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Abstract 

The future energy grid is expected to operate in a decentralized fashion as a network of 

autonomous microgrids that are coordinated by a Distribution System Operator (DSO), 

which should allocate energy to them in an efficient manner. Each microgrid operating in 

either islanded or grid-connected mode may be considered to manage its own resources. 

This can take place through auctions with individual units of the microgrid as the agents. 

This research proposes efficient auction mechanisms for the energy grid, with is-

landed and connected microgrids. The microgrid level auction is carried out by means of 

an intermediate agent called an aggregator. The individual consumer and producer units 

are modeled as selfish agents. With the microgrid in islanded mode, two aggregator-level 

auction classes are analyzed: (i) price-heterogeneous, and (ii) price homogeneous. 

            Under the price heterogeneity paradigm, this research extends earlier work on 

the well-known, single-sided Kelly mechanism to double auctions. As in Kelly auctions, 

the proposed algorithm implements the bidding without using any agent level private 

information (i.e. generation capacity and utility functions). The proposed auction is shown 

to be an efficient mechanism that maximizes the social welfare, i.e. the sum of the utilities 

of all the agents. Furthermore, the research considers the situation where a subset of 

agents act as a coalition to redistribute the allocated energy and price using any other 

specific fairness criterion. 

            The price homogeneous double auction algorithm proposed in this research ad-

dresses the problem of price-anticipation, where each agent tries to influence the equilib-

rium price of energy by placing strategic bids. As a result of this behavior, the auction’s 

efficiency is lowered. This research proposes a novel approach that is implemented by the 

aggregator, called virtual bidding, where the efficiency can be asymptotically maximized, 

even in the presence of price anticipatory bidders. 

            Next, an auction mechanism for the energy grid, with multiple connected mi-

crogrids is considered. A globally efficient bi-level auction algorithm is proposed. At the 

upper-level, the algorithm takes into account physical grid constraints in allocating energy 

to the microgrids. It is implemented by the DSO as a linear objective quadratic constraint 



  

problem that allows price heterogeneity across the aggregators. In parallel, each aggrega-

tor implements its own lower-level price homogeneous auction with virtual bidding. 

            The research concludes with a preliminary study on extending the DSO level 

auction to multi-period day-ahead scheduling. It takes into account storage units and 

conventional generators that are present in the grid by formulating the auction as a mixed 

integer linear programming problem. 
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Introduction 

Network economics has made automated trading feasible, where resources are exchanged 

for money through transactions that are done entirely through software agents and with-

out the need for any human intervention. It is often the case that the agents participating 

in the trade of a resource are involved in direct competition with one another, where the 

objective of each agent is to maximize its own payoff. In these situations, the resource 

trade proceeds through an auction mechanism. In single-sided auctions, all agents are 

either buyers that compete to acquire a finite resource or sellers that compete to sell their 

goods. Double auctions are mechanisms that involve both buyers and sellers which simul-

taneously participate in the bidding process, and are allocated individual shares of the 

resource. 

Recent technological advancements in communications and renewable energy gen-

eration have created much research interest in energy auction algorithms [1], [2]. In these 

mechanisms, the agents may represent individual domestic units within a microgrid, with 

energy representing the resource, and with PV-equipped homes experiencing a surplus of 

energy acting as sellers, and the remaining domestic units as buyers [3]. Being positioned 

closer to other consumer units, PV-equipped units are better placed to supply energy to 

the latter during exigent situations[4]. Complete isolation of a microgrid is an extreme 

example of such a case. Under these circumstances, the microgrid should allow bidirec-

tional energy transactions between the units in the form of an auction mechanism that 

allows the buying and selling of electrical energy among individual agents. An agent may 

represent a single unit or an individual small scale microgrid involving a community of 

homes that collectively behave as a single unit in the ensuing auction[5]. These auction 

mechanisms shall be designed in such a way to provide incentives for the agents to par-

ticipate. In other words, at the outcome of the auction both buying and selling agents 

receive a positive payoff. A buyer agent’s payoff is typically the difference between its 

utility gained from consuming a certain amount of energy and the price that it has to pay 

in order to procure that energy. Likewise, a seller agent’s payoff may be formulated as the 
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sum of the monetary gain from supplying an amount of energy and utility it gains from 

retaining any surplus energy that is not traded. 

An auction mechanism in which agents are priced differently is referred to as price 

heterogeneous auction. A subset of such auctions where all agents pay, or receive, equal 

per unit price is called price uniform, or price homogenous auction. The Kelly mechanism 

is an example of a price uniform auction which refers to a class of auction algorithms 

where agents are allowed to place individual bids on the resource, while a separate auc-

tioneer that receives these bids, allocates the resource share of each bidding agent in 

proportion to the bid values that they have placed[6]. With a large number of agents, the 

proportional allocation mechanism has been shown to maximize the aggregate utilities of 

all agents, the latter commonly referred to as the social welfare(SW) [7]–[9]. SW maxim-

izing mechanisms are also called efficient auctions. 

Unfortunately, the underlying assumption for proportional allocation to be efficient 

is that the agents be price takers, i.e. ones that assume that the bids that they place do 

not influence the market price of the resource. While this is approximately true for auc-

tions involving a large number of agents, in smaller auctions, agents are aware of their 

own market power, and accordingly, place strategic bids on the resource. Such a price 

anticipatory bidding results in a loss in efficiency where the resource allocation of the 

auction no longer maximizes the SW. 

It must be noted that there are other efficient auctions that explicitly focus on 

eliciting truthful bidding from the bidders; the most significant ones being based on the 

well-known Vickrey-Clarke-Groves mechanism [10]. Furthermore, auctions designed to 

maximize the auctioneer’s own earned revenue have been proposed in the vast body of 

literature on this subject. However, these mechanisms are not of direct relevance in this 

research, which focuses on efficient double auctions in grid-connected and islanded mi-

crogrids along with proportional allocation of energy among its agents. 
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1.1 Literature Review 

Advances in communications and networking have made automated energy transactions 

via the grid feasible [1]. Consequently, grid auction design has been the subject of consid-

erable recent research. Due to the complex nature of the problem, some recent work has 

focused on the application of nature inspired metaheuristics [11]–[16].Genetic algorithms, 

swarm intelligence, and hybrid approaches are popular choices for such applications[17].  

Linear programming is another popular choice of algorithm. Discrete variables are 

handled by means of either tree-based search or relaxing and treating them as continuous 

ones. Unfortunately, these approaches entail the assumption of linearity and might not be 

the ideal choice of many grid auctions[18], [19].  

Approaches for supply side auctions between power generation companies to sell 

energy at competitive prices have been the subject of much recent research 

[20],[21],[22],[23],[24],[25],[26],[27]. Typically, these approaches address generation sched-

uling and unit commitment whose treatment involves discrete design variables. Conse-

quently, mixed integer linear programming has been extensively applied in such studies 

[20], [21], [25], [28].A two-stage bidding approach between the generation companies and 

a retailer that procures energy for distribution among consumers has been recently exam-

ined [21]. A large-scale day-ahead clearing scheme for the European market has been 

explored [25]. Mixed integer linear programming to minimize consumer price, while con-

sidering generator minimum up/down and ramp up/down times[28], and elsewhere, the 

presence of shiftable loads (i.e. loads which can be transferred across time slots) [20] have 

been investigated. Other supply side auctions make approximations in order to use linear 

programming [22]. One such study pertaining to the Brazilian energy grid, considers piece-

wise linear utility functions [22].Linearizing the constraints is used within a game-theoretic 

equilibrium formulation [24]. A large body of recent literature on energy auction algo-

rithms model large utility company as the sellers [28],[29],[30],[21], [31]. Many of these 

studies consider objectives and/or constraints that are applicable only to energy trade, 

such as generation scheduling [28],[30], economic dispatch [31], and transmission losses 

[32]. A game-theoretic approach for decision making of storage units as seller agents in a 

smart grid for the maximum amount of energy to sell in the local market so as to maximize 
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a utility that reflects the tradeoff between the revenues from energy trading and the 

accompanying costs has been studied [26]. A primal-dual approach to obtain optimal 

power flow is considered within a heterogeneous pricing framework [23]. Unfortunately, 

approaches where generating companies are involved in the bidding process are inappli-

cable within our context. Such auctions approach the problem primarily to establish a 

game-theoretic equilibrium, usually the Stackelberg equilibrium of a sequential game 

[21],[24],[27], [28].  

Demand side auctions with the optimal procurement of energy among multiple 

buyers is another area of research activity [4],[13], [30],[33],[34],[35]. A simulation study 

using a Java based package (JADE) has been carried out [4]. Many of these studies in-

vestigate bidding across multiple time frames focusing on optimal operation of shiftable 

loads [35], [30]. An auction algorithm that incentivizes buyer participation is considered 

[34]. This study relies on historical data to penalize cheating behavior and ensure truth-

fulness. A limitation of this study is the underlying assumption of quadratic costs to make 

the problem formulation strictly convex.  

Efficient auctions have begun to gain research attention in the present context 

energy trade. Several such investigations do not consider proportionally fair allocation of 

energy [36], [37], [26]. One recent study proposes a VCG-style auction with multiple sellers 

and a single demand response aggregator as the buyer [35]. A few other recent studies 

have also implemented VCG mechanism for energy allocation and trade [33], [38]. This 

mechanism is used for energy allocation between multiple buying agents [33]. However, 

the approach includes only a single seller; a bottleneck when the grid contains several PV 

equipped units. Another study that uses the VCG mechanism reports a double auction 

[39]. Some energy auction studies are designed for revenue maximization and are not SW 

maximizing (efficient) mechanisms [29], [31]. The cake-cutting algorithm has been applied 

to procure energy from multiple sellers and for a community of consumers acting in tan-

dem as a single buyer [40]. A truthful buyers’ auction that makes use of the Arrow-

d'Aspremont-Gerard-Varet mechanism has been suggested [34].   

While some existing approaches as well as this research explore Nash equilibrium, 

where all agents are assumed to act simultaneously [41],[35], [5], others use leader-follower 
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games under Stackelberg equilibrium [36],[37],[42], [21]. This equilibrium concept is appli-

cable when the energy market is modeled as an oligopoly with only a limited number of 

suppliers modeled as leader, or with the inclusion of an upper level agent such as an 

aggregator [36],[37],[42], [35]. This is in contrast to the present work that treats both 

buyers and sellers with equivalent market parity. 

Proportional allocation in single-sided buyers’ auctions is another line of research 

that has been rigorously analyzed [43],[44], [45]. It is shown that the auction is efficient 

under the assumption of price taking buyers. Furthermore, when the agents’ utilities are 

strictly concave functions, the seminal study in [43] establishes a strong theoretical upper 

limit on the auction’s loss of efficiency at ¼ of the maximum attainable SW. More recently, 

it has been shown that even when buyers are price anticipating, proportional allocation 

allows the mechanism to attain the best possible outcome [46]. Similar theoretical limits 

have been investigated for a more general class of auctions called smooth auctions with 

proportional allocation [47]. Theoretical properties of a situation with multiple sellers par-

ticipating in a proportional allocating auction, and with inelastic (fixed) demand for the 

resource has been examined [44]. When the proportional allocation auction takes into 

account the costs of the network’s links through which the resource (data) flows, the 

efficiency is shown to be at least 42–5 of the SW maximum with price anticipating buyers 

and with convex costs [48]. In a separate study it has been shown that when the costs are 

linear, the mechanism’s efficiency loss is lower bounded at ⅓ of the maximum value [49]. 

Unfortunately, all studies are based on the assumption that the utility functions’ are 

convex. In a more general setting where this convexity assumption is not true, the mech-

anism’s efficiency loss no longer enjoys a theoretical limit, and could in fact be arbitrarily 

large [9]. A few studies have proposed schemes to address an auction’s efficiency loss 

arising from price anticipation. For instance an auction mechanism with price differenti-

ation where each buyer has a different price, has been proposed [50]. This study also 

suggests a feedback control mechanism on the price vector that drives the auction to 

converge to the globally optimum SW.  

Many research papers in the existing research on energy auctions report only single-

sided ones [34],[41],[30],[35],[40],[5], [21]. However, there are some papers that do address 
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some form of double auction [51], [39],[32],[29],[42],[31],[11],[26],[52], [53]. Unlike auctions 

between generation companies discussed previously that primarily aim to lower operation 

costs, the goal of these auction mechanisms is to optimize the distribution of energy within 

the customers in order to maximize the overall SW function (SWF) of the community, 

i.e. the aggregate utilities of all the units of the grid. One study that maximizes SWF, 

models its consumers as agents that collectively maximize the SWF [54]. This is an unre-

alistic approach for real world deployment where each agent adjusts is usage patterns only 

to maximize its individual payoff, i.e. the difference between its individual utility from 

consuming a certain amount of energy and the price it pays to procure the amount. An-

other study models the agents’ utilities as quadratic functions [55]. A preliminary study 

on double energy auction based on the Kelly mechanism has been proposed [3]. Another 

double auction study that does not use proportional allocation addresses software issues 

rather than the auction [51]. Double auction mechanisms with proportional allocation 

have been studied [56]. However, this study considers only the case of price takers. None 

of these double energy auctions addresses the issue of price anticipatory behavior of the 

participating agents. To the best of the authors’ knowledge, only one research in the 

literature on efficient energy auctions does examine the adverse effect of price anticipation 

[41]. This study is a single-sided auction with consumers of electricity acting as price 

anticipating buyers. Furthermore, none of the studies reported earlier addresses distribu-

tion grid physical system constraints during the auction process. 

1.2 Contributions 

This research proposes price heterogeneous and price uniform efficient double auctions for 

energy trade in both grid connected as well as islanded microgrids. Although this research 

considers energy as the traded resource, the underlying theoretical analysis is directly 

applicable to other divisible resource efficient auctions. The auctions include one set of 

agents as buyers, and another set as sellers. It assumes the presence of an aggregator as 

a separate mediating agent whose main role, unless indicated otherwise, is to (i) receive 

bids from agents (ii) allocate energy to the agents; (iii) iteratively converge to the market 
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clearing equilibrium. The main contributions of this research under each setting are sum-

marized in the following subsections. Details of the contributions in each of these subsec-

tions are provided in separate chapters throughout this dissertation. 

1.2.1 Aggregator-level Price Heterogeneous Auction 

This research is presented in chapter 2, which considers an isolated microgrid operated by 

an aggregator. Domestic units are modeled to play the role of buying and selling agents. 

The aggregator is modeled as an impartial agent that implements the auction in an iter-

ative manner using public information declared by the agents during bidding. The physical 

grid constraints such as node voltage limits and transformer capacity has not been taken 

into account at this stage. The primary objective of this research was to devise a frame-

work for a price heterogeneous double auction while preserving the private information of 

the trading agents.  

The novel features of the proposed auction mechanism are as follows.  

(i) It is designed to be weakly budget balanced, so that the total monetary reimbursement 

provided to the sellers in exchange for energy never exceeds the total revenue obtained 

from the buyers.  

(ii) It performs the auction without requiring private information such as utility functions 

and generation capacities of the participating agents.  

(iii) The resulting payoffs of all the participating agents are theoretically shown to be 

nonnegative so that the auction is individually rational. 

(iv) It is designed to allow in-auction or post-auction energy and price redistribution in 

order to entertain the possibility of seller coordination using any other fairness criterion.  

(v) It is SW maximizing for the set of buyers. When the supply is relatively small, the 

auction also maximizes the sellers’ SW. Furthermore, when no extraneous fairness crite-

rion is applied, even with enough supply, the auction is still able to attain the efficient 

allocation among all agents.  
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1.2.2 Aggregator-level Price Uniform Auction 

This research is presented in chapter 3, which considers the same physical setting as 

before, i.e. an islanded microgrid, and proposes a price homogenous auction using propor-

tional allocation. It addresses the problem of price anticipatory bidding that would arise 

in islanded microgrids with relatively small numbers of participating agents.  

The novel features of the proposed auction mechanism are as follows.  

(i) It has a unique equilibrium in spite of including both buying and selling agents and 

under price anticipatory conditions. This has been established through theoretical analy-

sis. 

(ii) It is implemented as a distributed iterative algorithm where selfish agents realistically 

simulate price anticipation using information from prior iterations, without using any 

knowledge from other agents. 

(iii) It attains maximum efficiency even in the presence of strategic bidders. This new 

feature has been established theoretically and through simulation results.  

(iv) It can incorporate a selfish aggregator, which seeks its own revenue in the form of a 

surcharge, leading to a bi-objective optimization framework. The existence of a non-sin-

gleton Pareto front has been analytically established. 

1.2.3 Bi-level Energy Distribution Auction 

This phase of the research is reported in chapter 4, which extends the auction mechanisms 

described above to multiple microgrids that are connected to the distribution system. In 

the presence of a fixed amount of supply from the wholesale market, it considers physical 

grid constraints during auction implementation.  

The novel features of the proposed auction mechanism are as follows.  

(i) It is price heterogeneous across microgrid, i.e. aggregators. 

(ii) It allocates energy to microgrids in such a manner that under equilibrium conditions 

global efficiency is achieved.  
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(iii) It incorporates physical grid constraints such as distribution node voltage limits 

and substation transformer limits in the DSO level auction. 

(iv) It uses a novel approach to eliminate the effect of price anticipation at the mi-

crogrid level and ensure convergence to the global efficient solution. 

(v) It can be incorporated as distributed algorithm that complies with the physical to-

pology of the distribution system and where the lower level bidding is carried out in par-

allel. 

1.2.4 Multi-period price heterogeneous auction for distribution 

system operation 

In order to generalize the above bi-level auction for multi-period operation, other physical 

aspects of the distribution grid such as inclusion of battery storage units, conventional 

generators, and price responsive loads have been taken into account at this stage and is 

presented in chapter 5. The aggregator has been considered as a load-serving unit that 

bids in the DSO-level auction on behalf of domestic unit by placing fixed and price re-

sponsive loads. In the presence of available supply from the wholesale market at Locational 

Marginal Price (LMP), i.e., the marginal price of serving the next MW of load, a social 

surplus maximizing auction is implemented among price responsive loads, conventional 

generators, and RES-charged battery storage units. 

The novel features of the proposed auction mechanism are as follows.  

(i) It is modeled to match the physical topology of the distribution system and proposes 

a multi-period day ahead auction due to inclusion of discrete devices such as battery 

storage units with temporal constraints using mixed integer linear programming (MILP). 

(ii) It proposes auction clearing at distribution LMP (DLMP) that results to a price 

heterogeneous auction for market participants. 

(iii) It provides a simulation based study of the dynamics of unit commitment, DLMP, 

and market participants’ payments and reimbursements versus changes in LMP with and 

without penalties for DSO’s deviation from its commitment in the wholesale market.
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Aggregator-level Price Heterogeneous 

Energy Auction 

In this chapter, a general-purpose double auction mechanism that is specifically relevant 

for energy transactions among competing buyers and sellers, i.e. agents, in a microgrid 

has been investigated. The proposed mechanism is modeled for rational agents with hidden 

private information, that are aiming to optimize their utility from consuming energy as 

well as their payoff in the transaction. This is achieved through the presence of a central 

auctioneer, i.e. an aggregator whose aim is to accomplish an individually rational, weakly 

budget balanced, and efficient (SW maximizing) trade among agents while not requiring 

their private information. These auction properties are achieved by the aggregator in an 

iterative process by considering a smartly selected SW maximizing surrogate objective 

function through which agents can take strategic decisions to maximize their utility and 

payoff. The sellers of energy are modeled to be prosumers that are equipped with PV 

panels as well as advanced smart meters and are willing to participate in selling their 

excess energy due to saturation in their energy consumption utility curves. Buyers of 

energy are assumed to be conventional consumers with smart meter capabilities to com-

municate with the aggregator and place bids to get optimal allocations. Buyers aim to 

maximize their energy usage utility less their payment amount whereas sellers maximize 

their own energy consumption utility plus the payment they receive for selling the rest of 

their generation. Furthermore, the mechanism allows the possibility of sellers’ coalition 

where a fair redistribution of the energy supply is possible in a competitive market with 

less demand and more supply. 

2.1 Introduction 

Recent advances in automated network economics has led to a great deal of interest in 

network auctions where automated agents may buy or sell an arbitrary resource through 

a bidding process that is coordinated by a separate agent acting as the auctioneer. The 

individual agents are selfish, i.e. participate in the auction to maximize their individual 
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payoffs. For buyers, the payoff is equal to the difference between the utility of the procured 

resource and the price paid, whereas for sellers it is equal to the monetary gain from the 

sale minus the net loss in utility. In contrast, the auctioneer may be altruistic, whose aim 

is not to maximize its own net revenue from the auction, but to redistribute the resource 

using some other established criteria, such as maximizing the SWF, i.e. the sum of all 

buyer and seller utilities. 

The Kelly mechanism is a class of distributed auctions where the agents bid in 

terms of prices without having to disclose their utilities to the auctioneer [57]. Subse-

quently, this mechanism has been extended to various applications in communication 

networks [58], [59]. It has been applied to allocate transmission rates across multiple users 

in the internet, using the proportional fairness criteria [60]. The problem of power alloca-

tion among multiple users in a wireless network has been addressed in [61], where users 

participate simultaneously as buyers as well as sellers to cooperatively maximize their 

weighted sum rates. More recently, an auction mechanism for mobile data offloading in-

volving mobile network operators as buyers and Wi-Fi or femtocell access points as buyers 

has been proposed [62]. In another study addressing a similar problem, a Kelly mechanism 

based auction algorithm is used within a leader-follower Stackelberg game framework [63]. 

The advent of alternative energy sources is causing a paradigm change in the op-

eration of the energy grid [1]. It has shifted the generation of electricity away from a few 

large power plants towards several smaller individual units that are equipped with PV 

panels and other means to produce electricity from renewable sources. Although at present 

this energy is typically utilized to meet the individual units’ own energy needs, it is en-

visaged that with greater penetration of PV-equipped homes in future, along with the 

development of more efficient solar panels, individual homes would be able to deliver 

energy to the grid [64]. Being positioned closer to other consumer units, these PV-equipped 

units are better placed to supply energy to the latter during exigent situations [4]. Com-

plete isolation of a microgrid is an extreme example of such a case. Under these circum-

stances, the microgrid should allow bidirectional energy transactions between the units in 

the form of an auction mechanism that allows the buying and selling of electricity.  
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 This chapter proposes an auction mechanism in the aggregator level containing 

several domestic units acting as agents and with no restrictions on the number of PV-

equipped homes willing to sell energy to other units. In other words, the proposed auction 

is multi-agent, i.e. generalized enough to be applicable to systems involving multiple sellers 

as well as buyers, which are modeled as sets of distributed agents. In addition, it assumes 

that there exists an aggregator, which contains enough computational capabilities to act 

as an impartial auctioneer. 

In contrast to most work on grid auctions which consider uniform pricing across 

all users in each time interval, this double auction uses price discrimination, where indi-

vidual agents are priced heterogeneously. To the best of our knowledge, there are only a 

few papers that use discriminatory pricing [65],[23],[20], ; unfortunately none are applica-

ble to the present context.  

The proposed auction mechanism is weakly budget balanced, so that the total 

reimbursement provided to the sellers in exchange for energy never exceeds the total 

revenue obtained from the buyers. The payoff of each participating agent in the proposed 

auction is always guaranteed not to be lower than what its payoff would have been from 

non-participation in the trade. In other words, the auction is individually rational.  

The proposed auction mechanism also allows separate and arbitrary utility func-

tions for the agents, as long as they are monotonically increasing and concave. Moreover, 

the PV-equipped sellers have different maximum generation capacities. Although most 

proposed auction mechanisms make use of this information, in reality it must remain 

hidden from the aggregator. The proposed auction is able to attain the desirable outcome 

without the use of this information. Thus, it also works when user private utility functions 

are hidden. However, it must be noted that the auction may include an optional redistri-

bution mechanism that may need access to such information [66], [67]. The redistribution 

option is included in the proposed mechanism in order to entertain the possibility of 

further agent coordination beyond the auction. This is when supply is high enough to 

meet the buyers’ demand, leaving room for further bargaining with the sellers, who then 

opt to impose their own arbitrary fairness criteria to redistribute the allocated supply 
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determined by the auction. Such a situation may not arise when there are relatively few 

sellers, as the outcome of the auction would involve selling their entire surplus energy.  

With the increase in the penetration of renewable energy resources in the future, 

the proportion of sellers in the distribution system is expected to be high enough to war-

rant a separate fair redistribution mechanism. The reasons for such a redistribution are 

manifold. Agents may have to operate within a legal reimbursement framework [68], re-

solve conflicts of interest [69],[70],[71] , or other economic incentives [70],[72], [73]. The 

presence of storage devices either individually, or at a community level is another reason 

for further redistribution [69],[74],[73],[75],[76], [77]. Although, for simplicity, this research 

considers fair redistribution only for the sellers, the approach can readily be extended to 

include the buyers.  

The proposed auction is SWF maximizing for the set of buyers and may be con-

sidered as an extension of the Kelly mechanism. However, as the approach is formulated 

to achieve several different fairness criteria for the sellers, it does not necessarily produce 

the SW maximizing allocation amongst the latter. When no extraneous fairness criterion 

is applied, the auction, by default, attains the efficient allocation among all agents. The 

tradeoff between fairness and efficiency is quantified in terms of the price of fairness. The 

fair redistribution mechanism may be incorporated either in-auction, or as a second stage, 

post-auction algorithm. 

In order to demonstrate the efficacy of the proposed approach in real-world appli-

cations, simulations are carried out within an energy grid setting where the auction’s 

resource is energy, with domestic users as buying and selling agents in a microgrid, or 

with microgrids themselves as agents within a network spanning a larger geographic area. 

It is important to note that the approach suggested in this research is general-purpose 

and can readily be applied to any other network domain with a tradeable divisible resource 

as long as domain-specific physical restrictions allow the auction to proceed. Hence, the 

simulations reported later assume that this is the case with energy related grid constraints, 

i.e. domain-specific physical constraints such as line, voltage, and transformer capacity 

limits, etc. do not affect the auction. Detailed, energy-specific auctions with physical con-

straints are studied in a later chapter.   
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In recent years, double auctions that involve both buyers and sellers of energy, 

with the latter being PV-equipped units rather than generation companies have begun to 

be examined[11],[78],[79],[2],[52], [53]. Unlike auctions between generation companies dis-

cussed previously that primarily aim to lower operation costs, the goal of these auction 

mechanisms is to optimize the distribution of energy within the customers in order to 

maximize the overall SWF of the community, i.e. the aggregate utilities of all the units of 

the grid. One study that maximizes SWF, models its consumers as agents that collectively 

maximize the SWF [54]. This is an unrealistic approach for real world deployment where 

each agent adjusts is usage patterns only to maximize its individual payoff, i.e. the differ-

ence between its individual utility from consuming a certain amount of energy and the 

price it pays to procure the amount. Another study models the agents’ utilities as quad-

ratic functions [55].  

A few recent studies have implemented the VCG mechanism for energy allocation 

and trade [33], [38]. This mechanism is used for energy allocation between multiple buying 

agents [33]. However, the approach includes only a single seller; a bottleneck when the 

grid contains several PV equipped units. 

For the reader’s convenience, a list of notation and abbreviations for this chapter 

are provided in Appendix B. 

2.3 Auction Framework 

The microgrid consists of a set of buyer agents denoted as 𝒟 and a set of seller 

agents denoted as 𝒮. At the beginning of the iterative auction, the aggregator relays an 

initial price, which may reflect the actual price under non-isolated operation when the 

microgrid receives energy from the main grid. In order to ensure weak budget balance, 

the sellers can sell energy only at prices lower than or equal to 𝑝, whereas the buyers can 

procure energy at values higher than or equal to 𝑝. 

Each seller responds to the aggregator by letting the latter know of the amount of 

energy 𝑎𝑗 available for trade at a per unit price 𝑝𝑗 ≤ 𝑝. The energy 𝑎𝑗 can never exceed 
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its total energy generation 𝑔𝑗. Subsequently the auction proceeds in an iterative manner 

as shown in Figure 2.1. 

An iteration of the proposed auction mechanism involves the following exchange of 

information. The aggregator computes the volume of energy 𝑠𝑗 ≤ 𝑎𝑗 that it is willing to 

procure from each seller, and separately 𝑑𝑖 that it can deliver to each buyer. The aggre-

gator optimization problem that is used to compute 𝑑𝑖 and 𝑠𝑗 for this task is addressed 

later. The buyer replies to the aggregator by placing a bid 𝑏𝑖 in monetary units that it is 

willing to pay for 𝑑𝑖 units of energy. Note that the condition 𝑝 𝑑𝑖 ≤ 𝑏𝑖 for weak budget 

balance is considered only by the aggregator. Simultaneously, the sellers return 𝑐𝑗, the per 

unit selling cost at which it is willing to supply the amount 𝑠𝑗. 

As seen in Figure 2.1, private information is not provided to the aggregator. The 

underlying SW optimization problem that ensures efficiency incorporating both public 

and private data is discussed first. 

2.3.1 Social Welfare Optimization Problem (SWOP) 

The SWF that is maximized by SWOP consists of the total of all buyers’ and sellers’ 

utilities (𝑢𝑖 and 𝑣𝑗), summed separately as shown below, where for notational convenience, 

the arguments 𝑑𝑖 and 𝑠𝑗 within the function Θ(∙) hereafter refer to the demand and sup-

ply allocations for buyers and sellers. 

Maximize w.r.t. 𝑑𝑖, 𝑠𝑗 

  𝛩(𝑑𝑖, 𝑠𝑗) = ∑𝑢𝑖(𝑑𝑖)
𝑖∈𝒟

+ ∑𝑣𝑗(𝑔𝑗 − 𝑠𝑗)
𝑗∈𝒮

, (2.1) 

subject to, 

𝑝𝑑𝑖 ≤ 𝑏𝑖;   ∀𝑖 ∈ 𝒟,                         (2.2) 

𝑠𝑗 ≤ 𝑎𝑗;     ∀𝑗 ∈ 𝒮,                        (2.3) 

∑𝑑𝑖
𝑖∈𝒟

= ∑ 𝑠𝑗
𝑗∈𝒮

.                              (2.4) 
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The first constraint in Eqn. (2.2) pertains to weakly budget balance for the buyers. The 

second constraint in Eqn. (2.3) ensures that the amount of energy that a seller exports to 

the microgrid never exceeds its declared availability. The last constraint in Eqn. (2.4) is 

present to ensure energy balance.  

For any given values of the bids 𝑏𝑖 and availabilities 𝑎𝑗 given by the constraints in 

Eqns. (2.2) and (2.3), the SWOP defines a unique maximum at 𝑑𝑖
∗, 𝑠𝑗

∗. This follows from 

the fact that the SWOP objective function Θ(𝑑𝑖, 𝑠𝑗) is the sum of strictly concave func-

tions, and is strictly concave with all its constraints being linear. The Lagrangian function 

corresponding to the SWOP can be written as, 

                     ℒ𝛩(𝑑𝑖, 𝑠𝑗, 𝜆𝑖, 𝛼𝑗, 𝜇) = 𝛩(𝑑𝑖, 𝑠𝑗) + ∑ 𝜆𝑖(𝑝𝑑𝑖 − 𝑏𝑖)
𝑖∈𝒟

 

                                                         + ∑ 𝛼𝑗(𝑠𝑗 − 𝑎𝑗)
𝑗∈𝒮

+ 𝜇 (∑ 𝑑𝑖
𝑖∈𝒟

− ∑ 𝑠𝑗
𝑗∈𝒮

) , (2.5)
 

resulting to the following equilibrium conditions, 

𝑝𝑑𝑖
∗ ≤ 𝑏𝑖,                                      (2.6) 

𝜆𝑖
∗(𝑝𝑑𝑖

∗ − 𝑏𝑖) = 0,                            (2.7) 

Aggregator

∑ 𝑏𝑖 log𝑑𝑖
𝑖∈𝒟

− ∑ 𝑐𝑗𝑠𝑗
𝑗∈𝒮

Maximize: ௝ܿ; 	ሺ ௝ܽሻ

;௝ݏ 	ሺ݌ሻ݀௜; 	ሺ݌ሻ

ܾ௜

Social	Welfare

Maximize: ∑ 𝑢𝑖 𝑑𝑖
𝑖∈𝒟

+ ∑ 𝑣𝑗(𝑔𝑗 − 𝑠𝑗)
𝑖∈࣭

Private	

𝑢𝑗 Utility

Buyer 𝑖

Private	

𝑔𝑗 Generation

𝑣𝑗 Utility

Seller 𝑗

Aggregator‐level	Auction

Figure 2.1: Schematic showing the flow of information between buying and selling agents and the 
aggregator. All parameters except those appearing within parenthesis are updated iteratively. 
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𝛼𝑗
∗(𝑠𝑗

∗ − 𝑎𝑗) = 0,                             (2.8) 

𝑢𝑖
′(𝑑𝑖

∗) + 𝜆𝑖
∗𝑝 + 𝜇∗ = 0,                     (2.9) 

−𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

∗) + 𝛼𝑗
∗ − 𝜇∗ = 0,              (2.10) 

2.3.2 Aggregator Optimization Problem (AOP) 

In order to achieve the SWOP objective, AOP is formulated as shown below. 

Maximize w.r.t. 𝑑𝑖, 𝑠𝑗 

 𝛷(𝑑𝑖, 𝑠𝑗) = ∑ 𝑏𝑖 log 𝑑𝑖
𝑖∈𝒟

− ∑𝑐𝑗𝑠𝑗
𝑗∈𝒮

, (2.11) 

subject to constraints in Eqns. (2.2), (2.3), and (2.4) which are restated below, 

       𝑝𝑑𝑖 ≤ 𝑏𝑖;   ∀𝑖 ∈ 𝒟, 

       𝑠𝑗 ≤ 𝑎𝑗;    ∀𝑗 ∈ 𝒮, 

       ∑𝑑𝑖
𝑖∈𝒟

= ∑𝑠𝑗
𝑗∈𝒮

.  

  It must be noted that the AOP formulation does not involve any hidden infor-

mation from the buyers and sellers. For this reason, the objective that is maximized in 

AOP does not involve the agents’ utility functions. Likewise, the second AOP constraint 

uses 𝑎𝑗 instead of 𝑔𝑗, the latter being hidden from the aggregator. 

 The first term in the AOP objective function in Eqn. (2.11), which pertains to the 

buyers, is adapted from the Kelly mechanism. This mechanism is originally proposed for 

single sided network auctions [57] which also does not require hidden data. The Kelly 

mechanism has been studied in the context of communication networks [60],[80], [81]. The 

authors have suggested the use of such an auction for use in microgrid energy trade [3]. 

However, to the best of the authors’ knowledge, its use in these auctions has not been 

examined so far elsewhere. 

 The second term in the AOP objective function in Eqn. (2.11), the summation of 

the monetary payment 𝑐𝑗𝑠𝑗 given to each seller 𝑗 ∈ 𝒮, is the total sellers’ reimbursement 
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by the aggregator. In order to accommodate any desired fairness criteria for the sellers, 

this term has been cast as a linear function. Post-auction redistribution does not change 

the AOP objective as long as the reimbursed amount and the total volume of energy 

transacted do not change during the redistribution stage. For the same reason, in-auction 

redistribution can be readily incorporated within the proposed mechanism, simply by 

adding a weighted third term to the objective function. 

For simplicity, this research takes into account only seller side fair redistribution. 

This setup may be viewed as one where the sellers have their own separate arrangement 

for fair redistribution [82],[83], [84] while the buyers are conventional consumers of energy. 

However, the framework can be readily extended to include coordinated buyers. This may 

be accomplished in a straightforward manner by incorporating another linear term in the 

AOP objective, similar to the second but with opposite sign. 

The formulation in AOP offers the flexibility of any redistribution scheme among 

the sellers using any fairness criterion as long as the total energy volume 𝑆 supplied by 

them remains equal to that delivered to the buyers and the total monetary amount reim-

bursed to them is fixed. All such solutions satisfying these conditions for 𝑠𝑗 must be in-

cluded in the set of optima of the AOP. 

Figure 2.2 shows a graphical illustration of these considerations. Note that the 

optimum solution of the AOP for the buyers,𝑑𝑖, is unique and coincides with that of the 

SWOP. The sellers’ unique optimum solution of the SWOP is also optimal for the AOP. 

This solution can be made unique in the SWOP with the inclusion of a third convex term 

for fairness with a very small weight. Our simulations suggest that, when the auction 

proceeds without this third term, the auction arrives at the unique SWOP solution. 

The Lagrangian of the AOP is defined as, 

                    ℒ𝛷(𝑑𝑖, 𝑠𝑗, 𝛾𝑖, 𝛽𝑗, 𝜈) = 𝛷(𝑑𝑖, 𝑠𝑗) + ∑𝛾𝑖(𝑝𝑑𝑖 − 𝑏𝑖)
𝑖∈𝒟

                                  + ∑𝛽𝑗(𝑠𝑗 − 𝑎𝑗)
𝑗∈𝒮

+ 𝜈 (∑𝑑𝑖
𝑖∈𝒟

− ∑𝑠𝑗
𝑗∈𝒮

) , (2.12)
 

resulting to the following equilibrium conditions, 
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𝑝𝑑𝑖
† ≤ 𝑏𝑖,                                                        (2.13) 

𝛾𝑖
† (𝑝𝑑𝑖

† − 𝑏𝑖) = 0,                           (2.14) 

𝛽𝑗 
† (𝑠𝑗

† − 𝑎𝑗) = 0,                            (2.15) 

𝑏𝑖 

𝑑𝑖 
† + 𝛾𝑖

†𝑝 + 𝜈† = 0,                         (2.16) 

−𝑐𝑗 + 𝛽𝑗
† − 𝜈† = 0.                         (2.17) 

2.3.3 Buyer Optimization Problem 

The buyer bids to maximize its own payoff 𝜋𝑖. This can be formulated as another problem 

that is carried out locally by the agent.  

Maximize w.r.t. 𝑏𝑖 

෍ݏ௝
௥

௝∈࣭

ൌ ෍ݏ௝
ற

௝∈࣭

ൌ෍ݏ௝
∗

௝∈࣭

෍ ௝ܿ
௥ݏ௝

௥

௝∈࣭

ൌ෍ ௝ܿݏ௝
ற

௝∈࣭

ൌ ෍ ௝ܿݏ௝
∗

௝∈࣭

݀௜
∗, ௝ݏ

∗

௝݀௜ݏ௝݀௜ݏ

Figure 2.2 Schematic showing the optima defined by the AOP (left) and the SWOP (right). Both 
optima are unique with respect to the buyers and coincide (𝑑𝑖

†, 𝑑𝑖
∗). The SWOP’s unique sellers 

solution (𝑠𝑗
∗) is also an optimal solution (𝑠𝑗

†) of the AOP although the AOP admits other optima 
(𝑠𝑗

𝑟) depending on the fairness criterion as long as the constraints shown are satisfied. 
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𝜋𝑖 = 𝑢𝑖(𝑑𝑖) − 𝑏𝑖.                             (2.18) 

Differentiating w.r.t. 𝑑𝑖, yields the following, 

𝑢𝑖
′(𝑑𝑖) = 𝜕𝑏𝑖

𝜕𝑑𝑖
.                            (2.19) 

Upon receiving 𝑑𝑖 from the aggregator, each buyer bids, 

𝑏𝑖 = 𝑢𝑖
′(𝑑𝑖)𝑑𝑖.                            (2.20) 

2.3.4 Seller Optimization Problem  

At the beginning of the proposed iterative auction, the seller declares its availability 

𝑎𝑗.The seller communicates the cost 𝑐𝑗 at which it is willing to deliver the volume 𝑠𝑗 of 

energy to the microgrid using the following problem formulation. 

Maximize w.r.t. 𝑐𝑗 

𝜋𝑗 = 𝑣𝑗(𝑔𝑗 − 𝑠𝑗) + 𝑐𝑗𝑠𝑗.                   (2.21) 

When the seller does not overbid or underbid, this leads to the following cost-

updating rule. 

𝑐𝑗 =  𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗).                           (2.22) 

The reason why the seller does not overbid or underbid is as follows. Let us consider 

the case where 𝑎𝑗 > 𝑠𝑗. Clearly, the seller 𝑗 would not underbid by declaring a cost 𝑐𝑗 <

𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗) since the monetary payoff 𝑐𝑗∆𝑠𝑗 obtained from this approach would be lower 

than the loss in utility 𝑣𝑗(𝑔𝑗 − 𝑠𝑗 − ∆𝑠𝑗). On the other hand, overbidding is not an optimal 

strategy since it would make 𝑠𝑗 = 0. This can be seen by inserting the implicit constraint 

𝑠𝑗 ≥ 0  to the AOP problem. In this case, the Lagrangian in Eqn. (2.12)  be-

comes ℒΦ(𝑑𝑖, 𝑠𝑗, 𝛾𝑖, 𝛽𝑗, 𝜈) + 𝜁𝑠𝑗 with the KKT conditions 𝜁 ≥ 0 and 𝜁𝑠𝑗 = 0 in addition to 

those of the AOP problem given by Eqns. (2.13) to (2.16) and with Eqn. (2.17) replaced 

with the equality −𝑐𝑗 + 𝛽𝑗 + 𝜁 − 𝜈 = 0. Since  𝛽𝑗 = 0 when 𝑎𝑗 > 𝑠𝑗, the equality reduces 
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to −𝑐𝑗 + 𝜁 − 𝜈 = 0. When the seller 𝑗 does not overbid for a supply 𝑠𝑗 > 0, it is seen that 

𝜁 = 0 and 𝑐𝑗 = −𝜈. However if it overbids, then 𝑐𝑗 > −𝜈 whence 𝜁 > 0 so that−𝑐𝑗 + 𝜁 −

𝜈 = 0, whence the new 𝑠𝑗 is forced to be zero, removing the seller from the auction. 

When 𝑎𝑗 = 𝑠𝑗 a similar argument with 𝜁 replaced with 𝛽𝑗 + 𝜁, indicating that the 

seller will neither overbid nor underbid. 

2.4 Auction Properties Analysis 

This section establishes various desirable features of the proposed energy double auction 

mechanism. 

Proposition 2.1.  The allocation 𝑑𝑖
† of each buyer 𝑖 at the maximum of AOP is equal to 

the corresponding maximum 𝑑𝑖
∗ of SWOP, i.e. 𝑑𝑖

† = 𝑑𝑖
∗.  

Proof of Proposition 2.1. From the assumption of strict concavity of any buyer’s 

utility 𝑢𝑖(∙), the function 𝑢𝑖
′(𝑑𝑖)𝑑𝑖 given by the buyers’ bid 𝑏𝑖 in Eqn. (2.20) is strictly 

increasing.  Since the buyer bid 𝑏𝑖 remains unchanged for both allocations 𝑑𝑖
† and 𝑑𝑖

∗, 

clearly 𝑢𝑖
′(𝑑𝑖

†)𝑑𝑖
† = 𝑢𝑖

′(𝑑𝑖
∗)𝑑𝑖

∗. Hence, it follows that 𝑑𝑖
† = 𝑑𝑖

∗. 

■ 

Proposition 2.2. (Quasi-efficiency) The unique SWOP maximum at 𝑑𝑖
∗, 𝑠𝑗

∗ satisfies the 

KKT conditions of AOP, so that, 

       (𝑑𝑖
∗, 𝑠𝑗

∗) ∈ argmax
𝑑𝑖,𝑠𝑗

𝛷(𝑑𝑖, 𝑠𝑗). 

Proof of Proposition 2.2. From proposition-1, 𝑑𝑖
† = 𝑑𝑖

∗. Consider the case with 𝑠𝑗
† = 𝑠𝑗

∗. 

Letting 𝛾𝑖
† = 𝜆𝑖

∗ , 𝛽𝑗
† = 𝛼𝑗

∗ , 𝜈† = 𝜇∗  and 𝑐𝑗 = −𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

∗), Eqn. (2.13) – Eqn. (2.17) are 

satisfied. The statement of Proposition-2 follows immediately. Note that there may exist 
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other values of 𝑠𝑗
† ≠ 𝑠𝑗

∗  satisfying AOP’s KKT conditions so 

that (𝑑𝑖
∗, 𝑠𝑗

†) ∈ argmax
𝑑𝑖,𝑠𝑗

Φ(𝑑𝑖, 𝑠𝑗). This extra degree of freedom offers the option of post-

auction sellers’ redistribution. 

■ 

Proposition 2.3. (Weak budget balance) The proposed auction mechanism is weakly 

budget balanced.  

Proof of Proposition 2.3. The net revenue remaining with the aggregator at the end 

of the auction is, 

𝜋𝑎𝑔𝑔 = ∑𝑏𝑖
𝑖∈𝒟

− ∑𝑐𝑗𝑠𝑗
†

𝑗∈𝒮
.                  (2.23) 

The statement implies that 𝜋𝑎𝑔𝑔 ≥ 0. Hence, the following inequality must be established, 

∑ 𝑏𝑖
𝑖∈𝒟

≥ ∑𝑐𝑗𝑠𝑗
†

𝑗∈𝒮
.                           (2.24) 

The net revenue obtained from the buyers is the bids 𝑏𝑖 summed over all buyers, 𝑖 ∈ 𝒟. 

Using Eqn. (2.13) the following inequality holds, 

∑𝑏𝑖
𝑖∈𝒟

≥ ∑𝑝𝑑𝑖
†

𝑖∈𝒟
.                            (2.25) 

From the energy balance constraint given by Eqn. (2.4) at the equilibrium, Eqn. (2.25) 

can be written as follow,  

∑𝑏𝑖
𝑖∈𝒟

≥ ∑𝑝𝑑𝑖
†

𝑖∈𝒟
= ∑𝑝𝑠𝑗

†

𝑗∈𝒮
.               (2.26) 

From Eqn. (2.22) it is seen that 𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝑐𝑗 . Since 𝑐𝑗 ≤ 𝑝, the inequality in Eqn. 

(2.26) can be rewritten as, 

∑𝑏𝑖
𝑖∈𝒟

≥ ∑𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗)𝑠𝑗

†

𝑗∈𝒮
.                (2.27) 
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Since  𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

†) = 𝑐𝑗 and 𝑠𝑗
† ≤ 𝑎𝑗, under the assumption that the utilities 𝑣𝑗(∙) are con-

cave, 𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) ≥ 𝑣𝑗

′(𝑔𝑗 − 𝑠𝑗
†). Hence,  

∑𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗)𝑠𝑗

†

𝑗∈𝒮
≥ ∑𝑣𝑗

′(𝑔𝑗 − 𝑠𝑗
†)𝑠𝑗

†

𝑗∈𝒮
.  (2.28) 

From Eqn. (2.27), Eqn. (2.28) , and Eqn. (2.22), 

∑𝑏𝑖
𝑖∈𝒟

≥ ∑ 𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

†)𝑠𝑗
†

𝑗∈𝒮
= ∑𝑐𝑗𝑠𝑗

†

𝑗∈𝒮
.  (2.29) 

As ∑ 𝑐𝑗𝑠𝑗
†

𝑗∈𝒮  is the reimbursement provided to sellers, the above inequality in Eqn. (2.29) 

implies that 𝜋𝑎𝑔𝑔 ≥ 0. 

■ 

Proposition 2.4. (Individual Rationality) The proposed auction mechanism is individu-

ally rational for all participating agents. 

Proof of Proposition 2.4. This proposition will be established separately for the buyers 

and the sellers. Since the bidding strategy of every buyer 𝑖 is to maximize its payoff  𝜋𝑖 =

𝑢𝑖(𝑑𝑖) − 𝑏𝑖 where 𝑏𝑖 = 𝑢𝑖
′(𝑑𝑖)𝑑𝑖, upon termination of the auction, i.e. at equilibrium, it is 

evident that, 

𝑑𝑖
† = argmax(𝑢𝑖(𝑑𝑖) − 𝑢𝑖

′(𝑑𝑖)𝑑𝑖).       (2.30) 

Whence it follows that, 

𝑢𝑖(𝑑𝑖
†) − 𝑢𝑖

′(𝑑𝑖
†)𝑑𝑖

† ≥ 𝑢𝑖(0).               (2.31) 

Since the utility of the buyer in the absence of any auction would have been 𝑢𝑖(0), that 

is the right hand side of the inequality in Eqn. (2.31), it is concluded that the auction is 

individually rational for the buyers. 
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The payoff of each seller 𝑗 after the auction terminates is 𝜋𝑗
† = 𝑣𝑗(𝑔𝑗 − 𝑠𝑗

†) + 𝑐𝑗𝑠𝑗
†. 

Since at 𝑠𝑗
†, from Eqn. (2.22), 𝑐𝑗 = 𝑣𝑗

′(𝑔𝑗 − 𝑠𝑗
†), the payoff can be expressed as, 

𝜋𝑗
† = 𝑣𝑗(𝑔𝑗 − 𝑠𝑗

†) + 𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

†)𝑠𝑗
†.       (2.32) 

Since the seller’s strategy is to maximize its payoff, clearly 𝜋𝑗
† ≥ 𝑣𝑗(𝑔𝑗). From the Mean 

Value Theorem, there exists an 𝑟𝑗 ∈ (0, 𝑠𝑗
†) such that, 

𝑣𝑗(𝑔𝑗) = 𝑣𝑗(𝑔𝑗 − 𝑠𝑗
†) + 𝑣𝑗

′(𝑔𝑗 − 𝑟𝑗)𝑠𝑗
†.   (2.33) 

From the concavity assumption of the utilities 𝑣𝑗(∙), 𝑣𝑗
′(𝑔𝑗 − 𝑠𝑗

†) ≥ 𝑣𝑗
′(𝑔𝑗 − 𝑟𝑗) so that us-

ing Eqn. (2.32) and Eqn. (2.33), 

𝑣𝑗(𝑔𝑗 − 𝑠𝑗
†) + 𝑣𝑗

′(𝑔𝑗 − 𝑠𝑗
†)𝑠𝑗

† ≥ 𝑣𝑗(𝑔𝑗).  (2.34) 

Since 𝑣𝑗(𝑔𝑗) represents the payoff of the seller 𝑗 before the auction, from Eqn. (2.34), 

clearly the auction is individually rational for the sellers. 

■ 

2.5 Fair Redistribution 

This section addresses the problem of redistribution of the sellers’ allocations using a 

predetermined fairness criterion. The vast literature of computational mechanism design 

defines several fairness criteria [85]. However, many such paradigms require sellers’ hidden 

information, i.e. their utility functions, in their formulations, contradicting the underlying 

assumption of this research that the aggregator does not have access to the latter. 

 An in-auction implementation of any redistribution scheme can be readily accom-

plished by adding a fairness term to the AOP objective weighted infinitesimally 

as 𝜂𝐹(𝑠𝑗
𝑟), 𝜂 ≪ 1, so that the auction’s properties outlined in the previous section are 

unaffected. Alternately, it can be implemented post-auction as a second stage of the over-

all mechanism, which is considered here. The redistribution must be carried out in such a 

manner that the total amount that the aggregator provides as reimbursement, 𝑅, to the 
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sellers must remain unchanged. Hence, the redistribution algorithm follows the constraint 

below.  

𝑅 = ∑𝑐𝑗
𝑟𝑠𝑗

𝑟

𝑗∈𝒮
= ∑𝑐𝑗𝑠𝑗

†

𝑗∈𝒮
.                  (2.35) 

 In a similar manner, the total energy 𝑆 supplied by the sellers must remain fixed 

at that determined prior to redistribution. This is because, from energy balance in Eqn. 

(2.4), it must equal the total energy delivered to the buyers. Hence, 

𝑆 = ∑𝑠𝑗
𝑟

𝑗∈𝒮
= ∑𝑠𝑗

†

𝑗∈𝒮
.                       (2.36) 

Lastly, the amount that each seller is allocated after redistribution should not ex-

ceed its declared availability, so that, 

𝑠𝑗
𝑟 ≤ 𝑎𝑗;     𝑗 ∈ 𝒮.                           (2.37) 

As a representative scheme, we focus on the maximum entropy redistribution [85]. 

The fair redistribution mechanism’s using the maximum entropy criterion is given by, 

𝐹(𝑠𝑗
𝑟) = ∑

𝑠𝑗
𝑟

𝑆
log

𝑠𝑗
𝑟

𝑆𝑗∈𝒮
.                      (2.38) 

With Eqns. (2.36) and (2.37) as constraints, maximizing 𝐹(𝑠𝑗
𝑟) defines a fair redistribu-

tion optimization problem (FROP). The Lagrangian of the FROP is, 

  ℒ𝐹 (𝑠𝑗
𝑟, 𝛽𝑗

𝑟, 𝜈𝑟) = ∑
𝑠𝑗

𝑟

𝑆
log

𝑠𝑗
𝑟

𝑆𝑗∈𝒮
+ ∑𝛽𝑗

𝑟(𝑠𝑗
𝑟 − 𝑎𝑗)

𝑗∈𝒮
 

                   +𝜈𝑟 (∑𝑠𝑗
𝑟 − 𝑆

𝑗∈𝒮
) (2.39) 

 

with the following equilibrium conditions, 

𝛽𝑗
𝑟(𝑠𝑗

𝑟 − 𝑎𝑗) = 0.                             (2.40) 

1 + log
𝑠𝑗

𝑟

𝑆
+ 𝑆𝛽𝑗

𝑟 + 𝑆𝜈𝑟 = 0.              (2.41) 
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This leads to solutions of the form, 𝑠𝑗
𝑟 = 𝐾𝑒−𝑆𝛽𝑗

𝑟 , where 𝐾 = 𝑆𝑒−1𝑒−𝑆𝜈𝑟 . For all sellers 

with 𝑠𝑗
𝑟 < 𝑎𝑗 , Eqn. (2.40)  shows that 𝛽𝑗

𝑟 = 0 , whence 𝑠𝑗
𝑟 = 𝐾 . Since 𝛽𝑗

𝑟 > 0  for those 

sellers that reach their maximum availabilities, the inequality 𝑠𝑗
𝑟 < 𝐾 holds. The redis-

tributed allocations can be stated succinctly as, 

𝑠𝑗
𝑟 = min(𝑎𝑗, 𝐾),                           (2.42) 

with the aggregate energy term constraint leading to the expression, 

𝐾 = 𝑆 − ∑ 𝑠𝑗
𝑟

𝑠𝑗
𝑟=𝑎𝑗

.                           (2.43) 

This reformulation of the FROP leads to the well-known water filling algorithm shown in 

Figure 2.3, and can be readily incorporated within the aggregator as an algorithm of 

computational complexity 𝑂(|𝒮| log|𝒮|). 

The sellers per unit energy costs can be implemented in various ways. For instance, 

uniform pricing leads to, 

𝑐𝑗
𝑟 = 1

𝑆
∑ 𝑐𝑗𝑠𝑗

†

𝑗∈𝒮
.                             (2.44) 

 

  

𝑠𝑗
𝑟 = 𝐾 < 𝑎𝑗

𝐾𝑎𝑗

𝑆 = ∑ 𝑠𝑗
†

𝑠𝑗
𝑟 = 𝑎𝑗 ≤ 𝐾

Figure 2.3: Illustration of the water-filling algorithm. The leftmost column represents the total 
amount of supply, which is redistributed to the columns in the right. In each column, the region
shaded in blue (representing water), is the redistributed supply, 𝑠𝑗

𝑟. 
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As mentioned earlier, this redistribution is accompanied by a loss in the overall SW that 

is expressed in terms of price of fairness, and is given by the following equation, 

𝜅𝐹 =
𝛩(𝑑𝑖

†, 𝑠𝑗
†) − 𝛩(𝑑𝑖

†, 𝑠𝑗
𝑟)

𝛩(𝑑𝑖
†, 𝑠𝑗

†)
.             (2.45) 

2.6 Simulation Results 

Several sets of simulations were performed to complement the theory. The auction in 

every case were initiated with a per unit market price of 𝑝 = 0.25. Utilities of the buyers 

and sellers were assumed to follow logarithmic saturation curves according to Eqns. (2.46) 

and (2.47), 

𝑢𝑖(𝑑𝑖) = 𝑥𝑖 log(𝑦𝑖𝑑𝑖 + 1),                 (2.46) 

𝑣𝑗(𝑔𝑗 − 𝑠𝑗) = 𝑥𝑗 log(𝑦𝑗(𝑔𝑗 − 𝑠𝑗) + 1).  (2.47) 

The quantities 𝑥𝑖, 𝑦𝑖, 𝑥𝑗 and 𝑦𝑗 were randomly generated for each agent from a uniform 

distribution centered at unity. The generations, 𝑔𝑗, for the sellers were also drawn in at 

random, uniformly in the interval [2, 5].  

In order to show that every individual agent is better off participating in the auc-

tion, i.e. the auction is individually rational, extensive simulations were performed to get 

an average seller and buyers’ payoff under two cases of sellers with several cases of buyers 

as depicted in Figure 2.4. Notice that as the number of buyers in the auction increases, 

the average seller’s payoff increases while that of the buyer decreases. For a given number 

of buyers, the payoff of an average seller is higher in the case of 10 sellers than that of 15 

sellers and the average payoff of a buyer is lower in the case of 10 sellers than that of 15 

sellers. 

To illustrate that the auction allows price differentiation, with 𝑐𝑖 = 𝑏𝑖/𝑑𝑖 as the 

buyers’ per unit energy price, Figure 2.5 and Figure 2.6 is presented to show the auction 

outcome for prices and allocations for two different cases of 5 sellers and 5 buyers (case 

I) and 5 sellers and 10 buyers (case II) representing two markets with low and high 

demand. Note that in case I all buyers pay the same minimum per unit price 𝑝 =
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0.25 (Figure 2.5) and receive nonzero allocations (Figure 2.6) as the number of buyers are 

lower. However, they are willing to pay different per unit prices more than 𝑝 = 0.25 in 

case II as demand and the number of buyers is high. In case II, buyers who are willing to 

pay high per unit prices get non-zero allocations. For example, buyers 8, 9, and 10 that 

are not willing to pay higher per unit prices are allocated zero amounts. Note that in both 

cases, paying the highest per unit price does not mean getting the highest amount of 

allocation as every agents’ utility curve is randomly generated resulting to different mar-

ginal utilities. This means that different agents marginal utilities reaches saturation at 

different prices after which they are not willing to increase or decrease their bids, as it is 

not profitable. 

For the sellers in case I however, except seller 1, all other sellers are allocated lesser 

supply than their declared availabilities due to low demand in the market, i.e. they end 

up selling less than their declared availabilities as listed in table I. This is because the 

buyers’ marginal utilities have reached down to saturation at the minimum buying 

price 𝑝 = 0.25 and they are not allowed to purchase more due to the weakly budget bal-

ance constraint 𝑝𝑑𝑖 ≤ 𝑏𝑖. Notice that, as there is more supply in the market in case I, the 

seller with the lowest selling price, i.e. seller 1, gets to sell all its declared availability. 

Sellers 2 to 4 settle down at almost the same price as that of seller 1 and get to sell 

most of their declared availabilities whereas seller 5 does not sell any amount due to its 

high price.  For case II however, as the number of buyers is high, the sellers get to sell all 

their declared availabilities at different per unit prices with seller 5 selling at the highest 

per unit price. 

The aggregator’s revenue  𝜋𝑎𝑔𝑔  given by Eqn. (2.23) in case I is 0.576 whereas it 

is 1.13 in case II showing the weakly budget balance property of the proposed double 

auction. This increase can be readily seen through the change in buyers’ per unit prices 

from case I to case II when they increase from 5 to 10 buyers. 
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Figure 2.4: Average buyer and sellers’ payoff for two cases of sellers with several buyers. 

Figure 2.5: Buyers and sellers’ per unit prices 𝑐𝑖 and 𝑐𝑗 for case I and case II. 



30 

 

Table 2.1: Outcome of the auction pertaining to the sellers, before and after redistribution.   

Case 𝑗  𝑔𝑗 𝑎𝑗 𝑠𝑗 𝑐𝑗 𝑠𝑗
𝑟    𝑐𝑗

𝑟

I 1  4.204 2.177 2.177 0.171 1.790 0.172 
2  3.205 2.022 1.997 0.173 1.790 0.172 
3  3.141 2.196 2.092 0.173 1.790 0.172 
4  4.526 1.889 1.149 0.173 1.790 0.172 
5  2.155 0.254 0.000 0.229 0.254 0.172 

II 1  4.526 3.101 3.101 0.158 3.101 0.180 
2  2.155 1.052 1.052 0.168 1.052 0.180 
3  4.204 1.112 1.112 0.206 1.112 0.180 
4  3.141 0.683 0.683 0.219 0.683 0.180 
5  3.205 0.470 0.470 0.229 0.470 0.180 

 

To present the effect of fair redistribution on the sellers’ side, additional details of 

the above two case along with the fair redistribution outputs for the sellers are provided 

in Table 1.  
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Figure 2.6: Buyers’ allocation 𝑑𝑖 and sellers’ allocation 𝑠𝑗 for 𝑁𝑠 = 5, 𝑁𝑏 = 5 (case I) and 𝑁𝑠 =
5, 𝑁𝑏 = 10 (case II). 
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One issue that is solved through a fair redistribution can be observed in case I. Note that 

sellers 2, 3, and 4 have submitted the same per unit price with their maximum available 

𝑎𝑗s for sale, however, they have been discriminated during allocation due to multiple 

optima in the AOP’s objective as illustrated earlier in Figure 2.2. The water-filling algo-

rithm discussed earlier is used for this purpose. This algorithm fairly redistributes the 

sellers’ allocation,  𝑠𝑗
𝑟  with the new equally redistributed per unit price 

𝑐𝑗
𝑟. This clearly comes with a price, quantified earlier as the price of fairness in Eqn. (2.45), 

and is presented later in Figure 2.7.Notice that in case II, the distribution is already fair 

in allocations, i.e. 𝑠𝑗 = 𝑠𝑗
𝑟 , as sellers supply at their declared availabilities due to high 

market demand and redistribution yields the same amounts. However, sellers are price 

discriminated due to different marginal utilities, which can be redistributed using uniform 

pricing at sellers consent. 

The total sellers’ and total buyers’ welfare as well as the overall SW under 5 cases 

when no trade takes place, trade takes place, and when trade takes place and the aggre-

gator redistributes the allocation for fairness purpose with the associated price of fair-

ness, 𝜅𝐹  ,  is illustrated in Figure 2.7. Note that the SW is higher under trading than the 

case where no trade takes place, implying the benefit of the auction. Furthermore, the 

SW decreases after redistribution in the low demand case and is not affected in the high 

demand cases, where all the sellers sell their entire declared availabilities. The price of 

fairness is only non-zero when some of the sellers do not happen to sell their declared 

availabilities. 

Lastly, to show that the auction is efficient, i.e. the AOP always attains the SW 

optimum, percent difference of the SW obtained by the AOP to that of the actual opti-

mum SW has been recorded during each iteration for 4 different cases and has been de-

picted in Figure 2.8. As can be seen, the percent difference drops to almost zero within 

several iterations. Note that the AOP attains the actual SW optimum given that no in-

auction fairness criterion is applied. 
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Figure 2.7: SW Θ(𝑑𝑖
†, 𝑠𝑗

†) under 5 different cases (case 1: 𝑁𝑠 = 50, 𝑁𝑏 = 20, case 2: 𝑁𝑠 = 50,
𝑁𝑏 = 30, case 3: 𝑁𝑠 = 50, 𝑁𝑏 = 50, case 4: 𝑁𝑠 = 50, 𝑁𝑏 = 60, case 5: 𝑁𝑠 = 50, 𝑁𝑏 = 100) for no 
trading, trading, and trading with fair redistribution and the corresponding price of fairness 𝜅𝐹
in percent. 
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2.7 Conclusions 

In this chapter a double sided, weakly budget balanced, individually rational, and efficient 

auction with hidden user information is presented, which can be applied to energy auctions 

in the grid. In the simulations reported earlier, an iteration of the double auction involved 

multiple steps of the underlying AOP algorithm in order to ensure that the allocations 

were close enough to the optima, before the aggregator allows rebidding. A regularization 

term weighted by a vanishingly small amount was introduced to AOP to let it converge 

to an optimum closest to the initial values. This was done to reduce the communication 

overhead that varies directly as the number of times the agents rebid. This approach 

differs from those taken elsewhere [62]. The implicit assumption in this research is that 

the aggregator possesses enough processing capabilities to implement an optimization al-

gorithm. However it should be noted that this approach can be implemented in a distrib-

ute manner by using methods such as a dual decomposition algorithm which may increase 

the communication steps while reducing the aggregator’s processing requirements [86]. 

 Although not included in our earlier simulation results, it is possible to apply water-

filling fairness criteria in-auction given that the agents’ strategies are as given in sections 

2.3.3  and 2.3.4 . The rationale is that given the simplicity of the water-filling algorithm, 

a post-auction implementation reduces the computational overload as opposed to an in-

auction scheme where the maximum entropy criterion (Eqn. (2.38)) needs to be included 

as a third term in Eqn. (2.11) with a weight that is small enough not to affect the bidding 

process. 

 As mentioned earlier, it was observed that without any specific in-auction fairness, 

the AOP always converged to the SWOP solution. This was shown in Figure 2.8 as per-

cent difference of the SW obtained by the AOP compared to the actual SW. As theoretical 

issues pertaining to this observation have not been addressed in this research, the authors 

do not recommend this approach unless a specific fairness criterion is needed. Future 

research directions may be directed towards extending the algorithm to guarantee con-

vergence and fairness criterion. 

 Although simulations have been carried out within the context of energy trade, 

grid-specific engineering constraints have not been considered here. However, the core 
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approach proposed here can be readily extended to meet such requirements. It should be 

noted that this scheme could be extended to handle multi-period operations. The presence 

of energy storage elements at the local agent level only changes the agents’ biddings sep-

arately in each period, but not AOP. Conversely, the presence of a shared energy storage 

device with the aggregator would require an additional term and associated battery con-

straint in the AOP problem, while the agents place bids in the same manner as in this 

research. These extensions, which do not change the fundamental nature of the algorithm, 

can be easily addressed in subsequent research. 

 Given that in double sided auctions, it is impossible to simultaneously achieve 

perfect efficiency, budget balance, and individual rationality with incentive compatibility 

[87], [88], in this study the viability of a double sided individually rational, weakly budget 

balanced, quasi-efficient auction with agents not having to share private user information 

has been clearly established. 
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Aggregator-level Price Homogeneous 

Energy Auction 

A distributed proportionally fair double-sided energy auction algorithm that can be im-

plemented by an impartial aggregator, as well as a possible approach by which the agents 

may approximate price anticipation is investigated. Equilibrium conditions arising due to 

price anticipation is analyzed. A modified auction to mitigate the resulting loss in effi-

ciency due to such behavior is suggested. This modified auction allows the aggregate SW 

of the agents to be arbitrarily close to that attainable with price taking agents. Next, 

equilibrium conditions when the aggregator collects a surcharge price per unit of energy 

traded is examined. A bi-objective optimization problem is identified that takes into ac-

count both the agents' SW as well as the aggregator's revenue from the surcharge. The 

results of extensive simulations, which corroborate the theoretical analysis, are reported. 

3.1 Introduction 

An efficient (SW maximizing), weakly budget balanced, price heterogeneous, and individ-

ually rational energy auction that is implemented through a profit seeking aggregator was 

introduced in chapter 2. The aggregator was designed to seek arbitrage opportunities, i.e. 

buy at a lower price and sell at a higher price. A predetermined fixed market price that 

was not being updated with iterations was initially sent to individual sellers that were 

willing to sell at less than or equal to this price. Buyers that were willing to buy at equal 

or greater than the assigned price were determined and a distributed double auction al-

gorithm was implemented to maximize the SW indirectly.  

 In this chapter, we study a price uniform, i.e. all agents pay the same per unit 

price, distributed auction algorithm that is implemented by an impartial aggregator. The 

proposed auction algorithm is efficient, strongly budget balanced, price uniform, and in-

dividually rational. The market-clearing price is iteratively reached based on proportional 

allocation using the bids of the agents. The proposed mechanism does not require agents’ 

generation and utility function information in order to maximize the SW. 
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For the sake of reader’s convenience, a list of notation and abbreviations for this 

chapter are provided in Appendix B. 

3.2 Auction Framework 

3.2.1 Network Model 

With energy as the resource involved in the trade, the network of agents in our model 

consists of a set 𝒟 of buyers and another set 𝒮 of sellers. Although grid energy auctions 

typically involve the presence of prosumers that buy and sell energy, we assume for sim-

plicity that 𝒟 and 𝒮 are disjoint. The model also includes a separate entity, 𝒜, the ag-

gregator (or auctioneer) that is responsible for communicating with the other agents and 

implementing the auction. Unless otherwise indicated the aggregator acts as a selfless 

agent, requiring no separate parametrization of its own, in which case 𝒜 = ∅.  

Each agent, whether a buyer or a seller, has its own utility representing the gain 

(in monetary units) it derives from consuming an amount of energy. The utility of a buyer 

𝑖 ∈ 𝒟 is denoted as 𝑢𝑖, and that of a seller 𝑗 ∈ 𝒮, as 𝑣𝑗. As the sellers are capable of 

supplying energy, the model assumes that each has a fixed amount of energy  𝑔𝑗, called 

its generation that is available both for its own use and to sell.   

The underlying physical network that implements the auction mechanism can be com-

pletely defined as the following 6-tuple Θ, 

𝛩 ≜ (𝒟, 𝒮, 𝑔𝑗, 𝑢𝑖, 𝑣𝑗, 𝒜).                  (3.1) 

The mathematical treatment made throughout the rest of this paper is based on the 

following underlying assumptions. 

(i) The utilities 𝑢𝑖 and 𝑣𝑗 are continuous, differentiable, monotonically increasing and 

strictly concave functions with non-negative arguments. In other words,  𝑢𝑖
′, 𝑣𝑗

′ > 0 and 

 𝑢𝑖
′′, 𝑣𝑗

′′ < 0 when the argument lies within the interval (0, ∞). 



37 

(ii) There is at least one buyer and one seller, i.e. 𝒟, 𝒮 ≠ ∅, and furthermore that at least 

one buyer 𝑖 ∈ 𝒟 can obtain energy from some seller 𝑗 ∈ 𝒮 so that some trade takes place. 

This assumption can be summarized as follows. 

∃𝑖 ∈ 𝒟, 𝑗 ∈ 𝒮, ∋  𝑢𝑖
′(0) > 𝑣𝑗

′(𝑔𝑗).        (3.2) 

3.2.2 Auction Process 

The buyers and sellers’ bidding processes are implemented as separate steps in the auction. 

Each buyer 𝑖 receives from the aggregator its demand 𝑑𝑖, which is the amount of energy 

that is allocated for use. The buyer responds by communicating to the aggregator its 

bid 𝑏𝑖, which is the amount of money that it is willing to pay for it. Separately, each seller 

𝑗 receives a per unit price 𝑝 of energy, and communicates back to the aggregator, its 

availability 𝑎𝑗 that it is willing to supply.  

 The schematic in Figure 3.1 shows the layout of the entire auction process. The 

auction proceeds iteratively until termination when 𝑝 converges to the market clearing 

price. 
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Figure 3.1: Schematic of the network model showing flow of bidding information during auction 
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3.3 Auction under Price Anticipation 

3.3.1 Aggregator 

It is assumed that there is no energy loss taking place during transmission. Thus, with 

the network operating under isolation as is also assumed in this section, the total amount 

of energy that is declared available by the sellers must be equal to the total amount 

demanded by the buyers, so that the following energy balance equation holds.   

∑ 𝑑𝑖𝑖
= ∑ 𝑎𝑗𝑗

.                            (3.3) 

 In this section the aggregator is also assumed to be selfless and plays no additional 

role other than that specified earlier (𝒜 = ∅), so that the money received as the total 

buyers’ bids is exchanged for the total available energy sold by the sellers. Under these 

circumstances, the per unit price is given by, 

𝑝 = (∑ 𝑎𝑗𝑗
)

−1
∑ 𝑏𝑖𝑖

.                   (3.4) 

As the auction is based on proportional allocation of resources, the energy demand 

𝑑𝑖 that each buyer 𝑖 receives from the aggregator must be proportional to its bid 𝑏𝑖 so 

that,  

𝑑𝑖 = 𝑏𝑖
𝑝

, ∀ 𝑖 ∈ 𝒟.                      (3.5) 

3.3.2 Buyer 

Each buyer 𝑖 aims to maximize its payoff from the auction mechanism. Noting that it has 

to pay an amount 𝑏𝑖 in order to receive energy 𝑑𝑖, it places a bid 𝑏𝑖 in accordance with 

the following optimization problem. 

Maximize w.r.t. 𝑏𝑖: 

𝑢𝑖(𝑑𝑖) − 𝑏𝑖.                                   (3.6) 
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Proposition 3.1. The optimal bidding strategy of a buyer 𝑖 ∈ 𝒟 is, 

𝑏𝑖 = 𝑑𝑖𝑢𝑖
′(𝑑𝑖)(1 − 𝛽𝑖).                           (3.7) 

Here the quantity 𝛽𝑖 is the market power of buyer 𝑖 described later in this section.  

Proof of Proposition 3.1. Let 𝐴 = ∑ 𝑎𝑗𝑗  and 𝐵 = ∑ 𝑏𝑖𝑖 . The stationary condition of 
Eqn. (3.6) is obtained by differentiation with respect to the bid 𝑏𝑖 as shown below. 

       𝑢𝑖
′(𝑑𝑖)

𝜕𝑑𝑖
𝜕𝑏𝑖

= 1. 

As buyer 𝑖 is price anticipating, 𝑑𝑖 is dependent on 𝑏𝑖 through the price 𝑝. Hence replacing 
∂𝑑𝑖
∂𝑏𝑖

appropriately using Eqn. (3.5) and applying the chain rule, we get  

       𝑢𝑖
′(𝑑𝑖)

1
𝑝

(1 − 𝑏𝑖
𝑝

𝜕𝑝
𝜕𝑏𝑖

) = 1. 

Using Eqn. (3.4) the above equality yields, 

       𝑢𝑖
′(𝑑𝑖) (1 − 𝑏𝑖

𝐵
) = 𝑝. 

Whence from Eqn. (12), 

       𝑢𝑖
′(𝑑𝑖)(1 − 𝛽𝑖) = 𝑝. 

Proposition-1 follows directly from the above and Eqn. (3.5) with 𝛽𝑖 = 𝑏𝑖
𝐵. More on this 

later. 
■ 

3.3.3 Seller 

Each seller 𝑗 declares its availability 𝑎𝑗 at price 𝑝 to the aggregator to attain the maxi-

mum of its payoff, which is the sum of the money that it receives from selling energy as 

well as its own utility from consuming the remaining amount 𝑔𝑗 − 𝑎𝑗 of energy. Noting 

that its availability cannot exceed its generation 𝑔𝑗, its participation in the auction is 

characterized by means of the following optimization problem.   
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Maximize w.r.t. 𝑎𝑗: 

𝑣𝑗(𝑔𝑗 − 𝑎𝑗) + 𝑝𝑎𝑗.                           (3.8) 

Subject to: 

𝑎𝑗 ≤ 𝑔𝑗.                                        (3.9) 

Proposition 3.2. The optimal bidding strategy of a seller 𝑗 ∈ 𝒮 is given by the expression 

below. 

𝑎𝑗 = min{𝑎𝑗
∘ , 𝑔𝑗},                           (3.10) 

where 𝑎𝑗
∘ is the solution to the equation, 

𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗

∘) = 𝑝(1 − 𝛼𝑗).                  (3.11) 

The seller’s market power 𝛼𝑗 is described in the next section. 

Proof of Proposition 3.2. Introducing the dual variable 𝜌𝑗, the Lagrangian of the prob-

lem defined in Eqns. (3.8) and (3.9) is, 

       ℒ𝑆(𝑎𝑗, 𝜌𝑗) = 𝑣𝑗(𝑔𝑗 − 𝑎𝑗) + 𝑝𝑎𝑗  + 𝜌𝑗(𝑎𝑗 − 𝑔𝑗).  

This yields the following complementary slackness and stationary conditions. 

       𝜌𝑗(𝑎𝑗 − 𝑔𝑗) = 0, 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝑝 + 𝑎𝑗

𝜕𝑝
𝜕𝑎𝑗

+ 𝜌𝑗. 

Replacing ∂𝑝
∂𝑎𝑗

 in the stationary condition above appropriately using Eqn. (3.4), 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝑝(1 − 𝛼𝑗) + 𝜌𝑗. 

When 𝑎𝑗 < 𝑔𝑗, from the KKT condition 𝜌𝑗(𝑎𝑗 − 𝑔𝑗) = 0, we can write 𝜌𝑗 = 0. With 𝛼𝑗 =
𝑎𝑗
𝐴 and 𝜌𝑗 = 0 the corresponding availability in 𝑣𝑗

′(𝑔𝑗 − 𝑎𝑗) = 𝑝(1 − 𝛼𝑗) + 𝜌𝑗 is equal to 𝑎𝑗
∘ 

that solves Eqn. (3.11). The other situation in the KKT condition 𝜌𝑗(𝑎𝑗 − 𝑔𝑗) = 0 arises 

when 𝜌𝑗 < 0, in which case the entire generated energy is declared available, i.e. 𝑎𝑗 = 𝑔𝑗. 
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We can rewrite the above observations more concisely as, 

       {
𝜌𝑗 = 0, 𝑎𝑗 < 𝑔𝑗
𝜌𝑗 < 0, 𝑎𝑗 = 𝑔𝑗.

  

■ 

3.3.4 Market power 

The market power of an agent reflects its ability to influence the overall outcome of the 

auction. When the auction involves a large number of agents, an individual agent’s action 

cannot exert a great deal of influence on the outcome; consequently the agent’s market 

power is low. In the limiting case when there are an infinite number of agents, the market 

power approaches zero. It is under this limiting case that price taking conditions serves 

to approximate. 

 In the present case, the market power 𝛽𝑖 of every buyer 𝑖 and 𝛼𝑗 that of sellers can 

be defined through separate expressions, given below, 

𝛽𝑖 = (∑ 𝑏𝑖′
𝑖′

)
−1

𝑏𝑖,   ∀ 𝑖 ∈ 𝒟,         (3.12) 

𝛼𝑗 = (∑ 𝑎𝑗′
𝑗′

)
−1

𝑎𝑗,   ∀ 𝑗 ∈ 𝒮.        (3.13) 

The level of awareness of each buyer or seller about the remaining agents can vary from 

complete unawareness (price taking) to full awareness of the others’ bidding strategies (as 

required in Eqns. (3.12) and (3.13) above). A realistic scenario lies somewhere in between. 

In such a case, the iterative auction would allow the buyer or seller to approximate its 

market power from the information gleaned from previous iterations. The expressions 

below, which are derived from Eqns. (3.7) – (3.11) can be used as the means by which 

each buyer or seller can obtain such estimates. Superscripts (𝑘 − 1) and (𝑘) have been 

introduced for clarity to indicate each iteration 𝑘 and its immediately preceding itera-

tion 𝑘 − 1.   

𝛽𝑖
(𝑘) = 1 −

𝑏𝑖
(𝑘−1)

𝑑𝑖
(𝑘−1)𝑢𝑖

′(𝑑𝑖
(𝑘−1))

,              (3.14) 
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       𝛼𝑗
(𝑘) = 1 − 1

𝑝(𝑘−1) (𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗

(𝑘−1)) − 𝜌𝑗
(𝑘−1)). (3.15) 

Note that neither expression above incorporates quantities pertaining to the other agents 

present in the network.  

The quantity 𝜌𝑗 in Eqn. (3.15) is a dual variable obtained from the constrained 

optimization problem in Eqns. (3.8) and (3.9). It suffices to mention that 𝜌𝑗 = 0 except 

in the case when the seller declares its entire generation as the availability, i.e. 𝑎𝑗 = 𝑔𝑗. 

At the onset of the auction process (𝑘 = 1), when the agents lack prior information, the 

market powers may be initialized to zero so that the agents act as simple price takers. 

3.3.5 Distributed Double Auction Algorithm 

Before the bidding process takes place, there are several ways that the aggregator can 

initialize the auction variables 𝑝 and the 𝑑𝑖s. An effective way to minimize the number of 

steps would be to use stored historical data from previous rounds. Otherwise, the aggre-

gator may use heuristic means to do so. In the most simplistic case, these variables may 

be assigned randomly. This initialization and the subsequent auction steps are outlined in 

Algorithm 1. 

3.3.6 Equilibrium 

The auction steps described earlier terminates when further updates of neither the price 

𝑝 nor any of the bids submitted by the agents to the aggregator are changed. This is when 

generalized Nash equilibrium [89] is established. 

 In order to characterize the equilibrium conditions under price anticipation, the 

functions 𝜋𝑖(∙) and 𝜋𝑗(∙) are introduced below, 

𝜋𝑖(𝑑𝑖) = (1 − (∑ 𝑎𝑗𝑗
)

−1
𝑑𝑖) 𝑢𝑖(𝑑𝑖)   

       + (∑ 𝑎𝑗𝑗
)

−1
∫ 𝑢𝑖(𝑧)𝑑𝑧

𝑑𝑖

0

, (3.16)
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                 𝜋𝑗(𝑔𝑗 − 𝑎𝑗) = 𝑣𝑗(𝑔𝑗 − 𝑎𝑗) (∑ 𝑎𝑗′
𝑗′

) (∑ 𝑎𝑗′
𝑗′≠𝑗

)
−1

                               − (∑ 𝑎𝑗′
𝑗′≠𝑗

)
−1

∫ 𝑣𝑗(𝑔𝑗 − 𝑧)𝑑𝑧

𝑎𝑗

0

. (3.17)
 

Algorithm 3.1 Distributed Double Auction Algorithm

Initialize 𝑝(0), 𝑑𝑖
(0) ∀ 𝑖 ∈ 𝒟 

 // Buyer 𝑖 ∈ 𝒟: 𝛽𝑖 ← 0, // Seller 𝑗 ∈ 𝒮: 𝛼𝑗 ← 0 
 Set 𝑘 ← 1 
 While (termination criterion = ‘F’) 
  Send 𝑝(𝑘) to sellers 𝑗 ∈ 𝒮  
  //Seller 𝑗 ∈ 𝒮 bid 
  Receive 𝑎𝑗

(𝑘) from sellers 𝑗 ∈ 𝒮  

  Send 𝑑𝑖
(𝑘) to buyers 𝑖 ∈ 𝒟  

  //Buyers 𝑖 ∈ 𝒟 bid 
  Receive 𝑏𝑖

(𝑘) from buyers 𝑖 ∈ 𝒟 
Increment 𝑘 ← 𝑘 + 1 

Obtain 𝑑𝑖
(𝑘) 

  Update 𝑝(𝑘) 
//Buyers estimate 𝛽𝑖

(𝑘), //Sellers estimate 𝛼𝑗
(𝑘) 

Evaluate termination criterion 
End 

 

The effect of price anticipation can be examined in terms of the following con-

strained optimization problem.  

Maximize w.r.t. 𝑑𝑖, 𝑎𝑗 

              𝛱(𝑑𝑖, 𝑎𝑗∣𝛩) = ∑ 𝜋𝑖(𝑑𝑖)𝑖
+ ∑ 𝜋𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

, (3.18) 

subject to constraints in Eqns. (3.3) and (3.9) which are restated below,  

                ∑ 𝑑𝑖𝑖
= ∑ 𝑎𝑗𝑗

,              

                𝑎𝑗 ≤ 𝑔𝑗 .   
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Denoting the solutions of the above maximization problem as 𝑑𝑖
† and 𝑎𝑗

†, the SW is 𝑈† ≜

𝑈(𝑑𝑖
†, 𝑎𝑗

†∣Θ). Additionally, the maximum SW corresponding to the efficient solution is 

denoted as 𝑈∗.  

Proposition 3.3.  (i) There exists a unique equilibrium of the double auction where the 

demand 𝑑𝑖 of each buyer 𝑖 ∈ 𝒟 and availability 𝑎𝑗 of each seller 𝑗 ∈ 𝒮 is the solution to 

the optimization problem defined in Eqn. (3.18) with Eqns. (3.3) and (3.9) as constraints.  

(ii) The SW attained under price anticipation is no greater than that attainable under 

price taking, i.e. 

𝑈† ≤ 𝑈∗,                                      (3.19) 

The above statement implies that there is a loss of efficiency due to price anticipation.  

Proof of Proposition 3.3. Observe that, using Eqns. (3.3), (3.12) and (3.13), the deriv-

atives of the functions defined earlier in Eqns. (3.16) and (3.17) are given by 𝜋𝑖
′ and 𝜋𝑗

′ in 

the following expressions, 

       𝜋𝑖
′ = 𝜕

𝜕𝑑𝑖
𝜋𝑖 = (1 − 𝛽𝑖)𝑢𝑖

′(𝑑𝑖), 

       𝜋𝑗
′ = 𝜕

𝜕𝑎𝑗
𝜋𝑗 = − 1

1 − 𝛼𝑗
𝑣𝑗

′(𝑔𝑗 − 𝑎𝑗). 

From Eqn. (3.12) since 𝛽𝑖 > 0, whenever 𝑑𝑖 > 0, 𝜋𝑖
′ > 0. The factor (1 − 𝛽𝑖) in the expres-

sion for 𝜋𝑖
′ above is also strictly decreasing in 𝑏𝑖 and hence 𝑑𝑖. Thus 𝜋𝑖

′ is also monoton-

ically decreasing. Therefore 𝜋𝑖 is a strictly concave function. In a similar manner, from 

Eqn. (3.13) it is clear that 𝛼𝑗 < 1 as long as 0 ≤ 𝑎𝑗 ≤ 𝑔𝑗, so that 𝜋𝑗
′ < 0 in the expression 

for 𝜋𝑗
′ above. Besides, as 1

1−𝛼𝑗
 is strictly increasing, the product is monotonically decreas-

ing. Therefore 𝜋𝑗 is strictly concave. Thus, there is a unique maximum of 𝛱(𝑑𝑖, 𝑎𝑗∣Θ) as 

defined in Eqn. (3.18). 

The Lagrangian of the problem defined in Eqn. (3.18), with Eqns. (3.3) and (3.9) 

acting as constraints, is given by ℒ𝛱 in the following expression, 
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       ℒ𝛱(𝑑𝑖, 𝑎𝑗, 𝜆𝑗, 𝜇)   

= ∑ 𝜋𝑖(𝑑𝑖)𝑖
+ ∑ 𝜋𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

+ ∑ 𝜆𝑗(𝑎𝑗 − 𝑔𝑗)𝑗

+ 𝜇 (∑ 𝑎𝑗𝑗
− ∑ 𝑑𝑖𝑖

). 

The quantities 𝜇 and 𝜆𝑗 above are the dual variables introduced by the constraints in 

Eqns. (3.3) and (3.9). The primal conditions from Eqns. (3.3) and (3.9) must be satisfied. 

Furthermore, complementary slackness conditions yield, 

       𝜆𝑗(𝑎𝑗 − 𝑔𝑗) = 0.  

From expressions given by 𝜋𝑖
′ and 𝜋𝑗

′ , the stationary conditions of the Lagrangian given 

by ℒ𝛱  must satisfy, 

       (1 − 𝛽𝑖)𝑢𝑖
′(𝑑𝑖) = 𝜇, 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = (1 − 𝛼𝑗)(𝜆𝑗 + 𝜇). 

From Eqns. (3.5), (3.7) and the stationary condition above for buyers, it is observed that 

𝜇 = 𝑝. Using Eqn. (3.5) it is seen that the buyer’s bidding strategy defined in Eqn. (3.7) 

is satisfied. 

When 𝑎𝑗 < 𝑔𝑗, the complementary slackness condition shows that 𝜆𝑗 = 0. Replac-

ing 𝜆𝑗 and  𝜇 with zero and 𝑝, Eqn. (3.11) is satisfied. On the other hand, when 𝑎𝑗 = 𝑔𝑗, 

𝜆𝑗 is set to an appropriate value. From the concavity assumption, 𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) < 𝑝(1 − 𝛼𝑗) 

so that 𝜆𝑗 < 0. We summarize these observations as follows. 

       {
𝑝 = 𝜇                            
𝜆𝑗 < 0 𝑤ℎ𝑒𝑛 𝑎𝑗 = 𝑔𝑗         
𝜆𝑗 = 0 𝑤ℎ𝑒𝑛 𝑎𝑗 < 𝑔𝑗.        

   

From the above considerations, it is seen that both of the bottom two cases satisfy 

the seller’s bidding strategy in Eqn. (3.10). 

Eqn. (3.19) is trivially true since 𝑈∗ is defined as the maximum SW, i.e. 𝑈∗ ≜

max
𝑑𝑖,𝑎𝑗

𝑈(𝑑𝑖, 𝑎𝑗∣Θ). 

■ 
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3.4 Double Auction under Price Taking 

3.4.1 Efficient Solution 

The efficient solution can be obtained from the following constrained optimization prob-

lem. 

Maximize w.r.t. 𝑑𝑖, 𝑎𝑗 

       𝑈(𝑑𝑖, 𝑎𝑗∣𝛩) = ∑ 𝑢𝑖(𝑑𝑖)𝑖
+ ∑ 𝑣𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

, (3.20) 

subject to constraints in Eqns. (3.3) and (3.9) which are restated below, 

       ∑ 𝑑𝑖𝑖
= ∑ 𝑎𝑗𝑗

,             

       𝑎𝑗 ≤ 𝑔𝑗,    ∀ 𝑗 ∈ 𝒮.   

For the sake of convenience, the buyer 𝑖’s bidding strategy, which is that in Eqn. (3.7) 

with 𝛽𝑖 = 0, is provided below.  

𝑏𝑖 = 𝑑𝑖𝑢𝑖
 ′(𝑑𝑖).                                (3.21) 

The seller 𝑗’s strategy is determined according to Eqns. (3.10) and (3.11) where 𝛼𝑗 = 0, 

and given below, 

𝑎𝑗 = min{𝑎𝑗
 ∘, 𝑔𝑗},                          (3.22) 

where 𝑎𝑗
∘ is the solution to the equation, 

𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗

∘) = 𝑝.                             (3.23) 

Proposition 3.4. Under the assumption that the buyers and sellers are price takers, the 

following statements are true for the double auction.  

(i) The buyer and seller strategies are defined according to Eqns. (3.21), (3.22) and (3.23). 

(ii) The equilibrium demand 𝑑𝑖
∗ of each buyer 𝑖 and availability 𝑎𝑗

∗ of each seller 𝑗 after 

the termination of the auction are unique solutions of Eqns. (3.3), (3.9) and (3.20).  

(iii) There is no loss in efficiency, i.e.  
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𝑈∗ ≜ 𝑈(𝑑𝑖
∗, 𝑎𝑗

∗∣𝛩) = max
𝑑𝑖,𝑎𝑗

𝑈(𝑑𝑖, 𝑎𝑗∣𝛩) . (3.24) 

Thus, the unique equilibrium of the double auction is also the efficient solution.  

Proof of Proposition 3.4. First, note that since the utilities are strictly concave, there 

is a unique optimum of the optimization problem defined in Eqn. (3.20) with constraints 

defined in Eqns. (3.3) and (3.9). The Lagrangian is given by ℒ𝑈  below, 

       ℒ𝑈(𝑑𝑖, 𝑎𝑗, 𝜆𝑗, 𝜇)

= ∑ 𝑢𝑖(𝑑𝑖)𝑖
+ ∑ 𝑣𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

+ ∑ 𝜆𝑗(𝑎𝑗 − 𝑔𝑗)𝑗

+ 𝜇 (∑ 𝑎𝑗𝑗
− ∑ 𝑑𝑖𝑖

). 

The complementary slackness condition is, 

       𝜆𝑗(𝑎𝑗 − 𝑔𝑗) = 0, 

and the stationary conditions for buyers and sellers are given below, 

       𝑢𝑖
′(𝑑𝑖) = 𝜇, 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝜆𝑗 + 𝜇. 

Comparing buyers stationary condition above with Eqn. (3.21), under proportional allo-

cation in Eqn. (3.5), we see that 𝜇 = 𝑝. Similarly, replacing ∂𝑝
∂𝑎𝑗

 in the stationary condition 

of sellers in proposition-2 with zero, the seller’s KKT conditions satisfy the following, 

       𝜌𝑗(𝑎𝑗 − 𝑔𝑗) = 0 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝑝 + 𝜌𝑗. 

From comparing the two complementary slackness and stationary conditions of sellers, 

the following statements are true, 

      {
𝑝 = 𝜇                            
𝜆𝑗 < 0 𝑤ℎ𝑒𝑛 𝑎𝑗 = 𝑔𝑗         
𝜆𝑗 = 0 𝑤ℎ𝑒𝑛 𝑎𝑗 < 𝑔𝑗.        
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Statements (i) and (ii) follow from the above. Since the SW U(𝑑𝑖, 𝑎𝑗∣Θ) is maximized, 

statement (iii) holds. 

■ 

The market price at equilibrium from the auction is denoted as 𝑝∗. At equilibrium, 

the derivative of the utility function (also called marginal utility) of each buyer and that 

of each seller that is not trading its entire generation 𝑔𝑗 is equal to the market price; and 

for traders that trade all of it, more than the price. Mathematically, 

         
⎩{
⎨
{⎧

𝑢𝑖
′(𝑑𝑖

∗) = 𝑝∗                                      
𝑣𝑗

′(𝑔𝑗 − 𝑎𝑗
∗) = 𝑝∗ 𝑤ℎ𝑒𝑛 𝑎𝑗

∗ < 𝑔𝑗             
𝑣𝑗

′(𝑔𝑗 − 𝑎𝑗
∗) > 𝑝∗ 𝑤ℎ𝑒𝑛 𝑎𝑗

∗ = 𝑔𝑗.            
    (3.25) 

The equilibrium can be understood readily graphically as shown in Fig. 2(a), where 

in the x-axis, 𝑙 = min
𝑗

𝑣𝑗
′(𝑔𝑗), 𝑚 = max

𝑗
𝑣𝑗

′(0), and 𝑛 = max
𝑖

𝑢𝑖
′(0).  Here, we define the ag-

gregate demand function 𝐷(𝑝) as the total amount of energy delivered to the buyers as a 

function of the market price 𝑝. Likewise, we define the availability function 𝐴(𝑝) as the 

total availability declared by the suppliers as a function of 𝑝. Thus, 

𝐷(𝑝) = ∑ 𝑑𝑖𝑖
,                              (3.26) 

𝐴(𝑝) = ∑ 𝑎𝑗𝑗
.                              (3.27) 

Proposition 3.5. Under the assumption of price taking, the following statements are 

true for the double auction.  

(i) The availability function 𝐴(𝑝) is zero when 𝑝 ≤ min
𝑗

𝑣𝑗
′(𝑔𝑗), monotonically increasing 

with price  𝑝  in the interval 𝑝 ∈ (min
𝑗

𝑣𝑗
′(𝑔𝑗) , max

𝑗
𝑣𝑗

′(0))  and constant when  𝑝 ≥
max

𝑗
𝑣𝑗

′(0). In other words, 

                                 

⎩{
{⎨
{{
⎧𝐴(𝑝) = 0,         𝑝 ≤ min

𝑗
𝑣𝑗

′(𝑔𝑗)                           

𝐴(𝑝) 𝑚𝑜𝑛.  𝑖𝑛𝑐., min
𝑗

𝑣𝑗
′(𝑔𝑗) < 𝑝 < max

𝑗
𝑣𝑗

′(0)           
𝐴(𝑝) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,   𝑝 ≥ max

𝑗
𝑣𝑗

′(0).                           
(3.28) 
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(ii) The demand function 𝐷(𝑝) is monotonically decreasing with price 𝑝 in the interval 

𝑝 ∈ (0, max
𝑖

𝑢𝑖
′(0)) and zero when 𝑝 ≥ max

𝑖
𝑢𝑖

′(0). 

{
𝐷(𝑝) 𝑚𝑜𝑛. 𝑑𝑒𝑐.,   𝑝 < max

𝑖
𝑢𝑖

′(0)  
𝐷(𝑝) = 0,           𝑝 ≥ max

𝑖
𝑢𝑖

′(0) . (3.29) 

(iii) At the unique equilibrium price 𝑝∗, 𝐴(𝑝∗) = 𝐷(𝑝∗).  

Proof of Proposition 3.5. For each seller 𝑗, from proof of proposition-2 it is seen that 

𝜌𝑗 = 0 when 𝑎𝑗 < 𝑔𝑗. With 𝛼𝑗 = 0 under price taking, the stationary condition of a seller 

𝑗 is rewritten as, 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝑝. 

Hence, 

       𝑎𝑗 = 𝑔𝑗 − 𝑣𝑗
′−1(𝑝). 

Since 𝑣𝑗
′′ > 0, 𝑎𝑗 is strictly increasing in the interval 𝑝 ∈ (𝑣𝑗

′(𝑔𝑗), 𝑣𝑗
′(0)). Moreover as 𝑎𝑗 ∈

[0, 𝑔𝑗] and as Eqn.(3.27) shows, 𝐴(𝑝) is the sum of all 𝑎𝑗s, statement (i) follows. 

For each buyer 𝑖, from proof of proposition-1, with 𝛽𝑖 = 0, 

       𝑢𝑖
′(𝑑𝑖) = 𝑝. 

Hence, 

       𝑑𝑖 = 𝑢𝑖
′−1(𝑝). 

Since 𝑢𝑖
′′ > 0, 𝑑𝑖 is strictly decreasing with 𝑝 in the interval 𝑝 ∈ (0, 𝑢𝑖

′(0)). Moreover 𝑑𝑖 =

0 when 𝑝 ≥ 𝑢𝑖
′(0). Hence, statement (ii) follows directly from Eqn. (3.26)  where 𝐷(𝑝) is 

expressed as the sum of all 𝑑𝑖s.  

 From Eqn. (3.2) , there exists a non-empty interval 𝑝 ∈

(min
𝑗

𝑣𝑗
′(𝑔𝑗) , max (max

𝑖
𝑢𝑖

′(0) , max
𝑗

𝑣𝑗
′(0)))  within which 𝐷(𝑝) is monotonically decreas-

ing or zero and 𝐴(𝑝) is monotonically increasing or fixed at a positive value. Thus there 

is a unique 𝑝∗ such that 𝐴(𝑝∗) =  𝐷(𝑝∗). 
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■ 

 

3.4.2 Virtual Bidding 

In general, the loss of efficiency, when 𝑑𝑖 is the demand of each buyer 𝑖 and 𝑎𝑗 is the 

allocation of each seller 𝑗, can be expressed as follows. 

  𝐿𝛩(𝑑𝑖, 𝑎𝑗) =
𝑈(𝑑𝑖

∗, 𝑎𝑗
∗∣𝛩) − 𝑈(𝑑𝑖, 𝑎𝑗∣𝛩)
𝑈(𝑑𝑖

∗, 𝑎𝑗
∗∣𝛩)

. (3.30) 

The loss that takes place when the agents participate in the auction as price anticipators 

is 𝐿Θ(𝑑𝑖
†, 𝑎𝑗

†). This section shows how the basic proportional allocation double auction 

mechanism can be extended to mitigate the loss of efficiency.  

In order to minimize the loss 𝐿Θ, a virtual agent can be introduced to the network 

defined earlier in Eqn. (3.1). The virtual agent, which is indexed with the subscript ‘0’, 

participates in the auction simultaneously as a buyer and a seller with arbitrarily large 

availability 𝑎0. As the virtual agent is incorporated within the aggregator, we let 𝒜 =

{𝑎0}. 

Figure 3.2:  Plots of the 𝐴(𝑝) and 𝐷(𝑝) as functions of 𝑝. (a) Equilibrium conditions under price 
taking. (b) The addition of surcharge price with revenue ܴ being the area shaded in grey. 
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 Since the virtual agent does not have its own generation, it buys back the amount 

of energy 𝑎0 declared as its availability at the market price defined in Eqn. (3.4), so that, 

𝑏0 = 𝑝𝑎0.                                      (3.31) 

Proposition 3.6. As the virtual agent’s availability 𝑎0 increases, the loss in efficiency 
𝐿Θ from price anticipation decreases. In the limiting case, 

lim
𝑎0→∞

𝐿𝛩(𝑑𝑖
†, 𝑎𝑗

†) = 0.                      (3.32) 

Since the inclusion of virtual bidding allows the auction to behave like a price taking 

mechanism, for the remainder of this section we assume that the buyers and sellers behave 

as price takers. 

Proof of Proposition 3.6. Since from Eqn. (3.31) 𝑏0 = 𝑝𝑎0, the expression for the price 

in Eqn. (3.4) is replaced with, 

       𝑝 = (𝑎0 + ∑ 𝑎𝑗𝑗
)

−1
(𝑏0 + ∑ 𝑏𝑖𝑖

). 

With the addition of virtual bidding, Eqns. (3.12) and (3.13) pertaining to market powers 

are rewritten as, 

       𝛽𝑖 = (𝑏0 + ∑ 𝑏𝑖′𝑖′
)

−1
𝑏𝑖,   ∀ 𝑖 ∈ 𝒟, 

       𝛼𝑗 = (𝑎0 + ∑ 𝑎𝑗′𝑗′
)

−1
𝑎𝑗,   ∀ 𝑗 ∈ 𝒮. 

The above two expressions show that 𝛽𝑖  and 𝛼𝑗  monotonically decrease with increas-

ing 𝑎0. From the expressions 𝜋𝑖
′ and 𝜋𝑗

′ in the proof of proposition-3, it follows that ∂
∂𝑑𝑖

𝜋𝑖 

and ∂
∂𝑎𝑗

𝜋𝑗  monotonically approach 𝑢𝑖
′  and 𝑣𝑗

′ . As we have shown that 𝜋𝑖  and 𝜋𝑗  are 

strictly concave, it follows that they increase monotonically with increasing values of 𝑎0; 

whence from Eqn. (3.18), 𝑈† also increases monotonically. In the limiting case, lim
𝑏0→∞

𝛽𝑖 =

0, and lim
𝑎0→∞

𝛼𝑗 = 0; whereupon it follows that lim
𝑎0→∞

𝑈† = 𝑈∗. Simultaneously, from Eqn. 
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(3.30), the loss of efficiency decreases monotonically towards zero. This shows that insert-

ing the virtual bidder into the auction allows the auction to simulate as price-taking.  
■ 

3.4.3 Surcharge 

A situation where the aggregator, 𝒜, is no longer a strictly selfless enabler in the auction 

process but also has its own incentive to implement the mechanism by levying a surcharge 

price 𝑝𝑠 per unit of energy traded is investigated in this section. Thus in the model in 

Eqn. (3.1) the aggregator now includes the surcharge, which we indicate by letting it be 

given by 𝒜 = {𝑎0 → ∞, 𝑝𝑠}. The total revenue earned by the aggregator from the auction 

with the introduction of surcharge is given by, 

𝑅 = 𝑝𝑠 ∑ 𝑎𝑗𝑗
.                              (3.33) 

The expression for price in Eqn. (3.4) is modified to account for surcharge as follows, 

∑ 𝑏𝑖𝑖
= (𝑝 + 𝑝𝑠)∑ 𝑎𝑗𝑗

.                 (3.34) 

With proportional allocation, the demand 𝑑𝑖 that each buyer 𝑖 receives is given by the 

following expression that replaces the earlier Eqn. (3.5), 

𝑑𝑖 = 𝑏𝑖
𝑝𝑠 + 𝑝

.                                  (3.35) 

Figure 3.2(b) illustrates the effect of the surcharge. Eqn. (3.35) shows that the buyers 

purchase energy at an effective per unit price of 𝑝𝑠 + 𝑝 which is higher than 𝑝 that the 

sellers receive per unit of energy traded. The volume of energy traded is equal 

to 𝐷(𝑝𝑠 + 𝑝) = 𝐴(𝑝), which is lower than 𝐴(𝑝∗) =  𝐷(𝑝∗). 

 It is shown that the price-taking auction is the solution to the following constrained 

optimization problem. 

Maximize w.r.t. 𝑑𝑖, 𝑎𝑗 

     𝛺(𝑑𝑖, 𝑎𝑗∣𝛩) = ∑ 𝑢𝑖(𝑑𝑖)𝑖
+ ∑ 𝑣𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

−𝑝𝑠 ∑ 𝑎𝑗𝑗
,                (3.36)
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subject to constraints in Eqns. (3.3) and (3.9) restated below, 

           ∑ 𝑑𝑖𝑖
= ∑ 𝑎𝑗𝑗

,             

           𝑎𝑗 ≤ 𝑔𝑗.   

Proposition 3.7. Under the assumption of price taking, the following statements are 

true with surcharge price 𝑝𝑠 > 0. 

(i) The buyer and seller strategies are defined according to Eqns. (3.21), (3.22) and (3.23). 

(ii) The equilibrium demand 𝑑𝑖 of each buyer 𝑖 and availability 𝑎𝑗 of each seller 𝑗 of the 

auction are unique solutions of Eqns. (3.3), (3.9) and (3.36).  

(iii) There exists a Pareto front where any increase in revenue 𝑅 is associated with a 

simultaneous decrease in the SW in Eqn. (3.20). 

(iv) There exists an optimal surcharge 𝑝𝑠
OPT that maximizes the aggregator 𝒜’s reve-

nue 𝑅.  

Proof of Proposition 3.7. The equilibrium of the optimization problem defined in Eqn. 

(3.36) is unique because the addition of the linear term involving 𝑝𝑠 does not alter the 

concavity property.   

The Lagrangian of the problem defined in Eqn. (3.36), with Eqns. (3.3) and (3.9) 

as constraints, is given by, 

       ℒ𝛺(𝑑𝑖, 𝑎𝑗, 𝜆𝑗, 𝜇)

= ∑ 𝑢𝑖(𝑑𝑖)𝑖
+ ∑ 𝑣𝑗(𝑔𝑗 − 𝑎𝑗)𝑗

− 𝑝𝑠 ∑ 𝑎𝑗𝑗
 

+ ∑ 𝜆𝑗(𝑎𝑗 − 𝑔𝑗)𝑗
+ 𝜇 (∑ 𝑎𝑗𝑗

− ∑ 𝑑𝑖𝑖
). 

The stationary conditions satisfy, 

       𝜆𝑗(𝑎𝑗 − 𝑔𝑗) = 0, 

       𝑢𝑖
′(𝑑𝑖) = 𝜇 + 𝑝𝑠, 

       𝑣𝑗
′(𝑔𝑗 − 𝑎𝑗) = 𝜆𝑗 + 𝜇. 
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Analogous to the reasoning provided in the proof of Proposition-4, it can be estab-

lished that at equilibrium we must have,  

       {
𝑝 = 𝜇                            
𝜆𝑗 < 0 𝑤ℎ𝑒𝑛 𝑎𝑗 = 𝑔𝑗         
𝜆𝑗 = 0 𝑤ℎ𝑒𝑛 𝑎𝑗 < 𝑔𝑗.        

   

This establishes the statements (i) and (ii). 

From Eqn. (3.33), when 𝑝𝑠 = 0, the revenue 𝑅 = 0. However, from the assumption 

in Eqn. (3.2), the aggregate 𝐴 is nonzero. Thus, the SW is at the unique maximum 𝑈∗ >

0. Increasing 𝑝𝑠 monotonically increases the revenue 𝑅 and monotonically decreases the 

SW 𝑈 . This shows the existence of a non-singleton Pareto front as claimed in (iii). 

 It can be readily inferred from Figure 3.2(b) that for a sufficiently large value of 𝑝𝑠, 

the aggregate demand is zero, so that the volume of energy traded is zero and 𝑅 = 0. In 

fact the upper limit of 𝑝𝑠 is defined as, 

       𝑝𝑠 < max
𝑖

𝑢𝑖
′(0) − min

𝑗
𝑣𝑗

′(𝑔𝑗). 

It is concluded that, there is an optimal 𝑝𝑠 that maximizes the aggregator’s revenue 𝑅  

verifying the claim in statement (iv). 

■ 

3.5 Simulation Results 

In order to compliment the theoretical considerations in the earlier sections, several sets 

of simulations were carried out. A total of five scenarios were considered, where the num-

ber of buyers and sellers were |𝒟| = 2, |𝒮| = 3, |𝒟| = 2, |𝒮| = 6, |𝒟| = 2, |𝒮| = 10, |𝒟| =

3, |𝒮| = 2 and |𝒟| = 4, |𝒮| = 4. In order to analyze the effect of price anticipation, the total 

number of agents were made relatively small in comparison to other simulation studies. 

Moreover, the first three scenarios contain only 2 sellers. This reflects the situation is a 

realistic microgrid, where the number of PV-equipped units is usually lower than the 

number of those without it. The fourth and fifth scenarios were added to explore the 

performance of the double auction under other potential situations. 
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 The utilities of the buyers and sellers assumed to follow logarithmic saturation 

curves according to Eqns. (2.46)  and (2.47)  with  𝑠𝑗  replaced by  𝑎𝑗 . The quanti-

ties 𝑥𝑖, 𝑦𝑖, 𝑥𝑗 and 𝑦𝑗 were different for each agent, and were generated randomly from a 

uniform distribution centered at unity. The generations, 𝑔𝑗, for the sellers were also drawn 

in at random, uniformly in the interval [𝑔min, 𝑔max]. 

 The first set of simulations was performed to examine the effect of price anticipa-

tion of the buyers and sellers upon the double auction. The results of this study are shown 

in Figure 3.3. It can be seen that in each case there is a reduction in the SW due to price 

anticipation. Further detailed analysis shows that when considered separately, while the 

SW of the buyers reduces due to price anticipation, the SW of the sellers is increased. 

This is because Propositions 1 and 2 indicate that price anticipation (𝛽𝑖, 𝛼𝑗 > 0) causes 

the values of  𝑑𝑖 and 𝑎𝑗 to be lower than with price taking (𝛽𝑖, 𝛼𝑗 = 0). Consequently, the 

volume of energy being traded is also less so that the surplus amount of energy 𝑔𝑗 − 𝑎𝑗 

remaining with each seller 𝑗 is higher, which also increases its utility 𝑣𝑗(𝑔𝑗 − 𝑎𝑗).  

Although, due to price anticipation, the SW in a double auction is lower than its 

optimal value, the utilities of the sellers change in the opposite direction. Thus, an obser-

vation made from this study is that the effect of price anticipatory agents in double-

auctions is less severe in comparison to single-sided auctions. 

The effect of virtual bidding was investigated through a second set of simulations. 

The results of these simulations are provided in Figure 3.4, separately for each of the five 

scenarios. It can be seen that the loss in efficiency 𝐿Θ approaches zero as 𝑎0 increases 

towards 𝑎0 → ∞. 

This observation holds true for each of the five scenarios that were simulated, and 

is consistent with Proposition-6. 

In order to examine the role of the surcharge price 𝑝𝑠 on the double auction, a set 

of simulations were carried out for each of the five scenarios described earlier. As price-

taking conditions are assumed, the agents’ market powers were always set at 𝛽𝑖 = 0, 𝛼𝑗 =

0, throughout the iterative mechanism.  
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Figure 3.4: Loss in efficiency 𝐿𝛩 as a function of 𝑎0  for each scenario. 

Figure 3.3: SW ܷ under price taking (PT) and price anti-cipation (PA) for each scenario. 
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Figure 3.5: Pareto front of the revenue 𝑅 and SW 𝑈  with varying surcharge 𝑝𝑠, for each scenario.
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Figure 3.6: Aggregator’s revenue 𝑅 as a function of surcharge price 𝑝𝑠, for each scenario. 
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The auction was simulated until equilibrium for different values of the surcharge 

price 𝑝𝑠. Figure 3.5 shows the Pareto front discussed in the claim (iii) in Proposition-7. 

In each scenario, the extreme left ends of the fronts correspond to 𝑝𝑠 = 0 so that the SW 

is maximum 𝑈 = 𝑈∗, while the aggregator’s revenue 𝑅 = 0. 

As 𝑝𝑠 progressively increases until 𝑝𝑠
OPT, so does 𝑅, while 𝑈  decreases. The right 

ends of the Pareto fronts correspond to 𝑝𝑠 = 𝑝𝑠
OPT. When 𝑝𝑠 exceeds 𝑝𝑠

OPT, both 𝑈  and 

𝑅 decrease, which is not shown in Figure 3.5. 

Figure 3.6 shows how the aggregator’s revenue 𝑅 varies with surcharge 𝑝𝑠. In each 

scenario, 𝑅 increases with 𝑝𝑠 until it reaches its maximum when the surcharge is 𝑝𝑠
OPT. 

In all but one scenario, the revenue 𝑅 can be seen to decrease beyond its corresponding 

maximum. These results are consistent with claim (iv) of Proposition-7. 

3.6 Conclusions 

The distributed double auction algorithm in Section 3.3 can be implemented readily by 

the aggregator, even in the presence of a virtual agent or with surcharge pricing. The 

algorithm can optionally consider price-anticipatory agents. A possible method by which 

real world agents may use information gathered from earlier iteration to imitate price 

anticipation has been suggested. It is shown that with price anticipating agents, the double 

auction’s equilibrium coincides with that of a constrained optimization problem whose 

objective function Π is different from the SWF 𝑈 , resulting in a loss of efficiency. It is 

shown that when the aggregator incorporates a virtual agent that is simultaneously both 

a buyer and a seller, can minimize the loss of efficiency, so that the double auction can 

reach the efficient equilibrium. 

A generalized auction scenario where the aggregator receives a surcharge price is 

investigated where in the limiting case; the aggregator may act as a selfish agent trying 

to maximize its revenue 𝑅 from the auction. With the SW 𝑈  and revenue 𝑅 as independ-

ent objectives, a bi-objective framework for the double auction mechanism is suggested.  

 The theoretical analysis has been supplemented by several simulations. The results 

of the simulations are in complete agreement with the theory.  
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Bi-level Energy Distribution Auction 

In this chapter, a bi-level energy distribution mechanism that achieves global efficient 

solution is proposed. In the presence of a fixed amount of supply from the wholesale 

market, the objective of the DSO is to maximize global SW and distribute the available 

energy to the aggregators that value it the most, while considering the physical grid con-

straints. The DSO SW optimization problem (DSWOP) is decomposed into a master and 

a sub-problem. The master problem is solved by an iterative DSO-level auction (DLA) 

among aggregators by solving a decomposed problem with linear objective function and 

linear and quadratic constraints. In parallel, the sub-problem is solved by an aggregators-

level auction (ALA) through a homogenously priced auction among its consumers and 

prosumers. The proposed bi-level auction mechanism is shown to be globally efficient and 

achieve DSWOP equilibrium conditions. 

4.1 Introduction 

The proliferation of Renewable Energy Resources (RES) at the distribution level is re-

shaping the market structure of the Distribution System Operators (DSO). The electricity 

sector has devolved from a highly regulated system operated by vertically integrated util-

ities to a relatively decentralized system based more fully on market valuation and allo-

cation mechanisms [90]. RES owners such as PV equipped homes are anticipated to par-

ticipate in such mechanisms more strategically while seeking profit [78], [79]. DSOs on the 

other hand, are expected to leverage the available local resources in order to capture 

additional value by optimizing the system for least cost operation while maintaining the 

physical system operation constraints [91]. One of the key challenges for efficient energy 

distribution mechanisms is its design in such a way that can motivate active participation 

of customers [37]. Without active participation of customers in such energy distribution 

mechanisms, the benefits of smart grid will not be fully realized [92]. Therefore, efficient 

mechanisms that ensure the optimal operation within distribution system limitations and 

constraints while maintaining incentives for customers to participate are needed.  



60 

In this chapter, an iterative bi-level energy distribution mechanism that converges 

to a globally social optimal solution while maintaining physical system constraints and 

providing incentives for customers to participate without asking for their private infor-

mation such as utility functions and generation capacities is proposed. The inner level 

auction, referred to as ALA, is conducted by a local aggregator residing at each distribu-

tion node among downstream consumers and prosumers in order to provide maximization 

of their profit and achieve equilibrium conditions. The upper level auction, referred to as 

DLA, is implemented by the DSO among aggregators competing for the share of energy 

that the DSO receives from the wholesale market. An aggregator can act as a seller or 

buyer depending on the demand and supply availability of its own customers, i.e. con-

sumers and prosumers, in order to achieve equilibrium conditions. The goal of the DSO’s 

auction is to optimally allocate its committed, or estimated, energy purchase from the 

wholesale market among competing aggregators, while maximizing the SW and maintain-

ing system physical constraints such as voltage, line, and transformer limits.  

For the sake of reader’s convenience, a list of notation and abbreviations for this 

chapter are provided in Appendix B. 

4.2 Auction Framework 

Consider a radial distribution network as shown in Figure 4.2 with 𝒩 denoting the set of 

nodes excluding root. Let 𝒜 show the set of aggregators in the network with one physical 

node’s customers served by only one aggregator. An aggregator residing on a single dis-

tribution node 𝑘, 𝑘 ∈ 𝒩, serves a set of 𝒩𝐵
𝑘  buyer agents and 𝒩𝑆

𝑘  seller agents with PV 

generation. Each buyer 𝑖, and seller 𝑗 has hidden utility functions 𝑢𝑖
𝑘(𝑑𝑖

𝑘), and 𝑣𝑗
𝑘(𝑔𝑗

𝑘 − 𝑠𝑗
𝑘) 

that shows the amount of satisfaction they derive from consuming electrical energy 𝑑𝑖
𝑘 

and (𝑔𝑗
𝑘 − 𝑠𝑗

𝑘). Here, 𝑑𝑖
𝑘 is the demand of buyer 𝑖, 𝑠𝑗

𝑘 is the supply, and 𝑔𝑗
𝑘 is the PV gen-

eration of the 𝑗𝑡ℎ seller within 𝑘𝑡ℎ aggregator. The sum of these utility functions is the 

SW function (SWF) of the customers served by aggregator 𝑘, 𝑘 ∈ 𝒜 . The aggregator’s 

responsibility is to ensure supply demand balance while maximizing the SWF of its cus-

tomers without access to their hidden utility functions and generation amounts.  
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As stated earlier, the proposed bi-level auction mechanism is implemented in two 

levels among aggregators residing on distribution nodes by the DSO (DLA) and among 

consumers and prosumers residing on a lateral feeder connected to a distribution node by 

the aggregators (ALA). In the ALA, each agent’s objective is to maximize its own profit 

by participation in the auction. Each aggregator’s objective is to maximize its customers’ 

SW. The aggregators do this through participation in the DLA by competing with other 

aggregators to in order to get their optimal supply share of real power 𝑝𝑘. The DSO’s 

objective is to implement the DLA iteratively until equilibrium is established and the 

maximum global SW is attained.  

During each iteration of the DLA, aggregator 𝑘 receives real power supply 𝑝𝑘, im-

plements its ALA and submits its’ per unit price 𝑐𝑘 for 𝑝𝑘. Similar to the price homoge-

nous auction in chapter 3, the price  𝑐𝑘 is obtained as the market-clearing price of the 

ALA. Given the new set of prices 𝑐𝑘 for each aggregator 𝑘 ∈ 𝒜, the DSO reruns the DLA 

to find the new supply 𝑝𝑘, while maintaining physical system constraints such as voltage 

limits, line flow limits, and substation transformer capacity.  This procedure continues 

until convergence is achieved. 

4.3 DSO-level Auction 

4.3.1 Distribution System Constraints 

The DLA proceeds while considering physical distribution grid constraints such as per 

unit (pu) voltage magnitudes at each node, line MVA limits, and substation transformer 

capacity. In this research, it is assumed that distribution system is balanced and all quan-

tities and amounts can be represented per phase at each consumer or prosumer node. 

In the single branch radial distribution system shown in Figure 4.1 the real and 

reactive power flow at each branch 𝑘 + 1 (branch going to node 𝑘 + 1) and the corre-

sponding node 𝑘 + 1 voltage are described by the DistFlow Equations from [93], [94].  

𝑃𝑘+1 = 𝑃𝑘 − 𝑟𝑘
𝑃𝑘

2 + 𝑄𝑘
2

𝑉𝑘
2 − 𝑝𝑘,                         (4.1) 
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𝑄𝑘+1 = 𝑄𝑘 − 𝑥𝑘
𝑃𝑘

2 + 𝑄𝑘
2

𝑉𝑘
2 − 𝑞𝑘,                        (4.2) 

   𝑉𝑘+1
2 = 𝑉𝑘

2 − 2(𝑟𝑘𝑃𝑘 + 𝑥𝑘𝑄𝑘) + (𝑟𝑘
2 + 𝑥𝑘

2) 𝑃𝑘
2 + 𝑄𝑘

2

𝑉𝑘
2 . (4.3) 

 

Here, 𝑉𝑘 is node 𝑘’s per unit voltage magnitude, (𝑟𝑘, 𝑥𝑘) is the line resistance/reactance 

and (𝑃𝑘, 𝑄𝑘) is the line real/reactive power flow of the line (अ(𝑘), 𝑘)	 where अሺ𝑘ሻ is the 

immediate upstream node to node 𝑘. The net real and reactive power injection into node 𝑘 

is denoted by (𝑝𝑘, 𝑞𝑘). This is the load of node 𝑘 minus generation of 𝑘 provided by a DG 

or the sum of demand minus the sum of supply of an aggregator.  In this research the 

simplified version of the DistFlow equations in Eqns. (4.1)–(4.3) have been used. The 

simplified DistFlow equations have been extensively used in the literature 

[93],[94],[95],[96],[97] and are given by Eqns. (4.4) – (4.6) below, 

𝑃𝑘+1 = 𝑃𝑘 − 𝑝𝑘,                                           (4.4) 

𝑄𝑘+1 = 𝑄𝑘 − 𝑞𝑘,                                          (4.5) 

𝑉𝑘+1 = 𝑉𝑘 − 𝑟𝑘𝑃𝑘 + 𝑥𝑘𝑄𝑘
𝑉0

,                             (4.6) 

where 𝑉0 is the root node voltage. For a radial distribution feeder such as the one shown 

in Figure 4.2, with Δ𝑉𝑘 = 𝑟𝑘𝑃𝑘+𝑥𝑘𝑄𝑘
𝑉0

 , the DistFlow equations for node 𝑘 can be written as 

follow, 

P0+iQ0

0 1 k k+1 N

P1+iQ1 Pk+iQk Pk+1+iQk+1

p1+iq1 pk+iqk pk+1+iqk+1 pn+iqn

Figure 4.1. Schematic diagram of a unidirectional single branch radial distribution system with N
nodes excluding the root node. 
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𝑃𝑘 = 𝑝𝑘 + ∑ 𝑝𝑙
𝑙∈𝒟(𝑘)

,                                      (4.7) 

𝑄𝑘 = 𝑞𝑘 + ∑ 𝑞𝑙
𝑙∈𝒟(𝑘)

,                                      (4.8) 

𝑉𝑘 = 𝑉0 − ∑ Δ𝑉𝑙
𝑙∈𝒰(𝑘)

.                                    (4.9) 

Here, ࣞሺ݇ሻ	and	࣯ሺ݇ሻ	are the sets of downstream and both immediate and separated up-

stream nodes of 𝑘. For example, in the radial distribution system shown in Figure 4.2, 

𝒟(31) = {32,33,34,35,36} and 𝒰(31) = {1,2,27,28,31}. For the sake of compactness, we 

deviate from previous chapters’ notation and use vector-matrix notation. Let 

𝐩 = [𝑝𝑘]𝑘∈𝒜,  
𝐪 = [𝑞𝑘]𝑘∈𝒜,  
𝑷 = [𝑃𝑘]𝑘∈𝒩,  
𝑸 = [𝑄𝑘]𝑘∈𝒩,  

𝑽 = [𝑉𝑘]𝑘∈𝒩, 

Δ𝑽 = [𝛥𝑉𝑘]𝑘∈𝒩 

𝐫 = [𝑟𝑘]𝑘∈𝒩,  
𝐱 = [𝑥𝑘]𝑘∈𝒩.  

The following system architecture matrices are defined, 

[𝐀]𝑘𝑙 = {1
0   𝑘 = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝑙     

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 (4.10) 

[𝐃]𝑘𝑙 = {1
0   𝑙 ∈ 𝒟(𝑘) 𝑜𝑟 𝑘 = 𝑙    

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 (4.11) 

[𝐔]𝑘𝑙 = {
1
1
0
   

𝑙 ∈ 𝒰(𝑘)     
𝑙 = 𝑘         
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

                              (4.12) 

In the above equations, 𝐀 is a 𝑁 × 𝐴 and 𝐃, 𝐔 are 𝑁 × 𝑁  matrices associated with the 

spatial topology of the network. The matrix 𝐀 is the node-aggregator matrix that has an 

entry of unity (‘1’) at every column on the row, i.e. node, where it resides. The matrices 

𝐃 and 𝐔 corresponds to the descendant and ancestor nodes. Every row (node) of  𝐃 and 

𝐔 has a one where the corresponding column (node) is its descendant or ancestor, and a 

zero elsewhere. Note that 𝐃 = 𝐔𝐓. 
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 The simplified DistFlow equations given by Eqns. (4.7) – (4.9) are thus given by 

the following equations, 

𝑷 = 𝐃𝐀𝐩,                                                 (4.13) 
𝑸 = 𝐃𝐀𝐪,                                                 (4.14) 
𝑽 = 𝑉0𝟏𝑁 − 𝐔Δ𝑽 ,                                     (4.15) 

where, 

Δ𝑽 = 1
𝑉0

(𝐫 ∘ 𝑷 + 𝐱 ∘ 𝑸).                              (4.16) 

It is also assumed in this research that homes are furnished with smart meters as well as 

inverters[98], [99] if sellers, and are capable of communicating their real power supply/de-

mand and as well as their reactive power supply/demand to/from the grid. Every home 

may have a different power factor, but known during each iteration of the ALA.  

In order to account for physical system constraints such as node voltages, in addi-

tion to 𝑐𝑘, the DLA also requires the aggregators to return 𝜃𝑘, the fraction of 𝑝𝑘 that upon 

multiplication gives their reactive power supply/demand 𝑞𝑘 , i.e. 𝑞𝑘 = 𝜃𝑘𝑝𝑘 . With 𝛉 =

[𝜃𝑘]𝑘∈𝒜  and 𝐪 = 𝛉 ∘ 𝐩 as elementwise (Hadamard) product of 𝛉 and 𝐩, using Eqn. (4.16), 

DistFlow equations in Eqns. (4.13) –(4.14) (4.15) can be written as follow, 

𝑷 = 𝐃𝐀𝐩,                                                (4.17) 
𝑸 = 𝐃𝐀(𝛉 ∘ 𝐩),                                          (4.18) 

𝑽  = 𝑉0𝟏𝑁 − 1
𝑉0

𝐔(𝐫 ∘ 𝐃𝐀𝐩 + 𝐱 ∘ 𝐃𝐀(𝛉 ∘ 𝐩)).  (4.19) 

In the above version of simplified DistFlow equations, the real/reactive branch flows and 

node voltages are entirely given as a function of nodes real power injection 𝐩, substation 

per unit voltage 𝑉0 and distribution system topology. With the latter two known to the 

DSO, it can implement the DLA to determine 𝐩 by using Eqns. (4.17) – (4.19) to set up 

its physical system constraints.  

 The physical system constraints of the DLA are described below. The node voltage 

constrains are dealt with first. Using Eqn. (4.19), and δ = 0.05, the voltages must satisfy 

the following for all 𝑁  nodes, 

                         𝟏𝑁 − 𝛅 ≤ 𝑉0𝟏𝑁 − 1
𝑉0

𝐔(𝐫 ∘ 𝐃𝐀𝐩 + 𝐱 ∘ 𝐃𝐀(𝛉 ∘ 𝐩)) ≤ 𝟏𝑁 + 𝛅. (4.20) 
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Letting 

𝐌𝑃 = 1
𝑉0

𝐔𝐫 ∘ 𝐃𝐀, 

𝐌𝑄 = 1
𝑉0

𝑼𝒙 ∘ 𝑫𝑨,  

𝐌 = 𝐌𝑃 + 𝐌𝑄 𝑑𝑖𝑎𝑔𝛉, 

𝐥 = (𝑉0 − 1)𝟏𝑁 − 𝛅, 

𝐥 = (𝑉0 − 1)𝟏𝑁 + 𝛅. 

Eqn. (4.20) can be written as,  

𝐥 ≤ 𝐌𝐩 ≤ 𝐥.                                               (4.21) 

In Eqn. (4.21), 𝐌 shows the sensitivity matrix of size 𝑁 × 𝐴. The (𝑖, 𝑘) entry in 𝐌 

shows the effect of real power injection of the 𝑘𝑡ℎ aggregator on node 𝑖’s voltage. 

The substation transformer capacity constraint is formulated next. In the DLA, 

since a real power amount 𝑃0 is assigned in the wholesale market auction, it is necessary 

that the sum of real power injection to all aggregator buses must not exceed this amount. 

Furthermore, the reactive power flowing into the distribution system through the substa-

tion transformer must not result in overloading it. Denoting the MVA limit of the trans-

former by 𝑀𝑉𝐴𝑡𝑟
2 , the reactive power capacity of the transformer is given by, 

𝑄0 = √𝑀𝑉𝐴𝑡𝑟
2 − 𝑃0

2.                                    

Thus, the following must be added to the DSO’s physical system constraints,  

𝟏𝐴
𝑇 𝐩 = 𝑃0,                                                  (4.22) 

𝛉𝑇 𝐩 ≤ 𝑄0.                                                 (4.23) 

The line flow constraints are formulated as follow. Since each line segment has an MVA 

limit, the following constraint shall be met for all branches, i.e. ∀𝑘,  

𝑃𝑘
2 + 𝑄𝑘

2 ≤ 𝑆𝑘
2. 

Let 𝐄𝑘 be a matrix of size 𝑁 × 𝑁  with a single one at the (𝑘, 𝑘) location and zero else-

where. The above line flow constraint can be rewritten in terms of all nodes real power 

injection 𝐩 follow, 

𝑷 𝑇 𝐄k𝑷 + 𝑸𝑇 𝐄k𝑸 ≤ 𝑆𝑘
2. 
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Replacing 𝑷  and 𝑸 using Eqns.(4.17) and (4.18) and simplifying further yields, 

𝐩𝑇 (𝐀𝑇 𝐃𝑇 𝑬𝑘𝐃𝐀 +  𝑑𝑖𝑎𝑔𝛉𝐀𝑇 𝐃𝑇 𝐄𝑘𝐃𝐀𝑑𝑖𝑎𝑔𝛉)𝐩 ≤ 𝑆𝑘
2  

Letting, 

𝐙𝑘 = 𝐀𝑇 𝐃𝑇 𝐄𝑘𝐃𝐀 +  𝑑𝑖𝑎𝑔𝛉𝐀𝑇 𝐃𝑇 𝐄𝑘𝐃𝐀𝑑𝑖𝑎𝑔𝛉,  

the line flow constraint can be completely written in terms of node real power injections 

as follow, 

𝐩𝑇 𝐙𝑘𝐩 ≤ 𝑆𝑘 
2                                               (4.24) 

4.3.2 DSO Social Welfare Optimization Problem (DSWOP) 

The goal of DSO is to maximize the global SW subject to physical system constraints. 

Mathematically speaking, 

Maximize w.r.t. [𝐝𝑘]𝑘∈𝒜, [𝐬𝑘]𝑘∈𝒜, 𝐩 

𝛺([𝐝𝑘]𝑘∈𝒜, [𝐬𝑘]𝑘∈𝒜, 𝐩) = ∑ 𝛩𝑘(𝐝𝑘, 𝐬𝑘)
𝑘∈𝒜

,            (4.25) 

subject to,  

𝟏𝐴
𝑇 𝐩 = 𝑃0,                                                  (4.26) 

𝛉𝑇 𝐩 ≤ 𝑄0,                                                 (4.27) 

𝐌𝐩 ≥ 𝐥,                                                    (4.28) 

𝐌𝐩 ≤ 𝐥,                                                    (4.29) 

𝐩𝑇 𝐙𝑘𝐩 ≤ 𝑆𝑘
2                                               (4.30) 

𝐩 = [𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘]
𝑘∈𝒜

,                            (4.31) 

𝐬𝑘 ≤ 𝐠𝑘.                                                    (4.32) 
 

In the above DSWOP the objective function in Eqn. (4.25), i.e. Θ𝑘, is the SW of each 

aggregator 𝑘 given below, 

𝛩𝑘(𝐝𝑘, 𝐬𝑘|𝑝𝑘) = 𝟏𝑁𝐵
𝑘

𝑇 𝐮𝑘 + 𝟏𝑁𝑆
𝑘

𝑇 𝐯𝑘, 
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where, 

𝐮𝑘 = [𝑢𝑖
𝑘(𝑑𝑖

𝑘)]𝑖∈𝒩𝐵
𝑘 , 

𝐯𝑘 = [𝑣𝑗
𝑘(𝑔𝑗

𝑘 − 𝑠𝑗
𝑘)]𝑖∈𝒩𝑆

𝑘 . 

The Constraints in Eqns. (4.26) and (4.27) are to ensure that substation transformers are 

not overloaded. Node voltage limits and line flow constraints are given by Eqns. (4.28) –

(4.30). Node power balance constraints are ensured by Eqn. (4.31)(4.33). The constraint 

in Eqn. (4.32) is to guarantee that sellers supply must not exceed their generation for all 

aggregators.  

The DSWOP given by Eqns. (4.25) – (4.32) is a function of 𝐝𝑘, 𝐬𝑘, and 𝐩. The only con-

straint that couples (𝐝𝑘, 𝐬𝑘) and 𝐩 is given by Eqn. (4.31). Thus, the DSWOP can be 

decomposed as explained next. 

4.3.3 DSWOP Decomposition 

The Lagrangian of the DSWOP to be maximized by relaxing the problem is, 

       𝔏([𝐝𝑘]𝑘∈𝒜, [𝐬𝑘]𝑘∈𝒜, 𝐩) = ∑ 𝛩𝑘(𝐝𝑘, 𝐬𝑘)
𝑘∈𝒜

             

                           +𝛼(𝟏𝐴
𝑇 𝐩 − 𝑃0) − 𝛽(𝛉𝑇 𝐩 − 𝑄0)                

                                    +𝜻𝑇 (𝐌𝐩 − 𝐥) − 𝜻𝑇 (𝐌𝐩 − 𝐥) − 𝝃𝑇 (𝐩𝑇 𝐙𝑘𝐩 − 𝑆𝑘
2)

                        −𝝀𝑇 ([𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘]
𝑘∈𝒜

− 𝐩)         

                                      − ∑ 𝜸𝑘
𝑇 (𝐬𝑘 − 𝐠𝑘)

𝑘∈𝒜
.                                          (4.33)

 

This can be rewritten as, 

𝔏([𝐝𝑘]𝑘∈𝒜, [𝐬𝑘]𝑘∈𝒜, 𝐩)  = 𝐿(𝐩) + ∑ ℒ𝑘(𝐝𝑘, 𝐬𝑘)
𝑘∈𝒜

, (4.34) 

where, 

 𝐿(𝒑) = 𝝀𝑇 𝐩 + 𝛼(𝟏𝐴
𝑇 𝐩 − 𝑃0) − 𝛽(𝛉𝑇 𝐩 − 𝑄0)

                                        +𝜻𝑇 (𝐌𝐩 − 𝐥) − 𝜻𝑇 (𝐌𝐩 − 𝐥) − 𝝃𝑇 (𝐩𝑇 𝐙𝑘𝐩 − 𝑆𝑘
2) , (4.35)
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ℒ𝑘(𝐝𝑘, 𝐬𝑘) = 𝛩𝑘(𝐝𝑘, 𝐬𝑘) − 𝜸𝑘
𝑇 (𝐬𝑘 − 𝐠𝑘)             

                         −𝜆𝑘 (𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘 − 𝑝𝑘).                       (4.36) 

In Eqns. (4.35) and (4.36)(4.38), a copy of 𝛌T𝐩 is retained in 𝐿(𝐩) and ∑ ℒ𝑘(𝐝𝑘, 𝐬𝑘)𝑘∈𝒜  

so that the problem can be decoupled and solved distributively[100]. The dual variable 𝛌 

is obtained from the aggregators and is considered fixed in order to solve Eqn. (4.35) 

for 𝐩. Similarly, in Eqn. (4.36) 𝑝𝑘 is considered fixed and every aggregator solves for 𝐝k, 𝐬k 

and returns 𝜆𝑘 as its market equilibrium price. The aggregator level auction described 

later incorporates a mechanism called virtual bidding, as a result of which it can be as-

sumed that  ∇𝐝𝑘𝜆𝑘 = 𝟎 and ∇𝐬𝑘𝜆𝑘 = 𝟎 so that the true 𝜆𝑘 is returned in order to ensure 

solving DSWOP via this decomposition method.  

The basic idea of decomposition is to decompose the original large problem into 

distributively solvable sub-problems which are then coordinated by a high-level master 

problem by means of some kind of signaling [100]. An illustration of this technique is 

shown in Figure 4.3. In this case, the DSO implements the DLA to optimize 𝐿(𝐩) in 

Eqn.(4.35) that is only a function of 𝐩. This can be formulated in terms of the following 

optimization problem with linear objective and linear and quadratic constraints. 

Maximize w.r.t. 𝐩 

𝝀𝑇 𝐩,                                                         (4.37) 

subject to, 

𝟏𝐴
𝑇 𝐩 = 𝑃0,                                                  (4.38) 

𝛉𝑇 𝐩 ≤ 𝑄0,                                                 (4.39) 

𝐌𝐩 ≥ 𝐥,                                                    (4.40) 

𝐌𝐩 ≤ 𝐥,                                                    (4.41) 

𝐩𝑇 𝐙𝑘𝐩 ≤ 𝑆𝑘 
2 .                                             (4.42) 
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For the sub-problems, each aggregator 𝑘 needs to optimize ℒ𝑘(𝐝𝒌, 𝐬𝒌) in Eqn. (4.36) that 

is a function of only 𝐝𝒌 and 𝐬𝒌 when it obtains 𝑝𝑘 from the DSO. It needs to solve the 

following sub-problem in parallel and returns 𝜆𝑘 as the Lagrange multiplier of the energy 

balance constraint. 

Maximize w.r.t. 𝐝𝑘, 𝐬𝑘  

𝛩𝑘(𝐝𝑘, 𝐬𝑘),  

subject to, 

𝑝𝑘 = 𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘, 

𝐬𝑘 ≤ 𝐠𝑘. 

Since 𝛩𝑘 is unknown, each aggregator implements the following auction algorithm instead 

to achieve the goal. 

4.4 Aggregator-level Auction 

Aggregator level auction in Chapter 3 with virtual bidding has been used for the design 

of lower level auction. As shown in Figure 4.4, each aggregator implements a lower level 

proportional allocation auction in order to solve the sub-problem and return 𝜆𝑘. 

Figure 4.3. Illustration of the decomposition method. Master problem is solved by DSO to deter-
mine 𝑝𝑘 and sub-problem is solved by the aggregators to determine 𝜆𝑘. 
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4.4.1 Aggregator Social Welfare Optimization Problem (ASWOP) 

The goal of each aggregator is to solve each sub-problem as presented in section 4.3.3 

re-written below, 

Maximize w.r.t. 𝐝𝑘, 𝐬𝑘  

𝛩𝑘(𝐝𝑘, 𝐬𝑘) = 𝟏𝑁𝐵
𝑘

𝑇 𝐮𝑘 + 𝟏𝑁𝑆
𝑘

𝑇 𝐯𝑘,                        (4.43) 

subject to, 

𝑝𝑘 = 𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘,                                   (4.44) 

𝐬𝑘 ≤ 𝐠𝑘.                                                    (4.45) 

The Lagrangian is given by Eqn. (4.36) and is rewritten below, 

ℒ𝑘(𝐝𝑘, 𝐬𝑘) = 𝛩𝑘(𝐝𝑘, 𝐬𝑘) − 𝜸𝑘
𝑇 (𝐬𝑘 − 𝐠𝑘) 

              −𝜆𝑘 (𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘 − 𝑝𝑘). 

Differentiating the Lagrangian above yields, 

Figure 4.4. Sub-problem auction illustration that achieve SW maximization of aggregators.  
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∇𝐝𝑘 ℒ𝑘 = ∇𝐝𝑘𝐮𝑘 − 𝜆𝑘𝟏𝑁𝐵
𝑘 ,                            (4.46) 

∇𝐬𝑘 ℒ𝑘 = ∇𝒔𝑘𝐯𝑘 − 𝜸𝑘 + 𝜆𝑘𝟏𝑁𝐵
𝑘 .                      (4.47) 

At equilibrium condition, the following is true, 

𝑝𝑘 = 𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘,                                   (4.48) 

∇𝐝𝑘 𝐮𝑘 = 𝜆𝑘𝟏𝑁𝐵
𝑘 ,                                         (4.49) 

∇𝐬𝑘𝐯𝑘 = 𝜸𝑘 − 𝜆𝑘𝟏𝑁𝑆
𝑘,                                   (4.50) 

where Eqns.(4.48) – (4.50) represent energy, demand, and supply equilibria. 

It has been proved below that energy equilibrium is established by the ALA and 

that the demand and supply equilibria conditions are satisfied under the assumption of 

virtual bidding, since the buying and selling agents adopt price-taking strategies. Further-

more, as the utilities 𝐮𝑘 and 𝐯𝑘 are assumed to be strictly concave and monotonic, the 

dual variable, 𝜆𝑘 and the uniform per unit energy price, 𝑐𝑘 established through the auc-

tion process described next are equal. For further details, the reader is referred to chapter 

3 and [79].  

4.4.2 Aggregator-level Auction (ALA) Algorithm 

The aggregator implements the auction algorithm 4.1 during each iteration of DLA in 

order to get 𝑐𝑘, i.e. 𝜆𝑘, and establish energy, demand, and supply equilibria. 

Virtual bidding is used to show that ALA achieves energy equilibrium. Virtual 

bidding was dealt in detail in section 3.4.2 where it was shown that the addition of virtual 

bidder that acts both as a seller and buyer simultaneously decreases the market power of 

the buyers and sellers resulting in eliminating loss in efficiency. Here a more direct proof 

is shown below which also takes into account the energy that the aggregator receives from 

the DSO. Let ∀𝑘 ∈ 𝒜, 𝑐𝑘
0 and 𝑐𝑘 be the market equilibrium price under price-taking and 

price-anticipating conditions.  The virtual supply, 𝑠0, of the virtual bidder, is kept arbi-

trarily high and is sold to the aggregator at 𝑐𝑘
0. Under these circumstances, 
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lim
𝑠0→∞

𝑐𝑘 = lim
𝑠0→∞

𝑐𝑘
0𝑠0 + 𝟏𝑁𝐵

𝑘
𝑇 𝐛𝑘

𝑝𝑘 + 𝑠0 + 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘 

= 𝑐𝑘
0 

=
𝟏𝑁𝐵

𝑘
𝑇 𝐛𝑘

𝑝𝑘 + 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘. 

 

Algorithm 4.1 ALA Algorithm 

Receive from DSO 𝑝𝑘 
Initialize 𝑐𝑘 
Repeat 

Send 𝑐𝑘 to sellers 
Receive 𝐬𝑘 from sellers 

𝐝𝑘 ← 1
𝑐𝑘

𝐛𝑘 

Send 𝐝𝑘 to buyers  
Receive 𝐛𝑘 from buyers  

𝑐𝑘
0 ←

𝟏𝑁𝐵
𝑘

T 𝐛𝑘

𝑝𝑘 + 𝟏𝑁𝑆
𝑘

T 𝐬𝑘 

𝑐𝑘 ←
𝑐𝑘

0𝑠0 + 𝟏𝑁𝐵
𝑘

T 𝐛𝑘

𝑝𝑘 + 𝑠0 + 𝟏𝑁𝑆
𝑘

T 𝐬𝑘 

Until equilibrium 
Send 𝑐𝑘 to DSO  
 

Likewise, 

lim
𝑠0→∞

𝜕
𝜕𝑏𝑖

𝑘 𝑐𝑘 = lim
𝑠0→∞

1
𝑝𝑘 + 𝑠0 + 𝟏𝑁𝑆

𝑘
𝑇 𝐬𝑘

𝜕𝑐𝑘
0

𝜕𝑏𝑖
𝑘 

= 0, 

lim
𝑠0→∞

𝜕
𝜕𝑠𝑗

𝑘 𝑐𝑘 = lim
𝑠0→∞

1
𝑝𝑘 + 𝑠0 + 𝟏𝑁𝑆

𝑘
𝑇 𝐬𝑘 (1 −

𝑐𝑘
0𝑠0 + 𝟏𝑁𝐵

𝑘
𝑇 𝐛𝑘

𝑝𝑘 + 𝑠0 + 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘)
𝜕𝑐𝑘

0

𝜕𝑠𝑗
𝑘 

= 0. 
Henceforth, it is assumed that the aggregator simulate the ALA with a high 𝑠0 so that 

buyer and seller agents act as price takers. Under these circumstances, the following hold, 
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𝑐𝑘 =
𝟏𝑁𝐵

𝑘
𝑇 𝐛𝑘

𝑝𝑘 + 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘 ,                                         (4.51) 

𝜕
𝜕𝑏𝑖

𝑘 𝑐𝑘 = 0,                                                 (4.52) 

𝜕
𝜕𝑠𝑗

𝑘 𝑐𝑘 = 0.                                                 (4.53) 

Proportionally fair allocation of energy achieves energy balance, as shown below. Since by 

proportional allocation, 

 

𝐝𝑘 = 1
𝑐𝑘

𝐛𝑘,                                                 (4.54) 

the buyers bid in Eqn. (4.54) is 𝐛𝑘 = 𝑐𝑘𝐝𝑘. Replacing 𝐛𝑘 in Eqn. (4.51) and solving for 

𝑝𝑘 results, 

𝑝𝑘 = 𝟏𝑁𝐵
𝑘

𝑇 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘.                                   (4.55) 

This proves that ALA achieves the energy balance equilibrium condition of ASWOP given 

by Eqn. (4.48). Eqn.(4.55) shows that the difference in total demand of buyers and total 

supply of sellers is fed by the DSO’s injection 𝑝𝑘.  

In addition to energy balance, budget balance is also ensured by the ALA. Notice 

that from Eqn. (4.51), for an aggregator 𝑘,  

𝑐𝑘𝑝𝑘 + 𝑐𝑘𝟏𝑁𝑆
𝑘

𝑇 𝐬𝑘 = 𝟏𝑁𝐵
𝑘

𝑇 𝐛𝑘.                              (4.56) 

The first and second term in the LHS in Eqn. (4.56) is the reimbursement to DSO and 

sellers respectively, whereas the term on the RHS is the payment by the buyers. This 

shows that the ALA is strongly budget balanced. 

4.4.2 Buyer Problem 

The buyers’ problem is given in Eqn. (3.6) and restated here for an aggregator 𝑘.  

Maximize w.r.t. 𝑏𝑖
𝑘 
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𝑢𝑖
𝑘(𝑑𝑖

𝑘) − 𝑏𝑖
𝑘. 

The ALA achieves demand equilibrium as follow. The stationary conditions of the buyer 

problem is 

𝜕
𝜕𝑏𝑖

𝑘 𝑢𝑖
𝑘(𝑑𝑖

𝑘) − 1 = 0. 

Using chain rule yields, 

𝜕𝑢𝑖
𝑘

𝜕𝑑𝑖
𝑘
𝜕𝑑𝑖

𝑘

𝜕𝑏𝑖
𝑘 − 1 = 0. 

Using Eqn. (4.54) for buyer 𝑖, 

𝜕𝑢𝑖
𝑘

𝜕𝑑𝑖
𝑘

𝜕
𝜕𝑏𝑖

𝑘 (𝑏𝑖
𝑘

𝑐𝑘
) − 1 = 0, 

⇒ 𝜕𝑢𝑖
𝑘

𝜕𝑑𝑖
𝑘

1
𝑐𝑘

(1 − 𝑏𝑖
𝑘

𝑐𝑘

𝜕
𝜕𝑏𝑖

𝑘 𝑐𝑘) − 1 = 0. 

Under virtual bidding assumption from Eqn. (4.52), 𝜕𝑐𝑘
𝜕𝑏𝑖

𝑘 = 0 so that, 

𝜕𝑢𝑖
𝑘

𝜕𝑑𝑖
𝑘 = 𝑐𝑘.                                                   (4.57) 

Since 𝑐𝑘 = 𝜆𝑘 (chapter 3 and [79]) it is seen that virtual bidding allows demand equilib-
rium condition given by Eqn. (4.49) to be satisfied. 

4.4.3 Seller Problem 

The seller problem is given by Eqns. (3.8) and (3.9) restated below. 

Maximize w.r.t. 𝑠𝑗
𝑘 

𝑣𝑗
𝑘(𝑔𝑗

𝑘 − 𝑠𝑗
𝑘) + 𝑐𝑘𝑠𝑗

𝑘, 

subject to, 
𝑠𝑗

𝑘 ≤ 𝑔𝑗
𝑘. 

The Lagrangian of the above problem is given by, 

𝐿𝑗(𝑠𝑗
𝑘) = 𝑣𝑗

𝑘(𝑔𝑗
𝑘 − 𝑠𝑗

𝑘) + 𝑐𝑘𝑠𝑗
𝑘 − 𝛾𝑗

𝑘(𝑠𝑗
𝑘 − 𝑔𝑗

𝑘).  
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The supply equilibrium is achieved by ALA as shown below. At equilibrium, 

𝜕
𝜕𝑠𝑗

𝑘 𝐿𝑗(𝑠𝑗
𝑘) = 0 

⇒ 𝜕
𝜕𝑠𝑗

𝑘 𝑣𝑗
𝑘(𝑔𝑗

𝑘 − 𝑠𝑗
𝑘) + 𝑐𝑘 + 𝑠𝑗

𝑘 𝜕𝑐𝑘

𝜕𝑠𝑗
𝑘 − 𝛾𝑗

𝑘 = 0. 

Under the assumption of virtual bidding in Eqn. (4.53), 𝜕𝑐𝑘
𝜕𝑠𝑗

𝑘 = 0 so that, 

𝜕
𝜕𝑠𝑗

𝑘 𝑣𝑗
𝑘 = 𝛾𝑗

𝑘 − 𝑐𝑘.                                         (4.58) 

Since 𝑐𝑘 = 𝜆𝑘 (chapter 3 and [79]) it is seen that virtual bidding allows supply equilibrium 

condition given by Eqn. (4.50) to be satisfied. 

 The proposed bi-level auction converges to the global efficient solution if it is de-

composed appropriately as explained above. For proof of convergence, interested readers 

are referred to [100], [101], [102].  

4.5 Simulation Results 

The simulation results reported in this section corroborates the theory in this chapter. A 

modified IEEE 37 node system with a base value of 100kVA is used to simulate the bi-

level mechanism. Seventeen aggregators with different number of buyers and sellers were 

generated and assigned to the nodes with load as labeled in Figure 4.5. The number of 

customers in each aggregator are listed in Table 4.1 resulting to 589 agents with 340 

buyers and 249 sellers. The utilities of buyers and sellers were assumed to follow logarith-

mic saturation curves according to Eqns. (2.46) and (2.47) . The quantities 𝑥𝑖, 𝑦𝑖, 𝑥𝑗 and 

𝑦𝑗 in these equations were different for each agent, and were generated randomly and 

adjusted so that marginal utilities are scaled to reasonable per unit prices . The genera-

tion 𝑔𝑗 for sellers were also drawn at random, uniformly in the interval [0.05, 0.5] pu. 
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Table 4.1. Number of seller and buyer agents in each aggregator 

Aggregator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Node 1 8 12 13 17 18 22 23 25 26 27 29 30 31 33 35 36
𝑁𝐵 11 5 22 11 22 30 50 5 22 33 11 11 5 33 22 11 33
𝑁𝑆 22 20 22 22 2 22 5 20 2 2 22 11 20 22 2 22 11

 

Three different scenarios were generated to investigate how the amount of injection 

𝑃0 from the substation node influences the distribution of energy and its associated cost 

to each aggregator. These scenarios (labelled I, II, and III) were generated with the fol-

lowing values of the injected power, 𝑃0 = 0.01 pu (low wholesale market supply), 𝑃0 =

10 pu, and 𝑃0 = 22 pu(high wholesale market supply). The DLA mechanism is solved 

using Matlab’s fmincon function at each iteration and the outcome under each scenario 

are depicted in Figures 4.6, 4.7, and 4.8. For the ALAs, only the auction outcomes of 

Figure 4.5. Modified IEEE 37 node system with aggregator numbering. 
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aggregator 5 and 13 under the two extreme scenarios, when 𝑃0 is 0.01 and 22 pu, is re-

ported as tabulated in Table 4.2 and 4.3. 

Figures 4.6(a), 4.7(a), and 4.8(a), shows the energy injection 𝑝𝑘 to each aggregator 

𝑘 and cost 𝑐𝑘 that they pay. The energy 𝑝𝑘 and its’ per unit cost 𝑐𝑘 refers to the efficient 

solution of the DLA and ALA under equilibrium. In other words, the amounts 𝑝𝑘 depicted 

for each scenario are the solutions at equilibrium when the global SW given by Eqn. (4.25) 

has stabilized at its maximum, which is shown in part (b) of each figure. Furthermore, 

the costs 𝑐𝑘 are the stable market price of the ALA at equilibrium and is different for 

each aggregator, making the DLA price heterogeneous. The node pu voltages are shown 

in part (c) and each line segments real, reactive, and apparent power flows, within the 

given line MVA limits are shown in part (d) of each figure. 

Note that the amount of extraction/injection from/to each aggregator node de-

pends on the available wholesale market supply 𝑃0, the number of buyers and sellers, 

sellers’ generation capacity 𝑔𝑗
𝑘, and marginal utilities 𝑢𝑖

′𝑘 and 𝑣𝑗
′𝑘 of each aggregator 𝑘. 

Aggregators with deficit are assigned positive 𝑝𝑘 while those with surplus are assigned 

negative 𝑝𝑘, i.e. they supply to the network. 

 In general, aggregators with available surplus energy and lower equilibrium price 

𝑐𝑘 supply more 𝑝𝑘 to the rest of the network while those that have higher 𝑐𝑘 supply less. 

Similarly, aggregators with deficit energy are assigned more 𝑝𝑘 if its equilibrium price 𝑐𝑘 

is higher. For example in part (a) of all three scenarios in figures 4.6(a), 4.7(a), and 4.8(a),  

consider aggregator 1 and 13 located on nodes 1 and 30. Aggregator 1 has 22 sellers and 

11 buyers whereas 13 has 20 sellers and 5 buyers. Due to low number of buyers in aggre-

gator 13, i.e. low demand, and slightly lower equilibrium price 𝑐𝑘, it is assigned to supply 

a higher 𝑝𝑘 compared to aggregator 1. A similar outcome can be observed for injection by 

the grid to aggregators with high number of buyers and less number of sellers.  

Figures 4.6(b), 4.7(b), 4.8(b) depict the convergence of the bi-level mechanism to 

the global SW under each scenario. As the amount of wholesale market injection 𝑃0 in-

creases from 0.01 pu in scenario I to 22 pu in scenario III, the global SW increases and 

stabilizes at higher values. This is because, as seen from part (a) of each figure, with 
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increasing 𝑃0; the prices go down, positive injections increase and negative injections de-

crease, as more sellers in each aggregator decide to consume their generation rather than 

selling it. As an interesting example, aggregator 3 with 22 buyers and 22 sellers on node 

12 supplies to the grid in the first two scenarios when prices are relatively high. However, 

it receives energy back from the grid in scenario III when price is low, resulting to a higher 

SW as defined to be the sum of utilities of buyers plus that of sellers. 

Figures 4.6(c, d), 4.7(c, d), and 4.8(c, d) show that when 𝑃0 increases, node volt-

ages decrease and line flows increase. Also, from scenario I to III, negative line flows 

decrease and more positive line flows appear. For example, the flow in line segment going 

from node 2 to node 27 is negative in scenario I and positive in II, and III. This is because 

of the scarcity of supply in scenario I, and because aggregators 9 and 10 has high number 

of buyers than sellers (see Table 4.1), energy needs to be injected to these nodes. This 

energy is supplied from aggregator 1 and 2 as well as other aggregators in the right hand 

side branch from node 2. However, in scenarios II and III the demand of these nodes are 

supplied by aggregator 1 as well as by the substation injection as the flows in line segment 

2 to 27 and 2 to 3 become positive.  

In order to illustrate the result of ALAs, auction outcome for aggregator 13 and 5 

for the 2 extreme scenarios, I and III, are presented in Tables 4.2 and 4.3. The left column 

in each table contains aggregator 13’s and the right column shows that of aggregator 5.  

In scenario I, aggregator 13 exports 4.241 pu to the grid (𝑝13), which is equal to the sum 

of supplies (∑ 𝑠𝑗
13

𝑗 ) by the sellers minus sum of demand of buyers (∑ 𝑑𝑖
13

𝑖 ). The equilib-

rium price 𝑐13 is 0.522 at which the buyers marginal utilities stabilize, i.e. 𝑢𝑖
′13 = 0.522. 

In the case of sellers, only those with marginal utilities 𝑣𝑗
′13 equal to 𝑐13 get to supply a 

nonzero 𝑠𝑗
13. As seen, seller number 10 and 11 with 𝑣𝑗

′13 > 𝑐13 have zero 𝑠𝑗
13, which means 

that they decide to consume all their generation 𝑔𝑗
13 themselves.  
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Figure 4.6. DLA outcome for scenario I, i.e. P0 = 0.01 pu. (a) Node injections and prices. (b) 
Global SW convergence. (c) Node pu voltages. (d) Real, reactive, and apparent pu line flows. 

(d) 

(c) 

(b) (a) 
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Figure 4.7. DLA outcome for scenario II, i.e. P0 = 10 pu. (a) Node injections and prices. (b) Global 
SW convergence. (c) Node pu voltages. (d) Real, reactive, and apparent pu line flows. 

(b) 

(d) 

(c) 

(a) 
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Figure 4.8. DLA outcome for scenario III, i.e. P0 = 22. (a) Node injections and prices. (b) Global 
SW convergence. (c) Node pu voltages. (d) Real, reactive, and apparent pu line flows. 

(b) 

(c) 

(d) 

(a) 
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Table 4.2. ALA outcome for aggregator 13 and 5 under scenario I. 

Aggregator 13 (𝒩𝐵
13 = 5,𝒩𝑆

13 = 20) Aggregator 5 (𝒩𝐵
5 = 22, 𝒩𝑆

5 = 2) 

𝑝13 (pu) 𝑐13 ($/kWhr) 𝑉13 (pu) 𝑝5 (pu) 𝑐5 ($/kWhr) 𝑉5 (pu) 
-4.241 0.522 1.036 2.572 0.526 1.025 

𝑑𝑖
13(pu) 𝑐𝑖

13 ($/kWhr) 𝑢𝑖
′13($/kWhr) 𝑑𝑖

5(pu) 𝑐𝑖
5 ($/kWhr) 𝑢𝑖

′5($/kWhr) 
0.152 0.522 0.522 0.022 0.526 0.526 
0.132 0.522 0.522 0.156 0.526 0.526 
0.155 0.522 0.522 0.135 0.526 0.526 
0.037 0.522 0.522 0.123 0.526 0.526 
0.114 0.522 0.522 0.138 0.526 0.526 

𝑔𝑗
13(pu) 𝑠𝑗

13(pu) 𝑣𝑗
′13($/kWhr) 0.155 0.526 0.526 

0.190 0.041 0.522 0.147 0.526 0.526 
0.414 0.310 0.522 0.092 0.526 0.526 
0.482 0.419 0.522 0.086 0.526 0.526 
0.497 0.361 0.522 0.145 0.526 0.526 
0.342 0.216 0.522 0.128 0.526 0.526 
0.488 0.356 0.522 0.134 0.526 0.526 
0.303 0.173 0.522 0.146 0.526 0.526 
0.473 0.318 0.522 0.114 0.526 0.526 
0.425 0.315 0.522 0.095 0.526 0.526 
0.057 0.000 0.697 0.157 0.526 0.526 
0.131 0.000 0.589 0.093 0.526 0.526 
0.333 0.289 0.522 0.095 0.526 0.526 
0.402 0.307 0.522 0.101 0.526 0.526 
0.385 0.230 0.522 0.119 0.526 0.526 
0.421 0.303 0.522 0.106 0.526 0.526 
0.372 0.372 0.516 0.157 0.526 0.526 
0.422 0.361 0.522 𝑔𝑗

15(pu) 𝑠𝑗
15(pu) 𝑣𝑗

′15($/kWhr)
0.159 0.020 0.522 0.163 0.070 0.526 
0.319 0.179 0.522 0.160 0.010 0.526 
0.271 0.260 0.522    

 

Similar observations for aggregator 13 can be made in scenario III. However now 

the price stabilizes at 0.413 at which it exports lower 𝑝13 , and buyers buy more. Notice that 

this time, in addition to sellers 10, and 11, sellers 1 and 18 also declare zero supply. 

Aggregator 5 on the other hand, stabilizes at 𝑐5 > 𝑐13 in both scenarios due to higher 

number of buyers. Buyers buy less in scenario I than in III. Due to the same reasons 

described above, both sellers supply in scenario I whereas only seller 1 supplies in III.  
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Table 4.3. ALA outcome for aggregator 13 and 5 under scenario III. 

Aggregator 13 (𝒩𝐵
13 = 5,𝒩𝑆

13 = 20) Aggregator 5 (𝒩𝐵
5 = 22, 𝒩𝑆

5 = 2) 

𝑝13 (pu) 𝑐13 ($/kWhr) 𝑉13 (pu) 𝑝5 (pu) 𝑐5 ($/kWhr) 𝑉5 (pu) 
-3.131 0.413 1.003 3.700 0.418 0.978 

𝑑𝑖
13(pu) 𝑐𝑖

13 ($/kWhr) 𝑢𝑖
′13($/kWhr) 𝑑𝑖

5(pu) 𝑐𝑖
5 ($/kWhr) 𝑢𝑖

′5($/kWhr) 
0.202 0.413 0.413 0.071 0.418 0.418 
0.183 0.413 0.413 0.205 0.418 0.418 
0.205 0.413 0.413 0.184 0.418 0.418 
0.088 0.413 0.413 0.172 0.418 0.418 
0.165 0.413 0.413 0.187 0.418 0.418 

𝑔𝑗
13(pu) 𝑠𝑗

13(pu) 𝑣𝑗
′13($/kWhr) 0.204 0.418 0.418 

0.190 0.000 0.430 0.196 0.418 0.418 
0.414 0.260 0.413 0.141 0.418 0.418 
0.482 0.369 0.413 0.134 0.418 0.418 
0.497 0.310 0.413 0.194 0.418 0.418 
0.342 0.165 0.413 0.177 0.418 0.418 
0.488 0.306 0.413 0.183 0.418 0.418 
0.303 0.123 0.413 0.195 0.418 0.418 
0.473 0.268 0.413 0.163 0.418 0.418 
0.425 0.264 0.413 0.143 0.418 0.418 
0.057 0.000 0.697 0.206 0.418 0.418 
0.131 0.000 0.589 0.142 0.418 0.418 
0.333 0.239 0.413 0.143 0.418 0.418 
0.402 0.257 0.413 0.149 0.418 0.418 
0.385 0.180 0.413 0.167 0.418 0.418 
0.421 0.253 0.413 0.155 0.418 0.418 
0.372 0.324 0.413 0.206 0.418 0.418 
0.422 0.311 0.413 𝑔𝑗

5(pu) 𝑠𝑗
5(pu) 𝑣𝑗

′5($/kWhr) 
0.159 0.000 0.472 0.163 0.021 0.418 
0.319 0.128 0.413 0.160 0.000 0.499 
0.271 0.210 0.413    

 

Note that the equilibrium solution of one aggregator is directly dependent on that 

of others. During each iteration of the DLA, optimal energy 𝑝𝑘 is allocated based on de-

clared aggregator prices 𝑐𝑘 in the previous iteration. Each aggregator’s 𝑐𝑘 is altered by 

this new 𝑝𝑘 as it changes its supply amount based on which buyers and sellers buy and 

sell in the ALA. The result is a new set of equilibrium prices 𝑐𝑘 that upon communication 

may change the whole energy distribution at the DLA. Upon repetition of this process, 

the DLA achieves global SW where in every aggregator, agents’ marginal utilities becomes 
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equal to its price when they trade. During each iteration, DLA also considers distribution 

grid constraints such as node voltages that needs to be within specified range.  

4.6 Conclusions 

In order to solve DSWOP, a globally efficient bi-level energy auction mechanism that is 

implemented by DSO at the upper and aggregators at the lower level is proposed. The 

auction is shown to converge and attain global efficient solution by decomposing DSWOP 

into a master and sub-problem that upon solution, solves DSWOP. The master problem 

is shown to be a linear objective with linear and quadratic constraints formed by the 

physical grid constraints. The sub-problem is modeled to be the aggregator SW maximi-

zation problem that is solved through the proposed auction mechanism in chapter 3 in 

the presence of price anticipatory bidders and when customers’ utility functions are hidden 

from the aggregator. Simulation results confirm the theory in the proposed mechanism.  
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Multi-period Price Heterogeneous 

Auction for Distribution System Operation 

Energy distribution in current electricity market proceeds in a centralized manner where 

participants, i.e. generation companies, load serving entities, bid their supply-demand 

curves, and the Independent System Operator (ISO) schedules generation based on unit 

commitment on a day-ahead basis. Furthermore, the bidding process is not iterative and 

the per-unit price of energy is determined based on the Locational Marginal Price (LMP), 

which is equal to the Lagrange multiplier of the energy balance constraint at every bus. 

  In this chapter, a multi-period double energy auction in the distribution system 

in the same setting as the current electricity market is studied. The distribution system 

involves dispatch-able generation units, renewable generation units supported by battery 

storage systems (BSSs), fixed loads, price responsive loads, and supply from the Wholesale 

Market (WSM) at LMP. The auction is implemented within a Distribution System Oper-

ator (DSO) premises using Mixed Integer Linear Programming (MILP). The proposed 

auction is cleared at the Distribution LMP (DLMP) and is observed to be weakly budget 

balanced if no penalty is applied for DSO’s deviation from its original commitment with 

the WSM. Furthermore, the dynamics of LMP and DLMP, and their effect on distribution 

market participants scheduled quantities as well as the WSM supply to the distribution 

system is investigated. 

This chapter will provide the necessary background to facilitate the reader with 

logic of the proposed future research in the next chapter.  

5.1 Introduction 

The design of DSO’s market has acquired a significant research momentum due to in-

creasing penetration of renewable energy resources and the accompanying net load vola-

tility. As an intermediate market operator, the DSO may use forecasted and (or) historical 

load and system distributed generation (DG) data to bid in the WSM.  The independent 

system operator (ISO) clears WSM, announces the DSO’s LMP and scheduled energy 
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amount. In such a situation, once DSO collects the information of its scheduled power at 

the LMP, it may implement a DAM double auction in its own service territory to seek 

further efficient resource allocation and maximize SW. The service area under the control 

of the DSO can be comprised of various loads and generation units.  The generation units 

in the network can be of dispatch-able and non-dispatch-able kind. Non-dispatch-able 

units that are mainly renewable energy resource such as wind and solar are intermittent 

and causes uncertainty while weakening the classical demand price correlation [103], [104]. 

However, these restrictions can be alleviated by channeling intermittent renewable gener-

ation output power through battery storage systems (BSSs) [74], [105].   

While distinctive models for DSO are proposed by various researchers in the elec-

tricity market [106], [107], [108], [109] a broader model that can handle involvement of all 

kinds of market participants has not yet been developed. Distribution market clearing and 

payment mechanisms are still open questions that are yet to be answered with viable and 

sound assumptions.  

Seen hierarchically, the distribution service territory starts at the bus where the 

utility company can bid in the WSM through DSO. A sub-transmission network then 

distributes the power to different distribution buses (D-buses), i.e. substations [106]. Each 

D-bus serves smaller substations at medium voltage that may cover a smaller geographic 

area or a community at low voltage. In the low voltage distribution system, different 

aggregator models including those in the previous chapters have been proposed in the 

literature that may be incentivized to aggregate classical fixed as well as price responsive 

loads and bid in the distribution market [110], [111], [79].    

This chapter proposes a multi-period DAM energy auction for DSO given the LMP 

and its commitment with the WSM based on forecasted or historical data. The goal of 

the DSO is to implement a double auction post WSM commitment to maximize the SW 

and the surplus of the market participants such as DGs, BSSs, and price responsive loads 

by scheduling the least cost generation and serving loads with highest bids. 

For the sake of reader’s convenience, a list of notation and abbreviations for this 

chapter are provided in Appendix B. 
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5.2 Auction Framework 

In the proposed model when the DSO receives its committed energy information and the 

LMP of the ISO, it asks for bids from the generator units, BSSs, and load aggregators in 

the low voltage distribution system. Generator units are assumed to submit a three-seg-

ment bid and amount as well as their ramp up/down rates and startup/shut down costs. 

Load aggregators are assumed to be capable of dividing the aggregated load to a fixed 

load segment amount that needs to be served at all times and a two segment bid and 

amount for its price responsive part. The fixed segment part of the load is expected to be 

served at the DLMP and does not accompany any monetary bid value. This is because 

not all loads are price responsive, i.e. a high portion of the load is price inelastic and needs 

to be served at all times. We assume that renewable energy resources at the distribution 

level are coupled with BSSs for a smooth participation in the auction, and declare their 

selling price as well as their unit characteristics to the DSO for optimal operation. BSSs 

have the potential to help integrate deeper penetrations of renewable energy onto elec-

tricity grids and deliver efficient, low-cost, fundamental electricity-grid services [74]. It is 

considered in this paper that the BSSs are backed up and charged only by its own renew-

able energy resource(s). The proposed model can be easily extended for idle BSSs that 

can be charged or discharged by the grid in the DSO’s optimization problem by adding 

an extra set of constraints.  

Equipped with the aforementioned considerations, the DSO runs the energy auction 

and clears the market by providing power to the successful biding parties at DLMP. The 

concept of DLMP was initially proposed by [112] and has been used by many researchers 

for distribution system congestion management, market clearing, and loss minimization 

[104],[107],[113],[114],[115]. DLMP shows the true marginal cost of supplying the next 

increment of load at a distribution bus. Although in this study we do not consider any 

distribution line congestion or voltage constraints, the true value of a unit of energy at 

the DSO bus and at D-buses differs from LMP due to different bids of market participants 

at those buses. As stated earlier, the DLMP is attained as the Lagrange multiplier of the 

energy balance constraint at each D-bus. The model proposed here can be easily extended 
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to include line or transformer congestions through Shift Factors or Power Transfer Dis-

tribution Factor using DC power flow, a viable approximation at the sub-transmission 

level of the distribution system. A second approach that seems more promising in smaller 

distribution systems is the application of simplified DistFlow equations to account for line 

or transformer overloading as well as the D-bus voltage constraints [94], [93], [95],[96],[97]. 

The simplified DistFlow equations can be implemented in the DSO’s optimization problem 

as a set of linear constraints. 

   

Figure 5.1 depicts a sample hypothetical distribution system architecture with four 

distribution buses (D-buses) fed by sub-transmission lines from the main DSO bus in a 

radial configuration. Each D-bus is considered to include dispatch-able generation units 

(denoted by G), BSSs charged by renewable resources, and several aggregated loads (de-

noted by L). The DSO receives the committed supply of  S𝑡 (its demand at WSM) at 

LMP from the ISO and runs a day−ahead auction to determine its own unit commitment 

and supply distribution while maximizing the overall system SW. 
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Figure 5.1: System architecture with four distribution buses.   
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The SW maximization of the system can be modeled as in Eqn. (5.1)  subject to 

the system constraints in Eqns. (5.2) – (5.30) . 

Maximize w.r.t. dx, px, 𝑦, 𝑧, e, s   

𝑓 = ∑∑∑∑CL𝑚𝑙𝑟𝑡 dx𝑚𝑙𝑟𝑡
𝑟>1𝑙𝑚𝑡

− ∑∑∑∑CG𝑚𝑔𝑞 px𝑚𝑔𝑞𝑡 
𝑞𝑔𝑚𝑡

       − ∑ ∑ ∑  STC𝑚𝑔 𝑦𝑚𝑔𝑡
𝑔

− ∑∑∑SDC𝑚𝑔 𝑧𝑚𝑔𝑡
𝑔𝑚𝑡𝑚𝑡

  

− ∑ ∑ ∑CB𝑚𝑏 e𝑚𝑏𝑡
𝑏𝑚𝑡

− ∑∑LMP𝑡 s𝑚𝑡
𝑚𝑡

,    (5.1)

 

subject to constraints in Eqns. (5.2) – (5.30)  ∀ 𝑚 ∈ ℳ, ∀ 𝑔 ∈ 𝒢, ∀ 𝑏 ∈ ℬ, ∀ 𝑙 ∈ ℒ,

∀ 𝑡𝜖𝒯,  
∑ s𝑚𝑡𝑚 ≤ S𝑡     ∀𝑡,                                     (5.2) 

∑p𝑚𝑔𝑡
𝑔

+ ∑e𝑚𝑏𝑡 +
𝑏

s𝑚𝑡 = ∑d𝑚𝑙𝑡
𝑙

    ∀𝑚, ∀𝑡.  (5.3) 

     The first term in the RHS of Eqn. (5.1) pertains to the price responsive loads and 

allocate to those loads that have the highest bids. Note that, as the loads are assumed to 

submit their fixed load segment without any monetary bid and two price responsive seg-

ments with monetary bids, the fixed segment is excluded from the first term, i.e. 𝑟 > 1. 

The second, third, and fourth terms in the RHS of Eqn. (5.1) relate to generators and 

allocate generation to those units that have bid the least amount and incur smaller start 

up and shut down costs. The fifth term in the RHS of Eqn. (5.1) is modeled to pick BSSs 

with lowest bid and the sixth term shows how much to take from the ISO’s committed 

supply. The objective function in Eqn. (5.1) picks energy sellers with least marginal cost 

and energy buyers with highest valuation in order to maximize surplus and result an 

efficient allocation.     

Eqn. (5.2) indicates that the sum of supplies channeled through the DSO into each 

D-bus shall not exceed the committed schedule to the ISO. Similarly, Eqn. (5.3) ensures 

that the demand of each individual D-bus is supplied by the allocated portion of supply 

from WSM, and the supply of the generation and BSS units in that bus. 

D𝑚𝑙𝑡   =  ∑dx𝑚𝑙𝑟𝑡
𝑟

     ∀𝑙, ∀𝑚, ∀𝑡,                     (5.4) 



91 

0 ≤ dx𝑚𝑙𝑟𝑡 ≤ DX𝑚𝑙𝑟
𝑚𝑎𝑥      ∀𝑟, ∀𝑙, ∀𝑚, ∀𝑡,                (5.5) 

D𝑚𝑙
min ≤ d𝑚𝑙𝑡 ≤ D𝑚𝑙

max        ∀𝑙, ∀𝑚,∀𝑡,                   (5.6) 

p𝑚𝑔𝑡 =  ∑p𝑚𝑔𝑞𝑡
𝑞

    ∀𝑔, ∀𝑚, ∀𝑡,                         (5.7) 

0 ≤ p𝑚𝑔𝑞𝑡 ≤ PX𝑚𝑔𝑞
𝑚𝑎𝑥      ∀𝑞, ∀𝑔, ∀𝑚,∀𝑡,                 (5.8) 

P𝑚𝑔
min 𝑖𝑚𝑔𝑡 ≤ p𝑚𝑔𝑡 ≤ P𝑚𝑔

max 𝑖𝑚𝑔𝑡       ∀𝑔, ∀𝑚, ∀𝑡.       (5.9) 

Eqn. (5.4) shows that the total demand of a load is equal to the demand of the 

fixed segment ( 𝑟 = 1 ) plus the demand of its responsive segments ( 𝑟 > 1 ). Eqns. (5.5) 

and (5.6) indicates the segment limits and total demand limits of each load. Eqn.  (5.7), 

signifies that power generated by a generation unit is equal to the aggregated segment 

generation of that unit.  Eqn. (5.8) assures that the power generated at each segment by 

a generation unit does not violate the predefined lower and upper limits of generation in 

that segment. If committed, the total power generated by a dispatch-able unit shall lie 

within its lower and upper generation limits, as indicated by Eqn. (5.9). 

p𝑚𝑔𝑡 − p𝑚𝑔(𝑡−1) ≤ RU𝑚𝑔     ∀𝑔, ∀𝑚, ∀𝑡,                (5.10) 

p𝑚𝑔(𝑡−1) − p𝑚𝑔𝑡 ≤ RD𝑚𝑔     ∀𝑔, ∀𝑚,∀𝑡,                (5.11) 

0 ≤ 𝑠𝑢𝑚𝑔𝑡 ≤ |𝒯| 𝑖𝑚𝑔𝑡     ∀𝑔, ∀𝑚,∀𝑡,                     (5.12) 

                 (|𝒯| + 1)𝑖𝑚𝑔𝑡 − |𝒯| ≤ 𝑠𝑢𝑚𝑔𝑡 − 𝑠𝑢𝑚𝑔, 𝑡−1  ≤ 1     ∀𝑔, ∀𝑚, ∀𝑡, (5.13) 

𝑠𝑢𝑚𝑔𝑡 ≥ MUTG𝑚𝑔 𝑧𝑚𝑔,𝑡+1     ∀𝑔, ∀𝑚, ∀𝑡,              (5.14) 

0 ≤ 𝑠𝑑𝑚𝑔𝑡 ≤ |𝒯| (1 − 𝑖𝑚𝑔𝑡)     ∀𝑔, ∀𝑚,∀𝑡,             (5.15) 

      1 − (|𝒯| + 1)𝑖𝑚𝑔𝑡 ≤ 𝑠𝑑𝑚𝑔𝑡 − 𝑠𝑑𝑚𝑔,  𝑡−1 ≤ 1     ∀𝑔, ∀𝑚,∀𝑡, (5.16) 

𝑠𝑑𝑚𝑔𝑡 ≥ MDTG𝑚𝑔 𝑦𝑚𝑔,𝑡+1     ∀𝑔, ∀𝑚,∀𝑡,              (5.17) 

𝑖𝑚𝑔𝑡 − 𝑖𝑚𝑔𝑡−1 = 𝑦𝑚𝑔𝑡 − 𝑧𝑚𝑔𝑡     ∀𝑔, ∀𝑚, ∀𝑡,            (5.18)    

𝑦𝑚𝑔𝑡 + 𝑧𝑚𝑔𝑡 ≤ 1     ∀𝑔, ∀𝑚, ∀𝑡,                           (5.19) 

The ramp up and ramp down constraints of each individual generation unit is 

ensured by Eqns. (5.10) and (5.11). Furthermore, Eqns. (5.12) – (5.19) shows the MILP 
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formulation for minimum uptime and minimum down time constraints of the generation 

units. 

Emin𝑗𝑚𝑏𝑡 ≤ e𝑚𝑏𝑡 ≤ Emax𝑗𝑚𝑏𝑡     ∀𝑏, ∀𝑚, ∀𝑡,           (5.20) 

Cmin ≤ c𝑚𝑏𝑡 ≤ Cmax     ∀𝑏, ∀𝑚,∀𝑡,                     (5.21) 

c𝑚𝑏𝑡 = c𝑚𝑏(𝑡−1) − e𝑚𝑏𝑡     ∀𝑏, ∀𝑚, ∀𝑡,                   (5.22) 

0 ≤ 𝑑𝑐𝑚𝑏𝑡 ≤ |𝒯| 𝑗𝑚𝑏𝑡     ∀𝑏, ∀𝑚,∀𝑡,                     (5.23) 
       (|𝒯| + 1)𝑗𝑚𝑏𝑡 − |𝒯| ≤ 𝑑𝑐𝑚𝑏𝑡 − 𝑑𝑐𝑚𝑏,𝑡−1 ≤ 1     ∀𝑏, ∀𝑚, ∀𝑡, (5.24) 

𝑑𝑐𝑚𝑏𝑡 ≥ MDTB𝑚𝑏𝑢𝑚𝑏,𝑡+1     ∀𝑏, ∀𝑚, ∀𝑡,               (5.25) 

0 ≤ 𝑐𝑐𝑚𝑏𝑡 ≤ |𝒯| (1 − 𝑗𝑚𝑏𝑡)     ∀𝑏, ∀𝑚, ∀𝑡,              (5.26) 

    1 − (|𝒯| + 1)𝑗𝑚𝑏𝑡 ≤ 𝑐𝑐𝑚𝑏𝑡 − 𝑐𝑐𝑚𝑏,𝑡−1 ≤ 1     ∀𝑏, ∀𝑚,∀𝑡, (5.27) 

𝑐𝑐𝑚𝑏𝑡 ≥ MDTB𝑚𝑏𝑣𝑚𝑏,𝑡+1     ∀𝑏, ∀𝑚,∀𝑡,                (5.28) 

𝑗𝑚𝑏𝑡 − 𝑗𝑚𝑏𝑡−1 = 𝑣𝑚𝑏𝑡 − 𝑢𝑚𝑏𝑡     ∀𝑏, ∀𝑚, ∀𝑡,            (5.29) 

𝑢𝑚𝑏𝑡 + 𝑣𝑚𝑏𝑡 ≤ 1     ∀𝑏, ∀𝑚, ∀𝑡.                          (5.30) 

In order to increase the life expectancy of the BSS, minimum and maximum 

amount of energy withdrawal from these units are bounded by the given limits in Eqn. 

(5.20). Likewise, Eqn. (5.21) keeps the BSS safe from overcharging and deep discharging. 

Eqn. (5.22) indicates the BSSs’ charging state update. Consecutive minimum discharging 

and charging hours’ constraints of BSSs are represented by Eqns.  (5.23) – (5.30). 

5.3 Simulation Results  

The tabulated data in this section pertains to market participants bidding infor-

mation and serves as basis for the simulation reported. Table 5.1 shows each BSS unit 

bidding information submitted to the DSO.  The bidding information for each generator 

unit is summarized in Table 5.2 and the hourly WSM LMP and supply into the DSO 

market is shown in Table 5.3. Loads bidding information has been considered to vary at 

every timeslot and is provided in Appendix A.   
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Table 5.1: Bidding information of each BSS at each D-bus 

Bus Unit 
(Cmin, 
Cmax) 

(MWh) 

(Emin, 
Emax] 

(MWh/hr.) 

(MDTB, 
MCTB) 

(hr.) 

CB 
 ($/MWh) 

1 BSS1 (1 – 10) (0.4 – 2) (3 – 6) 35 
2 BSS1 (1 – 8) (0.4 – 2) (3 – 6) 33 
2 BSS2 (1 – 10) (0.4 – 2) (3 – 6) 36.5 
4 BSS1 (1 – 8) (0.4 – 2) (2 – 6) 34 

Table 5.2: Segment generation and unit price for each D-bus 

(Bus, 
Unit) 

(PX1
max, 

CX1) 
(MW,$) 

(PX2
max, 

CX2) 
(MW,$) 

(PX3
max, 

CX3) 
(MW,$) 

(RU,RD) 
(MW/h) 

(STC, 
SDC ($) 

(1,G1) (1.5, 36.7) (2.5, 39.3) (1, 42) (2.5, 2.5) (75, 60) 
(1,G2) (1.6, 34.8) (2, 37.8) (1.4, 40.5) (2.5, 2.5) (60, 60) 
(2,G1) (1.5, 30) (1.7, 33) (1.8, 39) (2.5, 2.5) (45, 54) 
(2,G2) (1.4, 36.9) (1.8,39.6) (1.8,43.8) (2.5, 2.5) (51, 45) 
(2,G3) (1, 34.5) (1.5, 36) (0.5, 39.6) (3, 3) (84, 45) 
(3,G1) (1.2, 29.4) (1.8, 30.6) (2, 34.5) (2.5, 2.5) (0, 0) 
(3,G2) (1.8, 32.1) (1.45, 32.6) (1.75, 34.5) (2.5, 2.5) (45, 51) 
(3,G3) (0.8, 35.7) (1.7, 37.5) (0.5, 40.5) (3, 3) (60, 48) 
(3,G4) (0.95, 36.3) (1.1, 37.5) (0.95, 40.5) (3, 3) (0 ,0) 
(4,G1) (1.9, 37.5) (1.7, 41.4) (1.4, 44.5) (2.5, 2.5) (10, 10) 

Table 5.3: Supply at the DSO bus from the ISO at the LMP 

                  LMP and ISO supply in 24hr scheduling horizon 
t 1 2 3 4 5 6 
LMP 22.07 24.83 24.83 23.45 24.83 24.83 
S𝑡 29.04 32.67 32.67 30.855 32.67 32.67 
t 7 8 9 10 11 12 
LMP 26.21 27.59 28.97 30.35 33.11 30.35 
S𝑡 34.485 36.3 38.115 39.93 43.56 39.93 
t 13 14 15 16 17 18 
LMP 27.59 26.21 26.48 25.38 27.04 30.35 
S𝑡 36.3 34.485 34.848 33.396 35.574 39.93 
t 19 20 21 22 23 24 
LMP 31.73 34.49 31.73 28.97 26.21 23.45 
S𝑡 41.475 45.375 41.745 38.115 34.485 30.855 
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The MILP model presented in Eqns. (5.1) – (5.30) is coded in GAMS and solved 

using CPLEX solver for 24-hour horizon. The simulation summarized in the upcoming 

figures present the validity of the theory in the model. Several sets of analysis were fur-

ther conducted to see the effect of LMP on the auction outcome. Simulation results indi-

cates that loads, generators and BSS are very responsive to changes in LMP at the DSO 

bus at a given amount of supply by the WSM. At low LMPs, more from the WSM is al-

located to loads due to high local generation bids. As the LMP increases, more internal 

generation at each D-bus is scheduled. A similar effect is observed on serving the price 

responsive loads. 

Figure 5.2 depicts LMP versus DSO’s supply allocation to each D-bus as a portion 

of the total committed schedule that it gets from WSM during 24h scheduling horizon. 

Notice that supply to each D-bus is very responsive to the changes in LMP.  When LMP 

is low, more power will start to flow to the loads from WSM. However, during peak LMP 

hours the power flow from DSO drops significantly, to the extent that D-bus number 

three feeds power back into the distribution network, i.e. other D-bus. This is because D-

bus 3 has more cheap generation and loads in other D-buses are ready to purchase at 

higher price than that of its own local loads.  

 

Figure 5.2: Hourly DSO supply to each D-bus vs. LMP.    
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Figure 5.3 shows LMP versus each D-buses’ internal generation. The internal 

generation at each D-bus increases with increase in LMP.  

 

 

Figure 5.4 shows total power demand equals the total supply, which consists of 

supply from the WSM, internal generation and supply from BSSs. Notice that the BSSs 

Figure 5.3: Hourly D-bus generation vs. LMP. 

Figure 5.4: Total demand and supply by the DSO, BSS and generators.     
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are scheduled only during peak LMP hours for at least three consecutive hours due to 

their minimum discharging time constraints.  

Figure 5.5 depicts the LMP values versus BSSs’ commitment considering its charg-

ing/discharging limits. Note that all BSSs are set to 6 hours of minimum charging and 

three minimum discharging hours except the minimum discharge time of BSS at D-bus 4. 

Note that the plot meets all the requirements set in the constraints in Eqns. (5.20) –

(5.30). BSSs are scheduled during high price hours with more power scheduled at peak 

LMPs than its neighboring hours. In addition, the sum of assigned energy during sched-

uling horizon does not exceed each BSSs capacity. 

 

The plot in Figure 5.6 shows scheduled behavior of the second BSS at D-bus 2 for 

two different DLMPs along with its declared selling price depicted with the horizontal 

line. As seen, the BSS is only scheduled when DLMP is higher than its bid. The scheduled 

amount of power withdrawal from this BSS is also higher where the difference between 

its bid and the DLMP is higher. A similar observation is made when generation units 

behavior were studied. 

In order to study the dynamics of DLMP versus LMP, Figure 5.7 and Figure 5.8 

were plotted. Figure 5.7 shows the DLMP behavior during the scheduling horizon for two  

Figure 5.5: Supply from BSSs as DLMP changes.   
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different set of LMPs. When LMP is low compared to the bids of the generators, loads 

and BSSs, DLMP deviates significantly and becomes higher than LMP. In the case when 

LMP increases, the DLMP also increases and overlaps with LMP in most hours. Note 

that further increase in LMP will cause DLMP to equal LMP in all hours. This is because 

at LMPs higher than the generator bids, all generators are scheduled to serve the fixed 

and or price responsive loads and serving any extra MWhr will incur a cost equal to LMP. 

Figure 5.8 illustrates this concept further by showing the 24-h LMP average for 10 sce-

narios by increasing the LMP with a fixed percentage at each scenario. As expected, at 

low LMPs the entire committed supply of the WSM is injected into the D-buses, whereas 

lower amounts are drawn when LMP increases. 

The simulation results reported here assumes that no penalty is incurred by the 

DSO for deviating from what was committed to ISO. The DSO’s objective function in 

Eqn. (5.1) can be modified by adding a penalty function 𝜙(𝛾) to account for penalty in-

curred due to any deviation from original commitment.  

𝜙(𝛾) = −𝛾 (∑  S𝑡
𝑡

− ∑ ∑  s𝑚𝑡
𝑚𝑡

)                     (5.31) 

  

Figure 5.6: Supply from the BSS at two different DLMPs. 
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Note that any deviation will not cause extra congestion in the WSM transmission system, 

as DSO will draw less power than what was originally committed due to constraint in 

Eqn. (5.2). To show the effect of applying penalty, the total deviation over the scheduling 

horizon from original commitment was plotted as a function of  𝛾 in Figure 5.9 for three 
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Figure 5.7: LMP versus DLMP for 24-hour horizon. 
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Figure 5.8: Average LMP vs DLMP and total supply to DSO.    
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different LMPs. Notice that for higher LMPs, a higher penalty is required to make the 

deviation zero. This means that if LMP is high, more internal generation at D-buses and 

BSSs will be committed, and it takes a higher penalty to force power injection from the 

WSM market in order to make the deviation zero. 

Budget dynamics of the 10 increasing LMP scenarios for a fixed supply S𝑡 from 

WSM, without any penalty applied (𝛾 = 0), is shown in Figure 5.10.  At lower LMPs, 

during scenarios one to five, the DSO makes money. It sells energy at higher DLMP while 

buying it at lower LMP. As the LMP is increased further, less power is purchased from 

the WSM and DLMP approaches LMP. As a result, the DSO’s revenue drops down to 

zero after the fifth scenario. Note that, if DSO is penalized for any deviation, it loses a 

monetary amount equal to 𝜙(𝛾) given by Eqn. (5.31). This is because deviation occurs at 

higher LMPs after scenario five when DSO’s revenue is zero with no penalty(𝛾 = 0). In 

such a scenario, the DSO has to bear the deviation cost 𝜙(𝛾). 
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Figure 5.9: Deviation from ISO supply vs penalty for three different LMPs, with  LMP1(t) <
LMP 2(t) < LMP 3(t). 
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5.4 Conclusions 

In this chapter, distribution system operator’s day−ahead market auction in the 

presence of distribution level conventional generation units, renewable energy resources 

coupled with BSSs, and loads with fixed and price responsive segments using MILP were 

modeled and studied. The DSO is considered to have prior agreement to purchase a fixed 

committed amount from the WSM. The DSO uses MILP to optimally schedule its avail-

able resources and maximize the SWF. By clearing the auction at DLMP, the dynamics 

of DLMP versus LMP and their effect on the outcome of the auction and the resulting 

payments were studied.  Simulation results shows that, if DSO is not penalized for devi-

ating from its committed schedule with the WSM, the auction is always weakly budget 

balanced. The DSO only makes money when LMP is cheaper at a given fixed supply from 

the ISO.  

  

Figure 5.10: Payments and reimbursements.   



101 

Conclusion and Future Work 

In this chapter, the research reported in chapters 2 to 5 are summarized and possible fu-

ture directions are suggested. Chapter-specific conclusions were presented earlier in their 

respective chapters. 

6.1 Conclusion 

This dissertation studies efficient energy distribution mechanisms in islanded and grid-

connected microgrids in the form of double auctions. An aggregator is assigned to each 

microgrid to implement price-heterogeneous or price-homogenous auctions among selfish 

buyers and sellers of energy with hidden information. Then, a bi-level auction imple-

mented by the DSO among aggregators in the form of linear programming, and by the 

aggregators among buyer and seller agents in the form of proportional allocation, is pro-

posed. In the DSO level auction, physical grid constraints such as node voltages and 

substation transformer capacity has been incorporated. The proposed bi-level auction 

mechanism is designed to be price-heterogeneous at the upper and price-homogenous in 

the lower level. Finally, a DSO level auction for multi-period day-ahead auction that 

includes supply from wholesale market, battery storage units, conventional generators, 

and price responsive loads has been proposed. The proposed multi-period double auction 

is modeled to maximize SW and is modeled as a mixed-integer linear programming in 

order to perform unit commitment and account for inter-temporal constraints. Key fea-

tures of the research done in this dissertation are summarized next. 

 Traditional single-sided efficient resource auctions were extended to efficient price 

heterogeneous and price-homogenous double-sided auctions in microgrids with energy be-

ing the resource under trade. Both auctions were designed under the assumption that 

agents’ utility functions remain hidden from the auctioneer, i.e. aggregator. Weak and 

strongly budget balance cases were studied by imposing it as constraint in the price-

heterogeneous auction and by levying a surcharge in the case of price-homogenous auction. 
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With agents bidding strategically, equilibrium conditions were exploited. A possible 

way that the agents can exercise market power by strategic bidding, i.e. price anticipation, 

and influence the market price was explored. Agents market powers were quantified in 

terms of their bids and the loss in efficiency due to strategic bidding was investigated. A 

novel approach to mitigate the loss in efficiency in terms of virtual bidding was proposed.  

   Next, the case where microgrids are connected to the distribution system has been 

investigated. The DSO has been considered to distribute its fixed committed energy from 

the wholesale market to aggregators serving individual microgrids in which PV equipped 

sellers and buyers reside. The mechanism was formulated in terms of a bi-level auction, 

with upper and lower levels being DLA and ALA, which aims to maximize global SW. 

The problem was decomposed into a master and a sub-problem.  The DLA was shown to 

be a linear programming that solves the master problem subject to physical distribution 

grid constraints. The sub-problem was solved using ALA with the help of virtual bidding 

in order to exercise price taking. It was shown that the proposed bi-level auction algorithm 

achieves global efficient solution and maximizes global SW. 

 Finally, a multi-period DSO auction implemented among RES-charged BSSs, con-

ventional generators, and price responsive loads was proposed. The DSO’s goal in this 

case is to implement a centralized social surplus maximizing auction at the presence of 

bids and asks of the participating agents and its commitment with the wholesale market 

at LMP. It does so by running a price based unit commitment and schedules the least 

cost generators and BSSs while serving high value loads. The market is cleared at each 

distribution bus DLMP. The dynamics of DLMP versus LMP under the cases when DSO 

deviates from its commitment due to cheaper local generation were analyzed.  

6.2 Future Work 

A major portion of the research reported in this dissertation is for single-period efficient 

energy distribution auctions. Chapters 2 and 3 discuss more theory and mechanism design 

aspects of these efficient energy auctions while chapters 4 includes theory as well as its 

application in distribution grid with physical constraints. With chapter 4 being single-
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period, chapter 5 provides a preliminary study towards multi-period auctions including 

units with temporal constraints. Thus, the following research directions and extensions 

are proposed in different aspects of the research provided in each chapter. 

 Extension of the efficient bi-level auction algorithm proposed in chapter 4 to multi-

period efficient auction with battery storage units, conventional generators, and price 

responsive loads in the DSO and aggregator levels is a tempting research direction one 

can take. This would make the problem similar to a decentralized unit commitment prob-

lem. A few recent research papers that try to address the problem of decentralized unit 

commitment each with specific methods of its own are reported in [116], [117], [118]. None 

of these papers takes physical system constraints such as distribution node voltages into 

account, which makes the problem more realistic for distribution system. Future studies 

can also be carried out to model the multi-period auction in a game theoretic setting and 

investigate general market equilibrium conditions [89].  

 In energy auctions, typically, the distribution nodal prices, i.e. DLMPs are given 

by the Lagrange multipliers of the energy balance constraints that is solved by the central 

operator, i.e. DSO [112]. A constraint violation adds up to the nodal price, resulting to 

different nodal price than what is on the substation node. With further penetration of 

RES based units into the distribution system and the emergence of price responsive ag-

gregators, a theoretical analysis of nodal pricing that would take into account all physical 

grid constraints are missing in the literature and is another line of research for those who 

are interested in theoretical analysis. Few attempts in this line of research are published 

in [119], [120], [114], [121]. Considering the nonlinear nature of AC optimal power flow 

(ACOPF), one possible way to model the physical constraints is the use of simplified 

DistFlow equations [93], [94] that can be set as linear constraints to the DSO’s optimiza-

tion problem.  

 There are several ways that learning algorithms can be implemented in DLA and 

ALA auctions reported in chapter 2 - 5 by using machine learning and artificial intelli-

gence. Supervised machine learning algorithms [122] to estimate the bid prices and 

amounts from historical bidding and web weather data can either reduce or eliminate the 
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computations involved during auction. Self-organization and distributed clustering algo-

rithms [123], [124] can be used to study coalition formation. Reinforcement learning [125] 

can be utilized to dynamically schedule battery storage units and conventional generators. 

 Cooperative agent strategies that was briefly addressed in chapter 2 in the context 

of fair redistribution can be investigated further [126], [127], [128]. The existing body of 

literature on cooperative game theory can be utilized to investigate cooperative behavior 

within domestic units for better utilization of available resources (e.g. to increase SW) by 

aggregators so that a set of domestic units form a stable coalition.   

Dynamic game theory can be used to examine energy distribution using Stackelberg 

game [129], [130], [35]. Recent theoretical research have studied inverse Stackelberg game 

where the upper level agent elicit desired behavior among lower level agent [131], [132]. 
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Appendix A - Tables 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

{1,1,1} 25.7 33.5 31.2 29.9 25.7 25.7 34.6 25.6 30.6 35.4 35.9 44.2 33.6 27.2 25.9 27.9 30.9 43.0 34.8 35.5 37.7 30.3 28.7 31.9
{1,1,2} 24.7 29.1 28.3 29.0 23.6 22.1 33.4 24.2 29.1 29.9 34.3 39.6 32.5 25.4 25.3 24.4 26.8 39.7 32.2 31.7 33.8 26.2 24.9 26.3
{1,2,1} 25.9 32.4 28.8 35.8 31.7 35.4 36.6 28.5 31.2 40.0 34.2 43.0 32.0 30.9 30.1 26.2 35.8 36.8 37.2 42.0 37.3 34.4 31.5 24.8
{1,2,2} 23.0 28.5 25.5 31.9 28.4 31.1 33.4 22.5 29.9 39.4 33.5 42.6 29.6 28.2 27.9 21.6 32.1 32.2 31.6 36.2 36.2 33.5 27.4 24.3
{1,3,1} 24.0 33.5 32.1 28.0 24.8 30.6 29.0 36.5 33.0 42.0 40.0 36.0 31.4 24.5 32.8 35.1 35.7 40.7 33.2 46.0 33.9 37.0 26.7 32.6
{1,3,2} 22.0 31.0 30.4 26.8 19.9 28.0 23.7 34.1 28.4 39.6 35.1 31.4 29.1 23.2 28.1 29.4 33.7 36.7 30.6 41.0 29.3 36.0 21.5 26.6
{1,4,1} 29.6 30.4 27.8 30.2 33.2 26.3 29.0 30.7 28.4 40.6 37.3 36.4 37.1 32.8 35.9 35.8 34.1 33.6 35.7 49.5 35.8 35.1 34.8 28.6
{1,4,2} 26.1 25.5 22.5 24.3 33.2 21.1 25.3 24.8 25.2 37.7 32.5 35.0 34.1 27.4 32.4 30.7 29.6 30.1 34.2 45.5 35.3 31.4 30.8 24.3
{1,5,1} 30.4 23.3 34.7 24.7 35.6 27.4 33.8 30.4 33.7 33.2 39.3 44.8 39.0 23.7 35.1 28.1 32.7 33.3 45.2 44.5 44.5 31.7 38.4 26.8
{1,5,2} 27.5 19.4 28.6 23.8 26.9 25.0 34.0 31.0 29.9 31.1 34.0 38.4 34.6 24.5 35.4 22.0 30.4 32.5 38.2 44.4 45.1 30.5 38.6 22.7
{2,1,1} 21.8 27.9 32.1 27.7 31.1 28.7 30.1 25.8 36.0 37.6 43.1 41.2 30.8 31.1 33.5 37.5 25.7 36.7 41.8 43.2 40.1 39.3 37.5 30.3
{2,1,2} 18.4 22.8 30.0 25.0 30.8 27.6 26.2 23.8 30.6 36.9 37.2 38.0 26.6 25.2 31.7 35.0 22.9 32.1 36.8 42.6 39.1 37.2 37.1 27.2
{2,2,1} 30.8 34.7 32.4 30.8 23.8 24.5 29.1 35.8 35.6 30.7 41.7 43.5 29.4 34.0 37.1 33.3 35.0 43.9 35.0 39.6 38.2 43.3 32.3 31.4
{2,2,2} 30.2 32.9 29.7 30.2 17.8 22.5 27.3 35.4 33.8 30.4 38.7 38.9 25.6 33.5 36.7 28.6 29.6 40.7 34.3 34.6 36.2 41.6 27.8 31.4
{2,3,1} 24.9 34.5 34.5 31.7 26.5 25.6 28.0 35.2 33.4 39.0 38.2 43.3 29.4 36.3 32.8 27.4 31.6 44.2 33.3 39.1 36.6 34.1 30.7 32.9
{2,3,2} 24.5 34.0 29.7 26.0 22.4 24.8 23.7 34.5 32.7 35.2 36.3 39.4 24.9 32.8 28.3 26.0 27.2 38.4 28.1 38.6 34.4 31.9 26.6 29.3
{2,4,1} 24.2 30.3 27.6 26.8 26.3 32.9 28.4 32.6 38.5 30.8 36.2 38.4 30.1 32.8 36.6 34.4 32.7 42.6 35.2 48.4 44.4 37.4 36.0 28.0
{2,4,2} 18.4 27.7 23.5 22.3 23.7 29.0 27.8 27.0 37.4 29.2 31.4 35.5 25.5 30.5 35.0 34.1 28.7 40.0 32.5 44.8 44.0 35.5 31.4 23.8
{2,5,1} 30.6 26.8 33.0 34.6 25.3 23.0 30.9 37.8 40.4 37.2 41.7 42.0 34.5 31.1 37.2 36.8 36.1 40.2 41.4 43.8 41.4 36.8 27.5 35.4
{2,5,2} 29.3 26.4 27.5 30.4 21.9 21.1 29.9 34.1 34.4 36.2 40.1 39.6 34.0 27.0 34.8 30.9 33.7 36.5 40.4 41.5 40.4 32.2 22.3 33.3
{3,1,1} 28.7 28.1 32.6 28.2 25.3 33.7 36.1 40.4 41.1 36.3 30.8 31.3 33.9 25.0 40.4 35.2 35.0 39.9 42.6 35.2 30.8 26.0 33.1 26.3
{3,1,2} 24.2 23.7 28.2 27.5 21.2 30.9 34.8 39.8 36.2 35.2 29.8 27.3 28.5 21.9 36.2 34.2 29.3 36.7 38.6 35.0 26.0 21.5 32.3 23.1
{3,2,1} 31.4 26.8 35.0 26.5 31.6 27.8 31.8 25.9 29.5 36.3 40.2 38.0 37.2 28.1 32.2 32.1 26.2 37.2 39.9 36.5 34.0 32.9 34.4 31.5
{3,2,2} 29.1 21.9 33.1 21.6 26.9 22.7 28.7 22.1 23.8 33.7 39.8 32.8 33.4 26.0 26.2 30.7 22.3 33.6 37.6 35.6 33.9 30.4 33.3 27.1
{3,3,1} 22.2 33.3 28.4 31.4 25.9 24.4 32.9 31.1 42.1 35.5 48.5 41.2 34.9 39.1 26.7 27.5 28.9 41.8 36.1 45.0 30.6 31.5 26.4 26.5
{3,3,2} 19.9 29.6 24.9 28.2 24.2 22.9 30.2 29.7 37.2 29.6 48.3 38.0 34.4 34.2 20.7 27.1 23.3 41.7 32.0 40.3 27.4 26.2 21.0 22.8
{4,1,1} 29.0 27.5 36.6 35.0 36.0 30.3 24.9 30.5 40.9 35.2 37.6 36.9 28.5 28.3 35.3 30.3 39.9 32.3 41.7 46.9 40.8 38.1 30.1 29.3
{4,1,2} 25.7 24.0 33.5 34.5 31.6 24.3 22.7 24.7 38.8 29.9 34.8 34.4 27.2 27.6 33.5 25.9 35.2 28.2 41.6 41.9 35.3 33.5 29.9 27.0
{4,2,1} 19.4 23.3 36.7 26.4 31.4 30.7 30.2 29.6 38.0 29.2 41.3 31.9 33.6 32.9 31.9 28.5 38.3 39.0 35.2 49.1 44.0 32.7 28.0 27.8
{4,2,2} 17.4 22.0 33.6 20.9 27.6 30.1 27.8 29.2 35.0 26.6 35.3 27.1 30.7 27.6 31.0 26.1 32.7 33.5 30.9 45.3 41.9 27.1 27.3 23.4
{4,3,1} 28.9 29.2 30.8 20.6 31.8 26.5 29.4 31.9 38.5 38.8 40.1 42.3 30.7 35.3 33.3 28.2 32.7 40.5 35.3 43.7 32.1 32.1 29.6 28.8
{4,3,2} 27.2 27.8 26.5 16.8 28.2 22.5 29.2 29.8 35.8 37.4 35.8 37.2 29.0 30.9 32.5 23.2 31.9 37.0 33.1 38.9 29.1 29.2 24.3 26.6

{D-bus,
load,
seg}

load bids for 24-hours for their price responsive segments
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

{1.1.1} 2.4 2.7 2.7 2.6 2.7 2.7 2.9 3.1 3.2 3.4 3.7 3.4 3.1 2.9 2.9 2.8 3 3.4 3.5 3.8 3.5 3.2 2.9 2.6
{1.1.2} 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.9 1 1 1.1 1 0.9 0.9 0.9 0.8 0.9 1 1.1 1.1 1.1 1 0.9 0.8
{1.1.3} 0.9 1 1 0.9 1 1 1 1.1 1.1 1.2 1.3 1.2 1.1 1 1 1 1 1.2 1.2 1.3 1.2 1.1 1 0.9
{1.2.1} 3.1 3.3 3.5 3.7 3.5 3.3 3.6 3.7 4.3 4.3 4.4 4.6 4 3.6 3.7 3.4 3.9 4.2 4.9 4.9 4.5 4.2 3.6 3.2
{1.2.2} 0.8 0.8 0.9 0.9 0.9 0.8 0.9 0.9 1.1 1.1 1.1 1.2 1 0.9 0.9 0.8 1 1.1 1.2 1.2 1.1 1.1 0.9 0.8
{1.2.3} 1.4 1.5 1.6 1.7 1.6 1.5 1.6 1.7 1.9 1.9 2 2.1 1.8 1.6 1.7 1.5 1.8 1.9 2.2 2.2 2 1.9 1.6 1.4
{1.3.1} 0.1 0.3 0.2 0 0.2 0.2 0.2 0.1 0.2 0.4 0.1 0.1 0.2 0.3 0.1 0 0.3 0.2 0.3 0.4 0 0.2 0.1 0.1
{1.3.2} 1.9 1.6 1.4 2.1 1.6 1.6 2.2 1.7 1.4 1.7 1.4 2 1.5 1.4 1.7 1.3 1.8 1.8 2.2 1.8 1.7 1.7 2.1 1.5
{1.3.3} 1.5 1.5 1.9 1.4 1.8 1.3 1.4 1.9 1.9 1.9 1.2 1.8 1.6 1.2 1.2 1.1 2 1.8 1 2 1.8 1.9 1.7 1.7
{1.4.1} 1.6 1.4 1.6 1.6 1.3 1.3 1.9 1.5 2.2 1.9 1.7 1.8 1.4 1.6 1.5 2 1.6 1.8 1.6 2.1 1.9 2 1.8 1.2
{1.4.2} 1.1 1 1.1 1.1 0.9 0.9 1.3 1 1.6 1.3 1.2 1.3 1 1.1 1.1 1.4 1.1 1.3 1.1 1.5 1.4 1.4 1.3 0.9
{1.4.3} 1.2 1 1.2 1.2 0.9 1 1.4 1.1 1.7 1.4 1.3 1.4 1.1 1.2 1.1 1.5 1.2 1.3 1.2 1.6 1.5 1.5 1.4 0.9
{1.5.1} 4.5 5.5 5.4 5.3 5.2 5.1 5.6 5.8 6.6 6.5 7.6 6.4 5.9 5.5 5.8 5.7 5.5 6.7 7.1 7.3 7.2 6.1 5.7 5.4
{1.5.2} 3.6 4.4 4.3 4.3 4.1 4.1 4.5 4.7 5.3 5.2 6.1 5.1 4.8 4.4 4.7 4.5 4.4 5.4 5.7 5.9 5.7 4.9 4.5 4.3
{1.5.3} 3.4 4.1 4 4 3.9 3.8 4.2 4.4 4.9 4.8 5.7 4.8 4.5 4.1 4.4 4.2 4.2 5.1 5.3 5.5 5.4 4.6 4.2 4
{2.1.1} 1.7 1.7 1.7 1.9 2.1 2.1 2.3 2.1 1.7 2.4 2.6 2.6 1.8 2 2.1 1.8 2.3 2.5 2.4 2.2 2.6 2.1 2.3 1.4
{2.1.2} 1.1 1.1 1.1 1.3 1.4 1.3 1.5 1.4 1.1 1.6 1.7 1.7 1.2 1.3 1.4 1.1 1.5 1.6 1.5 1.5 1.7 1.4 1.5 0.9
{2.1.3} 1.3 1.3 1.3 1.5 1.6 1.5 1.7 1.6 1.3 1.8 2 2 1.3 1.5 1.6 1.3 1.7 1.9 1.8 1.7 1.9 1.6 1.7 1
{2.2.1} 3.2 3.7 3.4 3.5 3.5 3.7 3.7 3.8 4.1 4.5 4.8 4.8 3.9 3.7 3.7 3.8 4.3 4.3 4.3 5 4.3 4.6 3.5 3.7
{2.2.2} 1.6 1.8 1.7 1.7 1.8 1.9 1.8 1.9 2.1 2.2 2.4 2.4 1.9 1.9 1.8 1.9 2.1 2.1 2.2 2.5 2.2 2.3 1.7 1.8
{2.2.3} 1.9 2.2 2 2.1 2.1 2.2 2.2 2.3 2.5 2.7 2.9 2.9 2.3 2.2 2.2 2.3 2.6 2.6 2.6 3 2.6 2.7 2.1 2.2
{2.3.1} 1 0.8 1 0.7 1 1.2 0.7 1.2 0.9 1.1 0.9 0.8 1 0.9 1 0.8 1.3 1.1 1.1 1.1 0.9 1.2 0.7 1
{2.3.2} 2 1.5 2.1 1.5 1.6 1.7 1.5 2 2.1 1.9 1.9 1.7 1.5 1.9 1.9 2 1.3 1.5 1.8 1.2 1.4 1.5 1.9 1.6
{2.3.3} 1.7 1.5 2 1.4 2.4 2.3 2.2 2.1 1.5 2.2 2.2 2.3 2 1.8 2.3 2.1 1.8 1.6 2 1.7 2.1 2.2 1.4 2.2
{2.4.1} 6.4 6.3 6.1 6.5 6.3 6.1 6.5 6.2 6.3 6.2 6.7 6.3 6.4 6.1 6.2 6.6 6.7 6.4 6.6 6.4 6.4 6.2 6.6 6.2
{2.4.2} 4.8 4.7 4.6 4.9 4.7 4.6 4.9 4.6 4.7 4.6 5 4.7 4.8 4.6 4.7 5 5 4.8 5 4.8 4.8 4.6 4.9 4.6
{2.4.3} 4.4 4.3 4.2 4.5 4.4 4.2 4.5 4.2 4.3 4.2 4.6 4.3 4.4 4.2 4.3 4.6 4.6 4.4 4.6 4.4 4.4 4.3 4.5 4.3
{2.5.1} 3.1 3.1 3.3 3.2 2.9 3.2 3.4 3.3 3.3 2.9 3.5 3.4 3.5 3.2 3.4 3.3 3.2 3.4 3.3 3.1 3.1 3.1 3.4 3.1
{2.5.2} 1.7 1.7 1.8 1.8 1.6 1.8 1.9 1.8 1.8 1.6 1.9 1.8 1.9 1.7 1.9 1.8 1.7 1.9 1.8 1.7 1.7 1.7 1.9 1.7
{2.5.3} 1.1 1.1 1.1 1.1 1 1.1 1.2 1.1 1.2 1 1.2 1.2 1.2 1.1 1.2 1.1 1.1 1.2 1.2 1.1 1.1 1.1 1.2 1.1
{3.1.1} 1 0.9 1.3 0.9 1.1 1.1 0.8 1.2 1.1 1.6 1.9 1.2 1.4 1.4 1.4 1.1 0.8 1.1 1 1.6 1.4 1.6 1.5 0.9
{3.1.2} 2.1 2.1 2.4 1.8 1.9 2.6 1.7 2 2.1 1.9 1.6 1.9 2.7 1.9 2.1 2.5 2.2 2 2.5 1.7 2.6 2.3 2.2 2.4
{3.1.3} 2.6 2.1 2 2.4 1.9 2.3 2.4 2.4 2.3 2.3 2.1 1.8 1.9 2.7 2.4 2.1 2.5 2.3 2.3 2 2.4 2.1 2 2.3
{3.2.1} 3.8 3.6 3.3 3.6 3.6 3.3 3.6 3.7 3.4 3.8 3.4 3.8 3.8 3.8 3.5 3.7 3.9 3.5 3.3 3.9 3.3 3.4 3.5 3.6
{3.2.2} 1.9 1.8 1.7 1.8 1.8 1.6 1.8 1.9 1.7 1.9 1.7 1.9 1.9 1.9 1.7 1.9 1.9 1.7 1.7 1.9 1.6 1.7 1.8 1.8
{3.2.3} 1.5 1.4 1.3 1.4 1.4 1.3 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.6 1.4 1.3 1.5 1.3 1.3 1.4 1.4
{3.3.1} 1 1.5 1.3 1.3 1.3 1.1 1.2 1.1 1.2 1.6 1 1.2 1.2 1.6 1.5 1.6 1.4 1.5 1.2 1.5 1.5 1.3 1.5 1.4
{3.3.2} 0.4 0.5 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.6 0.3 0.4 0.4 0.6 0.5 0.6 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.5
{3.3.3} 0.6 0.9 0.8 0.8 0.8 0.6 0.7 0.6 0.7 1 0.6 0.7 0.7 0.9 0.9 1 0.8 0.9 0.7 0.9 0.9 0.8 0.9 0.8
{4.1.1} 3.3 3.4 3.8 3.1 3.3 3.7 3.9 3.6 3.9 4.4 5.2 4.4 4 4 3.8 3.6 4.2 4.5 4.9 4.7 4.7 4.5 3.8 3.4
{4.1.2} 2.1 2.2 2.5 2 2.1 2.4 2.5 2.4 2.5 2.9 3.4 2.8 2.6 2.6 2.5 2.3 2.7 2.9 3.2 3 3 2.9 2.5 2.2
{4.1.3} 1.3 1.4 1.5 1.3 1.3 1.5 1.6 1.5 1.5 1.8 2.1 1.7 1.6 1.6 1.5 1.4 1.7 1.8 2 1.9 1.9 1.8 1.5 1.4
{4.2.1} 1.9 2 1.8 2.2 2.1 1.8 2.1 1.8 2 2 1.9 2 2.1 1.7 1.7 2.1 1.9 1.9 1.6 1.8 2.2 2.2 2 1.9
{4.2.2} 1.1 1.2 1.1 1.3 1.3 1.1 1.3 1.1 1.2 1.2 1.1 1.2 1.2 1 1 1.3 1.1 1.2 1 1.1 1.3 1.3 1.2 1.2
{4.2.3} 0.9 1 0.9 1.1 1 0.9 1.1 0.9 1 1 0.9 1 1 0.8 0.8 1.1 1 1 0.8 0.9 1.1 1.1 1 1
{4.3.1} 0.2 0.4 0 0.4 0.4 0.1 0.2 0.5 0.4 0.4 0 0.1 0.2 0.3 0.6 0.6 0.6 0.6 0.4 0.5 0.5 0.1 0.6 0.4
{4.3.2} 0.3 0.5 0 0.5 0.6 0.1 0.2 0.8 0.6 0.6 0 0.1 0.3 0.4 0.8 0.8 0.9 0.8 0.5 0.7 0.7 0.1 0.8 0.6
{4.3.3} 0.4 0.7 0.1 0.8 0.8 0.2 0.3 1.1 0.8 0.8 0 0.2 0.4 0.5 1.1 1.2 1.2 1.2 0.8 1 1 0.1 1.2 0.8

{D-bus,
load,
seg}

load amount for 24-hours for their fixed and two price responsive segments
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Appendix B - Nomenclature 

Notation for Chapter 2 

Abbreviations  

SW  Social Welfare 

AOP  Aggregator Optimization Problem 

SWOP SW Optimization Problem 

FROP  Fair Redistribution Optimization Problem 

KKT  Karush-Kuhn-Tucker 

RHS  Right Hand Side 

LHS  Left Hand Side 

Nomenclature 

𝒟  Set of buyer agents 

𝒮  Set of seller agents 

𝑁𝑏       Number of buyer agents, where 𝑁𝑏 = |𝒟| 

𝑁𝑠       Number of seller agents, where 𝑁𝑠 = |𝒮| 

𝑖  Index of a buyer, where 𝑖 ∈ 𝒟 

𝑗  Index of a seller, where 𝑗 ∈ 𝒮 

𝑢𝑖     Utility function of the 𝑖𝑡ℎ  buyer 

𝑢𝑖
′  Marginal utility of the 𝑖𝑡ℎ  buyer 

𝑔𝑗  Generation capacity of the 𝑗𝑡ℎ seller 

𝑣𝑗  Utility function of the 𝑗𝑡ℎ  seller 

𝑣𝑗
′  Marginal utility of the 𝑗𝑡ℎ  seller 

𝑑𝑖  Demand delivered to the 𝑖th buyer 

𝑏𝑖  Buying price bid placed by the 𝑖th buyer 

𝑐𝑖  Buying per unit price payed by the 𝑖th buyer 
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𝑎𝑗  Availability declared by 𝑗th seller 

𝑠𝑗  Supply amount assigned to the 𝑗th seller 

𝑐𝑗  Minimum per unit selling price by the 𝑗th seller 

𝑝  The minimum per unit buying and maximum per unit selling price of energy 

Θ  SWOP objective function 

ℒΘ    Lagrangian of SWOP  

𝜆𝑖         Dual variable in ℒΘ, corresponding to 𝑝𝑑𝑖 ≤ 𝑏𝑖 

𝛼𝑗         Dual variable in ℒΘ, corresponding to 𝑠𝑗 < 𝑎𝑗 

𝜇          Dual variable in ℒΘ, corresponding to ∑ 𝑑𝑖𝑖∈𝒟 = ∑ 𝑠𝑗𝑗∈𝒮  

𝑑𝑖
∗  𝑑𝑖 at equilibrium as the efficient solution of SWOP 

𝑠𝑗
∗  𝑠𝑗 at equilibrium as the efficient solution of SWOP 

𝜆𝑖
∗        𝜆𝑖 at equilibrium in SWOP 

𝛼𝑗
∗       𝛼𝑗 at equilibrium in SWOP 

𝜇∗        𝜇 at equilibrium in SWOP 

Φ  AOP objective function 

ℒΦ       Lagrangian of AOP 

𝛾𝑖         Dual variable in ℒΦ, corresponding to 𝑝𝑑𝑖 ≤ 𝑏𝑖 

𝛽𝑗         Dual variable in ℒΦ, corresponding to 𝑠𝑗 < 𝑎𝑗 

𝜈          Dual variable in ℒΦ, corresponding to ∑ 𝑑𝑖𝑖∈𝒟 = ∑ 𝑠𝑗𝑗∈𝒮  

𝑑𝑖
†   𝑑𝑖 at equilibrium as the solution of AOP 

𝑠𝑗
†  𝑠𝑗 at equilibrium as the solution of AOP 

𝛾𝑖
†       𝛾𝑖 at equilibrium in AOP 

𝛽𝑗
†       𝛽𝑗 at equilibrium in AOP 

𝜈†      𝜈  at equilibrium in AOP 

𝜁   Dual variable of constraint 𝑠𝑗 ≥ 0 in seller’s problem 

𝜋𝑖       Buyer’s payoff from the auction 

𝜋𝑗      Seller’s payoff from the auction 

𝜋𝑎𝑔𝑔  Aggregator’s benefit 
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𝐹           Fairness term function 

𝜂         Fairness term coefficient 

ℒWF     Lagrangian of FROP 

𝑠𝑗
𝑟  The sellers’ redistributed supply 

𝑆  Sum of the redistributed supply of all sellers 

𝑅        Total sellers’ revenue 

𝑐𝑗
𝑟       The sellers’ redistributed selling price 

𝛽𝑗
𝑟       Dual variable in ℒWF for 𝑠𝑗

𝑟 ≤ 𝑎𝑗 

𝜈𝑟        Dual variable in ℒWF for ∑ 𝑠𝑗
𝑟 = 𝑆𝑗∈𝒮  

𝐾  Solution constant for FROP 

𝜅𝐹        Price of fairness  
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Notation for Chapter 3  

Abbreviations  

SW  Social Welfare 

PT  Price Taking 

PA  Price Anticipation 

RHS  Right Hand Side 

LHS  Left Hand Side 

Nomenclature 

Θ  Network model representation 

𝒟  Set of buyer agents 

𝒮  Set of seller agents 

𝑁𝐵  Number of buyer agents, where 𝑁𝐵 = |𝐷| 

𝑁𝑆  Number of seller agents, where 𝑁𝑆 = |𝒮| 

𝑖  Index of a buyer, where 𝑖 ∈ 𝒟 

𝑗  Index of a seller, where 𝑗 ∈ 𝒮 

𝑘  Index of iteration 

𝑢𝑖   Utility function of the 𝑖𝑡ℎ  buyer 

𝑢𝑖
′  Marginal utility of the 𝑖𝑡ℎ  buyer 

𝑔𝑗  Generation capacity of the 𝑗𝑡ℎ seller 

𝑣𝑗  Utility function of the 𝑗𝑡ℎ  seller 

𝑣𝑗
′  Marginal Utility of the 𝑗𝑡ℎ  seller 

𝒜  A set representing the aggregator parameters 

𝑑𝑖  Demand delivered to the 𝑖th buyer 

𝑏𝑖  Buying price bid placed by the 𝑖th buyer 

𝑏0  Buying price bid placed by the virtual agent 

𝑎𝑗  Availability declared by 𝑗th seller 

𝑎0  Availability declared by the virtual agent 
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𝑝  The per unit market price of energy 

𝑝𝑠  Per unit surcharge price by the aggregator 

𝑎𝑗
∘  Solution to seller 𝑗’s problem for availability corresponding to price p   

𝛽𝑖  Market power of the 𝑖𝑡ℎ  buyer 

𝛼𝑗  Market power of the 𝑗𝑡ℎ  seller 

𝜋𝑖  Equivalent utility function of the 𝑖𝑡ℎ  buyer under price anticipation 

𝜋𝑗  Equivalent utility function of the 𝑗𝑡ℎ  seller under price anticipation 

Π  SW maximization problem objective function under price anticipation 

𝑑𝑖
†  SW maximizing solution under price anticipation for the 𝑖th buyer 

𝑎𝑗
†  SW maximizing solution under price anticipation for the 𝑗th seller 

𝑈†  SW attained under price anticipation 

𝑑𝑖
∗  Efficient (price taking) solution for the 𝑖th buyer 

𝑎𝑗
∗  Efficient (price taking) solution for the 𝑗th seller 

𝑈∗  Maximum attainable SW corresponding to the efficient solution. 

𝑝∗  The market price under equilibrium 

𝑝𝑠
OPT  Optimal per unit surcharge price by the aggregator 

𝐷  Aggregate demand function 

𝐴  Aggregate availability function 

𝐿Θ  Loss in efficiency 

𝑅  Aggregator revenue function 

Ω  SW maximization objective function with aggregator surcharge 𝑝𝑠 

𝐵  Sum of bids of all the buyers. 

ℒ𝑆  Lagrangian corresponding to the seller’s optimization problem 

𝜌𝑗  Dual variable in ℒ𝑆 corresponding to the constraint 𝑎𝑗 < 𝑔𝑗 in SOP 

ℒΠ  Lagrangian of SW maximization problem under PA 

ℒU  Lagrangian of SW maximization problem under PT 

ℒΩ  Lagrangian of SW maximization problem under PT with surcharge 

𝜆𝑗  Dual variable in ℒΠ, ℒU and ℒΩ corresponding to constraint 𝑎𝑗 < 𝑔𝑗 

𝜇  Dual variable in ℒΠ,ℒU,and ℒΩ corresponding to constraint ∑ 𝑎𝑗𝑗 = ∑ 𝑑𝑖𝑖  
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Notation for Chapter 4  

Abbreviations 

DSO  Distribution System Operator 

RES  Renewable Energy Resources 

ALA  Aggregator Level Auction 

DLA   DSO Level Auction 

PU  Per Unit 

DSWOP DSO SW Optimization Problem 

LM  Lagrange Multiplier 

RHS  Right Hand Side 

LHS  Left Hand Side 

Nomenclature 

𝒩  Set of nodes, excluding root 

𝑁   Number of distribution nodes, where 𝑁 = |𝒩| 

𝒜  Set of nodes with aggregators  

𝐴  Number of aggregators, where 𝐴 = |𝒜|  

𝛿  Maximum allowable PU voltage deviation 

𝑃0  PU active power from root, i.e. substation 

𝑄0  PU reactive power from root 

𝑉0  PU voltage at root 

𝑘, 𝑙  The 𝑘th, 𝑙𝑡ℎ nodes 𝑘, 𝑙 ∈ 𝒩 

𝒟(𝑘)   Set of downstream nodes of node 𝑘  

अሺ𝑘ሻ  Index of immediate upstream node of node 𝑘 

𝒰(𝑘)  Index of all upstream nodes of node 𝑘, 𝑘 ∈ 𝒰(𝑘) 

𝑟𝑘  PU resistance of line (अ(𝑘), 𝑘) 

𝑥𝑘  PU reactance of line (अ(𝑘), 𝑘) 

𝑝𝑘  PU active power injected into node 𝑘 
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𝑞𝑘  PU reactive power injected into node 𝑘 

𝑃𝑘  PU active power flowing through line (अ(𝑘), 𝑘) 

𝑄𝑘  PU reactive power flowing through line(अ(𝑘), 𝑘) 

Δ𝑉𝑘  PU voltage drop through line(अ(𝑘), 𝑘) 

𝑉𝑘  PU voltage at node 𝑘 

𝑐𝑘  The per unit price of node 𝑘 when 𝑘 ∈ 𝒜 

𝒩𝐵
𝑘   Set of buyers at node 𝑘, 𝑘 ∈ 𝒜 

𝒩𝑆
𝑘   Set of sellers at node 𝑘 

𝑖  The 𝑖th buyer 

𝑗  The 𝑗th seller 

𝑔𝑗
𝑘  The maximum supply in KW-hr from the 𝑗th seller 

𝑑𝑖
𝑘  The demand in KW-hr delivered to the 𝑖th buyer 

𝑠𝑗
𝑘  The supply availability in KW-hr by the 𝑗th seller 

𝑢𝑖
𝑘  Utility of buyer agent 𝑖 

𝑣𝑗
𝑘      Utility of seller agent 𝑗 

𝑢𝑖
′𝑘  Marginal utility of buyer agent 𝑖 

𝑣𝑗
′𝑘      Marginal utility of seller agent 𝑗 

𝐝𝑘  Vector of 𝑑𝑖
𝑘 of the 𝑘th aggregator of size 𝒩𝐵

𝑘 × 1 

𝐬𝑘  Vector of 𝑠𝑗
𝑘 of the 𝑘th aggregator of size 𝒩𝑆

𝑘 × 1 

𝐮𝑘  Vector of 𝑢𝑖
𝑘 of the 𝑘th aggregator of size 𝒩𝐵

𝑘 × 1 

𝐯𝑘  Vector of 𝑣𝑗
𝑘 of the 𝑘th aggregator of size 𝒩𝑆

𝑘 × 1 

𝐜  Vector of 𝑐𝑘 of size 𝐴 × 1 

𝐩  Vector of 𝑝𝑘 of size 𝐴 × 1 

𝐪  Vector of 𝑞𝑘 of size 𝐴 × 1 

𝛉  Vector of 𝜃 of size 𝐴 × 1 

𝑷   Vector of 𝑃𝑘 of size 𝑁 × 1 

𝑸  Vector of 𝑄𝑘 of size 𝑁 × 1 

𝑽   Vector of 𝑉𝑘 of size 𝑁 × 1  

𝛅  Vector of 𝛿 of size 𝑁 × 1 
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𝐥  Vector of lower limits of size 𝑁 × 1 

𝐥  Vector of lower limits of size 𝑁 × 1 

𝑆𝑘  Vector of line MVA limits of size 𝑁 × 1 
Δ𝑽   Vector of Δ𝑉  of size 𝑁 × 1  
𝐫  Vector of 𝑟𝑘 of size 𝑁 × 1 

𝐱  Vector of 𝑥𝑘 of size 𝑁 × 1 

𝐀  Node-Aggregator Incidence matrix of size 𝑁 × 𝐴 

𝐃  Node-Node Descendant matrix of size 𝑁 × 𝑁  

𝐔  Node-Node Ancestor matrix of size 𝑁 × 𝑁 

𝐌  Node Voltage - Aggregator power injection sensitivity matrix of size 𝑁 × 𝐴 

𝐌𝑃   Dummy matrix for 𝑃  of size 𝑁 × 𝐴 

𝐌𝑄  Dummy matrix for 𝑄 of size 𝑁 × 𝐴 

𝐄𝑘  Matrix of size 𝑁 × 𝑁  with 1 at the (𝑘, 𝑘) location 

𝐙𝑘  Symmetric matrix 

𝛺  DSWOP objective function 

𝔏  DSWOP Lagrangian function 

ℒ  Decomposed Lagrangian function for master problem 

𝐿  Decomposed Lagrangian function for sub-problem 

𝛼  DSWOP LM for constraint 𝟏𝐴
T𝐩 = 𝑃0 

𝛽  DSWOP LM for constraint 𝛉T𝐩 ≤ 𝑄0 	

𝛇  DSWOP vector of LMs for constraint 𝐌𝐩 ≥ 𝐥	

𝛇  DSWOP vector of LMs for constraint 𝐌𝐩 ≤ 𝐥 

𝛏  DSWOP vector of LMs for constraint 𝐩T𝐙𝑘𝐩 ≤ S𝑘
2 

𝛌  DSWOP vector of LMs for constraint 𝐩 = [𝟏𝑁𝐵
𝑘

T 𝐝𝑘 − 𝟏𝑁𝑆
𝑘

T 𝐬𝑘]
𝑘∈𝒜

 

𝛾𝑘  DSWOP LM for constraint 𝐬𝑘 ≤ 𝐠𝑘 
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Notation for Chapter 5  

Abbreviations  

DSO  Distribution System Operator 

BSS  Battery Storage System 

MILP  Mixed Integer Linear Programming 

LMP  Locational Marginal Pricing 

DLMP  Distribution-LMP 

DAM  Day-ahead Market 

WSM  Wholesale Market 

ISO  Independent System Operator 

DG  Distributed Generation 

RES  Renewable Energy Resources 

RHS  Right Hand Side 

LHS  Left Hand Side 

Nomenclature 

𝑚    Distribution bus index                   

𝑔     Generators index                    

𝑏     BSS index  

𝑙     Load index                 

𝑞     Generation segments index   

𝑟     Load segments index         

𝑡     Timeslot index 

ℳ     Set of distribution buses 

𝒢       Set of generator units 

ℬ       Set of battery storages 

ℒ       Set of price responsive loads 

𝒯       Set of time slots 
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𝑓        Objective function indicating SW 

𝜙  Deviation from commitment penalty function 

px      Segment generation 

p        Generation output  

e        BSS energy output 

s        Supply from WSM 

dx      Segment load  

d        Total demand of load  

c        BSS state of charge  

𝑖          Commitment state of generator units  

𝑗          Commitment state of BSS units  

𝑦         Startup indicator of generator units  

𝑧         Shut down indicator of generator units 

𝑠𝑑       Shut down counter for generator  

𝑠𝑢       Start-up counter for generator 

𝑢         BSS charging indicator  

𝑣         BSS discharging indicator  

𝑐𝑐        Charging counter for BSS 

𝑑𝑐        Discharging counter for BSS                                                                                

S              Total fixed supply allocated by the ISO to DSO  

PXmax     Maximum segment generation in each segment  

Pmin        Minimum generation of a generator unit 

Pmax       Maximum generation of a generator unit 

CX          Segment generation cost of a generator unit 

CB            Selling cost of BSS energy  

CG            Selling cost of Generator energy  

CL            Buying cost of load  

STC         Start-up cost of a generator unit  

SDC        Shut down cost of a generator unit 

RU           Rump up rate of a generator unit 
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RD           Rump down rate a generator unit 

MDTG     Minimum down time of a generator unit 

MUTG     Minimum up time of a generator unit 

MDTB     Minimum discharge time of a BSS  

MCTB      Minimum charge time of a BSS 

Emin        Minimum BSS energy withdraw amount 

Emax       Maximum BSS energy withdraw amount 

Cmin        Minimum state of charge of BSS 

Cmax       Maximum state of charge of BSS 

 

 

 


