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Abstract

Background: Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle
surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle
behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms.

Method: This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle
corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical
results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations.

Results: The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins
rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous
association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona
complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We
find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very
well-structured to clearly identify important parameters determining corona composition.

Conclusion: The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living
organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling
results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single
cell culture medium related to a complex protein medium, such as blood or tissue fluid.
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Introduction

Corona complex composition greatly influences the ability of

nanoparticles to deliver drugs to specific receptors, as well as to

modulate their toxicity. Numerous interactions occur when

nanoparticles are introduced to a biological fluid. Proteins

compete with other biomolecules to surround nanoparticles,

forming protein coronae, thus defining the biological fingerprint

of the particles [2–4]. Corona formation is complex, contingent

upon protein molecule type, size, and conformational flexibility,

nanoparticle type, size, shape, electric charge, and hydrophobicity,

as well as medium-related factors (e.g., pH and ionic strength)

[2,5,6]. Recent comprehensive surveys present information about

the nanoparticle corona formation process ([3,6]). Quantitation

and prediction of corona formation is vital for standardized safe

medical use of nanoparticles.

Quantification of protein and nanoparticle interaction is

attracting substantial attention at the cutting edge of research

(see e.g., [4,7,8]). The dynamics of the corona complex formation

process are very challenging to study due to inherent complexity,

rendering extremely discrete experimental results. Moreover,

quantitative approaches cannot capture all involved complexities

for the real word situation is often too complex and variable to

address. Models have the unique ability to provide insight into

specific aspects of the process that, in an experimental context, are

too difficult to isolate and extract. Vilaseca et al. [9] recently

simulated molecular dynamics (MD) to study the surface-

adsorption of proteins. They reduced the complexity of a full

modeling by approximating protein molecules as single, rigid

entities. Kinetic modeling of corona complex formation process

dramatically decreases computational cost, though adopting

several simplifying assumptions. Significant contributions include

Dobay et al. [10] use of stochastic process algebra to study the

evolution and subcellular distribution of nanoparticles in living

cells. Mathematical modeling helps us learn principles and develop

quantitative approaches that cannot be experimentally extracted.
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Most importantly, simpler mathematical models provide quanti-

tative endpoints against which experiments can be designed and

evaluated.

Dell’Orco et al. [1] proposed the first simple dynamical model of

corona formation where a set of ordinary differential equations

represent the time variations in corona composition. Recently,

they extended their model to assess the delivery success rate of

nanoparticles forming protein corona complex [11]. They

consider three proteins: human serum albumin (HSA), high

density lipoprotein (HDL), and fibrinogen (Fib), with experimen-

tally determined association and dissociation rates. A very

interesting observation is the existence of two equilibrium points:

a first metastable equilibrium quickly reached after nanoparticles are

injected in the fluid, and a final stable equilibrium point reached after

a much longer time interval [1]. However, this numerical

observation is not explained analytically.

In this paper, the model developed in [1] is extended to provide

analytical results describing the two equilibrium points in terms of

both corona composition and process time constant. Additionally,

we develop a reduced complexity model separating fast and slow

dynamics of biocorona formation process. We deduce the

metastable composition point is largely determined by association

rates weighted by corresponding initial protein concentrations and

the stable equilibrium point is determined by equilibrium

constants weighted by corresponding initial protein concentra-

tions. Moreover, we find metastable equilibrium exhibits a time

constant of the order of association rates inverses weighted by

initial protein concentrations, while the stable equilibrium has a

time constant of the order of dissociation rate inverses. Overall,

our results extend and simplify the use of the Dell’Orco et al.

model in [1]. In brief, the main contributions of this paper are:

N Descriptive biochemical equations (1–3) representing the

fundamental mechanisms influencing corona formation dy-

namics.

N Explicit analytical formulae for metastable composition (see

(15)) and stable composition (see (17)), simplified to identify key

factors of corona complex formation.

N Reduced complexity model for corona formation dynamics

(see (18)) dramatically decreasing numerical simulation run

time, effectively improving stability of numerical simulation.

N Sensitivity analysis of metastable and stable corona composi-

tions respective to association and dissociation rates uncer-

tainties (see (20–21)).

Results

As nanoparticles come in contact with physiological fluid, they

are engulfed by different types of biomolecules. A single layer of

biomolecules tightly binds nanoparticle surfaces, forming the ‘hard

corona.’ Additional dynamic layers of biomolecules loosely attach

to the hard corona, forming the ‘soft corona’ [5,12,13]. While the

hard corona exhibits stable composition, the biomolecules

composing the hard corona alter when nanoparticles move from

one environment to another [14,15]. Even when nanoparticles

remain in the same environment, hard corona formation involves

a transient state where biomolecule exchange can last for hours

[12,16].

Below, we develop a dynamical model for hard corona complex

formation from corresponding population balance equations. We

then find analytical formulae for metastable and stable corona

compositions. Finally, we present a reduced complexity model and

sensitivity analysis, followed by numerical simulations. Table 1 lists

the symbols used in this manuscript. We denote initial concentra-

tions of nanoparticles and type i proteins as ½NP�0 and ½Pi�0,

respectively. The concentration of bound type i proteins in

metastable and stable compositions are ½Pi:NP�# and ½Pi:NP��,
respectively.

Dynamical Model of Nanoparticle-Protein Corona
Complex Formation

Here, we present a more comprehensive model for the evolution

of protein concentrations than that of [1], given that ours is based

on more descriptive biochemical equations. For comparison of

Dell’Ocro et al. model with ours, please refer to the Discussion

Section. Similar to Dell’Ocro et al. model [1], we only consider the

two main processes that lead to corona formation, association and

dissociation of proteins with nanoparticles.

Several other processes are important for corona formation

process. For example, proteins can have a conformational change

upon binding to a nanoparticle. In some cases, this conformational

change is permanent [6]. Several researchers report irreversible

bindings of blood proteins to nanoparticles [5,15]. Similar to [1],

we model only reversible bindings. The major extension to

Dell’Ocro et al. model [1] is consideration of successive bindings to

nanoparticles through more comprehensive biochemical equa-

tions. Importantly, we derive our dynamical model of corona

complex formation process directly from corresponding popula-

tion balance equations.

Table 1. List of symbols used in this manuscript.

Symbol Description

NP a nanoparticle

Pi a free type i protein

Pi :NP a type i protein bound to a nanoparticle

fqNPg a corona complex with fraction q of its surface available for proteins binding

kon
i association rate of type i proteins to nanoparticles

k
off
i

dissociation rate of type i proteins from nanoparticles

KA
i KA

i ~kon
i =k

off
i equilibrium constant of type i proteins,

ni average number of type i proteins fully covering a single nanoparticle

si average surface fraction of nanoparticles occupied by type i proteins

doi:10.1371/journal.pone.0064690.t001
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For our modeling purpose, a protein or any other biomolecule is

determined by three parameters: association rate kon
i , dissociation

rate k
off
i , and the average number ni of type i proteins fully

covering a single nanoparticle. Figure 1 depicts a schematic of the

corona formation process.

Assuming a corona complex has b1 number of HSA proteins, b2

number of HDL proteins, and b3 number of Fib proteins bound to

a nanoparticle, it can be denoted as fNP:b1HSA:b2HDL:b3Fibg.
We describe the corona formation process in the following

biochemical equations:

fNP:b1HSA:b2HDL:b3FibgzHSA'

fNP:(b1z1)HSA:b2HDL:b3Fibg
ð1Þ

fNP:b1HSA:b2HDL:b3FibgzHDL'

fNP:b1HSA:(b2z1)HDL:b3Fibg
ð2Þ

fNP:b1HSA:b2HDL:b3FibgzFib'

fNP:b1HSA:b2HDL:(b3z1)Fibg
ð3Þ

Challenges arise when solving corresponding population

balance equations. First, the state space size is made enormous

by too many possibilities for corona complex composition,

depending on values of b1, b2, and b3. Second, it is perhaps

impossible to find rate constants for the above transitions.

Recent studies (e.g. [17]) find proteins compete to bind to and

spread across the curved surface of the nanoparticle, showing

independent binding sites. Since there is evidence that protein-

protein interactions are significantly weakened compared to

nanoparticle-protein interactions due to the deflection angles on

the convex surface of a nanoparticle [18], we ignore protein-

protein interactions in modeling hard corona formation of

spherical nanoparticles. For the binding process of a protein (e.g.

HSA) to a corona complex, these assumptions imply the free

surface of the nanoparticle is paramount to the types and

population of the proteins already associated with the corona

complex. Accordingly, we can reformulate the equations by

defining fqNPg as a corona complex with fraction q of its

nanoparticle surface available for protein binding. We can then

express the reversible biochemical equations describing the

dynamics of the corona complex formation as

fqNPgzHSA'HSA:NPzf(q{uHSA)NPg ð4Þ

fqNPgzHDL'HDL:NPzf(q{uHDL)NPg ð5Þ

fqNPgzFib'Fib:NPzf(q{uFib)NPg ð6Þ

To illustrate the above equations, HSA:NP is an HSA protein

molecule bound to a nanoparticle. uHSA, uHDL, and uFib comprise

the occupied surface fraction of the nanoparticle, given that a

single protein binds to the nanoparticle. Since this fraction can

vary depending on the geometrical configuration of the protein

molecules, uHSA, uHDL, and uFib represent random variables

assumed independent from each other. For example, biochemical

equation (4) indicates that when a free protein HSA binds to a

corona complex with fraction q of the nanoparticle surface

available for binding, the resulting corona complex has fraction

(q{uHSA) available for binding. The expected value for uHSA,

uHDL, and uFib are 1
nHSA

, 1
nHDL

, 1
nFib

, respectively, according to the

definition of ni. The average number of type i proteins that can

fully cover a nanoparticle (ni) can be interpreted as the total

number of nanoparticle surface binding sites available to type i
proteins. Therefore, we use a mass-action model to consider

constant rates q|nHSA|kon
HSA, q|nHDL|kon

HDL, and

q|nFib|kon
Fib, for association processes in biochemical equations

(4)-(6), respectively.

Interestingly, population balance equations are tractable for the

biochemical equations (4)-(6) despite the enormous state space of

fqNPg (q can take values between 0 and 1). Regardless, the state

space size for the protein molecules is 2 (protein molecules are

either free or bound to nanoparticles), thus, allowing tractability of

population balance equations of bound protein concentrations. In

the Methods Section, the described derivation steps show

concentration of bound proteins evolves according to the following

ordinary differential equations:

d

dt
½HSA:NP�~nHSAkon

HSA½HSA�Y{k
off
HSA½HSA:NP� ð7Þ

d

dt
½HDL:NP�~nHDLkon

HDL½HDL�Y{k
off
HDL½HDL:NP� ð8Þ

d

dt
½Fib:NP�~nFibkon

Fib½Fib�Y{k
off
Fib½Fib:NP�, ð9Þ

where Y is defined as

Y~ ½NP�0{
½HSA:NP�

nHSA

{
½HDL:NP�

nHDL

{
½Fib:NP�

nFib

� �
: ð10Þ

In this paper, we consider a general case where the fluid contains

m types of proteins interacting with nanoparticles. Similar to (7–

10), the concentration ½Pi:NP� of type i proteins bound to

nanoparticles evolves as:

d

dt
½Pi:NP�~nik

on
i ½Pi� ½NP�0{

Xm

j~1

½Pj :NP�
nj

 !

{k
off
i ½Pi:NP�, 1ƒiƒm,

ð11Þ

where the following conservation laws holds for free protein

concentrations:

Pi½ �z½Pi:NP�~½Pi�0, 1ƒiƒm, ð12Þ

because the sum of free and bound proteins is always equal to the

initial concentration of proteins. We refer to (11) as the dynamical

model of nanoparticle-protein corona complex formation.

Seeking expressions for biocorona complex composition, we

define si as the surface fraction of nanoparticle occupied by type i
proteins. If si~1, the nanoparticle surface is fully covered by type i
protein where ½Pi:NP�max~ni½NP�0. The surface fraction occu-

Dynamics of Nanoparticle-Protein Corona Formation
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pied by type i protein is the ratio between concentration ½Pi:NP�
to ½Pi:NP�max:

si ¼D
Pi:NP½ �

ni½NP�0
, 1ƒiƒm: ð13Þ

Because nik
on
i ½Pi�0 is much greater than k

off
i , the dynamical

system (11) exhibits two phases, an observation supported by

experiments and numerical simulations [1,3].

The fast phase corresponds to the transient time of system

evolution during which surrounding proteins rapidly cover free

nanoparticles. We refer to this stage as metastable composition.

Corona complex composition changes after the initial phase,

creating two distinct phases in the corona formation process.

During the second phase, system evolution occurs at a much

slower rate while bound proteins slowly leave nanoparticles and

are potentially replaced by other proteins. We characterize the

long run composition after the second phase as stable composition,

which will not change at the macroscopic level, given an

unchanging environment.

Metastable Composition
As discussed earlier, nanoparticles are rapidly covered by

proteins during the initial phase. We denote the metastable

concentration of type i proteins bound to nanoparticles as

½Pi:NP�#. The type i protein association process continues until

there is either no more type i protein in the environment, i.e.,

½Pi�~0, or nanoparticles are fully covered, i.e.,

½NP�0{
Pm

i~1 n{1
j ½Pj :NP�#~0. In this paper, we assume enough

proteins in the environment to negate the first scenario. According

to the model, proteins compete to attach to nanoparticles at rate

nik
on
i ½Pi�½NP�0 until the nanoparticles are fully covered. From this,

we can derive an implicit solution for the exact value of ½Pi:NP�#.

Since the corresponding algebraic equations are highly nonlinear

and difficult to solve, we adopt an approximation proving

compatible with simulation results:

Protein type i attaches to nanoparticles at rate nik
on
i ½Pi�0½NP�0

instead of nik
on
i ½Pi�½NP�0. Using this approximation, metastable

concentrations ½Pi:NP�# are

Pi:NP½ �#^ni

kon
i ½Pi�0Pm

j~1 kon
j ½Pj �0

½NP�0, ð14Þ

for i[f1,:::,mg: Expression (14) is a simple, well-structured formula

that can be easily applied. To further simplify, this equation can be

re-expressed as:

s
#
i ~
½Pi:NP�#

ni½NP�0
^

kon
i ½Pi�0Pm

j~1 kon
j ½Pj �0

: ð15Þ

The above equation enables the right hand side to function

independently of ni (i.e., the total number of binding sites for type i

proteins). In (15), ni½NP�0 refers to the concentration of type i

proteins if the nanoparticles are fully covered by type i proteins.

Therefore,
½Pi :NP�#
ni ½NP�0

is the average surface fraction of the

nanoparticle covered by type i proteins.

Stable Composition
The slow dynamics correspond to the dissociation of proteins

from nanoparticles and subsequent replacement by other protein

molecules. Setting the time derivative equal to zero in the

differential equation (23), the stable composition of the corona

complex is:

Figure 1. Schematic of nanoparticle-protein corona formation process. Single type i proteins attach to the nanoparticle surface at rate kon
i ,

leaving the nanoparticle at rate k
off
i . On average, a total number of ni type i proteins can fully cover the nanoparticle surface.

doi:10.1371/journal.pone.0064690.g001
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Pi:NP½ ��^ni
KA

i ½Pi�0
1z

Pm
j~1 KA

j ½Pj �0
½NP�0, ð16Þ

where KA
i ¼

D
kon

i =k
off
i is the equilibrium constant of type i proteins.

This equation can be re-expressed as:

s�i ~
½Pi:NP��

ni½NP�0
^

KA
i ½Pi�0

1z
Pm

j~1 KA
j ½Pj �0

: ð17Þ

Similar to (15), expression (17) exhibits independence from ni. The

stable composition formula (17) depends only on initial protein

concentrations and equilibrium constants. For example, if a fluid

contains only m~1 protein with initial concentration ½P1�0~104

M and the equilibrium constant is KA
1 ~104 M{1, formula (17)

predicts s�1~0:5 of surface coverage by proteins. This replicates

the prediction in [6]. In practice the free area is very small, sincePm
j~1 KA

j ½Pj �0 is normally much larger than 1.

Reduced Complexity Model
As discussed earlier, the nanoparticle-protein corona formation

model in (23) exhibits fast and slow dynamics. Therefore,

numerical simulation of the model can be very time-consuming,

requiring incremental time steps to guarantee numerical stability

of simulations. We use techniques of nonlinear dynamics to

decouple the fast and slow dynamics in the corona formation

process. Using the singular perturbation technique found in the

Materials and Methods Section, the evolution of the slow dynamic

states xs
i (t) are described as:

d

dt
½Pi:NP�s

~nik
on
i ½Pi�

Pm
j~1 n{1

j k
off
j ½Pj :NP�sPm

j~1 kon
j ½Pj �

{k
off
i ½Pi:NP�s,

ð18Þ

where the initial condition is the metastable composition from (14).

In this model, all terms are of the order of dissociation rates.

Therefore, fast dynamics are omitted from the reduced complexity

model to dramatically improve stability and run time of numerical

simulations.

Using our reduced model, we observe the short run time of the

original simulation is reduced nearly 1000 times for the n~3 case.

For n~7 types of proteins, MATLABH takes hours to solve the

ODE system while the reduced system solves in a fraction of a

second. Additionally, the reduced model does not require the

absolute values of the parameters, ni, kon
i , and k

off
i , as ratio of

these parameters is sufficient. Finding relative values is less error-

prone since all parameters must be estimated through experi-

ments. Significantly, our reduced model allows us to create

discrete time scales. In fact, the Material and Method Section

shows the time constant of the fast dynamics to be:

Tfast~
1Pm

j~1 kon
j ½Pj �0

: ð19Þ

Therefore, the metastable state time constant Tfast is of the

order of the association rate inverses weighted by the initial protein

concentrations. Moreover, (18) shows the stable state time constant

is related to the inverse of the dissociation rates, implying the time

constant is larger than the inverse of the smallest dissociation rate.

Sensitivity Analysis
Sensitivity analysis of mathematical models is crucial in

assessing reliability of predictions. In sensitivity analysis, we test

how predictions of the model change with respect to a change or

uncertainty in the involved parameters. If relying strictly on

simulative results, we need to run several simulations for different

values of the parameters in a combinatorial manner and compare

outputs to understand sensitivity of the model to parameters. A

very concrete advantage of our analytical results is the explicit

information we derive from them.

To reduce complexity, the structure of our analytic formulae

allows us to take the partial derivative of the formula related to

influential parameters, thus obtaining analytical expressions of

corona composition parameter sensitivity. Specifically, we perform

a sensitivity analysis of model prediction for metastable and stable

corona compositions respective to association rates and equilibri-

um constants by taking the partial derivative of s�i in (17) and s
#
i in

(15) with respect to KA
i and kon

i , respectively, to obtain

Ls�i =s�i
LKA

i =KA
i

~1{s�i ,
Ls�j =s�j

LKA
i =KA

i

~{s�i , ð20Þ

Ls
#
i =s

#
i

Lkon
i =kon

i

~1{s
#
i ,

Ls
#
j =s

#
j

Lkon
i =kon

i

~{s
#
i : ð21Þ

The above formulae indicate that relative changes in s�i or s�j as

the result of a relative change in KA
i solely depend on the absolute

value of s�i . For example, if the stable composition formula (17)

suggests s�i ~0:9, then a 30% over-estimation of KA
i indicates an

overestimation of s�i by nearly (1{0:9)|30%~3% error.

Numerical Simulations
While numerous types of biomolecules undergo hard corona

formation, we follow [1] in considering only HSA, HDL, and Fib
for numerical simulations. We use the initial concentrations values

and corona formation parameters in Table 1 of [1].

Figure 2 shows the evolution of biocorona composition during

the initial phase of the corona formation process. Dissociation of

proteins from nanoparticles rarely occurs during this stage. After

the initial phase where proteins surround the nanoparticle, the

corona composition changes as proteins dissociate from nanopar-

ticles and are possibly replaced by other proteins. The evolution of

biocorona composition is plotted in Figure 3. Figures 2 and 3 show

theoretical predictions for metastable (15) and stable (17) corona

complex compositions agree with numerical simulations.

Fast and slow dynamics in the original corona formation model

makes numerical solutions very time consuming. The reduced

complexity model (18) captures the response of slow dynamic,

dramatically reducing numerical simulation run time and

improving stability. Figure 4 shows the response of the reduced

model (18) accurately reproduces the response of the original

model (11) with added capability of robust, rapid numerical

simulation.

We perform a numerical study of the metastable corona

composition sensitivity incorporating kon
HSA, letting kon

HSA deviate

from its nominal value up to 50%. We then calculate relative

change in metastable composition from (15). Figure 5 shows

Dynamics of Nanoparticle-Protein Corona Formation
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increasing the association rate kon
HSA obtains higher composition

fraction for HSA proteins, the opposite being true for HDL and

Fib proteins. For example, a 30% increase in kon
HSA increases s�HSA

(blue line) 24% while s�HDL and s�Fib(green line) decrease 8%. The

local sensitivity analysis (20) provides sound understanding of

sensitivity up to a drastic 50% change.

Discussion

In this paper, we extend the modeling and simulation results in

[1] with relevant analytical results. The model provides a

simplified representation of the complex process of corona

formation yet quantitatively justifies experimentally supported

observations that corona complex composition rapidly reaches

metastable equilibrium to slowly converge towards a stable

composition. We obtained two simple and expressive formulae,

(15) and (17), providing the composition of the nanoparticle

corona in the metastable and stable states. These formulae

mathematically predict the corona composition free of simulations

through insertion of appropriate parameter values. Figures 2 and 3

prove our mathematical predictions of the metastable and stable

corona compositions are very accurate compared to simulations.

Moreover, the composition formulae (15) and (17) afford easy

computation, providing direct insight into the key parameters of

each phase of corona formation process.

Viewed against Dell’Ocro et al. model [1], ours (see (7–9))

replicate nearly all of the their results except their drastically

shortened time constant of metastable equilibrium. Significantly,

Dell’Ocro et al. model interprets other features of the corona

complex formation dynamics, including the stable and metastable

compositions resulting from the law of large numbers, and the slow

dynamics time constant having the order of dissociation rate

inverses [1]. Our markedly lengthening of metastable equilibrium

time constant is due to our expansion of Dell’Orco et al.

consideration of the following nanoparticle-protein binding

equations:

NPzHSA'NP:HSA,

NPzHDL'NP:HDL,

NPzFib'NP:Fib,

to biochemical equations (1–3). Relatively speaking, our proposed

biochemical equations (1–3) better describe dynamical evolution of

corona composition in considering successive bindings of protein

molecules to a nanoparticle, resulting in a much longer time

constant for initial transient dynamics.

Composition of the nanoparticle corona can derail the

nanoparticle mission from therapeutic and beneficial to toxic

and dangerous. The benefit of the proposed results for scientists in

this field is multifaceted: these formulae guide experimentation

and aid interpretation of experimental results, increasing knowl-

edge of in vivo nanoparticles behavior. Analytical results derived

from (15), (17), (20), and (21) affirm assessment and standardiza-

tion of critical behaviors of nanoparticles in body fluids or any

other in vivo or in vitro environments, showing promising medical

and therapeutic applications.

We understand that the model in [1], and consequently our

model, describe a simplified system. For example, we only consider

nanoparticles with sphericity close to 1. Nonetheless, our results

can help develop more accurate models, guide the selection of

specific sets of experiments, and ultimately increase knowledge of

the corona complex formation dynamics. Consideration of more

detailed aspects such as, soft corona formation, protein-protein

interactions, irreversible bindings, conformational change of

proteins, and persistent stochastic fluctuations, demands further

modeling work.

Methods

Below, we detail the derivations of analytical results found in the

Results Section.

Derivation of Dynamical Model for Corona Complex
Formation

In this section, we demonstrate derivation of the dynamical

model (7–9) for the corona complex formation from the

biochemical equations (4–6).

The population balance equations for the biochemical equa-

tions (4–6) suggest the concentration of proteins bound to a

nanoparticle (e.g. ½HSA:NP�) evolves according to the following

differential equation:

d

dt
½HSA:NP�~{k

off
HSA½HSA:NP�z

ð1

0

q|nHSA|kon
HSA|

HSA½ �| qNP½ �dq

~{k
off
HSA½HSA:NP�znHSAkon

HSA½HSA�½NP�0
ð1

0

½qNP�
½NP�0

qdq

If the number of nanoparticles is large,
½qNP�
½NP�0

denotes the

probability that the free surface fraction of a nanoparticle is equal

to q. Therefore,
Ð 1

0
½qNP�
½NP�0

qdq in fact represents the expected value of

q, i.e.,

d

dt
½HSA:NP�~{k

off
HSA½HSA:NP�znHSAkon

HSA½HSA�½NP�0E½q�:

The free surface fraction is one minus the occupied surface

fraction, i.e.,

q~1{
PB1(t)

b1~1 (uHSA)b1
{
PB3(t)

b2~1 (uHDL)b2
{
PB3(t)

b3~1 (uFib)b3

where, for example, B1(t) is the number of HSA proteins bound to

the nanoparticle. Since expectation of a random variable is a

linear operator, we derive:

E½q�~E½1{
XB1(t)

b1~1

(uHSA)b1
{
XB3(t)

b2~1

(uHDL)b2
{
XB3(t)

b3~1

(uFib)b3
�

~1{
1

nHSA

E½B1(t)�{ 1

nHDL

E½B2(t)�{ 1

nFib

E½B3(t)�

~1{
1

nHSA

½HSA:NP�
½NP�0

{
1

nHDL

½HDL:NP�
½NP�0

{
1

nFib

½Fib:NP�
½NP�0
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Figure 2. Initial phase of the corona formation process. During the initial phase, proteins rapidly cover the surface area of nanoparticles with
rare occurrence of protein dissociation. A metastable composition of the corona complex results from this phase. In this simulation, the nanoparticle
surface is covered by roughly 76% HSA and 23% HDL proteins. Fib proteins constitute less than 1% of the nanoparticle surface. Significantly, there
is excellent agreement between the theoretical predictions from our metastable composition formula (15) and the numerical simulation results.
doi:10.1371/journal.pone.0064690.g002

Figure 3. Long run simulation of corona formation process. The initial metastable composition of the corona complex fluctuates from
dissociation and replacement of proteins from nanoparticles. The final composition of the corona complex is stable, given the environment does not
change. In this simulation, about 94% of the nanoparticle surface is covered by HDL proteins and about 6% is covered by HSA proteins, with a
negligible amount of Fib proteins. Again, there is strong agreement between the theoretical predictions from the stable composition formula (17)
and the numerical simulation results.
doi:10.1371/journal.pone.0064690.g003
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Figure 4. The response of the reduced complexity corona formation model (18) representing slow dynamics of the corona
formation process. The initial condition for the reduced complexity model is the metastable corona composition from (14). The response of the
reduced complexity model (18) is in excellent agreement with the response of the original model (11) shown in Figure 3, except for the short initial
behavior that belongs to the fast dynamics of the system evolution.
doi:10.1371/journal.pone.0064690.g004

Figure 5. Sensitivity of metastable corona composition incorporating uncertainties in association rate of HSA proteins. Derivative
with respect to kon

HSA reasonably interprets the true relative change of composition. Overestimating kon
HSA results in overestimation of s

#
HSA and

underestimation of s
#
HDL and s

#
Fib:

doi:10.1371/journal.pone.0064690.g005
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~
1

½NP�0
½NP�0{

½HSA:NP�
nHSA

{
½HDL:NP�

nHDL

{
½Fib:NP�

nFib

� �
:

Hence, we obtain the dynamical model (7–9) for corona

complex formation. MATLABH version R2010a was used to

simulate the ordinary differential equations of corona formation

dynamical model.

Stable Composition Formulae
In this section, we obtain the formulae for the stable

composition of the corona complex in (16). To facilitate

subsequent analysis, we define the system state xi as the

concentration of type i proteins bound to nanoparticles:

xi ¼D Pi:NP½ �: ð22Þ

Incorporating the conservation law (12), evolution of bound

type i proteins concentration xi is described:

dxi

dt
~nik

on
i (½NP�0{

Xm

j~1

n{1
j xj)(½Pi�0{xi){k

off
i xi,

1ƒiƒm:

ð23Þ

For a nonlinear dynamic system [19] following the differential

equation _xx~f (x), the equilibrium points are the solutions of

algebraic equation f (x�)~0. Setting the time derivatives equal to

zero in the differential equation (23), the equilibrium equations satisfy:

(½NP�0{
Xm

j~1

n{1
j x�j )~

k
off
i

nik
on
i

x�i
½Pi�0{x�i

, ð24Þ

for i[f1,:::,mg:. Therefore, x�i can be written as:

x�i ~
nik

on
i ½Pi�0
k

off
i

(½NP�0{
Pm

j~1 n{1
j x�j )

1z
nik

on
i

k
off
i

(½NP�0{
Pm

j~1 n{1
j x�j )

: ð25Þ

Exact solution of the above equations is very difficult and

complicated. However, we can approximate (25) as:

x�i ^
nik

on
i ½Pi�0
k

off
i

(½NP�0{
Xm

j~1

n{1
j x�j ), ð26Þ

knowing that the total nanoparticle surface is occupied by proteins,

thus making ½NP�0{
Pm

j~1 n{1
j x�j very small. Hence, from (26),

(½NP�0{
Xm

j~1

n{1
j x�j )~½NP�0{

Xm

j~1

kon
j ½Pj �0=k

off
j (½NP�0

{
Xm

j~1

n{1
j x�j ),

ð27Þ

from which (½NP�0{
Pm

j~1 n{1
j x�j ) is obtained as

(½NP�0{
Xm

j~1

n{1
j x�j )~

½NP�0
1z

Pm
j~1 kon

j ½Pj �0=k
off
j

: ð28Þ

Replacing for (½NP�0{
Pm

j~1 n{1
j x�j ) in (26) yields

x�i ^ni
kon

i ½Pi�0=k
off
i

1z
Pm

j~1 kon
j ½Pj �0=k

off
j

½NP�0, ð29Þ

which is (16).

Derivation of Reduced Complexity Model
In this section, we provide details for obtaining the reduced

complexity model in (18). The model reduction technique

separating the fast and slow dynamics is the topic of singular

perturbation method. Specifically, a dynamical system

_xx~f (x,z)

e _ZZ~g(x,Z)

with small scalar e, can be approximated by a system of the form

_xxs~f (xs,h(xs)), where Z~h(xs) is the solution of g(xs,Z)~0.

Those readers interested in learning more about these nonlinear

dynamics techniques are referred to the classical textbook [19].

First, we define the auxiliary state Z as:

Z ¼D n0kon
0 (½NP�0{

Xm

j~1

n{1
j xj), ð30Þ

where n0kon
0 ¼

D
max

1ƒiƒm
fnik

on
i g. According to (23) we have<p

id="para79" num="

dxi

dt
~riZ(½Pi�0{xi){k

off
i xi, ð31Þ

e
dZ

dt
~{Z

Xm

j~1

n{1
j rj(½Pj �0{xj)z

Xm

j~1

n{1
j k

off
j xj ,

e
dZ

dt
~{Z

Xm

j~1

n{1
j rj(½Pj �0{xj)z

Xm

j~1

n{1
j k

off
j xj , ð32Þ

where ri and e are

ri ¼D
nik

on
i

n0kon
0

, e ¼D 1

n0kon
0

: ð33Þ

Because the system (31)-(32) has the standard singular perturbation

form, we use the singular perturbation technique to find the slow

dynamics. According to (32), the equilibrium value of Z is

Dynamics of Nanoparticle-Protein Corona Formation

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e64690



Z�~

Pm
j~1 n{1

j k
off
j xjPm

j~1 n{1
j rj(½Pj �0{xj)

: ð34Þ

Singular perturbation technique replaces the value of Z� with Z
in (31). Therefore, the evolution of the slow dynamic states xs

i (t) is

described by:

dxs
i

dt
~ri

Pm
j~1 n{1

j k
off
j xs

jPm
j~1 n{1

j rj(½Pj �0{xs
j )

(½Pi�0{xs
i ){k

off
i xs

i , ð35Þ

which leads to (18). From (32), the time constant of the fast

dynamics is

Tfast~
ePm

j~1 n{1
j rj ½Pj �0

, ð36Þ

leading to (19).
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