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Abstract

The main purpose of this thesis is to derive the law of the iterated logarithm for tail sums
in various contexts in analysis. The various contexts are sums of Rademacher functions,
general dyadic martingales, independent random variables and lacunary trigonometric series.
We name the law of the iterated logarithm for tail sums as tail law of the iterated logarithm.
We first establish the tail law of the iterated logarithm for sums of Rademacher functions and
obtain both upper and lower bound in it. Sum of Rademacher functions is a nicely behaved
dyadic martingale. With the ideas from the Rademacher case, we then establish the tail law
of the iterated logarithm for general dyadic martingales. We obtain both upper and lower
bound in the case of martingales. A lower bound is obtained for the law of the iterated
logarithm for tail sums of bounded symmetric independent random variables. Lacunary
trigonometric series exhibit many of the properties of partial sums of independent random
variables. So we finally obtain a lower bound for the tail law of the iterated logarithm for

lacunary trigonometric series introduced by Salem and Zygmund.
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Chapter 1

Introduction

This chapter begins with some useful definitions and notation which will be repeatedly used
in later chapters. We state some useful results and then discuss the origin of law of the

iterated logarithm.

1.1 Dyadic martingales.

Before we define dyadic martingales, we discuss the meaning of the word ‘martingale’.
Originally martingale meant a strategy for betting in which you double your bet every time
you lose. Let us consider a game in which the gambler wins his stake if a coin comes up
heads and loses it if the coin comes up tails. The strategy is that the gambler doubles his
bet every time he loses and continues the process, so that the first win would recover all
previous losses plus win a profit equal to the original stake. This process of betting can be
represented by a sequence of functions which is an example of dyadic martingale. Since a
gambler with infinite wealth will, almost surely, eventually flip heads, the martingale betting
strategy can be seen as a sure thing. Of course, no gambler in fact possesses infinite wealth,
and the exponential growth of the bets will eventually bankrupt those who choose to use

the martingale strategy.

i1
A dyadic interval of the unit cube [0, 1) is of the form @,; = [;—n, ‘7; ) for n,j € Z.

1
We reserve the symbol @),, to denote a generic dyadic interval of length on Let §, denote



i
the o—algebra generated by the dyadic intervals of the form [2‘7—”, j; ) on [0,1) and let
E(fn:1|8s) denote the conditional expectation of f,, 1 on §, which is defined as,
1
E(fnJrl’Sn)(x) = fnJrl(y)dy: S Qn

@l Ja,

Definition 1 (Dyadic martingales). A dyadic martingale is a sequence of integrable func-
tions {fn}>2,, with f, : [0,1) — R such that for every n, f, is §,—measurable and
E(fni1l80) = fo for all n > 0. The sequence {f,}5, is called a dyadic submartingale
(resp. supermartingale) if we replace = by > (resp. <) in the expectation condition.

Here §o = {[0,1), ¢}, 1 = {[0,1),¢,[0,1/2),[1/2,1)} and so on. Hence f,, is measurable
with respect to §,, means for all a € R, the set {z : f,(z) > a} belongs to §,. Consequently,
the function f, is constant on each of the n'* generation dyadic intervals ),,. The expectation
condition tells us that the f, is the average of f,,1 on @,. Moreover, the existence of the
conditional expectation can be justified by Radon-Nikodym Theorem.

If we think of {f,}>°, as the “fortune of gambler” at the instant n of a game, then the
first condition simply says the trivial fact that the result of the game totally determines the
state of fortune at any instant. The second condition expresses that the game is ‘fair’ in the
sense that the expected fortune after any trial must be same as that of the fortune before

the trial.

1.2 Notation

For a dyadic martingale we have the following standard associated functions.

(i) Maximal function,

fom= sup |fel, f*= sup |fil.

1<k<m 1<k<o0

(ii) Martingale difference sequence, {d}3°, where di(z) = fi.(x) — fr_1(z).

(iii) Martingale square function or Quadratic characteristics,
Spf(x) = (Suf(x)? = di(x).
k=1

2



S2f(z) = (Sf(2))* =) di().

k=1

[e.9]

(iv) Martingale tail square function,

Sifx) = (Suf(@) = Y difa).

k=n+1

1
We note that fol dn(x)dz = 0. For this let @,; be a dyadic interval of length o Then we
have,

2" —1

/01 dy(z)dx = Z; /nj d,(x)dx

Using the fact that f,_; is constant on @),;, we have

2n—1

/0 dn(ﬂf)dﬂf = Z o fn($)dx - fn—1($)|an|]

2n—1
1
- Z Q| ——
= | " Qnjl
2" —1

= [fn—l(x)|an| _fn—l(x)|an|]

1

j
=0.

fu(@)dx — fn1($)|an|]

an

Also we have, f,(z) = >",_, di(x) + fo. The martingale square function is a local version
of variance and can also be understood as a discrete counterpart of the area function in
Harmonic Analysis. They play an important role in the study of asymptotic behavior of
dyadic martingales. We will see that the asymptotic behavior of a dyadic martingale is
governed by the size of its quadratic variation. From the definition, we note that for any
r,y € Qn, we have S2 f(z) = S?f(y). But the martingale tail square function, S,2f(x) may
not be equal to S.2f(y).



1.3 Examples

Here we give some examples of dyadic martingales.

Example 1. The functions {r,}?°, defined on [0,1) by r4(x) = sgn(sin 2¥7x) where sgn
is given by sgn(x) = 1 for x > 0 and sgn(x) = —1 for x < 0 are called the Rademacher

functions.

Figure 1.1: Rademacher functions

0 0.25 05 0.75 1 0 025 05 0.75 1 0 025 05 0.75 1

r1(z) r2(7) 73(7)

Here 7 alternates +1 and -1 on the dyadic intervals of the generation k£ as shown in
Figure 1.1. Moreover, r,.s are independent, identically distributed random variables with
zero mean and variance one. Define f, = > ,_, aprp where {a;} is a sequence of real

numbers. Then {f,} is a dyadic martingale.

Example 2. Let f € L'[0,1) and @, be a dyadic interval of length 5= on [0, 1). Define
folz) = ﬁ Jo, f(@)dx, v € Q,. Then {f,};2, is a dyadic martingale on [0, 1).

1.4 Useful results

In this section, we state some useful results which will be frequently used in later chapters.



Lemma 2. If{E,} is a sequence of sets on a o—algebra § with the property that E,, C E, 1
for alln and E =J,_| E,, then lim,_, |E,| = |E]|.
Proof: Let us define {A,} as follows:

Ay=F, and A,=F,—FE, ;1 for n=2,3,---.

Clearly A, € § and A; N A; = ¢ for all i # j. Moreover we have E, = A, UA,U---UA,
and F = U, A;. Using the disjointness of Als we have,
Bl = J A=) 1Al and B[ =[[JAl =) Al
i=1 1 i=1 i=1

i=

Hence we have
lim |E,| = ggog |A;] = Z; Al = |E|.
Theorem 3. For a dyadic martingale, we have
{: f*(2) <o} ¥ {z:Sf(x) <oo} @ {x:limf,(z) ewists}

a.s.
where =" means that the sets are equal up to sets of measure zero.

Proof: For the proof, see [2].

Lemma 4 (Borel-Cantelli). If {A,} is a sequence of events and - P(A,) < oo, then
P({A, i.0})=0.
Proof: We first note that,

{A, i0.} =limsup A, =2, Ure,, Ak
n—oo
is the event which occur if and only if infinite number of events A,, occur.

P({A, i.0.})= P(limsup A,)

n—o0

= P((2 Uezn A)

n—0o0
< Jim > P(A)

=0.



Remark 1. The Borel-Cantelli Lemma can also be stated as:
“Let { E)} be a sequence of measurable sets in X, such that Y, | u(Ej) < co. Then almost

all x € X lie in at most finitely many of the sets Fj.”

Lemma 5 (Borel-Cantelli, General version). If {A,} is a sequence of independent events
and Y >° | P(A,) = oo, then P({A, i.0.})=1.
Proof: We have,

1—P({A, io0})=P{A, i.0.}°)

(
({A, i.0})
(
(

{Mnz Uiz Ax )
Unzi Mz A%)

— lim PN, A7).

P
P
P

Clearly {A$} is a sequence of independent events as {Ay} is independent. Then,

P(Z, A7) = lim P(MC, A7)
N
= lim P(Af)

N—o0
k=n

Hence we have 1 — P({4,, i.0.}) = 0. Consequently, P({4,, i.0.})=1.



Lemma 6 (Lévy’s inequality). If Xy, X, - X, be independent and symmetric random
variables. Let S, = X1+ Xo+ -+ X,,. Then for all A > 0,

p (max | S| > )\> <2P(|S,] > A).
1<k<

p (max | Xk| > A) < 2P(|Sn| > A).

1<k<n

Proof: Define
A = {a: : gjaéSj(x) <A< Sk(x)}
for 1 < k < n. This means k is the smallest index for which Si(z) > A. Then using the fact

that X1, Xs, -, Xj independent from X1, Xjio, -+, X, we have,

P({z:S,(x) > A}) = ZPAkﬂ{x Sn(z) > A})

> ZP (A N{z: Sy(x) > Sk(x)})

k=1

_ZPAk (Sp — Sk > 0)

> Z P(Ag)/2 using symmetry
k=1

:%P(maxskz)\).

1<k<n
Thus,
1
P(S,>)\) > §P <1r£1]?<xn Sk > A) (0.1)
Similarly we get
1
Pis 202 5 (-2 ) ©2)

This gives the first result.

Again we define,

1<j<k

Ay = {x max | X;(z)] < A < ij<x)|}.



for 1 <k <n.Fix k. We let S? =2X,; — S,,. Then on A; we have,
2\ < 2|1 Xy < |Sn| + 152
Moreover,

P(Ay) < P(AR 1 {IS:] = A}) + P(Ax 0 {IS] > A}).
= 2P(A N {ISu] = A}).

Then summing over k& we have,

P(A) =2P(AN{|S,| > \})

< 2P(|Su] = N).

Thus,
P (max | X% > A) < 2P(|Sn] = N).

1<k<n

Lemma 7. For any \

A ?2</002“2d <1iT)\2
e e u< —e 2 .
1+ )2 N D

Proof: For the proof, see [6].

Theorem 8 (Central limit theorem). Let X1, Xs,--- X, be a sequence of independent iden-
tically distributed random variables with finite mean p and variance o®. Define X, =
(1/n)>°0, Xi Then /n(X,, — u)/o converges to a standard normal distribution.

Proof: For the proof, see page 236 of [3].

Theorem 9 (Hoeffding, 1963). Let Y1,Ya, ..., Y, be independent random variables with zero

mean and bounded ranges: a; <Y; < b;,1 <Y; <n. Then for each n > 0,
(5

i=1
Proof: For the proof, see [9].

o) <20 (o)




Theorem 10. Let {(X,,,Tn)} be a submartingale and let ¢ be an increasing convex function
defined on R. If ¢(x) is integrable for every n, then {(¢(X,),8n)} is also a submartingale.

Proof: For the proof, see [6].

Lemma 11. If X; are independent random wvariables with the property E(X;) = 0, then
Sp = > Xi is a martingale and S2 is a submartingale.

Proof: For the proof, see [6].

Theorem 12 (Doob’s Maximal Inequality). If (X, (,) is a submartingale, then for any
M >0,
1 1
P ( max Xj > M) < ME(X:{) = ME(maX(Xn,O))

1<k<M

Proof: For the proof, see [6].

1.5 Origin of law of the iterated logarithm.

Before we discuss the origin of law of the iterated logarithm, we first give the definition of

normal numbers.

Definition 13 (Normal numbers). Let us suppose that N takes values in [0, 1) and consider

its decimal and dyadic expansion as

N=%%> X X,€{0,1,2,---,9} N=3S> 2. Xx {01}

n=1 10m° n=1 9n>

Now for a fixed £,0 < k <9, let w,(c”)(N ) denotes the number of digits among the first
(n)
Wy (N)

n— digits of N that are equal to k. Then ~*—

(n) N
first n places and thus the limit lim wk—()

n—o0 n

is the relative frequency of the digit k in the

is the frequency of k in N. Then the number
N is called the normal to the base 10 if and only if this limit exists for each k and is equal
to %. Similarly, the number N is called the normal to the base 2 if and only it the limit
exists and is equal to %

The first law of the iterated logarithm (LIL), introduced in probability theory, had

its origin in attempts to perfect Borel’s theorem on normal numbers. Precisely, the first

9



LIL was introduced to obtain the exact rate of convergence in the Borel’s theorem. Many
mathematicians obtained the different rates of convergence, but Khintchine was the one who
obtained the exact rate of convergence. In order to describe Khintchine’s result, we state a

simple form of Borel’s theorem on normal numbers.

Theorem 14 (Borel). If N, (t) denote the number of occurrences of the digit 1 in the first

N, (t ,
n—places of the binary expansion of a number t € [0,1), then lim ®) =3 for a.e. t in
n—oo n

Lebesgue measure.

So by Borel’s theorem we can conclude that a.e. ¢ € [0,1) is a normal number. Here n/2
is the expected number of ones and the theorem gives the limit of the relative frequency of
number of ones. But what can be said about the deviation N, (t) —n/27 In order to answer
this, we consider a special case as follows.

Suppose that X, takes values +1 with probabilities % (coin tossing model). We consider
the unit interval with Lebesgue measure as a probability space. Then we can write X,,(t) =
2b,(t) — 1, where b, is the n'" digit in the binary expansion of ¢ € [0,1). Let S, = Y 1| X.

Under this context the following results were obtained.

e Hausdorff (1913) obtained |S,| = O(nz*¢) a.e. for any & > 0.
e Hardy and Littlewood (1914) obtained |S,| = O(v/nlogn) a.c.

e Khintchine (1923) obtained |S,| = O(v/nloglogn) a.e.

In 1924, Khintchine obtained the definite answer to the size of the deviation in Borel’s

theorem and his result is given by,

Theorem 15 (Khintchine). If N, (t) denote the number of occurrences of the digit 1 in the

first n—places of the binary expansion of a numbert € [0,1), then for a.e. t, we have

Sn
lim sup [ (0.3)

N et ] E—
n—oo V2nloglogn

10



This result is popularly known as Khintchine’s law of the iterated logarithm (LIL). We note
that
Sn(t) = Z?:l Xi(t) = Z?:l 2b;(t) — Z?:l 1 =2N,(t) —n (0.4)

Then using (0.4) in (0.3) we have,

2N, (t) —
lim sup nt) =

(VA
n—oo  V2nloglogn

N,(t)—2
lim sup ()~ 5 =1

n—oo %n log logn

So Khintchine’s LIL provides the size of the deviation in terms of expected mean and
the deviation is of order ,/%nlog logn. Because of the factor loglogn (iteration of log) in
the deviation, Khintchine’s law is popularly known as law of the iterated logarithm. Borel’s

theorem immediately follows from the Khintchine theorem. For this, we have

: |5l
1 — =1 €.
I?j}ip v2nloglogn e
This gives us
2b,(t) —n

Sn(t)
e — <
‘ v2nloglogn

1. —| <1
e ’\/2nloglogn

Again

<1 ie [2N,(t) —n| < +/2nloglogn.

N,(t) 1 - /loglogn
n 2 2n

Then taking limit as n — oo, we have

N, 1 N, 1
lim nlt) _ —‘ =0, so lim n(t) = .

2N, (t) —n
Vv2nloglogn

Hence we have

n—00 n 2 n—oo N 2
We note that results of Hausdorff and Hardy-Littlewood also imply the conclusion of Borel’s
theorem. For this we note that for all n > 1, logn < n so that loglogn < logn. Consequently

we have,

< .
vnloglogn = /nlogn

\/nloglogn < \/nlogn ie.

11



Thus,
|Sn| = O(y/nloglogn) = |S,| = O(y/nlogn).

Khintchine’s result on the rate of convergence is the first law of the iterated logarithm
in the theory of probability. A few years later, the result of Khintchine was generalized by
Kolmogorov to a wide class of sequences of independent random variables. We now state

Kolmogorov’s celebrated law of the iterated logarithm.

Theorem 16 (Kolmogorov, 1929). Let {X,,}5°, be a sequence of independent random vari-

EnN
ables with zero mean and variance one. Suppose that | X,|? < oz loan for some constants
oglogn

en — 0. Then for almost every w,

lim sup Sn(w)

B2 e
n—oo  V2nloglogn

n
where S, = ZXZ"

We remaﬁ{l that in the above theorem, the mean of S, is zero and /n is the standard
deviation of S,. So Kolmogorov’s LIL provides the size of oscillation of partial sum of
independent random variable from its expected mean and the size is approximated in terms
of standard deviation.

Next, we apply Kolmogorov’s LIL to random walks to estimate the size of the walk in

the long run. Consider the Rademacher functions, {ry}2,. Set

fi(z) =m(x)
fox) = m(z) + ra(x)

fo(x) =r(x) + ro(z) + ... + rp(2)

Here {f,(z)} defines a random walk. In this random walk, we move 1 unit to the right

if r;(x) = 1 and to the left if r;(x) = —1. Clearly, {f,} satisfies all the assumptions of

12



Kolmogorov’s theorem. So by Kolmogorov’s LIL, we have,

lim sup fnl@) <1

nooe v/2nloglogn ~
For ¢ > 0, this gives us |f.(x)] < (1 + ¢)v/2nloglogn for n large. Here, the worst
bound for the function f,(z) is n, i.e, |f,(z)] < n. Thus, Kolmogorov’s LIL gives the
sharper asymptotic estimate, |f,(z)| < (1 + ¢)v/2nloglogn. For sufficiently large n, the
factor v/2nloglog n is much smaller than n. This shows that in the long run the walker will
fluctuate in between —+/2nloglogn and v/2nloglogn.
Over the years people have made many efforts to obtain an analogue of Kolmogorov’s
LIL in various settings in analysis. Some of the existing settings are lacunary trigonometric
series, martingales, harmonic functions to name just a few. But the first LIL in analysis

was obtained in the setting of lacunary trigonometric series.

Definition 17 (Lacunary series). A real trigonometric series with the partial sums Sy, (0) =
Y ey (ay cos nyb + by sinngf) which has "fl—:l > q > 1 is called g— lacunary series.

In the definition, the condition nfL—:l > g > 1 is called gap condition which states that
the sequence {n;} increases at least as rapidly as a geometric progression whose common
ratio is bigger than 1. Lacunary series exhibit many of the properties of partial sums of
independent random variables. In the modern probability theory, lacunary series are called
‘weakly dependent’ random variables. The law of the iterated logarithm in the setting of

lacunary series was first given by Salem and Zygmund. This result of Salem and Zygmund

is the first law of the iterated logarithm in analysis [1].

Theorem 18 (R. Salem and A. Zygmund, 1950). Suppose that S, is a g— lacunary series
and the ny are positive integers. Set B2 = £ 5" (Jax|* + [bk]?) and M, = nax (Jax|* +
|bk|2)%. Suppose also that B,, — o0 as m — oo and Sy, satisfies the Kolmogorov-type

BQ
condition: M2 < K, o
log log(e® + B2))

for some sequence of numbers K,, | 0. Then

. Sm(6)
lim sup =

13



for almost every 8 € T, unit circle.

Note that [” S, (2)dz = 0. This means that the mean of the partial sums is zero. Again,

o Var(S,(2)) — % [ / S2(x)dx — ( / Sm(x)dx) ]

1 ™
1 ™
=5 (>, ag cos(ngx) + by sin(ngx)]*de

1 ™
=5 / S lag cos? (ngx) + b7 sin®(ngx)]de
™ —T

1 m
=3 > (a; +7)
k=1
Hence
1 m
0 =B, = EZ(ai +b2).
k=1

This shows that B2 is the variance of partial sums. So the theorem gives us the upper
bound for the size of oscillation of partial sums from its expected mean and the order of
the size depends on the size of standard deviation. Salem and Zygmund assumed n; to be
positive integers and they only obtained the upper bound. Erdos and Gal were the first
to make progress towards the other inequality. They obtained the following result for a

particular form of lacunary series given by the following theorem.

Theorem 19 (Erdés and Gal, 1955). Suppose Sy, (0) = >, exp(ingh) is a ¢— lacunary
series and ny are integers. Then

Sm(0)

limsup ———— =

m—oo y/Mmloglogm

for almost every 6 in the unit circle.
Later, M. Wiess gave the complete analogue of Kolmogorov’s LIL in this setting. This

result was the part of her Ph.D. thesis.

Theorem 20 ( M.Weiss, 1959). Suppose S, (0) = > ;- (ax cosngd + by sinng) is a q—

1
lacunary series. Set By, = (3> 10, (lak]® + [bk]?))? and M, = max (|lag>+1bx]?)2 . Suppose

14



also that B,, — oo as m — oo and S,, satisfies the Kolmogorov-type condition: M? <
fﬂ
K,, o
log log(e® + B2)

for some sequence of numbers K,, | 0. Then

. Sm(6)
lim sup =
m—oe /282, loglog By,

for almost every 0 in the unit circle.
There is another type of LIL in the case of independent random variables introduced by

Kai Lal Chung.

Theorem 21 (Chung, 1948). Let {X,;n > 1} be a sequence of independent identically

distributed random variables with common distribution F with zero mean and variance o2,

[log1
and with finite third moment E(|X|*) < oo. Then liminf BB ax |S;| = I with
n—00 n 1<j<n V8

probability 1.
Next, we discuss another law of the iterated logarithm introduced by Salem and Zyg-
mund. In this LIL, they considered tail sums of the lacunary series instead of n'* partial

sums.

Theorem 22 (R. Salem and A. Zygmund, 1950). Suppose a lacunary series S’N(H) =

S v(ag cosngl + by sinngf) where ¢ = a2 + b} satisfies S o, ¢ < 0o. Define By =
1 N . . B2

(3> ncl)? and My = max |ck|. Suppose that By < oo and that M3 < Ky —N>

log log %
for some sequence of numbers Ky | 0 as N — oo. Then

Sy (0
lim sup — w () <1
N—o0 \/QB]QV log log ﬁ

for almost every 0 in the unit circle.
This result is popularly known as tail law of the iterated logarithm. We remark that

the condition S°7° 2 < oo says that the given lacunary series converges a.e. and Sy (6) =
0 N—-1

Z(ak cos ng0 + by, sinnif) — Z(ak cos ngf + by sinngd). This shows that the tail LIL gives

k=1 k=1
the rate of convergence of partial sums of lacunary series to its limit function. Furthermore,

the rate of convergence depends upon the standard deviation of the tail sums.
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1.6 Organization of the thesis

The purpose of this thesis is to obtain an analogue of Salem-Zygmund’s tail law of the iter-
ated logarithm in various contexts in analysis. The various contexts are Rademacher func-
tions, dyadic martingales, independent random variables, and lacunary trigonometric series.
We first establish the tail law of the iterated logarithm for sums of Rademacher functions
which are nicely behaved dyadic martingales. Employing the idea from the Rademacher
functions, we then derive the tail law of the iterated logarithm for dyadic martingales and
then obtain the tail law of the iterated logarithm for independent random variables and
lacunary series. The thesis is organized as below.

In chapter 2, we derive some standard inequalities which will be used in later chapters
and derive the martingale analogue of Kolmogorov’s law of the iterated logarithm.

Chapter 3 begins with the derivation of the tail law of the iterated logarithm for sums
of Rademacher functions. We then derive the tail LIL for dyadic martingales and construct
an example of a dyadic martingale which does not follow the tail LIL. In this chapter, we
only focus on the upper bound in the LIL for these functions.

In chapter 4, we obtain a lower bound in the tail LIL for sums of Rademacher functions.
We also introduce the tail law of the iterated logarithm for sums of independent random
variables and obtain a lower bound for it.

In chapter 5, we obtain a lower bound in the tail law of the iterated logarithm for dyadic
martingales and finally in chapter 6, we obtain the lower bound in the tail law of the iterated

logarithm for lacunary series introduced by Salem and Zygmund.

16



Chapter 2

Law of the iterated logarithm.

In this chapter, we first derive two useful martingale inequalities and then obtain an ana-
logue of Kolmogorov’s law of the iterated logarithm in the case of dyadic martingales. The
martingale analogue of Kolmogorov’s law of the iterated logarithm was first derived by W.
Stout. Stout obtained the martingale analogue using a probabilistic approach. We will

derive it using the harmonic analysis approach.

2.1 Martingales inequalities.

We first prove a Lemma, called Rubin’s Lemma which will be used in our martingale in-

equalities. The proof of this lemma can also be found in [10], [11], and [4].

Lemma 23 (Rubin). For a dyadic martingale {f.}, fo =0

/01 exp (fn(x) - %Sflf(xo dr < 1.

Proof: We claim that

o) = [ exp (2@@)—%

is a decreasing function of n. Let @,; be an arbitrary n'" generation dyadic interval. We

di(:v)) dx

17



have Y p_, di(z) = f, and f, is constant on ),,;. Using this we have,
n+1 n+1
gn+1) Z/ exp(de __Zd2 )
—Z/ exp <de ——Zd2 )exp( dpy1(z) — 2di+1( )) dx
_ Z [exp (Z di(z) — % d? (x))] / exp (dn+1( ) — 2d721+1( )) dx.
=0 Qnj nj

Let Q ; and Q (nt1)j be the dyadic subintervals of @),,;. Suppose d,41 takes the value
« on Q (nt1)7 . Then by the expectation condition, d,, takes the value —a on Q(n )5 This
gives,
2 L, L,
exp | dpi1(z) — dn+1( x) | dx = exp | @ — —a” ) dx + exp | —a — -a” | dx
) 2 Q’ ] 2 Q” ) 2
nj (n+1)j (n+1)j
1

o? 1
= 2exp (—7> cosh a onit

z2
Now using the elementary fact that coshx < ez, we have

2m n n
1 o? o\ 1
g(n+1) Z exp (Z di(z) — 3 Z di(a:)) 2 exp (—7) exp (?) St
=0 k=0 k=0 1.,
2" n n ]
1
= Z exp (Z di(x) — 3 Zdi(m)) |Qnj
Jj=0 L k=0 k=0 1Qn;
2”

0 /an exp (kz:; dp(z) — %;di(x)) dx
).

I
Q .
S

Let Q11 and Q1o be the dyadic subintervals of ¢)y. Assume that d; takes value # on ()11 so

that it takes value —6 on 1.

18



Since g(n) is decreasing and g(1) < 1 we conclude,

/0 exp (Z di(x) — %Zdi(w)) dr < 1.

Hence,
! 1
/ exp (fn(x) - 552]‘(1‘)) dr < 1.
0
This completes the proof of Rubin’s lemma.

Note that if we rescale the sequence {f,} by A, then the Lemma gives,

/ exp (/\fn(x) — %Azsgf(x)) dr < 1.
0

This shows that the Rubin’s lemma is an inhomogeneous type inequality.

Now we prove our first martingale inequality.

Lemma 24. For a dyadic martingale {f,} and A > 0 we have

Hx € [0,1) : sup | fm(a)| > )\H < 6exp (i> .

m>1 2[[S 1113
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Proof: Fix n. Let A > 0, v > 0. Then

1 1
n—1\T) = T~ n(y)d RS GV n—1| =
fa1(z) 1Qni| anlf (y)dy Qn-1,  |Qn-1] o1
fual) = i [ By v € Qua [@unl= 5
n—2\T) = n ) X n—2» n—2| —
2 |Qn—2| o, y)ay 2 2 on—2
and so on.
Hence for every m > n,
fule) = o [ Ry, € Qu 1Qul = 5
Q] fo, W G Gl = g
Fix x. Then sup |f.(z)] < M|f.|(x) where M f, is the Hardy-Littlewood maximal

1<m<n
function of f,. Then using Jensen’s inequality we have,

explolfnte)) =exp (1 o, ) (1))

— X n d
< O Qme p(YIfa(y))dy

< M(evlfm(r)\)(x)‘

Then the Hardy-Littlewood maximal estimate gives,

{x €[0,1): sup |fm(z)| > )\}’ = H:)c €[0,1): sup V=@l > ew‘}

1<m<n 1<m<n

IN

[{z €[0,1) : M(Vnl)(z) > ™}
<3 [ entrlfaw))dy

A
e Jo

. 3 '72 2 ! ,}/2 2
= e (Lhsuii.) [ e (15w~ SUsuAIE ) dy

3 2 1 2
< S (TlsufI) [ ew (10l - 5250 o
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Applying the Rubin’s Lemma we have,

1 72
[ e (310121 ) o
0

2
[ e (sl - T ) ar [ e (G- 20
{y:fn(y) =0} {y:fn(y)<0}

2
= / exp <7fn - —52 ) dy +/ exp ( Vfaly) — %Sif(y)) dy
{y:fn(y)>0} {y:fn(y)<0}
1
< / exp ('yfn( ) — —52 > dy+/ exp (( - —)S2f(y)) dy
0 0
<1+1
= 2.
Thus,
x€[0,1): sup |fm(x)| > A <iex 12||S fl?
’ ' ISmIS)n " e P 2 oo |
Choose v A Then we have
= . W V 5
180 f11%
6 N2, f1I?
{x €1[0,1): sup | fm ()] > )\H < Y OXP (H)
1<m<n exp <m> n 00

_)\2
< ] .
= fex <2||snf||zo)

For the dyadic martingale {f,},

n

Sef(x) =Y di(x) /1 S°f(x) = di(x

k=1 k=1
This gives, ||S,f]% < ||Sf||%. Consequently,

—1 —1
> S 2
20[SnfI2 — 215 fI1%

So we have,

Y
{x €[0,1): sup | fn ()| > /\}‘ < 6exp (W) :

21



Define E, := {x €[0,1): sup |fm(x)] > )\} and F = {x €[0,1) : sup | fn(x)] > )\}.
1<m

1<m<n

Clearly E, C E,41 and E = U2, Ey. Then we have, lim |E,| = |E| (See Lemma 2 for the
n—oo

proof). Thus,

{xE[O,l):sup|fm(J:)|>)\H < lim er[m): sup |fm(x)|>)\}'

1<m o0 1<m<n

—)\2
< lim 6exp (_)
n—o9 2||Sn S5

—)\2
_ Gexp (_) |
2||Sn fl1%

So,
—)\2
rel|0,1):sup|fim(z)>Ap| <bexp| — | .
e supisutor> 2} < oo (g7
This completes the proof of the first martingale inequality. |

Now using the above martingale inequality, we prove a martingale inequality for tail

sums.

Lemma 25. For a dyadic martingale { f,,}, with A > 0 and, n fized positive integer we have,

{x € [0,1): sup [f(z) — fin(2)] > /\H < 12exp (8”_—”) .

Proof: Fix n. Define a sequence {g,,} as follows,

(z) = 0, if m <mn;
I @) = fulw), i m >,
We first show that {g,,} is a dyadic martingale. Clearly for every m, g,, is measurable with

respect to the sigma algebra §n,. Let m > n. Then using the fact that f,, is constant on the

cube (),,, we have,
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(ngrl’Sm |Qm| / fm+1 ]

Al m Al n d
’le me +1< ) T — ’Qm‘ me (l’) z
= ’Q—lml o fm+1(x) l‘—fn(l‘)
= [m(z) — fu(®)
= gm(7).

Thus we have E(gm11|8m) = gm- This shows that {g,,} is a martingale. Then applying

Lemma 24 for this martingale, we get

—)\2
x € 0,1):sup |gm(x)] > A §6exp(—).
{r €0 suplanto) >} IR

But, g,,(z) = 0 for m < n. Hence,

—)\2
x €10,1) : sup |gm(x >)\H§66X< )
{re0n b P\ sl

Again,

=S [feni(@) = ful@) = file) + ful0))

= Z [frir(@) = fil(2)]?

This gives,

—)\2 )
x €10,1):sup |gm(x)| > Ap| <bex .
(e 0.0 s loute) H (s
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1.e.

{x €[0,1): i‘iﬁ |fm(x) — fu(2)| > )\H < 6exp (ﬁ) (0.1)
Clearly,
o 1f(@) = fal@)[ > A} € {a s sup [fn(2) = ful@)] > A}
So we have,
{z: [f(@) = (@)l > A < [+ sup [fm(z) = ful@)] > A},
Consequently,
(o 1f(@) — ful@)] > A} < Gexp (ﬁ) | 02)

By the triangle inequality we have,
sup | f(z) — fm(2)] < sup([f(2) = ful@)] + [fu(2) = fu(2)])
= f(@) = ful@)[ + sup |fu(@) = fm(2)].

This gives,
{5170 = ful@) >0} € {osup 1100 = £ > 5} U o swp oo = fulil > 5 |-

Therefore,

2

{o: sup160) = o] > A}‘ <

m>n

{o: 7@ = utal > 5} |+

A
{o:sw i) - o> 3}
Then using (0.1) and (0.2) in the above inequality we get,
—(3)? —(3)?
T su x) — fm(x)| > Xp| < 6exp 2 +6exp | om 2
QEVCRACIERY <2||s;fuzo> <2usnf|rzo

_/\2
2w (SHS;szO) |

Thus,
—)\?
T su z)— fl@)| >Ap| <12exp| —+— | .
{7 sup o) = o) > A < 120 ()
This completes the proof of our second martingale inequality. |

24



2.2 Law of the iterated logarithm for dyadic martin-
gales.

Burkholder and Gundy proved (See Theorem 3)
{r:Sf(xr) <oo} & {z:limf, exists}

where % means the sets are equal upto a set of measure zero. From this result, we observe
that dyadic martingales { f,} behave asymptotically well on the set {z : Sf(x) < co}. But
what can be said about the asymptotic behavior of dyadic martingales on the complement
of the given set? Its behavior is quit pathological on the set {z : Sf(z) = co}; in particular
it is unbounded a.e. on this set. But it is possible to obtain the size of growth of | f,,| on the
set {z : Sf(z) = c0}? The rate of growth of |f,| on {z : Sf(z) = oo} is precisely given by
the martingale analogue of Kolmogorov’s law of the iterated logarithm. W. Stout proved
the law of the iterated logarithm for martingales using a probabilistic approach. Here we
derive the law of the iterated logarithm for dyadic martingales using a harmonic analysis

approach.
Theorem 26. If {f,}°°, is a dyadic martingale on [0,1) then,

: | fu(@)]
1121’14)802.1) S, f(x)y/2loglog S, f(z) =1

almost everywhere on the set where {f,} is unbounded.

Proof: Let § > 1 and J > 0. We note that for every = € [0, 1), we have either S, f(x) > 6*

for some n or S, f(x) < 0%, for every n, and thus, Sf(x) < 0*. We define stopping time as;

min(n : S,y f(x) > 6F)
(@) = { oo, if Sf(z) <ok

So by stopping time, 7, is the smallest index such that S, 1f(z) > 6*. This means
S, f(z) < 6%. Define,

= - | A@), folx), .. [ (@), fro (@), .., for g # 00
Ful) = fan @) = { fu(@). fola), fala), .. if 7 = oo,
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We first show that Sf < 6%, So for n < ~4(z), we have Sf,(z) = Sf.(z) < Sf, (z) <
0%, Again if n > i(z), then Sf,(z) = Sf, (z) < 6% Thus, Vn Sf.(z) < 6% Then,
71151010 Sf.(z) < 6% So we have Sf < 6*.

Choose A = (1+6)8%\/21oglog 6*. Then using Lemma 24 for the dyadic martingale {f,}

with the chosen A\, we get

F (1+9) 20269 1og log OF
Hx €[0,1) : sup | fu(z)| > (1 +6)6" 210glog6k}‘ < 6exp + 2||Sf||2og 0g )

n>1 <
—(1+6)%6%*21oglog 6%
exXp 2@%

I/\

= —(1 4 6)%6* loglog 0’“)

= G exp (log(klog g)~(1+%) )

= 6(klog )0+

6
"~ (klog§)(+0?*"
Summing over all k, we have
oo 5 o0 1
{x €[0,1): ililtl)|fn(x)| > (1 +5)9k\/210g10g0"7}' Z log9 e
k=1 = k=1

6 =1
- 1522 149)2
(log 9)(1+9) P k(1+9)

< 00.

Then by Borel-Cantelli Lemma (Lemma 4) we have for a.e. z,

sup | ()| < (1 + 8)6*\/21loglog 6%

n>1

for sufficiently large k, say, k > M, M depends on x. Thus for a.e. x, we have,

SUP | funmy, () (2)] < (14 6)8%1/21og log 0%

n>1

for sufficiently large k& > M. We choose x such that f,(x) is unbounded. Then from the

Theorem 3 we have,
{x:Sf(x) <oo} ™ {z: fu(x) converges}.
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So we have Sf(z) = co. Then v (z) < ya(z) < v3(x) < ... ie. for every i, v (x) < oo.
Let n > ~p. Then choose k such that yx(z) < n < v1(x). Here, v (z) < n gives
Y(z) <n —1. Thus, S,f(z) = S,_1.41f(z) > 6*. Using this, we have

[fa(@)] < sup [ frny,,, (2)]

1<m<~yp41

< SUP | franyy i ()]
m>1

< (1 +0)6"/2loglog H++1

= (14 6)0%0+/21og(log 6% + log 6)

< (14 6)Snf(z)0+/21og(log S, f(x) + logh).

So,
. | fo ()] . 2log(log S, f(x) +log 6)
D S ()2 loslog 5.7 () (1 0)0lim sup \/ 2log(log Spf(x))
We show,

log(log Sy, f())

n—oo

lim sup \/log(log Snf(z) +log0) .

Let X =log(S,f(x)). Then

lim su log(log Sy f () +log0) _ lim su log(X +logt)
"H"Op log(log Sy, f () X~>oop log X
=1.
Therefore for a.e. x,
lim sup | fa()] < (144).

n—oo S, f(x)y/2loglog S, f(z)
Letting 0 \, 1 we get,

: | fr()]
fimsup - o) 2loglos 5@ "

This can be done for every § > 0. Hence we have for a.e. x,

lim su ()l
p hS
n—oo Sy f(x)y/2loglog S, f(x)
This completes the proof of the law of the iterated logarithm for dyadic martingales. [ |
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Chapter 3

The tail law of the iterated logarithm.

In this chapter, we first establish the tail law of the iterated logarithm for sums of Rademacher
functions. Sums of Rademacher functions are nicely behaved dyadic martingales. We then
derive the tail law of the iterated logarithm for dyadic martingales. Moreover, with the help

of an example we will show that the tail law of the iterated logarithm is not true in general.

3.1 The tail law of the iterated logarithm for sums of
Rademacher functions.

We first prove a lemma which will be used in the proof of the tail LIL for sums of Rademacher

functions.

Lemma 27. Let f, =Y 7 axri, [ = poy axr where {ai} is a sequence of numbers and

{re} is a sequence of Rademacher functions. Then for a fized n and X > 0 we have,

{o: sup10) = futo)] > A}\ < 2exp (2”;—*) |

Proof: Let d; = f; — fi_1. Then d; = 22:1 apry — Zi;ll ayr, = a;r;. Here, each d; has
mean 0 and variance 1. Moreover, they are independent and symmetric random variables.

So using Lévy’s inequality ( Lemma 6, Chapter 1), we have

P (1 0 > 0) <20 (S0 bl > ),

1<j<n
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Let N >> n. Then we have,

] N—n—1
P (|0Sjge§n_l o dn-i| > A) <2P (|2 dal > A).
Thus,

P(lmaxdy,dy+dy_1, - ,dy+dy_1+- -+ dpi1| > ) <2P(l[dy+dy_1+- -+ dpi1] > N).
This gives,

P(max fy — fy-1, v = fy-2,. .o v = ful > A) S2P(|fn = ful > A)

1.e.

{x c0,1): | max fu(@)— fuld)] > A}' <20{a : |fwle) — ful@)] > A}

N—-1>m>n

Using the fact that sup,, |ax| > A = |sup, ax| > A or |sup,(—ax)| > A we have,
{oe ) max o) — o)) > 2

=z e01): >AelJgzelo):
{ fU

max (@) = fu(2)

N>m>

max —fy () + fin(2)

N>m>n

> f

Then,

{eenn): max o) - fulo) > 2}

{:1: €[0,1): ‘Nrg%)z(nf]v(x) — fm(2)] > )\H + {ZB €[0,1):
< Ha (@) = fal@)] > AH + {z s [fv(z) = fulz)] > A}
= 2[{z: [fn(x) = fulz)] > A}

< max (—fn)(z) = (=fm)(@)

N>m>n

-

Thus,

{e e mox (o) = (o)l > A} <2100 fv(0) = F) > ).

Now using equation (0.1) of Chapter 2 we have,

)2
{x € [0,1) : sup [fn(2) = ful)] > AH < Gexp (zus'AfH? ) '
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Clearly,

{z: [fn(@) = ful@)] > A} <

{oenn): sl - £l > 2},

Thus,

{r € [0,1) : |fw() — ful@)] > A} < Gexp (ﬁ) |

Therefore,

{eebas s Ifto) = futo) > A}\ < e (2 )

N>m>n 2||S;zf||go

Let Exy = {a: €[0,1): sup |fn(z)— f(x)| > )\} and E = J;, Ej. Clearly Ey C

N>m>n

Enii. Then |E| = A}im |En| (See Lemma 2, Chapter 1 for the proof). Next we show,
—00
{:p €10,1) : sup |f(z) — fi(x)] > /\} CE.
m>n

Let x be such that sup |f(z) — fim(z)| > A. Then for sufficiently large N we have,

m>n
SUP N> msn [[N () = fim(2)| > A. This means x € Ey for sufficiently large N so that € E.
Then,

{e ey ssw 1)~ ol > 2} <21

N—o0
= lim {:z: €[0,1): sup |fn(x)— fi(x)] > )\H
N—roo N>m>n

_>\2
<12 Ui _—
= Nféoe}‘p(zu ngé)

—)\?
= 2o (2|rs,;f\|zo) |

Thus,
—)\2
x e |0,1):sup|f(x) — fi(x >)\H§12exp<—).
{7 €01): up 17(6)  fnto) 205,111
This completes the proof of the Lemma. [ |
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Theorem 28 (Tail LIL for Rademacher functions). Let {ry}2, be the sequence of Rademacher
functions and {a,}2, be a sequence with Y oo a2 < co. Set f(t) =Y po arri(t), fu(t) =
Zk L agri(t), S f( ) = ZJ i1 @ Then,

lim sup £ () — fu(?)] <1
n—00 \/2S2f loglogS,Qf()

for a.e. t.
Proof: We first show that {f,}°°, is a dyadic martingale. For this we note that for
1 < i < n,a;r; is measurable with respect to §, and so is the sum Z?Zl a;r; = fn. Again

for |Qn| = 5=, we have

1
(fn+1|gn) |Q | fn+1(l‘)dl‘
nn—i—l
akrk
il X
1 n
=10 apre () + ap 17“n+1($)] dx
Ql Jo. LZ +
agrr(x)dx + a, / Tne1(x)dx
|Qn|/Qn,; r{@)de 4 ana | Toia

agre(z)dr + 0
|Qn| /Qn Z

M= T

agri(T)

i

1

n-

Let 8 > 1. Define ny < ny <--- np — oo by

= 1
nk:min<n: Z a?<9—k).
j=n+1
Using the previous Lemma (Lemma 27) for a fixed m we have,

—)\2
1t sup [£(1) — fult)] > A} < 12exp (W) |

n>m
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Then using the above estimate for n, we have,

{82 sw [£(0) ~ Fult)] > A}| < 1260 (QHL) |

But
S2E =Y (i) - = D ()= Y d.
J=ng+1 J=ni+1 Jj=ni+1
So,

n>ng

2
We choose A = (1 +¢)4/ o loglog 0% where € > 0. Then, from the above estimate, we have

)2
[t sup [7(6) — fult)] > A} < 12exp (—2203 ) .
Jj=nk+1 7]

5 —(1+¢)? o log log 6%
tosup [f(t) — fu(t)] > (1 +¢)y/ 7 loglog 6% | < 12exp
nEm o* 2 197
Using Z a; < — we get
j:nk+1
5 —(14¢e)*— loglog o*
tosup [f(t) — fu®)] > 1+ = T loglog 0% 5| < 12exp 01
n>ng R
ok

= 12exp ( (1+¢) loglogek)
— 12exp <log klog g)~(1+2) )

12(k log §)~(1+2)°
1 1
(log 9)(1+€)2 k(1+5)2 :

=12

Consequently,

Z { :BECV fa(t)] > (1+6)\/9k loglogﬁ’f}

k=1

- 1 1
<) 12 ~ ~

— 12
(

1 =1
1+¢)2 Z l+e)?
logH)( €) - f(1+e€)

1
< 0Q.
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So by Borel-Cantelli Lemma (Lemma 4, Chapter 1) for a.e. t,

sup (1) = fo(0)] < (1 + )y - loglog (0.1)

for sufficiently large k, say k& > M such that M depends on ¢. Fix t. Choose n > n,;. Then 3

/ 1
k > M such that ny < n < ngyq1. Now by the definition of n;,q, we have Sﬁkﬂf(t) < yTsE

/ 1
But n < ngyq so that S f(t) > TasE Thus,

oo
2 S 1
Z a; = Pk+1°
Jj=n+1

Again ny < n implies
Thus,

Then using (0.2) in (0.1), we have

[f() = ()] < sup [f(E) = fm(?)]

m>nj

2
< (1+¢€)y/ = loglog 0%

ok
= (1+2)V0 g log log 6%
- 1
<(1+eVo,|2 Z a? loglog (oo—2>
j=n+1 Zj:n—i—l aj
Thus for a.e. t we have,
t) — t
lim sup () = fu®) < (1+e)Vo.
n—00 oo 1
23 loglog (m_)
j:zn;rl ’ Zj=n+1 ajz

Letting 6 1, we get
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— 1) = Jult)

n—o00 oo 1
E 2
2 Clj 10g log m

j=n+1 j=n+1"j

<(1+¢).

This is true Ve > 0. Hence for a.e. t,

/@) = (@)

s 1

j=n+1 J=n+177

lim sup <1

n—o0

This completes the proof of the tail law of the iterated logarithm for sums of Rademacher

functions. [ |

Remark 2. In the above theorem, we have S*f(x) = > °°, a2 < co. Then by Theorem
3, Chapter 1, lim f,(z) exists. So the tail law of the iterated logarithm gives the rate of
convergence of the sequence { f,} to its limit function f and rate of convergence depends on

the tail sums of the square function.

3.2 The tail law of the iterated logarithm for dyadic
martingales.

In this section, we employ the idea from the Rademacher case to obtain the tail law of the
iterated logarithm for dyadic martingales. Moreover, we will later note that the tail law of

the iterated logarithm in not true in general which will be justified by an example.

Theorem 29 (Tail LIL for dyadic martingales). Let {f,}°°, be a dyadic martingale. As-

sume that there exists a constant C' < oo such that ‘?};EI; < CVz,y € I; forn =
nd \Y
Y
1,2,3,---,5€{0,1,2,3,---,2" — 1} where I,; = [;—n,j; ) Then
n—ro0
252 loglog ———

for a.e. x.

34



Proof: Let 8 > 1. Define functions v; < v, < --- by

/ 1
Y () = min {n cx € l,; forsome je{1,2,3,..2"} and Vyel,;, S,f(y)< ﬁ} .

Now by Lemma 25, Chapter 2 for each I,,; we have,

2
{yehwﬂyﬁwf—h@N>AHfﬂ2wp< A ).

|]n]| 8 || S;rzz.ﬂlm ||oo

Now using the above estimate for v;(y), we have,

)\2
7 W € Loy 2 sup [f(y) = fuly)l > A} < 12exp YEE (0.3)
| ’I’Lj| n>vk(y) || ) f|I7L] ||OO
Here,
/ 1
S'yk(y)f(y)hn] <9_k-
1
ISyl I <
—)\?
. S _)\292]@‘.
H Sfyk(y)f‘lnj Hgo
—)\2 _)\2p2k
So exp ; < exp < ) ) (0.4)
(8 155 F s H&) 8

Then using (0.4) in (0.3), we get

_)\20%
{yely: mmlﬁ&ﬂ—f@ﬂ>kﬂﬁlﬂhﬂwp< ).

n>(y) 8

Now summing over all such I,,; we get,

{y€[0,1): sup |fuly) — f(y)] > A}

n>vg(y)

_\2p2k
< 12exp ( )\80 > : (0.5)

Summing over all over all generations we have,

g < Z 12 exp ( w%) (0.6)

2
Choose A = (2+¢)y/ = oo log log 0% where € > 0. Then using (0.6) for the chosen A, we

have

{y€01) sup | fn(y) — f( \>A}

n>vg(y)
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NE

{y €[0,1): sup [fu(y) = FW)] > (2+€)y/ sz 10g10g9’“}

—(2+¢)? 0%

< 12 ex
< ; p 2

(2 2log log 6%
_1QZexp( +5)40g0g >

=12 Zexp <log(klog 6) ey >

k=1

0o i
=12 Z(klog@) En
k=

i

1

log log %%

o0

12 1
- (2+s) Z (2+s)2

(loge) 1 k3
< Q.

{ye 0,1): sup [fu(y) = f(y)| > (2+6)\/92k loglogG’“}
n>7k(y)

Hence, by Borel-Cantelli Lemma (Lemma 4, Chapter 1) for a.e. y we have,

s 1) — )] < (24 <)y g sl (0.7)

for sufficiently large k, say k > M, M depends on y. Fix y. Choose n > nj, then 3 j such

Thus,

>

k=1

Q.

that y € I,,; and 3 k > M such that v4(y) < n < y11(y). By the definition of v, we have,

/ 1 o
S ) < ok and v, (y) < n. This gives,

/ 1
Sond W) < ok (0.8)

!

1
Again by the definition of 4,1, S%H(y)f(y) girt and n < Y41(y). So for some yo € I,

Sf(yo
Snf(y)

O, 1) > S, f(w) > iy

, 1
S, f(yo) > yTsE But y,yo € I,,;, so by assumption < C. Thus,
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1.e.

CS, ) > oo 09)
Combining (0.8) and (0.9) we have,
1 / 1
St < Sl W) < o (0.10)
Using (0.10) in (0.7), we have
faly) = FW)I < sup | fu(y) — f()]
m>vk(y)
2 k
<(2+¢) ﬁloglogg
V2 — log log 0%
= <2+5) 0 W \/ loglog@ W
, 1 log k + log log 6
< (2 2 log 1 .
S@+e) 0 OV2S,f(y) \/og ©8 S2f(y) \/log 2k + loglog 6
[fn(y) = f()] < (2+e)0C logk + loglog §
\/QS'Qf(y) log log log 2k + log log 6
" S f(y)

Also we know that as n — oo so does k.

_ 1 log1
fim sup Julo) — ) < (2+2)0C, [lim sup —2 © +loglogh
n—ro0 \/ZS’Qf(y) log log IR koo log 2k + loglog 6
! S2f(y)
Here,
) log k + log log 6
lim sup —

koo log2k 4 loglogf

So for a.e. y we have,

lim sup |fa(y) — ()]

n—00 , 1
\/QSan(y) log log 52

< (2+¢)dC.
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Letting 0 1 we get,

lim sup | fo(y) — ()]

< C(2+¢).
e \/ZS;Qf(y) log log

1
S f(y))
This is true for Ve > 0. Thus for a.e. y we have,

lim sup | fa(y) — ()]

< 9.
A \/ 25:2f(y) loglog

b
S f ()

This proves the tail law of the iterated logarithm for dyadic martingales. [ |

Remark 3. From the assumption, we get Sf(z) < oo for a.e. x. This shows that the
sequence { f,,(x)} converges by Theorem 3. Thus the tail law of the iterated logarithm gives
the rate of convergence of dyadic martingales {f,} to its limit function f. Moreover, the

rate of convergence depends on the tail sums of martingale square function.

Corollary 30. Let {f,}52, be a dyadic martingale. Fiz 0 > 1 Define stopping times,
/ 1
ny(r) = min {n cx €1y, forsome je{l1,2,3,..2"}y and Vycl,, S,f(y) < ﬁ} :

Then for the sequence of stopping times ng(z),

| @) () — f(2)] -3

lim sup
k—00

S'2

/ 1

for a.e. x.

Proof: We first prove the following estimate for A > 0,1 > 0,

({x €10,1): [f(z) — fulx)| > N S, f(x) < m}‘ < Gexp (2_—7712) . (0.11)

From equation (0.2) of Chapter 2 we have,

{2 [f(2) — ful)] > A}| < Goxp (ﬁ) .
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—1
< Then

/ . —1
Here S, f(x) < nA gives ||S! f||2, < n*\%. So, TSI = e

{e e /@) = fa@) > A 7@ <ni}| < 6exp (ﬁ)

_)\2
< Gexp (m)
—1
= GeXp (2—772) .

where § > 1 and € > 0.

1 v/2loglog 6%
Choose A\ = (1+¢) log 0gf and n = f
0 (1+¢)+/2loglog 6%

Then using (0.11) we have,

{xe[o,1>:|f<x>—fn<x>\>““Wk’gbgem S f(w) < -t H

6! ’
_ 2 21
SGeXp( (1+¢)*2loglog6 )

g1
262

—(1+¢)?
= 6exp | log(2llogh) 02

—(1+¢)?
=6(2llogf) 02
6

(1+e)2

(2l log0) o

(+e)?

oz 1)
(21og ) 7 \!

Choose ¢ = v/30 — 1. Then we have

(1+¢)?
92

‘{IE[071):|f(x>_fn(:p)|> (1+e)y/2loglogf®

1
7 , Snf(l’)<ﬁ}‘
1 \*1
<6 —
- 2logd ) I3

C
=% (say).

= 3. Thus,

1 1 /
Let g(x) = {/xloglog —. Clearly g(x) is an increasing function. So for — < S2 f(x),
x 62 "

39



we have

) 1 1
\/QSnzf(x) loglog 7~ T2 > > (/25 loglog 021 (0.12)

Now using (0.12), we have

{x €[0.1): £(x) ~ fula)] > (1+ e>\/ 25721 (0) 08108 }'

1

IA
8
=
—N
N—
=
—
N—
—
=
vV
—
—_
+
™
N~—
[\
El -
IS
—
o
09
—
o
09
B
303\
~
—~
S~—
)
—_
—
——

I=k+
=1 U {re il - ol > L2 Vot i) < 5 )
I=k+1
<> [{rewn: 1w - e Soglos?, 5,100 < g |
I=k+1 o
= C
< Z B
I=k+1
Clearly,
1
Sel s
Thus,
{x € 0.1+ 17~ @) > (1 +e>\/2s;3f<x> 10g10g%} <o

This can be done for every ng(z). So summing over all k£ we have,

o

2

k=1

{x €0.1): /() = fuw @] > (1 +e>\/2s;i(m f () loglog <

40

- [] { & [0,1): 1£(@) = fula)] > (1 +8)\/2S;?f<rc) loglog . g7 < Su/(@) < g



So, by Borel-Cantelli (Lemma 4, Chapter 1) for a.e x, there exists M which depends on

x such that for every k > M,

1
2
1f (@) = fan) (@) < (1 + 6)\/25nk(;p)f(l’) loglog W
But e = /360 — 1. So,
1
2
We note that as n — 0o so does k. Letting 6 \, 1 we get for a.e. x,
lim sup ‘f(:l]) T fnk(x)('r)’ < \/g
k—o00

S/

/ 1
QSnzk(x)f(x) log log [m]

Remark 4. This is true for every stopping time. But we can not estimate the behavior of
the limsup in between any two stopping times as two consecutive stopping times might be
significantly different.

Next, let f be an integrable function such that f'(z) is continuous and Vz, 0 < m <

f'(x) < M. Let us define
falz) = E(f[8n)(2)

where §, is the o—algebra generated by the dyadic intervals of length 2% on [0,1). Clearly
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the sequence {f,} defines a dyadic martingale. Then,

du(2) = fula) = for (2)
:@’ [ -
-1 . fwa-
- o1 . fo -

=,
:2‘22"‘ [ sy
=2|22n| Qn[f(y)—

Now by mean value theorem there exists z such that f(y)

|f'(2)] < M. Thus |f(y) -

|dn ()] <

Now using f (x) > m, we have

Hence we have,

Now

1
d n e
00| Qnilf(y) y (Qn C Qn-1)
1 1 ~
|Qn—1| Qn f(y> |Qn 1| Qn f( ) Y (QnUQn—Qn_1>
1 1 ' -
G T =g | Qi (using g = 1Qu)
1 1
2|Qn| Qn f( ) |Qn71| Qn f(U—F‘QnDdu
1
. N
Ol Jo. f(u+[Qnl)du
[y +1@n)] dy
— [y +1Qnl) = [ (2)|Qul- But
fly +1Qn])| < M|Qn|. Then we have,
1
< g /., MiQuldy = STl = g (0.13)
1
1 /
=20, /s f(2)|Qnldy
Z% mdy
m
2n+1
|dn(2)] > 2:11 (0.14)
fal@)] = 1220 di()| < 320240 [di(2)].

() =
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From (0.13) we have

M
k(@) < S
Then we get
—~ M M
f(2) = falz)| < ) 9E1 — onil’
k=n+1
Acai . m
gain using |dy(z)| > SEiT Ve have
o =, = m? m?
Sn f(x) - Z dk’(x) = Z 92k+2 - 3.92n+2" (0'15)
k=n+1 k=n+1

Let us take g(z) = y/aloglog 1. Clearly g(x) is an increasing function. So we have,
9 m2
g <Sn f(:c)) > 9 <W>

, 1
\/Sn2f(x) log log 77 () > 5 o2ni2 loglog ———

So we have
1 1
1 S m2 3 22n+2 ’ <016)
/2 .
Hence using (0.16) we have,
M
hm sup ’f'fl (y) f(y)| S hm sup an+1

n—00 ’ 1 n—00 m
252 loglog ———— _
\/ n f(y) 0g log S,?f(y) \/3_22n+2 log lOg

This shows that there is no need to use our theorem to find the limit of the quotient for
functions with continuous and bounded derivatives as it is trivial in this case. Clearly we
do have functions f(z) = > 7 a,r,(z) for which limsup in law of the iterated logarithm is

nontrivial where {r,} is sequence of Rademacher functions. We want to look for functions

for Lip(«) type which is slightly more general than differentiable function.
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Next, we show that limsup is nontrivial for functions Lip(«) for % < a < 1. For this we
consider f(x) = >, a,sin(2"z). Clearly, the series satisfies the gap condition. So it is a
lacunary series. If Y a? < oo, then it converges a.e. We choose a,, such that f(z) € Lip(«).

In order to choose a,, we recall a Theorem from [12].

Theorem 31. For the function f(x) for which the Fourier series is lacunary to belong to
the class Lip(a) (0 < o < 1) it is necessary and sufficient that its Fourier coefficients are of
order O(n=?).

We choose a,, = so that f(z) = Y77, = sin(2"mz). Let us construct martingales

1
Lo

from the given function as follows.

Fule) = B8 = 57 |3 s
" n k=1

So we have,

o

—1n27r:£ T

1
— ke
i )+ i iSin(Qka) dx
k= ke

k=n-+1

n $

n

n(2%rx)dr 4+ 0

sl
il
{

1
— sin(2F72)dz.
‘Qn‘; /Q sin(2

By mean value theorem there exits ¢ such that,

sin(2"7x) — sin(287y) = 287 (2 — ) cos(2*we). (0.17)
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Hence using (0.17) we have,

f(x) = fulx) — Z kia sin(28rx) = f(x) — fu(z) — (f(:c) — k:i 81n(2k7r:c)>
k=n-+1 k=1
= Y iHl Fra) — Ly i1n krx)dx
k:1kas (2 ) |Qn|k 1/Qn aS (2 )

n

= ! /Q Z%[sin@kwx) — sin(2¥7y)]dy

@Qnl Jo, =
1 ~ 1, "
= — 2% (z — y) cos(2"mc)dy
@l Ja, k=1 ke
< / i L okr(z — y)dy
< —2%1(x —
@l Ja, = ke

Here

z+|Qnl 1 ) z+|Qn| 1 )
/ (:v—y)dyz/ !x—y!dyé/ (x —y)dy = {5(1:—11)1 =§|Qn|
n {y:y>z} T T

Hence,

> _ 1 1
@) = fule) = ) fasin@mn) < g ) 7228wl Qul?
k=n+1 =1
"1 1
= — ok —
oo Ton
k=1
T e 2F
N
k=1
l n
T ok ok
(it
k=1 k=Il+1

n

2
We choose [ such that 21 = — so that log, 2!*! = log, 2"n®. This shows that
na

[l=n+1-alog,n.
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Then using alogyn < 7 for large n, we have

We have,

Next we show

for some constant C.

1 Gn2t 1 (2b 2k
e  om Dot L ko
k=1 k=1 k=l+1
I+1 — 2
= |2 .
on + Z ko
k=I+1
1 1 a
< — znfalogzn_k Z ok
2 (n+1)*
< 1 N 1 2n+1
—ne o 2v(l4 1)
< 1 n 2
—ne o (I4+1)°
1 2
< —
—n*  (n—alogyn)®
< 1 2
S
B 1 + 2a+1
-0
Cq
= (say)
> = sin(2Fmx
lim sup 2= (2'mz) =1.
N—00 <1 1
Z ﬁ IOg 10g 1
k=N Sy L
9 k=N k2«
C
dp, <=
()] < 2
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|dm ()]

2|Q /s Z o [sin( (2F7z) — sin(2F7 (2 + Qml))] dx
m m k=1
T ~
— - Fra) —sin(27(z + |Qml)) + — sin(287z) — sin(2F7 (2 + |Qm|))] dx
2|Qm| Qm :; ke k:zm:—&-l k
— 2|612 '/, Zki Fra) —sin(2%1(z + |Qm|) | dz

IH“

: 2|Qm| /m

2|Q I/ Zka@mlz%x

(2 4+ |Qum| — 2)2%7| cos(2¥nc)|dr  (Using MVT)

| /\

2 ka 2’”

o9 00 CO%
Z di(a:) S ﬁ'

Define g(x) = , /xloglog \/LE Clearly g(z) is an increasing function. So

g(Z di(fﬁ))ﬁg(z %)

This gives,
: 1 , 1
lim sup > lim sup .
N—oo N—oo o0 2
1 C 1
Z d2 () loglog — sz log log =
k=N-+1 > k= di(7) k=N+1 N1 R
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Then,

lim sup f(x) = fn(2) > lim sup F(z) — fu()
N—oo 9] o — -
! Ca 1
2, d@)loglos gy D g loglog &
k=N+1 Y ey di(z) W EOZNH o
= limsup F(x) = (@) = 30 N e S0P 7a) + 308 vy s sin(25ma)
N—o0 00 CO% 1
Z —= log log
k2a — o
k=N+1 > G
> limsup L=+ k% sin(2¥mx) — | f(x) — fn(x) — D b1 kia sin(2Fmz)|
- N—o0 00 C2
Z —= loglog
k2a - o2
k=N+1 ~ G
> lim sup >y g Sin(2rr) — F
e — Ca 1
> o loglog ———
\ k=N+1 0 a1
- —=sin(2°7mx . Ca
> lim sup 2 k=N+1 R ( ) s g
Z 2o log log — 2 Z T20 log log = ~
\ = =41 e N1 ~
But
_ I N
N (20& — 1)]\7204*1 ~ Neo©
This gives,
C
N a N©
fim sup = — limsup =
N—o00 oo CZ 1 N > =
> loglog : VN floglog(X2)
k=N+1 ZO=N+1 ]fTi
1
= limsup C,,
N=eo /Ny [loglog ()
=0.
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Thus we have,

- bl Lgin(2Frz
lim sup (@) — fn(2) > lim sup DReNi1 T ( )
N—o0 N—co e 2
1 o 1
Z d2(x)loglog — Z 20 log log —
kE=N-+1 > hen 4 () k=N+1 zOZNH o
= — limsup ZzozNH k% sin(?kﬁx)
Ca N—o00 oo 1 1 ’
Z 20 log log =
kE=N+1 l N1
But
Z 720 log log
. \ k=N+1 \V Zk N+1 kza
lim sup =1. (0.18)
N—o0 o0 1 1
Z T2 log log
\ k=N+1 \/ D heN+1 1@%
Using (0.18) together with the assumption, we get
o) 1 . L
_ =sin(2°7x
lim sup Li=n1 i ( ) =1.
N—oo a 1 1
Z 720 log log
k=N+1 ’/Zk N+ kh
Hence we have,
— 1
lim sup f(zx) — fn() > b
N—o0 Z 1 Ca
dz () loglog —
E=N+1 D oheN d%(x)

This shows that there are functions in Lip(a) with 3 < @ < 1 for which law of the
iterated logarithm is nontrivial. We note that LIL is trivial for functions with continuous
and bounded derivatives. We showed that there are functions in Lip(a) with 3 < @ <1
doe which it is nontrivial. Note that f(z) is differentiable a.e. for f € Lip(a) (o = 1). This
means the gap is very narrow.

Next, we show that the tail law of the iterated logarithm is not true in general with help

of an example.
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3.3 Tail LIL for dyadic martingales is not true in gen-
eral.

Consider the Rademacher functions {r;} on [0,1). Let us define partial sum as S, = > ;_, 7;.

Clearly ris are independent, identically distributed random variables with mean p = 0 and

2 On — N

variance 0 = 1. Then using central limit theorem ( Theorem 8), converges in

Sh

\/— 2
Sp —nu
Vno?

distribution to N (0, 1). This means that the distribution function of converges to

the distribution function of N (0, 1). Thus we get,

- nlu ) V2 /
lim P ez du
n—00 ( \/_0' -

Then,
— n—o00 1 A —u?
{t: Sn(t) — 1.0 < )\} A e 2 du.
\/_ 1 V2T J o
This gives,
t: ————— > A\ — — e 2 du.
{ vn.l V21 JA
So,

Ht: r1(t) + 72(t) +:/3§) + . r(t) - )\}

Let 0 < a< é be fixed. With this «, we get

n—oo

—>\/_/e2du

1
Let A = 74 /loglog (—) where v is some large number. From Lemma 7, we have
a

A / ey (0.19)
e 2 < e 2 du. .
1+ A2 A\

Ht: ary(t) + ary(t) + ars(t) + ... + ar,(t) - A}

ay/n

Choose a; and ;. Using the inequality (0.19) for the given A and we choose n; large enough
that,

’{t : arri(t) + anra(t) + aurs(t) 4+ ... + aary, (2) > al/\}‘ g



. 1
‘ {t coun®) £ ars(t) st + ot arn®) (_) H

AVALA o1
/ 1 1
loglog [ — _~2 _
§ 1 1 g g g(al) vi log log (041)
= exp
VA 1
2+/2m 1+ +?loglog (—) 2
aq
1 .
14 [loglog (—) 7%
L1 Qa1 1
2 ‘27T1+7%10g10g (—) 10g<1>
Define a martingale,
a7 () anry(t) | aara(t)
fo(?) , St Vo , fa(2) L + i
fulty = G0 @) a0
" ny ny A/
In this case, then
! ! a
dy = ﬁrl(t), dy = %TQ(t), . ,dn = %Tn(t).

S ft)=di+d5+d5+---+d2 = ai. Hence,

R PG 0]

S f(2) \/ log log {smlf(ﬁ}

1 2
Y14 /loglog | — E)
1 ai 1

\/ 1
27 +~?loglog < ) log (Dl%)

aq

>l > Claa,m)

where

C(ah’h) =

N | —

Note that C'(«, ) is small as a« — 0,7 — 0. So at least on the fraction C(ay, ) of the

nih generation dyadic intervals, we have

[fri () = fo (D)

S f(t) \/ log log {snli“(t)}
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Those intervals on which (0.20) holds we leave as it is and continue the process on the others.

So 3 nsy such that

[fra(8) = o, (D))

&ij¢mm4§;%6}

where 52 f(t)=>."" d2(t). Note we may take ny = 2n;. In other words ny —n; =

nz,ni j=ni1+1"J

>N

with the

1
ny — 0. Hence 3 ny < ng < mns... <mn, = M (say) and E; such that |Ef| < e

property that V¢t € E 4 ng 1, n, with ny < nyp < ngy; < M such that

|fnk+1 (t> - fnk (t)l

N >N
Snprrnif ()4 [loglog {—}
k4+1,Tk ( )\/ Snk+17nkf(t)
where
Nk+1
Szkﬂvnkf(t) - Z d?(t) - Simmf(t) = 87211f(t) = O‘%-
j=ni+1

Hence in this generation we have v, aq, My, E1. We choose v, > 7, and as < ay. Then

we consider M{" generation dyadic intervals and repeat the process. Then we get M; < nyyq

such that
n t) — n, t
e (8) = ful0) - 021
1

Snpam f(t)y [loglog | s—————

1+1> lf( )\/Og Og |:Snn+17nnf(t):|
where S7  f = aj and this is true on the fraction C'(a,72) of each of the 2"+ intervals
of ni", generation. We leave those intervals where (0.21) holds and continue the process on

the others. Then 3 n;, 5 such that

| s (8) = frr (1)]
1

Snz+2,m+1 f(t) \/log 1Og {S—f(t)]
N4+2,M41

Here nj o — ngp1 = ngpr — .

> Y2-
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Figure 3.1: Construction of Martingales

M,

1
Then we get My < nypq < nygo... < n, = My and B, such that |ES| < 1022 satisfying

the property that V ¢ € Ey 3 njyq,n; such that M; <n; < nj < M, with
’f’nj+1 (t) - fnj (t)’

1
snw,njf(t)\/ log log [s—f(t)]
where S2 f(t) = a3 and S, f =5

Nj41,15 ny41,1

> V2

f. Hence, in this generation we have
1+2511+1

V2, 02, M, E5. We continue the process in this way considering oy, — 0 and 7, — oo which
gives us,

My <My < Msg...< M, <...
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and sets E, with |E§| < m such that V¢t € £, 3 n, with M,_; <ny < ns < M, and

| fraer (8) = fn, (B)]

Snarrinef <t>\/ log log {S;f(t)}

Because of the stopping rule, note that f,(t) = fa,(t) V n with nyy < n < M, Also

> 7,

Shoiims = g Here Z |E| < oco. Hence by Borel-Cantelli for a.e. t, eventually ¢ € Ej, for
k=1
sufficiently large k. Consider a ¢t at which ¢t € Ey, k > L, say. So for a given kK > L I ng,ng1

such that M;_; < n, < ngy1 < My, we have

|f”q+1 (t) B f”q (t)|

; > V.
an+17an(t)\/10g log {—Snﬁl,an(t)}
Now,
00 Ng+1 My, M4
S fRP= Y &)=Y dn+ Y. i+ > ) +...
j=ng+1 j=ng+1 j=ng+1+1 M+1

My 41
But f,(t) = far,(t) ¥ n with ngy <n<Mgso  »  di(t) =0.
J=ng+1+1
Then
Sy (1) < 0 4 brp10 41 + brs20iyo + - o

where b, is a number such that

1

[1- C<aka'7k)]bk+1 = (100 + k)2’
(b, + 1) log[1l — C(a, )] = —21og (100 + k).

Now log(1 — ) =~ —=z. So, it suffices to consider

(b + 1)(—C(au, ) < —21log(100 + k)

1.e.
21og(100 + k)
C(Oék, ’Yk)

o4

by, > — 1.



Thus
21og(1 k
b > 0g(100 + k) Y
Vi

1 1 log log(=-) 1 2
227 1+ 97 loglog(5-) \ log(5-)

So we need to choose two sequences ay, v, satisfying the following properties:

(a) ap = 0,9 — o0

4y/27 log(100 + k
(b) If by, = 8l ) -
k

iy/log log(5-) 1\ 2
1 +7¢loglog(5-) \ log(3-)

then, bpp1aj 4 +byoaj o+ ... < 504%.

1
We choose o = —, v = log k. Clearly, the first property is satisfied. Here log log(ik) =k,
e’ «
1y _ ok
log(-) = €". So,

4\/%(1 + k(log k)?) exp (M) log(k + 100)

Vk log (k)
We claim that by, < 56v2mexp (k+1)?VE>1,V 1> 1.

by =

We first note that
log(k + 1 + 100)

log(k + 1)

Then we have,

ka:N%H(k +é)k(1%(k+z))2 exp{ .

(k + 1)(log(k + l))T log(k + [ 4 100)

log(k +1)
2(k + 1) log(k + 1)* (k+1)?
< 421 ] exp{ 5 }7
= 56vV2mVk + llog(k +1)%e [(k—gl) }
356\/%exp{ ] [/‘Hl ]
= 56v/2m exp(k + 1)°.
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2 2
S0 b1y + bigo0g o+ ..

€ 62
< 56v/27 | ek’ (Lk) + ek H2)? (%) + ...

626 626

, 1 e—1 1 1 , 1 e2—2 1 2
= 56\/ 2T €(k+1) ( 2ek) ( 26k) + 6(k+2) (F) (W) =+ ...
e e e e

exp(k+17% _ 1
exp[2eF (el — )] ~ 168v2r

Now we claim that for | =1,2,3... and for k£ > 2. It suffices to

prove that
log(168v27) + (k +1)* < 2(e' — 1)e".

Note that for £ > 2 and for [ > 1,

log(168v/27) 4 (k +1)* < 2(k 4+ 1)% < eF < 26k (! —1).

Hence,
) 1
56/ 27 1 1 1 oo
2 2 1 e
D41y + Dkgoipyp + .0 < 168+/2r L2ek + (e%’“) Tl T 11
626’€
h < 5 Th
We have ] = 9o en
2 2 11 9
bk-i—lak—f—l + bk+2ak+2 + ... S §€2ek = _ak
! 2 2 2 2 s, 1 5 3,
anf(t) = o + bk+1ak+1 + bk+204k+2 +...<a;+ 50% — 50%.
Thus,
/ 3
a; < anf(t)2 < 504%.
Consequently, S;q f(t) = Spyim, [(t). Here
|fnq+1 (t> - fnq(t)| >

Sngrimngf () \/ log log {S;f(t)}
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We need

£ () = fny (1)]

Sngrrngf (t) \/ log log {S;f(t)}

> Yk-

But

g () = 1(2) N () = £, (1)

an+1,an<t) \/log 10g {m} anﬂ,an(t) \/IOg log {ml

We now claim that

g (1) = F(2)]

Sngsrmgf (L) \/log log [S;f(t)}

so that

£ () = fay (1)]

an+1,an(t)\/10g log {S;f(t)}

Here we note that f,, ., (t) = fu,(t). We again use the estimate,

{E [ (8) = fagia ()] > A} < Gexp (

/ 1
Taking A = 0.1ayVx4 [ log log {—} ,
Q,

—)\2
20 S f 13 )

! —0.01a3~?2 loglog [ozik]
{t: 78 = fapes (0] > 0.1y log log H} =00 s T
—0.01a2~2 log log {QLJ
=6exp 2(bk+104i+1 + bk+2aﬁ+2 +...)
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But

bk+1az+1 + bk+20&i+2 —+ ...
-1
2(bk+10&i+1 —+ bk+2az+2 =+ .. ) e}

(VAN

| | D]
— 9

. TN

IA
N

1
—0.01a2~2 log log {04_1

1
Ht PO = Fon (D] > 0-1awm/loglog—}‘ < 6exp Lo

6
e 0lk(logk)?

% 1 —~ 6
D HE (1) = fagur (D} > 01wy [loglog o= 2 oy
— k=1

> 1
< 6+6002W.
k=2

| = 1
Since /2 mdm is convergent, z:; W < 0o. Hence,

[e.9]

D

k=1
So, by Borel-Cantelli for a.e. ¢ with sufficiently large k,

< Q.

k

{t : |f(t) - fnq+1<t)| > 0.10%’}% log log |:a/i:| }

)= o (0] < 0L loglog L]

k
5O ] _ gy

1
0.1ayy [loglog {—}
Qg

This gives
£ () = fny (1)]

/ 1
a4 [loglog {a_}
k

£ () = fn, (1)]

Sngsrmaf (2) \/ log log {S;f(t)}

But S’l/qu(t> ~ an+17an(t)'

> 0.9v.
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[f(8) = fu, ()]

S;qu(t)J log log [%f(t)]

Since it is true for a subsequence {n,}, we have

£ () = ful®)]

lim sup > 0.9v.
TS () log] [ ! }
n oglog | =
Suf(t)
Note that
11{1] 12+11{1}
0g 108 | & 0og 0gl1og | &
. S Snf (D)) _
lim sup = lim sup =1.
e loglog{ ! } e log log [;]
S f (1) Spf(t)
Thus we get,

s D)~ £,(0)

B S f(t) \/log log [S’Q#f(t)}

Here 7, is a large number. This shows that tail law of the iterated logarithm is not true in

> 0.97v.

general for general dyadic martingales.
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Chapter 4

Lower bound in the tail law of the
iterated logarithm.

In this chapter, we estimate a lower bound for the tail law of the iterated logarithm for sums
of Rademacher functions. We also estimate a lower bound for the tail law of the iterated

logarithm for independent bounded random variables.

4.1 Lower bound in the tail LIL for sums of Rademacher
functions.

Theorem 32. Let {r;}32, be the sequence of Rademacher functions and {ax}32, be a se-

quence of numbers with > ;- ai < oo. Suppose that {ax}7, satisfies the property,

Ve>0, IN:Vn>N, |a| <ey/> 2, a2, e, a)<e’) 2 dl

Then for a.e. w we have,

1> o)

lim sup — > 1.

n—00 o0 ) 1
2 “loglog =
> lglos =

Zj:n J
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Proof: Let € > 0, and assume that ¢ << 1. Let 6 be sufficiently large. Choose § > 0 so
that (14 0)(1 —&?) > 1. . Define n; <mny < -+ ,ng — 0o by

s 1
nk:min<n: Z a?<9—k>.

Jj=n+1

- 1
We first claim that Z a? ~ o for ny large.

j=nk+1

We have,

(e 9] [e.9]
2 _ 2 2
doa=da,+ ), o

J=nk Jj=nk+1

Then if ny, is sufficiently large, a7 < & Z a3, and we get

Jj=ng

[o.¢] [o.¢] oo
Zaj2-<522a§+ Z aJQ».

Jj=ng J=ng Jj=ng+1

Then,

By definition of ny,
1 o0
(1— 52)97 <(1-¢)) a (0.2)

J=nk

So from (0.1) and (0.2) we get,

Next, we show

G 20+0)(1-¢?) <
wel0,1): sup Z ajrj(w)| > (1+ )9( &) Z a?loglog —=5 5
nznk+l j:n+1 ]:nk—i-l Z]:nk+1 j
24
< ~.
(k log 9)(1+6)(175 )
Let us write S, (w) = Z a;rj(w) and 5,2 = Z as.
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Then
s:fk 0

2 - _ 227
Sme, 1€

(1—-¢e%)8 <

(0.3)

Now using (0.3) we have,

, 21 +0) , 1
{w €1[0,1): §u£) 1 IS, (w)] > \/%8& log log (3'2 ) }‘
n>ng4 Ng
’ 2(1+9) 82 1
. sup |S7(w)| > (1+9) Z”’“ log log <,—2>
nan+1 Snk+1 9 Snk+1 Snk
’ 2(1 1
: sup |S7,‘(w)| > (1+ 5)6’(1 —e2)loglog (,—2)
nznk+1 Snk+1 9 Snk

{w [0,1)
{w €[0,1)
B e G
{w €[0,1)
{w [0,1)

IN

/ 1
sup |5, (w)| > \/2(1 +0)(1—¢?)s2 | loglog (3/_2> H

n>ngq1 ny

sup
n>ng41

> arj(w) - Z a;r;(w)

Jj=

, 1
> \/2(1 +0)(1 —&?)s;z, ., loglog (5'_2) H :
ng

Using Lemma 27, Chapter 3 for the sums of Rademacher functions we have,

, 1
> \/2(1 +9)(1— 52)sn2k+1 log log (%) }|

o0 n

> agri(w) = agri(w)

j=1 j=1

Hw €[0,1): sup

n>ng41

/ 1
—2(140)(1 — 52)sfk+1 log log (s'_2)

Nk

< 24 exp

D)
23,%+1

1 —(1+6)(1—€2?)
= 24 exp | log (log (,—2))
Sy
1 —(146)(1—€?)
()
S,

(1+6)(1—€2)
<24
- <log 9’“)
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So,

oo n 1
we0,1): sup Z ajri(w) — Zajrj(w) > [2(1+0)(1 —&?)s;2 | loglog (,—2)
nZMk41 |2 j=1 Sny,
1 (1+6)(1—¢2)
24 )
= (k10g9>

Thus,

, 2(1 + 6)(1 — &2 1 IR
{w €[0,1): Sup |Sp(w)] > \/ L+ )9< - )Sgk log log (s'_2) }‘ <24 (klog9> .
n>ngi1 "k

Define
, 2(1 1—¢g2 1
B:= {w €[0,1): sup [S,(w)| > \/ ( +6)9< E )Sg’“ oglos (_2)}

n>Ngi1

24 1

Hence |B| < (log 0)0+0)(1—=3) L0023

We recall a Theorem on exponential bounds from [12] page 119.

Theorem 33. Let {X;} be a sequence of independent random variables with mean zero and
n n

: 2 _ 2 _ 2 _
variance oj, and S, = ; Xk, 85, = ; 0. Let ¢ = I]?Saf
if ¢ = () is sufficiently small and n = n(v) is sufficiently large, then

P52 0) e (- Eat4).

Set S, = > i apr so that s2 = > ai. Fix v > 0 and choose ¢(y) as in the above

X
2k and n > 0. Then, given v > 0,
Sn

Theorem. Suppose ny is sufficiently large so that V [ > n; + 1, we have by assumption

] < &

5” (0.4)

(0.5)



From (0.4) and (0.5) we have,

ie.,
|y <e,
Z?:nk—i-l 3
Then
max L <c,.
ni+1<Ii<n Z;L:nk+1 a]2~

Using above Theorem (Theorem 33) we have,

€[0,1): |Zj =i t1 4,75 () >\ | >exp <—)\—2(1 —{—7)) )

n 2 2

2(1 —5/2) 1
Choose A = W log log <S,—2

is large enough as required by the Theorem. Then for this A, we have

wel01): |Z?:"’““ 4,75 () > \/2<1 —9/2) log log <L2>

Z;L:nkJrl a? (L+7)

215/ ( ) (1+ ’y))

e (1)

> where 0 > 0. Note that for sufficiently large ng, A

Nk

= exp ( (1—-46/2)loglog (
1 (1-6/2)
= exp | loglog (,—2)
S,

- (klogf + log(1 — e2))'-3
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Therefore for large k we have,

( )
L airi(w 1 1
we0,1): |21 475()] > 1 >5—(k1 =
. 1-0/2 1 ogv) 2
2 Z af%loglog( ,2)
\ j=nk+1 (1+7) o J
ie.,
4 3
‘Z]o'ink-l—l a;r5(w) = 37 aﬂj(w)‘ (1-0/2) 1
Jwe0,1): > 5
" 1 (1+7) 2(klog 0)' 2
2 Z ajloglog (s'_Z)
\ J:nk+1 Mk )
Thus,
( 3\
S (w) — S, (w 1—6/2 1
we0,1): 15, () Sl > ( /2) > =
S, 1 (T+7) 2(klog @)t~
2 Z aj loglog (s'_Q)
\ Jj=ng+1 Mk )
Using (0.1) for n > nyy1, we have
SR SR o
Jj=nr+1 Jj=ni+1 j=n+1
- 1
2 2
>(1-¢%) ) af— ooy
Jj=ng
1 1
2
>(1-¢ )g_k Qk+1
1 1
=w1l- e’ — 7
/ 1
2 2
> Sp. (1—5 —§>
Th o > (1-e2- 1
us, Z a; 2 sy (1= =5 ).
Jj=nr+1
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Then,

[NJES)

: > —LL N > —
, ) 1 1 (1+7) 2(klog 0)'~
252 (1 — e — 3)loglog —5

5 -

~ 2(klogf)2

&

Mm
=)
=

BO)‘
ol
£
|
iy
£
~_ |
V
—~|=
Tl
_l’_
o
\/\[:_’)/
A
|
no
|
| =
N———
Vv
—_

1

Then |S| > ———.
2(klog@)t—2

Again define,

G:={wel0,1): S () = 5 () >\/(1_5/2) (1_52_%>_2\/(1+5)21—€2)

o 1 (1+7)
2s,; loglog %

Next we show that SN B¢ C G. Let w € SN B®. Then for all n > n;,.; we have by

triangle inequality,
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\/ (1-9/2) (1 o ;) _ 15, ~ S,w)|

! /

_ 1S, @) —S;k<w>\ W(w)l . EA®)]
\/232 log log ) \/ 2 loglog ) \/232 log 1og( ! )
52
- Sy (W) — +\/ 1 — g2 \/(1+5)21 — £2)
\/23 2 loglog ( )
52
IS, (@) - (eI
\/23 2 Jog log ( )
52

Thus,

(1-4/2) s 1\, [ar9a=e) _ |Srer (@) = S, ()]
\/(1+7) (1_8 9> 2\/ 0 1\

\/23 2 Jog log ( )
52

This proves S N B¢ C G. Then |S — B| < |G| and so |S| — |B| < |G]|.

So,
1 24
G| > _ ‘
G2 2(klogf)—2  (klog)(+oi=¢)
For large k,
-3 1+ | 1 24
72(klog ) ™2 < (klog#) ie. 3(klog0) 2 > (i log §)1F 905"
This gives
1 1
G > —_— _
2(klogf)'=2  3(klogh)
1

6(klog §)' 2
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Now summing over all £ we have,

NE

ity R
>

— 6( klog9 1’%

6log¢9 1’% Z kl

k=1

i
I

v

l\.')\@n

= Q.

So,

!

> |Sppr (@) = S, (W) (1-4/2) , 1 (1+0)(1-e) (] _
Z W : >\/ (1—5—5)—2\/ 0 = 00.

- 1 (1+7)
=l \/25'2 log log ( )
52

We note that 5, (w) — Sl () = X024y a575(w), Siy (@) = Siy (@) = T 1 a7()

j=nz+1

and so on. Thus {S;Lk (w) — S;Lkﬂ(w)} is a sequence of independent random variables. By

Borel-Cantelli Lemma for a.e. w, there is an infinite sequence n; < ny < nz < --- such that,

S, (W) = S, (w)] (1—4/2) , 1 (1+0)(1—&?)
1 >\/<1+7> (1‘5‘5>‘2\/ 7

\/232 log log ( )
52

Again, by triangle inequality we have,

\/25251%1:)(81 >+\/282;1<:( : ) - \/gl—jﬁ) (1_52_%>_2\/<1+5>21_82>'

nk

We have

, 2(1 + 4) 1 24 1
B| = : 2 logl -
- ‘{w n;lgl Sl > \/ 0 Snk( ) loglog (Snk) }‘ - (log 0)1+° (=)
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N 24 |
< ; (log 9)(1+5)(1_52) A7)

/ 2(1+6 1
{w : sup |5, (w)] > \/—( + )S;i(l —¢2)loglog (/—2>}
n>ng41 0 Sng

[e.9]

(10g9 (1+6 )(1—€2) Z Jo(1+6)(1—e2)

k=1
< 0Q.
Then by Borel-Cantelli Lemma for a.e. w,
, 2(14+9) , 1
s [5})] < \/ Ut 1 etoglog - ) 0.7
nN=2nNg41 Nk

for sufficiently large k > M, say.

Thus from (0.34) and (0.7), for a.e. w there exists an infinite sequence n; < ny < nz < ---

\/23 2 Z:f:(si) . \/<11_+5§) (1 —e- %) - 3\/(1 i 5)21 —<)

Since this is true for a subsequence {n;}3>,, we have,

\/25;3 llsg(lw;(i) i \/(1116’/5) (10 1) 50002

Letting 6 " 00,e N\ 0,0 \, 0,7\, 0, we get,

such that,

Sl
: 1y
\/23712 log log <72)
Sn
lim sup 15, ()| > 1.

n—00 1
25,2 log log <T2)
Sn
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Then for a.e. w we have,

SEeaen@l

= 1

j=n+1 Jj=n+1"j

lim sup
n—oo

Thus for a.e. w we have,

| Z;in a;ri(w)|

lim sup > 1.
n—o00 oo 1
2 a2. IOg log — 5
jz:; ! Zj:n CL?
This completes the proof of our result. [ |

1
Example. Let us consider a sequence {a,} given by a, = —. Clearly >° | aj < co. Now
n

we show that the sequence {ay} satisfies the hypothesis of our Theorem. We need to show,
Ve>0, IN: Vn>N, a <52Za?.
j=n

For
= =1 o 1
Z 2 Z —4
— “ — 54 /n T g
j=n j=n

So

L_o1 1
— <ef— le. —
nt 3n3 n

2
— which is true.

1
Thus, the sequence {a} where a; = o satisfies the hypothesis of our Theorem. Hence

we have,

lim sup 15, ()] > 1.

n—oo / 1 o
- \/ 25, loglog —
Sn

1
Example. Let us consider a sequence of numbers {a;} given by aj, = o For this sequence,
S < < — = —
S, ()] Z jaxry] < Z P

and




Then

S/
lim sup [ ()] ~ lim sup
n—00 9 1 n—00 1
2s,; loglog 72 255 log log (I)

22n

1

on

< lim sup

n— 00 2% \/ 2 IOg log 22n

1
= lim su
n—>oop v/2(log 2n + log log 2)

=0.

This shows that the given sequence does not satisfy the conclusion of our Theorem. Here

we show that the given sequence does not satisfy our assumption either. For

1 S 3 3¢?
2 _ 2 2 _ 2 :
Uy = S <e jgn a; =¢ 5 92n re. 1< 5

which is not true. |
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4.2 The tail law of the iterated logarithm for indepen-
dent random variables.

In this section, we prove the tail law of the iterated logarithm for symmetric, bounded,
independent, and identically distributed random variables. There is much literature for the
law of the iterated logarithm for independent random variables, however, the method we
use here is different.

First we prove some Lemmas which will be used in our main Theorem.
Lemma 34. If {X,;n > 1} are symmetric, bounded, independent, and identically dis-
tributed random wvariables, —1 < X; < 1, Y; = 0;X;, —a; < Y; < a; with E(X,) = 0,
E(X?2) =1, and {an;n > 1} are real constants, then ¥ n >0,V XA > 0

(oo =o]) < con (GEE0).

Proof: Using the fact sup ]ak| > A = supag > A or sup(—ag) > A, we have,
k k k

{or s 1 v@I>a) = {or s T v = b U e sw -2 e =)

1<m<n 1<m<n 1<m<n

So for any v > 0,
P({w: sup |Y.it, Yi(w |>)\})
1<m<n
SP({w: sup Y, Yi( >)\}> ({w: sup —y i Yi(w )>)\}>
1<m<n 1<m<n

ZP({w: sup exp (3,2, 7Yi(w)) >6“}> ({ w: sup exp(— 22"1736(00))>6”})-

1<m<n 1<m<n

Now by Lemma 11, Chapter 1, Y"1 Y;(w) is a martingale. Also, exp(yx) is convex and
increasing. Then using Lemma 10, Chapter 1, exp (v ", Y;(w)) ,exp (—y D 1, Yi(w)) are

submartingales. Using Doob’s maximal inequality (Theorem 12, Chapter 1), we have

P ({w s [V > A}

1 n
<o [ (ISL Y aP+ =5 [ e GISL Vi) dp

=%/ exp (7] S0, Yilw)|) dP.
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Hence we have,

P({” b, | s Vil >'>A}) j /expmz“ Yiw))dP.  (08)

1<m<n

Using Hoeffding’s Theorem (Theorem 9, Chapter 1) we have,

P({w: [, Vil 2 A} < 2exp (%) | (0.9)

Next, we prove ¥n > 0 and Q = [0, 1)

/Q exp (7] S0, Yi(w)|) dP < 2v3nM exp ((1/2 + n)7* S0, o)

We have a elementary result which follows from the Fubini’s theorem,

/ efdpP = /OO AP{f > A\})dA. (0.10)
Using (0.9) and (0.10), we have
[exp IS vi@har = [~ P (wia] S Vitel > A i
Q —00

= [ 2P (o ISL ) > )

00 N _)\2

</ . 26’@(2 QZM%)C“

:2/ exp< 5 s (V=292 a? ))d)\
—00 2 Zz 1 z

:2/Ooexp(2 e Z[/\z—ny S @A (125 d )DCM

Y. 00 A= A2S 212
— 2 exp v Zz:l az / exp [ Y nZz:lza’z] d)\
2 —00 29231 4

A—25" a?
Substitute u = ’yzzn:’:l;l so that, v4/Y 1, a?du = d\. Then,
v i=1 @i

[ e bISL Vit ar = 2exp (T2%) /Zexp( )m/zz L abdu

22
= 2V2my Soral  exp (—7 251 az) .
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So we have,

Vi @
[ewIS vi@har =2van +/Sa e (T)
Q

This is not exactly what we want but it is the best we can get. Note that for given n > 0
there exists M = M (n) > 0 such that for all X > 0, X exp(3X?) < Mexp ([2 + n]X?).

Then using this in above estimate we get,
/ exp (7[00, Yi(w)]) dP = 2v2n M (n) exp ([1/2 + nly* 30, af). (0.11)
Q

Choose v = . Then with this v, we have from (0.8) and (0.11),

A
Z:’L:l a;

P({o: s 1=mv@l =) < 5 [ ew0rsn v e

1<m<n
2V2rC n
M) exp ((1/2+m)7* 2, af)

= 22w C' M (1) exp ((1/2 +n— 1)23\—22)

i=1""

<

< 2v/27C' M (n) exp ((—1/2 + n)%) :

im0
Thus,
p ({w : 1§Epn|21 Yi(w)] > A}) < C'M(n) exp (%)
Set E, = {w: sup | >0, Yi(w)| > A}. Clearly E, C Ep41. Define E = |J7_ | E,,. Then
we have, nlg& |Eln<|m:<TE| Hence,

P({w SUP|Z“ Yi(w )|>A}):JLIEO|E”|
- limP(w: sup | 320, Yi(w )|>>\)

n—oo 1<m<n

< lim CM(n)exp (M)

n—oo 2 Ei’il a?

= CM(n) exp (%)
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Thus,

Now by the choice of , we have

(=1 +n)\?
2 Zjil a? .

This completes the proof of our Lemma. [

P({r iz vl > a}) < oarmes (

Next, we prove an exponential estimate for the tail sums of random variables.

Lemma 35. If {X,;n > 1} are symmetric, bounded, independent, and identically dis-
tributed random variables, —1 < X; < 1,Y; = 0;X;, —a; < Y; < a; with E(X,,) = 0,
E(X?) =1, and {a,;n > 1} are real constants, then ¥ n >0,V X\ > 0,

(=14 n)A? ) '

oo 2

P({or: sup 152, i) - S Vil > A} ) < 1200

Proof: Fix n. Define,

b — 0, ifk <mn;
T a, itk >n.

Using the previous Lemma for {d>°;" | b X}, we get

({e e ammtorsaf) <o (GE2)

P({or sl S a2} ) < Crmen (5 WX )

00 2

Thus,

P ({w : ii‘i > apXp(w) — > r apXp(w)| > /\}> < CM(n) exp (M)

2 Ziozn-i-l ai
(0.12)

Let N >> n where n is fixed. Then using Levy’s inequality (Lemma 6, Chapter 1) we get,

P ({wr max | Y770 Yyoi(w)| > A}) < 2P ({ SNy (W) > A})

n<j<N-1

P({or, ma IZ5 Vi) - S @1 > ) < 2P ({w: | T ) - T i) > 2)).

n<m<N-—-1

5



So,

P <{w - max | Yiw) - 20T, i) > /\}> <2p ({w AN Vi) - 0, Y;(g(()ci);; A}) .

Since N >> n, we have from (0.12),

P ({w: |50 Yiw) = Sisy Yelw)l > A}) < OM () exp (ﬂ) o

2 Z?;nﬂ CL%
Hence from (0.13) and (0.14) we get,
m —1+n)A?
P({or sw IEX0) - S >0} ) < oMl (15 ).
N>m>n D hent1 Ok
Let By := {w : SUPysmon | Sorey Ye(w) — Sop, Yi(w)| > A} and E = [J;2, Ej. Then by
Lemma 2 Chapter 1, we have limy_, |En| = |E|.

For sufficiently large N,

Sup S0 Yi(w) = S8 Yi(w)| > A= sup |, Yilw) — S0, Yalw)| > A

N>m>n

This shows that x € Ey for sufficiently large N i.e. z € E. Thus,

P ({w s supps, [0, Yelw) = S0, Yelw)| > A)) < |E]

N—oo

N m
< lim Plw: su Yi(w) — Yi(w)| > A
< p (o0 5 - Sl )

N—oo

-1 A2
k=n+1 "k

(=1+n)N >

< COM(n)exp (oo—
2 Ek:n—i—l a%

Hence,
00 m -1 + )\2
P({or w12 i) - T ) > A} ) < eartme (F5 20 )
m>n 22 hent1 O
This completes the proof of the Lemma. [ |

We now prove our main result.
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Theorem 36. If {X,;n > 1} are symmetric, bounded, independent, and identically dis-
tributed random wvariables, —1 < X; < 1, Y; = a;X;, —a; < Y; < a; with E(X,) = 0,

E(X?) =1, and {a,;n > 1} are real constants satisfying

o
Za?<oo and Ve >0, 3IN:Vn>N, l|a,|<e\/d 2, a3, e, a,<e )7 al,

Jj=n "3’
j=1
then for a.e. w,
> a; X (w
lim sup Ej_n %) > 1.
n—00 \/2 Z]oin a? log IOg Zjool e
205

Proof: Let ¢ > 0, 7 > 0 and assume that ¢ << 1, n << 1. Let 6 be sufficiently large.

Choose 6 > 0 so that (1 +6)(1 —&?)(1 —n) > 1. Define ny < ny < -+, ng — 0o by

s 1
nk:min<n: Z a?<9—k).

j=n+1

- 1
We first claim that Z a? ~ o for ny large.

J=ni+1

We have,

[e.9] [e. 9]
2 _ 2 2
doa=da,+ ), 4

j:nk j:nk+1

oo
Then if ny, is sufficiently large, a7 < & Z a3, and we get

J=nk
D G<EY g+ ), a
J=ng J=nk Jj=ni+1
Then,
o o 1
(1= Y af< Y af<op (0.15)
=n j=ni+1
By definition of ny,
1 oo
(1) <(1-¢7) > al (0.16)
J=ng
So from (0.15) and (0.16) we get,
1 . 1
(1= < D a<gp
J=ngr+1

7



This gives,

2

> as 0
(1—¢%0 < Zog*”k“ < - (0.17)
Zj:”k+1+1 a; l—e¢
Using (0.17) we have,
- 4140) ~—~
PlRw :niggl Z a; X;(w)| > — Z a loglogm
= i=n+1 j=ng+1 Jj=nk+17J
4 0o s 3
Z a; X;(w) a;
=P w: sup i (1+9) = et 5loglog =ss—— ¢
n2Nk11 Z;ink+l+1 a? 0 Zj=nk+1-&-l a; ZJ':nk-i-l a;
\ Vs
( %) )
Z (liXi(W)
i=n 4(1 )
<P w: sup l > \/ ( ;_ )9(1 —e?)loglog =s——
n>ng41 /Z;‘;nk+l+1 a? Zj:nk+1+1 ag
\ 7
=P |w: sup Z a; X;(w)| > [4(1+0)(1—¢e?) Z a? loglog =s——
n2net1 |, Za0 j=npy1+1 Zj:nk+1 a;
o0 n o0 1
=P | w: sup Zanj(w) — Zanj(w) > 4(146)(1 —€?) Z a? loglog =sc——
TLZTLk+1 j=1 j=1 ]:nk+1+1 Z]:nk+1 aj
Now using Lemma 34 Chapter 4, we get
oo n oo 1
Pl Qw: sup Zanj(w)—Zanj(w) > [4(1+0)(1—¢€?) Z a?loglog —=——
n2nk+1 le jil .]:nk+1+1 Z]:nk_;’_l a/]
(“14mA1+ )1 =) T3, 0 loglog (st )

< 12CM (n) exp

1
= 12CM(n)exp | log <log SE 2
j=ng+1 7]

] > 2(—14n)(14+0)(1—€2)

D i1 @
j=ng+1 77

)2(—1+n)(1+5)(1—52)

= 12CM(n) (log
< 12CM(n) (log 6"
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Thus,

Pl qw: sup Zaj a; X;(w)| >  [4(1+6)(1 —e2) Z a?loglog 5
MMl j=1 j=1 J=ng41+1 Zj:"k'H @
L\ 20-masa-e)
< 12CM(n) (log ek)
1 1
= 12C'M (n)

}2A=m (51— (log 9)20—m(1+5)(1—")°

Summing over all k, we have

- G - 11+6)(1-¢?) < 1
Z P w: sup Z a; X;(w) — Z a; X;(w)| > 7 Z a? log log m
k=1 n2Nk4 |2y j=1 j=ng+1 J=np+1 "]
<12CM ! 3 !
S (n) (log 0)2(1-m(1+3)(1-<2) Z L2(1—n)(1+6)(1—€2)

k=1
< 0Q.

By Borel-Cantelli Lemma for a.e. w we have,

" 414+ 6)(1 — €?) oo
EUP |Z] 145X (W)_Zj 1 4 X (w )|<\/ ( )9( )Z] =nj+1 gloglog
n2ne41

1
ZJ =ng+1 CLJZ
for sufficiently large k, say k > M.

Hence for a.e w,

p (TR0 S o] [T
n>ngiq \/2 Z] — Jloglog— 0

j=ng+19

(0.18)

for sufficiently large k, say k > M.

We now state a Theorem on exponential bounds (For proof see [12] page 119).

Theorem 37. Let {X;} be a sequence of independent random variables with mean zero and
n

. Xk
variance oi and S, = E Xk, S5 E op. Let c = max

Sn
k=1
if ¢ = c(7y) is sufficiently small and /\ A7) is suﬁﬁczently large, then

p (f—: > )\) > exp <—>\;(1 +7)> :

79
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Set S, = > _ apXy so that s2 =", a3.

Fix v > 0. Choose ¢() as in the above Theorem. Suppose ny is sufficiently large so that

VI > n; + 1, we have by assumption

(0.19)
(0.20)
Then
max L <ec,.
np+1<i<n |/ n
RIS Zj:nk+1 a?
Using the above Theorem we have,
X (w A2
P wE[O,l):|Zj_ ’“Zl ’ 1(2 )’>)\ >exp(—?(1+7)).
\/ Z]:nk-i-l aj
2(1—=46/2 1
Choose A\ = % log log (W) where 0 > 0. Then for sufficiently large ny,
v j=np+1 45



A is large as required by the above Theorem.

D1 4 X (W) 21— 5/2
P({wE[O,l). S 3 >J—<1+7

2(1-19/2)

> exp

/) ) log log <—Z§in1k+1 a?> })

—loglog
(1""}/) ( J nk+1 J

) —(1-5/2)
=exp | log | log
Z] =ng+1 J

—(1-6/2)
Y —x 3
Zj:nk+1 a?
ok —(1-6/2)
> (1
> (s (755))

1
(klog 0 — log(1 — £2))' 2

Therefore for large k we have,

) (1+
= exp —(1—5/2)loglog< ))

>

"o a X (w _
plleion: | EimmneX ()|>\/2(1 512 ostoger V) L1
Y1 @ L+ 2 (klogh)'
So,
. \zj w1 X5 (@) = D Xw)|  [1g/2) o
' \/2Z] g1 @3 l0glog s ——sy (1+7) 2(klog )3

J=nE+17j

81
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Using (0.16) for n > ngy1, we have

2 _ 2 2
>oG= D G- q
j=ng+1 j=ng+1 j=n+1
- 1
2 2
Jj=ng
1 1
2
e e
1 , 1
=mpl——4)
> 3 da-a-h
Jj=ni+1
Thus,
n o 1
doa= > d1-e - 7) (0.22)
J=nr+1 j=nr+1
Then using (0.22) in (0.21) we have,
(
pldy EEnn N Y el J0=6/2) (] L
- ) ) (1+7) 2(klog )2
<2 Zj:nkﬂ a?(1— €2 — 3)loglog Z”+1 >
\ j=np+1 aj
(
pldy 1 X —Z;’-‘;nﬂ o ;@) [(1-6/2) (1 L 3) N L
2y 21loe (L+7) 0 2(klog )2
. .7 ’I’LkJrl -7 Og Og Z] ’nk+l ]
Let us write S, (w) = >°2  a;X;(w) and 52 =3 a3. We now claim:

'!S;M(w)—sék(w)\ (1=96/2) (0, 1\ _ [0+ —¢e?)
i \/23 log log —+ oy >\/(1+7) (1 : 9) 2\/ 0 -

185, (W) = Sé(wﬂ (1-4/2) , 1
" \/25 >\/ (1+7) (1_8 _9>
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Using (0.18) for n > ng41 we have

!

97, (@) = S (@)| S0, (@) = Sy, (w) + Snkﬂ( w) — Sy (w)]

\/23% log log i

S, ()|

\/232 log log - ey

IS;k+1 ()

S' (w) = S, (W)

Nk+1 Nk

\/25 log log —+ 7y

\/23 log log — 7y

)
< \/ 7

But we have,

\/25 log log —+ e

+\/(1—|—(5)(1—<€2) N

g

\/23,3k log log %

50, (@) MMI>¢
\/23 log log =5

so that

a-02 (.
O+7)(1_€

1
9 Y

(1-6/2)(, , 1 I+0)1—¢)  [Grod—e) S, =S5, )
\/(14—7) (1 - 9)<\/ 0 +\/ 0 i \/23;12k10g10g L

/2
Srige

IS;M(w)—S;k(wN \/(1—5/2)( ) 1> \/(1+5)(1—52)
> l—er——-]-2 :
0

\/23 log log

This proves our claim. Consequently we get,

(I+7)

v
S
ol
+
£

@) =S, @) \/(1—5/2)

>
, 1 (1+7)
25,2 loglog 7
nk

0

(1—52_$> _2\/(1+5)§)1_52)

1S, (w)—8

- Sn, ml@ o J=6/2) (0, 1y, faraa =) ) _
R R



no n3

Here S, (w) — S, (w) = Z a; X;(w), S, (w) — S, (w) = Z a;rj(w) and so on.
j=n1+1 j=na+l
Note that X,’s are independent random variables. Thus {S;Lkﬂ(w) — 5, (w)} is a sequence

of independent random variables. By Borel-Cantelli Lemma for a.e. w, there is an infinite

sequence Ny < ny < --- such that,

e @) = Sp @) Ja=6/2) (., 1\ . [Q+6H-¢)
\/23;?kloglog1 >\/(1+7) <1 : 9) 2\/ 0 '

[P
Snk

Using, [S;,., () = Sp ()] < |}, ()] + |5}, ()], we get

Nk41 Nk+1
S w S’ _ )
Soa@l L@ wm(l_ﬁ_g)_2¢u+ﬁx1 )
B 1 y 1 (1+7) 0 0
2s,; loglog 5z 2s,; loglog 5z

Using (0.18) we get,

/

146 Sy, (@) (1=¢/2) (,  , 1\ _ [(1+0d)(1—¢?)
9 +\/28’2 loglogi>\/(1+7) (1 6 0) 2\/ ’ |

Nk

Thus we have,

ER®I (1-4/2) , 1 (14+06)(1—¢?)
\/ , 1 >\/(1+v) (1_€_5)_3\/ 0 '
25,2 loglog

2
Smc

Letting 6 " 00, € \(0, § (0, and v \, 1 we have,

/

Sl

: 1
\/ 25,2 loglog %

Since this is true for a subsequence {ng}32,, we have,

Sl
lim sup SACH - > 1.
e \/ 28,2 loglog —
Sn
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Thus we have for a.e. w,
St

lim sup
n—o0 \/QZJ - ]loglog Z"‘in 2

This proves the tail law of the iterated logarithm for independent random variables. Wl

Next, we state an iterated logarithm for weighted averages by Chow and Teicher (See

[5])

Theorem 38. If{X,, :

n > 1} are independent identically distributed random variables with
E(X,) =0 E(XQ) =1 and {a, : n > 1} are real constants satisfying

c
(i) 5 < — for some c€ (0,00)
Zj S
(it) 3oLy ap < o0,
then
*a; X
P | limsup Z]_n ) =1] =1
n—00 22 2loe ] 1
—n 45108108 s 3
j=n % >l
6 < _%7 Qp =

Corollary 39. In Theorem 38 admissible values for a, are a, = +n®

+nfi(logn)®, B < —%, or, (1= —% > [y ete.
Our condition is weaker than given by the above theorem. So we find sequences which

satisfy our condition but not their condition
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o
Here a? < &? Z a? is equivalent to find f(z) such that

OEECY Y
f()
[roa
% (log /:O f(t)dt> > —¢(x)
log /:O f)dt > — /a(x)d:v.
/:O f)dt > e Je@de,
Let f(y) = —=e"v¥. So,

Thus

So we need to choose {a,} such that

() o = \/em) exp ( / ”e<y>dy).

(ii) @, goes to zero slower than <.

(ii) floo e(y)dy = oc.

o0 oo
. ce
Under these {a,} satisfies a2 < ¢ E a? but not a2 < - E as.
j=n

j=n
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For this,

(o]
j=n

i3 [0 (- [ om)]
[t (- [ o)
Jraom

e “du (Using substitution —/ e(y)dy =u and — =¢e(x))
1

= exp (—/1 (y)dy) :

Vv

Thus,
Za? > exp (—/ 5(y)dy> : (0.23)
j=n !
But a? = cexp <—/ 8(y)dy) . Then using (0.23), we have a Z . On the other
1 —
hand,
St =Sctiesn (- [ ctiy)
j=n j=n 1
< / e(x) exp (—/ 6(y)dy)
n—1 1
= / e "“du
" e(y)dy
n—1
~exp (— / e<y>dy>
1
So we have

ia? < exp <— /ln_1 €(y)dy) : (0.24)
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Then using (0.24) we have,

@ = (n) exp (— | e(y)dy)
=¢e(n) exp (— /ln_l e(y)dy — /n: E(y)dy>

> ) S aexp (— / s(y)dy)
j=n !
> e(n) Z b for large .
Jj=n
Hence,
1 [e.9]
al > Es(n) Za?.
j=n
P | SN . .
This implies, aj < Ee(n) Z aj is not possible. We give some examples:
j=n
) 1
(i) e(n)=—; O0<a<l
na
(i) &(n) = 25"
ii) e(n) =
n

Both of the above examples satisfy the properties:

1
(i) e(n) — 0 slower than —
n

(ii) f;" ely)dy = oo

1 1 n 1 1 2
For e(n) = %, ay, = \/Ognexp <— 5 bﬁ) dy = \/Ognexp (_(ogn) ) where the
n n

n v 2

(logn)?
2

1
term exp <— ) goes to zero faster than %. Also h(y) = e(y) exp (— [, e(x)dz) is

decreasing. For,



4.3 Lower bound in the tail law of the iterated loga-
rithm for dyadic martingales.

In this section, we obtain a lower bound for the tail law of the iterated logarithm for dyadic

martingales.

Theorem 40. Let {f,}>°, be a dyadic martingale. Assume that

(i) thereexistsL<OO'S;?f(x)<LVx €ly;n=123---;j€{l,2 2" —1}
N S;Qf(y) ) 7y njm - Y ) ’.] 9 AR
s dz () [fu(2) = fua(2))? S
i) =5~ = == < ¢ for some € > 0 i.e. jumps are not large and
W S IE T SRR S P e :
. dz (l’) uniformly
(iii) sup - 0.
o<i<n By di(x))
Then,
— 1
oy LB L
n—oo
2572 loglog ———
f25erloglo s ¥
for a.e. x.

Proof: Let 0 < < 1 and @ be sufficiently large. Define n; < ny < --- by,

/ 1
nk(q;):min{n:xefnj for some je{1,2,...,2"} and Vy € I, S,ff(y)<6—k}.

1
Again for a given z € [0, 1], x € I,,; where I,; is a dyadic cube of side length oo Now,

1 1 / /
Yy € Lj, 5,2 f(y) < . But S;2 1f( ) > I for some z € I,,; where [,,; is a parent dyadic

cube of I,; with length I il = nj, we have y € I . S0 z,y € ],;j. Then

using assumption, we have
Sp1f(2) < LS f(y).
Thus,

752 1(2) < 82110, (0.25)
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We have, S;2 _, f(y) = d3, (y) + S, f(y) so that S f(y) = —d3, (y) + S, _1 f(y). Then using
d2 Cdn (y)
nk lf( )

< €, we have

S2fy) > =S fy)+ S 1 fly) = (1—2)S2 1 fy).

Without loss of generality, take e = 1/2. Then we have,

S fy) > (1L —=e)S_1f(y) = S;iflf(y)- (0.26)

Then from (0.25) and (0.26) we have,

1 / 1 1
o> S2I) > 52 f(y) > 5252 () > oo
Thus,
1 1 /2 1
—— —. 2
5T e < Sm W) < g (0.27)
We first prove for a.e. x,
> L di(x 1 L
limsup |Z]7n+1 J( )| §4 ( +5)
nyd \T) 108108 ~Zo——"—=
* S f (@)
for sufficiently large k > M. Let A > 0 and I,,; be dyadic interval of generation n. Using
Lemma 25, Chapter 2 we have,
L e T A > A <12 X (0.28)
x € I,;: sup - <1R2exp| —5—— 1. :
|Inj| ’ n>ng41 J=ntd 8||Snk+1|lng||2
Here,
1
2
1
|| nk+1f|1n ||oo = gk+1°
—)\2
: < —\ZgRFL
ENTR
Thus,
—\2 (_)\29k+1>
exp ; <exp| — . 0.29
(8 S ||zo> : (029
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Then using (0.29) in (0.28), we get

_)\20k+1
x € l,j: sup |Z] i1 @i(2)] > A §12|Inj|exp(—).
N>Ng41 8
Now summing over all such I,,;, we get
_)\29k+1
€ 0,1): sup |22 di(x)] > Ap| < 12exp (T) (0.30)
n>’nk+1

Then using (0.30) we have,

16L(1 4+ 0) 1
x € sup | d;( ————=852 f(x)loglog 57—
{ n>nk+1 j;l \/ 9 S2f( )
16L(1+46) 1
< {x sup | Z d;( \/6 (9+ )2L0k10glog9k}
n>nk+1 ,] TL+1
8(1+0
= {:UE [0,1] : sup | Z d;( \/ (9,:;1 )loglongH
n>nk+1 ] =n+1
8(1+9) k+1150] k
Sl?exp( T Lg 8og og 6 )

= 12 exp (log(klog§) (%))

1 1+46
:12( )

klog 6
~ (klog@)t+e

12

Consequently,

Slrer
k=
< Z klog& )1+9

< Q.

sup|Zd

n>nk+1 ] =n+1

il

So by Borel-Cantelli Lemma, for a.e. x,

16L(1+96) _,

7

7

Sup|Zd \/

7’L>'I’Lk+1 ] n+1

91

16L(1 + 0)

S2 f(x )loglog—



for sufficiently large k, say kK > M. Thus, for a.e. x,
> i di(x
1T ()

n>ngy1 19
25,2 f(z)loglog

(1+6)L

(0.31)

1
S f ()
for sufficiently large k > M.

Next, we prove a Lemma which is a version of the strong-form of the Borel-Cantelli

Lemma.

Lemma 41. Let F;, be a collection of dyadic cubes whose union is [0,1] and Fjyq is a
refinement of Fj. Suppose that the maximum length of the elements of F} tends to zero.

Suppose &, C F} has the property:

vQ € Fy, on |J 7 >|Q\%.

Jengrl

Set K = U J. Then for a.e. z, xz € E} i.0.
Je&
Proof: We show, |{z:z € E; i.0.}| =1. So,

l—{zx:z € By io}|=Hr:x€Ey io.}
= oz e Ny, Uiy £k}

= {2 € Uy, MZy B}

We note that,

DE,@CGE,?C...: G (ﬁ Eg) :]\}i_I}nooﬁEg.
k=1 k=N

k=2 N=1 \k=N

So it suffices to show that,

I—[{z:z€ By io}|=lim [{z:ue () Ei} =o.
k=N

92



We estimate:

l
{z:ze (| EfYl = |Ey NEfy NESN.. Ef|
k=N

= U Q| NE

Qe(E{NESNESN...Ef_ )

> [eXa¥2A]

Qe(E{NESNESN...Ef_,)

IN

We have |Q N E;| > \/%—1\@] Then,

By N Ef NESN.. Ef| < > QN Eg|
Qe(ESNESNESN...Ef_ )

=)
= - —— @
Qe(Emegszgm...Elcl) ( \/l——l
1
B (1 - m) S

QE(ESNESNESN...EE_,)

<) ()

|Ey NEYy,  NESN .. Ef |

(1) (1 o) (1

Again,

|[EN N EN ] = | U (@ N Ex.1)]

QEES,
< > 1QNEf|

QEES,

1

<y (1——)@1

QEES, VN

1

<(1——]).
<(1- %)
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Then,

mosanmn g < (1o ) (- ) (- L) - 11(1_%).

So,
l
1
|EfVﬁEfv+1ﬂE§ﬂ...Ef|§H(l——,). (0.32)
J=N \/}

Then using (0.32) and the fact that ) a; diverges if and only if H(l —a;) =0, we get
j=1

l

dim oo e ﬂ B} = lim lim [{z:a € () Ei}

k=N
l
= (ggzﬂ (1——)>
j=N
= 0.

Hence, we have,

H{x:xz € Ey io0}|=1 ie. z€E io.

We first state a Central Limit Theorem for martingales from [8].

Theorem 42. Let {S,;, Fni, —00 < i < 00} be a zero-mean, square-integrable martingale
array with differences Xp; = Spi — Sni_1, and let n* be an a.s. finite random variable.

Suppose that sup < oo holds and S, o =0 a.s. If
(i) sup Xy, 50
(i) Y X7

(iii) E (sup Xﬁl> is bounded in n and

(Z'U) fO?" all nai ‘Snz g Sn-&-l,ia

then Speo —Ly Z where the random variable Z has characteristic function E(exp — 27]2752).
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Ifn* > 0 a.s., then

Snoo d 2 = 2
. — N(0,1) where U;, = Z;)o X
Next consider the following martingale array:
i= cee—2 -1 0 1 2 3 4 5 6---
] So So So Sp Sh S S S1 Sh
n= o o m— —_ —_ PR JR— _ — — J—
S1 S1 S1 S1 S1 S1 S1 S1 S1
5 So So So Sh So So S S S
n= PR p— _ _ JE— J— _— R R —_ e e
52 52 52 52 52 52 52 52 52
s LS S S S S S S 5 S
N S3 S3 S3 S3 S3 S3 S3 S3 S3
4 So So So S S S3 Sy Sy Sy
n= PR — _ _ JR— J— _ — J— J—
S4 S4 S4 S4 S4 S4 S4 S4 S4

For the above martingale array the Theorem 42 becomes:

Theorem 43. Let {S,,Fn,n > 1} be a zero-mean, square integrable martingale. Let

S2
s2 =B, _, di(x)). Let n* be an a.s. finite random variable. Suppose sup E (—1) =

n,0<i<n 5,%

sup iE (SZQ) < oo. If

n,0<i<n 8%

: S Sia |di| P

(i) sup |— — = sup — 0
0<i<n | Sn Sn 0<i<n Sn

(ii) E

2
Si Sia

sup | — —

0<i<n \ Sn Sn

(S S
(111) ;(g— S

(ZU) sn C ‘Sﬂri’l? then

Sie= Y Xu= ) (Si S"‘l)=&—@=s"_s°i>z7

1=—00 1=—00

d? 1 2) . ‘
=E|( sup — | =5 E| sup d; | is bounded inn

s2 0<i<n

2
) = — dfiwfand




2t2
where Z is a function with distribution exp (—777) . Ifn? >0 a.s. then,

Sp — S0 d,
Zz 1d12

Here condition (i) is satisfied by our assumption. For (iii), we note that Sf(z) < oo and

S2f(x) < LS2f(y). This gives us S?f(x) < LS?f(y),Vx,y € Iy;. Thus

> dile) <L) diy)

Without loss of generality assume di(y) exits for some y, say, y = % So

Zd2 <LZd2< >

4 N(0,1).

Hence
Vn ZdQ <LZd2()

By orthogonality we have,

sp = E(f7) = E[(XC5-, de(2))?] = B[4, di ().

Then
= B[} ()] S E[L (2, di(3))] = LY di(3) < oo

S di() } _ {zzzl & (x)

B i1 di(7)) Sn
sequence. Hence by the Monotone Convergence Theorem it converges. So we have,

S d(x) . Sf(a)
E( i, @) s

Hence condition (i) is satisfied. Moreover condition (ii) is satisfied by our assumption (iii).

Therefore sequence { } is an increasing and bounded
n

> 0.

Next we consider @), a dyadic cube of side length 2n Then employing Theorem 43 on the

k"

cube () we have,

i dil) %5 N(0,1).
> di(x)
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Hence we have,

1 > 1 d4(x) 1~ e

— er:—>)\ N — e~z dt.
@ Y (@) var s
Choose \ = \/2 log log 0%. For the chosen A we choose n so large that n > n;,; such
that
1 > i—np1 4i(@) 11 [~ ¢
— |z eqR: Ik > A Z——/ e~ zdt.
Q) 221 Ji

Cr @]

2

A & —u?
e 2 </ e 2 du, we have
A

A
Using the i lit
sing the inequality o n

pe -
1 . 11 A I
— €Q: ) dix)> 1—— d?(x)loglog Ok 5| > - —— T
J= J=ng+1
. . A 1
Again using —— T )\2 2 oy e have,

1 - 11 1
— |tz eq: d;(x) > 2(1——) d? () log log 0% > ————e 7

J=ng+1

1 1 2(1 — 2)loglog 6*
4\/% \/2 log log 0% o <_ 2 )
1 1 1
8\/ 1-2) V1og(klog0) (klogh)'—2
1 1 1
8y /m(1— 2) (klog )5 (klog6)'~3
o 1
8y /n(1— 2) (klog )"~
A
— —(k;log 0)17% (say).

97



Now,

Yo )= Y d) - Y B

j=np+1 j=ng+1 j=n+1
= 5,2 f(z) = S f(x)
11 1
> ﬁe—k—w (nznlﬁ—l)

Thus,

Using (0.33), we have

|Q|
Again,
Yo dil@)|=| Y dilx) = Y dylw)
J=ni+1 J=nk+1 Jj=n+1
<| > 4 Y. di@|+| D dila)]+
J=ni+1 J=Nj41+1 J=ng1+1

We now prove,

0 1 1

j nk+1 J

IQ\ "e \/ ( 2) (2L 9)
2—10glog0k

Z dj I‘ — Z dJ(QT)

) 1 1\ 1
Jj=ngr+1

(0.33)

(klogf+ a)'=&

> dj(x)

j=n+1

j=np+1 J=ng+1+1

IN

SIS

rTEQ:

98

)
)1 >\/2<1_§><ﬁ_5)_2
9’“ log log 6%

16L(1 +0)

0




> dj(x)

Jj=nk+1

1
2— loglog 0%

ok
D, dil@)— Y di@|+] D di@)|+] )] di@)
Jj=ng+1 J=ng+1+1 J=ngr1+1 j=n+1
N 1
\/Qﬁloglogé?k
Y d@- Y @ | Y 4@ | a4
Jj=np+1 J=ng+1+1 Jj=ng41+1 j=n+1

+
- 1 1
\/ 2% log log 6% \/Qﬁloglogﬁk \/2ﬁloglog9’f
Y odilr) = Y diw)

N j=ng+1 J=nk1+1 19 16L(1 + 5).

N 1 N 0
2% log log 0

S dw- Y diw)

%) 1 1 16L(1 —+ 5) j=ni+1 J=ngy1+1
\/2(1‘5)(5‘5)‘2 o - ]

2@ log log 6%

Hence,
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Then we have,

Yo dila) = Y di(a)

1 j=nk+1 J=nks1tl ) 1 1 16L(1+96)
— : 2(1—=)(—=—-=)—24y/——~
ol " SHEHICEE

29—k log log 6%

| > di(x)

1 jmnpptHl S\ (1 1 16L(1 + 6)
- : 2(1-2 gy 2T
Q) YT >\/ < 2> <2L 9) 0

o log log 6%

A
>
(klogh + )t 4
LA
T
Hence

Yo odile) - Y di(x)
_ Jj=ng+1 J=ng4+1+1 1) 1 1 16L(1 + (5)
Qk log log 6%

(0.34)

1
We note that Z;"“Zl +1d;(x) is constant on each cube J of side length ST So there exists

v

s
=SS

a sub collection &, of cubes J such that Vx € J, J € &Eqq,

S dw- Y 4w

jom 1 1 j=npri+1 >\/2 (1_2) (%‘%) _2 16L(;+5).
\/2 ekloglogﬁk

Moreover, [Q () U J >%.
J€€k+1
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Hence by the Lemma 48, there is an infinite sequence n; < ny < --- such that,

. dila) = Y dy(@)
jmntl J=nari+1 y \/(1 j g) (i j 1) 16 +6)
\/ 2% log log 6% 2/\2L ¢ 0

Then we have,

S dw- Y dlw)

j=ng+1 J=ng4+1+1 ) 1 1 16L(1 + 5)
DG
252 f(x)loglog <,—)
k 2LS;2 f(x)

We note that,

1
loglog —————
2LSn2kf(:L')

log (1 L log

0} 0g — 57~ (6]

| e L
lim = lim

S f@=0 1o 1og Si2 f(2)—=0

1
: log log ————
S22 f(z) 508 S f(w)

Thus if ny, is sufficiently large,

S dw- Y b

j=np+1 Jj=ng41+1 1_ é i B 1 _3 16L(1 + 5)
2/ \2L 0 0 '
25,2 f(x)loglog ( )

We have from (0.31) for a.e. =

2521 d4()] (1+9)L

sup <4
n>ng ,
+1 \/anif(x) log log 57 [ (2)
ng

for sufficiently large k > M.

So there exists K such that for an infinite number of n, > K, we get,

| Y di(a)]
- j=nt1 S 1 N[/ 1 1Y 3 16L(1+0)
P TN 2)\2L " 0 0

nEm \/ 25, f(2) loglog (5’2 f (1‘))




So we have,

| D> di(@)]

e s (G [Cot I

Let 8 7 oo and 6 \, 0, then we have

> dy(x)

j=nj+1 5 1
\/25'2f( ) logl ( ! ) Ve
nd \L) 108108 | =5——=
’ S f(x)
This is true for subsequence {n;} so we have,
— 1
lim sup |f(x) = ()] >
V2L

T \/ 252 f () log log (#@))

for a.e. x.
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Chapter 5

The tail law of the iterated logarithm
for lacunary series.

In this chapter, we derive a lower bound in the law of the iterated logarithm for lacunary

trigonometric series introduced by Salem and Zygmund.

5.1 Lower bound in the tail law of the iterated loga-
rithm for lacunary series.

Salem and Zygmund obtained the following law of the iterated logarithm for tail sums of

lacunary series.

Theorem 44 (R. Salem and A. Zygmund, 1950). Suppose a lacunary series with tail sums
Sn(0) = S5\ (axcosngl + by sinngd) where ¢ = a} + b7 satisfies S oo, i < 00. De-
~ 1 ~ ~ ~
fine By = (A3 7y c3)? and My = rlga]%(]cﬂ. Suppose that B; < oo and that My <

B2
Ky —Nl for some sequence of numbers Ky | 0 as N — oo. Then
IOg log E

<1

Sn (8
lim sup = n(0)
N—oo \/QBJZV loglog%
for almost every 6 in the unit circle.

We prove a lower bound in the above tail law of the iterated logarithm. In the proof, we

will need following Theorem from [7].
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Theorem 45. Suppose that n, satisfies > q > 1 and AN satisfies the following

NE+1
conditions:

Z)\?\,kzl, AN:m]?X]ANklzo(l) as N — 0.

Set Fy(y) = P (D re, Ankwn, <Yy) where w,, = V2cos(2mngx). Then the distributions

Fn(y) converge towards the normal law; moreover,

sup  |Fw(y) — @(y)| < C(g)AYY,

—oo<y<oco

where O(y) W fy 22dt and the constant C(q) depends only on q.

Our main result is:

Theorem 46. Let S,,(z) = Zak cos(2mnyx) be a partial sum of a lacunary series where
k=1
N1 - INe a2
2 >¢>1 and Zak < 00. Assume that maxak =0 2 k:le . Then for
ny, = >N loglog ——=——
ae 1 2 k=N

\ Z a cos(2mnx)|

k=n

lim sup
n—>o0 1

2 Zak loglog\/T
2 k=n

Proof: Let us write f(z) = >/~ aj cos(2mnyxz). We first prove: There exists constants A

and C so that for every n > 0,

{z € [0,1) 1 1f(2)] > n} < Aexp (Z‘o.&) |

This is proved by using the following Theorem from [12].

Theorem 47. Consider the series g(x) = Y pe, (ay cos npz+by sinnga) witha® =Y - | (a2 +
b2) where nZ—:l >qg>1. Ifa <1, then fOZW exp(Cg?)dx < A, provided C < Cy(q), with A an
absolute constant.

Then for any A > 0 this gives,

21
|z - |g(a)] > A}| < / exp(Cg?)dx < / exp(Co?)di < A
0

{a:lg(@)[>A}
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Thus,

{z: g(x)] > A} < Ae O (0.1)
We have f(x) = 32, ax cos(2mmi). Define g(z) = —=mmz f(z) and A = 0.

Then o = 1. Then using (0.1) we have,

{wE[O,l): /() _ >

2
gAexp( Cn )

n
m}

V2 ke @ D hei @
Thus,
_0772

Now let M be a fixed large number. Define Ny < Ny < --- by

1 o 1
N; = smallest (N:§ Z ai<M>.

k=N+1

Let € > 0, assume ¢ << 1. Choose § > 0 so that (1 +§)(1 —&?) > 1. Finally choose u so

that
log(8 1pl 1
plog(8ym) Lplogp .
1+4+¢ 21+4¢ 1+4+¢
Next, we claim that for [ sufficiently large,
11 & 1
(1 — 82)M < 5 Z ai < M (03)

k=N, +1

We have,

oo oo
2 2 2
E ap = ay, + E ay.

k=N, k=N;+1

For large I, ay, <&*37;2 y aj, so that

%Zaz<%522ai+% Z ai.

Jj=N Jj=N; k=N;+1
By definition of N; we have,
1 =, 1K, 1
5(1 — & ) Z al < 5 Z CLk < M (04)
k=N, k=N;+1



Again, by the definition of N; we have

2 2 2
(1—¢ )M<(1—5)§Zak
k=N,
So from (0.4) and (0.5) we get,
I 1 o 1
(1_82)_1 < E Z ai<—l
k=N,+1
This gives us

(1— )M < > kN1 T M

From (0.2) we have,

o0

2
z €[0,1): Z ag cos(2mngx) >n | < Aexp (i> .

0 2
k:Nl+l+1 Zk‘:Nl+1+1 ak

Choose

140 w— 1
C’—i]_\J Z a2 loglog

/1 oo 2
k=N;+1 5 Zk:Nl+1 ay,

M 1
@/<1_€2>> — 2>\/Ml.
\/5 Zk:NlHJrl ag,

1
1 0o 2
\/5 Zkz:NHl—H ag

From (0.3) we have,

Then we have,

l

M
— IOg log W < — log lOg

< —loglog (\/Ml :

N———
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Then using (0.6) and (0.7) we have,

re[0,1): Z a cos(2mngx) > + Z a2 loglog

1
/1 oo 2
k:Nl+1+1 k= Nl+1 5 Zk:Nl+1 ak

_C(1+5) 1

2 2k=N;+1 Yk
< Aexp

Py ;
k=Ni41+1 Dk

—(1+40)(1 — e?)M loglog !

/1 oo 2
5 Zk:Nl-',-l ay,
< Aexp

M

< Aexp <—(1 +6)(1 — %) loglog Mé)

—(1+6)(1—€2?)
=A ( log Ml>

1 1

(L1og ) HHII=E 1002

=A

So we have,

€[0,1): Z ay cos (2mnyx) > 2log log
k=N41+1 k=N;+1 \/ 2 Zk Ni+1 aj,
1 1

1+6)(1—e2) J(1+68)(1—e2) °
(%logM)( )( ) [(1+6)( )

Consequently,

Z z€l0,1): Z ay cos (2mnyx) > (1+9) Z a2 loglog

CM 1\ 2
=1 k=N;4y1+1 k=N;+1 2 Zk:NlJrl Ay

—. 1 1
<S4
Z (% log M) (1+8)(1—e?) [(1+6)(1—€2)

1
1+6)(1—2 Z 1+6)(1—e2
(% log M)( ) ) — 1(146)( )
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So by Borel-Cantelli Lemma for a.e. x, we have,

Z ay cos (2mnx)
k=Npy1+1 1496
o 1 - CM
2
Z a, log log -
k=N;+1 \/ 2 Ek:NlH ai
for sufficiently large [ (Here [ depends on x).
Again,
Nl+1 o0 [e.9]
1 , 1 , 1 ) o 1 1 1
3 2 %i=g 2 wog 2G> (0= gmr = gp
k=N, +1 k=N, +1 k=Ni11+1
By assumption for all sufficiently large NV,
1yoo
rg1>a]\)[<ai < % 1 12 D oheN ?k
> oglog ————
6708 vV %ZEO:N aj,
Then, if [ is large enough,
1 \oo 2
Sy a
e
>N+ oglog ————
l 5708 v 3 Z?’:Nﬁl aj
PN
2loglog vV M!
_ g/2 (1= =) log
(1—e2— 1) log log ! + loglog v M
Nita
e/2 11 ,
< - a..
(1—e%—4;)logl2 k:ZNZ:H b

: 2 _ 1 1
We may assume that ¢ is small enough and M large enough so that 1 —e* — 57 > 5. Then

2 e 1 }: 2
k>N +1 log (2
k=N;+1
Thus ,
€
max .
k>N;+1 log

(0.9)



Recall, we choose 1 > 0 so that

plog(8y/m) lplogp 1

< 1.
1+e¢ 2 1+¢ 1+e¢
Suppose [ is large so that plogl >> 1. Next, we define a sequence of numbers Iy, [5 - - -
logl
where [| is the greatest integer contained in a j_g as follows,
€
let [; be the first time such that,
Ni+1q Ny
1 9 1 1 9
- >_ - -
2 Z U = wlogl 2 Zak
k=N;+1 Ni+1
so that
1 Ni+l1—1 1 1 Nip1
2 2
= < - :
2 Z Uk wlogl?2 Z Uk
k=N, +1 k=N;+1
Likewise, let [y be the first time such that,
Ni+l2 Nit1
1 9 1 1 9
5 2 Wz o5 ).
k=N;+l1+1 ,ulogl Ni+1
so that
1 Nj+l2—1 1 1 Nit1
2 2
- < - .
2 Z Uk wlogl?2 Z Uk
k=N;+11+1 k=N;+1
Similarly we define [3---Ij. Using (0.9) we have,
N+l Ni+li—1
> ai= ), aitai,
k=N;+1 k=N;+1
Nl+l1—1 1 Nl+1
2 2
< Z g + I lOgl Z Q.
k=N, +1 k=N;+1
1 Nij1 1 Nija
2 2
> el Y
plogl k=N;+1 plogl k=Ni+1
1 Nyt
=(1+¢) Z a;.
plogl k=N, +1
So we have,
1 1 Nit1 1 N+l 1 Nita
< 2 o 1 2 (1 1 2
/LlOngNZH k_2k: +1ak ( +€)“10g12k§+1 ’
l l l



As above we can show that Vj = 1,2,--- ,[] with [y =0,

1 1 Nt 11 W
2 2
— — < (1 — ) 0.10
,ulogl2 Z 2 Z ai < +E),ulogl2 Z Ok ( )
kZNl+lj,1+l k=N;+1
Using (0.10), we have,
1 Nt N+l Nity
DICES 1D SRTEEES 0 SN
N;+1 Nl+l1+1 Nl+l[],1+1
1 1 NH—l Nl+l 1 1 Nl+l

<(l+e)— Z§Zai+(1+s) - liZai+~--+(1+5) - lﬁzai

plogl s o= plogl s o= plogl s o=

Nyt
1 plogl| 1 9

— (e [ S a

plogl | 1+¢ 2Nz 1

1 Nyt
<52 a
Ni+1
Thus,
Ni+ 1 Niy1
32 %<3
Ni+1 Ni+1

This shows that N; 4 [ does not exceed N;41. Consider a dyadic cube @ such that |Q] = —

where L is the number such that 2 < ny, < 287 Then using the Theorem 45 we have,

3\

1 2 %
———V2cos (2mnpz) > A | > — e 2 dt —c(q) (i> .

>

L/Ooefalt
Vor 2 '

DN | —
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We use the inequality

1+ A2 A
to obtain,
Ni+l a 2 1 \/z 1
k poo_1
reQ: —F \cos(2mmx) > (/= B | > e n
¢ k% Nith o Cre) >\ L (| 2 v+ 2
=Ni+1 k=N;+1 %k r
1 Ve 1
— Y e
2V/27 2v/2
1 _1
BN
Thus we have,
Ni+ly 1 .
e€Q: 2 > > T
r€Q Z ay cos (2mnyx) > Sﬁ\/ﬁe z
k=N;+1
Let,
Ni+ly 5
GQ)=qzreQ: Z ag cos (2mngx) > \/j
k=N;+1 ,U
N+l
Let h(z) = Z ay cos (2mngx) . Then by the Cauchy-Schwarz inequality,
k=N;+1
N+l
()< > a 21
k=N;+1
Nl+l1 Nl+l1
<27 Z az Z na.
k=N;+1 k=N;+1
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Let Ly be the number such that 211 < NN+, < 20141 Then,

N+l
Z ni S n?\fl-‘rh + n?vl-l—ll—l + n?\fl+l1—2 + e

k=N;+1

< (e Lty Ly
2 1 1

= (201 (1+?+¥+~~)
_ (oLi1+1)2 q
- (2 ' ) q2 -1

So,

say.

This gives,
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1 /
So there exists a subcollection {Q'} of Q with |Q'| = — such that Vx € Q' we have,

Z ay cos (2mngx) > (M> \ Z a;

k:Nl+1 \/'E k= Nl"rl

— Nit1
= (ﬁ_ 2MB> 11 z% 2.
\/ﬁ \’u Og k=N;+1

and U Q \/_\/_e u| |.

Again on each Q" we use the Theorem 45 and obtain:

Ni+l2 5 1 Ni+l2 1 )
IGQ) = zeq : Z ay cos (2mngx) > \/; = Z ai o > ﬁ\//_w_;'

2
k=N,4+i1+1 k=Nl +1

1
Then as above there exists a subcollection {Q"} with |Q"| = — ~ where Ly is the number

such that 272 < ny, 4y, < 22+ and Vo € Q"

Ni+lo Ni+l2
—\2uB 1
Z ay cos (2mngx) > (%) 3 Z a2
k=N;+l1+1 K \ k=N;+l1+1
y \/— —\/2uB 1 1 NXH:I 02
> k
Vi \ pnlogl2 Mt

1 _1
and | | Q"> c=vie Q.
1" \/7_T
Q'NG(Q")
We continue this process. Then there exists a subcollection of cubes {I} with |I| =
log
+e€

1
250
and Lj is the number satisfying 271 <

where [| is the greatest integer contained in

NN+ < 2L+t and vz € 1,
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Ni+ly

B NiAly
Z ay cos (2mngx) > <M> \ L Z a?

k=Ni+jj_+1 Vi k=Np+Hp_1+1

— ak.
Vi pnlogl2 Mt

2([-@3) 11%’*:12

1 - -
Moreover, U 1| > W\/ﬁeﬁ”@ where () is the previous generation cube. Now on
N T

ING(Q)
each I, we use the Theorem 45 and obtain,

Nyt Ny

1 1 0 _p2
rel: Z ay cos(2mngx) > B 3 Z ai p| > E/B T dt — c(q) (1;?@)
k:Nl+l[]+1 k=Nl+l[]+l
> 1 B? 71322 ( ) £
T V2r 14 B? 1 log
Let
Nij1 1 Nyt
GI)=Rzel: Z ar, cos(2mngx) > B 3 Z a2
k:Nl-i-l[]-'rl k:Nl+l[]+l

Recall that B is a constant given by B = 4v/2r—%—. So for sufficiently large [ we have,

\Va?-1

N1 Nig1

1
rel: Z ay cos(2mnyz) > B 3 Z a2

k:Nl+l[]+1 k:Nl-i-l[]—‘rl

> L 5 %
—— €
~ Vorl+ B?

Next, we consider dyadic subcubes of I, say, J with side length |.J| = = where L is the

| —

number such that, ol < nn,, < oL+1,

Let h(x) = i\[j\}l g Ok cos(2mnyx). Then by the Cauchy-Schwarz inequality,

Nyt
!
|h (2)] < E ap 2w ny
k:Nl+l[]+l
Ny Nt
<27 E a? g n?
— k k-
k:Nl+l[]+1 k:Nl+l[]+l
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Then,

So,
This gives,
q 1 Ny
Lt 2
poa = B2 5 Z ay
k:Nl+l[]+1

1
Let x € G(I). Consider y such that |z — y| < VA Then

()] > [h(x)] — |h(y) — hx)
> h(@)] — sup I ()] =

Nyt

2

k:Nl+l[]+l

1 ~
> |ho)| = o7 B 2

= [h(x)| - B

k::Nl-H[]-‘rl

1
This shows that there exists a collection of subcubes {J} of I with |J| = P2 with the property

Ny
1 B 2
that Vo € J, E ay cos(2mnix) > 0. Moreover, |I[) U J| > —— e T
k=N, 2\/_’/T ]- +B2
=Ny+ij+1 JNG(I)

115



Adding the estimates from all of the above generations, we have

N+ Ni+ly Nit1
Z ai cos (2mngx) + - - - + Z ak cos (2mngz) + Z ay, cos (2mngx)
k=N;+1 k= Nl-H[ kZNl-H[]-‘rl
Nl+1 Nl+1
—\2uB 1 1 —\2uB 1 1
(V2= v2B LSS g (V2 S a0
VI ,ulogZQkZNZ+1 Vi ,ulongk N
{,ulogl} (ﬁ—\/ZuB) 1 1 NZZH )
- - ak.
1+e¢ 4T wlogl2 M)
Also we have,
NlJrl Nl+1
pulogl V2 —/2uB 1 1
rTEQ: ay cos (2mnyx) > { } - az
2 Cel\ T i, 2,

wlogl
1+¢ 1 B e

210l (/v ﬂ Wil B

1
Moreover, there exists a subcollection {J} of @ with |J| = Y2 and

wlogl
1+¢ 1 B e

RnUYI> 10l (5 /v ﬂ NS
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Again,

TEQ: Z ay cos (2mngx) > - a;
k=N;+1 1 e \//7 'LL logl 2 k=N;+1

N1 wlogl (\/5—\/2/13) 1 1 % :

ulogl
1 1 1 B 7372

1\ 1+e¢
> Q| (ﬁ\/ﬁe “) '2\/§7T1+BQG

plogl log [ plogl
ptlog L B e

_0 (#) Lte (mite (e—%) 1+e ST
1 1 1 1 B _p
=le jlog 8/ plog i1 1 '2\/§7r1+326 ’
l< 14+e >l<2(1—|—5)>l(1+5>
Q| 1 B g
plog8y/m plogp 1 '2\/§7r1—|—B26 :
l( T+e 2(1+5)+1+5)

k2l

Consequently, |Q N J| > C@. Moreover,

Nita

Z az :UJ.

=N;+1 J

L [mogz] (f_m3> 11

reQ: ay cos (2mngx) > =
k:ZNl:+1 1+e¢ VI ,ulogl2k

We may assume that [ is large enough so that

ulogl / ulogl S 1
1+e 1+e 1+¢

Then we have,

Ny \/— Niq
—\2uB 1
reEQ: Z ay cos (2mnyx) > (_u) log 5 Z a?

2
k=N;+1 (1 - 8) k=N;+1

ulogl V2 —/2uB 1 ENZZH 5
ulogl2 Uk

1+e¢ VI Mt

Ny

>R reQ: Z ay cos (2mngx) >
k=N,+1

> cldl
-1
Next, we use the following Lemma:
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Lemma 48. Let Fy be a collection of dyadic cubes whose union is [0,1] and Fyy1 is a

refinement of Fy. Suppose that the mazximum length of the elements of Fy tends to zero.

Suppose &, C Fy, has the property:

wer, |on J J|>10
k

J€€k+1

Set E), = U J. Then for a.e. x, x € E}, i.0.
Je&
Using above Lemma, for a.e. x there exists an infinite sequence of numbers Ny < Ny < - - -

such that, for [ sufficiently large

Niy1 (\/5 \/2— ) Ny
—\/2uB 1
VEZVUBY L LSS e
2

Z ay cos (2mnyx) > 5 a
k=N;+1 (1 + E) k=N;+1
So we have,
Nyt
Z ay cos (2mng)
k=N;+1 - (\/5 — \/2uB>
N, 1 2 '
\/logl 3 Dk O (1+e)
Again,
1 Nit1 1 00 1 00
IS W R N
k=N, +1 k=Ni+1 k=Nip1+1
I — 1
I by
k!:Nl-‘rl
I < 1 J
25 Z ak_M(1_52)§ Zak
k=N;+1 k=N, +1
1 — 1
== L
) 2 ()
kZNl+1
This gives,

f a cos (2mngx)
e ) > (—\/5_ mB> . (0.11)

oo 1
\/logl 3 N1 O (1 M=)
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Then,

gives
1
log M: — log V1 —¢e2 > log (0.12)
[y g2
2 k:Nl+1 k
But,
log (l logvV M —logv1 — 52>
lim =1.
=00 log
So for sufficiently large [,
log (l logvVM —log /1 — 52)
<l+e.
log(
This gives,
1
log log
log (llog\/M—log\/l—:E?) NED ISR
logl > > : (0.13)
1+e¢ 1+e¢

Then using (0.11) and (0.13) we have,

Ny
Z ay cos (2mnyx)
1 1 oo 1 - (1 +€)2 .
log log 1Y a (1——2 >
% Z?:NZ-H az (1+¢) k=N;+1 M(1—e?)
Then,
N1
Z ay cos (2mnyx)
PNt > 1 \/_ - mB 1_ 1
> 1 - V(1 +e)? L+e M(1—e2)
% Z a; loglog

/150 >
k=N;+1 5 Zk:NlJrl Ay,

119



Consequently,

oo

Z a, cos (2mngx) — Z ay, cos (2mnyx)
k=N,+1 k=Ni41+1 \/_—\/ B\/1 1

- ) (14 ¢)5/2 M(1—¢e?)
% Z az log log
k=N;+1 % Zk:Nl—l—l ai

But from (0.8) for a.e. x we have,

o0

Z ay cos (mngx)

k=Ni41+1 < 2(1+9)
1 - CM

% E ailoglog
S O
k=Ni+1 2 Zuk=N;+1 %

for sufficiently large ! (depending on z).

Hence we have,

ay, cos (2mnix
k:ZNl:H weos(2mmes) \/_—\/_B\/l_ 1 2(1+49)

- (1+ ) -
1
% Z a; loglog
k=N;+1 \/ % Zk:Nl+1 a;

M(1—¢?) CM
Since this is true for the subsequence {N;}, we have for a. e. z,

| ; ay, cos(2mnx)| \/_ _ /B \/1 . T 5)‘

M(1—¢2?) CM

1.
s — =5

Z a; loglog ———=
\/ 5 Zk n@
By the choice of p we have as € N\ 0, then p \, 0. Finally letting M " 0o, € \,0, § \(0,

we get,

| Z ay cos(2mngx)|

lim sup h=n > 1.
n—~oo

Z a; loglog ——
' \/ 2 Zk = @
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Conclusion

In 1950, Salem and Zygmund introduced a law of the iterated logarithm for tail sums of
lacunary trigonometric series. We call the law of the iterated logarithm for tail sums as
tail law of the iterated logarithm. They only obtained the upper bound in their law of
the iterated logarithm. In this thesis, we mainly focused to obtain an analogue of Salem
and Zygmund’s tail law of the iterated logarithm in the various contexts in analysis. The
various contexts are sums of Rademacher functions, dyadic martingale and independent
random variables. We first established the tail law of the iterated logarithm for sums of
Rademacher functions. Sum of Rademacher functions is a nicely behaved martingale. Then
employing the ideas from the Rademacher case, we introduced the tail law of the iterated
logarithm for dyadic martingale. We obtained both upper and lower bounds in the tail
LIL of Rademacher functions and dyadic martingale. Next, we established the tail LIL for
independent, symmetric, random variables where we obtained the lower bound. Finally,
we obtained a lower bound in the Salem and Zygmund’s law of the iterated logarithm for

lacunary trigonometric series.
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