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Abstract 

The USDA declared seven STEC serotypes to be adulterants in raw, non-intact beef 

products due to their severe health implications. STEC contamination of carcasses is most likely 

to occur during hide removal. This study evaluated the efficiency of a mixed STEC-7 inoculum 

to attach to raw beef carcasses (predominantly lean muscle and adipose tissue), and compared 

the efficacy of 4.5% lactic acid (LA) to a water (W) spray to reduce STEC populations. Four 

carcass contamination scenarios, representing potential points whereby STEC could come into 

contact with raw beef surfaces during slaughter operations, were evaluated: (A) pre-rigor surface 

STEC inoculated (ca. 7 log cfu/cm2), 30-min ambient temperature attachment, spray with LA or 

W; (B) pre-rigor inoculated, 24-h chilled attachment, spray; (C) tissue chilled 24 h, inoculated, 

30-min attachment, spray; and (D) tissue chilled 24 h, rewarmed to 30°C, inoculated, 30-min 

attachment, spray. Predominantly lean muscle and adipose tissue were collected from four fed 

cattle immediately after harvest and assigned to the four scenarios for STEC inoculation, 

followed by a post-inoculation water (control) or LA spray. Tissue excision samples were 

collected pre- and post-treatment and analyzed to enumerate STEC-7 populations. Data were 

collected in a completely randomized design and analyzed using a mixed-model ANOVA. 

Pairwise comparisons of treatment means were made at α = 0.05 with p-values adjusted using 

Tukey-Kramer. Initial STEC attachment levels to predominantly lean muscle and adipose tissues 

were not significantly different across all scenarios. Scenarios C and D showed greater STEC 

attachment compared to scenarios B and A. The LA spray reduced STEC levels more effectively 

than water across all scenarios. A significant treatment by tissue type interaction was observed 

for STEC reductions. A greater STEC reduction was observed for adipose tissue than for 

predominantly lean muscle when lactic acid spray was applied. A significant treatment by 



  

scenario interaction was observed for STEC reductions. Scenarios A and B presented greater log 

reductions (1.77 ± 0.27 and 1.85 ± 0.25 log CFU/cm2, respectively) than scenario C (1.04 ± 0.10 

Log CFU/cm2). LA spray presented the same level of effectiveness when applied to pre-rigor 

warm tissues and chilled tissues for reducing STEC. Greater post-LA spray reductions were 

observed when STECs were inoculated onto pre-rigor meat surfaces and submitted to a 24 h chill 

cycle, suggesting that cold storage temperatures (~2 °C) may stress or injure the STEC cells prior 

to subsequent antimicrobial spray applications to chilled surfaces. For laboratory studies, 

consideration must be given to when inocula are applied to tissue surfaces to accurately 

determine and/or compare the effectiveness of antimicrobial treatments. These findings provide 

insight to beef processors and researchers regarding inoculation protocols for comparative 

validation studies, and potential impacts on microbiological results from application of 

antimicrobial interventions at different points during raw beef processing. 
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Chapter 1 - Introduction 

The Centers for Disease Control and Prevention (CDC) has reported Shiga toxin-

producing Escherichia coli (STEC) as major pathogens associated with beef products, mainly 

ground beef in the past 25 years in the U.S. Annually, more than 175,000 illnesses, 3,600 

hospitalizations and 30 deaths are caused by STECs (CDC, 2015). Escherichia coli O157:H7 is 

estimated to cause 63,153 illnesses followed by 112,752 cases of non-O157 STEC strains (O26, 

O45, O103, O111, O121, O145) every year in the U.S. (CDC, 2015). However, the true number 

of foodborne illnesses caused by non-O157 STEC may be even higher because detection and 

isolation of those strains is time consuming and costly (Brooks et al., 2005). The annual 

healthcare expenses related to STECs foodborne illnesses are estimated to be $ 478 million 

(Economic Research Service - USDA, 2009). 

It is well documented that the consumption of beef products contaminated with STEC 

have caused illnesses ranging from mild diarrhea to severe hemolytic uremic syndrome (Rivas et 

al., 2006). Ruminants, particularly cattle, are the major reservoir of STECs, and research has 

shown that these pathogens are spread to the carcass from the hide and feces during beef 

harvesting, thus resulting in the entry of these pathogens into the food chain (Small et al., 2005; s 

et al., 2003; Desmarchelier and Fegan, 2003; Barkocy-Gallagher et al., 2003; Elder, 2000; 

Smeltzer et al., 1980).  In 1994, in response to a large foodborne illness outbreak that resulted in 

several deaths and numerous hospitalizations from the consumption of undercooked ground beef 

contaminated with E. coli O157:H7, the Food Safety and Inspection Service (FSIS) of the U. S. 

Department of Agriculture (USDA) declared E. coli O157:H7 to be an adulterant in raw, non-

intact beef products (FSIS, 1999). Multiple foodborne illness outbreaks involving six non-O157 
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STECs (O26, O45, O103, O111, O121, O145) led the FSIS to later declare these strains also as 

adulterants in non-intact beef products (FSIS, 2012). 

STECs pose a significant threat to consumers’ health and can negatively impact the 

economy of the beef industry. Since attachment is one of the first steps that results in bacterial 

contamination and multiplication, the understanding of bacterial attachment mechanisms to 

different meat tissues is extremely important in the development of strategies to control and 

remove these pathogens from the meat surface during and after slaughter operation processes (Li 

and McLandsborough, 1999; Ofek and Doyle, 1994). Additionally, the use of antimicrobial 

interventions is beneficial and widely used by the beef industry as one of the control steps that 

assist in the development of mandated Hazard Analysis and Critical Control Points (HACCP) 

regulation by FSIS (CFR, 1996).  

Because many studies have proven that the hide is the main source of STEC 

contamination of dressed (dehided) beef carcasses, and bacterial removal is easier before cells 

firmly attach to beef tissue surfaces (North American Meat Institute, 2015; Small et al., 2005; 

Nou et al., 2003; Barkocy-Gallagher et al., 2003; Elder, 2000; Smeltzer et al., 1980), numerous 

antimicrobial interventions have been used in the beef industry, and most of them are focused at 

the pre-rigor stage of slaughter operations. Physical and thermal interventions, acid and oxidizer 

antimicrobials, non-thermal interventions and multi-hurdle strategies are recognized as the most 

effective and promising mechanisms to reduce and control pathogens in the beef industry 

(Wheeler et al., 2014). Regardless of all the interventions cited above, the selection of the best 

intervention depends on several factors such as cost, effect on the food, and the legal limit of its 

use (Wheeler et al., 2014; Arthur et al., 2008; Small et al., 2005; Nou et al., 2003; Barkocy-

Gallagher et al., 2003; Bell, 1997).  
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Acid interventions have been widely studied as antimicrobial agents against STECs. 

Lactic acid is the most common and widely used organic acid in the beef industry because of its 

effectiveness and low cost, when compared to other organic acids (Ransom et al., 2003). Several 

studies have demonstrated the efficacy of lactic acid in reducing STEC populations ranging from 

1 to 4 log cycles, using either spray or immersion methods. The amount of reduction in the 

bacterial population using lactic acid depends on several factors: bacterial attachment/contact 

time to the meat surface, irregularities and characteristics of the meat surfaces (fat, uneven 

surface, small cuts), carcass temperature, moisture content of meat, and concentration, volume, 

temperature and exposure time of acid used (Dubal et al.,2004; Ransom et al.,2003; Ramirez et 

al.,2001). 

Thus, this research was conducted to better understand the process of bacterial 

attachment to different types of beef tissues (predominantly lean muscle and adipose surfaces) 

when the STEC contamination occurs to pre-rigor (warm) and post-rigor (chilled) beef surfaces, 

and to study the effect of 4.5% lactic acid treatment on STECs population reduction on these 

different meat surfaces.  
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Chapter 2 - Research Questions 

1. Are there any differences in the initial Shiga toxin-producing Escherichia coli (STEC) 

attachment levels to lean and fat beef tissues across all the pre-treatment samples for all 

scenarios when evaluated using the log CFU/cm2 counts? 

2. Are there any pre-treatment differences in attachment levels between pre-rigor, chilled 

or re-warmed surfaces (a scenario utilized by some researchers to represent pre-rigor beef 

conditions when conducting inoculated antimicrobial intervention validation studies in the 

laboratory), when evaluated using the log CFU/cm2 counts? 

3. Are there any differences in the recovery of STECs post-treatment across all scenarios 

when evaluated using log CFU/cm2 reductions? 

 4. Do STECs attach differently when applied to pre-rigor warm tissue surfaces compared 

to chilled beef surfaces, considering beef tissues separately?  

5. Does inoculating re-warmed post-rigor tissue after carcass chilling provide comparable 

levels of attachment to initially inoculated pre-rigor beef surfaces? 

6. Does the application of water or 4.5% lactic acid provide effective and/or different 

STEC reductions on pre-rigor or chilled beef tissues?  
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Chapter 3 - Literature review 

3.1. Escherichia coli 

Escherichia coli are the most intensively studied microorganisms in the 

Enterobacteriaceae family, as well as in the overall bacterial community. Most strains of E. coli 

are harmless to human health, and some even are beneficial to their host by helping in absorption 

of nutrients and balancing the intestinal flora (Yang and Wang, 2014; Kaper et al., 2004). 

However, several strains of E. coli have adapted to survive various types of environments and 

conditions, and act as human and/or animal pathogens (Bari and Inatsu, 2014).  

Strains of E. coli are classified as Gram negative, rod-shaped, non-sporeforming, 

peritrichous, motile and facultatively anaerobic organisms (Batt, 2014; Eden, 2014). Water 

activity (aw), temperature and pH are the most important environmental factors that determine E. 

coli’s growth, survival and multiplication (Table 3-1; Astridge et al., 2013; ICMSF, 1996). 

 

Table 3-1 Growth conditions for Escherichia coli when other factors are near to optimum* 
Factors Minimum Optimum Maximum 

Temperature (°C) 7-8 35-42 45 

pH 4 6-7 10 

Water activity (aw) 0.95 0.995 _ 

*Data obtained from ICMSF 1996; Astridge et al., 2013. 

 

Escherichia coli pathotypes tend to be clonal and can be serologically differentiated 

based on the detection of specific antigens: O (somatic), H (flagellar) and K (capsule). While the 

‘O’ antigen identifies the serogroup, the ‘H’ antigen identifies the serotype of an E. coli strain. In 

the process of strain identification, for instance during an outbreak, only the ‘O’ and ‘H’ antigens 
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are determined during the serotyping process. A total of 167 ‘O’, 53 ‘H’ and 74 ‘K’ antigens 

have been identified and documented (Montville, Matthews, and Kniel, 2012; Kaper, Nataro, and 

Mobley, 2004).  

The evolution of E. coli strains has resulted in the development of specific virulence 

factors, which allow the bacteria to easily adapt and survive adverse conditions, and cause a 

broad spectrum of diseases (Kaper et. al., 2004). Different virulence attributes, clinical 

syndromes, mechanisms of pathogenicity, and specific O:H serotypes are elements used to 

characterize pathogenic E. coli in specific categories (Montville et. al., 2012; Janda and Abbott 

2006). Among the diarrheagenic E. coli, there are six well-described categories discussed (Yang 

and Wang, 2014; Montville et. al., 2012; Janda and Abbott, 2006; Kaper et. al., 2004) as follows: 

1. Enteropathogenic Escherichia coli (EPEC):  

EPEC strains were first recognized in 1945 as the major source of infantile diarrhea in the 

United Kingdom; however, the high percentage rate of positive cases involving EPEC is still 

mostly reported among in-developing countries. Later on, researchers pointed to humans as 

important EPEC reservoirs. Typical infection symptoms are vomiting, watery diarrhea without 

gross blood, and fever.  Currently, documented O serogroups linked with this infection type are 

O55, O86, O111ab, O119, O125ac, O126, O127, 128ab and O142. A typical characteristic 

associated with EPEC infections is an attaching and effacing (A/E) mechanism of adherence to 

the intestinal cells, which is one of the mechanisms responsible for intestinal inflammation and 

consequently diarrhea. 

2. Enterohemorrhagic Escherichia coli (EHEC): 

Even though there are close to 400 serotypes of EHEC, not all of them have been 

identified or related to human illness. EHEC can be found in soil, water, food and gastro-
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intestinal flora of humans and warm-blooded animals. The virulence factors of EHEC are known 

as Vtx (verotoxins), or sometimes Stx (Shiga-toxins), because of their similarity to toxins 

produced by Shigella dysenteriae. Because E. coli O157:H7 has been associated with numerous 

foodborne illness outbreaks, it is the most commonly recognized STEC and the most intensively 

studied. Additionally, non-O157 STECs have emerged as important and concerning foodborne 

pathogens. More than 200 virulent strains have been isolated from infected patients. The most 

common strains associated with human illness in the non-O157 STEC group are O26, O45, 

O103, O111, O121 and O145, also known as the “Big Six” STEC. Among the Big Six STEC 

group, the serogroups most frequently associated with foodborne illnesses are O111, O103 and 

O26. 

Virulence factors vary among various STEC strains. Nevertheless, STEC strains produce 

either Shiga toxin 1 (Stx1) or Shiga toxin 2 (Stx2), or both. Shiga toxins cause illness by one of 

the following mechanisms: attacking the cells, interfering with protein synthesis, or attaching and 

entering the host cells, causing inflammatory reactions. Different levels of toxicity between 

Shiga toxins have been reported, with Stx2 having toxicity 1000 times greater than Stx1. Shiga 

toxins are produced in the colon and have the capacity to cause local damage, or even travel 

through the bloodstream to the kidneys, causing renal inflammation. In serious cases, this 

inflammation can lead to a life threatening condition called Hemolytic Uremic Syndrome (HUS), 

which results in acute kidney injury and failure (Figure 3-1).  

STEC infections involve E. coli adherence to intestinal epithelial cells. The virulent E. 

coli attacks through the mechanism known as an  'attaching and effacing (A/E) lesion' on 

intestinal epithelial cells. Moreover, virulent STECs have a pathogenicity island known as the 

locus of enterocyte effacement (LEE), which provides proteins necessary for the formation of 
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A/E lesions. The locus of enterocyte effacement helps in the delivery of virulent factors into the 

host enterocytes, using a type III secretion apparatus (molecular syringe structure). 

 

 

Figure 3-1 Brief overview of disease causing mechanism of STECs - Adapted from Bari & 
Inatsu, 2014 
 

Shiga toxin-producing E. coli can be classified into the five main groups (A through E) 

based on their reported incidences of human disease, linkage with outbreaks versus sporadic 

infections, association with severe outcomes (such as HUS), and the presence of virulence 

factors (Duffy, 2014; Kaspar and Doyle, 2009): 

A) Strains have high relative incidences, are commonly linked with outbreaks, and are 

associated with severe illness (such as HUS). Most common serotypes are O157:H7 and 

O157:NM. 

B) Serotypes present moderate relative incidences, are uncommonly linked with 

outbreaks but can be associated with severe illness and HUS. Examples of this group are 

serotypes O26:H11, O103:H2/NM, O111:NM, O121:H19 and O145:NM.  
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C) Serotypes have low relative incidences, are rarely linked to outbreaks, but can be 

associated with severe illness and HUS. STECs involved in this group are O91:H21, O113:H21 

and O104:H21. 

D) Serotypes have low relative incidences, rarely associated with outbreaks, and there is 

no association with severe disease or HUS.  

E) Serotypes are not associated with human disease.  

3. Enterotoxigenic Escherichia coli (ETEC): 

 ETEC strains were first recognized in early 1970s in Calcutta, India. Even though the 

positive cases linked with ETEC have decreased, developing nations are still the major affected 

areas. Clinical symptoms of ETEC infections are often described as nausea, low fever, 

abdominal cramps and watery diarrhea. The natural reservoirs of ETEC are mostly humans, and 

infection is usually acquired by consumption of contaminated water or food. Common ETEC ‘O’ 

serogroups associated with illnesses are O6, O8, O15, O20, O25, O27, O63, O78, O85, O114, 

O128ac, O148, O159 and O167. Enterotoxigenic E. coli have the ability to colonize the small 

intestine utilizing fimbriae. Additionally, the production of heat-stable and heat-labile 

enterotoxins is closely related to the cause of infection, mainly diarrhea. 

4. Enteroaggregative Escherichia coli (EAEC): 

EAEC serotypes were initially associated with acute and severe diarrhea in children and 

adults globally. These EAEC serotypes were identified and differentiated from other 

diarrheagenic E. coli by their property of aggregative adherence to HEp-2 cells, which resembles 

a ‘stacked-bricks’ configuration. Humans are identified as the main reservoir of 

Enteroaggregative E. coli. Common symptoms of EAEC infections are mucoid and watery 

diarrhea along with low-grade to no fever. Typical ‘O’ serogroups linked with EAEC infections 
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are O3, O15, O44, O77, O86, O93, O111 and O127. Additionally to this group, in July of 2011, 

German authorities reported the biggest foodborne outbreak to date involving non-O157 STEC. 

E. coli O104:H4 sickened a total of 3,842 people and 53 died. The source of the outbreak was 

fenugreek sprouts imported from Egypt (CDC, 2011b; Astridge et al., 2013).  

5. Enteroinvasive Escherichia coli (EIEC): 

In 1971, DuPont and coworkers initially recognized and described EIEC as having the 

ability to invade and multiply within intestinal epithelial cells, resulting in cell damage and 

death. EIEC and Shigella spp. are closely related as they present similar biochemical, genetic and 

pathogenic characteristics. Clinical symptoms include malaise, severe abdominal cramps, bloody 

diarrhea and fever. As no animal host has been identified, humans are likely to be the natural 

reservoir of Enteroinvasive E. coli. Typical ‘O’ serogroups linked with EIEC infections are 

O28ac, O29, O112, O124, O136, O143, O144, O152, O164 and O167.  

6. Diffusely Adherent Escherichia coli (DAEC): 

Scaletsky et al. first recognized diffusely adherent E. coli in 1984, by their particular 

diffuse attachment pattern and characteristic mild, non-bloody diarrhea in children older than 12 

months of age. The attachment process occurs through fimbrial or afimbrial adhesins and 

invasins. DAEC normally do not produce high levels of Shiga toxin, or heat-labile or heat-stable 

enterotoxins. The O1, O2, O21 and O75 serogroups are commonly associated with DAEC 

illnesses. 

Additional information of diarrheagenic E. coli infections, including infective dose and 

duration of symptoms are presented in Table 3-2. 
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Table 3-2 Properties of E. coli groups associated with gastroenteritis* 

E. coli group Infectious dose Incubation 
Period (h) 

Mean duration of 
illness (days) 

Presence of mucus or 
blood in stool 

 
    Mucus Blood 

EPEC 106 - 1010 9-19 3-14 + - 
EHEC 50 - 700 24-336 6-9 - + 
ETEC 108 - 1010 3-166 4-7 - - 
EAEC ~ 1010 14-46 3 to >14 + - 
EIEC ≥108 <24 1-12 + + 

DAEC unknown unknown ≤14 - - 
*Adapted from Janda & Abbot (2006) 

 

3.1.2. E. coli O157:H7 

Escherichia coli O157:H7 received its name because it expresses the 157th somatic (O) 

antigen and the 7th flagellar (H) antigen. In 1982, after being linked with two outbreaks of 

hemorrhagic colitis, E. coli O157:H7 was recognized for the first time as a human pathogen 

(Riley, 1983). Clinical symptoms were reported as abdominal cramps, bloody diarrhea and low-

grade fever.  A year later, scientists confirmed that these outbreaks were associated with E. coli 

O157:H7 that produce Shiga-toxins and cause hemolytic uremic syndrome, a life-threating 

condition that leads to acute renal injury and potential death (Bari and Inatsu, 2014).  

 According to the CDC (2015), E. coli O157:H7 is estimated to cause 63,153 illnesses 

annually in the U.S. It is mainly transmitted to humans through consumption of contaminated 

food and water, as presented in Table 3-3. Contaminated food has been implicated in 75% of the 

outbreaks linked to E. coli O157:H7, resulting in a 20,660 illnesses, 90 deaths and 530 HUS 

confirmed cases over a period of 29 years (1982-2011). Out of 131 outbreaks, 43 implicated 

ground beef, roasted beef and its sub- products. Fruits and vegetables were responsible for 25 

outbreaks and 19 were linked to milk products (Bari and Inatsu 2014). 
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Table 3-3 Outbreaks involving E. coli O157:H7 from the period of 1982-2011* 
Mode of transmission Outbreaks Illness Death 

Foodborne 131(56%) 75% 90 

Waterborne 52(22%) 18% 51 

Animals and environment 26(11%) 3% 01 

Person to person 23(10%) 3% 06 

*Adapted from Bari & Inatsu, 2014.  

 

The biggest outbreak involving E. coli O157:H7 was reported in 1996 in Sakai City, 

Japan. From July through August of that year, 9,578 cases and 11 deaths were reported. Even 

though radish seeds and uncooked sprouts were suspected to be the primary sources of the 

outbreak, authorities never positively confirmed the source (Batt, 2014; WHO, 1996).  

The incident that drastically revolutionized the food safety concerns of the United States 

regarding E. coli O157:H7 contamination was the ‘Jack in the Box’ fast food restaurant outbreak 

in 1993. Around 700 people were sickened and 4 children died from E. coli O157:H7 infections, 

and many others suffered long-term medical complications. The outbreak was linked to 

undercooked beef patties served at Jack in the Box restaurants in Washington, Idaho, California 

and Nevada (Batt, 2014; Eden, 2014; Golan, et al., 2004). This outbreak thrust foodborne illness 

onto the national stage as a real and present threat, leading to a drastic change in the way 

Americans, the U.S. regulatory agencies, food manufacturers and restaurants treated food safety 

issues. As a consequence, in September of 1994, the Food Safety and Inspection Service of the 

U.S. Department of Agriculture (USDA-FSIS) declared E. coli O157:H7 to be an adulterant in 

raw non-intact beef products (FSIS, 1999). As continuing measures to improve food safety, all 

meat and poultry plants are required to develop and implement a preventative system (United 

States, per 9 CFR 417) known as Hazard Analysis Critical Control Points (HACCP). Through 
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different sampling programs, FSIS ensures the effectiveness of the HACCP system to prevent 

biological, chemical and physical hazards from entering the food chain. Now the HACCP system 

is used as one of the vital tools to prevent and control E. coli O157:H7 contamination in the beef 

industry. Establishments where E. coli O157:H7 is reasonably likely to occur must implement 

measures to control contamination during slaughter and processing steps. Those measures 

include interventions such as trimming, hot water washes and organic acid sprays. 

 

3.1.3 Non-O157 STEC – “Big 6” 

Recently, non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC) have 

brought more attention and concern to food safety authorities due to their high rate of 

involvement in foodborne outbreaks (Luna-Gierke et al., 2014). Serogroups O26, O45, O103 

O111, O121 and O145 (Big 6 STECs) are the most common non-O157 STECs linked with 

foodborne illnesses (Wang et al., 2012). Data from the CDC (2012) indicate that 168,698 non-

O157 STEC infections occur each year in the U.S., and approximately 71% of these infections 

are caused by the Big 6 serogroups. Like E. coli O157:H7, the non-O157 STECs can also be 

found in normal gastro-intestinal flora of warm-blooded animals, soil, water and contaminated 

food. Symptoms vary from watery diarrhea to HUS, depending on the type of strain and the 

virulence factors they carry (bacteriophages, plasmids, pathogenicity islands and O-islands; 

FSIS, 2012). In June of 2012, FSIS declared the Big 6 STEC group to be adulterants in non-

intact raw beef products. Therefore, routine verification testing of non-intact beef is also required 

for E. coli O26, O45, O103 O111, O121, and O145 in addition to E. coli O157:H7, in non-intact 

beef products (FSIS, 2012). 
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In July of 2011, German authorities reported the biggest foodborne outbreak to date 

involving non-O157 STEC. A total of 3,842 people were sickened by E. coli O104:H4 and 53 

people died. The source of the outbreak was fenugreek sprouts (CDC, 2011b; Astridge et al., 

2013) from Egypt. This particular serogroup had never been associated with foodborne illness, 

and thus raised big concerns about the surfacing of non-O157 E. coli serogroups as foodborne 

pathogens and regulating non-O157 for different food products other than beef (Luna-Gierke et 

al., 2014; Kaspar and Doyle, 2009). 

 

3.1.4 STEC Pathogens and Their Relation to Public Health 

Foodborne diseases are a major concern of public health for government authorities and 

as well as for the consumers. According to the CDC (2014), 1 in 6 Americans get sick annually 

due to the consumption of contaminated food or beverages, resulting in 128,00 hospitalizations 

and 3,000 deaths. Historically, more than 250 different foodborne diseases have been 

documented. Bacteria, parasites and viruses are majorly responsible for the high numbers of 

foodborne diseases. Since many microorganisms have the ability to spread in different ways, 

sometimes it becomes difficult to identify the source of contamination, which could be a serious 

problem when authorities are trying to control outbreaks (CDC, 2014). The World Health 

Organization (2008) defines an outbreak as the scenario of two or more people acquiring the 

same illness from the same contaminated source. In 2014, CDC released a list of the most 

prevalent pathogens responsible for causing the most illnesses, hospitalizations and deaths every 

year in the U.S. The top five pathogens responsible for the highest number of hospitalization are 

nontyphoidal Salmonella, Norovirus, Campylobacter spp., Toxoplasma gondii and E. coli O157.  
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Escherichia coli, as a species, is one of the most intensively studied microorganisms (Jay 

et al., 2005; Eisenstein and Zaleznik, 2000). Escherichia coli is mostly found in the normal 

gastro-intestinal flora of humans and warm-blooded animals. Despite the fact that most strains 

are harmless to humans, there are six recognized groups of pathogenic E. coli that have the 

potential to cause severe illnesses and even deaths. Virulence factors and mechanisms of 

pathogenicity vary between each group, and many are host specific. Shiga toxin-producing E. 

coli  (STEC) are classified under the Enterohemorrhagic (EHEC) group, and are one of the most 

investigated groups due to their high virulence and their linkage to many food outbreaks (Yang 

and Wang, 2014). Symptoms of STEC infections can range from asymptomatic to hemolytic 

uremic syndrome (HUS), and HUS is a severe life-threatening illness that occurs in about 10% of 

the E. coli O157:H7 cases, with a fatality rate of 4.6% (Gould et al., 2009). Usually, groups that 

have an immunocompromised system such as the elderly and children, are more susceptible and 

more likely to develop more serious symptoms (Astridge et al., 2013; Gould et al., 2009). 

Because of STECs' low infectious dose (10-100 cells depending on the strain) and severity of 

illness, regulatory bodies, academia and the food industry are devoting tremendous efforts 

researching new techniques and strategies to control and reduce foodborne illnesses related with 

STEC (Yang and Wang, 2014; Adams and Motarjemi, 2006).  

According to the CDC, STECs are the major pathogens associated beef products, mainly 

undercooked ground beef. Cattle are the main carrier of E. coli strains, and historically, 

significant numbers of outbreaks have been associated with E. coli contaminated ground beef 

(Wheeler et. al., 2014; Scallan et al., 2011; CDC, 1993). Although beef products are the most 

common cause of illnesses related to STECs, many outbreaks also have been linked to a wide 

variety of food items. Hazelnuts, fresh produce, cheese, juice, yogurt, dried salami, raw milk, 
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mayonnaise and raw cookie dough are examples of food matrixes that have been involved in 

STEC related illnesses (Table 3-4; Johannes and Römer, 2010; Rangel et al., 2005; Cody, 1999; 

Friedman et al., 1999). Annually, more than 175,000 illnesses, 3,600 hospitalizations and 30 

deaths are caused by STECs. Escherichia coli O157:H7 by itself is estimated to cause 63,153 

illnesses followed by 112,752 cases of non-O157 STEC strains (O26, O45, O103, O111, O121, 

O145) every year in the U.S. (CDC, 2015). However, the true number of foodborne illnesses 

caused by non-O157 STEC may be even higher because detection and isolation of these strains is 

time consuming and costly (Hughes et al., 2006; Brooks et al., 2005). The annual healthcare 

expenses related to STEC foodborne illnesses are estimated to be $ 478 million (Economic 

Research Service - USDA, 2009).  
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Table 3-4 Major foodborne outbreaks linked with STEC (cases and/or fatalities)* 
Year Strain Total no. Cases 

(fatalities) 
Food Matrix Country 

2014 O121 19 Raw clover sprouts US 

2013 O121 35 Frozen food products US 

2012 O26 29 Raw clover sprouts US 

2012 O145 18(1) Not identified US 

2011 O157:H7 60 Romain lettuce US 

2011 O1O4:H4 3842 (53) Fenugreek sprouts Germany 

2010 O145 26 Shredded romain lettuce US 

2009 O157:H7 80 Cookie dough US 

2006 O157:H7 205 (3) Spinach US 

2006 O157:H7 71 Taco Bell restaurant US 

1996 - 1997 O157:H7 490 (20) Cooked meat products Scotland 

1996 O157:H7 7966 (3) White radish sprouts Japan 

1995 O111- 161(1) Fermented mettwurst Australia 

1993 O157:H7 731 (4) Hamburgers US 

*Data obtained from Astridge et al., 2013; CDC, 2014, 2013, 2012, 2011a, 2011b, 2010, 2006 

3.2 STECs Contamination in Beef 

Escherichia coli O157:H7 and the Big 6 STEC group have raised major concerns for the 

beef industry, health agencies and consumers. In spite of all the efforts made to control these 

foodborne pathogens, recalls are still happening and outbreaks are frequently identified, 

indicating that more attention is needed to address the issue of STEC-7 (E. coli O157:H7 plus the 

Big 6) contamination of food products (Sofos, 2008; Bacon and Sofos, 2005). The most 

significant beef recall in the U.S. history happened in 1997 when 25 million pounds of ground 
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beef were recalled with potential pathogenic E. coli contamination (FSIS, 1998). FSIS reported 

that approximately 33% of the total beef recalls were due to STECs contamination during the 

years of 2010 and 2014 (Table 3-5).  

Table 3-5 Number of STEC related beef recalls from 2010 to 2014. 

 

*The total number of beef recalls from 2010 to 2014 was 38,224,001 lbs.; FSIS (2015c; 2015d; 

2015e; 2015f; 2015g). 

Because cattle are the major reservoir of STECs serotypes, there is a high potential for 

these microorganisms to be transferred to the carcass surface from hides and feces during the 

slaughter process (Liao et al., 2015). Beef products not only can become contaminated with 

STECs but also support their growth if not processed adequately, and subsequently handled and 

cooked properly, resulting in a serious public health problem (Wheeler, et. al., 2014). Several 

researchers have indicated that the hide is the primary source of carcass contamination (Small et 

al., 2005; Barkocy-Gallagher et al., 2003; Desmarchelier and Fegan, 2003; Nou et al., 2003; 

Elder, 2000). The three major factors that play a big role in the risk of potential carcass 

contamination are: 1) the contamination level of pathogens on the hide; 2) techniques used to 

minimize pathogen transfer from the hide to the carcass; and 3) efficacy of interventions applied 

during various beef processing steps (Wheeler et al., 2014; Barkocy-Gallagher et al., 2003). 

Various efforts used in the beef industry to control STEC contamination during beef processing 

include: animal cleaning and post-stunning hide decontamination, knife trimming and steam 

vacuuming of defined carcass areas, whole-carcass hot water and chemical intervention washes 

Year no.(of(STEC(related(beef(recall no.(of(beef(recalls lbs(of(STEC(related(beef(recall
2010 12 28 2,313,423
2011 13 35 1,002,971
2012 5 19 63,467
2013 7 20 89,919
2014 5 22 1,840,533
Total 42 124 5,310,313
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or sprays, and effective carcass chilling. Usually, these preventative methods are applied in 

combination as an attempt to increase the meat safety (Wheeler et al.,  2014; Sofos, 2008).  

3.3 Bacterial Attachment  

Understanding of bacterial attachment is critical to determine microbial persistence and 

ability to contaminate food products during all commercial food manufacturing processes 

(Kumar and Anand, 1998). Different bacterial species, serotypes or strains can demonstrate 

different responses to various environmental conditions and food matrix characteristics (eg. 

carcass surfaces). Types of substratum, availability of nutrients, moisture content and pH are 

some conditions that determine how bacteria will survive and thrive in different environmental 

circumstances. Two major bacterial distinctions define how bacteria attach to the carcass surface: 

the planktonic group (where bacteria live as individual free-floating organisms) and the sessile 

group (where bacteria attach to surfaces in a complex network structure). Sessile bacteria are 

responsible for biofilm formation (Frank, 2001). Beyond this classification, bacterial attachment 

is influenced by cell and substrata hydrophobicity, cell surface charge, bacterial surface 

structures (flagella and fimbriae), extracellular polysaccharides, and intermolecular forces 

(Dickson and Koohmaraie, 1989; Dahlback et al., 1981; Notermans and Kampelmacher, 1974). 

Hydrophobicity is an important factor that influences bacterial attachment. In biological 

systems these interactions define the strength level of how apolar cells, molecules or particles 

interact among each other when in contact with water (Oliveira, 2001).  

 Cell surface charge plays an important role in bacterial adhesion. Pathogenic bacterial 

cells are usually negatively charged (Carpentier, 2014; Ofek and Doyle, 1994; Loosdrecht et al., 

1987; Verwey and Overbeek, 1948). Furthermore, adhesive substrata on animal cells and tissues 

exhibit negative surface charges. For adhesion between bacteria and substrata to occur, an energy 
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barrier must be overcome. Since bacterial adhesion occurs in different steps, bacteria need to first 

overcome the repulsive forces that separate bacteria from the substrata. This barrier is overcome 

through hydrophobic interactions that effectively weaken the repulsive forces (Sylvester et al., 

1996; Ofek and Doyle, 1994; Verwey and Overbeek, 1948; Derjaguin and Landau, 1941). 

Different bacterial structures impact the efficiency of attachment to meat surfaces (Rivas, 

Dykes, and Fegan, 2006; Otto et. al., 1999; Dickson and Koohmaraie, 1989). Flagella and 

fimbriae, which are bacterial surface structures, have been reported to be important factors in the 

attachment process. However, non-motile bacterial strains can attach similarly to motile strains.  

Nevertheless, motile strains attach more quickly to surfaces than non-motile (Bouttier et al., 

1997; Fratamico, 1996; Piette and Idziak, 1992; Dickson and Koohmaraie, 1989; Dahlback, et 

al., 1981; Notermans and Kampelmacher, 1974). The magnitude of influence of these adherence 

elements is related to the growth conditions, physiological state of the cell and specific bacterial 

strains (Rivas et. al., 2006; Dickson and Koohmaraie, 1989).  

Another mechanism that explains bacterial attachment is the presence of the glycocalix 

structure. In wild environments, bacteria are covered by a network of polysaccharide fibers, 

called the glycocalix. This structure helps the bacteria to better attach to surfaces, and is involved 

in the formation of biofilm structures. When the environment has low availability of nutrients, 

the glycocalix is an important structure that facilitates bacterial attachment, and consequently, 

avoiding starvation. However, when there are abundant nutrients available in the environment, 

bacteria prioritize energy expenditure towards the multiplication process, instead of towards 

synthetizing the polysaccharides necessary for glycocalix formation. Therefore, the absence or a 

low quantity of glycocalix may lead to the loss of the bacteria’s ability to attach (Rivas, Dykes 
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and Fegan, 2006; Cabedo, Sofos and Smith, 1996; Ofek and Doyle, 1994).  For this reason, 

laboratory results might not be comparable to bacterial attachment in wild environments.  

3.3.1 Bacterial Attachment to Beef Tissues 

Many strains of Shiga toxin-producing E. coli have been associated with foodborne 

outbreaks. It is well documented that the consumption of beef products contaminated with STEC 

has caused illnesses ranging from mild diarrhea to fatal hemolytic uremic syndrome (Rivas, 

2006). Since beef cattle are the major reservoir of STECs, there is a potential for meat surface 

contamination during the slaughter process (mainly during hide removal), resulting in the entry 

of these pathogens into the food chain (Desmarchelier and Fegan, 2003). A critical and vital step 

in food contamination is the ability of bacteria to attach to different food surfaces and their 

potential to multiply. A good comprehension of the mechanisms that are involved in bacterial 

attachment is needed to prevent and remove attached microorganisms (Cabedo, Sofos, and Smith 

1996). Bacterial attachment to different food matrixes, such as beef, is still not well defined and 

further research is warranted. There are several methods available to measure bacterial 

attachment and each has specific advantages and disadvantages (Rosenberg and Kjelleberg, 

1986).  

Hermansson et al. (1982) and Pedersen et al. (1980) reported on common methods to 

measure bacterial attachment. Bacterial adherence to hydrocarbons (BATH), hydrophobic 

interaction chromatography (HIC), and contact angle are the methods used to measure relative 

hydrophobicity of bacterial cells. The cell surface charge of bacterial cells is measured by 

electrostatic interaction chromatography (ESIC). Later on, Ofek et al. (2003) described 

additional methods used to quantify attached bacteria: a) Enzyme-linked immunosorbent assay 

(ELISA); b) light microscopy; c) fluorescence (immunofluorescence microscopy, fluorescent 
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DNA and RNA probes, luminometer, image analysis); d) scanning electron microscopy; e) 

measurements of metabolites (CO2, free radical production); f) radiolabeled bacteria; g) viable 

counts (CFU); h) growth assay; and i) biochemical measurements.  

In 1978, Firstenberg-Eden defined the first model to measure bacterial attachment to 

chicken and beef muscle surfaces. Through establishment of the S value [S = log10 (firmly 

attached bacteria) – log10 (loosely associated bacteria), a measure of the relative strength of 

bacterial attachment], it was possible to measure the difference between firmly attached bacteria 

and loosely associated bacteria. Farber (1984) used the same model to measure psychrotrophic 

bacterial attachment on beef muscle. An increase in the S value indicates an increase in the 

numbers of firmly attached bacteria. From S value determination principles, it is possible to 

calculate the SR value, which represents the percentage of the total population of bacteria firmly 

attached to the surface of beef tissues [SR= (firmly attached bacteria)/(firmly attached bacteria + 

loosely associated bacteria)] (Kirsch et al., 2014; Rivas et. al., 2006; Dickson and Koohmaraie, 

1989). Results presented by Dickson and Koohmaraie (1989) showed high variability in bacterial 

attachment depending on the method used to measure it (BATH, HIC, contact angle or ESIC), 

indicating lack of precision between methods. Gram-positive bacteria (Staphylococcus aureus, 

Bacillus subtilis, Listeria monocytogenes) had higher SR values of attachment on both lean and 

fat tissues when compared to gram-negative organisms (E. coli O157:H7, Salmonella 

typhimurium, and Serratia marcescens) after a 5-minute attachment period. In the same study, 

researchers also found that the net negative charge on the bacterial cell was the main contributing 

factor to attachment to lean tissues. Since the sarcolemma of a muscle fiber is a complex of 

protein, collagen, fibronectin and mucopolysaccharide, both negative and positive charges would 

be expected on the muscle surface. For this reason, both attractive and repulsive forces are 
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expected between bacteria and substrata. Results from this study established bacterial cell 

surface charge as an important factor in attachment to meat tissues (Dickson and Koohmaraie 

1989).  

According to Rivas et al. (2006) and Cabrera-Diaz et al. (2009), SR values were not 

significantly different among STEC isolates, including E. coli O157:H7.  These findings were 

different from those of Li and McLandsborough (1999), where E. coli O157:H7 had lower SR 

values on beef muscle when compared to other serotypes. However, no correlation between SR 

value and the concentration of attached bacteria was found by several researchers (Kirsch et al., 

2014; Cabrera-Diaz et al., 2009; Rivas et al., 2006; Dykes et al., 2001; Benito et al., 1996, 1997; 

Notermans et al., 1980). Nonetheless, a high SR value could indicate firmly attached bacteria, 

and thus, lead to the development of a bacterial community with biofilm formation (Benito et al., 

1996).  

Some studies used scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) to analyze the bacterial attachment process. The number of E. coli attached to 

beef tissues was highly correlated (R2 = 0.85 to 0.99) to the inoculum concentration level applied 

to the beef surface (Li and McLandsborough, 1999; Dickson, 1991; Firstenberg-Eden, 1981; 

Butler et al., 1979). However, no statistical differences were found between E. coli attachment to 

lean and fat tissues (Cabedo et al., 1996; Fratamico, 1996; Dickson and Frank, 1993; Chung et 

al., 1989). Also, there were no differences in total attachment levels (loosely + firmly attached 

cells) between strains of E. coli O157:H7 compared to E. coli K12 (Fratamico, 1996). 

Attachment was observed within 1 minute of incubation and there was a significant difference in 

attachment levels when different concentrations of inoculum (2, 3, 5, 7 and 9 log CFU/mL) were 

applied. The greatest attachment, for both E. coli O157:H7 and E. coli K12, was observed when 



24 

the highest inoculum concentration was applied.  Additionally, bacterial attachment (total 

attachment = loosely + firmly attached cells) to meat was greater after 30 min compared to just 1 

minute incubation period (Fratamico, 1996; Chung et al., 1989). The level of attached E. coli, 

when stored at 19 °C for 18 hours, was significantly higher than the level of attached bacteria 

following storage at 4 °C for the same period of time (Fratamico, 1996; Mattila and Frost, 1988).  

Research has been conducted to study the role of aggregative surface appendages 

regarding the mechanisms of STEC attachment (Cookson et al., 2002; Prigent-Combaret et al., 

2000, 2001; Warriner et al., 2001; Otto et al., 1999; Vidal et al., 1998; Fratamico, 1996). Under a 

transmission electron microscope, it is possible to observe that STECs can express a curli, wiry 

and thin protein fiber measuring approximately 4-12 nm (Chen et al., 2007; Chapman et al., 

2002). Usually, non-optimal growth conditions such as starvation, lower temperatures, and low 

osmotic conditions induce STECs to produce the aggregative surface appendages (curli, 

fimbriae), which facilitate E. coli attachment to host matrix proteins on meat surfaces. Several 

authors reported statistically significant differences in STECs' attachment among strains that 

express the curli fimbriae and strains that did not (Chen et al., 2007; Gophna et al., 2001; 

Sjöbring et al., 1994; Arnqvist et al., 1992; Chung et al., 1989; Butler et al., 1979), while others 

found similarity in attachment comparing curli and noncurli-expressing variant strains (Rivas, et 

al., 2006; Warriner et al., 2001; Otto et al., 1999; Fratamico, 1996).  

Several studies reported connective tissue fibers to be an important factor to establish 

bacterial attachment to meat surfaces (Kim and Slavik, 1994; Walls et al., 1993; Benedict et al., 

1991; McMeekin et al., 1984). It has been described that the presence of specific binding sites on 

collagen (fibronectin and laminin), as well the existence of specific bacterial receptors for such 

matrix proteins, increases the attachment between bacteria and meat surfaces, thus confirming 
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the findings by Fratamico et al., (1996), Prachaiyo et al., (2000) and Firstenberg-Eden et al., 

(1978) where E. coli O157:H7 appeared to bind to collagen fibrils on beef tissues (Schulze-

Koops et al., 1993; Schulze-Koops et al., 1992; Benedict et al., 1991; Speziale et al., 1986). 

Studies conducted by Chagnot et al., (2013) showed greatest attachment of E. coli O157:H7 to 

collagen I and III at 25 °C when compared to 7 and 4 °C.  For lower temperatures (7 and 4 °C), 

the attachment was minimum. This could be explained by the production of fimbriae at higher 

incubation temperature. Zulfakar et al., (2012) during a study in vitro found greater STEC 

attachment to fibronectin, collagen IV and laminin at 37 °C when compared to 4 and 25 °C after 

a 120 min incubation period. However, STEC attached best to the extracellular matrix protein 

collagen I at 4 °C. 

Cabedo et al., (1996) calculated the attachment strength (IIA) of E. coli O157:H7 to 

different meat tissues (beef muscle and adipose tissue) as IIA = log C – log [A-(B-C)], where A 

is cells loosely attached to the meat surface and cells found in water droplets on the meat surface, 

B is cells loosely and firmly attached to meat surface plus the cells found in water droplets on the 

meat surface, and C is cells loosely and firmly attached to the meat surface. There were no 

differences in bacterial attachment strength between beef muscle and adipose tissue even after 20 

minutes of immersion in the inoculum. Additionally, meat tissues held at 4 °C for 3 hours did not 

present additional growth and their attachment strength did not change between muscle and 

adipose tissues. Dickson and Frank (1993) found similar attachment of E. coli O157:H7 to beef 

muscle and adipose tissues.  

Warriner et al., (2001) evaluated bacterial attachment by analyzing loosely, firmly and 

irreversibly attached cells. Loosely attached cells were removed from the meat surface by a 

running stream water wash, while the firmly attached cells were removed from the surface by 
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stomaching the rinsed samples. The irreversibly attached bacteria were determined by 

stomaching the loin sections and subsequently subtracting the initial counts from the inoculated 

loin sections. Rinsed samples had a greater bacterial recovery for E. coli, Listeria monocytogenes 

and Salmonella Typhimurium when compared to samples that were stomached. This suggested 

that most bacteria were only loosely attached to the loin surface.  

Kirsch et al., (2014) evaluated the effects of chilling and post-inoculation storage on beef 

briskets inoculated with non-O157 STEC and E. coli O157:H7. They reported that beef chilling 

status is an important factor in bacterial attachment. Greater STEC attachment was observed 

when briskets were exposed to chilling temperatures of 5 °C when compared to non-chilled 

temperatures of 25 °C. Recovery of STEC cells from briskets was greatest at time 0 minutes 

compared to 30, 60, 90 and 120 minutes post-inoculation. However, many researchers (Chen et 

al., 2007; Lillard, 1985; Notermans and Kampelmacher, 1974) reported a linear increase in 

bacterial attachment when evaluating chicken skin during post-inoculation incubation. Others 

reported no positive relationship between incubation contact time and number of attached 

bacteria (Benito et al., 1996; McMeekin et al., 1984). The measured SR value was highly 

influenced by the incubation time, storage temperature and the chilling effect. The SR value was 

significantly higher for briskets stored at 5 °C than at 25 °C. After 120 minutes of contact time, 

the bacterial attachment strength was the highest when compared to 0 min, but it was not 

significantly different from 30, 60 and 90 minutes of incubation. These results are in agreement 

with the results found by Fratamico et al., (1996) and Firstenberg-Eden et al., (1978), where an 

increase in bacterial attachment strength of E. coli O157:H7 and E. coli K-12 to meat tissues was 

observed. Findings from Cabedo et al., (1997) are in disagreement because there was no 

difference in attachment strength of E. coli O157:H7 over 3 hours of contact time. 
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Several researchers reported difficulty in comparing their results with results found in the 

literature because of a lack of commonality between experimental designs, organisms, methods 

of analysis, and meat tissues (Kirsch et al., 2014; Warriner et al., 2001; Fratamico, 1996; Piette 

and Idziak, 1992; Mattila and Frost, 1988; Loosdrecht et al., 1987; Notermans and 

Kampelmacher, 1983; Firstenberg-Eden, 1981). More research is needed to quantify STEC 

attachment characteristics, such as time needed for STEC to adhere to beef tissues, the role of 

flagella/fimbriae, influence of storage temperature, influence of tissue type (muscle/adipose), and 

laboratory inoculation preparation and inoculation procedures.  All of these characteristics are 

important to access how STECs attach to beef tissues and in determining the effectiveness of 

antimicrobial interventions to enhance beef safety. 

 

3.4 Typical Carcass Dressing and Processing Steps in Commercial Beef 

Processing and Use of Intervention Technologies to Control STECs 

3.4.1 Process Flow in Commercial Beef Processing 

According to the USDA-FSIS (2015b), “Slaughter is the process whereby healthy, live 

animals are humanely stunned, bled, dehided, dehaired and eviscerated.” The slaughter process 

may vary from plant to plant; however, large plants have a mechanized and similar process, as 

shown in Figure 3-2 (FSIS, 2015b). The activities conducted by slaughter floor personnel at each 

step in the process provide an opportunity for contamination of the carcass surfaces and/or 

fabricated beef cuts. Following are the sequential steps involved in the slaughter process 

commonly used in the beef industry: 

Cattle Receiving and Holding: Cattle are received in the plant and held in pens prior to 

the slaughter. The animals are allowed to drink water prior to the slaughter, but are kept off feed 
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to avoid potential contamination and facilitate dressing procedures. To identify any diseases in 

the animals, which could affect human health, an ante-mortem inspection is conducted prior to 

slaughter (FSIS, 2015b; Hui, 2012). 

Stunning: Captive bolt, which is a mechanical method, is largely used by the beef 

industry to render the animals unconscious and minimize any discomfort during stunning. 

Moreover, this method complies with the Humane Slaughter Act (FSIS, 2015b; Hui, 2012). 

Hide Opening in the Neck Area and Sticking: In this step, a sharp blade is inserted into 

the neck of the cattle, and the carotid artery and jugular vein are cut open, resulting in 

exsanguination and death. This is the first step where cross-contamination could occur. As the 

knife blade penetrates through the hide to the inside of intact muscles, there is a potential of 

introducing harmful bacteria, such as STECs (FSIS, 2015b; Hui, 2012). 

Dehiding - Opening, Skinning and Hide Removal: This process can be achieved by 

various methods. It can be done by hand, usually in small operations, or using electrical 

equipment. This step is considered critical regarding cross-contamination from the hide. 

Pathogen reduction intervention treatments are very common and recommended by FSIS after 

hide removal. Hot water wash, organic acid wash or steam vacuuming are some interventions 

used to reduce bacterial contamination on the carcass surface immediately after hideremoval 

(FSIS, 2015b; Hui, 2012). 

Head Removal: At this step the head is removed and inspected, and the carcass moves to 

the next step of the process. After inspection, heads are typically washed with water, hot water, 

and/or an antimicrobial solution, with head and cheek meat trimmed to include in ground beef 

manufacturing. 



29 

Evisceration: This step consists of separating the internal organs from the carcass. It is 

extremely important to perform the evisceration step properly in order to avoid fecal and fluids 

contamination from the intestines and stomach because harmful bacteria such as STECs, 

Salmonella and Campylobacter jejuni are harbored in these organs. Processors commonly use 

intervention treatments after evisceration. There are many options available as cited under the 

dehiding step above. After the organs are separated from the carcass, a post-mortem inspection is 

done on the viscera with the purpose of detecting potential diseases in the animal and 

determining parts or organs that may be unacceptable for human consumption (FSIS, 2015b; 

Hui, 2012). 

Splitting: The carcass is split vertically down the spinal column with a large powered saw 

to yield two matching carcass sides.  

Trim Rail: At this step an inspection is conducted to detect visible contamination (feces, 

milk, hair) and issues for the carcass quality. When the inspection is not satisfactory or the 

inspectors have concerns related to quality aspects, a trimming procedure is done to improve 

carcass quality (FSIS, 2015b; Hui, 2012). 

Final Wash: The carcass is washed with hot water (150 to 180 °F) for ~5 seconds, and 

this allows additional removal of any remaining contaminants, which were not successfully 

removed during the trim rail step. This is a key step to apply a whole carcass antimicrobial 

intervention technology, such as organic acid sprays, to reduce the risk of pathogens remaining 

on carcasses. After the final wash and before the carcass enters the cooler, an USDA inspector 

evaluates the carcass for any contamination or quality aspects. If the carcass passes the final 

inspection, it receives an USDA-FSIS stamp (FSIS, 2015b; Hui, 2012). 
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Chill: Chilling the carcass is a necessary and important step during the carcass conversion 

process. Many factors play a role during the chilling step. Temperature, humidity and airflow are 

factors that need to be controlled in order to maintain the safety of the product and preserve its 

quality (FSIS, 2015b; Hui, 2012). The chilling process will also impact the development of rigor 

mortis. After the animal is slaughtered, muscles lose their supply of oxygen because the blood 

circulation system stops. Consequently, the muscle turns into an anaerobic glycolysis process 

because of the unavailability of oxygen in the system. From this point on, the energy used to 

contract the muscles is supplied from anaerobic glycolysis. Besides the energy production, this 

process also results in lactic acid formation, which causes a reduction in the muscle pH. Once 

glycogen supplies are consumed, the muscle contraction stops and the filaments (actin and 

myosin) are bound together, resulting in a permanent contraction called rigor mortis (Hui, 2012; 

Hannula and Puolanne  2004; Gigiel et al., 1989). Low chilling temperatures result in a slower 

rigor mortis development, while higher chilling temperatures results in a faster rigor mortis 

development. The post-mortem muscle has a pH of ~7.0, and pH declines to ~5.6 during the 

rigor mortis process. Once again, chilling conditions would also influence the time frame of the 

pH curve (7.0 to 5.6). Faster chilling processes result in a slower pH drop, while a slower 

chilling process will result in a faster pH drop (Hui, 2012; Savell, 2012; Hannula and Puolanne, 

2004; Gigiel et al., 1989).  

Carcass Fabrication – Primals or Trimmings: When the conversion of muscle to meat is 

completed, the carcass is fabricated; and primals and trimmings are the resultant meat cuts. 
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Figure 3-2 Beef slaughter and fabrication flowchart* 
      *FSIS, 2015b 
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3.4.2 Intervention Treatments to Reduce/Control STECs  

Disease outbreaks and recalls involving beef products cause regulatory authorities, the 

meat industry and consumers to focus on beef safety (Wheeler et al., 2014; Sofos, 2008). The 

most concerning group of bacteria for the beef industry is the STEC, including E. coli O157:H7 

and the “Big 6” (Sofos, 2008; Koohmaraie et al., 2007). Antimicrobial interventions have been 

widely used to reduce contamination on raw beef, to minimize cross-contamination by 

inactivating microorganisms that have already entered the food chain, and to control/prevent the 

growth of microorganisms that contaminated the product but were not inactivated (Stopforth and 

Sofos, 2006; Juneja and Sofos, 2001; Sofos, 1994; Sofos 2005). Numerous interventions have 

been used in the beef industry, and most of them are focused on decontaminating carcasses at the 

pre-rigor stage (prior to chilling). Physical and thermal interventions, acid and oxidizer 

antimicrobials, non-thermal interventions and multi-hurdle strategies are recognized as the most 

effective and promising mechanisms to reduce and control pathogens in the beef industry 

(Wheeler, Kalchayanand and Bosilevac, 2014).  FSIS has taken many actions to ensure meat 

safety, including: (a) implementation of sanitation standard operating procedures; (b) 

implementation and operation of HACCP programs; and (c) establishment of a sampling 

program for E. coli and Salmonella spp., as part of verification of the HACCP program (FSIS, 

1996). The U.S. meat industry has improved its meat safety programs and has employed multi-

hurdle strategies of decontamination interventions to provide safer beef products to consumers 

and to meet regulatory requirements (Sofos, 2005; Huffman, 2002; Sofos and Smith, 1998; 

Dorsa et al., 1997; Dickson and Anderson, 1992).  

The effectiveness of antimicrobials has been studied in different food matrixes to control 

bacterial growth (Huffman, 2002). FSIS directive no. 7120.1 (USDA-FSIS, 2015a) describes the 
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use of antimicrobials in food and food products as follows: (a) type of antimicrobial (processing 

aids) added during processing, but it is removed or converted to normal food ingredients not 

leaving significant residuals; (b) secondary direct food additives, added during processing, but 

removed from the final product not leaving any technical effect from residuals; (c) direct food 

additives, added during processing providing technical effects into the final product. 

Antimicrobials used in the meat industry are allowed to be applied in fabricated meat products, 

however cannot exceed 0.5% in gained weight of the final product. The selection of the best 

intervention depends on several factors such as cost, effect on the food, and the legal limit of its 

use (Wheeler et al., 2014; Arthur et al., 2008; Small et al., 2005; Barkocy-Gallagher, et al., 2003; 

Nou et al., 2003; Bell, 1997). Most interventions are applied at the post-harvest level due to the 

hide being the primary source of carcass surface contamination (Wheeler et al., 2014; Small et 

al., 2005; Barkocy-Gallagher et al., 2003; Smeltzer et al., 1980). 

Acid interventions have been widely studied as antimicrobial agents against STECs. 

Lactic, acetic and citric acids are widely used in the beef industry. Moreover, lactic acid is the 

most common organic acid that is being used due to its effectiveness and low cost (Ransom et 

al., 2003; Belk, 2001). Several studies have demonstrated the efficacy of lactic acid in reducing 

STEC populations ranging from 1 to 4 logs, using either spray or immersion methods (Schmidt 

et al., 2014; Kalchayanand et al., 2013, 2012; Geornaras et al., 2012; Ransom et al., 2003). The 

amount of reduction in bacterial population using lactic acid depends on several factors: bacterial 

attachment/contact time to the meat surface, irregularities and characteristics of the meat surfaces 

(fat, uneven surface, small cuts), carcass temperature, moisture content of meat, acid 

concentration, concentration of the undissociated molecule, pH, pKa, and temperature and 
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exposure time of acid used (Dubal et al., 2004; Ransom et al., 2003; Ramirez et al., 2001; Baird-

Parker, 1980).  

The mode of action of organic acids, such as lactic acid, is not completely understood, 

but many authors have described it as a combination of mechanisms between undissociated 

molecules and dissociated ions causing conflict with the trans-membrane proton gradient of the 

microbial cells, along with structures of the cell surface, outer membrane, and cytoplasmic 

membrane (Booth and Kroll, 1989; Corlett and Brown, 1980; Eklund, 1989). All of these 

changes can affect many vital processes of bacterial cells such as energy generation and nutrient 

transport, which will affect bacterial growth and multiplication. The low pH causes bacterial 

cellular damage leading to lethal injury of the cells (Wheeler et al., 2014). Currently, USDA-

FSIS allows the use of lactic acid at a concentration level up to 5% in solution for livestock 

carcasses prior to fabrication (pre- and post-chill), offal, and variety meats. For beef and pork 

sub-primals and trimmings, a concentration from to 2 to 5% solution of lactic acid and not 

exceeding 55 °C is allowed (USDA-FSIS 2015a). 

Ransom et al., (2003) evaluated different dip decontamination technologies (water at 25 

°C,  10 ppm acidified chloride, 2% acetic acid, 2% lactic acid at 55 °C, 1% lactoferricin B, 5% 

peroxyacetic acid, 7% acidified sodium chloride, and 0.5% cetylpyridinium chloride) using 

different inoculation levels of E. coli O157:H7 on beef tissues. For both high (5 to 6 log 

CFU/cm2) and low (3 to 4 log CFU/cm2) inoculation levels of E. coli, a log reduction of up to 4 

log CFU/cm2 and 3 log CFU/cm2 were observed for 0.5% cetylpyridinium chloride and 2% lactic 

acid at 55 °C, respectively. However, cetylpyridinium chloride is approved for use only on raw 

poultry carcass/parts, but not for meat products, while the use of lactic acid is allowed up to 5% 

in meat products (USDA-FSIS 2015a). Youssef et al. (2013) also evaluated the effect of 5% 
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lactic acid on high (4 log CFU/cm2) and low (1 log CFU/cm2) inoculation levels of E. coli 

isolated from commercially manufactured beef on membrane, fat and cut muscles surfaces. The 

greatest reduction (up to 4 log CFU/cm2) was observed on high levels of inoculated membrane 

surfaces. A reduction of <1.2 log CFU/cm2 was observed at low inoculation levels. Cut muscle 

surfaces presented similar reductions at both high and low levels of inoculation (>1 log CFU/cm2 

and ≤ 0.8 log CFU/cm2, respectively). Similarly, Liao et al., (2015) evaluated the effectiveness of 

water at 21 °C, 5% lactic acid, 200 ppm hypobromous acid, and 200 ppm peroxyacetic acid on 

inoculated beef strip loin subprimals with high and low concentrations of E. coli O157:H7 and 

non-O157 STEC. Also, after the acid treatments, the effect of a vacuum storage (4 °C for 14 

days) was evaluated. No significant reductions were observed among the acid-based treatments 

for either high or low STEC concentrations before the storage period. However, after the 14-day 

storage period, reductions of 2 and 1 log cycles of E. coli O157:H7 were observed among all the 

treatments for high and low concentrations of inoculum, respectively. Additionally, levels of 

non-O157:H7 STEC were reduced, in both high and low levels of inoculum, after the 14-day 

storage period when compared to the control. These results are in accordance to previous work 

by Cutter and Rivera-Betancourt (2000). 

Wolf et al., (2012) tested the effectiveness 4.4% lactic acid dip and spray methods for 

reducing E. coli O157:H7, non-O157 STEC and Salmonella on beef trim and ground beef. Lactic 

acid dip was the most successful method and significantly reduced all three organisms in both 

beef trim and ground beef. Castillo et al., (2001) studied combinations of lactic acid 

concentrations (2, 4%), temperatures (55, 65 °C) and spray times (15 and 30 s) on inoculated (E. 

coli O157:H7) chilled beef surfaces. The combination of the three factors, which presented the 

greatest reduction (4.8 log CFU/cm2) was 4% lactic acid solution at 55 °C sprayed for 30 
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seconds. This treatment, when combined with a pre-treatment water wash, was even more 

effective and resulted in a log reduction of 5.3 to 5.7 log cycles for both E. coli O157:H7 and 

Salmonella Typhimurium. These results are in agreement with several researchers that also 

tested a combined effect of a water wash followed by organic acid treatment on beef carcass 

surfaces (Bacon et al., 2002; Castillo et al., 1998, 2001; Dorsa, 1997; Dorsa et al., 1997; 

Gorman, 1995). Furthermore, Gill and Badoni (2004) observed a significant reduction (≥1.5 log 

CFU/cm2) of E. coli on chilled meat surfaces when 4% lactic acid spray was applied and 

followed by chilling for 5 or 60 minutes at 7 °C. Zhao et al., (2014) observed similar results 

when 5% lactic acid spray was applied to a chilled beef surface at 4 °C. However, many 

researchers reported a non-significant bacterial reduction when ≤ 2% lactic acid was applied as a 

non-combined intervention (by itself) on cold beef surfaces (Gill and Landers, 2003; Bacon et 

al., 2002b ; Brackett, 1994; Acuff et al., 1987). This finding might be explained by the fact that 

temperature of the meat and the lactic acid are determinant factors that play a role on lactic acid 

effectiveness, which also was reported by several authors (Anderson and Marshall, 1989; 

Dickson and Anderson, 1992; Greer and Dilts, 1992). 
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Chapter 4 - Characterizing Differences in Shiga Toxin-Producing 

Escherichia coli (STEC) Attachment to Pre-Rigor and Chilled Beef 

Carcass Surfaces 

4.1 Introduction  

Shiga toxin-producing Escherichia coli (STEC) are major pathogens associated with beef 

products, mainly ground beef, in the past 25 years in the U.S. Annually, more than 175,000 

illnesses, 3,600 hospitalizations and 30 deaths are caused by STECs (CDC, 2015). Escherichia 

coli O157:H7 is estimated to cause 63,153 illnesses followed by 112,752 cases of non-O157 

STEC strains (O26, O45, O103, O111, O121, O145) every year in the U.S. (CDC, 2015).  

The consumption of beef products contaminated with STECs may cause illnesses ranging 

from mild diarrhea to severe hemolytic uremic syndrome (Rivas et al., 2006). Ruminants, 

particularly cattle, are the major reservoir of STECs, and research has shown that these 

pathogens are mainly spread to the carcass from the hide and feces during beef harvesting, 

posing a risk of their entry into the food chain (Small et al., 2005; Nou et al., 2003; 

Desmarchelier and Fegan, 2003; Barkocy-Gallagher et al., 2003; Elder, 2000; Smeltzer et al., 

1980).  In 1994, in response to a large foodborne illness outbreak that resulted in deaths of four 

children and numerous hospitalizations from the consumption of undercooked ground beef 

contaminated with E. coli O157:H7, the Food Safety and Inspection Service (FSIS) of the U. S. 

Department of Agriculture (USDA) declared E. coli O157:H7 to be an adulterant in raw, non-

intact beef products (FSIS, 1999). Subsequent foodborne illness outbreaks involving six non-

O157 STECs (O26, O45, O103, O111, O121, O145) led the FSIS to also declare these strains to 

be adulterants in non-intact beef products (FSIS, 2012). 
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STECs pose a significant threat to consumers’ health and can negatively impact the 

economy of the beef industry. Since physical attachment is one of the first steps that results in 

bacterial contamination and multiplication, understanding bacterial attachment mechanisms to 

different meat tissue types is extremely important in the development of strategies to control and 

remove these pathogens from the meat surface during and after slaughter operations (Li and 

McLandsborough, 1999; Ofek and Doyle, 1994). Additionally, antimicrobial interventions are 

widely used by the beef industry as control steps in regulatory mandated Hazard Analysis and 

Critical Control Points (HACCP) programs (CFR, 1996). Their efficacy is partially dependent on 

the microbial population levels, and likely the strength of attachment, on the meat surfaces being 

treated. 

Acid-based interventions have been widely studied as antimicrobial agents against 

STECs. Lactic acid is the most common and widely used organic acid in the beef industry 

because of its effectiveness and low cost, when compared to other organic acids (Ransom et al., 

2003). Several studies have demonstrated the efficacy of lactic acid in reducing STEC 

populations ranging from 1 to 4 log cycles, using either spray or immersion methods. The 

magnitude of reduction in bacterial population using lactic acid depends on several factors: 

bacterial attachment/contact time to the meat surface, characteristics of the meat surfaces (fat, 

uneven surface, small cuts), carcass temperature, moisture content of meat, acid concentration, 

volume, temperature and exposure time (Dubal et al., 2004; Ransom et al., 2003; Ramirez et al., 

2001). Therefore, this research was conducted to better understand the process of bacterial 

attachment to different types of tissues (predominantly lean muscle and adipose surfaces) when 

exposed to pre-rigor and chilled beef surfaces, and to study the effect of 4.5% lactic acid 

treatment on STEC population reduction on these meat surfaces.  
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4.2 Material and Methods 

4.2.1 Overall Study Design 

STEC attachment to different tissue types (predominantly lean muscle and adipose 

surfaces) and the effect of 4.5% lactic acid treatment on STEC population reduction on meat 

surfaces was studied. Pieces of beef carcass surfaces (representing predominantly lean muscle 

and adipose surfaces) were randomly assigned to four different carcass contamination scenarios 

(A, B, C and D; described in section 4.2.3) for STEC inoculation and treatment with either 4.5% 

lactic acid or water. Meat surface excision samples were collected after inoculation using a 30 

min attachment period, and after each treatment to determine STEC attachment level achieved 

and log reductions after spray treatments. Four carcasses were utilized to conduct the 

experiment. Each piece of either predominantly lean muscle or adipose surfaces was inoculated 

and treated individually. The lowest order of each treatment combination of each carcass was 

considered as a replication (total 4 replications). Each scenario by tissue type was measured in 

duplicate to determine STEC attachment on each carcass. A fresh inoculum was used to 

inoculate the samples in each replication. Each scenario by tissue type by treatment was 

measured in duplicate to determine STEC log reductions for each carcass. STEC attachment and 

log reductions were analyzed assuming a completely randomized design.  

 

4.2.2 Collection of Meat Samples from Carcasses 

Two fed cattle (~400 kg of weight after dressing) were obtained locally from feedyards 

on two separate days (4 cattle total) and transported to the Kansas State University Biosecurity 

Research Institute where they were humanly slaughtered in compliance with USDA-FSIS 

approved procedures (FSIS, 2011). Warm, pre-rigor beef surface samples (representing scenarios 
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A and B described in section 4.2.3) were collected from the first beef carcass immediately after 

dehiding and carcass splitting (before any carcass washing). These carcass surface tissue sections 

were aseptically cut from both carcass sides using a 15.24 x 15.24 cm template (232 cm2 surface 

area) at ~2.5 cm thickness. Sixteen samples were chosen from each carcass side to represent 

predominantly lean and sixteen to represent predominantly fat surface tissue (resulting in 32 

samples of each tissue type from carcass 1).  The samples were immediately placed into an 

insulated container after removal from the carcass and were transported to a walk-in incubator 

set at 42 °C where they were attached to 20 x 20 cm vinyl tiles (natural exterior tissue surface 

facing outward on the tile) using large binder clips. The 32 predominantly lean muscle or adipose 

tissue sections from carcass 1 were randomized within each group, and were assigned to lactic 

acid or water treatment. These samples were then transported to the microbiology laboratory for 

STEC inoculation (see section 4.2.5). 

The second beef carcass was slaughtered and processed similarly to carcass 1, but was 

passed through a commercial hot water spray wash cabinet (~95 °C nozzle temperature for ~12 s 

at 50 psi) equipped with 22 oscillating spray nozzles on each side of the cabinet (Combination 

Carcass Wash, Hot Water Pasteurization and Chemical Spray Assembly, Chad Equipment LLC, 

Olathe, KS, USA). The average distance between nozzles and the beef carcass was 25 cm. After 

the hot water spray wash, the carcass was placed into a carcass chill cooler for 24 h; which 

utilized an initial 8 h of chilled water (2 °C) spraying for 1 min at 15 min intervals, followed by 

16 h at 2 °C of dry chilling. After 24 h of chilled storage, 16 lean and 16 adipose surface tissues 

sections were collected from both carcass sides, as described for carcass 1.  The 232 cm2 chilled 

surface samples assigned to scenario C were inoculated chilled and treated (LA or water) using 

the same methodology as for scenarios A and B.  Chilled surface samples assigned to scenario D 
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were re-warmed to ~30 °C in the 42 °C incubator and were treated using the same methodology 

as for scenarios A, B and C. The experiment was repeated using two additional fed cattle 

(carcasses 3 and 4) on a different day.  

4.2.3 Carcass Contamination and Intervention Application Scenarios  

Each beef surface tissue type (predominantly lean muscle and adipose surfaces) was 

assigned to one of the four scenarios (Figure 4-1):  

(A) Warm (pre-rigor) beef surfaces inoculated shortly (45 min) after hide removal, 

and assigned to either the lactic acid or water control spray treatment.   

(B) Warm (pre-rigor) beef surfaces inoculated shortly (45 min) after hide removal, 

chilled for 24 h at 2°C, and assigned to either lactic acid or water spray treatment.  

(C) Beef surfaces chilled for 24 h at 2 °C, inoculated, and treated with either lactic 

acid or water sprays. 

(D) Beef surfaces chilled for 24 h at 2 °C, re-warmed to ~30°C (simulating a pre-rigor 

carcass temperature) in an incubator, inoculated, and treated with either lactic acid 

or water.  
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Figure 4-1 STEC contamination and antimicrobial treatment scenarios representing 
commercial beef industry processing. 
 

4.2.4 Inoculum Preparation 

Seven STEC serotypes, [O26 (H30, human isolate), O45 (CDC 96-3285, human isolate), 

O103 (CDC 90-3128, human isolate), O111 (JB1095, human isolate), O121 (CDC 97-3068, 

human isolate), O145 (83-75 human isolate) and O157 (ATCC 35150)] were streaked 

individually onto tryptic soy agar (TSA) plates (Difco, Becton Dickinson, Sparks, NJ, USA) and 

incubated at 35 °C for 24 h. After 24 h of incubation, one colony of each strain was inoculated 

into seven 10 mL tryptic soy broth (TSB; Bacto, Becton Dickinson, Sparks, NJ, USA) tubes and 

incubated at 35°C for 24 h. After 24 h of incubation, 5 mL of each TSB broth culture were 

combined into a single 50 mL conical tube, resulting in a concentrated STEC-7 cocktail (35 mL 

at ~108 CFU/mL).  Individual strains and cocktail were plated on Petrifilm E. coli/coliform 

(ECC; 3M Corporation, Saint Paul, MN, USA) and incubated for 24 h at 35°C to confirm 

relative strain ratios in the cocktail and to confirm overall cocktail STEC-7 concentration. For 

master inoculum preparation, 25 mL of concentrated cocktail were diluted in 225 mL of 0.1% 
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peptone water in a sterile plastic bottle to achieve a STEC-7 master inoculum with ~107 CFU/mL 

concentration.  Inoculum concentrates were stored at room temperature and used within 30 min. 

A new inoculum was prepared for carcasses 1 and 2, and for carcasses 3 and 4, since the chilled 

tissue inoculations (scenarios C and D) occurred the day following slaughter.   

 

4.2.5 Meat Inoculation 

 Meat surface temperature was measured with an infrared type K thermometer (Fisher 

Scientific, PA, USA) immediately prior to inoculation. Meat sections were inoculated by 

pipetting 1 mL of STEC-7 master inoculum across the 232 cm2 surface area and evenly 

distributing the inoculation fluid using a L-shaped spreader (Figure 4-2). Inoculated meat 

surfaces were left undisturbed for 30 min at room temperature to allow bacterial attachment, 

prior to the application of lactic acid or water sprays. STEC attachment was measured as the 

initial cell count (log CFU/cm2) after the 30 min attachment period. 

 

  

Figure 4-2 Meat surface inoculation 
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4.2.6 Lactic Acid Solution Preparation 

Lactic acid solution (4.5%) was prepared by mixing 49.14 mL of concentrated lactic acid 

(88%; F.GTM, Birko, CO, USA) with 1000 mL of deionized water. The concentration of lactic 

acid solution was confirmed by measuring the titratable acidity of the solution as described by 

Nielsen (2003). A sample (9 mL) was pipetted into a 100 mL titration flask and the pipette was 

rinsed with ~18 mL deionized water, and then titrated against 0.1 N sodium hydroxide (NaOH; 

Acros Organics, NJ, USA) using 0.5 mL phenolphthalein (Fisher Scientific, Pittsburgh, PA, 

USA) as an indicator. Titratable acidity was calculated using the following formula: 

TA (% lactic acid) = mL of 0.1 N NaOH used × 0.1 

 

4.2.7 Meat Surface Treatment 

 After the 30 min inoculum attachment period, the meat pH was measured (Exstil 

waterproof pH meter, Extech Instruments Corporation, NH, USA) using a surface contact probe 

before and after lactic acid or water treatment. For treatment of each meat surface, 15 mL of 

4.5% lactic acid or water, which both were at room temperature, was sprayed onto the meat 

surfaces using a volume-calibrated hand-spray bottle (Figure 4-3), followed by a 3 min drip 

period before tissue excision samples were collected to enumerate residual STEC population 

levels. Two meat surface excision samples (9.1 cm2 each) were collected using a sterile coring 

device prior to and after spray treatments (Figure 4-4). The two excised cores representing each 

sampling point were combined into a sterile filtered stomacher bag (Fisher Brand, Fisher 

Scientific, Pittsburgh, PA, USA) containing 75 mL of 0.1% of peptone water, stomached 

(Stomacher 400 Lab Blender, Seward Laboratory Systems Inc, FL, USA) for 60 s at 230 rpm, 

and plated on Petrifilm E. coli/coliform to determine the log reductions for STEC-7 after 

treatments.  
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Figure 4-3 Application of treatments (4.5% lactic acid or water control) onto meat surfaces 
 
    

 

Figure 4-4 Meat surface excision for microbiological analysis 
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4.2.8 Experimental Design and Statistical Analysis 

Bacterial attachment under the 4 STEC contamination scenarios (A-D) and log reductions 

resulting from 4.5% lactic acid or water sprays were analyzed assuming a completely 

randomized design. Bacterial attachment had a two-way factorial treatment structure with 

treatment factors with scenarios (A, B, C and D) and tissue type (predominantly lean muscle and 

adipose tissue), and each treatment combination was replicated four times. Log reductions had a 

three-way factorial treatment structure with four replicates per treatment combination, where 

treatment factors were tissue type, treatment (lactic acid or water) and scenarios. Both analyses 

were performed using the MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary, NC). 

Residual homogeneity and normality were assessed graphically. The highest order interaction 

was evaluated first; if not significant, lower order interactions were evaluated subsequently. 

Main effects for treatment factors not involved in significant interactions were evaluated 

separately. The liner model for STEC-7 attachment contained main effects for scenarios and 

tissue type, and the two-way interaction. The model for log reduction included the main effects 

for scenarios, tissue type and treatment, as well as two- and three-way interactions. Least-squares 

means were calculated at the level at the highest order significant effects, and pairwise 

comparisons of treatment levels were performed using the Tukey-Kramer adjustment for 

multiple comparisons. Adjusted P-values were assessed at α = 0.05. 

4.3 Results and Discussion 

4.3.1 Initial STEC-7 Cell Count (Attachment) 

Initial STEC-7 cell concentrations in the master inoculum were 7.05 ± 0.21 log CFU/mL. 

The mean pH and temperatures (average for predominantly lean muscle and adipose tissue) of 

different scenarios at the time of inoculation are presented in Table 4-1. 
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Table 4-1 Surface tissue pH and temperature of different scenarios, averaged across 
predominantly lean muscle and adipose tissue. 

 

The interaction between inoculation scenarios and tissue type, and tissue type main effect 

were not significant (P>0.05; Table 4-2). Since the scenarios main effect was the only one 

significant, scenarios means were calculated by averaging over tissue type STEC-7 levels.  

Table 4-2 ANOVA table of attachment 

 

Initial STEC-7 cell counts between predominantly lean muscle (5.52±0.06 log CFU/cm2) 

and adipose tissue (5.38±0.06 log CFU/cm2) were not significantly different (P>0.05). There was 

no significant interaction between tissue type and scenario (P=0.34). However, the mean 

concentration of initial counts of STEC-7 cells on tissue type after 30 min attachment period was 

significantly different between scenarios (P≤0.05). The highest initial STEC counts were 

observed in scenarios C and D (5.85±0.05 and 5.55±0.07 log CFU/cm2, respectively), which 

were simulating chilled stored beef surfaces (~8 °C) and rewarmed beef surfaces (~30 °C), 

respectively (Figure 4-5). However, scenarios A and D did not differ in initial STEC-7 cell 

counts (P=0.17). The lowest initial STEC-7 counts were observed for scenarios A and B 

(5.32±0.10 and 5.09±0.07 log CFU/cm2, respectively), which were simulating contamination of 

pre-rigor beef carcass surfaces (~31 °C). Therefore, these results suggest that there might be 

A B C D
pH 5.66*±*0.15 6.29*±*0.19 6.06*±*0.19 5.72*±*0.05

Temperature*(°C) 29.85*±*0.96 34.53*±*0.76 8.44*±*0.48 30.51*±*0.83

Scenarios

Source P(value
Scenarios <0.0001
Tissue4type 0.1014
Scenarios*Tissue4type 0.347



48 

differences in the contamination levels depending upon the pre-rigor (warm) and post-rigor 

(chilled) surfaces, and the storage temperature.  

Several studies reported connective tissue to be an important factor to establish bacterial 

attachment to meat surfaces (Kim and Slavik, 1994; Walls et al., 1993; Benedict et al., 1991; 

McMeekin et al., 1984). It has been described that the presence of specific binding sites on 

collagen (fibronectin and laminin), as well the existence of specific bacterial receptors for such 

matrix proteins, increases the attachment between bacteria and meat surfaces, thus confirming 

findings where E. coli O157:H7 appeared to bind to collagen fibrils on lean tissues (Schulze-

Koops et al., 1993; Schulze-Koops et al., 1992; Benedict et al., 1991; Speziale et al., 1986). 

However, the current study did not evaluate STEC-7 attachment based on the collagen level or 

type associated with the meat tissues. STEC-7 attachment was measured in predominantly lean 

and adipose surfaces.  

 
Figure 4-5 Shiga toxin-producing Escherichia coli attachment to 15x15 cm beef surfaces for 
different scenarios. a-c: microbial counts with different letters were significantly different 
(P ≤ 0.05). 
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In agreement to results found in the current study, Cabedo et al., (1997) found similar E. 

coli O157:H7 attachment to predominantly lean muscle (5.48±0.09 log CFU/cm2) and adipose 

tissue (5.31±0.08 log CFU/cm2). Moreover, several researchers reported no differences in 

bacterial attachment between lean muscle and adipose tissue (Cabedo et al., 1997; Cabedo et al., 

1996; Fratamico and Schultz, 1996; Dickson and Frank, 1993; Chung et al.,1989).  Similarly, 

various studies have shown that other bacterial species such as Salmonella arizonae, 

Pseudomonas aeruginosa, Salmonella spp., Listeria monocytogenes, Serratia marcescens and 

Staphylococcus aureus also did not differ in their attachment to lean muscle and adipose tissue 

(Benedict et al., 1991; Chung et al., 1989; Dickson and Macneil, 1991). However, some authors 

reported greater attachment levels on adipose tissue than lean muscle when evaluating STEC 

strongly attached cells, but there was no difference within loosely attached cells for both lean 

muscle and adipose tissue (Rivas et al., 2006; Foong and Dickson, 2004; Chung et al., 1989; 

Dickson and Koohmaraie, 1989). In the current study loosely and firmly attached cells were 

evaluated together as the total bacterial attachment. 

Kirsch et al., (2014) reported that the beef chilling process is an important factor in 

bacterial attachment. They reported that STEC attachment was greater when beef surfaces were 

exposed to chilling temperatures of 5 °C (4.0 log CFU/cm2) when compared to a non-chilled 

temperature of 25 °C (3.6 log CFU/cm2). These results are in accordance with results found in 

our study, where the attachment was greater in post-chilled beef surfaces (~8 °C; scenario C) 

than to pre-rigor (~30 °C; scenario A) beef surfaces. However, Fratamico and Schultz (1996) 

found that a higher temperature (~19 °C) allowed better bacterial attachment when compared to a 

lower temperature (4 °C), which is in agreement to results found by Prendergast et al., (2007). 
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Reasons for such differences could include different experimental designs, STEC serotypes, 

methodologies used to inoculate beef surfaces, attachment period and variety of tissue types. 

No significant difference in STEC attachment was found between predominantly lean 

muscle and adipose tissue in this study. Dickson and Koohmaraie (1989) reported a similar linear 

correlation between the negative charge on various bacterial cell surfaces (Bacillus subtilis, 

Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, Serratia marcescens, 

Staphylococcus aureus and Staphylococcus epidermidis) and initial attachment to lean muscle 

and adipose tissue. However, Kim et al. (1996) did not find any correlation between surface 

charge on bacterial cell surfaces and initial bacterial attachment of Salmonella spp. to meat 

surfaces. 

The bacterial attachment period has been reported to be an important factor to determine 

the final number of attached bacterial cells. In our study, STEC-7 recovery of attached cells was 

similar to attachment levels found by Kirsch et al., (2014). The 30 min (scenarios A, C and D) 

and 24 h attachment periods (scenario B) were selected to represent the actual time that a carcass 

could be exposed to bacterial contamination before entering the cooler (under typical commercial 

slaughter floor operations) and the approximate time that a carcass would be in the cooler before 

the fabrication process, respectively. Various studies have reported higher STEC attachment 

levels after a 30 min period when compared to 1 or 2 min (Fratamico and Schultz, 1996; Chen et. 

al, 2007). Kirsch et al., (2014) reported that although the initial attachment levels of STEC cells 

on beef briskets were higher at 0 min (4.2 log CFU/cm2) compared to 30, 60, 90 and 120 min 

(≥3.8 log CFU/cm2) contact periods, the attachment strength of cells was greater at 60 min or 

greater contact time compared to 0 min. Differences in numbers of attached bacterial cells in 

various studies discussed above might be attributed to the elapsed attachment period. 
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4.3.2 STEC-7 Log Reductions After Antimicrobial Spray  

The interactions between scenarios, tissue type and treatments, and scenarios and tissue 

type were not significant (Table 4-3). Since the tissue type (P=0.0652) and scenarios (P=0.0815) 

main effects were not significant, means were calculated averaging across tissue type and 

scenarios.  

Table 4-3 ANOVA table for log reductions after lactic acid or water treatment. 

 

 
The STEC-7 log reduction achieved by spraying inoculated tissue sections with a 4.5% 

lactic acid solution or water after a 30 min attachment period was significantly affected by 

treatments (P≤0.05). The mean log reductions after lactic acid treatment ranged from 1.04 to 1.85 

log CFU/cm2, compared to -0.05 to 0.37 log CFU/cm2 reductions for water treatment (Figure 4-

6). Lactic acid spray was more effective than water for both predominantly lean muscle and 

adipose tissue. However, a greater log reduction was observed on adipose tissue (1.75±0.13 log 

CFU/cm2) compared to predominantly lean muscle (1.29±0.15 log CFU/cm2) when lactic acid 

treatment was applied (Figure 4-6).  

Source P(value
Scenarios 0.0815
Tissue5type 0.0652
Scenarios*Tissue5type 0.4745
Treatments <0.0001
Scenarios*Treatments 0.0045
Tissue5type*Treatments 0.0245
Scenarios*Tissue5type*Treatments 0.7512
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Figure 4-6 Shiga toxin-producing Escherichia coli log reductions on 15x15 cm beef surfaces 
under different treatments. a-b: log reductions within respective treatment with different 
letters were significantly different (P ≤ 0.05). A-B: log reductions within respective tissue 
type with different letter were significantly different (P ≤ 0.05).   
 

Lactic acid spray reduced STEC-7 levels more effectively than water across all scenarios. 

A significant treatment by scenario interaction was observed for STEC-7 reductions when lactic 

acid was applied (Table 4-3). Scenarios A and B presented greater log reductions compared to 

scenario C (Figure 4-7). The mechanism of antimicrobial activity of lactic acid, which provided 

greater STEC-7 reductions, is reported to be by penetration into bacterial cells and interfering 

with energy generation and nutrient transport across the bacterial cell, and ultimately inactivating 

the cells (Wheeler et al., 2014; Booth and Kroll, 1989). 

Lactic acid spray presented the same level of effectiveness when applied to pre-rigor 

carcasses and chilled beef surfaces for reducing STEC-7 (Figure 4-7). Greater reductions were 

observed on chilled meat surfaces when STECs were inoculated and subjected to a 24 h chill 

cycle, thus, indicating that cold temperatures (~2 °C) have an impact on stressing and injuring 

the STEC cells prior to antimicrobial exposure. No significant difference in log reductions was 

observed for STEC-7 when water was applied (P>0.05; Figure 4-7). 
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Figure 4-7 Shiga toxin-producing Escherichia coli log reductions on 15x15 cm beef surfaces 
under different scenarios after antimicrobial application. Scenarios followed by a different 
letter within antimicrobial treatments were significantly different (P ≤ 0.05). 
 

Several studies have demonstrated the efficacy of lactic acid in reducing STEC 

populations ranging from 1 to 4 log cycles, using either spray or immersion methods (Schmidt et 

al., 2014; Kalchayanand et al., 2013; Kalchayanand et al., 2012; Geornaras et al., 2012; Ransom 

et al., 2003). The reductions (up to ~1.85 log CFU/cm2) found in the current study are smaller 

than the ones found by Ransom et al., (2003) when similar levels of inoculum were applied.  A 

log reduction of ~3 log CFU/cm2 was observed when 2% lactic acid dip was applied at 55 °C 

(Ransom et al., 2003). These differences in log reduction between Ransom et al., (2003) and our 

study might be explained by the differences in lactic acid temperatures and its method of 

application. Castillo et al., (2001) found that a combination of 4% lactic acid solution at 55 °C 

sprayed for 30 s was best for STEC reduction (>4.8 log CFU/cm2) when various combinations of 

2 or 4% lactic acid at 55 or 65 °C for 15 or 30 s were studied. Wolf et al., (2012) reported that a 

4.4% lactic acid dip as the most successful method to reduce STEC and Salmonella spp. on beef 

trim and ground beef when compared to a spray method. However, many researchers reported a 
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non-significant bacterial reduction when ≤ 2% lactic acid was applied by itself as a non-

combined intervention on chilled beef surfaces (Gill and Landers, 2003; Bacon et al., 2002; 

Brackett, 1994; Acuff et al., 1987). These observations are in agreement with the findings of the 

current study, where the highest reductions were observed when pre-rigor meat surfaces were 

inoculated and subjected to a 24 h chill cycle prior to application of lactic acid, thus, indicating 

that cold temperatures (~2 °C) have a synergistic impact on stressing and injuring the STEC cells 

when lactic acid is subsequently applied. These results might indicate that temperatures of both 

meat and lactic acid are the determinant factors playing a vital role in the efficacy of lactic acid 

treatment (Anderson and Marshall, 1989; Dickson and Anderson, 1992; Greer and Dilts, 1992). 

The differences in log reductions between the current study and studies published in the literature 

could be explained by differences in the methods used for lactic acid application, lactic acid 

concentration, and the differences in beef surfaces and lactic acid temperatures.  

As observed in the current study, where the highest reduction was observed on the 24-h 

chilled beef surfaces, Dickson and Siragusa (1994) also found that log reductions in STEC 

population increased on acid-treated beef surfaces with an increase in storage time. Furthermore, 

Liao et al., (2015) reported increased STEC population reduction (~1.5 log CFU/cm2) when a 

combination of 5% lactic acid treatment followed by a 14 day storage at 4 °C was used. 

Additionally, Gill and Badoni (2004) observed a significant reduction (≥1.5 log CFU/cm2) of E. 

coli on chilled meat surfaces when 4% lactic acid spray was applied. Zhao et al. (2014) reported 

similar results when 5% lactic acid spray was applied to a chilled beef surface at 4 °C. This is 

further supporting evidence that beef surfaces at cold temperatures followed by lactic acid 

treatment have greater log reduction.  
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In our study, lactic acid was slightly more effective in reducing STEC-7 attached to 

adipose tissue (1.75 log CFU/cm2) than on predominantly lean muscle (1.29 log CFU/cm2). 

However, Youssef et al., (2013) found no difference in E. coli reductions between adipose tissue 

(~0.7 log CFU/cm2) and cut muscles (~0.8 log CFU/cm2) when 5% lactic acid was applied. The 

rupture of meat surface adipose cells and hence changes in the adipose coating on the meat 

surfaces commonly occurs at various stages of meat processing, which can change the 

hydrophobicity of the meat surface (Dickson and Koohmaraie, 1989). Therefore, variation in 

microbial reductions in Dickson and Koohmaraie (1989) and our studies could be due to the 

differences in post-harvest meat handling, which resulted in different adipose layer 

characteristics on meat surfaces, and ultimately affected the microbial attachment to the meat 

surfaces. 

 
4.4 Conclusion 

Our results indicate that there is no difference in total STEC-7 attachment (loosely + 

firmly attached cells) when comparing different tissue types (predominately lean muscle and 

adipose surfaces) under four (A-D) contamination scenarios. However, there were differences in 

attachment when STEC-7 mixed cocktail was exposed to different contamination scenarios. 

Chilled and re-warmed surfaces presented the greatest attachment levels, respectively. 

Inoculation of re-warmed post-rigor tissues after carcass chilling provided similar attachment 

levels when compared to pre-rigor beef surfaces.  

Applying a 4.5% lactic acid spray at room temperature as a pre-evisceration and/or final 

carcass wash provided STEC reductions up to ~1.70 log CFU/cm2, and lactic acid spray is also 

effective as a chilled carcass intervention when dealing with slaughter floor originating 

contamination. However, if STEC contamination occurs during carcass chilling or chilled 
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product processing, the application of 4.5% lactic acid is less effective as an intervention 

treatment. For future laboratory antimicrobial process validation studies, consideration must be 

given to when inoculum cultures are applied to beef surfaces and at what point in the slaughter to 

fabrication continuum chemical interventions are optimum in series.  
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Appendix A - SAS Code Used for the Experiment  

A.1 Analysis of pairwise comparisons of specific scenarios 

for STEC-7 attachment 

 

PROC IMPORT OUT= WORK.beef  
            DATAFILE= "C:\Users\Chris\Documents\KSU 
Consulting\Carla_Schwan\6x6 study - reformated.xlsx"  
            DBMS=xlsx REPLACE; 
RUN; 
 
ods rtf file='C:\Users\Chris\Documents\KSU 
Consulting\Carla_Schwan\output_CRD_v1.rtf' style=journal; 
 
ods graphics on; 
data beef; set beef; 
   pretrt="AB"; 
   if scenarios="C" then pretrt="C"; 
   if scenarios="D" then pretrt="D"; 
run; 
 

A.2 Analysis of STEC-7 overall attachment 

 
title 'Analyis of Pre-Treatment Log Counts'; 
proc mixed data=beef plots=all; 
  class Reps Scenarios Lean_or_Fat LA_or_water; 
  model pre_trt = Scenarios|lean_or_fat/ddfm=KR; 
  random reps reps*Scenarios*lean_or_fat; 
  lsmeans  scenarios /pdiff adjust=Tukey cl; 
  estimate 'warm v. cold innoc' scenarios 1 1 -1 -1/divisor=2; 
  estimate 'AB v. C' scenarios 1 1 -2 0/divisor=2; 
  estimate 'AB v. D' scenarios 1 1 0 -2/divisor=2; 
run; 

A.3 Analysis of STEC-7 log Reductions 

 
title 'Analyis of Post-Treatment Logreductions'; 
proc mixed data=beef plots=all; 
  class reps scenarios lean_or_fat LA_or_water; 
  model reduction = scenarios|lean_or_fat|LA_or_water; 
  lsmeans scenarios*LA_or_water lean_or_fat*LA_or_water/pdiff adjust=Tukey; 
run; 
 
ods rtf close; 
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Appendix B - Data for the Experiment  

B.1 Raw data of the four replicates 

Reps	
   Scenarios	
  
Lean	
  or	
  
Fat	
  

LA	
  or	
  
Water	
   Pre	
  trt	
   Pos	
  trt	
   Reduction	
  

Rep	
  1	
   A	
   Lean	
   LA	
   6.1	
   1.59	
   4.50	
  
Rep	
  1	
   A	
   Lean	
   LA	
   5.9	
   3.35	
   2.57	
  
Rep	
  1	
   A	
   Fat	
  	
   LA	
   6.0	
   4.32	
   1.71	
  
Rep	
  1	
   A	
   Fat	
   LA	
   5.1	
   3.05	
   2.08	
  
Rep	
  1	
   A	
   Lean	
   Water	
   5.5	
   5.32	
   0.16	
  
Rep	
  1	
   A	
   Lean	
   Water	
   5.6	
   5.50	
   0.09	
  
Rep	
  1	
   A	
   Fat	
   Water	
   5.5	
   4.70	
   0.82	
  
Rep	
  1	
   A	
   Fat	
   Water	
   5.4	
   5.41	
   0.00	
  
Rep	
  1	
   B	
   Lean	
   Water	
   5.49	
   5.86	
   -­‐0.37	
  
Rep	
  1	
   B	
   Lean	
   Water	
   5.56	
   5.19	
   0.37	
  
Rep	
  1	
   B	
   Fat	
   Water	
   4.44	
   4.78	
   -­‐0.34	
  
Rep	
  1	
   B	
   Fat	
   Water	
   5.12	
   5.12	
   0.01	
  
Rep	
  1	
   B	
   Lean	
   LA	
   5.04	
   3.30	
   1.74	
  
Rep	
  1	
   B	
   Lean	
   LA	
   5.48	
   2.97	
   2.51	
  
Rep	
  1	
   B	
   Fat	
   LA	
   5.28	
   1.61	
   3.66	
  
Rep	
  1	
   B	
   Fat	
   LA	
   4.63	
   2.10	
   2.54	
  
Rep	
  1	
   C	
   Lean	
   LA	
   6.01	
   5.05	
   0.96	
  
Rep	
  1	
   C	
   Lean	
   LA	
   5.53	
   5.20	
   0.32	
  
Rep	
  1	
   C	
   Fat	
   LA	
   6.08	
   5.19	
   0.88	
  
Rep	
  1	
   C	
   Fat	
   LA	
   6.23	
   4.83	
   1.40	
  
Rep	
  1	
   C	
   Lean	
   Water	
   5.57	
   5.02	
   0.55	
  
Rep	
  1	
   C	
   Lean	
   Water	
   5.47	
   5.34	
   0.13	
  
Rep	
  1	
   C	
   Fat	
   Water	
   5.83	
   5.82	
   0.01	
  
Rep	
  1	
   C	
   Fat	
   Water	
   6.52	
   6.04	
   0.48	
  
Rep	
  1	
   D	
   Lean	
   LA	
   6.15	
   4.19	
   1.96	
  
Rep	
  1	
   D	
   Lean	
   LA	
   6.11	
   4.54	
   1.57	
  
Rep	
  1	
   D	
   Fat	
   LA	
   5.63	
   3.94	
   1.68	
  
Rep	
  1	
   D	
   Fat	
   LA	
   5.73	
   4.16	
   1.56	
  
Rep	
  1	
   D	
   Lean	
   Water	
   6.25	
   5.20	
   1.05	
  
Rep	
  1	
   D	
   Lean	
   Water	
   6.11	
   5.51	
   0.60	
  
Rep	
  1	
   D	
   Fat	
   Water	
   5.43	
   5.58	
   -­‐0.15	
  
Rep	
  1	
   D	
   Fat	
   Water	
   5.64	
   5.04	
   0.60	
  
Rep	
  2	
   A	
   Lean	
   LA	
   3.04	
   3.49	
   -­‐0.45	
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Rep	
  2	
   A	
   Lean	
   LA	
   5.38	
   4.04	
   1.35	
  
Rep	
  2	
   A	
   Fat	
   LA	
   5.52	
   3.38	
   2.14	
  
Rep	
  2	
   A	
   Fat	
   LA	
   5.85	
   3.91	
   1.93	
  
Rep	
  2	
   A	
   Lean	
   Water	
   5.61	
   5.30	
   0.31	
  
Rep	
  2	
   A	
   Lean	
   Water	
   5.99	
   5.56	
   0.43	
  
Rep	
  2	
   A	
   Fat	
   Water	
   5.60	
   4.87	
   0.73	
  
Rep	
  2	
   A	
   Fat	
   Water	
   6.28	
   5.28	
   1.00	
  
Rep	
  2	
   B	
   Lean	
   Water	
   4.79	
   5.17	
   -­‐0.38	
  
Rep	
  2	
   B	
   Lean	
   Water	
   6.17	
   5.83	
   0.34	
  
Rep	
  2	
   B	
   Fat	
   Water	
   5.63	
   5.85	
   -­‐0.22	
  
Rep	
  2	
   B	
   Fat	
   Water	
   4.49	
   5.05	
   -­‐0.56	
  
Rep	
  2	
   B	
   Lean	
   LA	
   4.74	
   3.02	
   1.71	
  
Rep	
  2	
   B	
   Lean	
   LA	
   5.74	
   3.21	
   2.52	
  
Rep	
  2	
   B	
   Fat	
   LA	
   4.47	
   1.57	
   2.90	
  
Rep	
  2	
   B	
   Fat	
   LA	
   5.48	
   2.96	
   2.52	
  
Rep	
  2	
   C	
   Lean	
   LA	
   6.29	
   4.61	
   1.67	
  
Rep	
  2	
   C	
   Lean	
   LA	
   6.06	
   4.79	
   1.27	
  
Rep	
  2	
   C	
   Fat	
   LA	
   5.83	
   5.05	
   0.79	
  
Rep	
  2	
   C	
   Fat	
   LA	
   6.23	
   5.47	
   0.77	
  
Rep	
  2	
   C	
   Lean	
   Water	
   5.83	
   6.27	
   -­‐0.43	
  
Rep	
  2	
   C	
   Lean	
   Water	
   6.30	
   5.46	
   0.84	
  
Rep	
  2	
   C	
   Fat	
   Water	
   6.37	
   5.61	
   0.76	
  
Rep	
  2	
   C	
   Fat	
   Water	
   5.58	
   6.06	
   -­‐0.48	
  
Rep	
  2	
   D	
   Lean	
   LA	
   6.12	
   5.12	
   1.01	
  
Rep	
  2	
   D	
   Lean	
   LA	
   5.39	
   4.01	
   1.39	
  
Rep	
  2	
   D	
   Fat	
   LA	
   5.89	
   3.65	
   2.24	
  
Rep	
  2	
   D	
   Fat	
   LA	
   5.46	
   4.48	
   0.98	
  
Rep	
  2	
   D	
   Lean	
   Water	
   6.04	
   5.49	
   0.55	
  
Rep	
  2	
   D	
   Lean	
   Water	
   6.16	
   5.77	
   0.39	
  
Rep	
  2	
   D	
   Fat	
   Water	
   5.10	
   5.05	
   0.06	
  
Rep	
  2	
   D	
   Fat	
   Water	
   6.06	
   5.44	
   0.62	
  
Rep	
  3	
   A	
   Lean	
   LA	
   4.98	
   4.58	
   0.40	
  
Rep	
  3	
   A	
   Lean	
   LA	
   5.59	
   3.93	
   1.66	
  
Rep	
  3	
   A	
   Fat	
   LA	
   5.31	
   3.20	
   2.11	
  
Rep	
  3	
   A	
   Fat	
   LA	
   4.98	
   3.34	
   1.64	
  
Rep	
  3	
   A	
   Lean	
   Water	
   5.61	
   5.41	
   0.20	
  
Rep	
  3	
   A	
   Lean	
   Water	
   5.49	
   4.86	
   0.63	
  
Rep	
  3	
   A	
   Fat	
   Water	
   5.07	
   4.50	
   0.56	
  
Rep	
  3	
   A	
   Fat	
   Water	
   5.24	
   4.92	
   0.32	
  
Rep	
  3	
   B	
   Lean	
   Water	
   5.08	
   5.10	
   -­‐0.03	
  
Rep	
  3	
   B	
   Lean	
   Water	
   4.52	
   4.42	
   0.10	
  
Rep	
  3	
   B	
   Fat	
   Water	
   4.94	
   4.53	
   0.42	
  
Rep	
  3	
   B	
   Fat	
   Water	
   4.49	
   4.81	
   -­‐0.31	
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Rep	
  3	
   B	
   Lean	
   LA	
   5.28	
   5.04	
   0.24	
  
Rep	
  3	
   B	
   Lean	
   LA	
   5.02	
   3.49	
   1.54	
  
Rep	
  3	
   B	
   Fat	
   LA	
   5.81	
   3.28	
   2.53	
  
Rep	
  3	
   B	
   Fat	
   LA	
   4.74	
   4.77	
   -­‐0.03	
  
Rep	
  3	
   C	
   Lean	
   LA	
   5.75	
   4.35	
   1.41	
  
Rep	
  3	
   C	
   Lean	
   LA	
   5.75	
   5.35	
   0.41	
  
Rep	
  3	
   C	
   Fat	
   LA	
   5.33	
   4.34	
   1.00	
  
Rep	
  3	
   C	
   Fat	
   LA	
   5.50	
   4.42	
   1.09	
  
Rep	
  3	
   C	
   Lean	
   Water	
   5.63	
   5.45	
   0.18	
  
Rep	
  3	
   C	
   Lean	
   Water	
   5.87	
   4.94	
   0.93	
  
Rep	
  3	
   C	
   Fat	
   Water	
   5.79	
   5.77	
   0.03	
  
Rep	
  3	
   C	
   Fat	
   Water	
   5.82	
   5.40	
   0.42	
  
Rep	
  3	
   D	
   Lean	
   LA	
   5.28	
   4.51	
   0.77	
  
Rep	
  3	
   D	
   Lean	
   LA	
   5.49	
   4.76	
   0.72	
  
Rep	
  3	
   D	
   Fat	
   LA	
   5.16	
   3.54	
   1.63	
  
Rep	
  3	
   D	
   Fat	
   LA	
   5.55	
   4.37	
   1.19	
  
Rep	
  3	
   D	
   Lean	
   Water	
   5.46	
   5.79	
   -­‐0.33	
  
Rep	
  3	
   D	
   Lean	
   Water	
   5.47	
   5.59	
   -­‐0.12	
  
Rep	
  3	
   D	
   Fat	
   Water	
   5.40	
   5.58	
   -­‐0.18	
  
Rep	
  3	
   D	
   Fat	
   Water	
   4.47	
   5.21	
   -­‐0.74	
  
Rep	
  4	
   A	
   Lean	
   LA	
   5.40	
   4.58	
   0.83	
  
Rep	
  4	
   A	
   Lean	
   LA	
   5.06	
   3.79	
   1.27	
  
Rep	
  4	
   A	
   Fat	
   LA	
   4.49	
   1.65	
   2.84	
  
Rep	
  4	
   A	
   Fat	
   LA	
   4.67	
   2.89	
   1.78	
  
Rep	
  4	
   A	
   Lean	
   Water	
   4.91	
   5.12	
   -­‐0.21	
  
Rep	
  4	
   A	
   Lean	
   Water	
   5.40	
   5.13	
   0.27	
  
Rep	
  4	
   A	
   Fat	
   Water	
   4.70	
   4.39	
   0.32	
  
Rep	
  4	
   A	
   Fat	
   Water	
   4.95	
   4.60	
   0.35	
  
Rep	
  4	
   B	
   Lean	
   LA	
   5.15	
   4.54	
   0.61	
  
Rep	
  4	
   B	
   Lean	
   LA	
   5.29	
   3.95	
   1.34	
  
Rep	
  4	
   B	
   Fat	
   LA	
   4.97	
   3.45	
   1.52	
  
Rep	
  4	
   B	
   Fat	
   LA	
   4.78	
   3.07	
   1.71	
  
Rep	
  4	
   B	
   Lean	
   Water	
   5.33	
   5.88	
   -­‐0.55	
  
Rep	
  4	
   B	
   Lean	
   Water	
   4.65	
   4.59	
   0.06	
  
Rep	
  4	
   B	
   Fat	
   Water	
   5.08	
   4.83	
   0.24	
  
Rep	
  4	
   B	
   Fat	
   Water	
   5.25	
   4.77	
   0.48	
  
Rep	
  4	
   C	
   Lean	
   LA	
   5.95	
   5.18	
   0.77	
  
Rep	
  4	
   C	
   Lean	
   LA	
   5.82	
   4.68	
   1.14	
  
Rep	
  4	
   C	
   Fat	
   LA	
   5.74	
   4.54	
   1.20	
  
Rep	
  4	
   C	
   Fat	
   LA	
   5.95	
   4.28	
   1.67	
  
Rep	
  4	
   C	
   Lean	
   Water	
   5.87	
   5.31	
   0.56	
  
Rep	
  4	
   C	
   Lean	
   Water	
   5.49	
   4.95	
   0.53	
  
Rep	
  4	
   C	
   Fat	
   Water	
   5.70	
   5.47	
   0.23	
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Rep	
  4	
   C	
   Fat	
   Water	
   5.64	
   5.50	
   0.15	
  
Rep	
  4	
   D	
   Lean	
   LA	
   5.40	
   4.96	
   0.44	
  
Rep	
  4	
   D	
   Lean	
   LA	
   5.07	
   3.66	
   1.41	
  
Rep	
  4	
   D	
   Fat	
   LA	
   5.34	
   3.13	
   2.21	
  
Rep	
  4	
   D	
   Fat	
   LA	
   5.48	
   3.17	
   2.31	
  
Rep	
  4	
   D	
   Lean	
   Water	
   5.34	
   5.15	
   0.18	
  
Rep	
  4	
   D	
   Lean	
   Water	
   5.41	
   5.34	
   0.08	
  
Rep	
  4	
   D	
   Fat	
   Water	
   4.90	
   4.89	
   0.01	
  
Rep	
  4	
   D	
   Fat	
   Water	
   5.19	
   5.23	
   -­‐0.04	
  

 

 

B.2 Temperature and pH measurements  

Sample	
   Scenario	
   Treatment	
  	
   Tissue	
  type	
   pH	
   Temperature	
  (°C	
  )	
  
1	
  pre-­‐trt	
   A	
   LA	
   L	
   5.79	
   23.1	
  
1	
  post-­‐trt	
   A	
   LA	
  

	
  
3.52	
  

	
  2	
  pre-­‐trt	
   A	
   LA	
   L	
   4.74	
   24.2	
  
2	
  post-­‐trt	
   A	
   LA	
  

	
  
3.53	
  

	
  3	
  pre-­‐trt	
   A	
   LA	
   F	
   7.72	
   23	
  
3	
  post-­‐trt	
   A	
   LA	
  

	
  
3.19	
  

	
  4	
  pre-­‐trt	
   A	
   LA	
   F	
   6.41	
   25.2	
  
4	
  post-­‐trt	
   A	
   LA	
  

	
  
3.57	
  

	
  5	
  pre-­‐trt	
   A	
   Water	
   L	
   4.85	
   29.8	
  
5	
  post-­‐trt	
   A	
   Water	
  

	
  
6.85	
  

	
  6	
  pre-­‐trt	
   A	
   Water	
   L	
   5.85	
   24.7	
  
6	
  post-­‐trt	
   A	
   Water	
  

	
  
5.72	
  

	
  7	
  pre-­‐trt	
   A	
   Water	
   F	
   4.24	
   27.1	
  
7	
  post-­‐trt	
   A	
   Water	
  

	
  
7.31	
  

	
  8	
  pre-­‐trt	
   A	
   Water	
   F	
   4.18	
   29	
  
8	
  post-­‐trt	
   A	
   Water	
  

	
  
7.48	
  

	
  9	
  pre-­‐trt	
   A	
   LA	
   L	
   5.08	
   18.8	
  
9	
  post-­‐trt	
   A	
   LA	
  

	
  
2.85	
  

	
  10	
  pre-­‐trt	
   A	
   LA	
   L	
   5.04	
   18.4	
  
10	
  post-­‐trt	
   A	
   LA	
  

	
  
3.78	
  

	
  11	
  pre-­‐trt	
   A	
   LA	
   F	
   4.51	
   NA	
  
11	
  post-­‐trt	
   A	
   LA	
  

	
  
3.84	
  

	
  12	
  pre-­‐trt	
   A	
   LA	
   F	
   4.43	
   NA	
  
12	
  post-­‐trt	
   A	
   LA	
  

	
  
3.1	
  

	
  13	
  pre-­‐trt	
   A	
   Water	
   L	
   6.71	
   31.2	
  
13	
  post-­‐trt	
   A	
   Water	
  

	
  
6.48	
  

	
  14	
  pre-­‐trt	
   A	
   Water	
   L	
   6.63	
   26.4	
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14	
  post-­‐trt	
   A	
   Water	
  
	
  

5.88	
  
	
  15	
  pre-­‐trt	
   A	
   Water	
   F	
   6.76	
   31.9	
  

15	
  post-­‐trt	
   A	
   Water	
  
	
  

7.13	
  
	
  16	
  pre-­‐trt	
   A	
   Water	
   F	
   5.99	
   29.3	
  

16	
  post-­‐trt	
   A	
   Water	
  
	
  

7.07	
  
	
  17	
  pre-­‐trt	
   B	
   Water	
   L	
   4.64	
   34.6	
  

17	
  post-­‐trt	
   B	
   Water	
  
	
  

7.56	
  
	
  18	
  pre-­‐trt	
   B	
   Water	
   L	
   6.67	
   36.5	
  

18	
  post-­‐trt	
   B	
   Water	
  
	
  

5.71	
  
	
  19	
  pre-­‐trt	
   B	
   Water	
   F	
   6.18	
   36.3	
  

19	
  post-­‐trt	
   B	
   Water	
  
	
  

8.58	
  
	
  20	
  pre-­‐trt	
   B	
   Water	
   F	
   5.49	
   29.7	
  

20	
  post-­‐trt	
   B	
   Water	
  
	
  

3.42	
  
	
  21	
  pre-­‐trt	
   B	
   Water	
   L	
   8.02	
   30.4	
  

21	
  post-­‐trt	
   B	
   Water	
  
	
  

6.31	
  
	
  22	
  pre-­‐trt	
   B	
   Water	
   L	
   8.23	
   32	
  

22	
  post-­‐trt	
   B	
   Water	
  
	
  

7.56	
  
	
  23	
  pre-­‐trt	
   B	
   Water	
   F	
   5.43	
   30.2	
  

23	
  post-­‐trt	
   B	
   Water	
  
	
  

6.81	
  
	
  24	
  pre-­‐trt	
   B	
   Water	
   F	
   8.3	
   30.6	
  

24	
  post-­‐trt	
   B	
   Water	
  
	
  

8.44	
  
	
  25	
  pre-­‐trt	
   B	
   LA	
   L	
   5.76	
   32.7	
  

25	
  post-­‐trt	
   B	
   LA	
  
	
  

4.33	
  
	
  26	
  pre-­‐trt	
   B	
   LA	
   L	
   3.46	
   33	
  

26	
  post-­‐trt	
   B	
   LA	
  
	
  

5.19	
  
	
  27	
  pre-­‐trt	
   B	
   LA	
   F	
   6.58	
   34.1	
  

27	
  post-­‐trt	
   B	
   LA	
  
	
  

3.04	
  
	
  28	
  pre-­‐trt	
   B	
   LA	
   F	
   NA	
   33	
  

28	
  post-­‐trt	
   B	
   LA	
  
	
  

NA	
  
	
  29	
  pre-­‐trt	
   B	
   LA	
   L	
   NA	
   34.6	
  

29	
  post-­‐trt	
   B	
   LA	
  
	
  

NA	
  
	
  30	
  pre-­‐trt	
   B	
   LA	
   L	
   NA	
   30.9	
  

30	
  post-­‐trt	
   B	
   LA	
  
	
  

NA	
  
	
  31	
  pre-­‐trt	
   B	
   LA	
   F	
   NA	
   31.5	
  

31	
  post-­‐trt	
   B	
   LA	
  
	
  

NA	
  
	
  32	
  pre-­‐trt	
   B	
   LA	
   F	
   NA	
   29.4	
  

32	
  post-­‐trt	
   B	
   LA	
  
	
  

NA	
  
	
  33	
  pre-­‐trt	
   C	
   LA	
   L	
   4.3	
   10.2	
  

33	
  post-­‐trt	
   C	
   LA	
  
	
  

2.5	
  
	
  34	
  pre-­‐trt	
   C	
   LA	
   L	
   5.25	
   7.6	
  

34	
  post-­‐trt	
   C	
   LA	
  
	
  

3.28	
  
	
  35	
  pre-­‐trt	
   C	
   LA	
   F	
   6.91	
   9.8	
  

35	
  post-­‐trt	
   C	
   LA	
  
	
  

1.72	
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36	
  pre-­‐trt	
   C	
   LA	
   F	
   4.7	
   12	
  
36	
  post-­‐trt	
   C	
   LA	
  

	
  
1.47	
  

	
  37	
  pre-­‐trt	
   C	
   Water	
   L	
   5.86	
   10.8	
  
37	
  post-­‐trt	
   C	
   Water	
  

	
  
4.82	
  

	
  38	
  pre-­‐trt	
   C	
   Water	
   L	
   4.71	
   11.5	
  
38	
  post-­‐trt	
   C	
   Water	
  

	
  
7.58	
  

	
  39	
  pre-­‐trt	
   C	
   Water	
   F	
   5.38	
   12.9	
  
39	
  post-­‐trt	
   C	
   Water	
  

	
  
6.99	
  

	
  40	
  pre-­‐trt	
   C	
   Water	
   F	
   9.03	
   10.9	
  
40	
  post-­‐trt	
   C	
   Water	
  

	
  
8.63	
  

	
  41	
  pre-­‐trt	
   C	
   Water	
   L	
   6.13	
   8.1	
  
41	
  post-­‐trt	
   C	
   Water	
  

	
  
7.7	
  

	
  42	
  pre-­‐trt	
   C	
   Water	
   L	
   4.93	
   9.2	
  
42	
  post-­‐trt	
   C	
   Water	
  

	
  
8.82	
  

	
  43	
  pre-­‐trt	
   C	
   Water	
   F	
   7.51	
   9	
  
43	
  post-­‐trt	
   C	
   Water	
  

	
  
8.6	
  

	
  44	
  pre-­‐trt	
   C	
   Water	
   F	
   7.4	
   10	
  
44	
  post-­‐trt	
   C	
   Water	
  

	
  
9.2	
  

	
  45	
  pre-­‐trt	
   C	
   LA	
   L	
   8.1	
   10.4	
  
45	
  post-­‐trt	
   C	
   LA	
  

	
  
3.97	
  

	
  46	
  pre-­‐trt	
   C	
   LA	
   L	
   7.34	
   16	
  
46	
  post-­‐trt	
   C	
   LA	
  

	
  
4.85	
  

	
  47	
  pre-­‐trt	
   C	
   LA	
   F	
   4.94	
   10.6	
  
47	
  post-­‐trt	
   C	
   LA	
  

	
  
2.19	
  

	
  48	
  pre-­‐trt	
   C	
   LA	
   F	
   5.5	
   10.9	
  
48	
  post-­‐trt	
   C	
   LA	
  

	
  
2.83	
  

	
  49	
  pre-­‐trt	
   D	
   LA	
   L	
   NA	
   26.4	
  
49	
  post-­‐trt	
   D	
   LA	
  

	
  
NA	
  

	
  50	
  pre-­‐trt	
   D	
   LA	
   L	
   NA	
   24.9	
  
50	
  post-­‐trt	
   D	
   LA	
  

	
  
NA	
  

	
  51	
  pre-­‐trt	
   D	
   LA	
   F	
   NA	
   26.7	
  
51	
  post-­‐trt	
   D	
   LA	
  

	
  
NA	
  

	
  52	
  pre-­‐trt	
   D	
   LA	
   F	
   NA	
   26.6	
  
52	
  post-­‐trt	
   D	
   LA	
  

	
  
NA	
  

	
  53	
  pre-­‐trt	
   D	
   Water	
   L	
   NA	
   26.5	
  
53	
  post-­‐trt	
   D	
   Water	
  

	
  
NA	
  

	
  54	
  pre-­‐trt	
   D	
   Water	
   L	
   NA	
   25.2	
  
54	
  post-­‐trt	
   D	
   Water	
  

	
  
NA	
  

	
  55	
  pre-­‐trt	
   D	
   Water	
   F	
   NA	
   27.4	
  
55	
  post-­‐trt	
   D	
   Water	
  

	
  
NA	
  

	
  56	
  pre-­‐trt	
   D	
   Water	
   F	
   NA	
   26.7	
  
56	
  post-­‐trt	
   D	
   Water	
  

	
  
NA	
  

	
  57	
  pre-­‐trt	
   D	
   LA	
   L	
   NA	
   26.6	
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57	
  post-­‐trt	
   D	
   LA	
  
	
  

NA	
  
	
  58	
  pre-­‐trt	
   D	
   LA	
   L	
   NA	
   26.5	
  

58	
  post-­‐trt	
   D	
   LA	
  
	
  

NA	
  
	
  59	
  pre-­‐trt	
   D	
   LA	
   F	
   NA	
   26.9	
  

59	
  post-­‐trt	
   D	
   LA	
  
	
  

NA	
  
	
  60	
  pre-­‐trt	
   D	
   LA	
   F	
   NA	
   25.3	
  

60	
  post-­‐trt	
   D	
   LA	
  
	
  

NA	
  
	
  61	
  pre-­‐trt	
   D	
   Water	
   L	
   NA	
   26.2	
  

61	
  post-­‐trt	
   D	
   Water	
  
	
  

NA	
  
	
  62	
  pre-­‐trt	
   D	
   Water	
   L	
   NA	
   26.4	
  

62	
  post-­‐trt	
   D	
   Water	
  
	
  

NA	
  
	
  63	
  pre-­‐trt	
   D	
   Water	
   F	
   NA	
   27.1	
  

63	
  post-­‐trt	
   D	
   Water	
  
	
  

NA	
  
	
  64	
  pre-­‐trt	
   D	
   Water	
   F	
   NA	
   27.6	
  

64	
  post-­‐trt	
   D	
   Water	
   	
  	
   NA	
   	
  	
  
 

B.3 Temperature and pH measurements of animals 3 and 4 

B.3.1 Temperature profile for hot water carcass spray  

 

 

Figure 4-8 Temperature profile for hot water carcass spray measured by a data logger with 
different channels distributed along the beef carcass – Carcass 1, side 1.  
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Figure 4-9 - Temperature profile for hot water carcass spray measured by a data logger 
with different channels distributed along the beef carcass – Carcass 1, side 2. 
 

 

Figure 4-10 - temperature profile for hot water carcass spray measured by a data logger 
with different channels distributed along the beef carcass – Carcass 2, side 1.  
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Figure 4-11 - Temperature profile for hot water carcass spray measured by a data logger 
with different channels distributed along the beef carcass – Carcass 2, side 2. 
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B.4 Summary table  

Table 4-4 Summary table of the mean log reductions of Treatments (lactic acid and water) 
and Scenarios (A, B, C, D) average across tissue type. 

 
a-b Means (n=32) ± SE with different superscripts within a column differ (P ≤ 0.05). 
A-B Means (n=32) ± SE with different superscripts within a row differ (P ≤ 0.05). 

 

  

Treatments
A B C D

Lactic0Acid 1.77aA0±00.27 1.85aA0±00.25 1.04aB0±00.10 1.44aAB0±00.14
Water 0.37bA0±00.08 >0.05bA0±00.09 0.31bA0±00.10 0.16bA0±00.11

Scenarios
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Appendix C - Residual homogeneity assessment  

C.1 Residual homogeneity assessment for bacterial attachment 

 

 

Figure 4-12 Scenarios residuals homogeneity assessment of bacterial attachment. 
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Figure 4-13 Tissue type residuals homogeneity assessment of bacterial attachment. 
 

 

Figure 4-14 Two-way interaction (scenarios and tissue type) residuals homogeneity 
assessment of bacterial attachment. 
 

C.2 Residual homogeneity assessment for log reductions 
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Figure 4-15 Treatment residuals homogeneity assessment of log reduction. 
 

 

Figure 4-16 Tissue type residuals homogeneity assessment of log reduction. 
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Figure 4-17 Scenarios residuals homogeneity assessment of log reduction. 

 

Figure 4-18 Two-way interaction (tissue type and treatment) residuals homogeneity 
assessment of log reduction. 
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Figure 4-19 Two-way interaction (scenario and tissue type) residuals homogeneity 
assessment of log reduction. 

 

Figure 4-20 Two-way interaction (scenario and treatment) residuals homogeneity 
assessment of log reduction. 
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Figure 4-21 Three-way interaction (scenario, tissue type and treatment) residuals 
homogeneity assessment of log reduction. 


