

A MULTI-OBJECTIVE GP-PSO HYBRID ALGORITHM FOR GENE REGULATORY

NETWORK MODELING

by

XINYE CAI

B.ENG., Huazhong University of Science & Technology, 2004

M.S, University of York, 2006

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Abstract

Stochastic algorithms are widely used in various modeling and optimization problems.

Evolutionary algorithms are one class of population-based stochastic approaches that are inspired

from Darwinian evolutionary theory. A population of candidate solutions is initialized at the first

generation of the algorithm. Two variation operators, crossover and mutation, that mimic the real

world evolutionary process, are applied on the population to produce new solutions from old

ones. Selection based on the concept of survival of the fittest is used to preserve parent solutions

for next generation. Examples of such algorithms include genetic algorithm (GA) and genetic

programming (GP). Nevertheless, other stochastic algorithms may be inspired from animals’

behavior such as particle swarm optimization (PSO), which imitates the cooperation of a flock of

birds. In addition, stochastic algorithms are able to address multi-objective optimization

problems by using the concept of dominance. Accordingly, a set of solutions that do not

dominate each other will be obtained, instead of just one best solution.

This thesis proposes a multi-objective GP-PSO hybrid algorithm to recover gene

regulatory network models that take environmental data as stimulus input. The algorithm infers a

model based on both phenotypic and gene expression data. The proposed approach is able to

simultaneously infer network structures and estimate their associated parameters, instead of

doing one or the other iteratively as other algorithms need to. In addition, a non-dominated

sorting approach and an adaptive histogram method based on the hypergrid strategy are adopted

to address ‘convergence’ and ‘diversity’ issues in multi-objective optimization.

Gene network models obtained from the proposed algorithm are compared to a synthetic

network, which mimics key features of Arabidopsis flowering control system, visually and

numerically. Data predicted by the model are compared to synthetic data, to verify that they are

able to closely approximate the available phenotypic and gene expression data. At the end of this

thesis, a novel breeding strategy, termed network assisted selection, is proposed as an extension

of our hybrid approach and application of obtained models for plant breeding. Breeding

simulations based on network assisted selection are compared to one common breeding strategy,

marker assisted selection. The results show that NAS is better both in terms of breeding speed

and final phenotypic level.

A MULTI-OBJECTIVE GP-PSO HYBRID ALGORITHM FOR GENE REGULATORY

NETWORK MODELING

by

XINYE CAI

B.ENG., Huazhong University of Science & Technology, 2004
M.S, University of York, 2006

A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

 DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009

Approved by:

Major Professor
Dr Sanjoy Das

Copyright

XINYE CAI

2009

Abstract

Stochastic algorithms are widely used in various modeling and optimization problems.

Evolutionary algorithms are one class of population-based stochastic approaches that are inspired

from Darwinian evolutionary theory. A population of candidate solutions is initialized at the first

generation of the algorithm. Two variation operators, crossover and mutation, that mimic the real

world evolutionary process, are applied on the population to produce new solutions from old

ones. Selection based on the concept of survival of the fittest is used to preserve parent solutions

for next generation. Examples of such algorithms include genetic algorithm (GA) and genetic

programming (GP). Nevertheless, other stochastic algorithms may be inspired from animals’

behavior such as particle swarm optimization (PSO), which imitates the cooperation of a flock of

birds. In addition, stochastic algorithms are able to address multi-objective optimization

problems by using the concept of dominance. Accordingly, a set of solutions that do not

dominate each other will be obtained, instead of just one best solution.

This thesis proposes a multi-objective GP-PSO hybrid algorithm to recover gene

regulatory network models that take environmental data as stimulus input. The algorithm infers a

model based on both phenotypic and gene expression data. The proposed approach is able to

simultaneously infer network structures and estimate their associated parameters, instead of

doing one or the other iteratively as other algorithms need to. In addition, a non-dominated

sorting approach and an adaptive histogram method based on the hypergrid strategy are adopted

to address ‘convergence’ and ‘diversity’ issues in multi-objective optimization.

Gene network models obtained from the proposed algorithm are compared to a synthetic

network, which mimics key features of Arabidopsis flowering control system, visually and

numerically. Data predicted by the model are compared to synthetic data, to verify that they are

able to closely approximate the available phenotypic and gene expression data. At the end of this

thesis, a novel breeding strategy, termed network assisted selection, is proposed as an extension

of our hybrid approach and application of obtained models for plant breeding. Breeding

simulations based on network assisted selection are compared to one common breeding strategy,

marker assisted selection. The results show that NAS is better both in terms of breeding speed

and final phenotypic level.

 viii

Table of Contents

List of Figures .. xi

List of Tables .. xv

Acknowledgements.. xvi

Dedication ... xvii

CHAPTER 1 - Overview of Stochastic Multi-objective Optimization .. 1

1.1 Basic Concepts.. 1

1.1.1 Multi-objective Optimization... 1

1.1.2 Pareto Optimality ... 2

1.1.3 Performance Measurements for Multi-objective Optimization 3

1.2 Stochastic Optimization.. 4

1.3 Algorithm Design Issues... 5

1.3.1 Convergence and Diversity.. 5

1.3.2 Techniques for Convergence ... 6

1.3.3 Diversity Preservation.. 7

1.3.4 Elitism .. 10

1.4 Motivation of Future Research ... 10

CHAPTER 2 - Stochastic Approaches and Stochastic Multi-objective Optimization 11

2.1 Introduction... 11

2.2 Genetic Algorithms... 11

2.3 Genetic Programming ... 12

2.3.1 Introduction.. 12

2.3.2 Conventional Genetic Programming.. 13

2.3.3 Cartesian Genetic Programming .. 15

2.3.4 Comparison of CGP with Conventional GP .. 17

2.4 Particle Swarm Optimization.. 18

2.5 A Survey of Stochastic Multi-objective Algorithms .. 19

2.5.1 Multi-objective GAs/GPs... 19

2.5.2 Survey of Multi-objective GAs/GPs.. 20

 ix

2.5.2.1 NSGA-II.. 20

2.5.2.2 Rodriguez-Vazquez’s MOGP ... 21

2.5.3 Survey of Multi-objective PSO.. 21

2.5.4 Coello’s Multi-objective PSO.. 22

CHAPTER 3 - Genetic Regulatory Network Modeling ... 24

3.1 Introduction... 24

3.2 Basic Genetics... 25

3.3 Gene Regulatory Network Modeling.. 26

3.3.1 Graphical Models... 26

3.3.2 Boolean Network Models .. 27

3.3.3 Differential Equation Models .. 28

3.3.4 Linear Models .. 28

3.3.5 Stochastic Models .. 29

3.3.6 Neural Network Model .. 29

3.4 Stochastic approaches in Gene Regulatory Network (GRN).. 30

3.5 Multi-objective Approaches in Gene Regulatory Network Modeling................................ 32

3.6 Flowering Control in Arabidopsis thaliana .. 33

CHAPTER 4 - Problem Formulation and Multi-objective GP-PSO Hybrid Algorithm 36

4.1 Introduction... 36

4.2 Data... 36

4.3 Synthetic Network .. 38

4.4 Multi-objective GP-PSO Hybrid Algorithm... 39

4.4.1 Overall Hybrid Algorithm.. 39

4.4.2 Gene Identification... 40

4.4.3 Multi-objective Optimization Issue and Archive Control ... 41

4.4.4 Representation Using Cartesian Genetic Programming... 43

4.4.5 Mutation... 45

4.4.6 Multi-objective PSO Based Parameter Estimation .. 46

CHAPTER 5 - Results and Discussion... 49

5.1 Introduction... 49

5.2 Simulation Setup... 50

 x

5.3 Results... 50

5.4 Further Result Discussion... 73

CHAPTER 6 - Network Assisted Selection for Breeding .. 76

6.1 Introduction... 76

6.2 NK Fitness Landscape... 77

6.2.1 Breeding Simulation in NK Fitness Landscape ... 79

6.3 Plant Breeding Simulations .. 87

CHAPTER 7 - Conclusion and Future Work ... 90

References... 92

Appendix A - Terms and Definitions.. 106

Appendix B - P-value of Gene Identification ... 110

 xi

List of Figures

Figure 1.1 Dominated and non-dominated solutions in two dimensions.. 3

Figure 1.2 Two-dimension Pareto front... 4

Figure 1.3 An illustration of good convergence and diversity (left) and bad convergence and

diversity (right) ... 6

Figure 1.4 An illustration of domination counting and non-dominated sorting methods for

convergence in 2-dimensional objective function space... 7

Figure 1.5 An illustration of different diversity preservation approaches in MOP 9

Figure 2.1 Conventional hierarchical tree representation in GP... 13

Figure 2.2 Tree-based representation and crossover process in conventional GP........................ 14

Figure 2.3 An example of CGP representation and its encoded integer string form.................... 16

Figure 2.4 A simple model representing in CGP. The node 5 is a redundant node, since its output

does not connect to any other downstream nodes. It also does not appear in the encoded

strings or the model... 17

Figure 2.5 The CGP representation of new model is shown after mutation from the model in

figure 2.3. Node 5 has been activated by mutation... 17

Figure 2.6 Flow charts of two methods in multi-objective GA/GP to implement elitism............ 20

Figure 3.1 An example of genetic graphical model.. 27

Figure 3.2 An example of a GP solution in [96]... 32

Figure 3.3 Flowering Time Control in Arabidopsis.. 35

Figure 4.1 Illustration of synthetic genomes... 37

Figure 4.2 A three-stage flow chart of overall hybrid algorithm.. 39

Figure 4.3 Graphical representation of the insertion of a new solution in the adaptive hypergrid

when individual lies within/out current boundaries of hypergrid... 42

Figure 4.4 Archive flow control process... 43

Figure 4.5 Representation of a solution as a string in CGP.. 44

Figure 4.6 Representations of a sample solution and its corresponding network topology 45

Figure 4.7 Network topology change after applying mutation operator....................................... 46

 xii

Figure 4.8 Flow chart of multi-objective PSO for network parameters estimation...................... 48

Figure 5.1 The synthetic gene regulatory network ... 50

Figure 5.2 Non-dominated solutions obtained from simulating M = 6 gene run.......................... 52

Figure 5.3 Sample network #1 of a solution obtained in M = 6 gene run..................................... 52

Figure 5.4 Sample network #2 of a solution obtained in M = 6 gene run..................................... 52

Figure 5.5 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 6 gene run).. 54

Figure 5.6 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 6 gene run).. 54

Figure 5.7 Non-dominated solutions obtained from simulating M = 8 gene run.......................... 55

Figure 5.8 Sample network #1 of a solution obtained in M = 8 gene run..................................... 55

Figure 5.9 Sample network #2 of a solution obtained in M = 8 gene run..................................... 55

Figure 5.10 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 8 gene run).. 57

Figure 5.11 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 8 gene run).. 57

Figure 5.12 Non-dominated solutions obtained from simulating M = 10 gene run...................... 58

Figure 5.13 Sample network #1 of a solution obtained in M = 10 gene run................................. 58

Figure 5.14 Sample network #2 of a solution obtained in M = 10 gene run................................. 58

Figure 5.15 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 10 gene run).. 60

Figure 5.16 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 10 gene run).. 60

Figure 5.17 Non-dominated solutions obtained from simulating M = 12 gene run...................... 61

Figure 5.18 Sample network of a solution obtained in M = 12 gene run...................................... 61

Figure 5.19 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network of a solution obtained in M = 12 gene run)... 62

Figure 5.20 Non-dominated solutions obtained from simulating M = 14 gene run...................... 63

Figure 5.21 Sample network #1 of a solution obtained in M = 14 gene run................................. 63

Figure 5.22 Sample network #2 of a solution obtained in M = 14 gene run................................. 63

 xiii

Figure 5.23 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 14 gene run).. 65

Figure 5.24 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 14 gene run).. 65

Figure 5.25 Non-dominated solutions obtained from simulating M = 17 gene run...................... 66

Figure 5.26 Sample network #1 of a solution obtained in M = 17 gene run................................. 66

Figure 5.27 Sample network #2 of a solution obtained in M = 17 gene run................................. 66

Figure 5.28 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 17 gene run).. 68

Figure 5.29 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 17 gene run).. 68

Figure 5.30 Impact of 6 genes on phenotype of bolting dates .. 75

Figure 6.1 Two gene fitness maps: adjacent neighborhoods (left) and random neighborhoods

(right) when N = 10, f = 10 and K = 3... 78

Figure 6.2 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

0. The NK model is generated by using the adjacent neighborhood method........................ 80

Figure 6.3 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

1. The NK model is generated by using the adjacent neighborhood method........................ 80

Figure 6.4 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

3. The NK model is generated by using the adjacent neighborhood method........................ 81

Figure 6.5 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

5. The NK model is generated by using the adjacent neighborhood method........................ 81

Figure 6.6 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

7. The NK model is generated by using the adjacent neighborhood method........................ 82

Figure 6.7 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

9. The NK model is generated by using the adjacent neighborhood method........................ 82

Figure 6.8 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

0. The NK model is generated by using the random neighborhoods method. 84

Figure 6.9 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K =

1. The NK model is generated by using the random neighborhoods method. 84

 xiv

Figure 6.10 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K

= 3. The NK model is generated by using the random neighborhoods method. 85

Figure 6.11 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K

= 5. The NK model is generated by using the random neighborhoods method. 85

Figure 6.12 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K

= 7. The NK model is generated by using the random neighborhoods method. 86

Figure 6.13 MAS vs. our proposed approach on NK model based breeding, where N = 20 and K

= 9. The NK model is generated by using the random neighborhoods method. 86

Figure 6.14 Comparison of MAES and NAS in Plant Breeding .. 89

Figure 6.15 Comparison of MATS and NAS in Plant Breeding .. 89

 xv

List of Tables

Table 5.1 Parameters and functions associated with synthetic gene network shown in figure 5.1

... 51

Table 5.2 Parameters and functions associated with the gene network shown in Figure 5.3....... 53

Table 5.3 Parameters and functions associated with the gene network shown in Figure 5.4....... 53

Table 5.4 Parameters and functions associated with the gene network shown in Figure 5.8....... 56

Table 5.5 Parameters and functions associated with the gene network shown in Figure 5.9....... 56

Table 5.6 Parameters and functions associated with the gene network shown in Figure 5.13..... 59

Table 5.7 Parameters and functions associated with gene network shown in Figure 5.14........... 59

Table 5.8 Parameters and functions associated with the gene network shown in Figure 5.18..... 62

Table 5.9 Parameters and functions associated with the gene network shown in Figure 5.21..... 64

Table 5.10 Parameters and functions associated with the gene network shown in Figure 5.22... 64

Table 5.11 Parameters and functions associated with the gene network shown in Figure 5.26... 67

Table 5.12 Parameters and functions associated with the gene network shown in Figure 5.27... 67

Table 5.13 Numerical formulas before and after parameter substitution 69

Table 5.14 Sensitivity analysis to numerical formulas in Table 5.13... 71

Table 6.1 Comparison of MAS and our proposed approach after convergence with multiple NK

fitness landscape models generated by adjacent neighborhoods method. 83

 xvi

Acknowledgements

I am very grateful to my advisor, Dr. Sanjoy Das, for his inspiring guidance, patient

support and constant encouragement throughout my research. I am indebted to my co-advisor Dr.

Stephen Welch, for his kindness and valuable advices. I would also like to express my gratitude

to Dr. Praveen Koduru, who contributed his knowledge in programming and parallel computing

during my research, and shared his experience to advice on how to adapt myself to PhD life. I

also wish to thank all my committee members and outside chairman, Dr. Chris Lewis, Dr.

Dwight Day, Dr. Doina Caragea and Dr. Alexander Beeser for their valuable suggestions on my

work.

Next, I would like to give my thanks to Sharon Hartwich and Angie Pfizenmaier, for their

specific and detailed help in filling out paperwork. I would also like to thank the staff of

Electrical Engineering Department, Graduate School and library services at Kansas State

University who provides me both their time and professional knowledge. Special gratitude to all

my friends with whom I had great experience in KSU.

Last, but not least, I would like to thank my family, for their understanding and constant

support, without which I would not be able to pursue my dream and complete this work.

 xvii

Dedication

 To my parents, grandparents, uncles and aunts,

 For their constant support, encouragement and love.

 1

CHAPTER 1 - Overview of Stochastic Multi-objective Optimization

Optimization is a popular research field with many important applications [1]. The aim

of optimization is to find the best solutions to a given problem within a set of constraints.

Classical optimization approaches mainly focus on single objective problems and aims to find

the best possible solution, usually termed global optimum. Most real-world applications,

however, involve the simultaneous optimization of more than one objective. Furthermore, it is

not unusual to encounter situations where those objectives are in conflict with each other. For

example, when designing a building, the architect always would like to minimize its cost while

having its safety maximized. In these multi-objective problems, mathematical and algorithmic

tools that are different from those for single-objective optimization are required. In fact, the

notion of optimality changes when dealing with multi-objective optimization problems. We need

to find the best tradeoff among the objectives.

Among several heuristics currently available, stochastic algorithms (SAs) such as

evolutionary algorithms and particle swarm optimization approaches are among the most popular

[2] [3]. These algorithms are a class of approaches that are inspired from natural metaphors.

Stochastic algorithms have been popular in single-objective optimization and, more recently,

also have applied to multi-objective problems. In this chapter, an overview of stochastic multi-

objective optimization (SMO) is provided. It includes the basic concepts of multi-objective

optimization, advantages of stochastic approaches and relevant most popular algorithms.

1.1 Basic Concepts

1.1.1 Multi-objective Optimization

There are three aspects that are important to note in the context of SMO. First, a multi-

objective optimization problem (MOP) always has two or more objectives that are required to be

optimized simultaneously. Second, there may be constraints imposed on the objectives. Third,

objectives in MOP are usually in conflict with each other; otherwise, a single solution may exist

which may be obtained by optimizing the objectives in sequential order. A MOP can be defined

as:

 2

Definition 1: Multi-objective optimization problem

Given a problem involving N variables N,...xx,x 21 in a search space Nℜ⊂X , we assume,

without loss of generality, M objectives (.)(.)1 M,...,ff in objective function space Mℜ⊂Y , are to

be minimized.

Minimize)),...,,(),....,...,,(()(21211 NMN xxxfxxxf=xf

The vector function is a mapping YX f →: .

 1.1.2 Pareto Optimality

In a MOP, because multiple objectives are involved, it is usually not possible to find a

single solution which is optimal for all the objectives. Instead, many good solutions may exist.

These solutions are always “trade-offs” or good compromises among the objectives. Since the

conventional concept of optimality does not hold, a concept of Pareto optimality is adopted.

Before formally defining Pareto optimality, we introduce the concept of dominance.

Definition 2: Dominance

Let Xyx, ∈ be two vector inputs. We say x dominates y (written as yx p) iff they satisfy the

conditions:

)()(}{,
)()(}{,
yxXyx

yxXyx

jj

ii

ff|M1,...,j ,
ff|M1,...,i ,

<∈∃∈
≤∈∀∈

,

On the contrary, a solution x is considered to be a non-dominated solution iff there is no other

solution that satisfies equation 1.1. The set of all non-dominated solutions form a Pareto set.

Definition 3: Pareto front

The projection of the Pareto set P in the M dimensional objective function space Y is called

Pareto front, F. 1

}))()()({(1 PxxxxF ∈= |,...f,ff M2 ,

Figure 1.1 explains the concept of dominance. Fox example, when considering a building design

project; architects need to minimize two objectives: cost and failure rate. Four possible schemes

– a, b, c and d exist. According to definition 2, solution a dominates solution b. However,

1 To distinguish from a true Pareto front, we call non-dominated solutions that are not in the true Pareto front

discovered so far by SAs a non-dominated front.

Eq. 1.1

Eq. 1.2

 3

solutions a, c and d do not dominate each other. Figure 1.2 shows a two-dimensional Pareto

front according to definition 3.

Figure 1.1 Dominated and non-dominated solutions in two dimensions

1.1.3 Performance Measurements for Multi-objective Optimization

In order to test the performance of different algorithms in MOP, measures to allow a

quantitative comparison of results are required. A variety of performance measures have been

proposed [4][5][6]. Three goals have been summarized for a good SMO algorithm [5]:

1. The size of the non-dominated front should be maximized.

2. The non-dominated front found by the SMO algorithm should be as close as possible

to the true front.

3. The solutions should be as uniformly distributed as possible.

The second and third goals are called convergence and diversity [7]. They are detailed in

the following sections.

f2
(e.g. failure rate)

f1 (e.g. cost)

a

b
c

d

a dominates b

f1(a)

f2(a)

f2
(e.g. failure rate)

f1 (e.g. cost)

a

b
c

d

a dominates b

f1(a)

f2(a)

 4

When considering MOP, the true Pareto front is usually not known beforehand in a real

application. So test functions with known Pareto front are used to test the efficiency of the

algorithms. ZTD functions are one class of the most popular test functions [8] [9] [10].

Figure 1.2 Two-dimension Pareto front

1.2 Stochastic Optimization
Since the 1950s, a variety of mathematical programming techniques have been developed to

address MOP [11] [12]. Nevertheless, they all may have one or several of the following

limitations, (i) prior knowledge of the true Pareto front is required; (ii) they may not work when

the Pareto front is concave or disconnected -- they require differentiability of the objective

functions and the constraints; (iii) they can only obtain one solution from each run.

Most stochastic algorithms are inspired from biology. For example, evolutionary algorithms

(EAs) are inspired from biological evolution and particle swarm optimization (PSO) is inspired

from the cooperative behavior of birds. In such algorithms, a solution candidate is sometimes

Pareto front

f1 (e.g. cost)

f2
(e.g. failure rate)

Pareto front

f1 (e.g. cost)

f2
(e.g. failure rate)

 5

called an individual and the set of solution candidates forms a population. There are four main

features in SAs:

(i) an individual, e.g. decision vector, represents a solution to the given problem,

(ii) according to objective functions, each individual is evaluated and assigned a fitness

to reflect the quality of the solution,

(iii) a selection process is performed on the population and

(iv) the population is updated and new solutions are generated in each generation

The above features enable SAs to address the limitations of classic multi-objective

approaches. Firstly, SAs do not need any prior knowledge of the Pareto front. Secondly, being

population-based algorithms, they are able to generate a non-dominated front in a single run.

1.3 Algorithm Design Issues

1.3.1 Convergence and Diversity

In an evolutionary algorithm, either convergence or diversity must be used as a criterion

to discriminate between solutions and form a non-dominated front. Convergence is a term used

to describe how close that the set of obtained non-dominated solutions in the population is to the

true Pareto front. In addition to good convergence, another feature, termed diversity, used to

describe the proper space intervals between solutions in the non-dominated front or Pareto front,

is equivalently important. Usually, it is more desirable to have the distribution of the solutions

spread out. In other words, an evenly populated Pareto front has good diversity. Figure 1.3 (left)

shows a Pareto front with good convergence and diversity. In comparison, Figure 1.3 (right)

illustrates bad convergence and diversity.

 6

Figure 1.3 An illustration of good convergence and diversity (left) and bad convergence and
diversity (right)

 1.3.2 Techniques for Convergence

 Techniques for convergence in SMO generally consist of aggregation-based, criterion-

based and Pareto-based methods [13].

 Aggregation-based methods turn a multi-objective function into a single parameterized

objective function. The parameters of this function are varied to find a set of non-dominated

solutions. Weighted-sum aggregation is a good example where the weight-parameter is changed

during optimization process.

 Criterion-based methods switch among objectives during the selection and variation

process of SAs with a certain probability. Each time an individual is chosen for variation, the

fitness value of the individual to a different objective will decide if it can be selected for

variation.

 The third method is based on the concept of Pareto dominance [3]. It can be divided into

mainly two subcategories depending on how to rank population. The first ranking approach is

usually referred to as domination counting. In this method, the rank of any solutions within a

population of solutions is determined by the number of other solutions that dominates this

solution. For example, in Figure 1.4, solution a is dominated by six other solutions, contained in

dashed lines. Solutions with the counts of zero are assigned as non-dominated solutions and form

f1

f2

True Pareto front

f1

f2

True Pareto front

Good convergence
and diversity

Bad convergence
and diversity

f1

f2

True Pareto front

f1

f2

True Pareto front

Good convergence
and diversity

Bad convergence
and diversity

 7

the non-dominated front, as shown in Figure 1.4. Dominance counting is used in both SPEA[6]

and SPEA2[18]. The other method is called non-dominated sorting. In this method, solutions of

the same rank are the ones that do not dominate each other and the ones that have been

dominated are assigned to lower rank. This method is used in NSGA II [14]. Dotted grey lines in

Figure 1.4 show different ranks after applying non-dominated sorting. Among the three grey

dotted lines, the one closest to origin forms the non-dominated front.

Figure 1.4 An illustration of domination counting and non-dominated sorting methods for
convergence in 2-dimensional objective function space

1.3.3 Diversity Preservation

Diversity preservation is critical in a SMO design because in each generation, one tries to

avoid identical or very similar solutions in the population. Solutions in the sparser region are

favored to control the density of solutions in the objective function space. Different techniques

that incorporate density information into selection process have been developed. There are

f1

f2

0

0

0

0

(6)

Non-dominated front

a

f1

f2

0

0

0

0

(6)

Non-dominated front

a

 8

mainly four diversity preservation strategies which are referred to as fitness sharing, crowded

comparison, histogram and nearest neighbor, respectively.

The fitness sharing method uses the well known sharing function [16]:

⎪
⎩

⎪
⎨

⎧
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

otherwise0

if1)(

,

, ij
ij

ij
share

a

share

d
d

df σ
σ ,

where ijd is the Euclidean distance between two neighboring solutions i and j and shareσ is a user

defined niche radius parameter. Each solution i within others’ niche radius will have its fitness

degraded. The degradation function is as follows:

i

i
i c

fitnessfitness = ,

where ic is called the niche count for solution i:

()∑
=

=
N

dfc
1j

iji ,

 The fitness sharing method is demonstrated in Figure 1.5 (top, left). The solution niche

count of solution i is the sum of the sharing functions to each of other solutions within the niche

radius shareσ . The sharing function is actually one type of kernel function whose value represents

the density estimate for the solution. In the above equations, niche count ci (the sum of the

sharing function for solution i) represents density estimate for solution i. Also, this density

information is integrated in the selection process by the using fitness degradation function, where

a solution with crowded neighbors will have its fitness degraded and is less likely to be selected

over the optimization process. Fitness sharing has been widely used in SMO, such as MOGA[17],

NSGA[20] and NPGA[19].

This diversity preservation approach, however, is criticized for the requirement of

specifying the sharing parameter shareσ [14]. So a method based on crowded comparison for

diversity preservation is proposed in NSGA II [14]. To estimate the density of solutions

surrounding a particular solution in the population, the average distance of two points on either

side of this point along each of the objectives is calculated. The value of this average distance

contains density information, where larger value indicates the solution is located in a sparser

region. It is worthy to note that the boundary solutions (solutions with either smallest or largest

Eq. 1.3

Eq. 1.4

Eq. 1.5

 9

objective function values) are usually preferred in the optimization process; this can be

accomplished by assigning an infinite distance value to them. Figure 1.5(top, right) illustrates

how the distance value of solution a is calculated in the crowded comparison method.

Figure 1.5 An illustration of different diversity preservation approaches in MOP

 The histogram method divides a M dimensional objective function space into small M

dimensional hypergrids. Naturally, the number of solutions located in each hypergrid’s cell

determines the density of solutions in the regions. In Figure 1.5 (bottom, left), the grid where

solution a is located is less dense with solutions than that of solution b; so solution a is more

likely to be favored. The hypergrid can be fixed, though usually it is adapted dynamically in each

f1

f2 Crowded comparison

a

f1

f2 Histogram

a

b

f1

f2 nearest neighbor

a

f1

f2 Fitness sharing

i

f

f
f

f

j

f1

f2 Crowded comparison

a

f1

f2 Histogram

a

b

f1

f2 nearest neighbor

a

f1

f2 Fitness sharing

i

f

f
f

f

j

 10

generation with the population of solutions. PAES [15] and MOPSO[CJM2004] have adopted

this approach.

 In the last method, nearest neighbor, each solution calculates its total distance from the

nearest K neighboring solutions, as shown in Figure 1.4 (bottom right). A larger distance value

suggests the solution is likely to locate in a sparsely populated region. A good example of its

application is in SPEA2 [18] where the algorithm calculates for each solution the inverse of the

distance to Kth nearest neighbor and adds it to the raw fitness value.

1.3.4 Elitism

Elitism is another important concept in stochastic multi-objective optimization. During

the optimization process, sometimes good solutions are lost due to random effects. One possible

way to cope with this problem is to use a deterministic selection operator on the combined

population of parent and offspring, instead of replacing the parent population with the offspring.

Another alternative is the use of archiving – a secondary population which maintains promising

solutions. Most SMO uses the combination of both dominance and diversity information to select

diverse non-dominated solutions to store into the archive.

1.4 Motivation of Future Research
Multi-objective optimization has been rapidly developing and expanding in recent years.

Several interesting new approaches for optimization have been proposed in recent literature. A

good example is the emerging of a class of artificial immune system (AIS) based multi-objective

algorithms [22]. One of the urgent problems to be solved is to fit suitable approaches into

different application domains. Innovation and hybridization of algorithms are also necessary

when facing different applications.

 11

CHAPTER 2 - Stochastic Approaches and Stochastic Multi-

objective Optimization

2.1 Introduction
In Chapter 1, the concept of Pareto optimality for multi-objective optimization has been

presented. In this chapter, we will introduce stochastic approaches, such as genetic algorithms

(GAs), genetic programming (GP) and particle swarm optimization (PSO), all of which are

widely used in both single objective and multi-objective optimization problems. At the end of

this chapter, a survey of recent popular stochastic multi-objective algorithms is also provided.

2.2 Genetic Algorithms
Genetic algorithms are stochastic optimization approaches which mimic representation

and variation mechanisms borrowed from biological evolution, such as selection, crossover, and

mutation [23][24]. In this approach, a GA candidate solution is represented as a linear string

analogous to a biological chromosome. The general scheme of GAs starts from a population of

randomly generated candidate solutions (chromosomes). Each chromosome is then evaluated and

given a value which corresponds to a fitness level in objective function space. In each generation,

chromosomes are chosen based on their fitness to reproduce offspring. Chromosomes with a high

level of fitness are more likely to be retained while the ones with low fitness tend to be discarded.

This process is called selection. After selection, offspring chromosomes are constructed from

parent chromosomes using operators that resemble crossover and mutation mechanisms in

evolutionary biology. The crossover operator, sometimes called recombination, produces new

offspring chromosomes that inherit information from both sides of parents by combining partial

sets of elements from them. The mutation operator randomly changes elements of a chromosome

with a low probability. Over multiple generations, chromosomes with higher fitness values are

left based on the survival of the fittest.

 12

2.3 Genetic Programming

2.3.1 Introduction

 Genetic programming is a subclass of GAs, solutions of which are expressed as

structures. GP has been successfully applied to system modeling and structure discovery. Within

genetic programming, the process of problem solving is regarded as a search in the objective

function space. Similar to GAs, basic elements in GP include representation, selection, crossover

and mutation.

Representation is critical in GP because the search of GP is not performed directly in the

objective function space, but rather in a representation space. With the same objective function

space, the selection of a different representation may result in a different search space. Thus

representation in GP plays an important role in the effectiveness of its algorithm. Many GPs use

a graph to represent a topology directly. In addition, such graph can be encoded as a string of

numbers which makes it easier for an algorithm to handle.

 The selection operator is used to determine which individuals from parent chromosomes

and their offspring will form the new generation. The whole search process actually implies a

compromise between two contradictory requirements: exploitation of the best available solution

and robust exploration of the search space. The selection operator is a critical means to maintain

balance between exploitation and exploration.

 Crossover and mutation operators are essential for the search process. The crossover

operator is applied to two parent chromosomes and combine parts from each parent to create

offspring chromosomes. The mutation operator is applied to one individual by changing parts of

the chromosome at a very low rate.

 13

2.3.2 Conventional Genetic Programming

Genetic programming was originally devised by Koza[25]. In his original design, a

solution consisting of functions and terminals appropriate to the problem space is represented as

hierarchical tree. For example, a simple expression ()
ba

cba
−
+* is represented as shown in Figure

2.1. In this example terminal sets { }cba ,,T = and function sets { }/'','*','',''F −+= .The internal

nodes of the tree structure are entries from the function set and leaf nodes are input data from the

terminal set. Also a genetic programming tree and its corresponding expression can equivalently

be represented in prefix notation, where functions always precede their terminals. In our example,

expression ()
ba

cba
−
+* is equivalent to ()()()()abbca −+*/ in prefix notation.

Figure 2.1 Conventional hierarchical tree representation in GP

There is a probability that crossover is used for swapping the sub-trees in two separate

chromosomes. This probability is called crossover rate. Also, a single point mutation operator is

usually applied to chromosomes by randomly changing parts at a certain rate, called mutation

rate. A conventional GP representation and its crossover process are shown in Figure 2.2.

/

* -

a b+ a

b c

/

* -

a b+ a

b c

 14

Figure 2.2 Tree-based representation and crossover process in conventional GP

Conventional GP, however, has its shortcomings [26] [27] [25] [28] [29] [30] [31].

Firstly, tree structure based representation loses GP’s generality to represent other different

computational structures. Secondly, bloat problem can be observed in conventional GP. Bloat is

used to describe the phenomenon that solutions have the tendency to become larger and exhaust

computational resources. When bloat problem occurs, it is nearly impossible to find a small and

efficient solution. A lot of effort has been made to improve conventional GP [43] [33] [34] [35].

An improved form of genetic programming is introduced in the following section.

/

- *

a b+ a

a b

*

+ /

a bc -

b c

/

-

*

a

b

+

a

a b

*

+ /

a bc

-

b c

Parents

Offspring

/

- *

a b+ a

a b

*

+ /

a bc -

b c

/

-

*

a

b

+

a

a b

*

+ /

a bc

-

b c

Parents

Offspring

 15

2.3.3 Cartesian Genetic Programming

Cartesian genetic programming (CGP) [32] is an alternative graph-based form of genetic

programming. A graph-based representation gives GP great generality so that it can represent

neural networks, programs, circuits, networks and many other computational structures.

Actually, we can consider tree structure as a special form of graph in which two nodes must have

one and only one path between them (a path is a sequence of connected nodes). Also, graphs are

more compact than the usual tree representation since subgraphs can be used more than once.

 In CGP, chromosomes are encoded as a list of integers that represent the functions and

connections between graph nodes and program inputs and outputs. CGP is loosely inspired from

FPGAs (field programmable gate arrays) to evolve digital circuits. Its original form is

represented as a group of Cartesian grids arranged in layers, mimicking the architecture of digital

circuits. A representation of CGP can be seen in Figure 2.3. From the figure, it is clear to see that

there are three types of layers: input layer, output layer and main layers. The input layer is on the

far left of the figure with M input nodes, while the output layer is on the far right of the figure

with N output nodes iO . In between them are main layers, where each node is specified in order

by a number of rows R and columns C. The nodes in the same column are not allowed to be

connected, but they can connect to the nodes in the previous columns. A parameter called levels-

back is used to define the number of columns back a node in a particular column can connect to.

The Cartesian representation can be encoded as a string of integers.

NCRCR OOOfff ...,,;,;...,;, 10111100 −−ccc

ic denotes a vector of points in which the inputs of the node are connected. Each node

also has a function; if represents a function which is listed in predefined function table. It also

has N output genes iO that denote the points where the N program outputs are taken from. Inputs

of node ic are restricted so nodes can only have their inputs connected to either program inputs

or nodes from a previous (left) column. Function values are restricted to those available. In CGP,

only the mutation operator is applied to the representation. During this process, a percentage of

integers in the representation are changed to another randomly selected value. But restrictions

described above must be strictly abided by.

 16

Figure 2.3 An example of CGP representation and its encoded integer string form

In many implementations of CGP, the number of rows is set to one. Accordingly, the

number of columns then becomes the maximum allowed number of nodes. Also, the levels-back

parameter theoretically can be set to be any integer from one (in which case, nodes can only

connect to the nodes in the column just prior to the current column this node is particularly

located) to the maximum number of nodes (in which case a node can connect to any previous

node). In order to give more flexibility to the CGP structure, in practice, the level-back is

usually set to latter.

A simple model (a + b) * c – c represented in CGP with its encoded strings is given in

Figure 2.4. The available functions include +, -, *. Although each node must have a function and

a set of inputs for that function, the output of the node does not have to be used by other

downstream nodes. Node 5 in Figure 2.4 is such a node. In other words, a node may not appear

in the model, even though it exists in the representation. Such nodes are redundant or form

redundancy in GP representation. These redundant nodes are inactive and have a neutral effect

(termed neutrality) on fitness, because in later generations, they may be activated by the

mutation operator. In Figure 2.5, after mutation changes a part of GP representation as shown in

Figure 2.4, the whole model has been changed accordingly. Previously redundant node 5 has

been activated. Similarly, formerly active nodes can be deactivated by mutation.

c0

c1

cR-1

M

M
+1

M +R

0

1

M -1

cR

cR+
1

c2R-1

M +R +1

M +R +2

M +2R

c(C-1)R

cCR-1

M +C*R +1

M +C*R +2

M +C*R+R

O0

O1

ON

Input
Layer

Layer 1 Layer 2 Layer C Output
Layer

Number of Columns C

Number
of Rows

R

c(C-1)R+1

Encoded representation Strings

f0

f1

fR-1

fR

fR+1

f2R-1

f(C-1)R

fCR-1

NCRCR OOOfff ...,,;,;...,;, 10111100 −−ccc

c0

c1

cR-1

M

M
+1

M +R

0

1

M -1

cR

cR+
1

c2R-1

M +R +1

M +R +2

M +2R

c(C-1)R

cCR-1

M +C*R +1

M +C*R +2

M +C*R+R

O0

O1

ON

Input
Layer

Layer 1 Layer 2 Layer C Output
Layer

Number of Columns C

Number
of Rows

R

c(C-1)R+1

Encoded representation Strings

f0

f1

fR-1

fR

fR+1

f2R-1

f(C-1)R

fCR-1

NCRCR OOOfff ...,,;,;...,;, 10111100 −−ccc

 17

Figure 2.4 A simple model representing in CGP. The node 5 is a redundant node, since its
output does not connect to any other downstream nodes. It also does not appear in the
encoded strings or the model.

Figure 2.5 The CGP representation of new model is shown after mutation from the model
in figure 2.3. Node 5 has been activated by mutation.

2.3.4 Comparison of CGP with Conventional GP

As described earlier, bloat is one of the most serious drawbacks of genetic programming

[26] [27]. Contrary to the tree structure based GP, CGP does not have a bloat problem. This is

very likely owed to its pre-determined fixed number of nodes, and also the existence of the

redundant nodes which could be activated or deactivated by mutation operators [36].

a

Model: (a + b) * c - c

b

c

+ * - output+

0

1

2

0

1

Node labels: 3 4 5 6

3

2

4

2

3

4

Encoded strings: 0 1 + 3 2 * 3 4 + 4 2 - 6

6
a

Model: (a + b) * c - c

b

c

+ * - output+

0

1

2

0

1

Node labels: 3 4 5 6

3

2

4

2

3

4

Encoded strings: 0 1 + 3 2 * 3 4 + 4 2 - 6

6

a

Model: a + b + (a + b)*c - c

b

c

+ * - output+

0

1

2

0

1

Node labels: 3 4 5 6

3

2

5

2

3

4

Encoded strings: 0 1 + 3 2 * 3 4 + 5 2 - 6

6
a

Model: a + b + (a + b)*c - c

b

c

+ * - output+

0

1

2

0

1

Node labels: 3 4 5 6

3

2

5

2

3

4

Encoded strings: 0 1 + 3 2 * 3 4 + 5 2 - 6

6

 18

Redundancy is one distinctive feature of CGP. Redundancy indicates a large number of

components which are not active in an individual in CGP. Nevertheless, they may become active

during the evolutionary process. The high proportion of redundant nodes contributes to good

performance for CGP. According to previous work with regard to CGP, it is most effective when

the level of redundancy reaches 95% [37]. Reuse of subgraphs is another prominent feature of

CGP. It makes graph-based CGP more compact than the usual tree representation. For example,

node 3 in Figure 2.4 and Figure 2.5 is used by both node 4 and node 5.

CGP has been applied to a considerable number of fields: digital circuit design [38] [39],

digital filter design [40], image processing [41], artificial life [42], bio-inspired developmental

models [43] [44] [45] and molecular docking [46] [47]. CGP has also been adopted and

hybridized within new evolutionary techniques such as cell-based optimization [48] and social

programming [49].

2.4 Particle Swarm Optimization
Particle swarm optimization (PSO) is an emerging stochastic, population based

optimization approach [50] [51]. The techniques have evolved drastically since they were created

and have been widely applied as a stochastic optimization approach to various fields.

In PSO, a solution is represented as a particle. Particles fly in the search space guided by

their individual experience and the experience of the whole population. Each particle is actually

a vector corresponding to a unique position (solution) in the search space. In addition, each

particle is also associated with a velocity which is responsible for the motion of the particle. At

the beginning of the algorithm, both the particles and their associated velocities are generated

randomly. Over each generation, each particle’s position as well as velocity is to be updated until

satisfactory solutions are found. A detailed algorithm as to how particles and velocities are

updated will be given in Section 4.4.6.

 19

2.5 A Survey of Stochastic Multi-objective Algorithms

2.5.1 Multi-objective GAs/GPs

Multi-objective GAs are the most sophisticated among all sorts of stochastic multi-

objective algorithms. The most representative multi-objective GAs include NPGA [19], NSGA

[20], NSGA II [14] and PAES [15]. All of them have adopted the techniques for convergence

and diversity described in Chapter 1.

Multi-objective GPs are relatively new. The inspiration for multi-objective GPs

originates from multi-objective GAs. Another motivation of multi-objective GP is to overcome

bloat in GPs (bloat has been detailed in previous sections), since the size of the model could be

considered as another objective [53] [54]. The main techniques of multi-objective GPs with

regard to achieving convergence and diversity are generally similar to those of multi-objective

GAs. In fact, many structures of multi-objective GAs have been mapped onto GPs by

introducing GPs representation with its associated genetic operators. However, the mainstream

applications of multi-objective GPs are usually identifying models from huge output-input data.

Rodriguez-Vazquez et al. applied multi-objective GPs on identifying the structure of a

nonlinear dynamic system [55]. The Pareto based method has been used as well as a tree-based

GPs representation in his approach. Parrott et al. designed a multi-objective GP-based classifier

[DXV2005]. Multi-objective techniques in his algorithm are motivated from Deb et al.’s NSGA-

II [14]. In his approach, classification error and size of structure are considered to be the two

objectives to be minimized. A similar idea of a multi-objective GP-based classifier has been

proposed in [56]. In addition, multi-objective GPs have been used in financial predictive models

[37] [57].

The use of an archive (or a repository) is becoming a trend in multi-objective GAs/GPs.

The main motivation for this mechanism is the fact that a currently non-dominated solution may

not necessarily be non-dominated among all the historical records. Figure 2.6 shows the flow

charts of using an archive and without using an archive.

 20

Figure 2.6 Flow charts of two methods in multi-objective GA/GP to implement elitism

2.5.2 Survey of Multi-objective GAs/GPs

2.5.2.1 NSGA-II

NSGA-II [14], proposed by Deb et al., is an improved version of NSGA [20]. The

algorithm maintains both a population and an archive with the size of N respectively. Elite

preservation is applied in each generation after the population is merged with the archive. The N

best-ranked solutions are preserved in the archive. NSGA-II also proposes fast non-dominated

sorting with complexity of O(MN2) (where M is the number of objectives) to assign ranks to the

Population solutions Archive

Merged population

Elites

New population

Selection, variation

Elite preservation

Population solutions offspring

Selection, variation

New population

Selection

Without archive

With archive

Population solutions Archive

Merged population

Elites

New population

Selection, variation

Elite preservation

Population solutions offspring

Selection, variation

New population

Selection

Without archive

With archive

 21

solution in the merged population. When the number of non-dominated solutions exceeds the

size of the archive, a crowded-comparison method for diversity is invoked to further discriminate

among non-dominated solutions. Both fast non-dominated sorting and crowded comparison

methods have been introduced in the first chapter. The total complexity of the algorithm is

O(MN2) as opposed to O(MN3) in NSGA. The techniques used in NSGA-II have also been

adopted in several multi-objective GP algorithms.

2.5.2.2 Rodriguez-Vazquez’s MOGP

Multi-objective genetic programming (MOGP) by Rodriguez-Vazquez et al. is designed

for a class of problems in engineering -- system identification [55]. In such a problem, a system

model is required to be built satisfying a number of objectives, from input-output observation

from the system.

 In Rodriguez-Vazquez’s MOGP, a non-dominated counting technique is used to obtain

non-dominated solutions. The diversity issue is addressed by a fitness sharing method which

encourages the reproduction of solutions located in sparser regions. The ‘preference information’

is introduced in the form of a goal vector, which specifies the favored region of search space

over the optimization process. Accordingly, a ‘preferability operator’ takes responsibility of

implementing objective preference based on preference information as well as keeping solutions

within boundaries. These multi-objective optimization techniques are borrowed from MOGA

[17]. With regard to GP, the hierarchical tree representation with both crossover and mutation

operators is adopted. MOGP also takes GP’s well-known bloat problem into consideration by

considering the complexity of the model as one objective to be minimized.

2.5.3 Survey of Multi-objective PSO

 Particle swarm optimization seems to be more suitable for real world MOO because of its

high speed of convergence shown in single objective optimization [52]. In recent years, applying

PSO to MOO has become increasingly popular. Moore and Chapman attempted to handle MOO

by applying Pareto dominance into their approach, although it has been criticized for not

adopting any scheme to maintain diversity [58]. The algorithm of Ray and Liew uses Pareto

dominance for convergence and crowding comparison to maintain diversity as well as a multi-

 22

level sieve to handle constraints [59]. The algorithm proposed by Parsopoulos and Vrahaits

focuses on addressing the difficulty of generating the concave portion of the Pareto front by

using an aggregation function [60]. Hu and Eberhart [61] propose a dynamic neighborhood PSO

which uses an approach similar to lexicographic ordering [62]. Fieldsend and Singh’s approach

adopts an unconstrained elite archive to store the non-dominated solutions during the

optimization process [63]. A mutation operator is also applied on the velocities to avert

premature convergence. Li [64] proposes an approach which applies the main techniques of

NSGA II [14] to PSO algorithm. In Coello et al.’s version of multi-objective PSO (MOPSO)

[21], he compares his results to three highly competitive SMO algorithms: NSAG II [14], PAES

[15] and microGA[65]. Agrawal et al. [66] proposes an interactive particle swarm optimization

algorithm (IPSO), which is similar to Coello’s MOPOS. An incorporation of a decision maker

gives this approach novelty and efficiency. Several attempts of adaptively optimizing the PSO

parameters during the optimization process have also been made by researchers in the field [67]

[68].

2.5.4 Coello’s Multi-objective PSO

Coello’s MOPSO [21] incorporates Pareto optimality with PSO to handle multi-

objective optimization. It uses the adaptive hypergrid method (one of the histogram methods) to

maintain diversity and an archive (or repository) for historical records of non-dominated

solutions and memory of the individual best of a particle.

Besides particle population and velocities, the repository is also updated each iteration.

The mechanism of the repository consists of two main parts: an archive controller for

convergence and an adaptive hypergrid for diversity. All currently non-dominated solutions are

to be inserted into the repository and dominated solutions are to be eliminated from the

repository. Once the repository is full, a secondary criterion is applied to maintain diversity:

particles located in less populated areas of objective space are reserved.

Coello argues that a mutation operator is able to improve performance because the nature

of the high convergence speed of PSO may cause the Pareto front to fall on a local optimum. In

his MOPSO an adaptive mutation operator is applied to particles as governed by a probability

each iteration. However this probability is decreased in the process of optimization.

 23

A simple scheme to handle constraints is also adopted. Whenever two individuals are

compared, it follows these rules: if both are feasible in constraints, apply non-dominance directly;

if one is feasible and the other is not, the feasible dominates; if both are infeasible, then the one

with lowest amount of constraint violation wins.

 24

CHAPTER 3 - Genetic Regulatory Network Modeling

3.1 Introduction
With the growing demand for food in the world, crop modeling has been a popular

research area for many years [69]. Before the exploding development of genomic science, crop

simulation modeling was a combination of physiology and empiricism [70][75]. The most recent

trend is to predict plant phenotype of a plant by unraveling the network of interacting genes that

actually control plant process at the expression level. Such a network in biology is called a

genetic regulatory network (GRN).

Another reason for the popularity of gene modeling is the rapid advancement in the field

of genome sequencing. As of August 2008, 843 organism genomes were completed with another

2951 in progress1. The genome of an organism consists of biologically coded information that

plays an important role in control of cellular processes, its response to environmental stimuli and

its development. Based on such circumstances, there is a major and growing gap between

available genomic data and a functional knowledge of the networks whose operations the DNA

encodes. This trend necessitates a great deal of work on the automated recovery of a gene

network from the observed data, e.g. gene expression. This type of problem is called genotype to

phenotype mapping in biology, and is considered to be a major issue facing applied biology

today [71]. In the meantime, physiological methods have been used in crop models to predict

phenotypes as responses to variable environmental inputs which may include time-varying

temperature, solar radiation and soil water balance [70][74].

With the urgent demand of gene regulatory modeling based on input environmental and

output phenotype data, there are a variety of challenges laid out in front of us [72]. Firstly, the

number of variables to be considered in a gene network model, in many cases, is very high.

Secondly, the number of gene expression profiles available may be much less than the number of

variables. Thirdly, there is no standard model of the regulatory mechanisms for the genes, except

for a generic cause-effect.

1 http://www.genomesonline.org/gold.cgi

 25

In addition, noise is another factor hindering model accuracy. Noise is inevitable in both

environmental and phenotypic data. Slight noise could be magnified by intricate interactions

within genes and make it difficult to recover a simple mathematical model.

In the rest of this chapter, Section 3.2 introduces basic concepts and terms of genetics.

Section 3.3 and 3.4 present a survey of the methodology and models that are most commonly

seen. The stochastic approach and its effort to address those challenges in gene regulatory

modeling are explained in Section 3.5. The final section, 3.6, describes a flowering control

model of a type of intensively studied plant Arabidopsis thaliana, which is used in the problem

formulation of this dissertation in Chapter 4.

3.2 Basic Genetics
 In biology, genomes contain an organism’s entire hereditary information, which is

encoded as deoxyribonucleic acid (DNA). The genome is made up of one or more extremely long

molecules of DNA that are organized into chromosomes. DNA is a linear, double helical

structure that looks like a molecular spiral staircase. The double helix is composed of two

intertwined chains made up of building blocks called nucleotides. Genes are the region of

chromosomal DNA that carry information specifying the chemical composition of proteins,

which largely determine the structure and physiology of organisms. In the from-gene-to-protein

process, genes specify the information on the timing as well as the amount of proteins to be

synthesized. The primary structure of a protein is a linear chain of amino acids.

 There are several steps leading from an active (expressed) gene to a protein. Two of them

are transcription and translation [73]. Transcription is a process that copies the nucleotide

sequence in one strand of gene into a complementary single-stranded molecule called messenger

ribonucleic acid (mRNA). Subsequently translation produces a chain of amino acids based on the

sequence of nucleotides in the mRNA. Those chains of amino acids will ultimately form proteins.

 Genes are inactive when the DNA wraps around complexes of modified histone

molecules (nucleosomes) making it inaccessible to transcription mechanisms. In order to become

active, certain molecules must attach to the promoter region, an area of DNA upstream of the

segment coding for the protein. These attaching molecules, often protein, are known as

transcription factors.

 26

Another important concept in genetics is genetic variation, which specifies the

phenomenon that any particular gene may exist in different forms in different individuals. The

different forms of the same gene are called alleles. This allelic variation is the basis for

hereditary variation. However, because there are only one or two chromosome sets per cell in

most organisms, there are only one or two alleles per gene. The classification of individuals by

allelic combination is called genotype. In contrast, the characterization of organisms by their

appearance is called phenotype. Even for the same genotype, environmental variation can cause

distinctive phenotypes.

3.3 Gene Regulatory Network Modeling
Gene regulatory network modeling focuses on discovering the interaction between genes

from genetic, environmental, and phenotypic observations. This kind of problem is considered as

reverse engineering from a system engineer’s standpoint, which tries to use the behavior of the

system itself to directly infer the interactions of the system.

However, there is no single standard modeling approach to discover the structure and

functionality of gene regulation from a large scale phenotypic and gene expression data. The

choice of model is more of problem dependent. Moreover, a models often have parameters. Thus

different techniques are required to estimate these parameters. In this section, most common

gene regulatory network (GRN) modeling approaches as well as optimization techniques are

introduced.

 3.3.1 Graphical Models

In genetics, the transcription process begins with the transcription factor (attaching

molecules) attaching to the promoter. The involvement of attaching molecules provides a means

for gene regulation. If any needed molecules are unavailable, transcription can not begin and the

gene is inactive. Transcription factors and mRNA degrade with time so their continuous

production is required to sustain their action. In many cases, the transcription factors themselves

are gene products that may be under gene regulation by others. In the opposite manner, some

molecules (called repressor molecules) may occupy the attachment to the promoter and block

transcription. Based on above understanding, it is straightforward and natural to use a graphical

model to simulate the transcription process [76] [78] [79]. Graphical models generally consist of

environmental inputs, phenotypic output(s), graphical nodes representing genes and arrows

 27

indicating the interaction between them (either promotion or repression factor). A simple

example of genetic graphical model is in Figure 3.1. In this case, protein 1 has a repressing effect

to its own gene (marked in ‘-‘), but has a positive promotion on the transcription of gene 2

(marked in ‘+’).

One criticism on graphical models is the lack of quantitative estimation on the outcomes

based on environmental inputs and gene interactions. The graphical model is straightforward and

easy to understand but qualitative and incapable of making arithmetic predictions.

Figure 3.1 An example of genetic graphical model

3.3.2 Boolean Network Models

In Boolean networks, models are presented as a directed graph where each node in the

graph represents a gene. Different from graphical models, each node gives an output value of

either “0” or “1”, corresponding to the active (“on”) or inactive (“off”) status of a gene. Other

nodes receive binary output values as their inputs. Inputs go through the node’s internal Boolean

function and calculate the current state of the node as output.

Conventional Boolean network models make use of a synchronous update scheme where

each node in the model is updated at the same time controlled by a central clock. A sequence of

states generated by Boolean functions is finite and may be repeated after certain number of

updates. This is usually referred to as the state cycle or attractor. The structure of the Boolean

network model can be validated or modified by comparing simulation results with time series

observations.

-

Protein 1 Protein 2

+

Gene 1 Gene 2Promoter
area

Promoter
area

-

Protein 1 Protein 2

+

Gene 1 Gene 2Promoter
area

Promoter
area

 28

Boolean network models have been used in genetic regulatory network modeling [80]

[81] [82] and proved their analytical tractability and accuracy, although there are reports about

the difficulties to simulate temporal dynamics of the real system [83].

3.3.3 Differential Equation Models

Differential equation models are used to simulate the cellular production rates of

important proteins. These protein rates are often related to the concentrations of mRNA and

levels of gene activation (transcription). In Baldi and Hatfield’s model [85], for example, the

gene expression level is presented dynamically associated with mRNA and protein levels. It can

be written in the following equation:

pR
dt
dp λ−= g ,

where p is the biochemical level; R and pλ are the production and degradation rates of p per unit

time and g is assumed to be a factor relating other gene products to production of p. To simulate

genes’ on/off behavior, g is usually considered to be a transfer function instead of a parameter

constant. We obtain the updated model after substituting g with a linear

form NN ppp βββ +++ ...1100 , where pi represents the levels of gene products affected by gene

i and iβ is the effect strength of gene i (a negative number for promotion and positive number

for repression). Under above circumstances, the new model can be written as:

ppR
dt
dp

i
ii λβ −⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=0

g .

 In general, differential equation models are suitable for modeling complex dynamic

system such as oscillations, cyclic patterns and switch-like behaviors [84]. However, a second

step of estimating the parameters that associate with differential equation models is inevitable,

which may increase the complexity of modeling process.

3.3.4 Linear Models

A gene regulatory network can be represented as a discrete time

equation))(()1(tt xfx =+ , where))(),...,(()(1 txtxt N=x is a vector of element)1(Nixi ≤≤

Eq. 3.1

Eq. 3.2

 29

representing gene expression levels at time t and),...,(1 Nff=f is a vector valued function from

N dimensional space Nℜ to Nℜ . When function f is linear, the equation becomes a linear model.

In general, a biological system is nonlinear, but nonlinear models may cause more difficulties in

estimating parameters from limited number of data samples. In addition, by using linear models

for GRN, regulatory genes’ interaction functions can be expressed as a regulation matrix. Then

linear algebra methods such as linear regression, principal component analysis, singular value

decomposition (SVD), Gaussian methods, etc., can be applied to solve linear models and

estimate the strength of interactions. Examples of linear models can be found in [90] [91] [92].

3.3.5 Stochastic Models

 The latest results in genetics demonstrate gene expression as a stochastic process [86]

[87]. Many stochastic models are created on the basis of this new discovery, such as [88] [89].

One typical example of this class of model is the Langevin Equation [89], which is obtained by

adding one more term to a differential equation as noise:

)()(tvxf
dt
dx

iii += ,

where vi(t) is the additive noise term.

In addition, since the stochastic models simulate a stochastic process, it uses Monte-Carlo

algorithms, which is a class of computational algorithms that relies on repeated random sampling

to approximate real results, to obtain solutions of the equation.

3.3.6 Neural Network Model

Neural networks were initially devised to model brain function to imitate cognitive feats

such as the learning process and pattern recognition. A neural network model is composed of

interlinked nodes (neurons), each of which always has a number of inputs and one output. Each

interlink of a node is also associated with a weight value. Each node also contains one transfer

function (often a sigmoidal function) that incorporates non-linearity into the model. To calculate

the output of a neuron, nodal inputs’ combinations with their associated weights are passed to the

transfer function to obtain the output. In a word, the function of a neural network completely

depends on four elements: i) the structure of its nodes and interlinks between them, ii) the

Eq. 3.3

 30

method of combining nodal inputs for substituting into the transfer function, iii) the transfer

function itself and, iv) weights value associated with each link. The first three elements are

designed in advance while the last element weights are optimized to fit output data. This process

is termed the training process. There have been a number of optimization techniques applied in

neural network training, such as back propagation approach, genetic algorithms and particle

swarm optimization.

In Welch et al.’s genetic neural network model [70], neural network is used to simulate

ON and OFF behavior in gene regulation. Each node existing in the neural network model

represents a gene. When this gene is turned ON, the weight applied on this interlink corresponds

to the effect of regulation by this gene. However, mutation can result in deactivation of a gene so

it does not function at all.

One of difficulties in neural network modeling is that modelers do not have preliminary

knowledge on how large the network should be designed. Larger networks with more weights

are presumed to retain knowledge of a more complicated nature and also cause the increasing

complexity in modeling. A common method in neural network modeling is starting with smaller

network and adding more nodes later when training efforts are not successful.

 Some common approaches in GRN are reviewed in this section; however other methods

such as Bayesian networks [93] are not discussed. The novel and emerging stochastic approach

for GRN is revealed in the next section.

3.4 Stochastic approaches in Gene Regulatory Network (GRN)
Stochastic approaches such as genetic algorithms (GAs) and genetic programming (GPs)

have been used in clustering of gene expression data [94] [95], inference of GRN structure [96]

[97] and estimation of model associated parameters [70] [77].

In this literature, GAs are mostly used in model parameter estimation. Many GRN

models introduced before are parametric models, e.g. differential equation and neural network

models. Model parameter estimation can be considered as a non-linear optimization problem,

where the objective function is the goodness-of-fit criterion. Commonly used goodness-of-fit

criteria are least mean square (LMS).The optimizer may search the objective function space and

converge to satisfied solution(s). One difficulty in such a problem is the estimation of solution

 31

may have premature convergence and land on local optima rather than the desired global

optimum. This challenge arises from the complexity of the search landscape that commonly

emerges in global optimization problems. In GA-based parameter estimation methods, a solution

(chromosome) is actually the string of parameters to be optimized associated with GRN structure

represented as a mathematical model. Selection, crossover and mutation operators are applied on

the population of solutions until they converge to satisfactory results.

GP is an extension of GA, where candidate solutions are represented as certain structures

rather than a string of numbers. This feature makes GP more suitable for estimating the structure

or topology rather than the parameters of a network. For instance, Ando et al. [96] used GP to

generate differential equation models, which represent genetic networks. Each GP solution is

designed as a tree structure of mathematical operations (functions) and variables (terminals) and

those variables represent each gene’s mRNA concentration level. An example of how a

differential equation model is encoded into a GP solution is shown in Figure 3.2. The two tree

structures in the figure correspond to differential models as follows:

bxax
dt
dx

+= 2
21

1

221
2 dxxcx

dt
dx

+= ,

where a, b, c, d, are model parameters.

 The fitness of each solution is defined as the sum of the squared error and the penalty for

the degree of the equations:

 matktxtktxfitness
n

i

T

k
ii *))()((

1

1

0

2
00

' +Δ+−Δ+=∑∑
=

−

=

,

0t : the starting time

 tΔ : the step size

 n : the number of the observable components

 T : the number of the data points

where)(0 tktxi Δ+ is the given target time series (k = 0, 1, …, T-1);)(0
' tktxi Δ+ is the time

series acquired by calculating the a GP solution. m is the number of terms and a is the weight

constant. This penalty term is generated to overcome the bloating problem in GP based on

minimum description length (MDL) criterion, which has been often used in GP. In other words,

Eq. 3.4

Eq. 3.5

Eq. 3.6

 32

the definition of fitness in [96] indicating a solution with a smaller number of terms and closer to

the target time series has ae higher possibility to be selected in stochastic optimization process.

Similar work using GP for GRN structure inference can be found in [97].

 Besides GA and GP, particle swarm optimization is another popular and fast growing

bio-inspired optimization algorithm. It has advantage of fast convergence and thus has been

applied to various optimization problems in GRN [98] [99].

Figure 3.2 An example of a GP solution in [96]

3.5 Multi-objective Approaches in Gene Regulatory Network Modeling
To date, most algorithms developed to infer GRN are single-objective. However,

previous work on single objective GRN showed that a network found by single objective

algorithms can generate similar results to experimental data but they may not have structural or

numerical resemblance to the real network [100] [101] [102]. This may occur because the

optimization process is caught in local optima. Stochastic multi-objective approaches preserve

the diversity of solutions in a population and present them as a Pareto front. Thus they are able to

find multiple optima hopefully including the global optimum [103].

The multi-objective optimization approach is likely to be more suitable for genetic

regulatory modeling and its associated parameter estimation based on following three reasons

+

* b

x2 *

x1 x2

dx1/dt
+

* x2

x2 x1

dx2/dt
+

* b

x2 *

x1 x2

dx1/dt
+

* x2

x2 x1

dx2/dt

 33

[77]: i) Multiple data types (continuous, discrete, and/or categorical) are very problematic for the

design of a single objective function; ii) Individual data sets usually are from different sources

and may be inconsistent; iii) Tradeoffs between solutions may reveal the magnitude of

discrepancies.

Based on above reasons, research on multi-objective algorithms in gene regulatory

network modeling is relatively new but growing. Several attempts at applying multi-objective

approaches to GRN have been made [103] [77].

3.6 Flowering Control in Arabidopsis thaliana
 Studies in flowering control are very critical in crop modeling to establish the growth and

yield generating process within temporal limits. There has been extensive research on flowering

control in Arabidopsis due to its small genome, short generation time, self-compatibility,

amenability to stable transformation and the availability of numerous mutants [70]. Arabidopsis

is a long-day plant. This means the stimulus of long days promote flowering in response. Under

short days, flowering will be much later. Flowering in Arabidopsis consists of two stages; the

first stage is to form an inflorescence (or bolting) and the second is to produce flowers. These

two stages can be distinguished genetically [104]. The bolting stage is hugely influenced by

environmental signals, such as day length and temperature; while the latter stage is less affected

by additional environmental inputs. So in most related works on flowering control modeling of

Arabidopsis, inflorescence (or bolting time) is considered as the criterion of flowering.

 Flowering control in Arabidopsis at the genetic level has been gradually discovered and

revealed with the advancement of genetic biology. The gene regulation of flowering control

system, as shown in Figure 3.3, is well understood now. Input information includes the

photoperiodic promotion pathway that senses day lengths; verbalization pathway that responds to

an extended period of cold; the gibberellins pathway that responds growth hormone levels and an

autonomous pathway. In the figure, Flowering Locus C (FLC) is a major repressive integrator

gene which is downregulated by both the autonomous and vernalization pathways. The

photoperiod pathway gene Constans (CO) functions to combine diurnal clock phase information

with photoreceptor input to measure day length. Expression levels of key genes, including FLC,

SOC1 and Flowering Locus T (FT), are altered through the input information from all the

pathways and are fed into a three-gene-switch including the inflorescence identity gene Terminal

 34

Flower 1 (TFL1) and the floral meristem identity genes LFY and Apetala1 (AP1). When this

switch turns on, the plant is committed to flowering. The expression level of this three-gene-

switch then feeds into floral differentiation and determine the growth of reproductive plant parts

(flower, etc.).

 35

Figure 3.3 Flowering Time Control in Arabidopsis

Light

reception Clock

Photoperiod Pathway

CO

FLC

Autonomous
Pathway

Vernalization
Pathway

FT SOC1

TFL1Apex

Gibberellin

Pathway

AP1

TFL1 LFY

Floral
Commitment

Switch

Floral Differentiation

Light

reception Clock

Photoperiod Pathway

CO

FLC

Autonomous
Pathway

Vernalization
Pathway

FT SOC1

TFL1Apex

Gibberellin

Pathway

AP1

TFL1 LFY

Floral
Commitment

Switch

Floral Differentiation

 36

CHAPTER 4 - Problem Formulation and Multi-objective GP-PSO

Hybrid Algorithm

4.1 Introduction
There are a small number of model organisms whose genetic networks have been studied

in detail including Arabidopsis, bakers yeast, nematode, the sea urchin, and the fruit fly,

Drosophila, among others. This research is directed at genetic models of Arabidopsis.

The general approach to gene network modeling involves developing mathematical

models such as Boolean networks, Bayesian models, and linear differential equations and then

utilizing available experimental data to estimate the parameters associated with these models.

The goal in this research, however, is to infer a gene regulatory network structure and its

parameters directly from large amounts of both gene expression data and phenotype data

simultaneously. Identification of genomic regions that contain key genes, plus knowledge of

their interactions may be sufficient for some applications [105] [106].

4.2 Data
Environmental data were collated as part of the activities of an international consortium

investigating the evolutionary aspects of gene network pathway signal integration1. This project

provided the context for a synthetic data set constructed for structure discovery. Eighteen sites

were selected ranging from Coimbra, Portugal (40°13’N, 8°25’W) to Jokioinen, Finland

(60°49’N, 23°30’W). For each day of the year from March 1 to June 30, daily average

temperatures, (Tmax+Tmin)/2, were averaged for 25-30 years (most often 1971-1998),

depending on the site. Daily photoperiods were obtained for these sites and dates from the

United States Naval Observatory2. Due to plants’ sensitivity to light, we followed a common

plant modeling practice of using Civil Twilight, which begins/ends with the sun six degrees

below the horizon.

A synthesized and parameterized network, which mimics key features of the well known

Arabidopsis thaliana flowering time control genetic network, was generated [107]. Functional

1 http://www.egad.ksu.edu
2 http://aa.usno.navy.mil/data/docs/RS_OneYear.html

 37

characteristics of individual genes will be described in the next section; broader discussions of

gene computational abilities are beyond the discussion of this dissertation, but can be read in [85]

[108] [110]. Each gene had a single parameter that was assigned one of two different values,

representing different mutant alleles. One hundred distinct genotypes were constructed

representing different allelic combinations, as shown in Figure 4.1. Each genotype was described

by 100 markers, equated for prototyping purposes to genes, among which the network genes

were hidden. Each gene in the genome had two alleles, encoded as ‘0’ and ‘1’ accordingly, but

only network genes influenced the phenotype. Each genotype was simulated at each site for each

of three assumed planting dates spaced ca. one month apart. The synthetic data resulting from

these simulations included: (i) the day of the year that the first inflorescence bud would become

visible (bolting date, a commonly used proxy for floral initiation), and (ii) the gene expression

time series for one gene in the actual network.

Figure 4.1 Illustration of synthetic genomes

01000110010111….110010101111

11000101010111….001110101011

11000101010111….001110101011

…
.

10101010111010….111000010100

01010111010111….000111110101

Locus #1

100 genotypes…
.

Locus #100

01000110010111….110010101111

11000101010111….001110101011

11000101010111….001110101011

…
.

10101010111010….111000010100

01010111010111….000111110101

Locus #1

100 genotypes…
.

Locus #100

 38

4.3 Synthetic Network
The goal is to obtain a simplified genetic network that can simultaneously predict both

the bolting dates and expression data as close to the synthetic data as possible. The performance

measure was the Root Mean Squared (RMS) error E of the predictions of the generated models

as compared to the synthetic data. That is,

()2data mod
n

el
i i

i
D D

E
n

−
=
∑

where data
iD and model

iD are, respectively, the synthetic bolting dates (or gene expression) and

those predicted by a particular model structure for the ith combination of genotype, geographic

site, and planting date. The optimization routine should simultaneously minimize the RMS errors

in prediction of both bolting dates and gene expression data, hence necessitating the use of multi-

objective optimization algorithms.

The genes in the model genetic network are allowed to implement any of the following

four functions: (i) gain: 1ico g ⋅= (ii) summer: 21 iico s +⋅= (iii) multiplier: 21 iico m ⋅⋅= (iv)

integrator:)()1()(1 tictoto i ⋅+−= . In each of the cases, i1 and i2 are the inputs and o the output.

Each gene has a single parameter associated with it (c = gc , sc , mc or ic). As we allowed only

two alleles per gene, each parameter is assigned two separate numerical values, one for each

allele. Additionally, there are two inputs to each gene which can be either the outputs from other

genes in the network, or an environmental input – either the photoperiod (P) or the temperature

(T). These operators were chosen because (i) genes are, in fact, able to biochemically

approximate them [108]; (ii) the first three ground quantitative genetic equations, currently the

dominant formalism applied to the genotype to phenotype mapping problem and to the initial

steps in gene discovery [111]; and (iii) all four are used to synthesize simple physiological

process models that approximate plant behavior at a higher level of biological organization

[108].

Eq. 4.1

 39

Gene Identification

Multi-Objective GP

Multi-Objective PSO

Gene Identification

Multi-Objective GP

Multi-Objective PSO

4.4 Multi-objective GP-PSO Hybrid Algorithm

4.4.1 Overall Hybrid Algorithm

A multi-objective GP-PSO hybrid algorithm is proposed to address the defined problem.

This approach can be roughly divided into three stages, as shown in Figure 4.2.

The first stage is for data pre-processing. It is well known that a biological system may

contain a large number of genes and computational time grows exponentially along with the

number of genes in the network model due to the curse of dimensionality. Therefore it is

imperative to reduce total gene numbers in order to avoid huge computational overhead in

modeling. The first stage, gene identification (GI), is applied to accomplish the above goal and

identify a set of genes that are most likely to influence the flowering response.

After this, the multi-objective GP initializes a random population of N solutions, each of

which is a network structure comprised of M identified genes. All the structures are evaluated

and stored in a GP archive1 as parent solutions. The use of this archive is for elite preservation

which can be seen in a variety of stochastic optimization approaches. A mutation operator is used

to generate new gene network structures.

Figure 4.2 A three-stage flow chart of overall hybrid algorithm

1 GP archive is named to distinguish PSO archive for parameter estimation.

 40

For each new network structure, multi-objective particle swarm optimization is applied to

estimate parameters. Least RMS errors are adopted as the criterion in the predictions of both

bolting date and gene expression. After that, the PSO non-dominated front, comprised of equally

good estimated parameter vectors under the structure, is obtained and stored in the PSO archive.

The solutions in the PSO archive, each of which consists of a network structure and its

associated best estimated parameter vectors, and their corresponding RMS errors (fitnesses), are

returned to multi-objective GP.

Multi-objective GP use returned solutions in conjunction with parent solutions to

recalculate its new non-dominated front and then stored it in the GP archive. The solutions

retained in the GP archive become the parent solutions for the next generation. This process is

repeated for the maximum allowed number of generations. One critical component of algorithm

design is that the method to form the non-dominated front in either multi-objective GP or PSO

satisfies the definition of good dominance and diversity.

4.4.2 Gene Identification

 Each genotype consists of 100 genes but only a subset of unknown cardinality is actually

present in the flowering time control regulatory network. The basic goal of the gene

identification step is to exclude genes from network membership if their alleles do not alter

bolting time.

 The detailed procedure is as follows. For each of the 100 loci, genotypes are divided into

two groups based on their alleles. F-tests are applied to the corresponding bolting dates in these

two groups. These tests reveal if the overall bolting date sets associated with different alleles are

different with high statistical confidence. This is a simplified form of quantitative trait locus

mapping (QTL) [111] [109], a standard mathematical method used as part of gene discovery.

Average p-values of F-tests are shown in Appendix B. A smaller p-value indicates its

corresponding gene is more likely to appear in the network.

 41

4.4.3 Multi-objective Optimization Issue and Archive Control

As explained in prior section, convergence and diversity are the two criteria [13] [7] for a

multi-objective optimization algorithm: solutions should (i) rapidly converge to the Pareto front

and (ii) be spread out on the front with proper intervals. To aid in rapid convergence, our

algorithm implements non-dominated sorting and a histogram method is utilized for maintaining

diversity in the resulting non-dominated front. Each of these two components is detailed as

follows.

Non-dominated sorting approach [14]: In the first generation, a population of N solutions

is ranked into different non-dominated fronts, each of which consists of solutions that do not

dominate each other. Each solution can be compared with every other solution in the population

to find if it is dominated. This requires O(MN) comparisons for each solution, where M is the

number of objectives. To find the non-dominated front with the highest rank (the first non-

dominated level), the total complexity is O(MN2). The solutions of the first non-dominated front

will then be saved as elites in an archive. In the following generations, each of offspring

solutions is compared with every member in the archive, solutions that have been dominated in

the archive are discarded and the ones that dominated them are inserted into the archive. Suppose

the size of the archive is also N, archiving process also requires O(MN2). So the complexity of

the non-dominated sorting algorithm in each generation is O(MN2).

Adaptive Histogram method (Hypergrid) [15] [21]: When the number of non-dominated

solutions exceeds the archive size, the histogram method is activated for truncation and keeps the

size of the front within that of the archive. The motivation behind this method is to produce a

well-distributed non-dominated front. In the histogram method, the objective function space is

divided into identically sized grid cells and more densely populated compartments are thinned.

When the new solution is inserted into the archive, there may be two scenarios: i) If the new

solution lies within the grid bounds, algorithm goes to archive flow control process directly

(shown in Figure 4.3, case 1); ii) If the new solution lies outside the current grid bounds; the

grids are restructured to include the new solution before following the archive flow control

process (shown in Figure 4.3, case 2).

 42

Figure 4.3 Graphical representation of the insertion of a new solution in the adaptive

hypergrid when individual lies within/out current boundaries of hypergrid

In the archive control process, a fixed size archive is used to store the set of non-

dominated solutions obtained at the end of each generation. The decision whether a new solution

should be put into archive or not is based on different scenarios as follows: if the archive is

empty, then new solution is accepted (case 1, Figure 4.4); if the new solution is dominated by

any solution in the archive, it is discarded (case 2, Figure 4.4); otherwise it is accepted into the

archive and also any solutions dominated by the newly added solutions are removed from the

archive (case 3, Figure 4.4); lastly, if the maximum archive size is exceeded, the histogram

method is invoked for truncation (case 4, Figure 4.4).

f1

f2

b

NS= New Solution

NS
a

f1

f2

a

f1

f2

b

NS
a

f1

f2 a

Case 1

Case 2

f1

f2

b

NS= New Solution

NS
a

f1

f2

a

f1

f2

b

NS
a

f1

f2 a

Case 1

Case 2

 43

Both multi-objective GP and multi-objective PSO have their own archive but the same

multi-objective optimization techniques and archive control strategy are applied to form a non-

dominated front in GP and PSO archives respectively.

Figure 4.4 Archive flow control process

4.4.4 Representation Using Cartesian Genetic Programming

Cartesian genetic programming [32] is used to represent network models. Each solution

is represented in the form of a string containing C fields, shown in Figure 4.5, where C is the

number of putative network genes. Each field contains four entries, which designate the two gene

inputs (either upstream network genes or environmental inputs), an entry representing gene

function (g, gain; s, summer; m, multiplier; or i, integrator), and an index identifying the gene in

the data that this particular field in the solution represents.

Empty
Archive

NS

NS

S1NS f S1

S1NS NSp S1
S2
S3
S4
S5
S6
S7

NS Histogram
method

Case 1 Case 2

Case 3 Case 4

NS= New Solution

Empty
Archive

NS

NS

S1NS f S1

S1NS NSp S1
S2
S3
S4
S5
S6
S7

NS Histogram
method

Case 1 Case 2

Case 3 Case 4

NS= New Solution

 44

…… ..

input (i1) input (i2) function(g/s/m/i) index(1,2, … M)

1 2 3 C
…… ..

input (i1) input (i2) function(g/s/m/i) index(1,2, … C)

1 2 3
…… ..

input (i1) input (i2) function(g/s/m/i) index(1,2, … M)

1 2 3 C
…… ..

input (i1) input (i2) function(g/s/m/i) index(1,2, … C)

1 2 3

Figure 4.5 Representation of a solution as a string in CGP

Figure 4.6 shows an example solution containing five genes that were identified during

the gene identification process, along with the corresponding gene network. Bolting is predicted

to occur at the earliest time when the output of gene 4 reaches or exceeds 1. In all the models

there are two environmental input parameters: Photoperiod (P) and Temperature (T). Since gene

4 obtains its inputs from genes 1 and 2 whose inputs are environmental, the functional part of

this network consists of only three genes. The nonfunctional portion is shown with dotted lines;

genes 3 and 5 are effectively excluded. It is worthy to note that the number of effective inputs is

determined by the function of the gene itself. Take gene 3 for instance, its function is g: gain,

hence it has only one effective input from upstream genes. Its second input from Temperature (T)

is not effective and not shown in the figure. In addition, it should be noted that this scheme only

encodes network structure. The associated parameters gc , sc , mc and ic are stored separately

and used in the multi-objective PSO section.

 45

Figure 4.6 Representations of a sample solution and its corresponding network topology

4.4.5 Mutation

The main objective of the mutation operator is to provide sufficient exploration of the

search space. Network description elements mutate according to predefined probabilities and

within ranges of field-specific feasible values. Additionally, mutations are subject to the

following constraints: (i) feedback loops are not allowed, and (ii) gene indexes are unique. From

prior knowledge, it is known that several well worked out developmental genetic networks have

largely feed forward topologies. So loops were excluded from candidate structures in order to

reduce mathematical computations in this prototype. In addition, gene index entries (field 4)

must be unique within any one solution string, since markers (genes) are distinct entities.

Figure 4.7 is an example of applying the mutation operator on encoding strings and the

corresponding changes on the network structure. Bold elements in the strings show the entries

that were mutated. Index numbers in gene 2 and gene 3 switch and one input entry of gene 4 flips

from 1 to 3, which causes a drastic change in network structure: gene 3 is included into the

network and becomes functional. This process is called activation of redundancy as illustrated in

Section 2.3. In the same manner, a previously functional gene may be inactivated and become a

dysfunctional gene.

Crossover is another commonly used variation operator in GP. According to [32],

empirically, crossover does not show statistically significant improvement on the performance of

CGP representation. Nevertheless, the lack of a crossover operator necessitates a high mutation

rate. A mutation operator with a 12% mutation rate is used in our hybrid algorithm.

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

18

1

P

T

80

2

32
92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

18

1

P

T

80

2

32
92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output

 46

Figure 4.7 Network topology change after applying mutation operator

4.4.6 Multi-objective PSO Based Parameter Estimation

Multi-objective PSO as implemented here has adopted several techniques from Coello’s

MOPSO [21]. For each regulatory network structure generated by the multi-objective GP

algorithm, PSO is used to obtain the parameters associated with each gene. The parameters c1

through cM are treated as a vector c and the swarm is populated initially by a random vector c(j), j

= 1, …, P, where P is swarm size. Each vector c(j) corresponds to a position of the jth particle in

the swarm. There is also a PSO archive that stores non-dominated parent solutions.

Letting subscripts t and (t+1) denote iteration numbers, positions are incremented from

the instantaneous velocity, vt(i), as follows,

ct+1(i) = ct(i) + vt(i). Eq. 4.2

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 32 2 T g 80 3 2 s 92 2 5 i 24

18

1

P

T

32

2

92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output80

Mutation operator

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

18

1

P

T

80

2

32
92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 32 2 T g 80 3 2 s 92 2 5 i 24

18

1

P

T

32

2

92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output80

Mutation operator

4

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

1 2 3 4 5

P T m 18 P 1 s 80 2 T g 32 1 2 s 92 2 5 i 24

18

1

P

T

80

2

32
92

5

24

3
Bolting

Decision
Output

Bolting
Decision
Output

 47

The velocity is updated using the particle’s own recorded previous best position, as well

as the current location of the other particles. The update rule is

vt+1(j) = χ×vt(j) + C1×U[0,1]×(cib(j) – ct(j)) + C2×U[0,1]×(cgb,t(h) – ct(j)).

In the above equation, C1 and C2 are, respectively, the cognitive and social constants, and

χ is a constriction coefficient, which helps in maintaining stability. U[0,1] is a uniformly

distributed random number in the range of [0, 1]. The quantity cib is the individual best recorded

position of the ith particle so far. cgb,t(h) is a value that is taken from the PSO archive; index h is

selected in the following way: the hypergrid which contains least particles is chosen and cgb,t(h)is

one particle randomly picked in this hypercube. cgb,t is considered as the global best position, in

terms of diversity, of any particle in the current iteration t in our approach.

Velocity and position corrections are applied to restrict particles to the predefined search

space. When a particle moves beyond the specified region, it is returned to the boundary it has

passed beyond. Additionally, its velocity is multiplied by (-1) so that the particle bounces back to

search in the opposite direction.

The evaluation of a solution is based on the minimum RMS errors of the objectives

evaluated using the equation in Section 4.31. To compute the bolting date goodness-of-fit, the

gene with the least RMS error is taken to be the network output gene and is used to score the trial

solution. The same method is applied to evaluate gene expression error. The flow chart of our

multi-objective PSO is shown in Figure 4.8.

Eq. 4.3

 48

Figure 4.8 Flow chart of multi-objective PSO for network parameters estimation

START

Create random particle population (including
positions and velocities) and save them in PSO

archive

Update particles’ velocities and positions
according to given expression

Evaluate each particle in population

Maintain particle within search boundaries

Does non-dominated
solutions exceed the

size of archive?

Insert non-dominated solutions from population
to repository and eliminate dominated ones from

archive

Update best performance so far for each particle

No

Generate hypergrids in objective space and
eliminate non-dominated solutions densely

populated hypergrids

Yes

Number of PSO iteration

reached?

END

Yes

NO

START

Create random particle population (including
positions and velocities) and save them in PSO

archive

Update particles’ velocities and positions
according to given expression

Evaluate each particle in population

Maintain particle within search boundaries

Does non-dominated
solutions exceed the

size of archive?

Insert non-dominated solutions from population
to repository and eliminate dominated ones from

archive

Update best performance so far for each particle

No

Generate hypergrids in objective space and
eliminate non-dominated solutions densely

populated hypergrids

Yes

Number of PSO iteration

reached?

END

Yes

NO

 49

CHAPTER 5 - Results and Discussion

5.1 Introduction
This chapter explains the details of the results after extensive experiments with

simulations of the GP-PSO hybrid algorithm. The structure of the rest of this chapter is as

follows: Section 5.2 briefly describes the simulation setup of the hybrid approach. Section 5.3

focuses on presenting and analyzing results obtained from the simulations.

Root mean square error (RMS) between predicted and target data is considered as the

‘fitness’ of the hybrid approach. Our algorithm is two-objective: one objective is to minimize

RMS between predicted and target bolting time and the other is to minimize RMS between

predicted and target gene expression data. After simulation, a non-dominated front consisted of

multiple solutions (gene networks) will be shown. One or two gene networks will be extracted

from the non-dominated front and illustrated graphically. Parameters and functions associated

with the gene network will also be demonstrated in tables. The synthetic network, which was

referred to in Section 4.3, will be revealed. Predicted output from obtained networks (both

bolting dates and gene expression) will be compared with that of the synthetic network

(explained in Section 4.2). In addition, both obtained networks and synthetic networks will be

compared and analyzed in mathematical equations. The last section of this chapter, Section 5.4,

will address specific issues related to the obtained results.

 50

5.2 Simulation Setup
For the multi-objective GP, a population of N = 50 solutions was used with a fixed

archive size of 50. The maximum number of generations was set to 60 with a mutation rate of

12%. A population size of P = 50 was used for the PSO algorithm, and the total number of

iterations per generation was set to 100. The PSO archive size was fixed at 50. The cognitive

and social constants C1, C2 were set to 2.0 and 2.1, respectively. The constriction coefficient χ

was set to 0.4.

From the gene identification stage, we were able to evaluate each gene’s confidence level

how that gene is likely to affect the final phenotype. But we did not have any prior knowledge of

the number of genes that existed in the gene network. Thus multiple runs with different numbers

of identified genes M = 6, 8, 10, 12, 14, 17, respectively, were carried out. Noisy phenotype data

(STD = 2 days) were used in the genes number M = 17 run.

Based on the simulation setups, the number of function evaluations for each objective is

50*60*50*100 = 1.5×107.

5.3 Results
The synthetic network that was used to generate the problem data is shown in Figure 5.1.

Its associated parameters and functions for each of the nodes are shown in Table 5.1. In the rest

of this thesis, the parameters and functions table for gene networks will be presented in the

following manner: the first column shows the gene index numbers in the network; the second

column shows the corresponding functions; the third column indicates parameter symbols, the

subscript parts of which imply the initial letter of the function and corresponding gene index

number; the fourth column presents parameter values for allele marker #0; and the fifth column

presents parameter values for allele marker #1.

Figure 5.1 The synthetic gene regulatory network

32

Output

18

24

80

54

92
Bolting

Decision

P

T

Gene
Expression

Output

32

Output

18

24

80

54

92
Bolting

Decision

P

T

Gene
Expression

Output

 51

Table 5.1 Parameters and functions associated with synthetic gene network shown in figure

5.1

Gene # function
Parameter

Symbol

Parameter Value
for Allele #

 0 1

18 gain ,g 18C 1.2 0.8

24 gain ,24gC 0.8 1.2

32 summer ,32sC 0.9 1.1

54 multiplier ,54mC 8.1e-5 8.5e-5

80 summer ,80sC 6.2e-4 6.3e-4

92 integrator ,92iC 0.8 1.2

In order to assess the performance of the proposed algorithm, solutions in the initial

population as well as those obtained at the end of the algorithm’s execution are compared. Figure

5.2 shows the non-dominated front obtained in one of the sample runs for M = 6. The points with

the (+) sign represent the non-dominated solutions in the initial randomly generated population

and points with the (*) sign represent the non-dominated solutions obtained at the end of the run.

It can be seen from the figure that the algorithm has good convergence on both objective and at

the same time achieved an evenly distributed final non-dominated front.

Figure 5.3 and Figure 5.4 show the network structures of two sample solutions selected

from the final non-dominated solutions front for the run with M = 6, respectively. The predicted

RMS errors of the sample #1 solution of the 6-gene run are 2.3 days (bolting date) and 0.0003

(gene expression level). It has all the genes present in the synthetic network, except for gene #54.

Similarly, the RMS errors of its counterpart non-dominated sample #2 solution in our 6-gene run

are 1.8 days and 0.0009, respectively.

Table 5.2 and Table 5.3 show the associated parameters and functions for each node

illustrated in Figure 5.3 and 5.4 respectively.

 52

Figure 5.2 Non-dominated solutions obtained from simulating M = 6 gene run

Figure 5.3 Sample network #1 of a solution obtained in M = 6 gene run

Figure 5.4 Sample network #2 of a solution obtained in M = 6 gene run

P

T

18

32

24

92
Bolting

Decision
Output

Expression
Output

Gene

P

T

18

32

24

92
Bolting

Decision
Output

Expression
Output

Gene

P

T
Bolting

Decision
Output

80

18

24 32 92

Gene
Expression

Output

P

T
Bolting

Decision
Output

80

18

24 32 92

Gene
Expression

Output

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 53

Table 5.2 Parameters and functions associated with the gene network shown in Figure 5.3

Gene # function Parameter
Symbol

Parameter Value
for Allele #

 0 1
18 gain ,g 18C 0.00064 0.000441

24 multiplier ,24mC 0.12 0.18442

32 integrator ,32iC 0.17884 0.20027

54 - 54C - -

80 summer ,80sC 0.058532 0.03856

92 integrator ,92iC 0.49112 0.9257

Table 5.3 Parameters and functions associated with the gene network shown in Figure 5.4

Gene # function Parameter
Symbol

Parameter Value
for Allele #

 0 1
18 summer ,s 18C 0.97461 0.01078

24 multiplier ,24mC 1.6e-5 2.3e-5

32 summer ,32sC 0.79734 0.810017

54 - 54C - -

80 - 80C - -

92 integrator ,92iC 1.7585 2.8781

 54

Figure 5.5 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 6 gene run)

Figure 5.6 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 6 gene run)

In order to give more visual and straightforward comparisons between synthetic networks

and networks obtained by the proposed algorithm, comparisons of the predicted and actual

bolting dates or gene expression data are shown in Figure 5.5 and Figure 5.6. In Figure 5.5/5.6

(left), a linear regression to bolting date comparison is given in right top corner and a coefficient

of determination R2 of linear regression is also presented.

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

R2 = 0.9992

y = 0.999*x+0.594

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.955*x+3.03

R2 = 0.9974

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 55

Figure 5.7 Non-dominated solutions obtained from simulating M = 8 gene run

Figure 5.8 Sample network #1 of a solution obtained in M = 8 gene run

Figure 5.9 Sample network #2 of a solution obtained in M = 8 gene run

P

T 24

32

54
Bolting

Decision
Output

18 92

Gene
Expression

Output

P

T 24

32

54
Bolting

Decision
Output

18 92

Gene
Expression

Output

P

T 24

32

13
Bolting

Decision
Output

18 92

Gene
Expression

Output

P

T 24

32

13
Bolting

Decision
Output

18 92

Gene
Expression

Output

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 56

Table 5.4 Parameters and functions associated with the gene network shown in Figure 5.8

Gene # function
Parameter

Symbol

Parameter Value
for Allele #

 0 1

18 gain ,g 18C 1.3286 0.88411

24 multiplier ,24mC 5.6e-5 8.6e-5

32 summer ,32sC 0.54132 0.54518

54 summer ,54sC 2.6e-5 1.16e-4

80 - 80C - -

92 integrator ,92iC 1.8867 2.9725

Table 5.5 Parameters and functions associated with the gene network shown in Figure 5.9

Gene # function Parameter
Symbol

Parameter Value
for Allele #

 0 1
13 summer , 3s 1C 1.7747 1.8221

18 gain ,g 18C 2.24e-4 1.57e-4

24 multiplier ,24mC 0.33378 0.49127

32 summer ,32sC 0.00806 0.010978

54 - 54C - -

80 - 80C - -

92 integrator ,92iC 1.7741 2.8085

 57

Figure 5.10 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 8 gene run)

Figure 5.11 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 8 gene run)

 For M = 8 gene run, Figure 5.7 demonstrates the initial (‘+’) and final (‘*’) non-

dominated front after applying our algorithm. Figures 5.8 and 5.9 present two sample networks

of solutions from the 8 gene run, with RMS error of bolting dates 3.1 days and gene expression

level 0.00025 in solution #1; 1.9 days and 0.0006 in solution #2. Tables 5.4 and 5.5 show the

parameters and functions associated with the network in Figures 5.8 and 5.9 respectively. Figure

5.10 illustrates the comparison of actual versus predicted bolting dates and gene expression level

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.942*x+4.696

R2 = 0.9957

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time
G

en
e

E
xp

re
ss

io
n

Le
ve

l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

30

40

50

60

70

80

90

100

110

120

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.938*x+4.83

R2 = 0.9955

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 58

generated by sample solution #1 while Figure 5.11 illustrates that of solution #2 in this 8 gene

run.

Figure 5.12 Non-dominated solutions obtained from simulating M = 10 gene run

Figure 5.13 Sample network #1 of a solution obtained in M = 10 gene run

Figure 5.14 Sample network #2 of a solution obtained in M = 10 gene run

P

T

24
Bolting

Decision
Output

18 54 92

Gene
Expression

Output

P

T

24
Bolting

Decision
Output

18 54 92

Gene
Expression

Output

P

T

24
Bolting

Decision
Output

18 13 92

Gene
Expression

Output

21
P

T

24
Bolting

Decision
Output

18 13 92

Gene
Expression

Output

21

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 59

Table 5.6 Parameters and functions associated with the gene network shown in Figure 5.13

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
18 gain ,g 18C 0.090229 0.059627

24 multiplier ,24mC 0.000909 0.001338

32 - 32C - -

54 integrator ,54iC 0.84275 0.74101

80 - 80C - -

92 integrator ,92iC 0.11721 0.24078

Table 5.7 Parameters and functions associated with gene network shown in Figure 5.14

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
13 gain , 3g 1C 0.009624 0.009305

18 gain ,g 18C 0.559969 0.37422

21 gain ,21gC 0.17868 0.1715

24 multiplier ,24mC 0.091111 0.13009

32 - 32C - -

54 - 54C - -

80 - 80C - -

92 integrator ,92iC 1.8221 2.9829

 60

Figure 5.15 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 10 gene run)

Figure 5.16 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 10 gene run)

 For the M = 10 gene run, convergence and diversity of the final non-dominated front are

shown and compared with that of the initial non-dominated front in Figure 5.12. Two networks

of solutions selected from the final non-dominated front are given in Figures 5.13 and 5.14

respectively. The former solution has RMS error 2.4 days in bolting dates and 0.0002 in gene

expression level; the latter solution has RMS error 3.4 days in bolting dates and 0.00013 in gene

expression level. Their associated parameters and functions are demonstrated in Tables 5.6 and

5.7 correspondingly. Comparison of actual versus predicted bolting dates and gene expression of

these two solutions are shown in Figures 5.15 and 5.16 respectively.

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 1.016*x-1.008

R2 = 0.9997

20 40 60 80 100 120 140 160 180 200
0

5

10

15

x 10-3

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.9265*x+5.57
R2 = 0.9937

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 61

Figure 5.17 Non-dominated solutions obtained from simulating M = 12 gene run

Figure 5.18 Sample network of a solution obtained in M = 12 gene run

P

T

24
Bolting

Decision
Output

18 26 92

Gene
Expression

Output

80
P

T

24
Bolting

Decision
Output

18 26 92

Gene
Expression

Output

80

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 62

Table 5.8 Parameters and functions associated with the gene network shown in Figure 5.18

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
18 gain ,g 18C 0.00472 0.003153

24 Multiplier ,24mC 0.017231 0.02622

26 Integrator ,26iC 1.2395 1.2737

32 - 32C - -

54 - 54C - -

80 Integrator ,80iC 0.5056 0.48973

92 Gain ,92gC 0.14633 0.28778

Figure 5.19 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network of a solution obtained in M = 12 gene run)

Figure 5.17 illustrates the non-dominated front obtained from the 12 gene run. One

solution withdrawn from the front is demonstrated in Figure 5.18. Its associated parameters and

functions are listed in Table 5.8. Figure 5.19 shows the comparison of actual versus predicted

data for this solution. The RMS error in bolting dates and gene expression level for this solution

are 2.3 days and 0.00025.

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 1.006*x-0.1352

R2 = 0.9996

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 63

Figure 5.20 Non-dominated solutions obtained from simulating M = 14 gene run

Figure 5.21 Sample network #1 of a solution obtained in M = 14 gene run

Figure 5.22 Sample network #2 of a solution obtained in M = 14 gene run

P

T

24 18 Bolting
Decision
Output

32 92

20

Expression
Output

Gene

P

T

24 18 Bolting
Decision
Output

32 92

20

Expression
Output

Gene

P

T

24 18 Bolting
Decision
Output

21 92

20

Expression
Output

Gene

P

T

24 18 Bolting
Decision
Output

21 92

20

Expression
Output

Gene

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 64

Table 5.9 Parameters and functions associated with the gene network shown in Figure 5.21

Gene # Function Parameter
Symbol

Parameter Value
for Allele #

0 1
18 gain ,g 18C 0.00032 0.000212

20 integrator ,20iC 0.73234 0.71198

24 multiplier ,24mC 0.26749 0.38329

32 multiplier ,32mC 0.038691 0.040016

54 - 54C - -

80 - 80C - -

92 gain ,92iC 0.14811 0.36625

Table 5.10 Parameters and functions associated with the gene network shown in Figure

5.22

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
18 gain ,g 18C 0.75968 0.498452

20 integrator ,20iC 4e-6 6e-6

21 summer ,21sC 8.0e-5 7.4e-5

24 multiplier ,24mC 1.3153 1.8698

32 - 32C - -

54 - 54C - -

80 - 80C - -

92 gain ,92gC 1.6466 2.8733

 65

Figure 5.23 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 14 gene run)

Figure 5.24 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 14 gene run)

 For the M = 14 gene run, Figure 5.20 shows the final non-dominated front after applying

the proposed approach. Two networks of the solutions selected from the final non-dominated

front are given in Figures 5.21 and 5.22 respectively. The former solution has RMS error 2.9

days in bolting dates and 0.0004 in gene expression level; the latter solution has RMS error 1.5

days in bolting dates and 0.0009 in gene expression level. Their associated parameters and

functions are demonstrated in Tables 5.9 and 5.10 correspondingly. Comparison of actual versus

predicted bolting dates and gene expression of these two solutions are shown in Figures 5.23 and

5.24 respectively.

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.985*x-1.089

R2 = 0.9998

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time
G

en
e

E
xp

re
ss

io
n

Le
ve

l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.9655*x+2.6

R2 = 0.9987

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 66

Figure 5.25 Non-dominated solutions obtained from simulating M = 17 gene run

Figure 5.26 Sample network #1 of a solution obtained in M = 17 gene run

Figure 5.27 Sample network #2 of a solution obtained in M = 17 gene run

P

T
Bolting

Decision
Output

24

74

18 92

Gene
Expression

Output

17

P

T
Bolting

Decision
Output

24

74

18 92

Gene
Expression

Output

17

P

T

24

80

18 92
Bolting

Decision
Output

Gene
Expression

Output

P

T

24

80

18 92
Bolting

Decision
Output

Gene
Expression

Output

P

T

24

80

18 92
Bolting

Decision
Output

Gene
Expression

Output

P

T

24

80

18 92
Bolting

Decision
Output

Gene
Expression

Output

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10-3

RMS Error of Predicted Bolting Date

R
M

S
 E

rro
r o

f P
re

di
ct

ed
 G

en
e

E
xp

re
ss

io
n

Initial Non-dominated Front
Final Non-dominated Front

 67

Table 5.11 Parameters and functions associated with the gene network shown in Figure

5.26

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
17 summer , 7s 1C 0.01 0.0235

18 summer ,s 18C 1.2 0.80961

24 multiplier ,24mC 5.2e-005 8.3e-005

32 - 32C - -

54 - 54C - -

74 gain ,74gC 1.69e-004 1.65e-004

80 - 80C - -

92 integrator ,92iC 1.7146 2.7925

Table 5.12 Parameters and functions associated with the gene network shown in Figure

5.27

Gene # function Parameter
Symbol

Parameter Value
for Allele #

0 1
18 gain ,g 18C 0.002053 0.001403

24 multiplier ,24mC 0.036626 0.054389

32 - 32C - -

54 - 54C - -

80 summer ,80sC 0.05222 0.038843

92 integrator ,92iC 1.7453 3.3096

 68

Figure 5.28 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #1 of a solution obtained in M = 17 gene run)

Figure 5.29 Comparison of actual vs. predicted bolting dates and gene expression (Sample

network #2 of a solution obtained in M = 17 gene run)

The M = 17 gene run is the run with the most potential candidate genes to form a solution.

Figure 5.25 shows the initial non-dominated front in ‘+’ and final non-dominated front in ‘*’.

The number of non-dominated solutions increases significantly and both good convergence and

diversity are obtained at the end of proposed algorithm compared to initial non-dominated

solutions. Figures 5.26 and 5.27 show one sample solution from the final non-dominated

solutions and Tables 5.11 and 5.12 are the parameters and functions associated with them

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.97*x-2.6

R2 = 0.9986

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

20 30 40 50 60 70 80 90 100 110 120
20

40

60

80

100

120

140

Actual Bolting Date

P
re

di
ct

ed
 B

ol
tin

g
D

at
e

y = 0.955*x-4.09

R2 = 0.996

0 20 40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time

G
en

e
E

xp
re

ss
io

n
Le

ve
l

Actual Gene Expression
Predicted Gene Expression

 69

respectively. The former solution has RMS error of 3.4 days in bolting dates and 0.0001 in gene

expression level; the latter solution has RMS error of 1.6 days in bolting dates and 0.00085 in

gene expression level. Both solution #1 and #2 are able to recover 4 correct genes out of 17

candidate genes compared to the 6 gene synthetic network. Comparison of actual versus

predicted bolting dates and gene expression are shown in Figures 5.28 and 5.29 respectively for

these two solutions. All of these figures indicate that the generated network is able to accurately

predict the response of the synthetic gene network.

A more discerning numerical comparison of results for all of the runs is given in Table

5.13 by substituting the gene functions at each of the nodes, their associated parameters and

evaluating the mathematical equivalent expressions for each network. The raw mathematical

expressions do not appear similar. However, after parameter substitution (allele 0 shown)

similarities emerge in terms ‘T * P’ and ‘O92(t-1)’, which are vital components in estimating the

bolting date.

Table 5.13 Numerical formulas before and after parameter substitution

Network Bolting date prediction gene Output
Parameters substituted Bolting date

prediction gene Output

Synthetic Gene

Network

)1(

****)(

92

92542418

928024

92803218

−+
+
+

=

tO
PTCCCC

PCCC
TCCCCtO

)1(
**102.6

*104
*1035.5)(

92

05

04

04

−+
×+

×+

×=

−

−

−

tO
PT

P
TtO

Sample Gene

Network#1 from

M=6 run

)1(
)1(*

*****)(

92

3292

92322418

2
9280322418

−+
−+

+
=

tO
tOC

PTCCCC
TCCCCCtO

)1(
)1(*49.0

**107.6
*1094.3)(

92

32

06

207

−+
−+

×+

×=
−

−

tO
tO

PT
TtO

Sample Gene

Network#2 from

M=6 run

)1(
**

**
)****(

****)(

92

2
9224

923224922418

2
92322418

−+
+

++
=

tO
PCC

PT
CCCCCC

TCCCCtO

)1(
*108.2

**1097.4
*101.2)(

92

205

05

205

−+
×+

×+

×=

−

−

−

tO
P

PT
TtO

 70

Sample Gene

Network#1 from

M=8 run

)1(
**

)*****(
****)(

92

92241892542418

92543218

−+

++
=

tO
PT

CCCCCCC
PCCCCtO

)1(
**104.1

*105.3)(

92

04

05

−+
×+

×=
−

−

tO
PT

PtO

Sample Gene

Network#2 from

M=8 run

)1(
)1(***

****)(

92

32921813

922418

92321813

−+
−+

+
=

tO
tOCCC
PTCCC

PCCCCtO

)1(

)1(*107
**103.1

*106.5)(

92

32
04

04

06

−+
−×+

×+

×=

−

−

−

tO
tO
PT

PtO

Sample Gene

Network#1 from

M=10 run

)1(

)1(*
*****)(

92

5492

92542418

−+
−+

=

tO
tOC

PTCCCCtO

)1(
)1(*84.0
**108)(

92

54

06

−+
−+

×= −

tO
tO

PTtO

Sample Gene

Network#2 from

M=10 run

)1(
******)(

92

9224211813

−+
=

tO
PTCCCCCtO

)1(
**1045.1)(

92

04

−+
×= −

tO
PTtO

Sample Gene

Network#1 from

M=12 run

)1(*

)1(**
*****)(

2692

809226

92802418

−+
−+

=

tOC
tOCC

PTCCCCtO

)1(*15.0
)1(*09.0

**1026.7)(

26

80

06

−+
−+

×= −

tO
tO

PTtO

Sample Gene

Network#1 from

M=14 run

)1(

)1(******
******)(

92

2092322418

2
9232242018

−+
−+

=

tO
tOPTCCCC
PTCCCCCtO

)1(

)1(***105.4
**106.3)(

92

20
07

207

−+
−×+

×=
−

−

tO
tOPT

PTtO

Sample Gene

Network#2 from

M=14 run

)1(

)1(*
**

*****)(

92

2092

9220

92242118

−+
−+

+
=

tO
tOC

PCC
PTCCCCtO

)1(
)1(*65.1

*106.6
**103.1)(

92

20

06

05

−+
−+

×+

×=
−

−

tO
tO

P
PTtO

 71

Sample Gene

Network#1 from

M=17 run

)1(

****)(

92

92742418

2
92241817

922418

−+
+
+

=

tO
PCCCC
PCCCC
PTCCCtO

)1(
*108.1
*101.1

**101.1)(

92

08

206

04

−+
×+

×+

×=

−

−

−

tO
P
P

PTtO

Sample Gene

Network #2

from M=17 run)1(

****)(

92

922418

2
92802418

−+
+

=

tO
PTCCC

PCCCCtO

)1(
**103.1
*1067.6)(

92

04

206

−+
×+

×=
−

−

tO
PT
PtO

Table 5.14 Sensitivity analysis to numerical formulas in Table 5.13

Term

Relative

Sensitivity

Numerical Formula for Bolting

Dates Prediction
T P *T*P T2 P2 T* P2

Synthetic

Gene

Network)1(
**102.6

*104
*1035.5)(

92

05

04

04

−+
×+

×+

×=

−

−

−

tO
PT

P
TtO

1.97 7.16 8.6 - - -

Sample Gene

Network#1

from M=6

run
)1(

)1(*49.0
**107.6
*1094.3)(

92

32

06

207

−+
−+

×+

×=
−

−

tO
tO

PT
TtO

- - 9.72 5.52 - -

Sample Gene

Network#2

from M=6

run
)1(

*108.2
**1097.4

*101.2)(

92

205

05

205

−+
×+

×+

×=

−

−

−

tO
P

PT
TtO

- - 7.24 7.15 88 -

Sample Gene

Network#1

from M=8

run
)1(

**104.1
*105.3)(

92

04

05

−+
×+

×=
−

−

tO
PT
PtO

- 7.35 6.34 - - -

 72

Sample Gene

Network#2

from M=8

run

)1(

)1(*107
**103.1
*106.5)(

92

32
04

04

06

−+
−×+

×+

×=

−

−

−

tO
tO
PT
PtO

- 1.425 1.44 - - -

Sample Gene

Network#1

from M=10

run

)1(
)1(*84.0
**108)(

92

54

06

−+
−+

×= −

tO
tO

PTtO
- - 7.44 - - -

Sample Gene

Network#2

from M=10

run

)1(
**1045.1)(

92

04

−+
×= −

tO
PTtO - - 5.99 - - -

Sample Gene

Network#1

from M=12

run

)1(*15.0
)1(*09.0

**1026.7)(

26

80

06

−+
−+

×= −

tO
tO

PTtO
- - 1.7438 - - -

Sample Gene

Network#1

from M=14

run

)1(
)1(***105.4

**106.3)(

92

20
07

207

−+
−×+

×=
−

−

tO
tOPT

PTtO

- - - - - 7.942

Sample Gene

Network#2

from M=14

run

)1(

)1(*65.1
*106.6

**103.1)(

92

20

06

05

−+
−+

×+

×=
−

−

tO
tO

P
PTtO

- 6.88 5.93 - - -

Sample Gene

Network#1

from M=17

run

)1(

*108.1
*101.1

**101.1)(

92

08

206

04

−+
×+

×+

×=

−

−

−

tO
P
P

PTtO

- 8.514 10.264 - 77.2 -

 73

Sample Gene

Network #2

from M=17

run
)1(

**103.1
*1067.6)(

92

04

206

−+
×+

×=
−

−

tO
PT

PtO

- - 8.704 - 66.38 -

We carried out a sensitivity analysis to see how the variation in the bolting date outputs

predicted by mathematical models can be apportioned, both qualitatively and quantitatively, to

the variation in the parameters of each term in Table 5.13. The results of sensitivity analysis are

shown in Table 5.14. The sensitivity of formulas is considered as ratio of the relative change in

the output BD to the relative change in each term’s weightσ ,
()
() 212

212

σσσ /
/

−
− BDBDBD , where

8
1 10−=σ , 2

2 10−=σ . BD denotes average bolting dates simulated under 18 different planting

environments.

 From Table 5.14, it is clear that the most significant terms of the numerical equation for a

synthetic network are ‘P’ and ‘T * P’ with condition number 7.16 and 8.6 respectively.

Contrarily, the ‘T’ term has a condition number of 1.97 which is significantly small and can be

neglected. Based on such simplification, the sample gene network #1 from the M = 8 run is the

best network. Its structure and condition number of both ‘P’ and ‘T * P’ terms are very close to

those of the synthetic network.

5.4 Further Result Discussion
The synthetic network consists of 6 genes with indexes #18, 24, 32, 54, 80 and 92, out of

genomes made up of 100 gene markers. Putting aside the factor of noise, this indicates that the

variation of phenotype data (either bolting dates or expression data) obtained at two different

mutant genotypes with the identical environmental inputs would be observed only when the

alleles on one or multiple loci of these 6 genes vary within the genotype pair. In order to discover

the degree of each allele switch that causes phenotype variation, an analysis based on phenotype

data obtained from the synthetic network at different mutant genotypes is performed.

Recall from Section 4.2, each gene has two mutant alleles (represented by marker ‘0’ or

‘1’). A genotype is constructed as a string of markers, representing different allelic combination.

 74

The size of the string is the number of genes in the network. After simulating all the possible

combinations, the genotype with allelic string ‘100001’ is found to have the latest bolting dates,

as shown in Figure 5.30(a). Figure 5.30(b) shows the bolting dates for allelic strings with one bit

different from that in Figure 5.30(a) (the Manhattan distance is 1). Figure 5.30(c), (d), (e), (f) and

(g) illustrate the bolting dates for allelic strings with two, three, four, five and six bits different

from that in Figure 5.30(a), respectively.

From Figure 5.30, it can be seen that genes #18, 24 and 92 have a significant effect and

gene #80 has some impact on the phenotype prediction. On the other hand, genes #32 and 54

have very little impact on phenotype. The gene networks obtained from the proposed algorithms

are consistent with our discovery from phenotype analysis.

Although different genes are contained in gene networks obtained in different runs, the

important genes #18, 24 and 92 which have significant impact on phenotype are found in all of

the obtained networks, indicating that our algorithm is capable of capturing the important genes

that are significant enough to be not affected by incidental factors. All of the inferred network

structures are able to predict phenotype data very close to real data. In addition, all the network

structures acquired by the proposed approach are small networks, indicating that CGP has been

able to reduce the known problem of bloating, which is often seen in GP.

 75

Figure 5.30 Impact of 6 genes on phenotype of bolting dates

1

60

80

100

Manhattan distance from optimal alleles combination: 0 av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6

60

80

100

Manhattan distance from optimal alleles combination: 1 av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100

Manhattan distance from optimal alleles combination: 2 av
er

ag
e

bo
lti

ng
 d

at
es

0 5 10 15 20

60

80

100

Manhattan distance from optimal alleles combination: 3av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100

Manhattan distance from optimal alleles combination: 4av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6

60

80

100

Manhattan distance from optimal alleles combination: 5av
er

ag
e

bo
lti

ng
 d

at
es

1

60

80

100

Manhattan distance from optimal alleles combination: 6

av
er

ag
e

bo
lti

ng
 d

at
es

a b

c d

e

g

f

1

60

80

100

Manhattan distance from optimal alleles combination: 0 av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6

60

80

100

Manhattan distance from optimal alleles combination: 1 av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100

Manhattan distance from optimal alleles combination: 2 av
er

ag
e

bo
lti

ng
 d

at
es

0 5 10 15 20

60

80

100

Manhattan distance from optimal alleles combination: 3av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

60

80

100

Manhattan distance from optimal alleles combination: 4av
er

ag
e

bo
lti

ng
 d

at
es

1 2 3 4 5 6

60

80

100

Manhattan distance from optimal alleles combination: 5av
er

ag
e

bo
lti

ng
 d

at
es

1

60

80

100

Manhattan distance from optimal alleles combination: 6

av
er

ag
e

bo
lti

ng
 d

at
es

a b

c d

e

g

f

 76

CHAPTER 6 - Network Assisted Selection for Breeding

6.1 Introduction
In the previous chapter, we showed how small plausible gene networks can be derived

from phenotypic data, such as bolting dates and gene expression, using multi-objective stochastic

optimization techniques. This thesis also includes a proposal for providing breeding strategies in

plants based on computer simulation.

Plant breeding is a process of using deliberate crosses of related individuals to produce

desirable lines. Breeding relies on new combination of chromosomes or recombination within

chromosomes to generate new lines and a selection strategy to keep lines with desired

characteristics. In the commonly used selection strategies, marker assisted selection (MAS) is

based on the allele marker(s) linked to a trait (phenotype) of an individual [112]. The technique

has accelerated breeding and has improved the accuracy of crosses compared to selection of

phenotypes alone and allowed breeders to produce new lines with combined traits that were

impossible before [113].

Marker assisted breeding does not account for phenotypic behavior that arises from

interaction between genes for which no single gene is individually responsible. This

phenomenon is called epistasis. Epistasis has been modeled by Kauffman using the NK fitness

landscape [114] [115].

In this chapter, we make use of the NK fitness landscape for a theoretical study on marker

assisted breeding and we also propose an approach that considers epistasis. The remainder of this

chapter is organized as follows. The NK fitness landscape model will be introduced first. We

will also illustrate the concept of applying this method in NK fitness landscape models to show

that the proposed selection strategy may potentially produce faster improvements. Next, the

network obtained by our GP-PSO hybrid algorithm will be applied in breeding experiments.

Comparison of different breeding strategies by computer simulation will also be shown.

 77

6.2 NK Fitness Landscape
 Stuart Kauffman devised the ‘NK fitness landscape’ model to explore the way epistasis

control the ruggedness of an adaptive landscape, where N indicates the number of genes in the

model and epistasis K the interaction between genes [114][115].

The NK model can be considered as a stochastic method for generating a fitness

function }{ +ℜ→N10,:F , on a binary string, }{ N10,x∈ , where the genotype x consists of N loci,

with two possible alleles at each locus xi. Kauffman conceives of each gene as contributing a

fitness component. So the fitness function can be further generalized as the average of f fitness

components Fi contributed by each locus i. Each fitness component Fi is determined by its own

allele xi, and also the alleles at K other epistatic loci that affects it. Thus the fitness function can

be written in the following form:

() ()∑
=

+
=

N

i
ijijiji K

xxxF
f

F
1

121

1
)()()(,..,x ,

where { } { }Nijijij K ,...,1)(),...,(),(121 ⊂+ . The index sets { })(),...,(),(121 ijijij K+ comprise a gene-

fitness map that can be represented as a Nf × matrix [] Njfimij ...1,...1, ===M , where

{ }10,∈ijm and ijm indicates whether locus j contributes to fitness component i with ‘1’

representing yes and ‘0’ representing no. It is assumed that that each fitness component is

affected by one gene, and vice versa.

 Letting ir be the rows of M, where [] Njmiji ...1, ==r . The fitness component Fi can be

obtained by using a single uniform pseudo-random function U:

() ()iUF iii ,,. rrxx •= ~ uniform on[0,1),

where { })1,0[},...,1{}1,0{1,0: →×× NU NN and • is the Hadamard product which can be

expressed as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=•

iNN

i

i

i

mx

mx
mx

...
. 22

11

rx .

 In Eq.6.2, any change in one of the three arguments irx •. , ir and i will result in a

randomly generated new value for ()iU ii ,,. rrx • . If we store the values for all the possible allelic

Eq. 6.1

Eq. 6.2

Eq. 6.3

 78

combinations (genotypes) x, it requires 2(K+1) spaces. In addition, based on the fact that one

fitness component Fi is determined by one gene with its K epistasis, we can know the number of

components f equals the number of loci in the genotypes N. Thus it requires storage of 2(K+1)N

in total to implement this function.

There are two methods of how to generate a gene fitness map: adjacent neighborhoods

and random neighborhoods. The gene fitness map using either method requires the main

diagonal be filled. When using the adjacent neighborhood method, the main diagonal would be

surrounded by K filled adjacent diagonals in the gene fitness map. The random neighborhoods

method, however, fills each row with K randomly selected units besides the diagonal unit that’s

been filled. These two methods and their corresponding gene fitness maps are illustrated in

Figure 6.1(left) and Figure 6.1(right) respectively.

Figure 6.1 Two gene fitness maps: adjacent neighborhoods (left) and random

neighborhoods (right) when N = 10, f = 10 and K = 3

N = 101 5
1

5

f=10

j

i

N = 101 5
1

5

f=10

j

i

N = 101 5
1

5

f=10

j

i

N = 101 5
1

5

f=10

j

i

 79

6.2.1 Breeding Simulation in NK Fitness Landscape

 The objective of a breeding simulation is to find the largest output of each of a variety of

NK fitness landscape models, as shown in Eq. 6.1. The ruggedness of the fitness function is

controlled by parameter K. Two different selection strategies, MAS and our proposed approach,

are used in breeding simulation. Both simulations start with a population of 45 lines that are

randomly generated, each of which is a combination of N = 20 alleles. By using different

selection strategies for the crossover, a population of 45 new lines will be generated. New lines

from crossover become the parent population for the next generation. The cycle above will

repeat over multiple generations until convergence.

In MAS, we run a basic genetic algorithm to obtain an elite genotype which has the

largest output value through the NK fitness landscape model. The top 10 lines are selected based

on closeness (Manhattan distance) to the elite genotype. The crossover on all the combinations

of pairs in the top 10 lines will yield 10*9/2 = 45 new lines as the new population in next

generation.

In the proposed approach, genotypes are selected for crossover based on average

predictions after crossover. For each pair of combinations from the 45 lines, simulate all possible

genotypes after crossover. The average of these predicted output values in NK model is

considered to be the expected ‘fitness’ of the corresponding pair after crossover.

We apply breeding simulations on two scenarios of NK landscape models: the adjacent

neighborhoods method and the random neighborhoods method, depending on how the gene

fitness interaction map was generated. In each scenario, computer simulations were conducted by

varying the NK fitness landscape parameter K. Apparently, there is no epistasis (gene interaction)

when K = 0. The NK models become increasingly complex with the increase of K. Both MAS

and our proposed approach used one point crossover. Mutation, however, was not applied. Due

to the Monte Carlo feature of the simulation, 20 independent runs were performed for each

model under the landscape parameters, N = 20, while K varies at 0, 1, 3, 5, 7, and 9. The results

were averaged over 20 runs.

 80

Figure 6.2 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 0. The NK model is generated by using the adjacent neighborhood method.

Figure 6.3 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 1. The NK model is generated by using the adjacent neighborhood method.

0 2 4 6 8 10 12
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Generation

Fi
tn

es
s

K = 0

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

Generation

Fi
tn

es
s

K = 1

maximum fitness

MAS

proposed approach

 81

Figure 6.4 MAS vs. our proposed approach on NK model based breeding, where N = 20

and K = 3. The NK model is generated by using the adjacent neighborhood method.

Figure 6.5 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 5. The NK model is generated by using the adjacent neighborhood method.

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Generation

Fi
tn

es
s

K = 3

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 5

maximum fitness

MAS

proposed approach

 82

Figure 6.6 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 7. The NK model is generated by using the adjacent neighborhood method.

Figure 6.7 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 9. The NK model is generated by using the adjacent neighborhood method.

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 7

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 9

maximum fitness

MAS

proposed approach

 83

Table 6.1 Comparison of MAS and our proposed approach after convergence with multiple

NK fitness landscape models generated by the adjacent neighborhoods method.

Comparisons of MAS and our proposed approach simulated on NK fitness models (the

adjacent neighborhoods method) are shown in Figure 6.2 to 6.7. The straight dash line

demonstrates the fitness value of the elite line obtained from the genetic algorithm for MAS. To

demonstrate the statistical confidence over multiple runs, error bars, whose vertical distances

denote 2*σ (standard deviation), are also shown in the figures. The final converged mean

fitnesses as well as the standard deviations over multiple runs can be found in Table 6.1.

Simulations on NK fitness landscape models (the random neighborhoods method) are shown in

Figure 6.8 to 6.13, respectively. The corresponding final mean fitnesses and the standard

deviations over multiple runs are demonstrated in Table 6.2.

As we can see in the figures and tables, our proposed approach achieves faster

convergence, and is also able to obtain a higher mean fitness value at the end of each run.

Another phenomenon we are particularly interested in is the smaller variations in simulations

that applied our proposed approach, which potentially indicate better accuracy than MAS-based

breeding. Along with the increase of the NK model complexity (increase of gene epistasis K), our

proposed approach shows increasingly significant outperformance over MAS, as shown in Table

6.1 and 6.2, which indicates our proposed approach is able to capture the additional gene

interactions in the models.

epistasis K 0 1 3 5 7 9

elite fitness 0.7181 0.7401 0.720 0.7767 0.7578 0.7550

mean 0.6075 0.7005 0.6687 0.7194 0.6732 0.6250
MAS

std 0.0169 0.0373 0.0433 0.0529 0.0668 0.0696

mean 0.6123 0.7185 0.6948 0.7429 0.7143 0.7245
Proposed

std 0.0060 0.0176 0.0133 0.0280 0.0233 0.0171

 84

Figure 6.8 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 0. The NK model is generated by using the random neighborhoods method.

Figure 6.9 MAS vs. our proposed approach on NK model based breeding, where N = 20 and

K = 1. The NK model is generated by using the random neighborhoods method.

0 2 4 6 8 10 12
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Generation

Fi
tn

es
s

K = 0

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

Generation

Fi
tn

es
s

K = 1

maximum fitness

MAS

proposed approach

 85

Figure 6.10 MAS vs. our proposed approach on NK model based breeding, where N = 20

and K = 3. The NK model is generated by using the random neighborhoods method.

Figure 6.11 MAS vs. our proposed approach on NK model based breeding, where N = 20

and K = 5. The NK model is generated by using the random neighborhoods method.

0 2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

Generation

Fi
tn

es
s

K = 3

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 5

elite fitness

MAS

proposed approach

 86

Figure 6.12 MAS vs. our proposed approach on NK model based breeding, where N = 20

and K = 7. The NK model is generated by using the random neighborhoods method.

Figure 6.13 MAS vs. our proposed approach on NK model based breeding, where N = 20

and K = 9. The NK model is generated by using the random neighborhoods method.

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 7

maximum fitness

MAS

proposed approach

0 2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Generation

Fi
tn

es
s

K = 9

maximum fitness

MAS

proposed approach

 87

Table 6.2 Comparison of MAS and NAS after convergence in the random neighborhoods

based on NK models

6.3 Plant Breeding Simulations
In the last section, we proposed an approach that used prediction to guide the breeding

process. The simulation results on NK fitness landscape models show that our proposed approach

outperforms well-known MAS because of its ability to capture the gene interactions. Based on

the concept of the proposed approach in the last section, we propose a network assisted selection

(NAS) that makes use of networks obtained from GP-PSO hybrid algorithms to guide the

breeding process for plant breeding simulations.

The simulation was set up as follows. The objective of the plant breeding simulations was

to find the lines (genotypes) with the latest bolting dates. In each breeding simulation, lines were

evaluated against 54 environments (3 planting sites * 18 planting dates). The average bolting

dates after evaluation of lines through the synthetic network mimicked those in real world

planting. Network obtained by our hybrid algorithm is used to make close prediction.

To maintain the consistency of our proof-of-concept simulation for NAS-based breeding

on NK fitness models, the simulation was designed as close to the breeding simulation on NK

models as possible. The plant breeding process was conducted as follows. Forty-five lines were

randomly generated as the initial breeding population, each being a combination of 100 alleles.

By using different selection strategies, a population of 45 new lines was generated after applying

the crossover. The new lines generated by the crossover became the parent population for the

next generation. The cycle above was repeated over multiple generations until the population

reached convergence. Because the simulations were stochastic in nature, a total of 20 breeding

runs were conducted for each selection strategy.

epistasis K 0 1 3 5 7 9

elite fitness 0.6212 0.7372 0.7471 0.7400 0.7618 0.7502

mean 0.6032 0.7077 0.6813 0.6867 0.6485 0.6356
MAS

std 0.0195 0.0362 0.0433 0.0669 0.0676 0.0696

mean 0.6123 0.7147 0.7170 0.7052 0.6948 0.7263
Proposed

std 0.0060 0.0133 0.0209 0.0288 0.0355 0.0203

 88

A randomly selected network obtained by the GP-PSO hybrid algorithm is used. The

NAS was implemented as follows.

NAS: Genotypes are selected for crossover based on network assisted predictions. For each pair

of combinations from 45 lines in the parent population, simulate all possible genotypes

after crossover. Evaluate them through networks obtained from our hybrid algorithm. The

average of these predicted bolting dates is considered to be the expected ‘fitness’ of the

corresponding pair after crossover. Forty-five pairs with the best expected fitness are

selected for crossover to generate new lines.

Two different selection strategies were selected to compare with NAS separately: marker

assisted elite selection (MAES) and marker assisted tournament selection (MATS). They were

conducted respectively as follows.

MAES: The top 10 lines are selected based on closeness (Manhattan distance) to the elite

genotype. The elite genotype is obtained by a simple genetic algorithm. Crossover all

the combinations of pairs, which yields 10*9/2 = 45 new lines.

MATS: Repeat the tournament selection using closeness to elite genotype as criteria to select 10

lines. Crossover all the combination of pairs, which yields 10*9/2 = 45 new lines.

Figure 6.14 shows the comparison of average bolting dates over ten generation for MAES

and NAS. It can be seen in the figure that NAS converges faster than MAES, and NAS and

MAES reach almost the same bolting dates after the convergence. Figure 6.15 shows the

comparison of average bolting dates for MATS and NAS and we can draw a similar conclusion.

The gene regulatory network, as shown in Figure 5.1, is only controlled by 6 genes.

Simulations on such a small network explain the fast convergence. We believe that the benefit of

NAS will be greater if we apply it to a bigger model.

 89

Figure 6.14 Comparison of MAES and NAS in Plant Breeding

Figure 6.15 Comparison of MATS and NAS in Plant Breeding

0 1 2 3 4 5
50

55

60

65

70

75

80

Generation

Fi
tn

es
s

maximum fitness
MAES
NAS

0 1 2 3 4 5
50

55

60

65

70

75

80

Generation

A
ve

ra
ge

 B
ol

tin
g

D
at

e

maximum fitness
MATS
NAS

 90

CHAPTER 7 - Conclusion and Future Work

The huge amount of experimental data in molecular biology requires us to find an

effective approach for gene regulatory modeling. A wide range of models have been used in gene

modeling. However, almost all of them require building a model structure first and then

optimizing associated parameters based on goodness-of-fit.

The proposed GP-PSO hybrid algorithm is an effective and novel approach that is able to

infer network structure and optimize associated parameters simultaneously. CGP, a special form

of GP, is used to recover the structures and PSO is selected for parameter estimations due to its

well-known fast convergence. One of the greatest advantages of CGP over conventional GP is

its lack of bloat. With CGP, solutions are not likely to contain huge but numerically meaningless

components that exhaust computer resources.

Moreover, the multi-objective design of our algorithm enables us to take advantage of

different types of data, in our case, both phenotype data and gene expression. The concept of

dominance relationships is adopted in a multi-objective optimization that provides a selection

pressure toward a Pareto front. Convergence and diversity are two critical criteria in multi-

objective optimization. We address the former issue with non-dominated sorting and the latter

with a histogram approach based on the concept of hypergrids.

 The gene identification similar to QTL mapping was adopted as a preprocessing step to

reduce the number of genes that are likely to exist in the synthetic gene network and consequent

computational time. Based on the number of genes left after the gene identification, multiple runs

were conducted. The non-dominated fronts at the end of our algorithm in results over multiple

runs showed good convergence and diversity compared to initial population. Multiple networks

and associated parameters in final non-dominated fronts over different runs were presented. The

predicted bolting dates and gene expression level by these obtained solutions (networks and their

associated parameters) were very close to the real data. Those solutions have also been converted

into numerical equations and compared with the equation of the synthetic network. Our

discovery was that although they look different at the first glance, the numerically significant

parts of equations remain similar.

 One application for the obtained networks is plant breeding. Thus we proposed network

assisted selection which utilized the network predictions to guide the breeding process. First we

 91

applied this concept on different NK fitness landscape models where it proved to be effective

from simulation. Simulation of NAS breeding shows it outperforms another advanced breeding

strategy – MAS, in terms of both convergence rate and desired phenotype.

 Further work may include using the real phenotypic data instead of data generated by the

synthetic network. The scope of the current thesis is restricted to find small gene regulatory

networks that could be as good as a synthetic network for some applications. The links between

the number of objectives and solutions are still unknown. There has been very little research in

analysis of obtained gene network structures and estimated parameters, in both parameter space

and fitness space.

 92

References

1. D. Corne, M. Dorigo and F. Glover, New Ideas in Optimization. McGrawHill, London,

UK, 1999.

2. L. J. Fogel, Artificial Intelligence through Simulated Evolution: Forty Years of

Evolutionary Programming, John Wiley & Sons, Inc., New York, 1999.

3. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

4. C. M. Fonseca and P. J. Fleming, “On the performance assessment and comparison of

stochastic multiobjective optimizers,” In Hans-Michael Voigt et al., editor, Parallel

Prolem Solving from Nature – PPSN IV, Lecture Notes in Computer Science, pp. 584-

593, Berlin, Germany, Springer-Verlag, Sep.1996.

5. E. Zitzler, K. Deb, and L. Thiele, “Comparison of multi-objective evolutionary

algorithms: Empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173-195,

2000.

6. E. Zitzler and L. Thiele, Multi-objective evolutionary algorithms: “A comparative case

stuy and the strength Pareto approach,” Evolutionary Computation, vol. 3, no. 4, pp.

257-271, Nov. 1999.

7. S. Das, B. Panigrahi, “Multi-objective evolutionary algorithms,” Encyclopedia of

Artificial Intelligence, J. R. Rabual, J. Dorado and A. Pazos Eds, Idea Group Publishing,

to be published.

8. K. Deb, “Multi-objective genetic algorithms: Problem difficulties and construction of test

problems,” Evolutionary Computation, vol. 7, no. 3, pp. 205-230, 1999.

 93

9. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization

test problems,” Evolutionary Computation, vol. 1, pp.825-830, Piscataway, New Jersey,

2002

10. K. Deb, L. Thiele, M. Laumanns and E. Zitzler, “Scalable test problems for evolutionary

multi-objective optimization,” Evolutionary Multi-objective Optimization: Theoretical

Advances and Applications, pp. 105-145, Springer, USA, 2005.

11. M. Ehrgott, Multi-criteria Optimization, Springer, second edition, 2005.

12. K. M. Miettinen, Nonlinear Multi-objective Optimization, Kluwer Academic Publisher,

Boston, Massachusetts, 1999.

13. E. Zitzler, M. Laumanns, S. Bleuler, “A tutorial on evolutionary mulit-objective

optimization,” workshop on Multiple Objective Metaheuristics (MOMH2002), Springer-

Verlag, Berlin, Germany, 2004.

14. K. Deb, A. Pratab, S. Agrawal and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6,

no. 2, pp. 182-197, Apr. 2000.

15. J. D. Knowles and D. W. Corne, “Approximating the nondominated front using the

pareto archived evolution strategy”, IEEE Transactions on Evolutionary Computation,

vol. 8, no. 2, pp. 149-172, 2000.

16. B. W. Silverman, Density estimation for statistics and data analysis, Chapman and Hall,

London, 1986.

17. C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization,” In S. Forrest, editor, proceedings of the

 94

Fifth International Conference on Genetic Algorithms, pp. 416-423, San Mateo,

California, 1993.

18. E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Improving the strength pareto

evolutionary algogrithm for multi-objective optimization,” In K. Giannakoglou, D.

Tsahalis, J. Periaux, K. Papailiou, and T. Fogarty, editors, Evolutionary Methods for

Design, Optimization, and Control, pp. 19-26, Barcelona, Spain, 2002.

19. J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic algorithm for

mulitobjective optimization,” In proceedings of the First IEEE Conference on

Evolutionary Computation, vol.1, pp. 82-87, Piscataway, NJ, 1996.

20. N.Srinivas and K. Deb, “Multi-objective optimization using nondominated sorting in

genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221-248, 1994.

21. C. A. Coello, G. T. Pulido and M. S. Lechuga, “Handing multi-objectives with particle

swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.

256-279, Jun. 2004.

22. C. A. Coello and N. C. Cortes, “Solving multi-objective optimization problems using an

artificial immune system,” Genetic Programming and Evolvable Machines, vol. 6, no. 2,

pp. 163-190, 2005.

23. http:// en.wikipedia.org/wiki/Genetic_algorithm

24. M. Mitchell, An Introduction to Genetic Algorithm. MIT Press, 1998.

25. J. Koza. Genetic programming: on the programming of computers by means of natural

selection. MIT Press, 1992.

 95

26. L. Altenberg, “Emergent phenomena in genetic programming,” In A. V. Sebald and L. J.

Fogel (eds.), Evolutionary Programming: Proceeding s of the Third Annual Conference,

pp. 233-241, World Scientific Publishing, 1994.

27. P. J. Angeline, “Subtree crossover causes bloat,” In J. R. Koza, et al.(eds.), Genetic

Programming 1998: Proceedings of the Third Annual Conference, 745-752, Morgan

Kaufmann, 1998.

28. W. B. Langdon, and R. Poli, “Fitness causes bloat: mutation,” In W. Banzhaf, R. Poli, M.

Schoenauer, and T. C. Fogarty(eds), EuroGP98: First European workshop on Genetic

Programming, pp. 37-28, Springer-verlag, 1998.

29. P. Nordin, and W. Banzhaf, “Complexity compression and evolution,” In L.

Eshelman(ed.), Genetic Algorithms: Proceedings of the Sixth International Conference,

pp. 310-317, Morgan Kaufmann, 1995.

30. T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic programming,” In J. R.

Koza, et al. (eds.), Genetic Programming 1996: Proceedings of the First Annual

Conference, pp.215-223, MIT Press, 1996.

31. T. Soule, Code Growth in Genetic Programming, PhD thesis, University of Idaho, 1998.

32. J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proceedings of 3rd

European Conference on Genetic Programming, vol. 1802, R. Poli et al., Eds., New

York, 1999, pp.17-30, Lecture Notes in Computer Science.

33. M. A. Lones, “Enzyme genetic programming,” PhD dissertation, Dept. Electronic

Engineering, University of York, North Yorkshire, UK, 2003.

34. Xinye Cai, Stephen L. Smith, and Andy M. Tyrrell, "Benefits of employing an implicit

context representation on hardware geometry of CGP”, in Proceeding of 6th

 96

International Conference, Evolvable Systems : From Biology to Hardware, , Sitges,

Barcelona, Spain , September 12-14, 2005, pp 143-154.

35. Xinye Cai, Stephen L. Smith, and Andy M. Tyrrell, “Positional independence and

recombination in cartesian genetic programming”, in Proceedings of the 9th European

Genetic Programming Conference, EuroGP 2006, Budapest, Hungar, April 10-12, 2006,

pp 351-360.

36. J. Miller, “What bloat? Cartesian genetic programming on Boolean problems,” in

Proceeding of Genetic Evolutionary Computation Conference: Late Breaking Papers, E.

D. Goodman, Ed., 2001, pp. 295-302.

37. J. Miller and S. L. Smith, “Redundancy and computational efficiency in Cartesian genetic

programming”, IEEE Transaction on Evolutionary Computation, April, 2006, vol. 2, no.

2, pp. 167 -174.

38. J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary design of digital

circuits—Part I,” Genetic Programming Evolvable Machines, vol. 1, pp. 8-35, 2000.

39. J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary design of digital

circuits—Part II,” Genetic Programming Evolvable Machines, vol. 1, pp. 259-288, 2000.

40. J. F. Miller, “Evolution of digital filters using a gate array model,” in Proceeding of 1st

European Workshops Evolutionary Image Analysis, Signal Processing

Telecommunication, vol. 1596, R. Poli et al., Eds., New York, pp.17-30, 1999.

41. L. Sekanina, Evolvable Components: From Theory to Hardware Implementation. New

York, Springer Verlag, 2004.

42. J. A. Rothermich and J. F. Miller, “Studying the emergence of multicellularity

withcartesian genetic programming in artificial life,” in Proceedings of Genetic

 97

Evolutionary Computation Conference: Late Breaking Papers, E. Cantu-Paz, Ed.,

pp.397-403, 2002.

43. J. F. Miller and P. Thomson, “A developmental method for growing graphs and circuits,”

in Evolvable Systems: From Biology to Hardware, in Proceedings of 5th International

Conference, ICES 2003, vol. 2606, A. M. Tyrrell et al., Eds., Proceedings published as

Lecture Notes in Computer Science, New York, pp. 93-104, 2003.

44. J. F. Miller and W. Banzhaf, “Evolving the program for a cell: From French flags to

Boolean circuits,” in On Growth, Form and Computers, S. J. Kumar and P. J. Bentley,

Eds. pp. 278-301, Academic, New York, 2003.

45. J. F. Miller, Evolving Developmental Programs for Adaptation, Morphogenesis, and Self-

repair, 7th European Conference on Artificial Life, Dortmund, September 14-17, 2003,

Proceedings published as Lecture Notes in Artificial Life, vol. 2801, pp. 256-265, 2003.

46. A. B. Garmendia-Doval, D. S. Morley, and S. Juhos, “Post docking filtering using

Cartesian genetic programming,” in Proceedings of 6th International Conference on

Artificial Evolution, P. Liardet, Ed., pp. 435-446, 2003.

47. A. B. Garmendia-Doval and J. F. Miller, “Cartesian genetic programming and the post

docking filtering problem,” in Genetic Programming Theory Practice II, U. M. O’Reilly,

Ed., 2004.

48. J. Rothermich, F. Wang, an J. F. Miller, “Adaptivity in cell based optimization for

information ecosystems,” in Proceedings Congress Evolutionary Computation,

Piscataway, NJ, pp. 490-497,2003.

49. M. S. Voss, “Social programming using functional swarm optimization,” in Proceedings

of IEEE Swarm Intelligence Symposium, 2003.

 98

50. M. Clerc, Particle Swarm Optimization. ISTE Press, UK, 2005.

51. J. Kennedy and R.C. Eberhart, R. C., “Particle swarm optimization,” Proceeding of IEEE

International Conference on Neural Networks, IV, 1942--1948. Piscataway, NJ: IEEE

Service Center.

52. J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Mateo, CA: Morgan Kaufmann,

2001.

53. S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multi-objective genetic programming:

Reducing bloat by using SPEA2,” in Proc. Congress Evolutionary Computation, 2001,

pp. 536-543.

54. E. deJong, R. A. Watson, and J. B. Pollack, “Reducing bloat and promoting diversity

using multi-objective methods,” in Proc. of GECCO’01 2001, pp.11-18.

55. K. Rodriguez-Vazquez, C. M. Fonseca, and P. J. Fleming, “Identifying the structure of

nonlinear dynamic systems using multi-objective genetic programming,” IEEE

Transactions on Systems, Man and Cybernetics: Part A. Systems and Humans, vol. 34,

no. 4, pp. 531-545, 2004.

56. R. Curry and M. Heywood, “One-class learning with multi-objective genetic

programming,” IEEE International Conference on System, Man and Cybernetics, Oct.

2007, pp. 1938-1945.

57. M. G. Schuster, “A multi-objective genetic programming approach for pricing and

hedging derivative securities,” IEEE International Conference on Computational

Intelligence for Financial Engineering, March, 2003, pp. 77-84.

58. J. Moore and R. Chapman, Application of Particle Swarm to Multiobjective Optimization:

Department of Computer Science and Software Engineering, Auburn University, 1999.

 99

59. T. Ray, K. M. Liew, “A swarm metaphor for multiobjective design optimization,”

Engineering optimization, vol. 34, no. 2, pp. 141-153, Mar.2002.

60. K. E. Parsopoulos and M. N. Vrahatis, “ Particle Swarm optimization method in

multiobjective problems,” in proc. 2002 ACM Symp. Applied Computing (SAC’2002),

Mardrid, Spain, 2002, pp.603-607.

61. X. Hu and R. C. Eberhart, “Multi-objective optimization using dynamic neighborhood

particle swarm optimization,” in Proc. Congr. Evolutionary Computation (CEC’2002),

vol. 2, Honolulu, HI, May 2002, pp.1677-1681.

62. C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutioanry Algorithms

for Solving Multi-objective Problems. Norwell, MA: Kluwer, 2002, ISBN 0-3064-6762-3.

63. J. E. Fieldsend and S. Singh, “A multi-objective algorithm based upon particle swarm

optimization, and efficient data structure and turbulence,” Proc. 2002 U.K Workshop on

Computational Intelligence, Birmingham, U.K., Sept. 2002, pp.37-44.

64. X. Li, “An nondomonated sorting particle swarm optimizer for mltiobjective

optimization,” in Lecture Notes in Computer Science, vol. 2723, Proc. Genetic and

Evolutionary Computation – GECCO 2003 – Part I, E. Cantu-Paz et al., Eds. Berlin,

Germany, July 2003, pp.37-48.

65. C. A. Coello Coello and G. T. Pulido, “Multi-objective optimization using a micro-

genetic algorithm,” in Proc. Genetic and Evolutionary Computation Conf. (GECCO2001),

L. Spector, E. D. Goodman, A. Wu, W. B. Landon, H. M. Voigt, M. Gen, S. Sen, M.

Dorigo, S. PEZESHK, M. H. Garzon, and E. Burke, Eds., San Francisco, CA, 2001,

pp.274-282.

 100

66. Shubham Agrawal, Yogeesh Dashora, Manoj Kumar Tiwari, and Young-Jun Son,,

“Interactive particle swarm: a Pareto-adaptive Metaheuristic to multi-objective

optimization,” in IEEE Transaction on System, Man and Cybernetics – Part A: System

and Human, vol. 38, no. 2, pp. 258 – 277. March, 2008.

67. P. K. Tripathi, Sanghamitra Bandyopadhyay and S. K. Pal, “Adaptive multi-objective

particle swarm optimization algorithm,” 2007 IEEE Congress on Evolutionary

Computation (CEC2007’), Singapore, pp. 2281 – 2288, 2007.

68. Karin Zielinski and Rainer Laur, “Adaptive parameter setting for a multi-objective

particle swarm optimization algorithm,” 2007 IEEE Congress on Evolutionary

Computation (CEC2007’), Singapore, pp. 3019 -3026, 2007.

69. J. Hanks and J. T. Ritchie, “Modeling plant and soil systems”, Agronomy Monograph no.

31, pp.545, ASA, CSSA, and SSSA, Madison, WI,1991.

70. S. M. Welch, J. L. Roe and Z. Dong, “A genetic neural network model of flowering time

control in Arabidopsis thaliana,” Agronomy Journal, vol. 95, 71-81, 2003.

71. M. Cooper, S. C. Chapman, D. W. Podlich and G. L. Hammer, “The GP problem:

quantifying gene-to-phenotype relationships,” Silico Biology, vol. 2, 151-164, 2002.

72. N. Soranzo, G. Bianconi and C. Altafini, “Comparing association network algorithms for

reverse engineering of large scale gene regulatory networks: synthetic vs real data”,

Bioinformatics, vol. 00, no. 00, pp. 1-7, 2007.

73. Anthony J. F. Griffiths, Richard C. Lewontin, Willian M. Gelbart and Jeffrey H. Miller,

Modern Genetic Analysis: Integrating Genes and Genomes, W. H. Freeman, February,

2002.

 101

74. S. M. Welch, J. L. Roe, S. Das, Z. Dong, R. He and M. B. Kirkham, “Merging genomic

control networks and Soil-Plant-Atmosphere-Contiuum (SPAC) models,” Agricultural

Systems, vol. 86, 243-274, 2004.

75. S. M. Welch, Z. Dong, J. L. Roe and S. Das, “Flowering time control: gene network

modeling and the link to quantitative genetics,” Australian Journal of Agricultural

Research, vol. 56, 919-936, 2005.

76. M. A. Blazquez, Flower development pathway, J. Cell Sci. vol.113, pp. 3547-3548.

77. P. Koduru, Z. Dong, S. Das, S. M. Wlech, J. Roe and E. Charibit “Multi-Objective

Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation

Models of Gene Networks", IEEE Transactions on Evolutionary Computation, accepted.

78. M. Koornneef, C. Alonso-Blanco, A. J. M. Peeters, W. Scoppe, “Genetic control of

flowering time in Arabidopsis”, Ann. Rev. Plant Physil. Plant Mol. Biol. 49, 345-370.

79. J. M. Martinez-Zapater, G. Coupland, C. Dean and M. Koornneef, “The transition to

flowering in Arabidopsis,” In Arabidopsis, Cold Spring Harbor Lab Press, Cold Spring

Harbor, New York, pp.403-433.

80. S. A. Kauffman, The origins of order: self-organization and selection in evolution,

Oxford University Press, 1993.

81. S. Huang, “Gene expression profiling, genetic networks and cellular states: an integrating

concept for tumorigenesis and drug discovery,” Journal of Molecular Medicine, vol. 77,

pp. 469-480, 1999.

 102

82. Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, Y. Eguchi, “Development of a system

for inference of large scale genetic networks,” Proceedings of the Pacific Symposium on

Biocomputing, World Publishing Co., vol. 6, pp. 446-485, 2001.

83. M. Sugita, “Functional analysis of chemical system in vivo using a logical circuit

equivalent II: The idea of a molecular automaton,” Journal of Theoretical Biology, vol. 4,

pp. 179, 1963.

84. L. A. Segel, Modeling dynamic phenomena in molecular and cellular biology. Cambridge

University Press, 1984.

85. P. Baldi and G. W. Hatfield, DNA microarrays and gene expression, Cambridge

University Press, 2002.

86. M. B. Elowitz, A.J. Levine, E. D. Siggia and P. S. Swain, “Stochastic gene expression in

a single cell”, Science, 297: 1183-1186.

87. W. J. Blake, M. Kaern and J. J. Collins, “Noise in eukaryotic gene expression,” Nature,

422:633-637, 2003.

88. A. S. Ribeiro, R. zhu and S. A. Kauffman, “A general modeling strategy for gene

regulatory networks with stochastic dynamics,” Journal of Computational Biology, vol.

13, no. 9, pp. 274-284, 2006.

89. W. Coffey, Y. P. Kalmykov and J. T. Waldron, the Langevin Equation, World Scientific

Publishing Company, 2004.

90. P. D’Haeseleer, X. Wen, S. Fuhrman and R. Somogyi, “Linear modeling of mRNA

expression levels during CNS development and injury,” Pacific Symposium

Biocomputing, vol. 4, pp. 41-52, 1999.

 103

91. T. S. Gardner, D. di Bernardo, D. Lorenz and J. J. Collins, “Inferring genetic networks

and identifying compound mode of action via expression profiling,” Science, vol. 301,

pp. 102-105, 2003.

92. R. Guthke, U. Moller, M. Hoffmann, F. Thies and S. Topfer, “Dynamic network

reconstruction from gene expression data applied to immune response during bacterial

infection,” Bioinformatics, vol. 21, pp. 1626-1634, 2005.

93. N. Friedman, M. Linial, I. Nachman and D. Peer, “Using Bayesian network to analyze

expression data,” Computational Biology, vol. 7, pp. 601-620, 2000.

94. J. Huang, H. Shimizu and S. Shioya, “Clustering gene expression pattern and extracting

relationship in gene network based on artificial neural networks,” J. Biosci. Bioeng., vol.

96, pp. 421-428, 2003

95. Z. H. Chan, N. Karabov and L. J. Collins, “a two stage methodology for gene regulatory

network extraction from time-course gene expression data,” Expert System Application,

vol. 30, pp. 59-63, 2006.

96. S. Ando, E. Sakamoto and H. Iba, “Evolutionary modeling and inference of gene

network,” Information Science, vol.145, pp. 237-259, 2002.

97. E. Sakamoto and H. Iba, “Identifying gene regulatory network as differential equation by

genetic programming,” in Genome Informatics, vol. 11, pp 281-283, 2000.

98. R. Xui, X. Hu and D. C. Wunsh II, “Inference of genetic regulatory networks with

recurrent neural network models,” in Proceeding s of 26th Annual International

Conference of the IEEE EMBS, San Francisco, CA, U.S, September, 2004.

99. H. W. Ressom, Y. Zhang, J. Xuan, Y. Wang and R. Clarke, “Inference of gene regulatory

networks from time course gene expression data using neural networks and swarm

 104

intelligence,” Computational Intelligence and Bioinformatics and Computational Biology,

CIBCB’06, pp. 1-8, 2006.

100. J. Herz, “Statistical issues in reverse engineering of genetic networks,” in Proceedings of

the Pacific Symposium on Biocomputing, 1998.

101. C. Pridgeon and D. Corne, “Genetic network reverse engineering and network size: can

we identify large GRNs?” In Proceedings of the Computational Intelligence in

Bioinformatics and Computaitonal Biology (CIBCB’2004), pp. 32-36, 2004.

102. I. Ono, R. Yoshiaki Seike, N. Ono and M. Matsui, “An evolutionary algorithm taking

account of mutual interactions among substances for inference of genetic networks,” In

proceedings of the IEEE Congress on Evolutionary Computation (CEC’ 2004), pp. 2060-

2067, 2004.

103. C. Spieth, F. Streichert, N. Speer and A. Zell, “Multi-objective model optimization for

inferring gene regulatory networks,” Lecture Notes in Evolutionary Multi-Criterion

Optimization, vol. 3410, pp. 607-620, 2005.

104. S. H. Howell, Molecular genetics of plant development, Cambridge University Press,

Cambridge, UK, 1998.

105. G. Hammer, M. Cooper, F. Tardieu, S. Welch, B. Walsh, F. van Eeuwijk, S. Chapman,

and D. Podlich, “Models for navigating biological complexity in breeding improved crop

plants”, Trends in Plant Science, vol. 11, pp. 587-593, 2006.

106. C. Weinig, M. T. Brock, J. A. Dechaine and S. M. Welch, ‘Resolving the genetic basis

of invasiveness and predicting invasions’, Genetica, vol. 129, no. 2, pp. 205-216, 2007.

107. I. Ausın, et al., “Environmental regulation of flowering”, International Journal of

Developmental Biology, vol. 49, no. 5/6, pp.689–705, 2005.

 105

108. S. M. Welch, J. L. Roe, S. Das, Z. Dong, R. He and M. B. Kirkham, “Merging genomic

control networks and Soil-Plant-Atmosphere-Contiuum (SPAC) models”, Agricultural

Systems, vol. 86, pp.243-274, 2005.

109. G. Seaton, C. S. Haley, S. A. Knott, M. Kearsey and P. M. Visscher, “QTL Express:

mapping quantitative trait loci in simple and complex pedigrees”, Bioinformatics vol. 18,

pp. 339-340, 2002.

110. S. M. Welch, Z. Dong, J. L. Roe and D. Das, “Flowering time control: gene network

modeling and the link to quantitative genetics”, Australian Journal of Agricultural

Research, vol. 56, pp. 919-936, 2005.

111. C. S. Haley and S. A. Knott, “A simple regression method for mapping quantitative trait

loci in line crosses using flanking markers”, Heredity, vol. 69, pp. 315-324, 1992.

112. J. M. Ribaut and D. A. Hoisington, Marker assisted selection: new tools and strategies.

Trends Plant Science, vol. 3, pp 236-239, 1998.

113. H. S. Chawla, Introduction to plant biotechnology, Science Publisher Inc, Enfield, U.S.A.

114. S. A. Kauffman and S. Levin, “Towards a general theory of adaptive walks on rugged

landscape,” Journal of Theoretical Biology, vol.128, pp. 11-45, 1987.

115. S. A. Kauffman, “Adaptation on rugged fitness landscapes,” In D. Stein, editor, Lectures

in the Sciences of Complexity, pp. 527-618. Addison-Wesley, Redwood City. SFI Studies

in the Sciences of Complexity, Lecture Volume I.

 106

Appendix A - Terms and Definitions

Allele: One of the different forms of a gene that can exist at a single locus.

Amino acids: The basic building block of proteins.

Arabidopsis thaliana: A small flowering plant with a relatively short life cycle, which

makes it popular as a model organism in plant biology and genetics.

Aggregation-based, criterion-based and Pareto-based: Three major techniques used in

multi-objective optimization to achieve good convergence when forming the non-dominated

front.

Bloat: The phenomenon that solutions have the tendency to become larger and exhaust

computational resources in genetic programming that uses a tree structure as representation.

Chromosome: Originally indicating an organized structure of DNA and protein that is

found in cells, its borrowed by evolutionary algorithms to indicate a representative solution.

Convergence and diversity: Two important metrics in a stochastic multi-objective

algorithm design.

Criterion-based: See Aggregation-based.

Crossover rate: The probability that crossover operator is applied on a chromosome in

evolutionary algorithms.

Crowded comparison: See Fitness Sharing.

Curse of dimensionality: The problem caused by the exponential increase in volume

associated with adding extra dimensions to a (mathematical) space.

Domination counting and non-dominated sorting: Two Pareto-based ranking techniques

to achieve good convergence when forming the non-dominated front.

Deoxyribonucleic acid (DNA): A double chain of linked nucleotides; the fundamental

substance of which genes are composed.

Elitism: A strategy in evolutionary algorithms where the best one or more solutions,

called the elites, in each generation, are inserted into the next, without undergoing any change.

This strategy usually speeds up the convergence of the algorithm. In a multi-objective

framework, any non-dominated solution can be considered to be elite.

 107

Evolutionary algorithms: A type of stochastic algorithms that’s inspired from Darwin’s

evolutionary theory. These techniques include genetic algorithms, genetic programming,

evolutionary programming and evolutionary strategy.

Exploration and exploitation: Terms used in a search algorithm to indicate in-breadth

search and in-depth search respectively.

Fitness: A measure that is used to determine the goodness of a solution for an

optimization problem.

Fitness landscape: A representation of the search space of an optimization problem that

brings out the differences in the fitness of the solutions, such that those with good fitness are

“higher”. Optimal solutions are the maxima of the fitness landscape.

Fitness sharing, crowded comparison, histogram and nearest neighbor: Four techniques

used in multi-objective optimization to achieve good diversity, see Section 1.3.3

Functions and terminals: Two basic elements in genetic programming that uses tree

structure for representation. Terminals indicate the terminal nodes and functions indicate non-

terminal nodes in such a tree.

Gene: The fundamental physical and functional unit of heredity, which carries

information from one generation to the next; a segment of DNA composed of a transcribed

region and a regulatory sequence that makes transcription possible.

Generation: A term used in evolutionary algorithms that roughly corresponds to each

iteration of the outermost loop.

Genome: The entire complement of genetic material in a chromosome set.

Genotype: The specific allelic composition of a cell.

Genotype to phenotype mapping: A term used in biology indicating the problem of

mapping an organism’s allelic combination (genotype) to its physical traits (phenotype).

Genetic regulatory network: A network consisted of interacting genes that actually

control certain processes in molecular biology.

Global optimum: The best solution in a single objective optimization problem.

Level-back: The number of columns back a node in a particular column can connect to in

Cartesian genetic programming.

Marker assisted selection (MAS): A selection strategy in plant breeding based on

genotypes (combinations of allele markers).

 108

Monte-Carlo algorithms: A class of computational algorithms that rely on repeated

random sampling to compute their results

Mutation rate: The probability that a mutation operator will be applied on a chromosome

in multi-objective algorithms.

Nearest neighbor: See Fitness Sharing.

Network assisted selection (NAS): A proposed selection strategy based on mathematic

networks for plant breeding in this thesis.

Neuron: A basic element in neural network model.

Neutrality: Used in Cartesian genetic programming. Refers to inactive components which

may be activated in the future.

Non-dominated sorting: See Domination Counting.

Non-dominated front: The set of non-dominated solutions found at certain time by a

given algorithm.

Nucleosome: The basic unit of eukaryotic chromosome structure; a ball of eight histone

molecules wrapped about by two coils of DNA.

Nucleotide: A molecule composed of a nitrogen base, a sugar, and a phosphate group; the

basic building block of nucleic acids.

Objective function: The function to be optimized. In a minimization problem, the fitness

varies inversely as the objective function.

Objective function space: The corresponding values of an objective function in a search

space.

Optimality: Equivalent to optimization; the study of problems in which one seeks optimal

solutions.

Pareto-based: See aggregation-based.

Pareto set: The set of optimal non-dominated solutions.

Pareto front: The projection of Pareto set in objective function space.

Particle: A basic component in particle swarm optimizations.

Particle swarm optimization: A type of stochastic algorithms inspired from cooperative

behavior of a flock of birds.

Phenotype: The form taken by some character in a specific individual.

 109

Population-based algorithm: An algorithm that maintains an entire set of candidate

solutions, each solution corresponding to a unique point in the search space of the problem.

Promoter region: A regulatory region a short distance from the end of a gene that acts as

the binding site for RNA polymerase.

Quantitative trait locus mapping (QTL): The statistical study of the alleles that occur in a

locus and the phenotypes (physical forms or traits) that they produce.

Redundant: A term used in genetic programming to indicate components that have not

appeared in a solution at a certain point in time.

Reuse: A term used in Caretisan genetic programming to indicate that subgraphs can be

used simultaneously by others.

Reverse engineering: A process of inferring the interactions of a system from its

behaviors.

Search space: Set of all possible solutions for any given optimization problem. Almost

always, a neighborhood around each solution can also be defined in the search space.

Selection, crossover (recombination) and mutation: Three well-known mechanisms in

biological evolution, as three important steps (operators) borrowed in evolutionary algorithms.

 Stochastic algorithms: Methods which incorporate probabilistic (random) elements.

 Stochastic multi-objective optimization: Stochastic algorithms that are able to deal with

multi-objective optimization problems.

Training process: A process to obtain weights from data based on goodness-of-fit in a

neural network model.

 Transcription: The synthesis of RNA from a DNA template.

Transcription factor: A protein that binds to a cis-regulatory element (for example, an

enhancer) and thereby, directly or indirectly, affects the initiation of transcription.

 110

Appendix B - P-value of Gene Identification

Gene # Average p-value
92

18

24

80

32

54

17

74

13

20

21

93

95

39

50

89

6

90

71

28

25

29

36

26

48

30

77

11

0.091075

0.091158

0.13037

0.14767

0.15

0.16448

0.16469

0.16642

0.16668

0.16721

0.16787

0.16798

0.16835

0.16839

0.16913

0.16925

0.16933

0.16939

0.16953

0.16957

0.16982

0.16993

0.17016

0.17029

0.17032

0.17069

0.17072

0.17078

 111

8

15

61

76

23

66

12

79

85

91

46

56

27

35

1

19

57

53

40

59

84

96

55

49

52

44

2

97

9

63

67

0.17085

0.1715

0.17163

0.1717

0.17179

0.17188

0.17204

0.17207

0.1725

0.17251

0.17266

0.17272

0.17275

0.1729

0.17304

0.17313

0.17324

0.17326

0.17327

0.17331

0.17335

0.17338

0.17352

0.17354

0.17357

0.17399

0.17405

0.17416

0.17421

0.17433

0.17437

 112

94

69

87

45

78

37

72

64

86

38

100

82

65

60

83

88

34

47

22

33

42

62

73

99

51

41

70

43

4

31

3

0.17451

0.17454

0.17467

0.17473

0.17478

0.17482

0.17482

0.17488

0.17492

0.17493

0.17513

0.1753

0.17535

0.17543

0.1755

0.17557

0.1758

0.17599

0.17607

0.17627

0.17628

0.1763

0.17631

0.17652

0.17653

0.1766

0.17661

0.17705

0.1775

0.17762

0.17764

 113

14

7

5

81

58

98

75

16

68

10

0.17764

0.17784

0.17786

0.17788

0.17799

0.17862

0.17866

0.17913

0.17922

0.17943

