .

2 2 2 o



If we note that 2bj » 1, then an approximation for S.T. is given by

(Appendix D)

Vf
1 s (1 - e

"2bj)(
2fj>

3/2# exp (iij)(1 - m> E c '
•

(4 - 23)

The charge distribution is then given by

NjN
-1

= (jO"
1
5
je"CC

1 , (4.24)

F E -1 -1
where C. = C'e^fl + C(e-l)] , and E, = A e a- . The mean value of j is

1 p O 2.

J - C^ , (4.25)

and the variance is

(Aj)
2

= C
1
£ + C

15
2
(l - C

1
) . (4.26)

Values of C. , as a function of E, are given in Table 1. It is clear

that C. may be taken as unity. Hence, we find that for large j

lyf1
= C

j
(j!)

_1
exp(-0 , (4.27)

where E, is the mean charge and also the variance of the Poisson distribu-

tion. It is important to notice that N.N
-

depends only on E, and j, nei-

ther of which depend on the electric field. Comparisons between the ap-

proximate formula and the numerically calculated distributions are given

in Chapter V.

The case involving the high activity and strong external electric

field is calculated by using the formula (4.5), where the & are de-
i» J

fined by (3.10). To perform this calculation we first note

NjNj^"1
- K(l + (2/3)jy)"

2
(4.28)
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2-1 2-1 -1
where K = eAp(3Tra a.E ) , and y = e (Strega) {eaE

Q
} . It follows

that

N N
Q

-1
= KjP~

2
(4.29)

J

where P = II [1 + (2/3)£y]. Now take the logarithm of P and replace the
£=1

product with a summation of logarithms. By using the strong field ap-

proximation, y « I» we can expand each logarithm to first order in y

and then calculate the summation exactly. After exponentiating the re-

sult, raising it to the (-2) power, and rewriting the factor K^ as an

exponential of a logarithm, we obtain

N.NQ
-1

= exp{-(2/3) Yj
2
+ j Un(K)- (2/3)y)} (A. 30)

We can now complete the square in the exponential, make the same approxi-

mation as in (A. 11), and obtain the same formula as (4.12). For this

case the mean charge is

J- 3(4Y)
_1

iin {A (3Tra
2
c.E e"

1)"1
} - (1/2) (4.31)

p I o

and the variance is

(AJ)
2 -|y_1

• (4.32)

Discussion concerning all four cases are found in Chapter V. Com-

parisons to numerical calculations, experimental results, and discussion

of their physical interpretation are included.
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TABLE 1.

Comparisons between the nondimensional quantity S
. , given by

equation (4.21), and the asymptotic approximation for S.,

S., equation (D.2). Also included are the values for the

nondimensional coefficient C. , in equation (4.24), as a func-

tion of the quantity £, where £ = A e o
J

p o 2



TABLE 1.

j s
i

S
1

K C
l

1 5.8 x 10~ 2 7.2 x 10~5 10 2.3 x 10
-1

5 6.0 x 10"5 2.5 x 10~6 20 3.0 x 10~ 3

10 4.5 x 10" 7
1.0 x 10~ 7

25 4.3 x 10"1

20 2.5 x 10~9 1.7 x 10~ 9
30 9.9 x 10

_1

50 2.9 in"11x 10 2.5 in"11x 10 40 1.00

100 1.3 1n-llx 10 1.1 in"11x 10 50 1.00

150 1.3 in"11x 10 1.1 m"11
x 10

00



CHAPTER V

Discussion and Conclusions

The particle charge distributions are calculated from the steady-

state recursion relations (2.9),

e
2,j+l

n2Vl
= (e

i,j
n
l
+ A

p>
N
j

-1

(2.9)

The ratio N. N is used to calculate the distribution by noting

(4.2)

N.N =
J

-13

n n n
l£=1 J J J.

J

-1.

£=_oo k=l

-1
(5.1)

This calculation can be done to arbitrary precision on a computer. How-

ever, several cases of interest can be examined by using the closed

asymptotic formulae which were developed in Chapter IV. Application

of the Central Limit Theorem allows all asymptotic formulae to be rep-

resented approximately in terms of the shifted Gaussian distribution,

,-1
N.N
J

2tt(Aj)'

1
2
exp (j-j)

2
/(2(Aj)

2
)

— 2—2
with number of charges, j, and dispersion, (Aj) £ (j-j)

can be summarized as follows:

-1
A. Low Activity (A (6. .n..) «

P *•» J •*

1)

-1
a) weak external electric field (eE a(kT) « 1)

o

J = (2b)
_1

{iln(D-D
"1

) + A e a
"1

}{l+(l/2)cx} ,
1 2. p O 1

(Aj)
2

= (2b)
1
{1 + (l/2)a) ;

(5.2)

The cases

(4.13)

(4.14)
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b) strong external electric field (eE a(kT) >> 1)

J= 3(8y)"
1
£n(a.a

"1
) + A e a'1

, (4.18)
1 I p o 1

(Aj)
2

= 3(8Y )

_1
(4.19)

B. High Activity (A (B. .n ) « 1)
P !•» J •»-

a) weak external electric field (eE a(kT) « 1)
o

J=A
p
c
o
a
2

-1
, (4.25)

(Aj)
2

= A
p
e
o
a
2

_1
; (4.26)

b) strong external electric field (eE a(kT) » 1)

J- 3(4Y)
_1

Jln {A (37ra
2
o E e"

1
) } - (1/2) (4.31)

p l o

(Aj)
2

= 3(4y)
-1

. (4.32)

The low activity case has two terms which determine the value of

j . The term A (a. e ) is the ratio of the activity per particle to

the characteristic electrical relaxation rate of the positive ions in

the atmosphere. If A is increased, then the mean positive charge on

the particle increases. Another important term which determines j is

£n(D.D
2

), or equivalently in (a. a- ). If D. > D« then the mean charge

on the particle is driven positive. Similarly, if D» > D, the mean

charge on the particle is driven negative.

The high activity case depends essentially on the parameter A (c„e )
p 10

the ratio of the activity per particle to the characteristic electrical

relaxation rate associated with negative ions. If the negative ions'

electrical conductivity increases, the mean charge on the particles will

-1
»



decrease. It is interesting that for the case involving a strong ex-

ternal electric field, we can rewrite

(3/2)yA e a
"1

= 3A e(16TrE aV)"1
• (5.3)

p o z p o z

Hence for large E , or u,, the mean particle charge may be negative.

The asymptotic formulae have been checked against numerical calcu-

lations. Results for several cases are shown in Figures 2 through 8.

The histograms are computer generated results, the smooth curves are cal-

culations based on the asymptotic formulae. It should be pointed out,

that Figures 2 through 6 were calculated using the low activity approxi-

mation. Figure 7 uses the high activity approximation. Figure 8 illus-

trates the breakdown of the asymptotic formulae when used incorrectly.

In Figure 8 the weak electric field, no activity, approximation was

used to calculate the smooth curve. The failure occurs since a = .42

and is not sufficiently small, or less than 1.

Several experiments have been performed to observe the charged

aerosols. The experiments measure the relative fraction of neutral

particles, in a bipolar atmosphere without an external electric field.

12
A summary of the experiments by Liu and Pui are given in Figure 9.

The ion-particle attachment coefficients, which are listed in Chapter III,

correspond to the continuum model without electrical image forces. For

particle radii greater than, or on the order of, 1x10* [m],
t the ion-par-

ticle attachment coefficients agree with the coefficients as calculated

Q
by using the model developed by Fuchs . According to Figure 9, the theo-

retical and experimental results, are in agreement for these particle radii.

Much work is found in the literature involving the theoretical

calculation of the ion-particle attachment coefficients for particle

25



-8
radii on the order of 1 x 10 [m] . The theory for particles whose

radii are on the same order of magnitude as X, the ion mean free path,

is usually developed by what is called the limiting sphere method. In this

method the space surrounding the particle is divided into two regions

separated by an imaginary sphere of radius 6 = a+X, where "a" is the

particle radius. The ions far from the sphere move by means of macro-

scopic diffusion. Inside the sphere of radius 6, the ions move by mole-

cular transport or free flow. The method by which the ion currents to-

ward the particle, inside and outside the sphere, are matched and deve-

loped give varying theories. Two examples of such theories are Fuchs ,

14
and Keefe et. al. However, as seen from Figure 9, the formula which

best agrees with the experimental results is the Boltzmann distribution

as given in the paper by Keefe, Nolan, and Rich. Also the more recent

12 1 1measurements by Liu and Pui , and by Servaas and Krider , support the

conclusion that the Boltzmann distribution,

N = 2N
o
exp{-j

2
e
2
(8TrE

o
akT)

_1
} , (5.4)

gives the best fit to the observed particle-charge distribution, parti-

cularly for radii less than 1 x 10~ [m] . The theoretical justification

for this has not yet been found. However, attempts to justify this dis-

tribution for all particle sizes have been chiefly done by Keefe, Nolan,

and Rich . The fact that the simple Boltzmann distribution agrees with

the experiments implies that my asymptotic distributions, which are of

the same form, may well predict the actual distributions for the small

particle sizes. This extension has no experimental justification, how-

ever, the experimental trends suggest that these distributions will give

accurate predictions.
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FIGURE 2.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is l[vm],

the specific activity is A - 0, the external electric field is

E = 0, the temperature is 275° [K] , and the atmospheric pressure is

7.95 x 10
A
[Pa].

FIGURE 3.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is lfum],

the specific activity is A = 0, the external electric field is E =

10
3
[Vm

_1
], the temperature is 275° [K] , and the atmospheric pressure

is 7.95 x 10
4
[Pa].
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FIGURE 4.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is .l[um],

the specific activity is A = 0, the external electric field is

1 - 0, the temperature is 275° [K] , and the atmospheric pressure

is 7.95 x 10
4
[Pa].
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fig.4
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FIGURE 5.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is .l[um],

the specific activity is A = 10 , the external electric field is

E* - 0, the temperature is 275° [K] , and the atmospheric pressure

is 7.95 x 10
4
[Pa].
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FIGURE 6.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is .l[um],

the specific activity is A = 10
16

, the external electric field is

E = lO^fVnf
1
], the temperature is 275° [K] , and the atmospheric

pressure is 7.95 x 10 [Pa].

33



I

s

1.1

£

fig. 6

34



FIGURE 7.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is . 2[ym],

20
the specific activity is A - 10 , the external electric field

is E - 0, the temperature is 275° [K] , and the atmospheric pressure

is 7.95 x 10
4
[Pa].

FIGURE 8.

The relative concentration of particles as a function of particle

charge. The histogram is computer generated and the smooth curve

represents the asymptotic formula. The particle radius is l[um],

the specific activity is A = 0, the external electric field is

E = 10 [Vm], the temperature is 275° [K] , and the atmospheric

4
pressure is 7.95 x 10 [Pa].
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FIGURE 9.

Comparisons between the experimental results, the Boltzmann distri-

bution
5

, Bricard's theory , and Fuchs' theory. This figure is a

12
modified version of one occuring in the paper by Liu and Pui .
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APPENDIX A

Electron Interactions and Attachment Rates

The rate equation for the concentration of free electrons can be

written as

n « q -(an +a'n+8N + yC)n , (A.l)
e ^e o o o e '

where q is the electron production rate density, an is the attach-
e o o

ment rate to neutral molecules, a 'n is the attachment rate to all other
' o

ionic species, BN is an effective attachment rate to particles, and yC

is an effective attachment rate to cloud droplets. The electron attach-

ment to gas molecules occurs by three-body processes, almost all of

which generate 0~
. The combination of the various processes yields

an effective attachment rate of a n = 5 x 10 [s 1. The electron-ion
o o

attachment studied by Biondi , yields an effective attachment coefficient

-3 3 -1
of a ' = 5 x 10 [m s J. An estimate for the electron-particle, or

electron-droplet, attachment coefficient is B = 4iraD , where a is the

-2 2 -1
radius of the collector and D = 1.4 x 10 [m s 1 is the diffusion coef-

e

ficient for electrons. Hence, for a l[ym] particle and a 10 [ym] droplet

—7 3 —1 —6 3 —1
we get $ s 1.8 x 10 [m s ] and y = 1.8 x 10 [m s ]. Now using

13 -3 10 -3
typical values of n s 8 x 10 [m ] (see Figure 1) , N = 1 x 10 [m ]

,

and C * 3 x 10
8
[m~

3
], we have a 'n = 40[s

-1
], B N = 1.8 x 10

3
fs
-1

], and
o e

2 -1
Y C = 5.4 x 10 [s ], all of which are small compared with a n . Hence,

we can approximate

n
e

S qe " We (A ' 2 >

39



Hence, the steady-state concentration of electrons is given by

n = q (a n ) . If we now take q = 1 x 10 [m s "], we find that
e ^e oo ne

8 —3
n * 2 x 10 [m ]. Comparing this with the ion concentration (Figure 1)

,

e

we see that the free electrons may be ignored.
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APPENDIX B

Solution of Rate Equations for Steady-State Ion Concentrations

The rate equations governing the concentrations of small atmospheric

ions are expressed as

t^ = q - (an
2
+ BN + yC)^ , (B.l)

n- = a n n - (an. + B'N + y'C)n_ (B.2)
l e o e 1 I.

where q = a a n are the ion production rates, an.n„ is the ion-ionn e o e 12
recombination rate per unit volume, 8N = B'N are the attachment rates

to the particles, and yC £ y'C are the attachment rates to the droplets.

To solve this in the steady-state we let n. =n_= 0, y s y', B fi 6',

and q a n n . It is clearn e o e

= (njn
2
) = (n, + n

2
)(q - an^) - 2n

1
n
2x

(B.3)

- (nj + n
2

) = 2q - (2an;Ln2
+ (^ + n

2
>x) (B.4)

where x - 6N + yC. Solving (B.4) for n. + n_, substituting into (B.3),

and solving (B.3) for n.n„ we obtain

C
Q

= (n
x
n
2

) = qof
1
+ (x^a2 )'1

) [1 ± (1 + 4aqX
"2

)
1/2

] (B.5)

and

B e -(n
x
+ n

2
) - xa

_1
(l ± [1 + 4aqX

"2
]

1/2
) . (B.6)

Hence, we must have

n
x

= |[-B ± (B
2

- 4C
Q
)
1/2

] . (B.7)
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2 1
Inspection shows that B - 4C n 0. Hence n. = -r B, which implies

n
l

= n2* This enables (B.l) to be written as a quadratic equation in

terms of n. = n„ - n. Solving this for n, we find

1-1 -? 1 17
n - | xa [1 + (1 + 4aqX ) ' ]. (B.8)

The limiting cases, n = (qa ) , and n = qx~ , follow when 4aqx » 1,

_2
and 4aqx « 1, respectively.
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APPENDIX C

Approximations in the Low Activity Cases

The low activity cases occur when we have A (B- ,n. ) << 1.
P 1»J 1

By using (4.3) and (4.1) we know that the general formula for all low

activity cases is (4.6)

NjN^1
= p

jSl , (4.6)

-1 j -1
where we have defined p = n.n_ , S. = II (B, -8 9 ), and

T. = n (1 + A (8, „ ,n n
)~ )• The problem is to evaluate S. and T. for

J £=1 P 1»*-1 1 J J

the cases involving the weak (a « 1) and strong (a » 1) external elec-

tric fields.

The case involving the weak external electric field is developed

by using the 8. . defined by (3.7). The approximation of S. is done

as follows. We note that

B
lti.1

e
2 ,i"

1
" fiu-DV'a-iH-AV'oor1

.
(ci)

where we have defined r\ = D-.Do » and we recall from (3.7) that

i
±"U) =

[

s.a2b£
1 +

f
exp(-s.2bJl)i

2(l-exp{-s
±
2b£})J (l-exp(-s

i
2b£)J . (3.8)

It is convenient to define the function

FU) = U)
_1

(l - exp(-2b£)) , (C.2)

where F(o) = S-im F(Jl) = 2b. It follows that
£->-o
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(£-Di
1
"a-i)[-4i

2
"(t)]"1

= F(£)[F(il-l)]"
1
[l + ^a(2b)(£-l){l-exp(-2b(il-l))}"

1
]

•[1 + |a(2bil){exp(2b£)-l>"
1 ]"1exp{2b(£-l)} . (C.3)

We define the two quantities

U. = n [1 + 4x(2b(£-l)){l-exp(-2b(£-l))}
X

] , (C.4)
J £=1

and

^ 1 -1
V. = n [1 + ^a(2bJl){exp(2bJi) - 1} ] (C.5)
2 £=1

It follows

S = (n)
j F(j)[F(o)]"

1
exp(-bj(j-l))U

j
V
j

"1
. (C.6)

Expand U.V. , keeping only terms of first order in a, to obtain

U.V."
1

= 1 + io[l + bj
2
-bj-2bj(exp(2bj)-l)

_1
] . (C.7)

J J

-1
By anticipating bj << 1, we approximate U.V. " by

U V
_1

* 1 + (1/2) abj
2

= exp (|abj
2
)

A useful identity, easily proved by direct substitution, is

(C.8)

F(j)[F(0)]
_1

exp(-bj(j-l)) = (bj)
_1

exp(-bj
2
)sinh(bj) . (C.9)

Hence we find that an approximation for the product S. is

S * Ti
j (bj)

_1
exp{-bj

2
(l-(l/2)a) sinh(bj) . (A. 7)

We now need to approximate T . . Expand T . by using the low activity

assumption (A (6 1
n-)~ « 1). Furthermore, since a « 1, we neglect

P X, X. J.
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terms of order aA (3, «n,) . Hence, we have
P i»* x

*1Tan
l
I)
l
)
~

LT * 1 + A (4TTan D ) "2 (exp(2b(Jl-l))-l) [2b(A-l) ]
J p £-1

= 1 + 2bA e a
"1

y [(exp{2b(£-l)}-l)(2b(£-l))"
1

] , (CIO)
P o 1

J-1

-2 -1 -1
where n.D.. = kTa.e follows from the Einstein relation, D(kT) = ye ,

and the definition of electrical conductivity, a = eun. Now, by using

the approximation 2bj « j, we can expand (CIO) and keep only terms of

first order in b to obtain

T. = 1 + 2bA e jo
"1

J p oJ 1

= exp{2bA e jo

-

-1
} . (4.8)pox

The case involving the strong external electric field is developed

by using the 6-, . defined by (3.10). We must approximate S., and T .

,

in (4.6), by using the high field approximations y « 1, and K « 1,

where we have defined

Y = (e
2
(8Tre a)

-1
)[eaE

J"1
, (C.ll)

o o

and
2 -1

K = eA (3ira a„E )
x

. (C.12)
p 2. o

The approximation for S. is done first. We first note

3
1)j

e
2jj+1

"1
= (n

2
a
1
)(n

1
a
2
)~1 (l- |rj)

2
(l+fr(j+l))"

2
• (C.13)

Now by using the high field approximation, we can approximate S. to

first order in y as
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,-l,l
3

5 = [(n-o-Xn-o,) "] J [n {1-(2/3)y(2£-1)}]
-

3 1=1

e [(^a^Cn^)'1]^ 2
. (C.14)

Now, by taking the natural logarithm of P, we can replace the produce

with a summation of logarithms which can also be approximated since

Y « 1. After evaluating the summation, exponentiating it and completing

the square, we find

S
i

= [(n^di^'^erpC-lrJ 2
) (n^"1

)
j exp{- |yj

2
+ jto^Oj"1

)}

(4.15)

We can now approximate T. by first noting

{1 + A
p
(e
i,£

n
l
)

"
1} = 1 + K[1_ Vi]2 ' (C ' 15)

We now notice that K << 1, since we have low activity and a strong elec-

tric field. This implies that the terms of order yK can be neglected.

Hence, we have

J

T * H (1 + K) . (C.16)
J £=1

Now we can take the natural logarithm of T. and replace the product

by a sum of logarithms, which can be expanded for small K. After

summing and exponentiating we find

T s exp(jK) . (4.16)

As shown in Chapter TV, it follows that

j = (Aj)
2
£n(a

1
o
2

_1
) + A e^-1

, (4.18)
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where

2 2-1
(Aj) - 3 a e E ev J/ oo (4.19)

It has been shown that for strong external electric fields , with non-

radioactive aerosols, the mean charge is given by

J£_

127TE a E
o o

r -ia/2

,

(g
l
g
2

} -
1

, "In 1/2^ ,
(0^2 ) + 1

(C.17)

By using (4.18) and (4.19), when A - 0, we obtain

2 2
3tte a E 6ire a E . , ..

T _ O ,„ "In O O . ., -lvl/2v
J

= «-n(a a )
= fn( (OjOj ) ) (C.18)

Now recall the formula (valid for all x > o)

£n(x) = 2
fx-1 1

x+1 3

fx-ll

[x+lj

3

4
r

x-l)

L
x+lJ

+ . . . (C.19)

Hence, if (°",a_ ) * 1, we have

AnCCo^"1
)

172
) = 2

, -1n1/2 .(o^ ) - 1

so we have

J

12ire a E
o o

/ -1n1/2 ,

[(o^ ) + lj

(C.20)

(C.21)

which agrees with (C.17).
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APPENDIX D

Approximations in the High Activity Case

The high activity case occurs when we have A (8, .n.) ' » 1.

By using (4.5), and the 8. defined by (3.7), the telescoping product

for N N
_1

is given by (4.20),

N^"1
= (A e

o
o
2

"1
)
j (j!)"

1
S T

_1
, (4.20)

where j

S = n {l-exp(-2b£)} , (4.21)

and

^ £-1

i -1
T = n {1 - ab£[l-exp(2b£)]

x
} . (4.22)

3 SL=1

We can now approximate S. by first taking its natural logarithm, which

reduces the product to that of a summation of logarithms. This summa-

tion can be replaced by an integration. However, calculations show this

to be too crude. A good method to approximate this summation is ob-

tained by looking only at the last (j-1) terms of the summation. Since

any integral can be approximated by both upper and lower Riemann Sums,

we notice that

1+1 j J

/ G(£)dJl< I G(£)< / G(£)d£ , (D.l)

2 £=2 1

where G(£) = £n(l-exp(-2b£)) . These integrals may be evaluated directly,

added to the first term of the summation, and then exponentiated to ob-

tain two different approximations for S . . The final approximation for

S. is then obtained by taking the geometric mean of these two approxima-

te



tions. The result is

Sj e (l-exp(-2b))(2f)
3/2

(|)exp{(2b)'
1
(exp(-2bj)-7r

2
/b)} (D.2)

This approximation is compared to the actual products in Table I. It

is clear that the approximation is good for j > 50. We now must approxi-

mate T . Expanding (4.21), and keeping only terms of first order in a,

we obtain

T, » 1 + ob l UCexpabJD-l)"
1
}

J £-1
(D.3)

If the summation is replaced by an integration we find that the re-

sulting integral can only be evaluated numerically. However, we can

approximate the summation by first noting

(D.4)

i -ST-* 1 ^exp(2b£)-l}-
1

< }
£d£

2b£ .

1 e -1
£=1 e

2b
*-l •

(D.5)

£d£

« 2b£ .

Oe -1

= (2b)
-2

• 2 °°

— - f x(e
X
-l)

_1
dx

and

?;% ™-2

f!

fi
2
.

2bj

CO

/
2b(J+l) e

:

xdx r xdx
c

-l o
x 1e -1

(D.6)

(D.7)

If we now note 2bj » 1, and b « 1, we can make the approximations

xdx „

2bj e -1 2bj
/ xe dx , (D.8)
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and

2b
xdx

) e
X
-l

/

2b

/ dx = 2b (D.9)

These approximations, when used with the above formulae, yield both upper

and lower bounds for £ U[exp(2bJl)-l]~ }. The two approximations for

£-1

this summation are averaged geometrically. By using this geometric mean

for the approximation of the summation we find

T =1+Tr
j 4 b

2 2

[J-
- (1 + 2bj)e

_2bj
-2bjn|- - (1 + 2bj)e~

2bj
]

1/2
. (D.10)

Since a « 1 we find

j 4b
[£- - (1 + 2bj)e-

2bj -2bj][^ - (1 + 2bj)e-
2bJ

]

For the high activity case we expect j >> 1. Hence

2 2
„ „ -1 . /-, -2bj w_e W 1 N , -ir N ,, air N

jj
= )(

2bT
)( 2")eXp(

12bT
)(1

24b
;

1/2

(D.ll)

(D.12)
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Steady-state charge distributions are obtained for radioactive

aerosol particles in bipolar ionized atmospheres with concentrations of

10
2

to 10 ions /cm . Ion-particle attachment is based on a diffusion-

conduction model with unequal ion mobilities. Asymptotic formulae for

charge distributions are derived from charge transfer rate equations.

Cases include low and high specific activities with weak and strong

electric fields. Mean charge and variance are obtained for Poisson

and shifted Gaussian approximations in the appropriate cases. Compari-

sons are made with numerically calculated distributions.


