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Abstract 

A Superpave asphalt mixture with 4.75-mm nominal maximum aggregate size (NMAS) 

is a promising, low-cost pavement preservation treatment for agencies such as the Kansas 

Department of Transportation (KDOT). The objective of this research study is to develop an 

optimized 4.75-mm NMAS Superpave mixture in Kansas. In addition, the study evaluated the 

residual tack coat application rate for the 4.75-mm NMAS mix overlay. 

Two, hot-in-place recycling (HIPR) projects in Kansas, on US-160 and K-25, were 

overlaid with a 15- to 19-mm thick layer of 4.75-mm NMAS Superpave mixture in 2007. The 

field tack coat application rate was measured during construction. Cores were collected from 

each test section for Hamburg wheel tracking device (HWTD) and laboratory bond tests 

performed after construction and after one year in service. Test results showed no significant 

effect of the tack coat application rate on the rutting performance of rehabilitated pavements. The 

number of wheel passes to rutting failure observed during the HWTD test was dependent on the 

aggregate source as well as on in-place density of the cores.  Laboratory pull-off tests showed 

that most cores were fully bonded at the interface of the 4.75-mm NMAS overlay and the HIPR 

layer, regardless of the tack application rate. The failure mode during pull-off tests at the HMA 

interface was highly dependent on the aggregate source and mix design of the existing layer 

material. This study also confirmed that overlay construction with a high tack coat application 

rate may result in bond failure at the HMA interface.  

Twelve different 4.75-mm NMAS mix designs were developed using materials from the 

aforementioned but two binder grades and three different percentages of natural (river) sand. 

Laboratory performance tests were conducted to assess mixture performance. Results show that 

rutting and moisture damage potential in the laboratory depend on aggregate type irrespective of 

binder grade. Anti-stripping agent affects moisture sensitivity test results. Fatigue performance is 

significantly influenced by river sand content and binder grade. Finally, an optimized 4.75-mm 

NMAS mixture design was developed and verified based on statistical analysis of performance 

data. 
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Abstract 

A Superpave asphalt mixture with 4.75-mm nominal maximum aggregate size (NMAS) 

is a promising, low-cost pavement preservation treatment for agencies such as the Kansas 

Department of Transportation (KDOT). The objective of this research study is to develop an 

optimized 4.75-mm NMAS Superpave mixture in Kansas. In addition, the study evaluated the 

residual tack coat application rate for the 4.75-mm NMAS mix overlay. 

Two, hot-in-place recycling (HIPR) projects in Kansas, on US-160 and K-25, were 

overlaid with a 15- to 19-mm thick layer of 4.75-mm NMAS Superpave mixture in 2007. The 

field tack coat application rate was measured during construction. Cores were collected from 

each test section for Hamburg wheel tracking device (HWTD) and laboratory bond tests 

performed after construction and after one year in service. Test results showed no significant 

effect of the tack coat application rate on the rutting performance of rehabilitated pavements. The 

number of wheel passes to rutting failure observed during the HWTD test was dependent on the 

aggregate source as well as on in-place density of the cores.  Laboratory pull-off tests showed 

that most cores were fully bonded at the interface of the 4.75-mm NMAS overlay and the HIPR 

layer, regardless of the tack application rate. The failure mode during pull-off tests at the HMA 

interface was highly dependent on the aggregate source and mix design of the existing layer 

material. This study also confirmed that overlay construction with a high tack coat application 

rate may result in bond failure at the HMA interface.  

Twelve different 4.75-mm NMAS mix designs were developed using materials from the 

aforementioned but two binder grades and three different percentages of natural (river) sand. 

Laboratory performance tests were conducted to assess mixture performance. Results show that 

rutting and moisture damage potential in the laboratory depend on aggregate type irrespective of 

binder grade. Anti-stripping agent affects moisture sensitivity test results. Fatigue performance is 

significantly influenced by river sand content and binder grade. Finally, an optimized 4.75-mm 

NMAS mixture design was developed and verified based on statistical analysis of performance 

data. 
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CHAPTER 1-INTRODUCTION 

1.1 General 

Transportation industries and infrastructure facilities such as highways consume large quantities 

of materials in initial construction and periodic maintenance and rehabilitation. The United 

States has the largest highway networks (4.04 million miles) in the world which are mainly 

classified into the Interstate, U.S. state and local government Highway systems. As of 2008, 94% 

of the highway network pavements are flexible pavement (asphalt surfaced) while the rest are 

either rigid (concrete) or composite pavements (asphalt layer overlaid on concrete pavement) 

(FHWA 2008). Kansas has about 89% of the total paved-road network which are asphalt 

surfaced. The common pavement distresses on asphalt pavements in Kansas can be partly 

addressed by proper selection of construction materials and by developing suitable mix design. 

The Superpave (Superior Performing Asphalt Pavements) mix design procedure has been 

adopted by many state agencies including Kansas during the last decade. The Superpave 

procedure focuses mainly on the mixture performance corresponding to climatic conditions and 

expected traffic levels during pavement design life. This mix design system has design criteria 

for 9.5-mm to 37.5-mm nominal maximum aggregate size (NMAS) mixes. Until 2001, 9.5-mm 

was the smallest NMAS used in the Superpave mix design. In 2002, the National Center for 

Asphalt Technology (NCAT) developed Superpave mix design criteria for the 4.75-mm NMAS 

mix (Cooley et al. 2002). Prior to Superpave implementation, many state agencies successfully 

used fine mixes for various maintenance applications on low-traffic-volume roads (Williams 

2006). Recently, many state agencies have expressed their interest in implementing 4.75-mm 
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NMAS Superpave designed mixtures for thin lift-applications, leveling courses, and for roadway 

maintenance.  

1.1.1 Introduction to Superpave 

Since the discovery of the petroleum asphalt refining process, asphalt pavement has become 

popular all over the world. In 1920s, the Hubbard-Field method was developed for a sheet 

asphalt mix with aggregates that passed fully through a 4.75-mm sieve. However, it was 

modified to design coarser asphalt mixtures. The method included a stability test to measure 

strength of the mixture using a punching-type shear load. After 1930s, the widely used Hveem 

method (developed by the California Department of Highways Materials and Design) and 

Marshall method (developed by the Mississippi Department of Transportation) were introduced 

in hot-mix asphalt (HMA) design. The Hveem stabilometer measures an asphalt mixture’s ability 

to resist lateral movement under a vertical load, while the primary features of the Marshall mix 

design are the density/void analysis and the stability/flow test (Hossain et al. 2010).  

Refinement of HMA design methods came into picture not only with the increasing use 

of asphalt but also with an increase in traffic volume and loading configuration. As the 

transportation industry grew, the demand for HMA in heavy-duty pavement applications also 

grew. Highway state agencies were trying to determine a fine line between mixtures that 

performed well and poorly (Hossain et al. 2010). The materials were the same, but the asphalt 

materials and pavement performances were evaluated in terms of traffic volume and load. 

In 1987, the Strategic Highway Research Program (SHRP) began a significant research 

effort with the objective to create an improved asphalt mix design procedure. The final product 

of the SHRP asphalt research program was Superpave (Superior Performing Asphalt 

Pavements). Traditional mix design methods, the Marshal and Hveem, were based on the 
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concept that if the mixture volumetric properties satisfy a set of specifications, the mix would 

perform well under any condition. In terms of field performance, very little testing was done to 

validate the claims. The design method of Superpave is based on performance-based 

specification. Even though it uses traditional volumetric mix design methodologies, it also 

includes a performance concept. The tests and analyses have direct relationships to field 

performance. In addition, the Superpave mix design system integrates material selection (asphalt 

and aggregate) and mix design into procedures based on pavement structural section, design 

traffic, and climate conditions. In Superpave, test procedures and performance-based models are 

used to estimate the performance life of HMA in terms of equivalent single-axle loads (ESALs). 

Since its implementation, the Superpave methodology has helped state agencies to achieve better 

performance of their mixes in terms of enhanced resistance to permanent deformation, fatigue, 

low-temperature cracking, moisture-induced damage, workability, and skid resistance to durable 

pavement layer (Roberts et al. 1996). 

1.1.2 Fine Mix Concept in Superpave 

Before the implementation of the Superpave mix design method, the mixes were fairly fine-

graded. This was due to the fact that gradation of the aggregate blend prior and after Superpave 

is completely different. The combined aggregate gradation prior to the Superpave mix passed 

over the maximum density line (MDL) while some Superpave aggregate gradations passed 

below the restricted zone. The largest difference was evident in the material passing the 

intermediate sieve (No. 8 sieve). In the Superpave method, the mix contained significant 

amounts of both coarse and fine aggregates, with a limited amount of intermediate-size 

aggregates. This aggregate blending enhanced the structural capacity of the mixes. Though, the 

Superpave mix design included gradation specifications for 37.5-mm, 25.0-mm, 19.0-mm, and 
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9.5-mm NMAS mixtures, many state agencies successfully implemented smaller aggregates for 

rehabilitation and maintenance projects. Therefore, lack of Superpave specification for 4.75-mm 

NMAS mixes caused a significant gap in their implementation. 

HMA mixes with smaller aggregate size can be used in thin-lift applications, commonly 

used in pavement preservation projects. In a corrective maintenance program, a fine-graded 

mixture is well accepted in leveling and shimming of the existing pavement before overlay 

application. The primary objective is to provide durability, workability, and smoothness. For 

preventive maintenance, thin-lift application of the fine mix is an excellent alternative to stretch 

the maintenance budget if the pavement does not experience major distresses. This application 

primarily improves ride quality, reduces permeability, and sometimes leads to minor crack 

healing.  

Although the structural capacity of the fine mixes is not adequate for truck parking and 

loading areas, it can be utilized for low-volume highways such as rural highways, county roads, 

and city streets or parking lots. It is to be noted that the fine mixes are not expected to improve 

the structural capacity of the pavement structure and should not be placed on the weak pavement 

structures. As most state agencies are merging into the Superpave system, it is quite evident that 

complete design specifications for 4.75-mm NMAS are in great need. 

Maryland and Georgia DOT have successfully used thin HMA overlays as part of their 

preventive maintenance program. These mixes showed excellent resistance to rutting and 

cracking. North Carolina is another state that has successfully implemented thin-lift overlay. 

They used a coarse-sand asphalt mix for paving very low-volume roadways. The target was to 

design a mix with higher air voids and hence, reduced optimum binder content and increased 

rutting resistance. Other states, such as Ohio, Missouri, Indiana, and Tennessee, have also 
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designed their own specifications for thin-lift HMA applications. Ohio uses a mixture known as 

“Smoothseal”. Type A of this particular mix is extremely fine and is used for medium and urban 

traffic. Type B is a coarser mix and is used for heavy-duty traffic and high-speed application. 

Type B has a gradation similar to that of the 4.75-mm NMAS Superpave mixture. A minimum 

binder content of 6.4 percent is used with a minimum VMA of 15 percent and a 4 percent air 

void (Ohio DOT 2010). Figure 1.1 shows the Type A and Type B smoothseal. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Mixture with Type A and Type B “smoothseal” (Ohio DOT 2010) 

1.2 Problem Statement 

A successful pavement design ensures extended service life of the pavement structure. The 

design process typically includes proper selection and design of the construction materials, 

interface layer strength, and determination of layer thickness depending on traffic volume and 

climatic conditions, and finally, drainage conditions. A recent survey on Superpave-designed 
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pavements proves that permeability is one of the biggest problems in pavement design. The 

survey suggested that coarse-graded Superpave mixes result in higher permeability compared to 

the dense-graded mixes at the same air void (Mallick et al. 2003). It can be expected that 

permeability reduces durability of the pavement structure and hence, shortens the pavement life. 

The most critical issue is the infiltration of water into the pavement, causing stripping. The study 

also suggested that material selection plays a significant role in reducing the problem. 

Mixes with 4.75-mm NMAS have the potential to improve riding quality and safety 

characteristics, extend pavement life, increase durability, and reduce permeability and road-tire 

noise. Many states, including Kansas, are looking at pavement preservation techniques that are 

cost effective due to budget constraints. Since some past experiences with thin hot-mix asphalt 

(HMA) overlays were positive in a few states, the 4.75-mm mixes have attracted attention from 

many state agencies. Since the mixes are placed in thin-lift applications, they can be used for 

corrective maintenance, to decrease construction time and cost, and to provide a very economical 

surface mix for low-traffic- volume facilities. 

With the advent of Superpave, many state agencies recommended the use of a coarse-

grained mixture and some agencies have begun to utilize stone-matrix asphalt (SMA) mixes 

(Williams 2006). Both mix types confirm their stability using the stone-to-stone contact of coarse 

particles, which in turn, reduces the application of fine aggregate materials. Implementation of 

4.75-mm NMAS Superpave mix will reduce these screening stockpiles accumulated after the use 

of larger aggregates and hence provide a use for materials that could become a “by-product” of 

the HMA industry. 

It is important to note that the aggregate source plays the most important part in 

pavement performance. Potential limitations for small-aggregate-size mixtures include concerns 
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with permanent deformation, moisture resistance, scuffing, and skid resistance. In addition, 

gradation criteria followed by different state agencies before 2002 were different and were put in 

place based on the experience of project personnel. 

In 2002, the 4.75-mm NMAS designation and criteria were added to the AASHTO 

Superpave specifications to fit the need for small-aggregate-size mixtures. These criteria were 

based on a combination of experience, limited laboratory research, and engineering judgment. 

Thus, no study has been reported on the large-scale use of this mix in the field. A recent NCAT 

laboratory refinement study on 4.75-mm NMAS mix performance has been published, but the 

second phase of field evaluation is yet to come. 

Another important issue in new pavement construction and rehabilitation projects is the 

bond strength at the layer interface. Poor bond between the two layers of HMA is the cause of 

many pavement problems. Slippage failure is one of the most common distresses that often 

occurs at locations where traffic accelerates, decelerates, or turns. Other pavement problems may 

also be attributed to the insufficient bond between the pavement layers of HMA. Compaction 

difficulty, premature fatigue, top-down cracking, and surface layer delamination have also been 

associated with a poor bond between HMA layers (West et al. 2005). An NCAT study in 2005 

showed the laboratory bond-strength performance of 4.75-mm NMAS mix for new pavement 

layers. No study on 4.75-mm mix was performed based on a field bond-strength evaluation for a 

new pavement construction/pavement preservation program. Hence, research is needed in this 

area before widespread implementation of this mixture. 

1.3 Objective 

The overall objective of this research study was to evaluate various aspects of the design of 4.75-

mm Superpave mixture, and to asses the relative performance of the mix in both field and 
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laboratory environments in terms of rutting, stripping, and long-term fatigue behavior. The step-

by-step objectives were as follows: 

• Investigation of laboratory 4.75-mm NMAS Superpave mixture volumetrics and 

performance, especially rutting, stripping, and long-term fatigue. 

• Examination of the rutting performance of 4.75-mm NMAS ultra-thin overlay 

constructed in the field under Hamburg Wheel Tracking Device. 

• Evaluation of bond strength of tack coat material at different application rates and 

verification of the state practice of application rate for 4.75-mm NMAS ultra-thin 

overlay. 

• Measurement and assessment of the residual tack coat application rate in field conditions. 

• Statistical analysis to identify the most influential factors affecting the laboratory mix 

design and to develop regression equations for laboratory mix performance. 

• Development of an optimized mix design for 4.75-mm NMAS Superpave mixture based 

on performance regression equations to enhance performance and to extend pavement 

service life. 

1.4 Organization of Dissertation 

This dissertation is divided into six chapters. The first chapter covers a brief introduction on 

Superpave background and Superpave fine mixes, problem statement, study objectives, and the 

outline of the report. Chapter 2 covers the review of the literature and a detailed study on 

Superpave specifications and Superpave fine mixes, discussion of tack coat materials and bond 

strength test procedures at HMA interface, and some recent studies on bond strength in hot mix 

asphalt pavement. Chapter 3 describes the test section and data collection procedure in the field, 

laboratory aggregate testing and mix design procedure of 4.75-mm NMAS Superpave mixture, 
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and performance tests used to evaluate field cores and laboratory mixes. Chapter 4 presents the 

analysis of the test results. Statistical analysis of the test results are discussed in Chapter 5. 

Finally, Chapter 6 presents conclusions and recommendations based on the present study. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Superpave Compaction and Specification 

One of the most significant changes made in the Superpave technology was development of the 

Superpave gyratory compactor (SGC). It has the combined features of the Texas gyratory 

compactor and the French gyratory compactor (Figure 2.1). During compaction, the mold is 

tilted at an internal angle of 1.16 degrees at a constant speed of 30 revolutions per minute, while 

being subjected to a compaction pressure of 600±6 kPa (87±0.87 psi). This compaction method 

simulates field conditions better than the traditional impact compaction process used in the 

Marshall method.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Pine Superpave gyratory compactor 

Compacting effort in the SGC is expressed in terms of the number of gyrations (N) 

applied to the specimen. Three different gyration levels (Nini, Ndes, and Nmax) are considered in 
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mix design. These three levels of gyration represent the density of the mix at different stages of 

the pavement over the design life. The design number of gyration (Ndes) is a function of the 

project traffic level, which is 20-year design ESALs. Higher compactive effort is required for 

mixes that are subjected to heavy traffic condition. It is to be noted that if the initial density is too 

high, the mixture may show stability problems, while too high density at Nmax may result in 

bleeding and rutting. Special provisions for a project provided by KDOT list Nini, Ndes, and Nmax 

as shown in Table 2.1. Gyration-level values for the project are determined from the design 

traffic level. 

Table 2.1 Gyratory Compactive Efforts in Superpave Volumetric Mix Design (Hossain et 

al. 2010) 

20-Year Design ESALs 
(Million) 

Compactive Effort 

Nini Ndes Nmax 
< 0.3 6 50 75 

0.3 - < 3 7 75 115 
3 - < 30 8 100 160 

> 30 9 125 205 

Shoulder* A 6 50 75 
B ** ** ** 

* At the contractor’s option, A or B may be used. 
** Use traveled-way design properties. 

2.1.1 Performance Grade of Binder 

Another important change incorporated into the Superpave method is the binder performance 

grade. Asphalt cement binders are specified based on their expected performance at a range of 

temperatures. For example, if a binder has PG 64-22, it is expected that it will perform well at a 

high pavement temperature of 64 0C (147.20F) and a low pavement temperature of -22 0C (7.6 

0F). Consideration of PG binder grade ensures good performance of the binder at the 

environmental conditions of that project location (AI 1994). 
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Binder selection in the Superpave method is totally dependent on climate and traffic-

loading conditions of the paving project location. The minimum PG binder required to satisfy 

design reliability is selected using pavement temperature data. Pavement temperature data is 

obtained from the mean and standard deviation of the yearly, seven-day average, maximum 

pavement temperature at 20 mm (0.8 inch) below the pavement surface. The high-temperature 

grade of the binder is adjusted by the number of grade evaluations illustrated in Table 2.2, when 

traffic speed and design ESALs warrant such adjustment. 

Table 2.2 Binder Selection Based on Traffic Speed and Traffic Level (Hossain et al. 2010) 

Design ESALs1 
(Millions) 

Adjustment to the High Temperature of the Binder5 
Traffic Load Rate 

Standing2 Slow3 Standard4 
< 0.3 Note6 - - 

0.3 - < 3 2 1 - 
3 - < 10 2 1 - 
10 - < 30 2 1 Note6 

≥ 30 2 1 1 
(1) The anticipated project traffic level expected on the design lane over a 20-year period. Regardless of the actual 

design life of the roadway, determine design ESALs for 20 years. 
(2) Standing traffic - where average traffic speed is less than 20 km/h. 
(3) Slow traffic - where average traffic speed ranges from 20 to 70 km/h. 
(4) Standard traffic - where average traffic speed is greater that 70 km/h. 
(5) Increase the high-temperature grade by the number of grade equivalents indicated (one grade is equivalent to 60 
C). Use the low-temperature grade as determined in this section. 
(6) Consideration should be given to increasing the high-temperature grade by one grade equivalent. 

2.1.2 Aggregate Properties 

Aggregate properties are also included in Superpave specifications with respect to performance. 

Two types of aggregate properties are specified in the Superpave system: “consensus” and 

“source”. Many state agencies that had already employed specifications for such properties and 

inclusion of these properties explained the importance of aggregate characteristics.  

Consensus properties are those properties that had been selected by a group of experts 

during SHRP research and are critical in achieving high-performance HMA. These properties 
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must be met at various levels depending on traffic load and position within the pavement 

structure. Table 2.3 lists the consensus properties of the aggregate and the requirements specified 

by KDOT. 

Table 2.3 KDOT Requirements for Consensus Properties of Superpave Aggregates 

(Hossain et al. 2010) 

Design 
ESALs1 

(Millions) 

Property  
Coarse Aggregate 

Angularity 
(Min., %) 

Fine Aggregate 
Angularity 
(Min., %) 

Flat or 
Elongated 
Particles 

Clay Content 

Depth from Surface Depth from Surface (Max., %) (Min., %) ≤ 100 mm > 100 mm ≤ 100 mm > 100 mm 
< 0.3 55 50 42 42 10 40 

0.3 - < 3 75 50 42(45*) 42 10 40 
3 - < 10 85/80** 60 45 42 10 45 
10 - < 30 95/90 80/75 45 42 10 45 

≥ 30 100/100 100/100 45 45 10 50 

Shoulder 50 50 40 40 - 40 
* For SM-19A mixes 
** 85/80 means that 85% of the coarse aggregate has one or more fractured faces and 80% has two or more fractured 

faces. 

Fine aggregate angularity (FAA) is more critical in dealing with fine mixes (for example, 4.75-

mm NMAS). It ensures a high degree of internal friction for the fine aggregates and enhances 

rutting resistance. Specifications for FAA limit the use of natural sands which create a “tender” 

mix. The 4.75-mm mixes contain primarily fine aggregate and hence, the properties of fine-

aggregate angularity are important to the performance of such mixes. 

Source properties are also believed to be critical to pavement performance, but they are 

project–specific. Thus, critical values are basically established by local agencies based on source 

type. These properties are often used to qualify local sources of aggregates. Source properties 

included in the KDOT Superpave methods are toughness (40 to 45% L.A. abrasion test), 

soundness (0.85 to 0.95), and deleterious materials. In addition, specific gravities of the 
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aggregates (both bulk and apparent) used in the mix design need to be evaluated by Kansas Test 

Method KT-6. 

2.1.3 Aggregate Gradation 

The structure of the aggregate blend is also important to ensure mixture performance. Traditional 

specifications typically included a “band” for acceptable gradations so that the entire gradation 

curve could be plotted within that band width. In Superpave mix design, the blended aggregate 

gradation curves can take any shape as long as they lie within the control points. The control 

points refer to the maximum aggregate size (MAS), nominal maximum aggregate size (NMAS), 

an intermediate sieve size (normally 2.36 mm, except 1.18 mm for 4.75-mm NMAS), and the 

dust size (US No. 200 or 0.075 mm sieve) (Cooley et al. 2002).  

Superpave uses a 0.45-power gradation chart to define a permissible gradation. The chart 

is a unique graphing technique to evaluate the cumulative particle-size distribution of the 

aggregate blend. An important feature of this power chart is the maximum density gradation. The 

maximum density gradation is a gradation where the aggregate particles fit themselves in the 

densest possible arrangement.  

 

 

 

 

 

 

Figure 2.2 Superpave gradation specifications (Williams 2006) 
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The plot of the maximum density line (MDL) is a straight line from the maximum aggregate size 

to the origin. While designing aggregate structures, this gradation line should be avoided to 

obtain the optimum asphalt film thickness and thereby, to produce a durable mixture. Figure 2.2 

shows the gradation specifications in Superpave mix design.  

Early Superpave gradations were restricted by the control points, as well as an area called 

the restricted zone (RZ). Several highway agencies successfully used gradations passing above 

the restricted zone (ARZ), below the restricted zone (BRZ), and through the restricted zone (RZ) 

and these mixes performed well. Hence, the highway agencies were encouraged to eliminate use 

of a restricted zone (Kandhal and Cooley 2002, Hand and Epps 2001).  

The Superpave method defines six mixture gradations of design aggregate structure by 

their nominal maximum aggregate sizes shown in Tables 2.4 and 2.5. Table 2.5 illustrates 

numerical gradation limits (% retained) of mixtures for major modification and overlay projects 

in Kansas. It incorporates the control points described by Superpave. KDOT uses the NMAS to 

define each mix, and mixes ending in A (for example SM-4.75A) pass above the maximum 

density line in the finer sieve sizes. Mixes ending with B or T (such as SM-9.5B and SM-9.5T) 

go below the maximum density line in the gradation chart.  

Table 2.4 Superpave Mixture Sizes 

Superpave Designation Nominal Maximum Size 
(mm) 

Maximum Size 
(mm) 

37.5 mm 37.5 50 
25 mm 25 37.5 
19 mm 19 25 

12.5 mm 12.5 19 
9.5 mm 9.5 12.5 
4.75 mm 4.75 9.5 
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Table 2.5 KDOT Superpave Designed Aggregate Gradations (% Retained) for Major Modification and 1R Overlay Projects 

(Hossain et al. 2010) 

Nominal Max. Size Mix 
Designation 

Percent Retained-Square Mesh Sieves Min. 
VMA 
(%) 25.0 mm 19.0 mm 12.5 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 0.075mm 

SM-4.75A   0 0-5 0-10  40-70 90-98 16.0 

SM-9.5A & SR-9.5A   0 0-10 10 min 33-53  90-98 15.0 

SM-9.5B & SR-9.5B   0 0-10 10 min 53-68  90-98 15.0 

SM-9.5T & SR-9.5T   0 0-10 10 min 53-68  90-98 15.0 

SM-12.5A & SR-12.5A  0 0-10 10min  42-61  90-98 14.0 

SM-12.5B & SR-12.5B  0 0-10 10 min  61-72  90-98 14.0 

SM-19A & SR-19A 0 0-10 10 min   51-65  92-98 13.0 

SM-19B & SR-19B 0 0-10 10 min   65-77  92-98 13.0 
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2.1.4 Volumetric Design Specifications 

Requirements for volumetric mix design protocol are another vital part in the Superpave method. 

Volumetric mix properties of a compacted paving mixture include percent air voids in the 

compacted mix, voids in the mineral aggregate (VMA), voids filled with asphalt (VFA), in-place 

density at the initial number of gyrations (Nini), and in-place density at the final number of 

gyrations (Nmax). Similar to the traditional mix design methods, Superpave has also specified the 

limiting values of these volumetric properties that significantly affect mixture performance.  

2.1.4.1 Air Voids 

Air void is a major volumetric property that significantly affects pavement performance. Air void 

is the total volume of the small pockets of air between the coated aggregate particles throughout 

a compacted paving mixture. It can be computed using the following formula: 

( )







 −
×=

mm

mbmm
a G

GG
V 100                 (2.1) 

where, 

=mmG  maximum specific gravity of the mix, and  

=mbG  bulk specific gravity of the mix. 

Kansas Superpave specifications state that the mixture with percent air voids between 2 to 6 

percent is a stable mix. Air voids below and beyond this range can result in rutting problems 

during service. Very low air voids indicate that the mixture has experienced overcompaction or 

premature densification during compaction or traffic operation (Williams 2006). At a very high 

air void content, the pavement may experience permeability problems and the presence of water 

may also cause stripping in the asphalt layer. Another external detrimental factor is that excess 

air promotes oxidation of the asphalt binder and results in a weak and brittle pavement structure. 
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2.1.4.2 Voids in Mineral Aggregate (VMA) 

VMA is the volume of the intergranular void spaces between the aggregate particles in 

compacted paving mixes. The void space includes air voids and the effective asphalt content and 

is expressed as a percent of the total volume. VMA can be computed using the following 

formula: 

( )







 ×
−=

sb

smb

G
PG

VMA 100                (2.2) 

where, 

VMA = voids in mineral aggregates; 

=sbG  bulk specific gravity of the aggregate blend; 

=mbG  bulk specific gravity of the compacted HMA; and 

=SP  percent of aggregate. 

It is important in the Superpave mix design method to select an appropriate binder 

content to enhance mixture durability as well as rut resistance. VMA of the mix decreases to a 

minimum value with increasing binder content. While the film thickness of the binder increases, 

the aggregate particles are forced apart from each other and again, VMA volume increases. The 

optimum binder content is selected from the corresponding minimum value of VMA. Asphalt 

mixes with binder content less than the optimum binder (on the dry side of the VMA curve) have 

smaller film thickness and are susceptible to durability problems in the field. Mixes designed 

with asphalt beyond the optimum value (on the wet side of the VMA curve) are not desirable as 

they cause rutting, bleeding, and flushing problems in the field. The Superpave mix design 

procedure incorporates minimum VMA criteria to ensure adequate binder as well as a proper air 
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void content. With this minimum VMA requirement, it is expected that bleeding and rutting will 

be minimized and the mix will be durable. 

2.1.4.3 Voids Filled with Asphalt (VFA) 

VFA is a property of the compacted mix which relates VMA and percent air voids. It is the 

percentage portion of the volume of intergranular void space between the aggregate particles that 

is occupied by the effective asphalt. It is calculated using the following equation: 





 −

×=
VMA

VVMA
VFA a100                 (2.3) 

where, 

VFA = voids filled with asphalt; 

VMA= voids in mineral aggregate; and 

Va = air voids content. 

2.1.4.4 Dust-to-Binder Ratio 

Dust proportion is an indicator of the amount of mineral materials passing 0.075 mm (US No. 

200) sieve with respect to effective asphalt content. These are very fine particles and when 

combined with binder, can make a major contribution to mix cohesion (Williams 2006). In 

general, this material has the ability to stiffen the binder, although the performance is also 

dependent on material types. Thus, dust content can affect rutting potential of a mix (Kandhal 

and Cooley 2002). The dust proportion (DP) of an HMA compacted paving mix is calculated 

from the following relation: 









=

beP
P

DP 075.0                    (2.4) 

Where, 

P0.075 = materials passing 0.075 mm (US No. 200) sieve (%); and  
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Pbe = effective binder content (%). 

Considering all volumetric properties of HMA paving mix, the Superpave system has 

also specified the limiting values of the abovementioned properties. Table 2.6 shows a summary 

of Superpave mixture volumetric property requirements by KDOT. 

Table 2.6 KDOT Volumetric Mixture Design Requirements 

Design 
ESAL’s 
(Million) 

Reqd. % Density 
Minimum VMA (%)* 

VFA 
Range DP NMAS, (mm) 

Nini Ndes Nmax 37.5 25.0 19.0 12.5 9.5 4.75 
< 0.3 ≤91.5 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 66-80 

0.6-1.2a 
0.6-1.6b 
0.8-1.6c 
0.9-2.0d 

0.3 - < 3 ≤90.5 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 65-78 
3 - < 10 ≤90.0 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 65-76 
10 - < 30 ≤89.5 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 65-76 

≥ 30 ≤89.0 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 65-76 
Shoulder ≤91.5 96.0 ≤98.0 11.0 12.0 13.0 14.0 15.0 16.0 66-80 

a = SM-9.5A; b= SM-12.5A, SM-19A; c = SM-9.5B, SM-9.5T, SM-12.5B, SM-19B; d = SM-4.75A 
* = Values may be reduced by 1% for 1-R HMA overlay. 

2.2 Performance Tests of Superpave Mix Design 

Volumetric properties in the Superpave method significantly affect performance of the paving 

mix; however, the relationships are empirical and based on the experience. The Superpave 

system developed new equipment to asses the performance of the designed mixes. The purpose 

was to obtain future predictions of pavement performance over design life, especially targeting 

failure modes of rutting, fatigue cracking, and low-temperature cracking. The Superpave shear 

tester (SST) was developed to determine rut resistance and fatigue cracking, while the indirect 

tensile tester (IDT) was introduced to measure susceptibility to low-temperature cracking. 

However, these devices are very expensive and are not widely used. In the meantime, wheel-

tracking testing has become more popular as one of the most acceptable options for measuring 

rut resistance. Again, universal testing machine (UTM) is widely used to analyze “fatigue” and 
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“creep” characteristics. A detailed discussion of these tests will be done in the methodology 

section in Chapter 3. 

2.3 Initial Phase of Fine-Mix Applications 

The National Center for Asphalt Technology (NCAT) first started to investigate a smaller size 

mixture with a motivation to use fine aggregate stockpiles (also known as screenings) for thin-lift 

HMA application (Cooley et al. 2001). The NCAT researchers noted that probable applications 

for an HMA with a higher percentage of screenings would be to extend pavement life, improve 

ride quality, correct surface defects, reduce road-tire noise, and enhance appearance. Another 

potential area to implement these types of mixes would be for low-volume roads.  

2.3.1 Georgia and Maryland Experience  

In Maryland, fine mixes are used as part of a preventive maintenance program and have shown 

excellent rutting and cracking resistance.  Maryland’s thin HMA overlay mixes generally contain 

about 65 percent manufactured screenings and 35 percent natural sand. Gradation requirements 

for these mixes are shown in Table 2.7. Table 2.8 shows that the gradation can have either a 

4.75-mm or 9.5-mm NMAS gradation. Typical lift thicknesses in the field are in between 19 and 

25 mm (0.75 and 1 inch) (Cooley et al. 2002). 

Table 2.7 Design Specifications for 4.75-mm Mixtures for Maryland and Georgia 

Gradation 
 

Georgia 
(% passing sieve size) 

Maryland 
(% passing sieve size) 

12.5 mm 100 - 
9.5 mm 90-100 100 
4.75 mm 75-95 80-100 
2.36 mm 36-76 60-65 
0.30 mm 20-50 - 
0.075 mm 4-12 2-12 

Design Requirements   
Asphalt Content (%) 6-7.5 5-8 

Optimum Air Voids (%) 4-7 4 
Voids Filled with Asphalt (VFA) 50-80 - 
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The Georgia DOT has used a 4.75-mm NMAS-like mix for more than 30 years for low-

volume roads and leveling purposes. Good performance has been shown by the mix that is 

placed in thin (approximately 25-mm or 1 inch thick) lifts. These Georgia mixes have been 

primarily composed of screenings with a small amount of 2.36-mm-sized chips. This results in 

approximately 60 to 65 percent passing a 2.36-mm sieve and an average of about 8 percent dust 

as shown in Table 2.8 (Cooley et al. 2002).  

It is to be noted that both states have very good aggregate sources. Potential limitations 

for small NMAS mixtures include concerns with permanent deformation, moisture resistance, 

scuffing, and skid resistance. Also, gradation and design criteria are not similar for the two 

mixtures, and apparently, were put in place based on experience. 

Michigan Department of Transportation (MDOT) has implemented ultra-thin HMA 

overlay as an alternative to micro-surfacing for lift thickness less than 25 mm (1 inch). They 

recommended polymer modified binder (PG 76-22) for medium to high-traffic volume. The mix 

design requirements use the Marshall method of mix design with air voids of 4.5 to 5%, VMA of 

less than or equal to 15.5%, and maximum dust-to-binder ratio of 1.4. The Marshall flow for the 

mix should be within 8 to 16 and a Marshall stability of at least 545 kg (1200 lbs) (MDOT 2005). 

2.3.2 NCAT Research on Screening Materials  

The main objective of this study (Cooley et al. 2001) was to determine if rut-resistant HMA 

mixtures could be achieved with the aggregate portion of the mixture consisting solely of 

screenings. Two fine aggregate stockpiles (screenings), two grades of asphalt binder, and a fiber 

additive were selected. The two aggregate sources selected were both manufactured aggregates: 

granite and limestone. The granite screenings material was relatively cubical and had a rough 

surface texture with a fine aggregate angularity (FAA) value of 49.3. The limestone screenings 
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were also considered to be angular with an FAA value of 45.8. The granite screenings were 

much finer than the limestone screenings. The limestone was more absorptive (1.8%) compared 

to granite (0.2%). The two asphalt binder grades chosen were also commonly used: PG 64-22 

and PG 76-22 (SBS modified). Cellulose fiber was added at 0.3% ratio by weight of the total 

mixture. The material variables, when combined, resulted in eight test mixtures (2 aggregate 

sources x 2 binders x 2 fiber contents). Each of these mixtures was designed at three different air 

void contents (4, 5, and 6 percent) and then tested in the asphalt pavement analyzer (APA). 

Compaction level for the mixes was selected to be 100 gyrations. This level of compaction was 

based on the 1 to 3 million design ESALs. 

Conclusions 

The following conclusions were obtained from this research: 

• Mixes having screenings as the sole aggregate portion can be successfully designed in the 

laboratory for some screenings but may be difficult for others. 

• Screening type, cellulose fiber, and design air void content significantly affected 

optimum binder content. Of these three factors, screening type had the largest impact on 

optimum binder content, followed by the existence of cellulose fiber and design air void 

content, respectively. 

• Screening type and cellulose fiber significantly affected voids in mineral aggregate 

(VMA). However, screening materials had a larger impact. 

• Screening materials and design air void content significantly affected % Gmm @ Nini 

results. Again, screening materials had the largest impact. 

• Screening materials, design air void content, and binder type significantly affected 

laboratory rut depths. Out of these three, binder type had the largest impact followed by 
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screening materials and design air void content, respectively. Mixes containing PG 76-22 

binder had significantly lower rut depths than mixes containing PG 64-22. Mixes 

designed at 4 percent air voids had significantly higher rut depths than mixes designed at 

5 or 6 percent air voids. 

Recommendations 

Based upon the conclusions of the study, the following recommendations were provided: 

• Mixes using a screening stockpile as the sole aggregate portion and having a gradation 

that meets the requirements for 4.75-mm Superpave mixes should be designed according 

to the recommended Superpave mix design system. 

• Mixes using a screening stockpile as the sole aggregate portion but with gradations not 

meeting the requirements for 4.75-mm Superpave mixes should be designed using the 

following criteria: 

• Design Air Void Content (%): 4 to 6 

• Effective Volume of Binder (%): 12 min. 

• Voids Filled with Asphalt (VFA) (%): 67-80 

2.3.3 NCAT Mix Design Criteria for SM 4.75-mm NMAS 

The objective of this study (Cooley et al. 2002)was to develop mix design criteria for 4.75-mm 

NMAS mixes. Criteria targeted in the research were gradation controls and volumetric property 

requirements (air voids, VMA, VFA, and dust-to-effective binder ratio). 

Two commonly used aggregate types were used in this study: granite and limestone. For 

each aggregate type, three general gradation shapes were evaluated: coarse (passing below the 

maximum density line), medium (passing near the maximum density line), and fine (passing 

above the maximum density line) as shown in Figure 2.3. Both aggregates had similar bulk 
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specific gravity values; however, the limestone had a slightly higher absorption value (1.0 

percent compared to 0.6 percent). The granite had a higher fine aggregate angularity value (49 

percent) than did the limestone (46 percent).  For each of the three gradation shapes, three dust 

(passing a 0.075 mm sieve) contents were evaluated: 6, 9, and 12 percent. The varying dust 

contents were investigated to evaluate the effect of dust on the volumetric properties and rutting 

resistance of these 4.75-mm NMAS mixes and also for the fact that different stockpiles to be 

used to blend 4.75-mm NMAS mixes will likely have varying degrees of dust. When designing 

4.75-mm NMAS mixes, the design air voids could be increased from the Superpave target of 4 

percent, while providing an acceptable performing mix. This was evaluated by designing mixes 

to 4 and 6 percent air voids. The design compactive effort (Ndes) used in this study was 75 

gyrations which corresponds to a design traffic range of 0.3 to 3 million ESALs under current 

Superpave specifications. A PG 64-22 was used for all mixes. Thus, for the study, there were a 

total of 36 designed mixes (2 aggregate types x 3 general gradation shapes x 3 dust contents x 2 

design air void levels). 

 

 

 

 

 

 

 

 

Figure 2.3 Gradations used in the 4.75-mm mix design development (Cooley et al. 2002) 
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Results 

The results showed that the optimum binder contents ranged from a low of 4.2 percent to a high 

of 8 percent. On average, the granite (water absorption 0.6%) mixes had higher optimum binder 

content (average of 5.9 percent) than the limestone (water absorption 0.6%) mixes (average of 

5.4 percent). The higher optimum binder contents for the granite mixes were likely due to the 

granite aggregates having more surface texture than the limestone aggregates. As the percent 

passing the 0.075-mm sieve (dust) increased, optimum binder content decreased. On average, 

increasing the dust content by 3 percent reduced optimum binder content by about 0.5 percent. 

Optimum binder content was also affected by the general gradation. Mixes (both 4% design air 

voids and with fine gradation) had the highest average optimum binder content (6 percent), 

followed by coarse gradation (5.7 percent) and medium gradation (5.2 percent). Also, as 

expected, the mixes designed at 4 percent air voids had a higher average optimum binder content 

(6 percent) than the mixes designed at 6 percent air voids (5.3 percent).  

The VMA at optimum binder content was affected by the aggregate type, dust content, 

and gradation.  Design air voids did not appear to significantly affect overall average VMA 

values. As dust content increased, average VMA values decreased. The medium gradation 

produced the lowest average VMA value (15.9 percent), which was expected since the gradation 

approached the maximum density line.  

The %Gmm @Nini values were most affected by aggregate type, gradation, and design air 

void content. On average, the granite mixes showed higher %Gmm @Nini value (87.5 percent) 

than the limestone mixes (86.1 percent). This was likely due to the higher overall optimum 

binder contents for the granite mixes. As the design air void content increased (optimum binder 
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content decreased), the average %Gmm @Nini values decreased. None of the 36 mixes failed the 

%Gmm @Nini maximum requirement (90.5 percent maximum) for mix designs. 

The binder film thicknesses ranged from 3.64 to 8.87 microns for the 36 mixes. Typical 

film thicknesses for these mixes were expected to be relatively lower. All four experimental 

factors (aggregate type, dust content, gradation, and design air void content) affected film 

thickness. As expected, dust content had the greatest effect on film thickness because dust has 

the largest effect on the calculated aggregate surface area used in calculating film thickness. 

Coarse gradation provided the largest film thickness (average film thickness of 6.51 microns) 

compared to the medium gradation, and mixes using the fine gradation fell in the middle at an 

average film thickness of 5.41 microns.  

Analysis of the APA rut depth data was performed by conducting an analysis of variance 

(ANOVA) to evaluate the effect of the main factors (aggregate type, gradation, dust content, and 

design air voids) and any interactions between the main factors on rut depth. Results showed that 

all four of the experiment’s main factors significantly affected rut depths. On average, the granite 

mixes had larger rut depths (9.1 mm) than did the limestone mixes (8.3 mm). This was likely 

caused by higher optimum binder contents for the granite mixes. The coarse gradations resulted 

in higher rut depths (10.14 mm) than did the fine gradations (9.72 mm) or the medium gradations 

(6.29 mm). Decreasing dust content led to higher rut depths. Because of a very wide range, on 

average, the mixes designed at 4 percent air voids had slightly higher rut depths (9.13 mm) than 

the mixes designed at 6 percent air voids (8.30 mm). Again, this is likely due to the higher 

optimum binder contents for mixes designed at 4 percent air voids. 
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Conclusions 

The following conclusions were obtained from the research:  

• Mixes with a 4.75-mm NMAS can be successfully designed in the laboratory. 

• Optimum binder contents of designed mixes were affected by aggregate type, gradation, 

dust content, and design air void content. 

• Voids in mineral aggregate values were affected by aggregate type, gradation, and dust 

content. 

• The cause of excessive laboratory rutting was high optimum binder content. 

• A good relationship existed between VMA and dust-to-effective binder ratio. The VMA 

decreased with increasing dust-to-effective binder ratio. However, this relationship may 

vary when different aggregate types are used. 

• Based upon the relationship and mix design criteria from Maryland and Georgia, a 

minimum VMA criterion of 16 percent appears reasonable. For mixes designed at 75 

gyrations and above, a maximum VMA value of 18 percent is rational and highly related 

to the rutting performance.  

Recommendations 

Based upon the findings in this study, Superpave mix design criteria were recommended for a 

4.75-mm NMAS mixture:   

• Gradations for 4.75-mm NMAS mixes should be controlled on the 1.18 mm (No. 16) and 

0.075 mm (US No. 200) sieves. On the 1.18 mm sieve, gradation control points are 

recommended as 30 to 54 percent passing. On the 0.075 mm sieve, control points are 

recommended as 6 to 12 percent passing. 

• An air void content of 4 percent should be used during mix design. 
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• For all traffic levels, a VMA minimum limit of 16 percent can be utilized. For mixes 

designed at 75 gyrations and above, maximum VMA criteria of 18 percent should be 

used to prevent excessive optimum binder contents. For mixes designed at 50 gyrations, 

no maximum VMA criteria should be used. 

• For mixes designed at 75 gyrations and above, VFA criteria should be 75 to 78 percent.  

For mixes designed at 50 gyrations, VFA criteria should be 75 to 80 percent. 

• %Gmm @Nini values currently used for different traffic levels are recommended. 

• Criteria for dust-to-effective binder ratio are recommended as 0.9 to 2.2. 

Criticism 

There are two major criticisms of this study. First, it used 100% crushed materials for two good, 

low-absorptive aggregate types. The effect of any natural material (like river sand) that can be 

used in the mixture is virtually unknown. The second criticism is the use of only one grade of PG 

binder (PG 64-22). Although AASHTO has adopted most of the recommendations of this study, 

more research is needed before widespread application. 

2.3.4 NCAT Research on 4.7- mm SMA Mix Design  

The objective of this research study (Hongbin et al. 2003) was to further refine the design of 

4.75-mm NMAS stone matrix asphalt (SMA). Specifically, the fraction passing the 0.075 mm 

sieve and the requirements for the draindown basket were evaluated. The research approach 

entailed designing four different SMA mixes with a 4.75-mm NMAS considering granite and 

limestone. A single gradation was used in this study, except that two fractions passing the 0.075 

mm sieve were investigated: 9 and 12 percent.  

In this study, 4 and 6 percent design air voids were utilized. The design compactive effort 

(Ndes) was 75 gyrations. A PG 64-22 asphalt binder, meeting Superpave high-temperature 
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requirements above 67ºC, was used for all mixes. Thus, for the study, there were a total of eight 

designed mixes (2 aggregate types x 2 dust contents x 2 design air void levels). In order to 

evaluate the stability of each mix, rut tests were conducted with the APA. The draindown 

characteristics were evaluated using two different baskets: the standard 6.3 mm (0.25 inches) 

wire cloth and a 2.36-mm (0.1 inch) wire cloth. 

Conclusions 

Based upon test results and analyses from this limited study, the following were concluded: 

• Based on draindown test results, durability consideration, and relative comparison of 

APA testing results, SMA mixes with a 4.75-mm NMAS can sometimes be successfully 

designed having gradations with aggregate fractions passing the 0.075 mm sieve less than 

12 percent. Gradations with aggregate fractions passing the 0.075 mm sieve of 9 percent 

can be utilized as long as all other requirements are met. 

• APA rutting results of 4.75-mm SMA were relatively high for all mixtures tested. This 

was mainly because the non-modified asphalt was used and a high ratio of sample height 

and NMAS was used for APA testing. Based on the APA test results, 4.75-mm SMA 

with non-modified asphalt is not recommended for high-volume-traffic roads but was not 

tested in the lab.  

• Aggregate shape, angularity, and texture played an important role in achieving the 

required design volumetric criteria required for the 4.75-mm NMAS SMA mixes. The 

SMA mixes with granite aggregate passed all volumetric criteria, while SMA mixes with 

limestone aggregate failed VMA criteria.  

• As Expected, draindown tests conducted using a wire mesh basket of 2.36 mm (0.1 inch) 

openings produced test results with less draindown than tests conducted with a wire mesh 



 

 31 

basket having 6.3 mm (0.25 inch) openings. It was concluded that the difference in 

draindown results between the two basket types was related to the amount of aggregate 

that could fall through the different mesh size openings. 

Recommendations 

Based on this study, it was recommended to change the gradation criteria on the 0.075 mm sieve 

to between 9 and 15 percent from 12 to 15 percent. It was also recommended that a draindown 

basket having a 2.36-mm wire mesh size be used for 4.75-mm NMAS SMA, instead of the 

current standard basket size of 6.3 mm. The specification limit of 0.3 percent for the draindown 

test when using a 2.36 mm basket appeared reasonable but would need further refinements. 

2.3.5 NCAT Refinement Study on 4.7-mm NMAS Mix Design  

The main objective of this study (West and Rausch 2006, West, Rausch, and Takahashi 2006) 

was to refine the mix design procedure and criteria for the 4.75-mm NMAS Superpave mixture. 

The considered criteria were the minimum VMA requirements and a workable range for VFA, % 

Gmm @Nini, some fine aggregate properties such as sand equivalent and fine aggregate angularity 

of the mixture, appropriate design air voids for a given compaction effort, dust-to-effective 

binder ratio, and a recommendation on the usage of “modified binders” to enhance performance 

of the 4.75-mm NMAS mix. This study only described laboratory findings and did not mention 

performance of the mixes in the field. 

This study received materials from eight different states (Alabama, Connecticut, Florida, 

Missouri, Minnesota, Tennessee, Virginia, and Wisconsin). It also included four plant-produced, 

4.75-mm mixes that had been successfully implemented in the field. These baseline mixtures 

were obtained from Mississippi, Maryland, Georgia, and Michigan. Twenty-nine mixes were 

designed considering Ndes at 50 and 75 gyrations and air voids at 4 and 6 percent. The 50 and 75 
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gyrations were selected based on Equivalent Single Axle Load (ESAL) values on low-volume 

roads (< 3 million). Four and six percent design air voids were used to assess the concern of 

higher asphalt percentage due to high VMA values. However, higher design air voids may lead 

to durability and moisture susceptibility problems. For each mix design, four performance tests 

were conducted: permanent deformation, durability to evaluate volumetric criteria (VMA and 

VFA), permeability to assess in-place density, and moisture sensitivity. Though the mix is 

recommended for thin-lift applications with low-speed, light traffic, rutting may not be a major 

concern. However, tests for permanent deformation were suggested to evaluate the stability of 

the mix. 

Conclusions 

The following conclusions were made based on this study: 

• Material source properties and gradation significantly influenced optimum asphalt 

content. 

• Change in air voids had little influence on VMA, while compaction efforts had 

potentially decreased the VMA. Coarser gradation among the fine mixes (one near the 

maximum density line) had lower VMA. Higher dust content lowered the VMA. 

• Increasing design air voids reduced VFA, while change in compacting efforts had no 

effect on VFA. 

• High VMA caused elevated asphalt mix and excessive material verification tester (MVT) 

rutting. Mix with a dust ratio lower than 1.5 had higher rut depth. Mix with 6% air void 

had better rut resistance compared to 4 %. Effective asphalt volume more than 13.5% 

resulted in higher MVT rut depth. 
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• In general, the tensile strength ratio (TSR) decreased slightly with decreasing effective 

asphalt content. The study showed that 4.75-mm mixes were practically impermeable, 

even at lower in-place density. Lower permeability may reduce exposure to moisture. 

• Fracture energy ratio increases with increasing asphalt content. The study concluded that 

a 4.75-mm NMAS mixture’s ability to resistance to cracking is a function of both asphalt 

content and dust content. 

• Natural sand ratio over 15% adversely affected the TSR, rutting susceptibility, and 

permeability. FAA values above 45 lowered rutting and permeability. 

Recommendations 

Based on results of this study, the following recommendations were made: 

• The study recommended AASHTO specifications should be modified to allow air void 

range of 4 to 6 percent. 

• Criteria for VMA should be based on the minimum and maximum range with respect to 

the effective asphalt content. 

• For design ESALs greater than 3 million, 4.75-mm mix should have the effective asphalt 

volume (ρbe) of a minimum 11.5% to a maximum of 13.5%. These recommended values 

were based on MVT rut testing and fatigue energy testing. For design traffic less than 3 

million ESALs, the effective asphalt should range from 12 to 15%. 

• It is recommended that current AASHTO recommendations for % Gmm @ Nini should be 

maintained as is (i.e. ≥ 89%). 

• The aggregate blend designed for ESALs over 0.3 million, the FAA value of 45, is 

recommended for better rut resistance. 
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• For ESALs less than 3 million, the minimum dust proportion of 4.75-mm mix should be 

increased from 0.9 to 1.0, while ESALs greater than 3 million should have a minimum 

dust proportion of 1.5. The maximum range should be considered as is (i.e. 2.0). 

• Minimum sand equivalent value should be maintained as specified by AASHTO. 

• Current gradation limit for 1.18-mm (No. 16) sieve and 0.075-mm (US No. 200) sieve 

should be 30-55 and 6-13 percent passing, respectively. 

• Not more than 15% natural sand with an FAA under 45 is recommended to improve rut 

resistance and moisture damage, and to maintain low permeability. 

2.3.6 NCAT Survey Report on 4.7-mm NMAS Superpave Mix  

The National Center for Asphalt Technology (NCAT) performed a survey on current usage and 

possible future application of the fine mix. Of 50 highway state agencies, around 21 states 

responded (Figure 2.4) (West and Rausch 2006). 

 

 

 

 

 

 

 

 

 

Figure 2.4 State responses to NCAT fine-mix survey (West and Rausch 2006) 

The summary of the survey report from the responded states includes the following: 
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1 Three types of aggregates were common in this 4.75-mm mixture: (i) rock or chip (0 to 

30%), (ii) screenings (0-50% typical), and (iii) natural sand (0-30% typical).  

2 The common grade of asphalt used in the mix was 64-22. Hydrated lime mixed at 1% 

was commonly used as a liquid anti-stripping additive. 

3 Both Superpave and Marshall methods were used for designing the 4.75-mm NMAS mix. 

For the Superpave method, the compactive effort (Ndes) of 50 gyrations was typical. Of 

states using the Marshall mix design method, only Missouri disclosed its design criteria 

(35 blows). Most of the states did not have any in-place density requirements. 

Table 2.8 State Response Regarding Production Quantity and Usage (West and Rausch 

2006) 

Approximate Production Quantity of 4.75-mm NMAS Mixture 
State Agencies Quantity 
Delaware 
Georgia 
Illinois 
Tennessee 
West Virginia 
Arizona 
South Carolina 
South Dakota 
Missouri 
North Carolina 

< 1,000 tons 
320,000 tons for FY 2004 
(N/A) 
225,000 tons 
15,000 – 20,000 tons 
250,000 – 350,000 tons 
Approximately 5% of the total tonnage 
75,000 tons 
1.7 million surface level, and 750,000 tons 
75,000 tons  

Usage and Further Development 
Florida 
New Jersey 
Vermont 
Hawaii 
Nevada 
North Dakota 
Washington 
Delaware 
Georgia 
Illinois 
South Dakota 
Missouri 
Iowa 

Leveling and thin overlay 
Leveling on concrete pavement overlay 
Low ESAL Superpave  
Thin overlay for preventive maintenance 
Fill substantial cracking (attempt failed and discontinued) 
Bike trails 
Thin-wearing surface over structurally sound pavement 
Subdivision overlay work 
Low-volume local roads and parking lots 
Explore way to add macro texture as a surface course 
All type of roads (surface mix) 
Long-lasting surface mixtures for low-volume roadways 
Application as scratch course mix 
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The other two responses from the survey report are presented in Table 2.8. The important 

findings from this survey were that the 4.75-mm NMAS mix had been commonly used as surface 

mixture, leveling course and thin overlay. Most state agencies found appreciable benefit in using 

this mix type and responded positively for further development of the mix to improve structural 

capacities and rut resistance. 

2.3.7 Arkansas Mix Design Criteria for 4.75-mm NMAS Mixes  

This study was done to develop guidelines for designing a 4.75-mm Superpave mix for 

Arkansas; to assess aggregate properties relating to the design of a 4.75-mm mixture; to evaluate 

the applicability of a 4.75-mm mixture for medium and high volume roadways; to evaluate 

design air void levels for the mix; and finally, to assess the performance of rutting, stripping, and 

permeability of the mix (Williams 2006). 

This research study was designed considering three different compactive efforts (Ndes = 

50, 75, and 100 gyrations) and two design air void levels (4.5 and 6.0%). The relationship of 

these factors to the rutting, stripping, and permeability of the mix was evaluated. The 

performance was also compared with the 12.5-mm NMAS mixture. In order to apply the results 

under different field conditions, aggregates were selected to cover the typical range of materials 

found in Arkansas. In addition, the effect of natural sand was also investigated. In order to assess 

rutting and stripping resistance, the evaluator of rutting and stripping in asphalt (ERSA) and the 

rotary asphalt wheel tester (RAWT) were used. The specified in-place density was 93%, the test 

was conducted at 500 C, and the target rut depth was 20 mm. The permeability was determined at 

7% air voids using the Karol-Warner laboratory asphalt device as outlined in ASTM PS-129. 

Permeability was tested at variable heights (75 mm, 50 mm, and 25 mm). 
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Results and Conclusions 

During the mix design process, the following conclusions were made: 

• No successful mix design was achieved using three different aggregate sources. For the 

single material source meeting the gradation requirement, other volumetric properties 

proposed by AASHTO were not satisfied. 

• Comparative study showed that the binder requirement in 4.75-mm mix was higher (6.7 

to 8.7%) than that of 12.5-mm mix. 

• Angular aggregates and natural sand were used to control the VMA, though it was 

difficult to achieve. 

• Design parameters were relatively insignificant in rutting evaluation. 

• Mixes with 4.5% design air void and 100 gyrations and 6% air voids with 50 gyrations 

performed better in stripping evaluations. 

• Aggregate source was the most significant variable among all design parameters. 

• Natural sand content reduced the performance level of the designed mix. 

• All 4.75-mm mixes exhibited very low levels of permeability. A 25-mm sample provided 

a more realistic measure of permeability as it is a recommended thickness for the 4.75-

mm mix.  

• The research showed that it is possible to design a 4.75-mm mix with rutting resistance, 

which is comparable or better than the 12.5-mm mix. 

• Comparison of mixes with different NMAS was significantly affected by the aggregate 

source. Rutting resistance was potentially influenced by the NMAS, while its effect on 

stripping was insignificant.  
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Recommendations 

• Mixes can be successfully designed using 4.75 mm NMAS in Arkansas with aggregates 

from the existing aggregate sources. But, in some cases, sources can be improved by 

making minor adjustments to the aggregate gradation. 

• Mixes for low and medium volumes of traffic should be designed at 6% air voids while 

heavy traffic roadway mix should be designed at 4.5% air voids. 

• The use of natural sand should be limited. Based on the conclusions, some specifications 

for 4.75-mm NMAS were suggested for the State of Arkansas. The recommended 

specifications for 4.75-mm NMAS mixture for State of Arkansas were the design air 

voids should be 6% for low-to-medium volume traffic and 4.5% for heavy traffic 

condition. The suggested VMA and VFA ranges were 18 to 20% and 67 to 70% for low-

to-medium traffic, respectively while 16 to 18% and 72 to 75 were allowed for heavy 

traffic volume facilities. The suggested dust ratio was 0.9 to 2.0 as specified by AASHTO 

(Williams 2006). 

2.4 Recent Research on Fine-Mix Overlay 

This section will discuss some recent findings and field experience with 4.75-mm Superpave 

mixture as an ultra-thin overlay. Almost all studies evaluated the performance of this fine 

mixture as a technique for preventive maintenance of existing pavements under prevailing 

traffic. Results from each research study are weather and material source-specific. 

The Texas Department of Transportation (TxDOT) (Walubita and Scullion 2008) 

performed a study to evaluate fine mixes for their potential application in a very thin surface 

overlay. The research methodology incorporated extensive field and laboratory testing such as 

Hamburg wheel tracking device tester, overlay, and ground penetration radar. Laboratory 
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performance in dry conditions and at ambient temperature performed very well in the HWTD 

tests, while wet conditions were potentially susceptible to moisture. The fine-graded mixes with 

a higher percentage of rock and screening material with design asphalt content over 7% 

performed best in the HWTD tests. The test results also suggested that high-quality, clean 

aggregate with low soundness (<20) value (i.e. granite and sandstone) might result in superior 

performance based on HWTD and overlay tests (Walubita and Scullion 2008). 

Research on 4.75-mm HMA for thin overlay application was performed by the North 

Dakota Department of Transportation and the University of North Dakota (Suleiman 2009). The 

objectives of this research study were to evaluate the rutting resistance of the 4.75-mm mixture 

using The Asphalt Pavement Analyzer (APA), to evaluate benefits and impacts associated with 

these fine mixes when applied as thin overlay for medium to low-traffic volume, and finally to 

find a new alternative and rehabilitation strategy (Suleiman 2009). The proposed project criteria 

considered optimum binder content, gradation with no material retained by the 4.75 mm (No. 4) 

sieve, and 0%, 20%, and 40% dust in the mix design. Results showed that mixes with higher 

crushed fines performed better than the mixes with lower crushed fines. Since the mixes with 

higher amount of dusts will need higher design asphalt content, the study suggested producing 

mixes with design asphalt content lower than 8%.  

Another study (Mogawer et al. 2009) introduced thin-lift HMA construction with a high 

percentage reclaimed asphalt pavement (RAP), with fine mix and warm mix asphalt technology. 

Mixes with a 4.75-mm Superpave mixture and highway surface-treatment mixture containing 

0%, 15%, 30%, and 50% RAP were used. Two binder grades (PF 64-28 and PG 52-33) were 

used for each mix, which was evaluated for stiffness and workability. Research study showed 

that mixes with higher percentages of RAP could satisfy the design criteria for both gradation 



 

 40 

and volumetric properties. The master curves developed based on dynamic modulus testing 

showed a correlation between the virgin binder and the aged binder used from the RAP. Studies 

also showed that mixtures with softer binders (PG 52-33) did not experience a reduction in 

stiffness compared to the binder grade PG 64-28, when the amount of RAP increased from 30% 

to 50%. The workability of mixes with higher percentages of RAP reduced significantly. The 

study proposed to increase the additive dose in warm mix asphalt mix. A field trial with 4.75-mm 

mix with 30% RAP was laid in Wellesley, Massachusetts, in 2007 and no visible distresses were 

observed in the test section for the first two years (Mugawer et al. 2009, Mugawer, Austerman, 

and Bonaquist 2009).  

Another field study with a very thin overlay with fine mix was performed by the Texas 

Transportation Institute (TTI) (Scullion et al. 2009). An ultra-thin overlay was placed as a 

surface layer on five major highways in Texas. The mixes were well designed and had a very 

good rut resistance measured by the Hamburg wheel tracking device tester and reflective crack 

resistance measured by TTI’s Overlay Tester. The study called these mixes crack-attenuating 

mixes (CAM), which were designed and constructed based on a special specification called SS 

3109. The significant limitation of this new method is that this approach works well with stiff 

binder and high-quality aggregate structure. The mixes with a transition to a softer binder and 

locally available materials were also investigated. It proposed a design window for a range of 

design asphalt content where both rutting and reflective crack criteria had been met. Construction 

problems associated with low-density pockets due to thermal segregation and areas of raveling 

occurred in few areas with fine mixed overlays. The skid resistance of the newly laid mat was 

fairly reasonable and TxDOT was updating the SS 3109 specifications (Scullion et al. 2009).  
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2.5 Introduction to HMA Bond Strength 

In the modeling and calculation of the structural response of flexible pavements, one important 

assumption is that the asphalt layers are completely bonded. However, in reality, it may not be 

true. Again, no widely accepted test method is available to measure the degree of bonding 

between the pavement layers. 

In field conditions, the asphalt pavement layer cannot be constructed in a single lift if the 

lift thickness is higher than 2.5 to 3.0 inches. Asphalt pavements are basically constructed in lifts 

with a maximum thickness of 2.0 to 2.5 inches for ease of compaction. Thus, interfaces between 

lifts and between layers are unavoidable. Adequate bond between the layers must be ensured so 

that multiple layers perform as a composite structure. To achieve good bond strength, a tack coat 

is usually sprayed in between the asphalt pavement layers. As a result, the applied stresses are 

distributed in the pavement and subsequently, reduce structural damage of pavements. Lack of 

such bonding may result in catastrophic loss of structural capacity of the asphalt layer.  

2.5.1 Background on Tack Coat 

A tack coat is a light application of an asphaltic emulsion or asphalt binder between the 

pavement lifts, most commonly used between an existing surface and a newly constructed 

overlay. Typically, tack coats are emulsions consisting of asphalt binder particles, which have 

been dispersed in water with an emulsifying agent (Woods 2004). Asphalt particles are kept in 

suspension in the water by the emulsifying agent and thus asphalt consistency is reduced at 

ambient temperature from a semi-solid to a liquid form. This liquefied asphalt is easier to 

distribute at ambient temperatures. When this liquid asphalt is applied on a clean surface, the 

water evaporates from the emulsion, leaving behind a thin layer of residual asphalt on the 
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pavement surface. When the asphalt binder is used as a tack coat, it requires heating for 

application.  

Tack coat performance at interface layers is affected by many factors including emulsion 

set time and emulsion dilution, tack coat type and its application rate, and finally, the application 

temperature. Each state agency has developed its own specifications, while a few quality control 

methods exist to assess the tack coat performance and to evaluate the interface shear strength of 

the pavement layers. 

2.5.2 Bond Strength Evaluation Test 

The Swiss Federal Laboratories for Material Testing and Research has a standard method and 

criteria for evaluating the bond strength of HMA layers. The device, known as an LPDS tester, 

uses 150-mm (6-inch) diameter cores (Figure 2.5a). The test is a simple shear test with a loading 

rate of 50 mm/ min (2 inch/min). The minimum shear force criterion is 15 kN (3375 lbs) for the 

bond between the thin surface layer and the binder course, and 12 kN (2700 lbs) for the bond 

between the asphalt binder course and the base layer.  

A Superpave shear tester (SST) is another device to evaluate interfacial strength (Figure 

2.5b). The shear apparatus has two chambers to hold the specimen during testing, which are 

mounted inside the SST. The shear load is applied at a constant rate of 0.2 kN/min (50 lb/min) on 

the specimen until failure. The specimen can be tested at different temperatures as the 

environmental chamber of the SST controls the test temperature.  

The in-situ torque test is popular in the UK to assess bond strength. During testing, the 

pavement is cored below the interface of interest and left in place. A plate is attached to the 

surface of the cores and torque is applied until failure, using a torque wrench. The core diameter 

is limited to 100 mm (4 inches) to reduce the magnitude of the moment applied. Another device 
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called a Luetner test which is standard in Austria, has also been adopted in the UK. Tests using 

the Luetner device are performed at 200 C (680 F) with a loading rate of 50 mm/min (2 

inches/min).  

A simple bond shear device, developed by the Florida Department of Transportation 

(FDOT), can be used in the universal testing machine (UTM) or a Marshall press (Figure 2.65c). 

The test is performed at a temperature of 250 C (770 F) with a loading rate of 50 mm/min (2 

inches/min). FDOT is now using the device to evaluate pavement layer interface strength on 

projects which might have a chance to experience debonding due to rain during paving 

operations.  

The Ancona shear testing research and analysis (ASTRA) device is now used in Italy to 

evaluate the fundamental shear behavior of bonded interfaces of multilayered pavements (Figure 

2.5d). The device applies a normal load to the sample during shear with a shear displacement rate 

of 2.5 mm/min (0.1 inch/min). Another test that has been developed recently for testing bond 

strength is the ATACKERTM device developed by Instrotek, Inc. During testing, the tack 

material is applied to a metal plate, or HMA sample, or to a pavement surface. A metal dice is 

then placed on the tack material to make contact with the tacked surface, and bond strength is 

measured in tensile or torsion mode.  

In 1995, Tschegg et al. developed a new testing method called the wedge-splitting test to 

characterize mechanical properties of bonding agents at the HMA interface layer. The specimens 

are prepared with a groove at the interface and then are split with a wedge at a specified angle 

(Figure 2.5e). The specimens are failed in tensile stress mode at interface. Vertical and horizontal 

displacements and vertical loads are measured during testing, which are then converted to 

horizontal loads based on a specified wedge angle. The load-displacement curves are obtained by 
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plotting the horizontal force versus horizontal displacement, and the fracture energy of the 

specimen is calculated from the area under the load-displacement curve. The study suggested 

that the fracture energy is more appropriate to describe fracture power of the specimen at 

interface rather than the maximum load.  

The tack coat evaluation device (TCED) (Figure 2.5f) was developed by Instro Teck, Inc. 

to determine the adhesive strength of tack coat materials. The TCED determines the tensile and 

torque or shear strength by compressing a smooth circular aluminum plate onto a prepared tack 

material. The device applies a normal force to detach the aluminum plate from the testing 

surface, either by tension or by torque or shear force. The research study shows that tack coat 

type and its application rate and emulsion set time significantly affect the TCED strength of the 

interface. A prototype study also showed that TCED can distinguish between the tack coat 

application rates (Woods 2004).  

A summary of bond strength test methods is provided in Table 2.9. 

Table 2.9 Current Bond Strength Measuring Devices (West et al. 2005) 

Shear Strength Test Tensile Strength Test Torsion Strength Test 
ASTRA (Italy) 
FDOT method (Florida) 
LPDS method (Swiss) 
Japan method 
Superpave shear tester (SST) 
TCED (Instro Teck, Inc.) 
Wedge-Splitting test 

ATACKER 
(Austrian method) 
MTQ method (Quebec) 
TCED (Instro Teck, 
Inc.) 
Pull-off test device 
(UTEP) 

ATACKER 
(Instro Teck, Inc.) 
TCED (Instro Teck, Inc.) 
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Figure 2.5 Bond strength testing equipments: (a) LPDS tester, (b) SST, (c) FDOT shear 

tester, (d) ASTRA, (e) wedge-split device, (f) TCED, (g) pull-off test device (West et al. 

2005, Al-Qadi et al. 2008) 

(a) 

(d) 

(b) 

(c) 

(e) (f) (g) 
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2.5.3 Study on Bond Strength Materials 

In 1999, the International Bitumen Emulsion Federation (IBEF) conducted a worldwide survey 

on use of tack coat or interface bond materials. The survey collected information on tack material 

types, their application rates, curing time, test methods, and inspection methods. Responses from 

seven different countries confirmed that cationic emulsions are most commonly used with some 

use of anionic emulsion. Among seven countries, only the United States mentioned using the 

paving grade asphalt cement as a tack coat. The application rate generally ranged from 0.12 to 

0.4 l/m2 (0.026 to 0.088 gal/yd2) (West et al. 2005). No other countries expect Austria and 

Switzerland have bond strength evaluation methods and application criteria. 

2.5.3.1 Louisiana Study on Tack Coat Materials  

The Louisiana study (Mohammad et al. 2001) evaluated tack coat use through a controlled 

laboratory simple shear test (SST) to find optimum application rate. The influence of tack coat 

type, application rate, and test temperature during SST were also examined. The tack coat type 

included two performance graded asphalt cement (PG 64-22 and PG 76-22) and four emulsions 

(CRS-2P, SS-1, CSS-1 and SS-1h). Application rates studied were 0. .00, 0.09, 0.23, 0.45, and 

0.9 liter/m2 (0.00, 0.02, 0.05, 0.1, and 0.2 gal/yd2). A simple shear test was conducted at two 

different temperatures: 250 (770 F) and 550 C (1310 F).  

Summary and Conclusions 

The statistical analysis indicated that among six different tack coat materials used in the study, 

CRS-2P provided significantly higher interface shear strength, and therefore, was identified as 

the best performer for Louisiana conditions. The optimum application rate for CRS-2P emulsion 

was 0.09 liter/m2 (0.02 gal/yd2). At lower temperature, increasing tack coat application rates 

resulted in lower interface shear strength, while the application rate of the tack coat material was 
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not sensitive to the interface shear strength at high testing temperatures. Test results also 

suggested that the best tack coat resulted in only 83% of the monolithic maximum shear strength 

at 250 C (770 F). It implied that the interfaces in multilayer flexible pavement are the weakest 

zone during construction and service. 

2.5.3.2 Texas Study on Tack Coat Performance  

The Texas study (Yildirim et al. 2005) was done to identify important factors affecting the 

performance of tack coats in laboratory conditions prior to application in the field. The study also 

tried to propose a suitable laboratory test procedure to examine the best combination of tack coat 

materials, mixture type, and application rate to be used in the field for optimum performance. 

As a part of the experiment, 150-mm (6-inch), gyratory compactor-compacted asphalt 

specimens were bonded onto concrete specimens. Four factors, such as mix type (Type D and 

CMBH), tack coat type (SS1 and CSS-1H), tack coat application rate 0.11 liter/m2 (0.024 

gal/yd2) and 0.23 liter/m2 (0.05 gal/yd2) and trafficking (HWTD cycles 0 and 5,000) were used in 

the experimental design. The Hamburg wheel tracking device (HWTD) tests were done at 500 C 

(1220 F) and shear tests were conducted at 200 C (680 F). The shear test apparatus was developed 

as a part of the research, which applied a shear load to the interface of the composite specimen at 

a constant rate of 50 mm/min (2 inches/min).  

Results and Discussions 

Results of this study indicated that this testing approach may be feasible to investigate the 

interface shear strength of the tack coat between the AC and the PCC. Statistical analysis (Least 

Square Difference at 95% confidence interval) of the shear test results showed that factors 

considered during the experimental design significantly influenced the tack coat performance. 

The following conclusions were made based on the analysis of results: 
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• The nature of the interface, which in turn was related to the aggregate structure of the 

asphalt mix, had a potential influence on tack coat performance. It was found that CMHB 

mix specimens were more sensitive to the main factors and the interaction between them. 

• Tack coat performance, in general, was better at the higher application rate. 

• HWTD tests improved the shear strength response. However, the study found that 5,000 

cycles were not enough to cause tack coat failure at the interface.  

• Among the four responsive variables, such as maximum shear strength (Smax), 

displacement at maximum shear strength (Dmax), area under the maximum shear-

displacement curve (Ap), and total area beneath the shear-displacement curve (AT), the 

AT curve represented the better responsive factors to determine significance of the main 

effects and interactions. 

2.5.3.3 New Brunswick Field Evaluation of Tack Coat Material) 

The New Brunswick Department of Transportation (Mrawira and Yin 2006) conducted a full-

scale field study of tack coats on a two-lane highway. The main objective of this study was to 

evaluate the structural effectiveness of tack coat in an overlay project using Dynaflect and FWD 

deflection testing and by laboratory testing of core samples.  

During testing, a baseline structural survey and pre-overlay deflection testing were 

performed. Three 200 m (656 ft) homogeneous sections were subdivided into “experimental 

lane” and “control lane”. The “experimental lane” was constructed using three different tack coat 

application rates (0.15, 0.20, and 0.25 l/m2), while the “control lane” section had no tack coat at 

the interface layer. Dynaflect and FWD testing were performed after overlay application. 

Laboratory resilient modulus and splitting strength tests were also performed on the field cores. 

This study failed to reach any specific conclusion based on their objective. 
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2.5.3.4 Mississippi Study on Bond  

This research was conducted to develop a tack coat evaluation device (TCED) and to perform 

laboratory testing on different tack coat application rates. Another aim was to develop a 

laboratory bond interface strength device (LBISD) for evaluation of interface bond strength. The 

research also investigated the evaporation rate in asphalt emulsions, and finally, assessed the 

tensile and torque-shear strength of emulsions at various levels of breaking (Woods 2004). 

The research test plan included a series of tests to investigate the effect of application 

rates, tack coat set time, tack material, and other variables on tack coat tensile and torque-shear 

strength. The application temperature varied from 240 C (750 F) to 1630 C (3250 F) and the 

allowed set time from five minutes to an hour. The tack application rate was selected from 0.18 

to 0.6 liter/m2 (0.04 to 0.13 gal/yd2) and dilution rate was either none (0% dilution) or diluted 1 

to 1 (emulsions only). Four types of tack coat materials were selected; SS-1, CSS-1 and CRS-2 

emulsions, and PG 67-22 asphalt binder. Laboratory TCED and LBISD tests were performed at 

different combinations of the factors.  

Conclusions 

The following conclusions were made based on this research study: 

• Among the three emulsions (CRS-2, CSS-1, and SS-1), the CRS-2 consistently yielded 

highest mean strength while SS-1 was the lowest. Although statistical analysis (analysis 

of variance, ANOVA) showed that temperature was a significant factor affecting tensile 

and torque strength, it was not evident in the Tukey LSD method. This inconsistency led 

to the conclusion that temperature does not have any major impact on interface strength. 
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• Increasing set time and decreasing application rate significantly increased tensile and 

torque shear strength. Evaporation of water from emulsions with time and low 

application rates significantly increased tack coat performance at the interface. 

• The performance of performance grade (PG) binder tensile strength also decreased with 

increasing application rate, while torsional strength showed the opposite trend. 

• LBISD tests showed that tack coat type significantly affected shear strength performance 

and reaction index. Mix base course gradation also had a potential impact on the reaction 

index.  

• Analysis of mass loss for emulsions proved that evaporation rates significantly increased 

with decreasing application rate. 

• Visual breaking time potentially increased with increasing application rate. Visual 

breaking was achieved much faster, leaving excess moisture below the surface. 

• When the emulsion was not fully broken, tensile and torque-shear strength were highest 

at low application rates, while fully broken emulsions yielded highest strength at 0.41 

liter/m2 (0.09 gal/yd2).  

2.5.3.5 NCAT Study on Bond Strength  

An NCAT bond strength study (West et al. 2005) was performed in 2005 with the main objective 

to develop a test to evaluate the bond strength between pavement layers. The secondary objective 

was to select the best tack coat material type(s) and optimum application rates. The primary goal 

was to obtain a typical value of bond strength normally occurring during paving in Alabama.  

The study was done in two phases. In phase one, a laboratory experiment was conducted 

to refine the bond test strength device and then, to establish a method to assess the factors, 

including tack coat material type (CRS-2, CSS-1 and PG 64-22), application rate (0.04, 0.08 and 
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0.12 gal/yd2), applied normal pressure (0, 10 and 20 psi), and average test temperature (500, 770 

and 1400 F), affecting bond strength of the interface between two HMA layers. Laboratory 

fabricated samples were prepared and tested. In the second phase, field validation of the 

proposed method from phase one was performed. This phase involved setting up of tack coat 

application sections on seven project locations in Alabama and obtaining cores from each test 

section. 

Conclusions 

Results in phase one (laboratory experiment) indicated that a bond strength test at a low 

temperature (500 F) was not practical. The research suggested performing bond strength test at an 

intermediate temperature (770 F) compared to a high temperature (1400 F), since the intermediate 

temperature yielded a wider range of bond strength for different materials. It was also 

recommended to use 140 kPa (20 psi) normal pressure to avoid premature failure of test samples. 

The experiment indicated that all main factors and several interactions among factors affect bond 

strength: 

• Mixture type was a potential factor affecting bond strength. Overall analysis showed that 

a fine-graded mixture with smaller NMAS had higher bond strength compared to the 

coarse-graded mixture with larger NMAS. However, interactions of mixture type with 

other variable factors were significant, which could alter the trend of the test results.  

• In general, PG 64-22 had higher bond strength compared to the emulsions. 

• In general, higher tack coat application rate resulted in lower bond strength. The effect of 

applied vertical pressure was more pronounced at high temperature since the stiffness of 

the tack coat is lost at high temperature. However, 100 C (500 F) and 250 C (770 F) 

temperature, the bond strength was insensitive to the normal pressure. 
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• At the same normal pressure, the test temperature had a significant effect on bond 

strength. Maximum bond strength was achieved at 100 C (500 F), followed by 250 C (770 

F) and 600 C (1400 F). 

In the field study phase, the draft procedure was successfully demonstrated. This part of 

the study yielded several important observations: 

• ASTM D 2995, Standard Practice for Estimating Application Rate of Bituminous 

Distribution, was found to be an effective method for assessing the tack application rate. 

• A milled HMA surface yielded higher bond strength with the overlaying HMA layer. 

• No evidence was found regarding paving grade asphalt performing better than the asphalt 

emulsion in field conditions. 

• The marginal bond strength in field conditions appeared to be between 50 to 100 psi. 

Bond strengths below 50 psi were considered to be poor. 

2.5.3.6 WCAT Study on HMA Construction with Tack Coat  

The State of Washington lacks unified guidelines for tack coat construction practice in its quality 

control and quality assurance (QA/QC) procedure. The Washington Center for Asphalt 

Technology (WCAT) at Washington State University performed a research study (Tashman et al. 

2006 and Nam et al. 2008) to establish the guidelines for tack coat construction practices. The 

objective was to investigate factors that influence the adhesive bond provided by the tack coat at 

the pavement layer interface. These factors include surface condition, tack coat curing time, tack 

coat residual rate, and coring location (middle lane and wheel path). This study also aimed to 

assess the potential quality tests for tack coat applications. 

The experimental design of the study included surface treatment (milled vs. non-milled), 

curing time (broken vs. unbroken), approximate target residual rate (0, 0.018, 0.048, and 0.072 
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gal/yd2), and core location (wheel path vs. middle lane). A new 50-mm (2 inches) overlay was 

placed using a 12.5-mm NMAS Superpave mixture. A total of 14 sections were constructed 

incorporating the abovementioned factors. Field cores were collected from selected locations to 

perform the FDOT shear tester, torque bond strength and UTEP pull-off test.  

Conclusions and Future Recommendations 

The conclusions from the study are as follows: 

• FDOT shear test and torque bond strength showed significantly higher shear strengths for 

milled sections compared to the non-milled sections. However, the UTEP pull-off test 

provided higher pull-off strength for non-milled sections. 

• Curing time was an insignificant factor for all test types. 

• Absence of tack coat did not have a major impact on shear strength for milled sections as 

it was an influential factor for non-milled sections in all tests.  

• In general, the increasing residual rate did not potentially improve the shear strength for 

either the milled or non-milled sections. However, milled sections were more sensitive to 

the tack coat application rate. This finding is completely opposite to the trend obtained 

from NCAT bond strength study. 

• Shear strength was not affected by the location of the cores. 

• The study recommended the FDOT shear test be the fundamental laboratory test measure 

but not an in-situ test. 

Criticism 

The three test methods used in this study use different test mechanisms. The FDOT shear test 

measured the bond strength at the interface layer, the torque bond strength measured the 

torsional resistance of the tack materials, and the UTEP pull-off test measured the tensile 
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strength of the tack coat. Hence, results obtained were not consistent with each other in most 

cases.  

2.5.3.7 Kansas Study on Bond Strength  

This study on bond strength at the pavement interface layer was performed at the Civil 

Infrastructure Systems Laboratory (CISL) of Kansas Sate University in 2007. The objective of 

this research project was to evaluate the shear behavior of three asphalt-to-asphalt mix interfaces 

with different tack coat application rates. The target was to determine the dynamic shear reaction 

modulus and strength of the interfaces (Wheat 2007). 

The experimental design included construction of three asphalt interfaces: (1) a coarse-coarse 

mix interface, (2) a coarse-fine mix interface, and (3) fine-fine mix interface. Each of these mix 

combination section was subdivided into four equal parts with different tack coat application 

rates (0, 11, 21, and 32 gram/ft2) resulting in 12 different combinations. The BM1 coarse mix 

and a 12.5-mm NMAS fine mix were laid during construction. Cores of 100-mm diameter were 

collected and dynamic shear reaction modulus and shear strength tests were performed in a 

UTM-25 machine. Shear testing attachments were built to allow testing of specimen at angles 

from 0 to 45 degrees. The test was performed at two different angles (20 and 30 degree) and at a 

rate of deformation of 0.05 mm/sec (0.002 inch/sec).  

Conclusions and Recommendations 

Results of the laboratory experiment yielded the following conclusions: 

• The interface shear strength was about the same at different normalized pressures (105 

and 109 kPa) for all interface types and tack coat application rates. The study 

recommended not using the strength test because no effect of tack coat application rate or 

interface type was observed. 
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• The value of dynamic shear modulus of the fine-fine mixture was the minimum among 

the three mix types. 

• Thirty degree alignment yielded significant lower dynamic shear modulus at the interface 

compared to a twenty degree angle. 

• No tack coat condition performed the best for the coarse-coarse interface. 

• The study recommended that current KDOT specifications for tack coat application rates 

are sufficient to produce higher strength for all three mixture type combinations. The 

finding suggested that the current practice is the optimum tack coat application rate 

during construction in a Kansas environment. 

Another recommendation is that the dynamic shear reaction modulus is the best method to 

determine the optimum rate of tack coat application. 

2.6 Current Field Evaluation of Tack Coat Performance 

The Virginia Department of Transportation (VDOT) has introduced a new tack coat material 

called “trackless” tack. This new material uses a very hard performance graded binder and has a 

positive charge with break time less than a minute. The VDOT special provision for this 

trackless tack material is 279 kPa (40 psi) in terms of bond strength.  

The VDOT research lab compared the performance of “trackless” tack with two 

conventional tack materials, CRS-1 and CRS-2, which are commonly used in Virginia. The 

objective of this study was to revise the special provisions for tack material and then to provide 

an approved product list for “trackless” tack materials. Findings of this study showed that 

trackless tack materials performed better than the CRS-1 tack coat material in the laboratory and 

oven-dried conditions. The materials provided better shear and tensile strength compared to 

CRS-1 and CRS-2 materials. The study recommended that trackless materials be evaluated in the 
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field conditions. The assessment should include both subjective and objective judgments. The 

field cores were recommended to be collected from the wheel path to see whether the dump truck 

removed tack materials from the pavement surface during paving operation. Finally, the study 

recommended evaluating the bond strength of field cores and comparing it with the laboratory 

data to assess the influence of weather on material performances (Trenton, Todd, and Kevin 

2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Testing trackless tack performance on Virginia road (Trenton, Todd, and Kevin 

2010) 

A study on porous asphalt course interface showed that interlayer bonding had an effect 

on the performance of porous asphalt pavement. Identification of an optimum tack coat 

application rate and the Ancona shear testing research and analysis (ASTRA) test method were 

implemented to design the interlayer bonding. The tack coat was applied at the interface of an 
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existing porous asphalt layer and a newly laid open-graded course. The main objectives of this 

study were to investigate whether the two porous layers were independent or behaved as a 

twinlay, and to assess the drainage quality of the composite layer system. ASTRA results of this 

study showed that different tack coat application rates had achieved the acceptable interlayer 

bonding, while higher application rates might generate some scatter of the results. The study also 

showed that the existing porous asphalt layer had not increased the drainage capacity of the 

composite layer system (Canestrari et al. 2009). 

Due to high-intensity short-duration rainfall in Florida, the Florida Department of 

Transportation (FDOT) conducted a study to introduce a new mixture design procedure for open-

graded friction courses and thick porous friction course in Florida. This study documented the 

performances of bonded open graded friction courses (OGFC) from US-27, Highlands County, 

Florida, which were laid on a thick polymer modified tack coat. Performances of bonded OGFC 

were compared to OGFC laid with a regular tack material as well as a stone matrix asphalt 

mixture called Novachip with a thick polymer-modified tack coat. Study results showed that the 

newly introduced polymer modified tack material significantly improved the rutting and cracking 

resistance, while no adverse effects were observed in terms of noise and pavement friction 

(Birgission et al. 2006).  

Interface bonding between HMA overlays and Portland cement concrete (PCC) pavement 

were studied by the Illinois Center for Transportation. Three testing phases (laboratory testing, 

numerical modeling, and accelerated pavement testing) were conducted to address the factors 

affecting interface bond strength. Factors considered during study were HMA materials (SM-9.5 

surface mix and IM-19.5A binder mixture), tack coat materials (SS-1h, SS-1hP emulsions, and 

RC-70 cutback asphalt), tack coat application rate, PCC surface texture (smooth, longitudinal 
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and transverse tined, and milled), temperature, and moisture condition. A direct shear strength 

device at a constant loading rate of 12 mm/min (0.5 inch/min) was used to investigate the 

interface shear strength of HMA overlay. Test results showed that the emulsions SS-1h and SS-

1hP had higher interface bond strength compared to RC-70 cutback asphalt while the SM-9.5 

surface mixture was found to have better interface strength compared to the IM-19.5A mix. The 

0.23 liter/m2 (0.05 gal/yd2) provided the maximum interface shear strength among the four 

application rates considered. Hence, it was selected as the optimum tack coat application rate. 

The direction of tining on the PCC surface did not have any significant effect on interface shear 

strength. At 200 C, the milled PCC surface provided higher shear strength than a smooth and 

tined surface. The smoother PCC surface produced higher interface shear strength compared to a 

tined surface at the optimum tack coat application rate. Moreover, bond strength decreased with 

increasing temperature and moisture conditions (Leng et al. 2010). 

Accelerated pavement testing (APT) sections were built on the PCC surfaces mentioned 

above (Figure 2.7). The HMA overlay was placed on the PCC surface. A zebra section was 

introduced to evaluate the non-uniform tack coat application rate. 

 

 

 

 

 

 

 

Figure 2.7 PCC surface textures in Illinois study (Al-Qadi et al. 2009) 
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The emulsified tack coat, SS-1hP and RC-70 cutback asphalt were applied at 0.09, 0.18, 

and 0.41 liter/m2 (0.02, 0.04, and 0.09 gal/yd2) and a binder, PG 64-22, was applied at 0.18 

liter/m2 (0.04 gal/yd2). To quantify the potential slippage at the interface, tensile strains at the 

bottom of HMA layer were measured for 25 selective sections and primary rutting was analyzed 

for all sections (Figure 2.8). The emulsion tack material SS-1hP and PG 64-22 binder offered 

better rut resistance compared to cutback asphalt. In terms of rutting, a milled surface performed 

better compared to a transverse tined and smooth PCC surface. PCC surface cleaning methods 

played a significant role in interface bond strength, while a uniform tack coat application rate 

was the key to better bond strength between PCC and HMA overlay (Al-Qadi et al. 2009, Leng 

et al. 2008).  

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Surface profile measurements after APT runs 

A study on the influence of contact surface roughness on interface bond strength focused 

primarily on the possible relationship between shear resistance at interface and bottom-layer 
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surface roughness of a double-layered asphalt concrete pavement. A laser profilometer and a 

profile combo were used to determine roughness of the test sections before paving. In addition, 

lower-layer roughness was also evaluated with the traditional sand patch method. ASTRA and 

LPDS testing devices were used to evaluate the relationship between interlayer shear resistance 

and surface roughness. Overall test results showed that the interlayer shear resistance increased 

when roughness of the adjacent layer was higher. However, different test methods resulted in 

different proportions of increments during testing (Partl et al. 2006). 

2.7 Summary of Background Study 

Since the advent of 4.75-mm Superpave mixture in the highway industries, several studies were 

done to implement this fine mixes for preventive maintenance, correct surface defects, and 

hence, enhance appearance. This section outlines the key findings and research gaps obtained 

from the extensive background study on 4.75-mm NMAS mixture and bond strength 

performance of thin-lift HMA surface. 

• Georgia and Maryland states implemented 4.75-mm NMAS-like mixes with an average 

dust content of 8%. These studies identified the better performances while the mix had 

been placed as thin-lift rather than leveling purpose. However, the major concerns 

dealing with the fine mixes were rutting, moisture damage, scuffing, and road-tire 

friction. 

• MDOT study recommended the fine mixes with polymer modified binder while 

implemented as micro-surfacing. The recommended maximum dust-to-binder ratio was 

1.4 which is far below the range specified later by AASHTO. 

• NCAT study on screening materials identified that the volumetric of such fine mixes 

were significantly influenced by the screening type. Rutting performance of the mix was 
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influenced by the binder grade rather than screening types. However, this study did not 

focus on other distress evaluations such as moisture susceptibility, fatigue, and low 

temperature cracks. 

• The mix design criteria for 4.75-mm NMAS developed by NCAT showed that fine mixes 

had relatively higher design asphalt content. The optimum asphalt content was lower with 

higher dust content in the mix. VMA and film thickness of the mixes decreased with 

increasing dust-to-effective asphalt content ratio. Absorption of asphalt in the mix played 

a significant role in rutting performances of the mix. However, dust had a potential 

influence on rutting performance. Rut depth of such fine mixes decreased with increasing 

dust content. This study recommended that the gradation should be controlled by 1.18-

mm and 0.075-mm sieves while 16 to 18 percent VAM was recommended for 0.3 to 3.0 

million ESALs. Dust-to-binder ratio was suggested for a range of 0.9 to 2.2. However, 

two potential limitations were identified for this study: (1) the study used 100% crushed 

materials and (2) effect of binder grade on mix performance was not identified. 

• NCAT study on SMA with 4.75-mm NAMS recommended limiting the dust content of 

the mix to 12 percent. This study indentified aggregate consensus properties played a 

significant role in achieving the required design volumetric criteria for 4.75-mm NMAS 

SMA mix. Another suggestion from this research study was that the mix with non-

modified asphalt might experience excessive rutting under heavy-traffic condition. 

• Further study by NCAT to refine the mix design criteria of 4.75-mm NMAS was 

performed to assess the minimum VMA requirement, workable VFA ranges, aggregate 

properties such as FAA and clay content, and dust-to-effective binder ratio. The study 

identified that higher dust content had lowered the VMA and higher design air voids had 
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resulted low VFA. Mixes with dust ratio lower than 1.5 had higher rut depth while crack 

resistance was a function of optimum asphalt content and dust content. This study also 

recommended FAA of 45 for fine mix gradation when the design ESALs is higher than 

0.3 millions.  

• Arkansas study on fine mixes suggested limiting the use of natural sand content. The 

recommended specifications for 4.75-mm NMAS mixture for State of Arkansas were the 

design air voids should be 6% for low-to-medium volume traffic and 4.5% for heavy 

traffic condition. The suggested VMA and VFA ranges were 18 to 20% and 67 to 70% 

for low-to-medium traffic, respectively while 16 to 18% and 72 to 75 were allowed for 

heavy traffic volume facilities. The suggested dust ratio was 0.9 to 2.0 as specified by 

AASHTO. 

• TxDOT study on fine mix application for thin-lift overlay identified that fine-graded 

mixes with higher percentage of rocks and screening materials and design asphalt more 

than 7% performed very well in the HWTD in dry condition while wet conditions were 

susceptible to moisture. The study performed by NDOT showed that mixes with higher 

percentage of crushed fines had better rut resistance compared to the mix with lower 

crushed fines. The suggested dust content for the state practice was less than 8%. 

• Texas study on tack coat material showed better tack coat performance at high 

application rate. Aggregate structure was another important factor affected the tack coat 

performance. 

• Mississippi Study on bond strength of tack material postulated that tensile and torque 

shear strength of tack material had significantly increased when the tack material had 

been set for a longer period of time and the application rate was relatively lower. Study 
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also showed that evaporation of water from tack material had increased significantly with 

decreasing tack coat application rate. 

• NCAT laboratory and field study on bond strength showed that mixture type of the 

adjacent layer materials was one of the key factors controlling the bond strength. Higher 

bond strength was yielded for fine-graded mixture with smaller NAMS and low tack coat 

application rate. Milled HMA surface resulted in higher bond strength with the 

overlaying HMA layer while no significant differences in performance were observed 

between the paving grade binder and asphalt emulsion. 

• WCAT study also confirmed that absence of tack material in milled-section did not have 

any significant effect on shear strength. Curing time of Washington state tack material 

was insignificant factor for different test types. 

• Kansas study on fine-mix bond strength suggested that current KDOT specification for 

tack application rate (0.04 gal/yd2) should be sufficient for obtaining higher bond strength 

for all mixture type combination. The study also recommended dynamic shear reaction 

modulus is the potential method to determine the optimum tack coat application rate. 
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CHAPTER 3 - FIELD AND LABORATORY TESTING 

3.1 Research Scope 

The ultra-thin overlay of HMA with 4.75-mm NMAS is a fairly new concept in highway 

construction. The fine mixes in Kansas were designed according to the AASHTO specifications 

for the 4.75-mm NMAS. To date, no laboratory refinement study has been performed to get 

optimized design criteria for this fine mix. Hence, this study will result in optimized 4.75-mm 

NMAS Superpave mixture design criteria in Kansas. A recent NCAT study showed that reduced 

natural sand ratio will enhance fine-mix performance, especially against stripping. The design of 

this study will also investigate the applicability of these findings in Kansas environment. In 

Kansas, asphalt mixes mostly contain PG 64-22 and PG 70-22 binder at a design air void of 4%. 

This study will assess the fine mix performance for these two different binder grades. Finally and 

most importantly, no field evaluation on 4.75-mm NMAS mix performance has been reported to 

date. This research will fill that gap. 

3.2 Experimental Design 

In order to accomplish a statistical design and analyze an experiment, it is necessary to have a 

clear idea about the problem statement in advance of the method of study, data collection 

procedures and a qualitative understanding of data analysis procedures (Montgomery 1997). The 

following seven steps are equally important to design an experiment (Montgomery 1997): 

1. Clear definition of the problem statement 

2. Choice of design factors, levels, and the range of the design factors 

3. Selection of response variables 
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4. Choice of experimental design means sample size or number of replicates, selection 

of suitable run order for experimental trials, etc. 

5. Performing the experiment 

6. Method of statistical analysis of experimental data  

7. Conclusions and recommendations 

Based on the research scope stated in the previous section, this research study developed 

an optimized 4.75-mm NMAS Superpave mixture using different aggregate sources, binder 

grade and river sand content in Kansas. The experimental design of this study was done in such a 

way to accomplish the investigation of volumetric parameters and performance of a 4.75-mm 

NMAS mixture as well as the performance of tack coat for the 4.75-mm mix overlay. 

Specifically, the study examined the feasibility of thin-lift surface course using fine mix in terms 

of rutting, stripping, and fatigue damage. 

In the first phase of the experiment, the performance and bond strength of the tack coat 

material were planned to be evaluated in the field. Field measurements of the tack coat 

application rate were made and the field cores were collected in two phases to evaluate the 

performance (Hamburg wheel tracking device and pull-off strength tests) of the tack material. 

Table 3.1 shows the design matrix to evaluate the tack coat bond strength for different study 

parameters. 
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Table 3.1 Experimental Design Matrix to Evaluate 4.75-mm NMAS Core Performance 

PHASE I 

Factors Level of Variations 

Aggregate Source 2 (US-160, K-25) 

Tack Coat Application Rate 3 (0.02 gal/yd2, 0.04 gal/yd2, 0.08 gal/yd2) 

Performance Measure Response Variable 

Hamburg Wheel Tester Number of Wheel Passes @ 20 mm rut depth 

Pull-Off  Strength Test Smax @ 250 C 

In the second phase of the experiment, two aggregate sources were selected in Kansas. 

From each aggregate source, mix design was developed using three different natural sand 

contents (35%, 25% and 15%). Two different binder grades (PG 64-22 and PG 70-22) were used 

for each design aggregate blend. A total of 12, 4.75-mm NMAS Superpave mixtures were 

designed and the design factors were evaluated based on rutting, moisture susceptibility, and 

beam fatigue failure. Table 3.2 shows the design matrix for a 4.75-mm NMAS laboratory mix 

design evaluation. The design blended aggregate must satisfy KDOT specifications for fine 

aggregate angularity (FAA≥42.0) and the compacted mix must have 4% design air voids at Ndes.  

Table 3.2 Experimental Design Matrix to Evaluate 4.75-mm NMAS in the Laboratory 

PHASE II 

Factors Level of Variations 

Aggregate Source 2 (US-160, K-25) 

Natural Sand Content 3 (35%, 25% & 15%) 

PG Binder 2 (PG 64-22 & PG 70-22) 

Performance Measure Response Variable 

Hamburg Wheel Tracking Device Number of Wheel Passes @ 20 mm rut depth 

Moisture Susceptibility Test Tensile Strength Ratio (TSR) 

Fatigue Beam Test Change in Initial Stiffness@ 300 µε and 200 C 
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The experimental design was organized in such a way to verify the KDOT specifications for 

4.75-mm NMAS mix to be used in paving road projects. 

3.3 Research Test Plan 

Based on the extensive literature review on 4.75-mm NMAS Superpave mixture and interface 

bond strength, and considering the research scope and experimental design, the following 

research plan was developed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Research test plan for 4.75 mm NMAS Superpave mixture study 

Literature review to determine appropriate test variables 
4.75-mm NMAS Mix Bond Strength Study 4.75 mm NMAS Mix Performance Study 

Selection of Project Location: 
• US-160 
• K-25 

Set Up Tack Coat Test Sections 
• Shoot 3 application rates 
• Measure application rates 

Cut Cores from Test Sections 

Performance Test: 
• Hamburg Wheel Tracking Device   
• Bond strength evaluation in  

Selection of Project Location: 
• US-160 
• K-25 

Material Collections: 
• Field cores from test sections 
• Aggregate and binder collections 

Resize the field 
cores for 

performance test 

Laboratory Performance Test: 
• Hamburg Wheel Tracking Device (field and lab 

cores) 
• Moisture susceptibility 
• Fatigue failure 

Develop Lab Mix Design: 
• 2 aggregate sources 
• 3 natural sand contents 
• 2 PG binders 

Statistical Analysis and Optimization 

Compile Test Result and Overall Conclusions 
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3.4 4.75-mm Superpave Mixture in Kansas 

Currently 4.75-mm NMAS Superpave mixture is designated as SM-4.75A in Kansas. Gradation 

of the mixture is selected to pass over the maximum density line on a 0.45-power chart in sand 

sizes and thus, the mixture is considered fine.  The required gradation is shown in Table 2.5. The 

gradation chart indicates that gradation of the SM-4.75A mixture is essentially controlled by the 

materials retained on 1.18-mm and 0.075-mm sieves. Current KDOT specifications also allow 

the use of up to 35% natural sand provided the fine aggregate angularity (FAA) of the blend 

meets the required criteria. The required mixture design criteria are shown in Table 3.3.  

Table 3.3 Mixture Design Criteria for Kansas 4.75-mm NMAS Superpave Mix (Hossain et 

al. 2010) 

Criteria Specifications Comments 
Compaction Effort 

Nini,  Function of 20-year design ESALs Similar to all other Superpave 
mixes Ndes & Nmax 

Volumetric Properties 
Air Voids 4% ± 2% at Ndes Similar to all other Superpave 

mixes 
VMA 16% min. for reconstruction/major 

modification project 
may be reduced by 1% for 1-R 

jobs 
VFA 65-78 Function of 20-year design 

ESALs 
%Gmm @ Nini 90.5 Function of 20-year design 

ESALs and layer depth 
%Gmm @ Nmax 98.0 Similar to all other Superpave 

mixes 
Dust-to-Binder Ratio 0.9 to 2.0 0.6-1.2 or 0.6-1.8 
Tensile Strength 
Ratio, min. (%) 

80 80 

Table 3.3 shows that most properties of SM-4.75A blend and mixtures have requirements 

similar to other Superpave NMAS mixtures. Only the dust-to-effective binder ratio is higher to 

account for the higher fine fraction in the blend or mix. Table 3.4 shows the required aggregate 
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criteria. Those are similar to aggregate criteria for other Superpave mixtures with similar design 

traffic and position within the pavement structure. 

Table 3.4 Aggregate Requirements for Kansas SM-4.75A Mixture 

*=20-year design ESALs 1.7 million; **=20-year design ESALs 1.5 million 

3.5 Design Phase-I: Field Evaluation of 4.75-mm Mix 

Two rehabilitation projects on US-160 and K-25 were constructed in 2007 using 4.75-mm 

NMAS Superpave mixture overlay. The following sections describe the rehabilitation projects 

and their performance history, layer compositions, and field data and core collections at both 

locations. 

3.5.1 Test Sections 

3.5.1.1 US-160, Harper County 

This project was on a two-lane, two-way highway. Project length was about 18 miles. Project 

scope consisted of a 50-mm (2-in.), hot-in-place recycling (HIPR) followed by a 19-mm (0.75-

in) SM-4.75A mixture overlay. Figure 3.2 (a) shows the cross section of this project. The Annual 

Average Daily Traffic (AADT) was 1,011 in 2006.  Daily equivalent 80-KN axle loads varied 

from 91 to 177. The 20-year design ESALs for the overlay was 1.7 million.  

The condition survey conducted in 2006 before rehabilitation showed that the average 

International Roughness Index (IRI) was 1.4 m/km (89 in/mile) on the right wheel path, with a 

standard deviation of 0.22 m/km (14 in/mile). There was no appreciable rutting but two 1.61 km-

long (mile-long) segments had 10 m and 27 linear m per 30.5 m (33 and 88 linear ft per 100 ft) 

Aggregate Properties Required 
Criteria  

Project Data  
US-160* K-25** 

Coarse Aggregate Angularity (min. %) 75 99 80 
Uncompacted Voids-Fines (min. %) 42 43 44 
Sand Equivalent (min. %) 40 40 78 
Anti-Stripping agent  - Yes No 
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of wheel path of Code 1 fatigue cracking (hairline alligator cracking). The project had, on 

average, 11 Code 1 and 10 Code 2 transverse cracking, respectively. Code 1 transverse cracking 

in Kansas refers to full-roadway-width cracks with no roughness, 6.35-mm (0.25-in) or wider, 

with no secondary cracking; or any width with secondary cracking less than a 0.08 m/lane (0.25 

ft/lane); or any width with a failed seal (≥1.0 ft/lane). Code 2 cracks refer to any width with 

noticeable roughness due to depression or bump or wide crack (one inch plus); or cracks that 

have more than 1.22 m (4 ft) of secondary cracking per lane but no roughness.  

 

 

 

 

 

 

 

Figure 3.2 Pavement cross section of (a) US-160 and (b) K-25 project 

3.5.1.2 K-25, Rawlins County 

The second project was also on a two-lane, two-way highway. Project length was about 16 miles. 

Project scope consisted of 25-mm (1-in.) hot-in-place recycling (HIPR) followed by a 16-mm 

(0.625 inch) SM-4.75A mixture overlay. Figure 3.2(b) shows the cross section of this project. 

The annual average daily traffic (AADT) varied from 423 to 488 in 2006.  Average daily 

equivalent 80-KN axle loads varied from 68 to 92. The 20-year design ESALs for the overlay 

was 1.5 million.  

0.75 inch SM-4.75A OL 

2.0 inch HIPR 

0.625 inch SM-4.75A OL 

1.0 inch HIPR 

4 to 10 inch Bituminous 
Concrete  

5.5 to 6 inch Cold 
Recycle + HMA Overlay 

(a) (b) 
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The condition survey conducted in 2006 before rehabilitation showed the average 

International Roughness Index (IRI) was 1.5 m/km (93 in/mile) on the right wheel path, with a 

standard deviation of 0.16 m/km (10 in/mile). There was no appreciable rutting. On average, the 

16, one mile-long pavement management (PMS) segments had 27 to 28 linear m (88 to 92 linear 

ft) of Code 1 fatigue cracking (hairline alligator cracking with pieces which are non-removable) 

per 30.5 m (100 ft) of wheel path. The project had on average 17 Code 0 transverse cracks which 

refer to full-roadway-width sealed cracks with no roughness and sealant breaks less than 0.305 

m/lane (1.0 ft/lane). Only one PMS segment had three Code 1 transverse cracks.  

3.5.2 Layer Mixture Composition for Kansas’ 4.75-mm Mixture 

3.5.2.1 4.75-mm NMAS Mix Overlay 

Table 3.5 shows the mixture on US-160 had 65% crushed limestone screening and 35% natural 

sand. The K-25 mixture had 63% crushed gravels, 35% natural sand, and 2% micro-silica. The 

design asphalt content was 7.0% for US-160 with 0.5% additive and 6.1% for K-25 by weight of 

total mixture. Both projects used PG 64-22 binder grade.  

Table 3.5 Mixture Composition for Kansas SM-4.75A Mix on US-160 and K-25  

US-160 K-25 
Aggregate  % in Design Mix Aggregate  % in Design Mix 

CS-1B 32 CG-2 30 
CS-2 12 CG-5 33 

CS-2A 7 SSG-1* 35 
CS-2B 14 MFS-5 2 
SSG-4* 35   

Design AC, (%)  7.0 Design AC, (%)  6.1 
*Natural sand content must not exceed 35%. 

3.5.2.2 Hot-In-Place Recycling (HIPR) 

The US-160 project had 50 mm (2 in.) of hot-in-place recycling (HIPR). The mix design was 

done by SEMMaterials. The target asphalt rejuvenating agent (ARA-1P) rate based on dry 
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weight of reclaimed asphalt pavement (RAP) was 2.0 ± 0.2%. Thus, the recommended spread 

rate was 2.22 liter/m2 ± 0.05% (0.5 ± 0.05% gal/sq. yd). The adjusted field application rate was 

1.4 liter/m2 (0.3 gals/sq. yd). The K-25 project had 25 mm (1 in.) of HIPR depth. No mix design 

was done to find the emulsion rate. The planned emulsion rate was 0.68 liter/m2 (0.15 gal/sq. 

yd), but only 0.5 liter/m2 (0.114 gal/sq. yd) was actually used. 

3.5.2.3 Tack Coat  

The tack coat used on both projects was slow-setting, high performance emulsified (SS-1HP) 

asphalt with about 60% asphalt residue. The target application rate was 0.18 liter/m2 (0.04 gal/sq. 

yd) on both project locations. The application temperature was 770 C (1700 F) to 790 C (175 0 F). 

Tack coat properties are listed in Table 3.6. 

Table 3.6 Tack Coat Properties Used on US-160 and K-25 Projects 

Route Tack 
Material 

Shooting 
Temperature 

0 F 

Unit 
Weight 
(lbs/gal) 

Specific 
Gravity 

Residual Asphalt 
(%) 

US-160 (EB) SS-1HP 170 8.49 1.018 60.0 
K-25 (SB) SS-1HP 175 8.49 1.018 60.0 

 

3.5.3 Field Data and Core Collection 

Three test sections with variable tack coat application rates were constructed in 2007 using 4.75-

mm NMAS Superpave mixture on each project. Test section lengths on US-160 and K-25 were 

37 m (120 ft) and 61m (200 ft), respectively (Figure 3.3 a, and b). During construction, SS-1HP 

was applied at three different rates: low (0.02 gal/yd2), medium (0.04 gal/yd2), and high (0.08 

gal/yd2) on the hot-in-place recycled (HIPR) asphalt layer. After the tack coat sections were set 

up, normal pavement construction practices were followed, which included an HMA haul truck 

backing over the tack surfaces. A 19-mm (US-160) and 16-mm (K-25) thick overlay was laid on 

the hot-in-place recycled (HIPR) layer and compacted. Cores at every 6-m (20-ft) (US-160) and 
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4.5-m (15-ft) (K-25) intervals were collected along the right wheel path about one month after 

construction to evaluate the performance of both tack materials and the 4.75-mm NMAS 

Superpave mixture. The cores were collected again one year after construction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Tack coat measurement and core locations on (a) US-160 and (b) K-25 

3.5.3.1 Tack Coat Application Rate Measurements 

In situ residual tack application rate was measured at seven locations on each tack coat test 

section to check actual application rates. Measurements were taken using pre-weighed, 304 mm 

7 core locations @ 15 ft c/c 

High Medium Low 

Cable 
Route Post 

E 

Traffic Direction (NB) 

7 core locations @ 15 ft c/c 7 core locations @ 15 ft c/c 
SB 

N 

110 ft 110 ft 

(b) 

EB 

High Medium Low 

Road Sign 
(CRYSTAL 
SPGS 2 VIA 
COUNTY 
ROAD) 

Road Sign 
(EAST 160) 

Road Sign 
(Deer Sign) 

N 

Traffic Direction (WB) 

7 core locations @ 20 ft c/c 7 core locations @ 20 ft c/c 7 core locations @ 20 ft c/c 

(a) 



 

 74 

× 304 mm (1ft × 1ft) dry wooden planks. A slow-setting tack (SS-1HP) was used on both project 

locations.  

The pre-weighted wooden planks were placed near the right wheel path before the 

distributor truck applied the tack coat. After the passage of the distributor truck, the planks were 

removed and weighed again to determine the diluted application rate. Figure 3.4 shows the 

distribution and measurement of tack coat on the US-160 project. From Figure 3.4, it is clearly 

evident that the tack application rate was not uniform on the US-160 project at a higher 

application rate. 

 

 

 

 

 

 

 

Figure 3.4 Tack coat application and measurement on US-160  

3.5.3.2 Field Core Collections 

The first phase of core collection happened one month after construction. Seven, 150-mm (6-

inch) diameter cores were collected along the right wheel path from each test section (Figure 

3.5a). It was observed that some cores had hairline cracks. Although this kind of cracking is 

often associated with tender mixes, it can also be caused by lack of bond at the interface with the 

underlying layer. The cores were cut to a height of 62 mm (2.4 inches) for making specimens for 

tests in the Hamburg wheel tracking device (HWTD). The size (height and diameter) satisfied 
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the requirements of Tex-242-F, the standard test method of the Texas Department of 

Transportation (TxDOT) (TEX 242-F 2009). The HWTD was performed to asses the rutting 

performance of the fine mixtures. Bulk specific gravity (Gmb) and maximum specific gravity 

(Gmm) were also determined to examine in-place density.  

Cores in the second phase were collected in June 2008, one year after paving and traffic 

operation. Fourteen, 50-mm (2-inch) diameter cores were collected along the right wheel path on 

each test section (Figure 3.5b). No debonding occurred at the HIPR layer during core collection. 

The collected cores were cut to a height of 50 mm (2 inches) to perform pull-off tests. The test 

specimens contained only 15 mm (3/5 inch) to 19 mm (¾ inch) of 4.75-mm NMAS overlay. The 

rest were HIPR layers with tack coat at the interface. 

 

 

 

 

 

 

Figure 3.5 (a) 6-inch core collection on US-160, (b) 2-inch core collection  

3.6 Design Phase-II: Laboratory Performance of 4.75-mm Mixture 

3.6.1 Laboratory Mix Design of 4.7- mm NMAS Superpave Mix 

KDOT specification allows mix blend with maximum 35% natural sand that must meet fine 

aggregate angularity (FAA) requirements. As-constructed baseline mixtures served as 

benchmarks for comparing the results of laboratory mix designs developed in this study using 

(a) (b) 
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materials from the US-160 and K-25 projects. A comprehensive test plan was developed and the 

test matrix is shown in Table 3.7. 

Table 3.7 Laboratory Mix Design and Performance Evaluation Matrix 

Mix-Design Phase 
Aggregate Source US-160 K-25 

PG Binder 64-22 70-22 64-22 70-22 

Natural Sand, (%) 35 25 15 35 25 15 35 25 15 35 25 15 

Combined 

Gradation 
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 

FAA FAA1 FAA2 FAA3 FAA4 FAA5 FAA6 

Selected Mix m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 

Performance Evaluation Tests 
Rut Test ( 3 reps) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

Moisture Test  

( 3 reps) 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Fatigue Strength 

(2 reps) 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

In the mix-design phase, all mixtures would have to have 4% air voids with Ndes level at 

75 gyrations. This compaction effort was selected as 4.75-mm NMAS mix is normally used for 

low-volume to medium-volume traffic conditions (ESALs less than 3 millions). Variations of 

these mix designs were planned by changing the binder grade and also by varying natural sand 

content in the combined mix for two different aggregate sources in Kansas. The baseline 4.75-

mm NMAS mixture designs were obtained from the US-160 and K-25 projects. Twelve different 

mix designs were developed by considering two aggregate sources, two binder grades, and three 

different natural sand contents. An anti-stripping agent was used in the mixes for the US-160 
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project since the baseline mixture also had an anti-stripping agent. For each mix, tests were done 

for rutting, moisture sensitivity, and fatigue testing.  

3.6.1.1 Aggregate Tests 

Gradation analysis was performed on all materials brought to the laboratory following AASHTO 

T 2 and T 284, Sampling of Coarse and Fine Aggregate; AASHTO T27, Sieve Analysis of 

Coarse and Fine Aggregate; and AASHTO T11, Materials Finer than 75 μm (No. 200) Sieve in 

Mineral Aggregate by Washing. After selection of aggregate blends, fine aggregate angularity 

(FAA) of the combined gradation was determined by a KT-50 test procedure for each 

combination. Specific gravity (KT-59) and clay contents (KT-55) were obtained from the mix 

design of US-160 and K-25 projects. 

3.6.1.1.1 Aggregate Sampling and Gradation by Wash Sieve  

Aggregates for wash-sieve analysis were obtained by the sampling method of quartering. 

Approximately 4,000-gm samples were taken from individual aggregate stockpile. The 

mixing canvas was placed on a smooth, level surface. The sample was made into a pile near 

the center of the canvas and was mixed by alternately lifting each corner and rolling the 

aggregate particles towards the opposite corner. After mixing properly, the aggregates were 

centered on the canvas in a uniform pile. Using a straight-edge scoop, the pile was then 

flattened to a uniform thickness and diameter by pressing the apex. The diameter should be 

approximately four to eight times the thickness. Using a rod or straight-edge scale, the 

sample was divided into two equal parts. Two equally divided samples were again divided 

into four equal parts. Two opposite quarters were discarded and the two remaining quarter 

were combined, mixed and reduced to a size of a 1,000 gm sample (Figure 3.6). 



 

 78 

After sampling the individual aggregate, the AASHTO T 11 (KT-3) procedure was 

followed to determine the quantity of material finer than the 75-µm (US No. 200) sieve in 

aggregate by the wash method. The test sample for wash-sieve analysis was selected from the 

material that had been thoroughly mixed. Table 3.8 shows the sample size needed to 

determine the aggregate particle distribution through wash-sieve analysis. It is to be noted 

that the material from which the sample is selected should contain sufficient moisture to 

avoid segregation. 

 

 

 

 

 

 

 

 

Figure 3.6 Sampling of aggregate by quartering method (Hossain et al. 2010) 

Table 3.8 Sample Size for Determination of Particle-Size Distribution (Hossain et al. 

2010) 

*Sample size based on NMAS of aggregate (5% or more retained on specified largest sieve) 

Sieve Size* Minimum Mass of Samples, (g) 

1 ½ in (37.5 mm) or more 
1 in (25 mm) 
¾ in (19.0 mm) 
½ in (12.5mm) 
3/8 in (9.5 mm) 
No. 4 (4.75 mm) or less 

15,000 
10,000 
5,000 
2,000 
1,000 
300 
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At first, the sample was dried to a constant mass at a temperature of 110 ± 50 C (230± 90 

F). Original dry mass was then recorded to the nearest 0.1 percent. The dry sample was then 

placed in a 75-µm (US No. 200 sieve) and the gentle flow of portable water was allowed to 

pass through the sieve with sufficient agitation. The aggregate sample was washed until 

complete separation of the finer particles (passing through a US No. 200 sieve) from coarser 

particles and the clean water comes out through the bottom of the sieve. All materials 

retained on the No. 200 sieve were dried to a constant mass at a temperature of 110 ± 50 C 

(230± 90 F ) and weighed to a nearest mass of 0.1 percent. A percent finer than the No. 200 

sieve was calculated using the following equation (3.1): 

   ( )
Olddrymass

ssFinaldrymaOlddrymassfine 100% ×−
=             (3.1) 

U.S Standard sieves No. 4 (4.75 mm), No. 8 (2.36 mm), No. 16 (1.18 mm), No. 30 (0.6 mm), 

No. 50 (0.3 mm), No. 100 (0.15 mm), and No. 200(0.075 mm) were nested in order of 

decreasing size of opening from top to bottom. Next, 1,000 gms of re-dried samples were 

placed in the nested sieve piles and the sieves were agitated for 1 minute using a mechanical 

shaker. The mass retained on each sieve-size increment was then determined to the nearest 

0.1 percent of the total original dry mass using a scale or balance. Total percent of material 

retained on each sieve was determined using the following equation (3.2): 

   ( )
WashingampleAfterDryMassofS

tainedMasstained 100ReRe% ×
=             (3.2) 

3.6.1.1.2 Measurement of Fine Aggregate Angularity (KT-50/ AASHTO T-304) 

This test was performed to determine the uncompacted void content of 4.75-mm NMAS 

aggregates based on a selected combined gradation. Test results described the angularity and 

texture of the aggregates compared to other gradations selected for the laboratory mix design. 
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Figure 3.7 describe the test apparatus and procedure needed to follow during fine-aggregate 

angularity testing. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 (a) Sieve washed dry material, (b) sample aggregate using quartering 

method, (c) pour sample in 100-mL cylinder, and (d) pour sample in 200-mL flask 

At first, samples from the selected aggregate gradation were washed over the No. 200 

sieve and dried to a constant mass following KT-3 test procedure. The dry mass was sieved 

over No. 8 (2.36 mm), No. 16 (1.18 mm), No. 30 (0.6 mm), No. 50 (0.3 mm), and No. 100 

(0.15 mm) sieves; and materials retained on No. 8 (2.36 mm) and passed through No. 100 

(0.15 mm) were discarded. The sample was mixed thoroughly until it was homogeneous and 

was divided following KT-1 sampling procedure. A funnel and funnel stand were prepared to 

pour the sample into a 100-mL metal cylinder. The funnel had a lateral surface cone sloped 

60 ± 4 degree from horizontal with an opening of 12 ± 0.6 mm (0.50 ± 0.024 inch) diameter 

and 1.5 in height. The funnel stand was capable of holding the funnel firmly in position by 

% 
Retained 
# 16 to 
#100 
Sieve 
 

(a) 

(b) 

(c) 

(d) 
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maintaining its collinear above the top of the cylinder. The right-angle metal cylinder of 

approximately 6.1-in3 (100-mL) capacity had an inside diameter of 39 ± 1 mm (1.53 ± 0.05 

inch) and an inside height of approximately 85 mm (3.37 inch). The selected sample was 

poured into the funnel, by using a finger to block the opening of the funnel, and was allowed 

to fall freely into the metal cylinder (Figure 3.7c) after removing the finger. Excess and 

heaped aggregate in cylinder was removed by a single pass of a straight-edge spatula and 

cylinder contents were poured into the 200-mL volumetric flask. Distilled water at room 

temperature 25 ± 10 C (77 ± 20 F) was added and air bubbles were removed from the flask by 

rolling the flask at an angle along its base. The process continued until there were no visible 

air bubbles present or for a maximum 15 minutes. The water level was adjusted to the 

calibration mark in the flask by adding distilled water if necessary. The whole procedure was 

repeated four times to obtain four isolated results for the same aggregate gradation. The 

uncompacted void content, also known as fine aggregate angularity was calculated in 0.1 

percent using equations 3.3 and 3.4. 

   
4

4321 UUUUU k
+++

=                   (3.3) 

Where, U1, U2, U3, and U4 are uncompacted void content in Trial 1, 2, 3 and 4 respectively. 

   
( )[ ]

c

cfw

V
VVV

U
−−×

=
100

4,3,2,1                  (3.4) 

where,  

Vw = volume of water, mL = 
99704.0

AB −  

B = mass of flask + water + aggregate, (g) 

A = mass of flask + aggregate, (g) 
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Vf = volume of the flask = 200-mL 

Vc = calibrated volume of cylinder = 100-mL 

At the end of each trial, the calculated uncompacted void content was compared with the 

other trial value to verify the specified limit, i.e., U1, U2, U3, and U4 cannot differ more than 

1.0. 

3.6.1.2 Laboratory Mix Design 

The AASHTO standard practice (R 35-4), Superpave Volumetric Design for Hot-Mix Asphalt 

(HMA), was followed during the mix-design phase of this study (AASHTO 2004). The standard 

practice was used to evaluate the 4.75-mm mixture properties following KDOT volumetric 

specifications for SM-4.75A mix. The project mix design for 4.75-mm NMAS used 35% natural 

sand. Mix designs with 15% and 25% natural sand were developed in this study. Once the group 

of aggregates was identified and the gradation was obtained on each project (Appendix B shows 

individual aggregate gradation), four trial aggregate blends satisfying Kansas gradations for an 

SM-4.75A mixture were developed. Control points for the 4.75-mm sieve (100-90% passing) 

were strictly observed in the blending process to maintain a true 4.75-mm NMAS Superpave 

mixture. Superpave consensus aggregate criterion (FAA) was also tested for the blended 

aggregate (Section 3.6.1.1). The most critical part in designing the aggregate structure was to 

meet the VMA criterion in the volumetric mix design. During the trial process, the gradation 

curve was kept away from the maximum density line but within the control points and optimum 

dust content (material finer than a No. 200 sieve) was maintained. Table 3.9 and Figure 3.8 show 

single point gradations of aggregates and a 0.45-power chart, respectively, developed in this 

study. Table 3.10 shows the selected percentage of individual aggregate in aggregate blend. 
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Table 3.9 Design Single Point Gradation of Aggregate Blend on US160 and K-25  

Laboratory Mix 

Design ID 

% Retained Materials on Sieves 

12.5 mm 

(½ inch) 

9.5 mm 

(3/8 inch) 

4.75 mm 

(No. 4) 

2.36 mm 

(No. 8) 

1.18 mm 

(No. 16) 

0.6 mm 

(No. 30) 

0.3 mm 

(No. 50) 

0.15 mm 

(No. 100) 

0.075 mm 

(No. 200) 

Max. Density Line 0.0 12.1 36.1 52.8 65.4 74.5 81.3 86.4 90.2 

Control Points 0 0-5 0-10  40-70    88-94 

US-160 S_35 0 0 5 36 52 64 85 93 94 

US-160 S_25 0 0 6 43 60 71 86 93 94 

US-160 S_15 0 0 7 49 69 78 88 93 94 

K-25 S_35 0 0 10 28 47 63 80 89 93 

K-25 S_25 0 0 10 28 48 63 79 88 92 

K-25 S_15 0 0 10 28 48 63 78 87 92 

Note: S_35 = Combined gradation with 35% natural sand content 
S_25 = Combined gradation with 25% natural sand content 
S_15 = Combined gradation with 15% natural sand content 
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Figure 3.8 0.45 power charts for 4.75-mm NMAS Superpave laboratory mixture (a) US-160 

and (b) K-25 
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Table 3.10 Percentage of Individual Aggregate in Combined Gradation 

Source Aggregate  % in Combined Gradation 

US-160 

CS-1B 32 40 45 

CS-2 12 12 12 

CS-2A 7 7 7 

CS-2B 14 16 21 

SSG-4 35 25 15 

K-25 

CG-2 30 34 40 

CG-5 33 39 43 

SSG-1 35 25 15 

MFS-5 2 2 2 

For experimental design purposes, aggregates from each aggregate source were again subdivided 

into three major categories. Based on aggregate particle-size distribution and percent fines 

retained on the No. 200 sieve, the subsets were defined as coarse material (among groups), 

screening material, and river sand (Table 3.11). 

Table 3.11 Aggregate Subsets on US-160 and K-25  

Source 

Aggregate Subsets, (%) 

Coarse Material1 Screening Material2 River Sand3 

Max. Min. Max. Min. Max. Min. 

US-160 45 32 33 26 35 15 

K-25 40 30 43 33 35 15 
Note: 1 = CS-1B and CG-2 for US-160 and K-25, respectively 
 2 = (CS-2 + CS-2B) and CG-5 for US-160 and K-25, respectively 
 3 = SSG-4 and SSG-1 for US-160 and K-25, respectively 

After selecting aggregate blends for 35%, 25%, and 15% river sand content, design 

asphalt content for each gradation was determined considering two different binder grades (PG 

64-22 and PG 70-22). The proposed aggregate blend was combined with four different 

proportions of binder from -0.5% to +1% max of the trial binder content at 0.5% intervals. 
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Considering each binder content, preparation of each aggregate/binder mixture was defined as an 

individual batch. Mixing temperature ranged from 1560 to 1600 C (3130 to 3250 F). The batch 

mixture was then conditioned in a closed draft oven (2890 to 3000 F) for a minimum of 2 hours 

prior to compaction. This was the time needed for the aggregates to absorb the binder. Batch 

samples were then compacted with a Superpave gyratory compactor (SGC) at oven temperature. 

All samples, including the maximum specific gravity tests, were aged for the same amount of 

time. Theoretical maximum specific gravity (Gmm) of the loose mixture and bulk specific gravity 

(Gmb) of the compacted samples were then determined by KDOT standard test methods KT-39 

(AASHTO T209) and KT-15 (AASHTO T166) procedure III, respectively. The Gmm and Gmb 

were calculated using the Equations (3.5) and (3.6), respectively. 

   
CA

AGmm −
=                                (3.5) 

where 

Gmm = theoretical maximum specific gravity, 

A = mass of dry sample in air, (g), and 

C = mass of water displaced by sample at 770 F (250 C), (g). 

   
CB

AGmb −
=                      (3.6) 

where 

Gmb = bulk specific gravity of a compacted specimen, 

A = mass of dry sample in air, (g), 

B = mass of saturated surface-dry sample in air, (g), and  

C = mass of saturated sample in water, (g). 
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After all necessary testing had been accomplished, the volumetric parameters were 

calculated. Averaged results of various volumetric calculations were tabulated and design binder 

content was selected based on KDOT-specified volumetric criteria for SM-4.75A at 4 percent air 

voids. Air void of the compacted sample was calculated using the following equation (3.7): 

  
( )

mm

mbmm
a G

GG
V

100
%

×−
=                    (3.7) 

Where 

Va =air voids 

Table 3.12 shows the selected design asphalt contents and other volumetric parameters obtained 

for 12 mixes designed in the lab. 

Table 3.12 Mix Design Volumetric Properties 

Aggregate 
Source PG1 NSC2 

Air 
Void 
(%) 

3
bρ  

(%) 
VMA 
(%) 

VFA 
(%) 

Gmm @ 
Nini 
(%) 

DP4 
5
beffρ  

(%) 

US-160 

64-22 
35 4.33 7.0 16.12 73.14 89.32 0.99 5.32 
25 3.95 6.8 15.32 74.24 87.84 1.09 5.09 
15 4.16 6.75 15.64 73.40 85.53 1.21 4.79 

70-22 
35 4.07 6.8 15.63 73.99 89.43 1.02 5.2 
25 3.97 6.6 15.27 74.02 87.89 1.11 5.07 
15 4.07 6.6 15.28 73.35 85.6 1.15 5.03 

K-25 

64-22 
35 3.48 6.1 16.49 78.0 89.99 1.19 5.85 
25 3.99 5.6 16.04 75.09 89.35 1.48 5.48 
15 3.96 5.4 15.65 74.72 88.96 1.53 5.24 

70-22 
35 3.39 5.7 15.47 78.0 90.37 1.29 5.39 
25 4.76 5.5 16.27 70.73 88.39 1.54 5.19 
15 3.63 5.4 15.0 75.7 89.58 1.58 5.03 

KDOT Spec 4  Min 15 65-78 Max 90.5 0.9-2  
1=Binder grade; 2=natural sand content; 3= asphalt content; 4=Dust-to-binder ratio; 5 = Effective asphalt content 

3.7 Performance Tests on Field and Laboratory Mixes 

Rutting and bond strength of field cores, collected in two different phases, were evaluated by 

Hamburg wheel tracking device (HWTD) and laboratory pull-off strength test. Laboratory 

mixture performances such as rutting, moisture sensitivity, and fatigue strength of 4.75-mm 
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NMAS were also examined by HWTD, indirect tensile strength ratio (TSR Load Frame), and 

repeated flexural bending beam tests, respectively. HWTD tests were done following Tex-242-F 

test method of the Texas Department of Transportation, while moisture susceptibility testing 

followed KT-56: Resistance of Compacted Bituminous Mixture to Moisture Induced Damage, 

and long-term fatigue testing followed AASHTO T 321-03: Determination of Fatigue Life of 

Compacted Hot-Mix Asphalt (HMA) Subjected to Repeated Flexural Bending. A brief 

description of these field and laboratory mix performance tests is given below. 

3.7.1 Hamburg Wheel Tracking Device Rutting Evaluation (TEX 242-F 2009)  

Rutting or permanent deformation of the field cores and laboratory-designed mixtures was 

evaluated using the Hamburg wheel tracking device (HWTD) and following Tex-242-F test 

method of the Texas Department of Transportation. This wheel tracking equipment is operated 

under the mechanism that a pair of wheels apply moving loads to the specimen in order to 

simulate rutting in an accelerated manner. The depth of depression or rut created on the sample is 

measured and analyzed. Tex-242-F evaluates the premature failure susceptibility of a bituminous 

mixture due to weakness in the aggregate skeleton, moisture damage, and inadequate binder 

stiffness. The test measures the depression and number of wheel passes to failure (Figure 3.9). 

Each moving steel wheel of HWTD is 8 inches (203.6 mm) in diameter and 1.85 inches (47 mm) 

wide. The load applied by the wheel is approximately 705 ± 22 N (158 ± 5 lbs) and the wheel 

passes over the test specimen approximately 50 times per minute. The water control system of 

HWTD is capable of controlling the test temperature from 250 to 700C (770 to 1580 F) with a 

precision of ± 20C (40F). The rut depth measurement system consists of a linear variable 

differential transformer (LVDT) device. Rut depth is taken after every 100 passes of the wheel. 
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Figure 3.9 Experimental setup and failure surface on field cores 

The Hamburg samples, both field and laboratory (SGC) compacted, were 150 mm (6 

inch) in diameter and 62± 2 mm (2.4 ± 0.1 inch) tall. In-place density of the laboratory test 

samples must be 93± 1%. The samples were placed together in special molds following Texas 

test procedure Tx-242-F as shown in Figure 3.9 and then were submerged under water at 500 C 

in the test bath. The core collected from the field also followed the diameter and height 

specifications as stated above. TxDOT specification allows 20,000 repetitions or number of 

wheel passes and 20-mm (0.8-inch) rut depth (which ever comes first) based on binder grade to 

evaluate the rutting performance of the HMA mix. Rut depth or deformation was measured at 11 

different points along the wheel path of each sample with an Linear Variable Differential 

Transformer (LVDT).  

Output parameters interpreted from the rut history data and plot were number of wheel 

passes at 20-mm(0.8 inch) rut depth, rutting/creep slope, stripping slope, and stripping inflection 

point (Figure 3.10). 
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Figure 3.10 Rutting performance of laboratory mix 2 on US-160 project 

Creep slope or rutting slope relates to permanent deformation from plastic flow after post-

compaction effects have ended and before stripping action starts. Stripping slope is the inverse of 

the rutting slope and indicates the start of stripping action and continues till the end of the 

HWTD test. The stripping inflection point is the number of wheel passes at the intersection point 

of the rutting and stripping slope, which indicates the resistance of the HMA mixture to moisture 

damage (TEX 242-F 2009).  

3.7.2 Pull-Off Tests for Bond Strength Measurement 

The American Society of Testing and Materials (ASTM) has specified a standard test, “Standard 

Test Method for Pull-Off Strength of Coating Using Portable Adhesion Tester” (ASTM 2003). 

The test measures the tensile force required to pull apart two bonded, flat surfaces. The test result 

can be reported either as pass/fail or by recording tensile force to split the bonded layer. No 
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guidelines are available regarding the initial normal force or pre-compression time required to 

perform the test. According to the ASTM standard, these initial conditions should be assigned by 

the test apparatus manufacturer (ASTM 2003). KDOT has partially adopted this test procedure to 

evaluate in-situ bond strength in the field. During this study, the KDOT procedure was followed 

with a SATEC model T 5000 universal testing machine. Before testing, both faces of a core were 

glued to metal plates using epoxy (Pro-Poxy 300 fast A/B) as illustrated in Figure 3.11. The 

epoxy needed 16 to 24 hours to set and to make a perfect bonding with the bituminous mixture. 

The strength test was performed at 250 C (770 F). During testing, the core samples were 

conditioned under normal loads of 0 to 10 lbs for five seconds. The applied displacement was set 

to 25 mm/min (1 inch/min). The test samples were then loaded to fail in direct tension (Figure 

3.11). 

 

 

 

 

 

 

 

 

 

Figure 3.11 Pull-off strength test of tack coat material 
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3.7.3 Moisture Susceptibility Test (KT-56) 

This test is used to measure the change in tensile strength resulting from the effects of saturation 

and accelerated water conditioning of the compacted bituminous mixture in the laboratory. It 

helps to evaluate the ability of the compacted bituminous mix to withstand long-term stripping 

action and also to asses the liquid anti-stripping additives used in the asphalt mix. Kansas test 

procedure KT-56, Resistance of Compacted Bituminous Mixture to Moisture Induced Damage, a 

slightly modified version of AASHTO T283, was followed in this study (Hossain et al. 2010). 

The test specimens were prepared using the Superpave gyratory compactor (SGC). At least six 

SGC-compacted specimens were prepared for each set with an air void of 7%± 0.5% (Appendix 

B). The specimens were 6 inches (150 mm) in diameter and 98 ± 5 mm (4 ± 0.2 inches ) thick. 

The air void level can be obtained by adjusting the height of the specimen. After mixing and 

compaction, the samples were conditioned at 25± 10 C (77± 50F) for 24 ± 1 hours. The 

maximum specific gravity (Gmm), and bulk specific gravity (Gmb) were computed for each set to 

determine the air void of the test samples. Thickness and diameter of the specimens were also 

measured to the nearest 0.01 mm. The six compacted samples were then subdivided into two 

sublots. Each subset had approximately equal average air void. One subset was considered for 

conditioning and the other one remained unconditioned.  

The conditioned subset was placed in a vacuum container with a minimum diameter of 

200 mm (8 inches) and the inside height capable of holding a minimum of 25 mm (1 inch) of 

water above the specimen. The samples were selected to achieve percent saturation of 70% to 

80%. A vacuum pump with 30 mm of Hg absolute pressure was also attached to the vacuum 

container (Figure 3.12). After achieving the saturation within the specified limit, the samples 

were sealed in a zip lock bag with 10 mL of water within 2 minutes and were kept at a freezing 
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temperature of -18 ± 30C (0± 50F ) for at least 16 hours. The samples were then removed and 

placed in a hot water bath at 60± 10C (140± 20F) for 24±1 hours. The conditioned samples were 

removed from the hot water bath one at a time and damp-dried quickly. The SSD mass was 

measured and the samples were placed in a water bath at room temperature (25 ± 10C) for two 

hours. The mass under water was also recorded. Final height and diameter were also recorded as 

soon as they had been removed from water bath prior to the indirect tensile test.  

 

 

 

 

 

 

 

Figure 3.12 Saturation and tested sample in TSR load frame 

The unconditioned samples were stored at room temperature. Thickness and diameter were 

measured. The samples were placed in a concrete cylinder and then in water bath at 25 ± 0.50 C 

(77 ± 10 F) for 2 hours. The samples were then ready to be tested in a Marshall stability tester 

using indirect tensile strength (Figure 3.12). Average tensile strength and percent tensile strength 

ratio were calculated using the following equations (3.8), (3.9), and (3.10). KDOT specification 

requires a minimum TSR of 80% for the HMA mix not to be potentially moisture sensitive. 

( ) ( )
( )( )( )Dt

PmatricSt π
×

=
000,2                   (3.8) 

( ) ( )
( )( )( )Dt

PenglishSt π
×

=
2                   (3.9) 
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where, 

 St = tensile strength, kPa (psi), 

P = maximum load, N (lbs), 

t = thickness of the samples, mm (in), and  

D = diameter of the samples, mm (in). 

Percent tensile strength ratio, 
1

2100
S

STSR ×
=               (3.10) 

where, 

 S1 = average tensile strength of unconditioned subset, kPa (psi), and 

S2 = average tensile strength of conditioned subset, kPa (psi).  

3.7.4 Flexural Beam-Fatigue Testing (AASHTO T321-03)  

This performance test will estimate the fatigue life and failure energy of HMA pavement layer 

materials under repeated loading conditions. Performance of HMA can be more accurately 

determined when these properties are known. The failure point of the HMA beam specimen is 

defined as the load cycle at which the specimen exhibits a 50% reduction of its initial stiffness 

(AASHTO 2005). The HMA slab was prepared in the laboratory using a kneading compactor. 

The target air void was 7% ± 1%. The slab was 432 mm (17 inch) long by 260 mm (10 inch) 

wide by 50 mm (2inch) thick (Figure 3.16). The mixing and compaction temperatures were 1560 

C (3130 F) and 1460 C (294.50 F), respectively. The replicate beam samples were then sawn from 

the laboratory-compacted HMA slab. Approximately four beams were cut from a single slab. 

The beam specimen was 380 mm (15 inch) long, 50 mm (2 inch) thick and 63 mm (2.5 inch) 

wide. Figure 3.13 shows the slab compaction, beam specimen, test setup of the flexural beam 

fatigue test setup, and software output of the beam fatigue test. 
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The test system consisted of a loading device, an environmental chamber, and a control 

and data acquisition system. The test system minimum requirements are 0 to 5 kN (1,225 lb) for 

loading measurements and control, 0 to 5 mm (0.2 inch) displacement measurements and control, 

and the environmental chamber temperature should be maintained at 200±0.50C (680±0.50 F). 

The loading frequency varies from 3 to 10 Hz. 

 

 

 

 

 

 

 

 

 

Figure 3.13 Flexural beam fatigue test sample preparation and test setup 

The load was applied for 50 cycles with a constant strain of 300 micro-strains and the flexural 

stiffness value of the HMA beam was calculated and compared with the initial values. After 

completion of the test, bulk specific gravity of tested beams was measured and maximum 

theoretical specific gravity of the loose mixes was also determined to calculate the air voids of 

the beam specimen. 
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CHAPTER 4 - RESULTS AND ANALYSIS 

4.1 General 

This chapter discusses the results of field cores and laboratory mix performances of 4.75-mm 

NMAS Superpave mixtures. Field cores were examined with respect to permanent deformation 

at three different tack coat application rates. The bond strength of the layer materials was also 

assessed for different residual tack rates. Performances of laboratory mixes were evaluated in 

terms of rutting, moisture susceptibility, and fatigue damage. Volumetric properties of 

laboratory-designed mixes were also assessed for different binder grades, river sand contents, 

and aggregate types.  

4.2 Tack Coat Measurement and Field Core Performance 

As mentioned earlier, three application rates were selected for each project. Seven measurement 

points were set at 6.1-m (20-ft) and 4.5-m (15-ft) intervals near the right wheel path on the US-

160 and K-25 projects, respectively. Six-inch and two-inch diameter cores from these test 

sections were collected and tested in the lab. 

4.2.1 Performance of 4.75-mm NMAS Projects  

4.2.1.1 Performance of Overlay After One Year of Construction 

Figures 4.1, 4.2 and 4.3 show the performance history of the projects. The HIPR and overlay 

resulted in remarkable improvement in roughness (about 24% decreases in roughness). Overall, 

US-160 was smoother than K-25. The rutting 2.5 to 3.8 mm (0.1 to 0.15 inch) was fully 

addressed. K-25 had transverse cracking and that was also addressed by HIPR and the overlay.  
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Figure 4.1 Transverse cracking progressions on US-160 and K-25, 1993-2008 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 IRI progressions on US-160 and K-25, 1993-2008 
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Figure 4.3 Rutting progressions on US-160 and K-25, 1993-2008 

4.2.1.2 Performance of Overlay After Two Years of Construction 

Kansas Pavement Management System (PMS) survey in 2009 has indicated that transverse 

cracks are returning on K-25 project (Figure 4.4). US-160 seems to be doing fairly well 

compared to K-25 project. Both projects showed good performance against rutting. Scuffing and 

gouging of these mixtures were the real concerns. On both projects, they were unfounded. Table 

4.1 shows the equivalent transverse cracking (ETCR) and International Roughness Index (IRI in 

inch/mile) in each section on both projects in the year 2009. Table shows the overlay sections are 

fairly smooth 
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Table 4.1 Performance of Thin Overlay of 4.75-mm NMAS Mixture in 2009 

Project Beginning Mile Post End Mile Post IRI (in/mile) ETCR 

K-25 

0 1 54 0.353 
1 2 53 0.000 
2 3 60 0.146 
3 4 58 0.208 
4 5 61 0.249 
5 6 59 0.104 
6 7 55 0.104 
7 8 64 0.166 
8 9 62 0.416 
9 10 60 0.146 
10 11 59 0.166 
11 12 63 0.248 
12 13 50 0.104 
13 14 46 0.062 
14 15 53 0.104 
15 16.018 71 0.000 

Average  58 0.161 

US-160 

0 1 42 0.104 
1 2 52 0.520 
2 3 37 0.166 
3 4 34 0.000 
4 5 39 0.000 
5 6 53 0.000 
6 6.718 51 0.146 

6.718 7.575 60 0.000 
7.575 9 39 0.000 

9 10 39 0.000 
10 11 32 0.000 
11 12 37 0.000 
12 13 41 0.000 
13 14 48 0.000 
14 15 40 0.000 
15 16 42 0.000 
16 17 43 0.000 
17 18 61 0.000 

Average  44 0.052 
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Figure 4.4 Visible transverse cracks on K-25 project 

4.2.2 Tack Coat Application Rate Measurements 

Tables 4.2 and Table 4.3 show the measured residual tack application rate at both locations. 

Tables show the application rate measured during construction was fairly close to the target 

value on the K-25 project. However, on US-160, the measured application rates were way below 

the targets. The high application rate was not achieved during construction. The statistical 

summary (mean and standard deviation) for the US-160 project showed less scattered application 

rates compared to the K-25 project. These tables confirm that three distinct sections, based on the 

tack coat application rate, were not achieved on US-160. This implies that better equipment 

calibration is needed in the field. 
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Table 4.2 Measured Tack Coat Application Rate on US-160  

Route Section Plank # 
Plank Initial 

Weight 
(lbs) 

Plank Weight 
with Tack 

Coat 
(lbs) 

Residue 
(lbs) 

Application 
Rate 

(gal/yd2) 

US-160 

High 

1 0.80 0.82 0.0249 0.0264 
2 0.76 0.80 0.0344 0.0365 
3 0.77 0.81 0.0401 0.0425 
4 0.79 0.83 0.0362 0.0383 
5 0.73 0.76 0.0373 0.0395 
6 0.72 0.76 0.0392 0.0416 
7 0.75 0.79 0.0364 0.0386 

Avg.    0.038 
STDEV    0.0054 
Target    0.08 
% Diff.    110.5 

Medium 

8 0.77 0.81 0.0397 0.0421 
9 0.78 0.82 0.0370 0.0393 
10 0.75 0.78 0.0375 0.0397 
11 0.78 0.81 0.0353 0.0374 
12 0.72 0.75 0.0311 0.0330 
13 0.72 0.75 0.0238 0.0252 
14 0.79 0.82 0.0302 0.0320 

Avg.    0.036 
STDEV    0.0058 
Target    0.04 
% Diff.    11.1 

Low 

15 0.74 0.74 0.0053 0.0056 
16 0.80 0.82 0.0229 0.0243 
17 0.76 0.77 0.0104 0.0110 
18 0.76 0.78 0.0225 0.0238 
19 0.78 0.82 0.0355 0.0376 
20 0.78 0.81 0.0309 0.0327 
21 0.79 0.81 0.0194 0.0206 

Avg.    0.022 
STDEV    0.0113 
Target    0.02 
% Diff.    9.1 

*1 lb = 0.454 kg; ** 1 gal/yd2 = 4.527 l/m2 
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Table 4.3 Measured Tack Coat Application Rate on K-25 

Route Section Plank # Plank Initial 
Weight 

(lbs) 

Plank Weight 
with Tack 

Coat 
(lbs) 

Residue 
(lbs) 

Application 
Rate 

(gal/yd2) 

K-25 

High 

1 0.80 0.882 0.086 0.0907 
2 0.78 0.851 0.072 0.0763 
3 0.73 0.803 0.073 0.0774 
4 0.66 0.761 0.098 0.1038 
5 0.70 0.788 0.092 0.0977 
6 0.71 0.794 0.086 0.0907 
7 0.73 0.825 0.097 0.1031 

Avg.    0.09 
STDEV    0.0112 
Target    0.08 
% Diff.    11.1 

Medium 

8 0.77 0.827 0.054 0.0574 
9 0.80 0.845 0.049 0.0520 
10 0.74 0.783 0.045 0.0480 
11 0.67 0.713 0.049 0.0520 
12 0.69 0.741 0.051 0.0546 
13 0.75 0.807 0.058 0.0616 
14 0.70 0.752 0.054 0.0576 

Avg.    0.05 
STDEV    0.0045 
Target    0.04 
% Diff.    20.0 

Low 

15 0.72 0.748 0.026 0.0273 
16 0.68 0.713 0.035 0.0375 
17 0.67 0.693 0.021 0.0222 
18 0.74 0.759 0.021 0.0222 
19 0.82 0.836 0.016 0.0173 
20 0.79 0.796 0.008 0.0084 
21 0.76 0.759 0.001 0.0007 

Avg.    0.02 
STDEV    0.0121 
Target    0.02 
% Diff.    0.0 

*1 lb = 0.454 kg; ** 1 gal/yd2 = 4.527 l/m2 

4.2.3 Rutting Performance of Field Cores 

Rutting performance of thin overlay was evaluated to examine the effect of tack coat application 

rate on surface mix performance. Residual tack coat application rate at interface of thin HMA 
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overlay is critical as slippage or lateral movement may occur at interface under traffic at high 

tack coat application rate. HWTD was used to perform rut tests on all six sets of cores. Four 

cores from each test section (low, medium, and high tack application rates) were used to make 

the HWTD samples. Air voids of the field cores were determined from results of the maximum 

theoretical specific gravity (Gmm) and bulk specific gravity (Gmb) tests. On the US-160 project, 

air voids of the cores varied from 6.6% to 8.6%, while K-25 sections had a mean air void of 

4.3%. Table 4.4 shows the residual tack coat application rates, percent air voids of the field 

cores, and number of wheel passes for all sections. Air voids of the K-25 field cores were much 

lower than those for the US-160 cores.  However, US-160 cores carried a higher number of 

wheel passes before failure (19 mm rut depth) as shown in Figure 4.5. The highest number of 

wheel passes was observed on the low tack application rate sections on US-160. There was no 

appreciable difference in the number of wheel passes for the medium and high tack application 

rates.  

Table 4.4 Rutting Performance of 4.75-mm NMAS Superpave Mix Overlay  

Route Section Residual Application Rate 
(gal/yd2) 

Air Void 
(%) 

Number of Wheel 
Passes 

US-160 
Low  0.012 6.6 5,600 
Medium 0.024 7.2 4,700 
High 0.024 8.6 5,200 

K-25 
Low  0.012 4.5 1,400 
Medium 0.030 4.3 1,950 
High 0.054 4.8 1,900 

HWTD results showed that the number of wheel passes significantly increased at in-place 

density near 93%. These results also implied that compaction during paving is one of the major 

factors controlling performance of the mix. A well-designed HMA mixture should achieve in-

place air voids within the 7% ± 1% limit immediately after construction. The air voids 
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determined for thin overlay on K-25 projects were way below the target value (7% ± 1%) means, 

the mix laid on that particular section was not well designed. 

 

 

 

 

 

 

 

 

 

Figure 4.5 Rutting performances of field cores on US-160 and K-25  

In general, the pavement with well-designed mixture is expected to have 7% to 8% air 

voids during construction and will achieve 4% design air voids under traffic within a 20-year 

design life. In-place density below 93% ± 1% immediately after construction will be permeable 

to air and water and will not have the required durability. Again, if the initial compaction results 

in air voids of approximately 4% or lower, the mix may become unstable under traffic after 

additional densification and hence, result in shoving and excessive rutting (AASHTO 2000). 

Cores from the K-25 project experienced excessive rutting and stripping during the HWTD test 

due to overcompaction at a very early age of the pavement. The pavement experienced extreme 

lateral shear at low air void under accelerated testing conditions. In addition, the US-160 mixture 

contained an anti-stripping additive which may be the possible cause of overall better 

performance in submerged conditions in HWTD. 
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4.2.4 Pull-Off Tests on Field Cores 

Results obtained in the pull-off strength test in this study are shown in Figure 4.6. The cores 

were selected randomly from seven locations in each test section to get unbiased results. A very 

high variability in the pull-off strength was observed, even for the same coring location, tack 

application rate, and failure mode. In most cases, on both projects, tensile failure occurred within 

the HIPR layer material and/or surface material, rather than at the interface of the 4.75-mm 

NMAS Superpave overlay and HIPR layer. Results from US-160 implied that complete bonding 

was achieved between these layers regardless of tack coat application rate. Overall failure rate in 

the surface mix overlay was 55%, while 45% of the total failure occurred in HIPR layer material. 

However, test sections with higher tack coat experienced higher percentage (57%) of failure 

within the HIPR layer.  

 
Figure 4.6 Pull-off strength at different tack application rates on US-160 and K-25 
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On K-25, partial debonding occurred for some cores from the test section with a high 

residual tack coat application rate, while only one core from the section with a medium tack 

application rate failed. This finding was notably important as it implied that the high tack 

application rate might be too high to provide sufficient bond strength for the overlay. Test results 

showed that the HIPR layer materials were weaker compared to the overlay mixes. 

Approximately 57% of the total failure occurred in HIPR, 26% failure in surface material, and 

17% at the interface of these two. However, 43% of the field cores from the test section with 

higher tack coat application rate had failed at the layer interface. Another significant finding was 

that bond strength at the HMA interface was highly dependent on the aggregate source and 

volumetric mix design of the adjacent layer material.  

4.3 Laboratory Mix Design 

4.3.1 Aggregate Testing – Fine Aggregate Angularity 

Table 4.5 shows the fine aggregate angularity (FAA) of the designed aggregate blend on both 

US-160 and K-25 projects. According to the KDOT specification for fine mix, the FAA must be 

higher than 42 for 0.3 to less than 3 millions design ESALs. 

Table 4.5 Uncompacted Voids in Aggregate on Both US-160 and K-25  

Project 
Aggregate Subsets 

FAA 
CA1 CA2 NSC 

US-160 

32 26 35 42.9 

40 28 25 42.3 

45 33 15 43.3 

K-25 

30 33 35 42.8 

34 39 25 43.2 

40 43 15 42.8 
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Table 4.5 shows that all designed aggregate blends satisfy the KDOT specification for 

FAA. However, there is no significant difference in FAA among the aggregate subsets for both 

aggregate sources. Twenty percent reduction in natural sand content changed only 0.4% of the 

uncompacted void mass for the US-160 aggregate source, while no change was observed for the 

K-25 aggregate source.  

4.3.2 Volumetric of Laboratory Mix Design 

Table 3.8 in Chapter 3 shows the volumetric properties of the mix designs developed in this 

study. The designs corresponding to 35% natural sand content are the baseline mixtures from the 

US-160 and K-25 projects. The mixture characteristics are discussed below.  

4.3.2.1 Design Asphalt Content 

Design asphalt content (AC) was relatively higher for these mixtures due to a large amount of 

fine materials. It is to be noted when considering cost-effectiveness of mixtures, this must be 

taken into account. However, the potential high cost for the asphalt binder would be offset by the 

relatively low cost of aggregates used in this mixture. In general, the design asphalt content was 

project-specific and the difference in design asphalt content was insignificant for different sand 

contents and binder grades (Figure 4.7a). However, the effective asphalt content was 

significantly lower at lower natural sand contents for both projects. For PG 64-22 binder, it 

decreased approximately 10% for a 20% decrease in sand content for both projects (Figure 4.7b).  

However, for higher binder grade (PG 70-22), this change was relatively small.  

4.3.2.2 VMA and VFA 

The minimum VMA required by KDOT specifications for the SM-4.75A mixture is 16 percent, 

while 15 percent minimum VMA can be used for rehabilitation (1R or resurfacing) projects. All 

mix designs developed in this study met the minimum VMA requirements. The percent VMA, in 
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general, decreased with decreasing sand content with two exceptions. Mix with US-160 

aggregates, PG 64-22 binder, and 25% natural sand content had lower VMA compared to the 

mix with 15% natural sand and the same aggregate and binder combination. However, a K-25 

mix with PG 70-22 binder and 25% natural sand had significantly higher percent VMA 

compared to the mixes with the same binder but with 15% and 35% natural sand (Figure 4.7c). It 

is well known that the addition of binder in the asphalt mix will decrease VMA until a minimum 

is reached. Further addition of asphalt binder beyond this limit will begin to push the aggregate 

structure open, thereby increasing VMA. This may explain why some mixes had slightly higher 

and lower VMA with decreasing optimum asphalt content at a given Ndes.  

The VFA range currently specified in KDOT specifications for an SM-4.75A mixture is 

65 to 78% for design ESALs of 300,000 to less than 3 million. The average VFA for all mix 

designs passed the required criteria by KDOT. There is no definite trend in change of VFA. Very 

high VFA (78%) was observed on the K-25 project with 35% natural sand for both binder 

grades. Lowest VFA (70%) was obtained on K-25 with 25% natural sand and PG 70-22 (Figure 

4.7d).  

4.3.2.3 %Gmm @ Nini and Dust-to-Binder Ratio 

All mixes met the required criteria for relative density at Nini (90.5% max.) specified by KDOT 

for a design traffic level less than three million ESALs. Figure 4.7e shows that %Gmm @ Nini of 

the laboratory mixes were project-specific and were somewhat dependent on the natural sand 

content. As expected, the relative density at Nini slightly decreased with decreasing natural sand 

content. The effect of binder grade proved to be insignificant for both projects. 
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Figure 4.7 Change in volumetric properties (a) % AC, (b) % effective asphalt content, (c) 

% VMA, (d) %VFA, (e) % Gmm @ Nini, and (f) dust-to-binder ratio 

Dust-to-binder ratio is determined by dividing the percent materials passing a US No. 200 

sieve by the effective asphalt content. The current dust-to-binder ratio or dust proportion 

specified by KDOT for 4.75-mm NMAS mixtures is 0.9 to 2.0. Mix designs developed in this 

research study satisfied these requirements. The maximum ratio was 1.58 for the mix with 15% 
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natural sand and PG 70-22 binder on K-25, while the minimum (0.99) was obtained for the mix 

with 35% sand content and PG 64-22 binder on US-160. As expected, dust proportion was 

influenced by the aggregate source and percent natural sand content but not by the binder grade 

(Figure 4.7f). On the K-25 project, dust proportion increased by 25% when sand content was 

decreased from 35% to 15%.  For the same decrease in sand content, dust-to-binder ratio 

increased by 17.5% on US-160.  In both cases, increase in dust-to-binder ratio was due to lower 

effective asphalt content. 

4.4 Laboratory Mix Performance 

4.4.1 Hamburg Wheel Tracking Device Rut Testing 

The Hamburg wheel tracking device (HWTD) was used to evaluate rutting and stripping 

performance of all 12 mixes. Three replicates were produced for a particular mix design to obtain 

unbiased test results. The specimens had air voids of 7±1% and were tested at 500 C. The test 

was continued until an 0.8-inch (20-mm) rut depth or 20,000 wheel passes, whichever came first. 

Table 4.6 illustrates the rutting performance of all laboratory 4.75-mm mixtures in terms of 

number of wheel passes obtained during testing. Again, Figures 4.8, 4.9, 4.10, and 4.11 show the 

mix performances with respect to HWTD test output parameters such as the average number of 

wheel passes, creep slope (average no. of wheel pass per mm rut depth), stripping slope (average 

no. of wheel pass per mm rut depth), and stripping inflection point (number of wheel pass). 

Table 4.6 and Figure 4.8 show that natural sand content was an important factor affecting 

rutting performance of laboratory mixes. In general, the number of wheel passes increased with 

decreasing natural sand content.  Also, mix performance was aggregate-source specific. In most 

cases, there was no significant difference between the performance of the mixes with 25% and 

15% natural sand.  Binder grade did not appear to affect the mixture performance appreciably. 
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The performance of mix with PG 70-22 binder grade on US-160 was notably different than mix 

with PG 64-22. The number of wheel passes was significantly lower during HWTD testing. 

Table 4.6 Hamburg Rutting Performance on US-160 and K-25 Laboratory Mixes 

Aggregate 
Source PG Binder NSC1 Air Voids 

(%) No. of Wheel Pass 

US-160 

64-22 
35 6.2 8,650 
25 6.5 20,000 
15 6.7 20,000 

70-22 
35 6.9 6,070 
25 6.8 5,428 
15 6.9 11,600 

64-22 
35 6.9 8,500 
25 6.3 20,000 
15 6.5 15,750 

70-22 
35 6.9 5,950 
25 6.6 6,200 
15 6.4 7,950 

64-22 
35 6.8 4,600 
25 6.4 20,000 
15 6.8 16,450 

70-22 
35 6.7 5,750 
25 6.9 7,550 
15 6.7 7,950 

K-25 

64-22 
35 7.7 5,870 
25 7.3 15,350 
15 6.5 20,000 

70-22 
35 7.1 18,200 
25 7.1 17,950 
15 6.8 20,000 

64-22 
35 7.2 19,950 
25 7.1 13,450 
15 6.7 20,000 

70-22 
35 7.2 10,160 
25 6.9 20,000 
15 6.9 20,000 

64-22 
35 7.8 20,000 
25 6.8 17,890 
15 6.8 18,850 

70-22 
35 6.1 11,700 
25 6.3 20,000 
15 6.9 20,000 

Note: 1  = Natural (River) Sand Content 
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Figure 4.8 Average no. of wheel passes of 4.75-mm NMAS laboratory mixes 

When other output parameters such as creep slope, stripping inflection point (SIP), and 

stripping slope are considered, the laboratory mixes with lower sand content performed better 

compared to the mixes with 35% natural sand. Higher binder grade (PG 70-22) with 25% and 

15% natural sand performed relatively well on the K-25 mixes, while an opposite trend was 

observed in the US-160 mixes in the pure rutting phase (Figure 4.9). Higher binder grade with 

liquid amine (anti-strip agent) was further investigated to identify the potential cause of poor 

performance. 
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Figure 4.9 Change in creep slope at different river sand content and binder grade  

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Change in stripping slope at different sand content and binder grade  
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As expected, stripping slope was significantly higher in the US-160 mixes with lower 

sand content and binder grade (Figure 4.10). Number of wheel passes per mm rut depth of mixes 

with PG 64-22 increased almost 68-73% with decreasing sand content from 35 to 15%, while 

44% was observed with higher binder grade. On K-25, mixes with PG 64-22 and PG 70-22 had 

42% and 23% higher number of wheel passes per mm rut depth, respectively. Figure 4.11 

illustrates that stripping inflection point for a particular mix was highly aggregate-source 

specific. Better aggregate structure may help the mix to start stripping action later. Most of the 

K-25 mixes experienced delayed stripping distress compared to the US-160 mixes. Among all 

laboratory mixes, the K-25 mix  with PG 70-22 and 15% to 25% sand content had allowed the 

major number of wheel passes before the stripping action began. The average number of wheel 

passes increased more than 50% compared to the mix with 35% river sand. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Stripping inflection point at different sand content and binder grade  
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Further investigation performed to evaluate the effect of an anti-stripping agent on a 70-22 

binder grade is shown in Table 4.7. From the table, it is obvious that the anti-stripping agent did 

not have any significant effect on the binder properties except on long-term aging performance. 

The stiffness of the binder reduced almost 50% after adding the liquid amine. The test results 

also proved that the original binder PG 70-22 was not acid-modified. 

Table 4.7 Verification of Binder Grade With/Without Anti-Stripping Agent 

Binder Grade 
Original Binder RTFO1 PAV2 

Binder Grade 
(after aging) G*/sinδ 

kPa3 
G*/sinδ 

kPa3 
G*×sinδ 

kPa3 m @-120 C 

PG 70-22 
(without anti-
stripping) 

1.12 2.64 2965 0.324 70-25 

PG 70-22 (with 
anti-stripping) 1.18 2.66 1543 0.385 71-28 

1 RTFO = Rolling Thin Film Oven; 2 PAV = Pressure Aging Vessel; 3 1 kPa = 0.145 psi 

Another observation on the HWTD performance curves showed that stripping started 

early for the mixes with PG 70-22 compared to the mix with PG 64-22 for the US-160 project, 

while this trend was completely opposite in the K-25 mixes. With lower natural sand content 

(25% and 15%), the changes in SIP were almost 80% and 69%, respectively (Figure 4.12). 

Figure 4.13 shows binder grade PG 70-22 had improved the rutting performance more 

than 25% compared to PG 64-22 on K-25. Based on laboratory test results, it is quite obvious 

that the binder grade PG 70-22 on US-160 was not affected by the liquid amine in short-term 

aging. Again, the dust content in the aggregate blend had increased with decreasing natural sand 

content (Figure 4.7f). Hence, further research is suggested here to investigate any chemical 

reaction between dust particles and higher binder grade in the presence of a liquid anti-stripping 

agent. 
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Figure 4.12 Mixture performance based on stripping inflection point on US-160 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Mixture performance based on stripping inflection point on K-25 



 

 117 

4.4.2 Tensile Strength Ratio 

For all 12 mixes designed in the laboratory, tensile strength ratio (TSR) was determined as per 

KT-56.  For this test, specimens were compacted at 7±0.5% air voids. Six samples were 

compacted for a particular mix design: three samples were conditioned (freeze/thaw) and three 

were unconditioned. All six were tested for tensile strength in indirect tension mode. The ratio of 

the average tensile strength of the conditioned to that of the unconditioned samples was 

considered as the performance measure during testing.  

Figure 4.14 shows a plot of TSR and comparison of dry and wet tensile strength for all 12 

mixes. In general, mixes with the anti-stripping agent (as on US-160) had higher TSR values 

compared to mixes with no anti-stripping agent (as on K-25). All mixes on US-160 passed the 

minimum TSR requirements specified by KDOT with the exception of the mix with 15% natural 

sand and PG 64-22 binder. The average TSR for mixes with PG 64-22 binder on US-160 was 

91%, while an average of 92% was achieved for mixes with PG 70-22. This implies that the 

effectiveness of an anti-stripping agent depends on binder grade and aggregate source. Fifty 

percent of the design mixes on K-25 failed to meet the required TSR criteria.  The average TSR 

on K-25 ranged from a minimum of 73% to a maximum of 81% for the mixes with PG 64-22 

binder, and a minimum of 74% to a maximum of 82% for the mixes with PG 70-22 binder. 

Although the dry and wet strength of mixes on K-25 were significantly higher than those of US-

160, their ratio failed to meet the minimum TSR requirement. 
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Figure 4.14 (a) Tensile strength ratios (b) dry and wet strength of 12 mixes on US-160 and 

K-25 projects 
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minimum TSR requirements specified by KDOT with the exception of the mix with 15% natural 

sand and PG 64-22 binder. The average TSR for mixes with PG 64-22 binder on US-160 was 

91%, while an average of 92% was achieved for mixes with PG 70-22. This implies that the 

effectiveness of an anti-stripping agent depends on binder grade. Fifty percent of the design 

mixes on K-25 failed to meet the required TSR criteria.  The average TSR on K-25 ranged from 

a minimum of 73% to a maximum of 81% for the mixes with PG 64-22 binder, and a minimum 

of 74% to a maximum of 82% for the mixes with PG 70-22 binder. Although the dry and wet 

tensile strength of mixes on K-25 were significantly higher than those of US-160, their ratio 

failed to meet the minimum TSR requirement. 

4.4.3 Beam Fatigue Testing 

The AASHTO T321-03 test procedure was followed to determine the change in flexural stiffness 

of the laboratory-designed 4.75-mm mixtures. For this test, specimens were compacted at 

7±0.5% air voids. Twelve slabs were compacted for a particular mix design: two beams were cut 

from each slab. All beams were tested for flexural stiffness in a two-point loading arrangement in 

a conditioned chamber at 300 micro-strain. The change between the initial flexural stiffness (at 

50 cycles) and final stiffness (at 2×106 cycles) was considered as the performance measure 

during testing.  

Tables 4.8 and Table 4.9 and Figure 4.15 show the test results and change in fatigue strength for 

all 12 mixes. 
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Table 4.8 Fatigue Strength Test on US-160 Laboratory Mixes 

Aggregate 
Source 

Binder 
Grade NSC Cycle Initial Flexural Stiffness, 

MPa  
Final Flexural Stiffness, 

MPa  
% Changes in Flexural 

Stiffness 

US-160 

64-22 

35 

50 3411   
22 

2×106  2647 
50 3794   

27 
2×106  2771 

25 

50 3799   
32 

2×106  2567 
50 4199   

40 
2×106  2520 

15 

50 3943   
37 

2×106  2485 
50 4039   

35 
2×106   2634 

70-22 

35 

50 3988  
27 

2×106   2927 
50 3848  

28 
2×106  2760 

25 

50 4548   
24 

2×106  3460 
50 5299  

32 
2×106   3609 

15 

50 3839   
23 

2×106   2950 
50 4225  

29 
2×106   3003 
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Table 4.9 Fatigue Strength Test on K-25 Laboratory Mixes 

Aggregate 
Source 

Binder 
Grade NSC Cycle Initial Flexural Stiffness, 

MPa  
Final Flexural Stiffness, 

MPa  
% Changes in Flexural 

Stiffness 

K-25 

64-22 

35 

50 4751  
25 

2×106   3554 
50 4756  

25 
2×106   3561 

25 

50 5145   
31 

2×106   3547 
50 4582   

32 
2×106   3116 

15 

50 5196   
40 

2×106   3120 
50 5275  

35 
2×106   3442 

70-22 

35 

50 5737  
30 

2×106   4029 
50 4058  

30 
2×106   2821 

25 

50 4890   
28 

2×106   3535 
50 5315  

31 
2×106   3650 

15 

50 4726   
31 

2×106   3253 
50 4728   

31 
2×106   3267 



 

 122 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Fatigue performance of laboratory-designed mix on US-160 and K-25 

Tables 4.8 and 4.9 show that laboratory-designed mixes on US-160 and K-25 passed the 

test criterion set by AASHTO 321-03 test procedure in beam fatigue testing. The percent change 

in initial and final stiffness for all mixes was less than 50% at 2 million cycles. Figure 4.15 

shows that the change in initial stiffness increased with decreasing natural sand content for mixes 

with lower binder grade (PG 64-22) on both US-160 and K-25 at 200 C and 300 µε. The changes 

were 33% and 31% for the US-160 and K-25 mixes, respectively. However, at a higher binder 

grade, the change in initial stiffness was almost constant, regardless of the percent of natural 

sand content in the mixture. This finding is significant because the results indicate that the 

fatigue strength of the tender mix can be improved by using a higher binder grade. 
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CHAPTER 5 - STATISTICAL ANALYSIS AND OPTIMIZATION 

5.1 General 

In general, there are two aspects to any experimental problem. One is design of the experiment 

and the other is statistical analysis of the experimental data. These two approaches are closely 

related, since the method of analysis depends directly on the design employed (Montgomery 

1997). During this research study, the statistical design of the experiment (Section 3.2) was 

developed to plan the experiments and hence, collect the appropriate data for statistical analysis. 

The statistical approach to experimental design is necessary when the problems involve data that 

are subject to experimental errors and valid and objective conclusions are in demand. Results and 

conclusions from the statistical approach are objective rather than judgmental in nature. 

However, statistical methods cannot prove that a factor/factors has a particular effect, but rather 

provides guidelines for the reliability and validity of the test results and attaches a level of 

confidence to the statement/conclusions. The following articles in this chapter discuss the 

techniques used in analyzing the experimental data and significant statistical findings, the 

regression analysis of the designed experiment and performance equations developed, and 

finally, the optimized design process to identify the most effective mix design combinations, 

those capable of addressing the major distresses common to Kansas highways. 

5.2 Statistical Analysis of Laboratory Mixes 

The statistical analysis software package SAS was used to conduct both analysis of variance 

(ANOVA) and multivariate analysis of variance (MANOVA) to indentify the most significant 

mix design factors. Design factors in this study were aggregate source, binder grade, and natural 

sand content. The multivariate general linear model can be written as equation (5.1): 
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[ ] [ ] [ ] dndmmndn XY ×××× += εβ                 (5.1) 

where, 

  Y  = matrix with series of multivariate measurements; 

  X  = design matrix with independent variables; 

  β  = parameters matrix; and 

  e  = error matrix. 

Hypothesis testing with a general linear model can be made either as a multivariate or as 

several independent univariate tests (UCLA 2010). In multivariate tests, response in the column 

matrix Y are modeled simultaneously, while in univariate tests, the responses are modeled 

separately. During the research study, volumetric mix design parameters such as percent of 

design asphalt content, VMA, VFA, percent Gmm at Nini, percent of free asphalt, and dust-to-

binder ratio were considered as the multivariate measurements or dependent variables. ANOVA 

and MANOVA were also conducted to test the interactions among the design factors at the α = 

0.05 level.  

5.2.1 Analysis of Variance  

The general linear model in ANOVA can be written as the multiple linear regression equation 

(Equation 5.2). The equation predicts the response as a linear function of the estimated 

parameters and design factors. 

iikkiiii eXXXXY +++++= ββββ ...................221100          (5.2) 

ni .,,.........3,2,1=  

where, 

 Yi = response variable for the ith observation; 

 βk = unknown parameters to be estimated; and 
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 Xij = design factors. 

The simplest form of general linear model in ANOVA is to fit a single mean to all observations 

or dependent variables (Equation 5.3). In this linear form, there is only one parameter β0 and one 

design factor Xi0. The indicator or design factor always has the value of 1 in the simplest form of 

linear model. 

iii eXY += 00β                     (5.3) 

The ordinary least-square (OLS) estimation of β0, 





 ∧

0β  is the mean of Yi. All larger and 

complex models can be compared to this simple linear model, where β0 is usually referred to as 

the intercept (Weisberg 2005).  

Interaction or combination of design factors is often useful in statistical analysis. 

Interaction variables are often included in the mean function, along with other design factors, to 

allow the joint effect of two or more variables. When there are more than two independent 

variables, several interaction variables are introduced by using a pairwise-product in the 

regression equation. Before introducing the “interaction variable” term in the mean function, it is 

important to distinguish between qualitative and quantitative interaction variables. In the present 

study, the design factors aggregate source and binder grade are qualitative and natural sand 

content is a quantitative variable. Statistically, ANOVA is a more effective method to deal with 

the interacting variables, which are categorical rather than the real numbers. The following 

Equation (5.4) represents the ANOVA model used in the statistical analysis. The general 

assumptions of ANOVA were the model was independent, the errors were normally distributed, 

and the variance was constant. The residual plots of ANOVA are attached in Appendix C. 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ijklkijkijkjiijkl aggNSCNSCPGPGaggNSCPGaggY εµ +×+×+×++++=   (5.4) 
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where, [Y]ijkl    = response variables studied,  

μ   = overall mean, 

[Agg]i   = ith aggregate source, 

[PG]j   = jth PG binder grade, 

[NSC]k  = kth natural sand content, 

[Agg]i × [PG]j   = interaction between ith aggregate source and jth PG binder grade, 

[PG]j × [NSC]k  = interaction between jth PG binder grade and kth sand content, 

[NSC]k × [Agg]i = interaction between ith aggregate source and kth sand content, and 

εijkl      = error term. 

Table 5.1 shows the results of ANOVA of different mix volumetric and other properties. 

The variables were statistically analyzed with the level of significance at 5%. The p-value was 

set to a measure of extent to decide which design factors and interaction variables contradict with 

the defined null hypothesis (H0). The smaller p-value signified the higher probability of rejecting 

the null hypothesis. Effective asphalt content of the design mix is significantly affected by the 

aggregate source, binder grade, and natural sand content, while aggregate source was the only 

influential factor for the design asphalt content.  Interaction between aggregate sources and 

binder grade also affected the effective asphalt content. Based on the p-value (= 0.0095), 

aggregate source had the largest influence on effective asphalt followed by natural sand content 

(p-value = 0.0129) and binder grade (p-value = 0.0239). None of these design factors and 

interactions among them proved to be statistically significant at a 95% confidence level for VMA 

and VFA.  As expected, the initial relative density was influenced by the aggregate source and 

percent natural sand used in the mixes. The highest effect was for aggregate source (p-value = 

0.027), followed by percentage of natural sand (p-value = 0.05).  
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Table 5.1 Results of ANOVA 

Parameter Source DF R2 p-value Significant @ α = 0.05 

Design 
Asphalt 
content 

AGG1 1 

0.9959 

0.0023 Y 
PG2 1 0.0852 N 
NSC3 2 0.0589 N 
AGG*PG 1 0.8928 N 
PG*NSC 2 0.4057 N 
AGG*NSC 2 0.3209 N 

VMA 

AGG1 1 

0.9623 

0.1478 N 
PG2 1 0.0832 N 
NSC3 2 0.1291 N 
AGG*PG 1 0.5318 N 
PG*NSC 2 0.1868 N 
AGG*NSC 2 0.1383 N 

VFA 

AGG1 1 

0.9359 

0.1341 N 
PG2 1 0.4988 N 
NSC3 2 0.2061 N 
AGG*PG 1 0.3938 N 
PG*NSC 2 0.4354 N 
AGG*NSC 2 0.1528 N 

% Gmm @ 
Nini 

AGG1 1 

0.9779 

0.027 Y 
PG2 1 0.7292 N 
NSC3 2 0.0516 Y 
AGG*PG 1 0.7555 N 
PG*NSC 2 0.7843 N 
AGG*NSC 2 0.1136 N 

Effective 
Asphalt 
Content 

AGG1 1 

0.9943 

0.0095 Y 
PG2 1 0.0343 Y 
NSC3 2 0.0129 Y 
AGG*PG 1 0.0239 Y 
PG*NSC 2 0.0881 N 
AGG*NSC 2 0.3272 N 

Dust-to-
Binder 
Ratio 

AGG1 1 

0.9989 

0.0008 Y 
PG2 1 0.0716 N 
NSC3 2 0.0042 Y 
AGG*PG 1 0.0448 Y 
PG*NSC 2 0.2268 N 
AGG*NSC 2 0.0326 Y 

1=Aggregate; 2=Binder grade; 3=Natural sand content 

Two design factors considered during ANOVA had significant influence on the dust-to-binder 

ratio. Aggregate source (p-value = 0.0008) was the most influential factor followed by natural 
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sand content (p-value = 0.0042). The interaction between aggregate source and binder, as well as 

that between aggregate source and natural sand content were also statistically significant. 

5.2.2 Multivariate Analysis of Variance 

Multivariate analysis of variance is a generalized form of univariate analysis of variance. In the 

present study, more than two response variables were selected and hence, MANOVA was 

performed to identify whether any change in design factors had significant effects on response 

variables (UCLA 2010, Bruin 2010). MANOVA was carried out by proc REG. The MANOVA 

model used in the present study is presented in the equation (5.5).  
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[ ] =iβ  q×d matrix of unknown parameters = 
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The null hypothesis in MANOVA tests the overall hypothesis of no difference in the 

means for the different groups. In present study, means of six response variables were tested 

simultaneously considering three design factors and their interactions. The null hypothesis of 

MANOVA can be written as: 
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The output of MANOVA analysis is presented in Table 5.2. The table shows the MANOVA test 

statistics and F approximations to test the null hypothesis that the design factors (aggregate 

source, binder grade and sand content) did not have an overall effect on response variables. 

Table 5.2 MANOVA Statistics and F Approximations 

Statistics Value F Value DF p-value > F 

Wilks’ Lamda2 0.00008436 13.24 18 0.0002 

Pillai’s Trace 2.53657669 4.56 18 0.0024 

Hotelling-Lawley Trace 277.30195843 61.62 18 0.0051 

Roy’s Greatest Root1 258.29179012 215.24 6 <0.0001 

Note:  1 = F statistics for Roy’s greatest root is an upper bound 
2 = F statistics for Wilks’ Lamda is exact 
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MANOVA statistics were calculated from the characteristics roots which are the Eigen 

values of the product of the sum square matrix of the hypothesis (H) and inverse of the sum 

square matrix of residual (E-1) . F values are F-statistics for the known design factors and test 

statistics. The null hypothesis of MANOVA analysis was evaluated with respect to the p-values 

obtained from different MANOVA statistics. The p-values from the table strongly reject the null 

hypothesis and hence suggest that the selected design factors have significant effect on the mix 

design volumetric. In addition, univariate outputs from MANOVA were similar to the ANOVA 

presented in Table 5.1. 

5.2.3 Effect of Significant Parameter on Laboratory Mix Performance 

Regression analysis using the statistical software SAS showed that the dust-to-binder ratio was 

the most significant mixture parameter influencing mix performance in HWTD rutting and KT-

56 moisture sensitivity tests. Figure 5.1 shows the plot of performance of laboratory mixes 

versus dust-to-binder ratio. 

Figure 5.1(a) shows that the number of wheel passes at the stripping inflection point 

increases linearly with increasing dust-to-binder ratio for all laboratory mixes. Analysis of 

HWTD test performance curves showed that pure rutting performance (number of wheel passes 

just before stripping started) improves with decreasing natural sand content (which in turn, 

increases the dust proportion). However, TSR obtained in the moisture sensitivity tests was 

inversely proportional to the dust-to-binder ratio (Figure 5.1b). Thus, it is obvious from these 

results that the dust-to-binder ratio of the design mix should be selected in a narrow range so that 

optimum rutting performance and lower moisture susceptibility are obtained. This may indicate 

the need for further refinement of dust-to-binder ratio range specified by AASHTO for 4.75-mm 

NMAS Superpave mixture. 
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Figure 5.1 Laboratory mix performance versus dust-to-binder ratio 

y = 18076x - 13283
R2 = 0.5509

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.75 0.95 1.15 1.35 1.55 1.75

Dust-to-binder ratio

No
. o

f W
he

el
 P

as
se

s 
@

 S
tri

pp
in

g 
In

fle
ct

io
n 

Po
in

t

y = -43.547Ln(x) + 94.357
R2 = 0.5082

70

75

80

85

90

95

100

105

110

0.75 0.95 1.15 1.35 1.55 1.75

Dust-to-binder ratio

TS
R,

 (%
)

(a) 

(b) 



 

 132 

5.3 Regression Analysis of Mix Performance 

Regression analysis is a statistical technique of modeling dependency between a response 

variable and one or more independent variables (Weisberg 2005). During analysis, the estimated 

variable is the function of the predictors called the independent variables. The goal of regression 

analysis of the present study is to develop the regression functions/ equations for laboratory-

designed mixtures based on the performance test results and hence, to predict the distresses at 

different design factors. Similar to ANOVA, the aggregate source, binder grade, and natural sand 

content are considered as independent variables in regression functions. The number of wheels 

passes, tensile strength ratio, and change in initial flexural stiffness are considered as the 

response variables obtained from HWTD rut test, moisture sensitivity test, and fatigue test data, 

respectively. The following sections illustrate the regression equations obtained from the 

laboratory performance tests. 

5.3.1 Rutting Prediction Equation 

The rutting regression function was developed based on Hamburg wheel tracking device test 

data. Laboratory mix performance is expressed as the total number of wheel passes needed to 

satisfy the Tex-242 test criteria. Number of wheel passes (NWP) is always considered as the 

response variable. Tables 5.3 and 5.4 show the independent variables considered during analysis. 

The following two steps are accounted to achieve the rutting prediction equations. 
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Table 5.3 Variables in Regression Equation on US-160 Mix Analysis 

Independent Variables Response Variable 
Project Aggregate Type Binder Grade NWP 

US-160 

Coarse Aggregate, (CA1) 32 40 45 
64-22 (0) 

8,650 
Screening Material, (CA2) 26 28 33 20,000 
Natural Sand Content, (NSC) 35 25 15 20,000 
Coarse Aggregate, (CA1) 32 40 45 

70-22 (1) 
6,070 

Screening Material, (CA2) 26 28 33 5,428 
Natural Sand Content, (NSC) 35 25 15 11,600 
Coarse Aggregate, (CA1) 32 40 45 

64-22 (0) 
8,500 

Screening Material, (CA2) 26 28 33 20,000 
Natural Sand Content, (NSC) 35 25 15 15,750 
Coarse Aggregate, (CA1) 32 40 45 

70-22 (1) 
5,950 

Screening Material, (CA2) 26 28 33 6,200 
Natural Sand Content, (NSC) 35 25 15 7,950 
Coarse Aggregate, (CA1) 32 40 45 

64-22 (0) 
4,600 

Screening Material, (CA2) 26 28 33 20,000 
Natural Sand Content, (NSC) 35 25 15 16,450 
Coarse Aggregate, (CA1) 32 40 45 

70-22 (1) 
5,750 

Screening Material, (CA2) 26 28 33 7,550 
Natural Sand Content, (NSC) 35 25 15 7,950 

Note: Reference Table 3.10 and Table 3.11 
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Table 5.4 Variables in Regression Equation on K-25 Mix Analysis 

Independent Variables Response Variable 
Project Aggregate Type Binder Grade NWP 

K-25 

Coarse Aggregate, (CA1) 30 34 40 
64-22 (0) 

5,870 
Screening Material, (CA2) 33 39 43 15,350 
Natural Sand Content, (NSC) 35 25 15 20,000 
Coarse Aggregate, (CA1) 30 34 40 

70-22 (1) 
18,200 

Screening Material, (CA2) 33 39 43 17,950 
Natural Sand Content, (NSC) 35 25 15 20,000 
Coarse Aggregate, (CA1) 30 34 40 

64-22 (0) 
19,950 

Screening Material, (CA2) 33 39 43 13,450 
Natural Sand Content, (NSC) 35 25 15 20,000 
Coarse Aggregate, (CA1) 30 34 40 

70-22 (1) 
10,160 

Screening Material, (CA2) 33 39 43 20,000 
Natural Sand Content, (NSC) 35 25 15 20,000 
Coarse Aggregate, (CA1) 30 34 40 

64-22 (0) 
20,000 

Screening Material, (CA2) 33 39 43 17,890 
Natural Sand Content, (NSC) 35 25 15 18,850 
Coarse Aggregate, (CA1) 30 34 40 

70-22 (1) 
11,700 

Screening Material, (CA2) 33 39 43 20,000 
Natural Sand Content, (NSC) 35 25 15 20,000 

Note: Reference Table 3.10 and Table 3.11 
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5.3.1.1 Step 1 - Variable Selection 

A variable selection method was used to identify the influential design factors to be considered 

in the regression equation. The goal of variable selection was to divide available design factors 

into the set of active terms and the set of inactive terms. The following mean function in 

Equation (5.6) was used in selection of significant independent variables (Weisberg 2005). 

BBAA XXXY βββ +==                    (5.6) 

where,  

XA and XB = variable subsets. 

There are several computational methods of variables selection: forward selection, backward 

elimination and stepwise model selection methods. In the present study, forward selection was 

used and independent variables were selected based on coefficient of determination (R2), overall 

F-statistics, and p-values. In the context of multiple linear regression, Mallows’ Cp was also 

considered in SAS analysis to verify the goodness of fit or uncertainty of experimental data 

(Weisberg 2005). The smallest Cp value is preferred to eliminate the complexity of the regression 

functions. Tables 5.3 and 5.4 show the variation of response variable (NWP) with coarse 

material (CA1), screening material (CA2), natural sand content (NSC), and binder grades (PG) 

on both K-25 and US-160 mixes. For a specific mix design, the variables CA1, CA2, and NSC 

were dependent of each other. Hence, in a particular regression function, either CA1 or CA2 or 

NSC and PG were considered during the goodness test (forward selection, stepwise selection, 

and backward elimination). The cutoff p-value for F-statistics was set to default used in SAS 

(0.05) and variables having p-values higher than cutoff were excluded from the model equation. 

Table 5.5 shows the variables selected from the forward selection procedure. 
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Table 5.5 Variable Selection on US-160 and K-25  

Project Step Variables R2 C(P) F-statistics p-value 

US-160 

1 PG 0.45 14.46 13.3 0.0022 

2 PG, CA1 0.71 3.0 18.56 <0.0001 

1 PG 0.45 14.46 13.3 0.0022 

2 PG, CA2 0.61 3.0 11.87 0.0008 

1 PG 0.45 14.46 13.3 0.0022 

2 PG, NSC 0.68 3.0 16.04 0.0002 

K-25 

1 CA1 0.29 1.175 6.59 0.0206 

1 CA2 0.31 1.178 6.95 0.0180 

1 NSC 0.30 1.177 6.9 0.0183 

The table shows that rutting performance of US-160 laboratory mixes was significantly 

affected by the binder grade (PG) and coarser materials (CA1) present in the aggregate blend. 

The R2 (0.71) and p-value (<0.0001) prove that both PG and CA1 can be the best selected design 

factors to fit the design function compared to the PG, CA2 and PG, NSC combination in the 

regression equation. Hence, both PG and CA1 were considered as independent variables in 

developing the rutting performance equation. On the other hand, binder grade does not have any 

potential influence on K-25 mixes. Based on R2 (0.31) and p-value (0.018), screening materials 

(CA2) was selected as the best design factor to develop the rutting prediction model. However, 

interaction between CA2 and PG was added to the regression function to check for better R2 

value. 

5.3.1.2 Step 2 - Selection of Regression Equation 

The next phase was to select the order of the regression equations, considering the independent 

variables selected in the previous phase. The selection criteria were set based on the coefficient 

of determination (R2) of overall models and p-values of the estimated parameters. The multiple 
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linear regressions with/without interactions variables and nonlinear regression equations such as 

log transformation, power and higher order polynomial equations were considered during 

selection. The independent variables selected in Section 5.3.1.1 were used in the multiple linear 

and nonlinear regression models to find the best fit equations for rutting prediction of the 

laboratory fine mixes. Tables 5.6 and 5.7 show the rutting prediction equations developed during 

regression analysis for both US-160 and K-25 mixes. 

Table 5.6 Rutting Prediction Models for US-160 Mixes 

Response 
Variable Parameters Independent 

Variables 
Estimated 

Parameters p-value R2 

NWP 

Β0 Vertical Intercept -18516 0.0217 

0.80 Β1 PG 16639 0.1231 

Β2 CA1 856.395 0.0003 

Β3 PG × CA1 -624.66 0.0294 

NWP 

Β0 Vertical Intercept -6335.23 0.2992 

0.71 Β1 PG -7722.44 0.0002 

Β2 CA1 148.29 0.0023 

Log(NWP) 

Β0 Vertical Intercept 6.55019 <0.0001 

0.78 
Β1 PG 1.12423 0.2440 

Β2 CA1 0.07573 0.0004 

Β3 PG × CA1 -0.04562 0.0725 

NWP
1  

Β0 Vertical Intercept 3.822×10-4 0.0002 

0.71 Β1 PG -0.78×10-4 0.4941 

Β2 CA1 -0.759×10-5 0.0019 
Β3 PG × CA1 0.355×10-4 0.2269 

NWP 

Β0 Vertical Intercept -101615 0.0661 

0.83 
Β1 PG 4253.37 0.4216 

Β2 CA1 5305.76 0.0701 

Β3 PG × CA12 -7.728 0.0311 

Β5 CA12 -58.35 0.1206 
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Table 5.7 Rutting Prediction Models for K-25 Mixes 

Response 

Variable 
Parameters 

Independent 

Variables 

Estimated 

Parameters 
p-value R2 

NWP 
Β0 Vertical Intercept -3791.03 0.6422 

0.30 
Β1 CA2 547.26 0.018 

NWP 

Β0 Vertical Intercept -3791.03 0.6505 

0.31 Β1 CA2 536.10 0.0242 

Β2 PG×CA2 22.315 0.6298 

Log(NWP) 
Β0 Vertical Intercept 8.114 <0.0001 

0.29 
Β1 CA2 0.04165 0.0221 

NWP
1  

Β0 Vertical Intercept 1.99×10-4 0.0038 
0.25 

Β1 CA2 -0.35×10-5 0.0356 

NWP 

Β0 Vertical Intercept 6250.79 0.9559 

0.30 Β1 CA2 10.11 0.9987 

Β2 CA22 7.097 0.9291 

Although the nonlinear models on both projects improved the coefficient of 

determination (R2) significantly, the p-values of the estimated parameters failed to reject the null 

hypothesis at significant level α = 0.05. Hence, the linear regression equations with interaction 

variables (US-160 mixes) and without interaction (K-25) were selected to estimate the rutting. 

The following equations (5.7) and (5.8) represent the rutting performance models developed by 

regression analysis in-terms of number of wheel passes (NWP). The independent variables of 

regression equations such as coarse materials (CA1) and screening materials (CA2) are measured 

in percentage by weight of total aggregate and binder grade (PG) is considered either 0 (PG 64-

22) or 1 (PG 70-22) in the following equations  

166.62414.8561663918516)160( CAPGCAPGUSNWP ××−×+×+−=−         (5.7) 

80.02 =R  0001.0<− valuep  
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226.54703.3791)25( CAKNWP ×+−=−                  (5.8) 

30.02 =R  0180.0=− valuep  

However, these prediction model equations were further verified by the laboratory-designed 

mixes with different percent of coarse materials, screening materials, and natural sand content 

combinations. 

5.3.2 Moisture Sensitivity Prediction Equation 

The prediction function to estimate the damage against moisture was developed based on data 

obtained from the field Lottman test. Laboratory mix performance was expressed in terms of wet 

strength to dry strength ratio, also known as tensile strength ratio (TSR), that must be higher than 

0.8. TSR values were considered the dependent variable, while independent variables are 

presented in Table 5.8. Fifty percent of the K-25 laboratory mixes failed to meet the TSR 

criterion. Therefore, regression analysis was performed only for US-160 mixes. 

Table 5.8 Variables in Regression Analysis for US-160 Fine Mixes 

Independent Variables Response Variable 

Project Aggregate Type Binder 
Grade TSR 

US-160 

Coarse Aggregate, 
(CA1) 32 40 45 

64-22 (0) 

103 

Screening Material 
(CA2) 26 28 33 95 

Natural Sand 
Content (NSC) 35 25 15 75 

Coarse Aggregate 
(CA1) 32 40 45 

70-22 (1) 

88 

Screening Material 
(CA2) 26 28 33 94 

Natural Sand 
Content (NSC) 35 25 15 95 

The following two steps were adopted to select the independent variables and to develop the 

regression equation to predict the performance against moisture. 
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5.3.2.1 Step 1 – Independent Variables Selection 

Table 5.9 shows the output of the forward selection method used to select variables from the 

goodness test. The table shows that moisture damage of US-160 laboratory mixes is significantly 

affected by the percentage of screening materials (CA2) in the aggregate blend. Other subsets of 

materials, such as coarser materials (CA1) and natural sand content (NSC), have the similar p-

values compared to CA2 materials. The Cp values are almost similar for all three aggregate 

subsets. The forward selection method discarded the binder grade (PG) at a cutoff point of 0.5 in 

all aggregate combinations. The F-statistics (1.63) and p-value (0.2712) of the CA2 subset 

describe the design function better compared to CA1 and NSC, even though the R2 (0.30) is 

lower than the CA1 subset (R2 = 0.43). Since binder grade is not selected to add in the regression 

functions, a trial interaction between CA2 and PG was introduced into the regression function to 

check for improved R2 and p-value. 

Table 5.9 Variable Selection for Moisture Distress Prediction Model 

Project Step Variables R2 C(P) F-statistics p-value 

US-160 

1 CA1 0.43 1.023 1.08 0.3569 

1 CA2 0.30 1.025 1.63 0.2712 

1 NSC 0.25 1.024 1.31 0.3165 

5.3.2.2 Step 2 – Development and Selection of Prediction Models 

Multiple linear regressions with/without interactions and nonlinear regression equations (log 

transformation, power and higher order polynomials) were developed considering the CA2 

material subset. The best-fit moisture damage prediction model selection criteria were set based 

on the coefficient of determination (R2) of overall model and p-values of estimated parameters. 

Table 5.10 shows the moisture damage prediction equations in terms of TSR developed during 

regression analysis. 
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Table 5.10 Moisture Damage Prediction Models 

Response 

Variable 
Parameters 

Independent 

Variables 

Estimated 

Parameters 
p-value R2 

TSR 

Β0 Vertical Intercept 207 0.0038 

0.98 
Β1 PG -139.205 0.0165 

Β2 CA2 4.0 0.0119 

Β3 PG × CA2 4.85 0.0161 

TSR 

Β0 Vertical Intercept 136.73 0.0463 

0.3 Β1 PG 1.333 0.8836 

Β2 CA2 -1.577 0.3483 

Log(TSR) 

Β0 Vertical Intercept 5.83 0.0006 

0.98 
Β1 PG 1.57 0.0166 

Β2 CA2 -0.0457 0.0116 

Β3 PG × CA2 0.055 0.0159 

TSR
1  

Β0 Vertical Intercept -0.00407 0.1399 

0.98 
Β1 PG 0.01784 0.0178 

Β2 CA2 5.3×10-4 0.0122 

Β3 PG × CA2 6.3×10-4 0.017 

TSR 

Β0 Vertical Intercept -3.24 0.9902 

0.98 

Β1 PG -67.72 0.1018 

Β2 CA2 10.3 0.6026 

Β3 PG × CA22 -0.241 0.5002 

Β5 CA22 0.081 0.0979 

It is interesting to note that the addition of interaction variables (between PG and CA2) in 

the regression equations has significantly improved the coefficient of determination (R2) and p-

values of individual estimated parameters. Almost all prediction models have R2 = 0.98. 

However, some p-values of individual estimated parameters in nonlinear models fail to reject the 

null hypothesis at significant level α = 0.05. Hence, the linear regression equation with an 
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interaction variable was selected to estimate the moisture damage of US-160 laboratory mixes. 

The following equation (5.9) represents the moisture damage prediction model in-terms of 

tensile strength ration (TSR) in percentage developed by regression analysis. The independent 

variables of regression equation such as screening material (CA2) is measured in percentage by 

weight of total aggregate and binder grade (PG) is considered either 0 (PG 64-22) or 1 (PG 70-

22) in the following equation to estimate the percent TSR. 

285.420.4205.139207 CAPGCAPGTSR ××+×−×−=              (5.9) 

98.02 =R   0001.0<− valuep  

This model is further verified by the laboratory-designed mixes with different percent of natural 

sand content combinations. 

5.3.3 Fatigue Life Prediction Equation 

The fatigue strength prediction model was developed based on data obtained from a laboratory 

bending beam fatigue test. Laboratory mix performance is expressed in terms of change in initial 

flexural stiffness of the beam that must not be higher than 50%. Percent change in flexural 

stiffness (ΔFS) values was considered as the dependent variable, while independent variables on 

both projects are presented in Tables 5.11 and 5.12. The following two steps were adopted to 

select the independent variables and to develop the regression equation to predict the 

performance against moisture. 

5.3.3.1 Step 1 - Independent Variable Selection 

Table 5.13 shows the output of the forward selection process to identify the variables from the 

goodness test. The table shows that change in initial flexural stiffness of US-160 laboratory 

mixes was significantly affected by all material subsets in the aggregate blend. The binder grade 

(PG) was selected as a potential design factor for all US-160 mixes. However, CA2 and PG 
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combination results lowered R2 (0.30) and raised p-value (0.2033) among the subset groups. The 

Cp values are similar for all three aggregate subsets. Hence, all three aggregate subsets (CA1, 

CA2 and NSC), along with PG, were selected to develop the trial regression functions to avoid 

biased results. On the other hand, the forward selection method discarded the binder grade (PG) 

at a cutoff point of 0.05 in all aggregate combinations for K-25 mixes. Selection criteria (F-

statistics, R2, Cp, and p-values) obtained from the computational method were almost similar 

among the aggregate subsets. Since binder grade was not selected to add in the regression 

functions, a trial interaction between CA2 and PG, CA1 and PG, and NSC and PG were 

introduced into the regression functions to check for improved R2 and p-value. 

Table 5.11 Variables in Regression Analysis for US-160 Fine Mixes 

Independent Variables Response Variable 
Project Aggregate Type Binder Grade ΔFS 

US-160 

Coarse Aggregate 
(CA1) 32 40 45 

64-22 (0) 

22 

Screening Material 
(CA2) 26 28 33 32 

Natural Sand 
Content (NSC) 35 25 15 37 

Coarse Aggregate 
(CA1) 32 40 45 

70-22 (1) 

27 

Screening Material 
(CA2) 26 28 33 24 

Natural Sand 
Content (NSC) 35 25 15 23 

Coarse Aggregate 
(CA1) 32 40 45 

64-22 (0) 

27 

Screening Material 
(CA2) 26 28 33 40 

Natural Sand 
Content (NSC) 35 25 15 35 

Coarse Aggregate 
(CA1) 32 40 45 

70-22 (1) 

28 

Screening Material 
(CA2) 26 28 33 32 

Natural Sand 
Content (NSC) 35 25 15 29 
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Table 5.12 Variables in Regression Analysis for K-25 Fine Mixes 

Independent Variables Response Variable 

Project Aggregate Type Binder 
Grade ΔFS 

K-25 

Coarse Aggregate 
(CA1) 32 40 45 

64-22 (0) 

25 

Screening Material 
(CA2) 26 28 33 31 

Natural Sand 
Content (NSC) 35 25 15 40 

Coarse Aggregate 
(CA1) 32 40 45 

70-22 (1) 

30 

Screening Material 
(CA2) 26 28 33 38 

Natural Sand 
Content (NSC) 35 25 15 32 

Coarse Aggregate 
(CA1) 32 40 45 

64-22 (0) 

25 

Screening Material 
(CA2) 26 28 33 32 

Natural Sand 
Content (NSC) 35 25 15 35 

Coarse Aggregate 
(CA1) 32 40 45 

70-22 (1) 

30 

Screening Material 
(CA2) 26 28 33 28 

Natural Sand 
Content (NSC) 35 25 15 31 
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Table 5.13 Variable Selection for Fatigue Strength Analysis 

Project Step Variables R2 C(P) F-statistics p-value 

US-160 

1 PG 0.21 3.5 2.7 0.1313 

2 PG, CA1 0.38 3.0 2.8 0.1133 

1 PG 0.21 3.5 2.7 0.1313 

2 PG, CA2 0.30 3.0 1.91 0.2033 

1 PG 0.21 3.5 2.7 0.1313 

2 PG, NSC 0.35 3.0 1.98 0.1395 

K-25 

1 CA1 0.51 1.43 10.26 0.0095 

1 CA2 0.49 1.42 9.67 0.0111 

1 NSC 0.51 1.43 10.22 0.0095 

 

5.3.3.2 Step 2 - Fatigue Strength Prediction Models 

Trial multiple linear regression (MLR) models with/without interactions with binder grade were 

developed to identify the most influential aggregate subset based on R2 and p-values of 

individual estimated parameters. Among the groups, the regression function with NSC and PG 

was selected even though the overall R2 (0.59) was lower than the regression function with CA1 

and PG (R2 = 0.64). The p-values of individual estimated parameters of regression function with 

NSC and PG strongly rejected the null hypothesis, while in most cases, functions with PG and 

CA1 design factors failed to do so. After selecting the MLR models, nonlinear regression 

equations were developed considering PG and NSC material subsets. The best fit fatigue damage 

prediction models for US-160 mixes are shown in Table 5.14. 
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Similar to the moisture induced damage model, the addition of interaction variables 

(between PG and CA1, CA2 and NSC) in the regression equations in K-25 mixes significantly 

improved the coefficient of determination (R2) and p-vales of the individual estimated 

parameters. Almost all MLR prediction models have R2 ranging from 0.88 to 0.90. Among the 

groups, MLR with PG and NSC subset performed the best. Nonlinear and higher order 

polynomial equations were further developed considering PG and NSC design factors shown in 

Table 5.15. 

Some p-values of individual estimated parameters in the higher order polynomial model 

failed to reject the null hypothesis at significant level α = 0.05. Log transformation and power 

models were equally best fitted as an MLR equation. Hence, the linear regression equations with 

interaction variable were selected to estimate the fatigue damage laboratory mixes. 
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Table 5.14 Fatigue Strength Prediction Models for US-160 Mixes 

Response 
Variable Parameters Independent 

Variables 
Estimated 

Parameters p-value R2 

ΔFS 

β0 Vertical Intercept -4.34 0.7244 

0.64 
β1 PG 35.36 0.0684 

β2 CA1 0.93605 0.0146 

β3 PG × CA1 -0.427 0.0415 

ΔFS 

β0 Vertical Intercept -6.314 0.7523 

0.48 
β1 PG 40.73 0.1745 

β2 CA2 1.327 0.0803 

β3 PG × CA2 -1.577 0.1311 

ΔFS 

β0 Vertical Intercept 46.54 <0.0001 

0.59 
β1 PG -21.25 0.0270 

β2 NSC -0.575 0.0263 

β3 PG × NSC 0.65 0.0615 

ΔFS 

β0 Vertical Intercept 38.42 <0.0001 

0.35 β1 PG -5.0 0.1192 

β2 NSC -0.25 0.1933 

Log(ΔFS) 

β0 Vertical Intercept 3.94 <0.0001 

0.58 
β1 PG -0.721 0.0274 

β2 NSC -0.0195 0.0269 

β3 PG × NSC 0.0226 0.0572 

FS∆
1  

β0 Vertical Intercept 0.0156 0.0487 

0.55 
β1 PG 0.02495 0.0302 

β2 NSC 6.27×10-4 0.0299 

β3 PG × NSC -8.025×10-4 0.0568 

ΔFS 

β0 Vertical Intercept 13.81 0.1324 

0.71 

β1 PG -14.28 0.0134 

β2 NSC 1.5 0.2466 

β3 PG × NSC2 0.01342 0.0421 

β4 NSC2 -0.042 0.1222 
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Table 5.15 Fatigue Strength Prediction Models for K-25 Mixes 

Response 
Variable Parameters Independent 

Variables 
Estimated 

Parameters p-value R2 

ΔFS 

β0 Vertical Intercept -11.32 0.0819 

0.88 β1 PG 37.605 0.0016 

β2 CA1 1.23 <0.0001 
β3 PG × CA1 -1.118 0.0013 

ΔFS 

β0 Vertical Intercept -16.08 0.0302 

0.89 β1 PG 42.967 0.0011 

β2 CA2 1.237 <0.0001 
β3 PG × CA2 -1.15 0.0009 

ΔFS 

β0 Vertical Intercept 46.96 <0.0001 

0.90 
β1 PG -15.54 0.0006 

β2 NSC -0.625 <0.0001 

β3 PG × NSC 0.575 0.0007 

ΔFS 

β0 Vertical Intercept 39.77 <0.0001 

0.53 β1 PG -1.167 0.5274 

β2 NSC -0.3375 0.0126 

Log(ΔFS) 

β0 Vertical Intercept 3.934 <0.0001 

0.90 
β1 PG -0.48725 0.0005 

β2 NSC -0.02016 <0.0001 

β3 PG × NSC 0.01852 0.0005 

FS∆
1  

β0 Vertical Intercept 0.01633 <0.0001 

0.90 
β1 PG 0.01552 0.0006 

β2 NSC 6.61×10-4 <0.0001 

β3 PG × NSC -6.07×10-4 0.0005 

ΔFS 

β0 Vertical Intercept 45.5625 0.0018 

0.90 

β1 PG -8.5626 0.5058 

β2 NSC -0.5 0.5268 

β3 PG × NSC -0.05 0.9637 

β4 PG × NSC2 -0.0025 0.8713 

β5 NSC2 0.0125 0.5719 
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The following equations (5.10) and (5.11) represent the fatigue damage prediction model 

developed by regression analysis. The predicted fatigue damage is estimated in-terms of percent 

change in initial flexural stiffness (ΔFS) while the independent variables such as natural sand 

content (NSC) is measured in percentage by weight of total aggregate and binder grade (PG) is 

considered either 0 (PG 64-22) or 1 (PG 70-22) in the following equations to determine the 

fatigue life. 

NSCPGNSCPGUSFS ××+×−×−=−∆ 65.0575.025.2154.46)160(        (5.10) 

59.02 =R   0001.0<− valuep  

NSCPGNSCPGKFS ××+×−×−=−∆ 575.0625.054.1596.46)25(         (5.11) 

90.02 =R   0001.0<− valuep  

5.4 Validation of Prediction Model Equations 

In order to validate the distress prediction models developed by regression analysis, the 

experimental data were generated in the KSU lab considering 20% and 30% natural sand content 

in the aggregate blend. Similar to experimental design, binder grades PG 64-22 and PG 70-22 

were considered for the US-160 and K-25 aggregate sources. At first, the trial 4.75-mm mix 

designs were developed for 20% and 30% natural sand content. After selecting the mix designs, 

the HWTD and KT-56 samples were prepared in the lab for prediction models verification. Table 

5.16 shows the mix properties obtained from the laboratory mix design.  
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Table 5.16 Mix Properties with 20% and 30% River Sand Content 

Source 
Binder 

Grade 
CA1 CA2 NSC 

Design Asphalt 

Content 
Dust-to-binder Ratio 

US-160 

PG 64-22 
42 31 20 6.79 1.153 

36 27 30 6.65 1.090 

PG 70-22 
42 31 20 6.5 1.185 

36 27 30 6.6 1.094 

K-25 

PG 64-22 
37 41 20 5.53 1.549 

32 36 30 5.88 1.278 

PG 70-22 
37 41 20 5.45 1.571 

32 36 30 5.61 1.335 

The comparison between predicted and laboratory rutting performance and moisture 

induced damage of the mixes with 20% and 30% river sand contents are presented in Figures 5.2 

and 5.3. The goal of this comparative study was not only to validate the prediction models but 

also to evaluate the aggregate subsets as continuous variables for optimization. 

The study shows that the rutting and moisture damage prediction models correlated very 

well with the test results obtained from laboratory performance testing. In the case of rutting 

performance of the mixes with PG 64-22 binder grade, the prediction models estimated higher 

number of wheel passes compared to the actual value. Average deviations between the predicted 

and the actual number of wheel passes were 10% and 17% for US-160 and K-25 mixes, 

respectively. However, the reverse trend was true for the mixes with PG 70-22 binder grade at 

both locations. Actual numbers of wheel passes were minimum 7% and maximum 20% more 

than the predicted values. The moisture damage prediction model for US-160 mixes had very 

good agreement with the laboratory TSR values. Only a 3% to 6% deviation was obtained 

between actual and predicted TSR. 
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Figure 5.2 Comparison between predicted and laboratory rut data 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Comparison between predicted and laboratory TSR data 
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5.5 Optimization of 4.75-mm Laboratory Mixes 

The main objective of the optimization design procedure was to select the best combination of 

aggregate blending from some set of available aggregate subsets. Selection technique was based 

on maximizing or minimizing the real functions, called objective functions, by sequentially 

choosing the values of real or integer variables from available subsets. In the present study, the 

multi-objective optimization technique was used to identify the significant aggregate subsets and 

binder grade combinations, which can address the major distresses common on Kansas 

highways. Multi-objective optimization is a simultaneous process that can optimize two or more 

conflicting objective functions subject to certain constraints. Table 5.17 shows the objective 

functions considered during the optimization process. A well-designed problem should generate 

more than one feasible solution, which simultaneously maximizes or minimizes each objective or 

goal. 

Table 5.17 Objective Functions for Multi-objective Optimization 

`Project Regression Equations/Objective Functions 

US-160 

166.62414.8561663918516 CAPGCAPGNWP ××−×+×+−=  

285.420.4205.139207 CAPGCAPGTSR ××+×−×−=  

NSCPGNSCPGFS ××+×−×−=∆ 65.0575.025.2154.46  

K-25 
226.54703.3791 CANWP ×+−=  

NSCPGNSCPGFS ××+×−×−=∆ 575.0625.054.1596.46  

The objective functions for the optimization process were selected from the best 

regression equations developed in the previous sections. Three prediction model equations (rut, 

moisture damage, and fatigue strength) for US-160 mixes were selected based on R2 and p-
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values, while two prediction models (rutting and fatigue strength) were used to define K-25 

mixes.  

Goal setting for each objective function enhanced the multi-objective optimization to get 

the best solutions and quantify how much better the solutions were compared to other such 

solutions. The goal normally measures the “target” value to be achieved. The optimization 

problem must satisfy the condition lists or constraints. There are two types of constraints: 

equality constraints and inequality constraints. In this research study, both equality and 

inequality constraints were introduced to define the constrained optimization problem. Table 

5.18 shows the constraints and goals of the objective functions considered during analysis. 

Table 5.18 Constraints and Goals for Objective Functions 

Projects Constraints Functions Goals 

US-160 

10 ≤≤ PG 1 

%50
%80

000,20

≤∆
≥
≥

FS
TSR
NWP

 

45132 ≤≤ CA 1 

33226 ≤≤ CA 1 

3515 ≤≤ NSC 1 

9321 =++ NSCCACA 2 

K-25 

10 ≤≤ PG 1 

%50
000,20

≤∆
≥

FS
NWP  

40130 ≤≤ CA 1 

43233 ≤≤ CA 1 

3515 ≤≤ NSC 1 

9821 =++ NSCCACA 2 

Note:  1 = Inequality Constraints  
  2 = Equality Constraints 
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The goals for each project were set according to the objective functions. For US-160 

mixes, the objective functions for rutting and moisture damage were minimized by maximizing 

the number of wheel passes (NWP) and tensile strength ratio (TSR) higher or equal to 20,000 

repetitions and 80%, respectively. The objective function for fatigue damage was minimized by 

minimizing the change in initial flexural stiffness (ΔFS) less or equal to 50%. Similar to the US-

160 mixes, goals for K-25 mixes were set except for TSR, because successful objective function 

could not be achieved for K-25 mixes as most mixes failed to reach the TSR limit. The 

constraints functions were based on upper and lower limits of the individual subsets. The binder 

grade PG was considered to be continuous within 0 to 1 limit. The summation of coarse, 

screening, and river sand materials within the aggregate blend were 93% and 98% for US-160 

and K-25 mixes, respectively. During optimizing the problem, the feasible solutions generated 

unique value of binder grade, percentage of coarser material, screening material, and river sand 

content considering the limits and constraints of the objective functions. An output Excel sheet 

(Appendix D) of feasible solutions was generated to verify the possible combinations of the 

design factors. Tables 5.19 and 5.20 show the feasible optimized combination of aggregate 

subsets and binder grade for the laboratory-designed mixes. 

Table 5.19 Proposed Optimized Design Combinations for US-160 Mixes 

Project Optimized Combination 
PG CA1 (%) CA2 (%) NSC (%) Manufactured Sand (%) 

US-160 

64-22 45 26 22 7 

64-22 45 27 21 7 

64-22 45 28 20 7 

64-22 45 29 19 7 

64-22 45 30 18 7 

64-22 45 31 17 7 
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Table 5.20 Proposed Optimized Design Combinations for K-25 Mixes 

Project Optimized Combination 
PG CA1 (%) CA2 (%) NSC (%) Manufactured Sand (%) 

K-25 

70-22 35 43 20 2 

70-22 36 43 19 2 

70-22 37 43 18 2 

70-22 38 43 17 2 

70-22 39 43 16 2 

70-22 40 43 15 2 

The multi-objective optimization process proposed six feasible aggregate and binder 

combinations to address all three major distresses for asphalt pavement at each location. For US-

160 mixes, binder grade PG 64-22 proved to be effective over PG 70-22. Seventeen to 22 percent 

river sand in the designed aggregate blend was sufficient to produce optimized design 

combinations rather than using 35% natural sand (state practice). The coarse material was set at 

45% for optimized design purposes. Reduced sand content enhanced the usage of screening 

material (increase 5%) in the aggregate blend, which in turn reduced the accumulated aggregate 

stockpiles. On the other hand, K-25 mixes with 15 to 20 percent natural sand content were 

suggested to produce the optimized mix design. Higher binder grade PG 70-22 was more 

effective for the K-25 aggregate source compared to PG 64-22. The percentage of screening 

material was set at 43%, regardless of the natural sand content in the aggregate blend to control 

the dust content in the combined gradation. The percentage of coarse material can be increased 

by 5% to reduce the sand content from 20% to 15%. The detail output and input codes for the 

multi-objective optimization problem are attached in the Appendix D.  
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5.6 Optimization Design Procedure of Superpave Mixture 

The ultimate objective of this research study was to propose an optimized design procedure for 

any Superpave mixture. The proposed optimal combination of aggregate subsets and binder in 

section 5.5 is good enough to address all types of distresses common in Kansas using the 4.75-

mm NAMS Superpave mixture. The prediction model equations developed in section 5.3 are 

competent to estimate the performances of Kansas fine mix for those two aggregate sources and 

binder grade. Based on the optimized design procedure followed during the research study, the 

flow chart shown in Figure 5.4 is suggested to develop the optimal design for the Superpave 

mixture with any nominal maximum aggregate size. Four consecutive steps must be followed to 

obtain the best aggregate-binder combination in Superpave mixtures with any NMAS. The steps 

are as follows: 

1. Step – 1: In the initial phase of the design procedure, a statistical experimental design must 

be performed to select the design factors and corresponding response variables. For example, 

in present study, the design factors (aggregate types and binder grades) and their number of 

replicates were selected in the statistical experimental design. The response variables, such as 

the number of wheel passes from the HWTD test, TSR value from the moisture susceptibility 

test, and change in initial flexural stiffness from the beam fatigue test were set based to fulfill 

the objectives of the design problem.  

2. Step – 2: In the second phase of the design process, the aggregates subsets should be defined 

and the laboratory trial mix designs shall be developed considering the aggregate subsets and 

binder grades. After selecting the final mix design from the trial mixes, the performance test 

specimens will be prepared according to the appropriate test specifications. In the current 

study, aggregates from two different sources (US-160 and K-25) were subdivided into 
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coarser material, screening material, and river sand. Trial mixes were developed using theses 

aggregate subsets and different binder grades (PG 64-22 and PG 70-22). The samples for the 

performance tests were prepared knowing the mix design. The suggested performance tests 

were the HWTD rut test, moisture susceptibility test, and fatigue strength test. 

3. Step – 3: The next step in the design procedure is the regression analysis of the experimental 

data. Performance tests data needs to be analyzed statistically and regression equations need 

to develop using influential design factors and response variables. Among the regression 

equations, the distress prediction model equations for each performance test would have to be 

selected based on R2 and p-value of the regression equation. In present study, three distress 

prediction model equations (Equations 5.7, 5.9 and 5.10) were selected for the US-160 mixes 

while distresses of the K-25 mixes were defined by two prediction equations (Equations 5.8 

and 5.11). Theses distress prediction equations were used as the objective functions in the 

optimization process. 

4. Step – 4: The next step is to optimize the objective function based on certain constraints and 

goals. The constraint functions are defined by the design factors and the goals are obtained 

from the failure criteria of the laboratory performance tests. If the regression functions are 

nonlinear and have more than one goal to optimize, a multi-objective optimization process is 

the best technique to get more than one feasible solution. In this study, the combined 

gradation of the aggregate subsets and binder grades defined the five constraints of the 

objective functions and three goals were set based on the failure criteria of the HWTD, 

moisture susceptibility and beam-fatigue tests. Finally, multi-objective optimization process 

was used to get the feasible solutions of the design problem. 
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Figure 5.4 Design flow chart for multi-objective optimization process 

Experimental design 

Selection of design factors Selection of response variables 
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CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The design method of Superpave is a performance-based method. Even though it uses traditional 

volumetric mix design methodologies, it also includes a performance concept. The tests and 

analyses have direct relationships to field performance. In addition, the Superpave mix design 

system integrates material selection (asphalt and aggregate) and mix design into procedures 

based on pavement structural section, design traffic, and climate conditions. A Superpave 

mixture with 4.75-mm nominal maximum aggregate size (NMAS) is a promising, low-cost 

pavement preservation treatment. For preventive maintenance, ultra thin-lift application of this 

fine mix is an excellent alternative to stretch the maintenance budget if the pavement does not 

have any major distresses. Since past experiences with thin hot-mix asphalt (HMA) overlays 

were positive in a few states, the 4.75-mm mixes have attracted attention from many state 

agencies including Kansas. Successful implementation of this mix has benefit in-terms of 

construction time and cost, it can be used for corrective maintenance, and to provide a very 

economical surface mixture for low-to-medium traffic- volume facilities. The main objective of 

this research study was to evaluate various aspects of the design of Kansas 4.75-mm Superpave 

mixture, and to asses the relative performance of the mix in both field and laboratory 

environments. Based on this study, the following conclusions can be made: 

• Three distinct tack coat application rates were not achieved on one project out of two 

studied, emphasizing the need for better equipment calibration.  

• Rutting performance of field cores was project-specific and was highly dependent on the 

in-place density of the compacted mixture, rather than the tack application rate. 
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• During pull-off testing of 50-mm (two-inch) diameter field cores, most failure occurred 

within the 4.75-mm NMAS overlay and with HIPR materials, rather than at the interface. 

This implied that the overlay layer was fully bonded with the HIPR layer in most cases. 

However, the high tack application rate used in this study might be too high to provide 

sufficient bond strength for the overlay. 

• Failure force during pull-off tests was highly dependent on the aggregate source and 

volumetric mix design of the adjacent layer material. 

• Twelve 4.75-mm NMAS mixtures were successfully designed in the laboratory for two 

different Kansas aggregate sources, two binder grades, and three natural sand contents. 

Design binder content is relatively high for these fine mixes.  

• The effective asphalt content in the design mix is highly influenced by the natural sand 

content. The percent free asphalt decreased with decreasing natural sand content.  

• The relative density at the initial number of gyrations and dust-to-binder ratio were 

influenced by aggregate type and natural sand content in the design mix. The initial 

relative density decreased with decreased river sand content in the mix while the dust-to-

binder ratio significantly increased with decreasing natural sand. 

• Rutting performance during the Hamburg wheel tracking device tests was aggregate 

source specific. Higher binder grade may or may not improve rutting performance of 

4.75-mm NMAS mixes.  

• The anti-stripping agent affected the moisture sensitivity test results, irrespective of 

natural sand content, binder grade, and aggregate source. Mixes without anti-stripping 

agent failed to meet the Tensile Strength Ratio (TSR) criteria specified by Kansas 

Department of Transportation. 
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• Laboratory fatigue performance was significantly influenced by river sand content and 

binder grade. Changes in flexural strength increased with decreasing natural sand content 

for the mixes with lower binder grade. Higher binder grade helped to improve the fatigue 

strength. 

• Multivariate analysis of variance (MANOVA) showed that the overall response variables 

from laboratory mix volumetric were highly influenced by the aggregate source type, 

binder grades, and percent of river sand in the aggregate blend.  

• Univariate analysis of variance (ANOVA) showed that among the volumetric properties 

of the laboratory design mix, dust-to-binder ratio was the most statistically significant 

mixture parameter that highly affects mix performance.  

• Five multiple linear regression equations were developed to predict the pavement 

performance in Kansas.  

• Six optimized design combinations were proposed by the multi-objective optimization 

process to address major distresses. The feasible optimized solutions suggested limiting 

the river sand content in between 15% and 20%.  

• An optimized design procedure was proposed to minimize pavement distresses, 

considering local materials and specifications. 

6.2 Recommendations 

Based on the present study and above conclusions, the following recommendations are made: 

• Present study recommends limiting the river sand content currently used by KDOT. The 

suggested river sand content must be ranged from 15% to 20% rather than 35% (current 

practice) for Kansas 4.75-mm NMAS Superpave mixture. 
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• The research study also recommends narrowing down the dust-to-effective binder ratio 

specified by KDOT to design the SM-4.75A mix. Current KDOT specification uses dust-

to-effective binder ratio 0.9 to 2.0. The suggested range to design the Kansas mix is 0.9 to 

1.6. 

• Clay content of aggregate blend plays a pivotal roll in stripping action in a Superpave 

mixture. Stripping started early in US-160 mixes with binder grade PG 70-22, while 

mixes with PG 64-22 performed essentially better. There might be a significant 

possibility to have a chemical reaction between PG 70-22 binder grade and dust particles 

in the presence of liquid amine. Possible causes of early stripping for US-160 mixes with 

PG 70-22 could be detachment, displacement, film rupture, hydraulic scouring, pore 

pressure, and especially emulsification and pH instability. Further research is needed to 

identify the possible causes of early stripping. 

• Chemical reaction between asphalt binder and aggregate consists of acidic and basic 

components. Tests for acidic aggregate in the fine mix is recommended, especially when 

the baghouse dust is used in the aggregate blend. 

• Since the dust-to-binder ratio is a statistically proven critical parameter for mix 

performances, an optimized 4.75-mm NMAS mixture may have a much narrower range 

of the dust-to-binder ratio than is allowed in the current specifications. Further study is 

recommended in this matter. 

• Study of film thickness of these fine mixes with higher dust-to-binder ratio is 

recommended. 

• Some tests on materials finer than US No. 200 sieve such as sand equivalent, plasticity 

index (Atterberg limits), and Methylene blue value are recommended. 
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• Since determination of creep slope, stripping inflection point, and stripping slope from 

the Hamburg wheel tracking test are subjective, a dynamic creep test is recommended to 

determine the permanent deformation of laboratory mixes. 

• Pull-off strength tests at three or more different temperatures is recommended. 

• Further study on bond strength at the HMA interface layer is recommended, considering 

different tack coat materials, tack coat curing time, and coring locations in the field. 
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Appendix A - QA/QC of 4.75-mm NMAS Plant Mix and Laboratory 

Testing of Field Cores 
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Figure A.1 Field quality control of SM-4.75A, US-160 mix based on (a) % AC, (b) % Va, 

(c) % VMA, and (d) % VFA 
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Figure A.2 Quality assurance of SM-4.75A mix on K-25 project based on (a) %AC, (b) 

%Va, (c) %VMA, (d) %VFA, (e) %Gmm @Nini, (f) %Gmm @Nmax, and (g) dust-to-binder 

ratio 
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Figure A.3 HWTD testing of field cores from US-160 project with low, medium, and high 

tack coat application rate  

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 HWTD testing of field cores from K-25 project with low, medium, and high tack 

coat application rate 
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Table A.1 Pull-Off Strength Test on US-160 and K-25 Projects 

Test sections Core 
Location 

Pull-out/Tensile Force (lbs) 

            
    US-160 K-25 

High 

1 404 (SMF) 836 (HIPR) 581 (PBF) 527 (SMF) 
2 356 (SMF) 801 (SMF) 120 (SMF) 439 (PBF) 
3 617 (HIPR) 795 (SMF) 453 (SMF) 635 (PBF) 
4 786 (HIPR) 780 (SMF) 707 (HIPR) 142 (PBF) 
5 174 (HIPR) 676 (SMF) 730 (HIPR) 505 (PBF) 
6 660 (HIPR) 459 (HIPR) 615 (HIPR) 652 (PBF) 
7 645 (HIPR) 531 (HIPR) 427 (SMF) 580 (HIPR) 

Medium 

8 624 (HIPR) 321 (SMF) 808 (HIPR) 412 (SMF) 
9 420 (SMF) 389 (SMF) 374 (SMF) 199 (SMF) 
10 461 (SMF) 459 (SMF) 202 (SMF) 270 ((HIPR) 
11 253 (SMF) 585 (SMF) 504 (HIPR) 637 (PBF) 
12 668 (HIPR) 229 (HIPR) 242 (SMF) 266 (HIPR) 
13 454 (HIPR) 673 (SMF) 210 (HIPR) 505 (HIPR) 
14 743 (HIPR) 590 (SMF) 201 ((HIPR) 146 (HIPR) 

Low 

15 502 (SMF) 452 (SMF) 224 (HIPR) 225 (HIPR) 
16 675 (SMF) 456 (SMF) 326 (SMF) 328 (HIPR) 
17 311 (HIPR) 696 (HIPR) 305 (HIPR) 457 (HIPR) 
18 570 (HIPR) 420 (HIPR) 646 (HIPR) 219 (HIPR) 
19 869 (HIPR) 196 (SMF) 795 (HIPR) 395 ((HIPR) 
20 890 (HIPR) 460 (SMF) 821 (HIPR) 502 (HIPR) 
21 716 (SMF) 230 (SMF) 517 (SMF) 103 (HIPR) 

Note: SMF = Surface Material Failure 
HIPR = Hot-In-Place Recycle Material Failure 
PBF = Partial Bond Failure 
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Appendix B - Laboratory Mix Design and Performances of 4.75-mm 

NMAS Mixture 
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Table B.1 Sieve Analysis of Individual Aggregate on US-160 Project 
 
CS-1B    
Sieve Openings, (mm) Retained, (gm) % Retained Cumulative % Retained 

4.75 81.6 11.83 11.83 
2.36 386.5 56.01 67.84 
1.18 146.8 21.28 89.12 
0.6 31.4 4.55 93.67 
0.3 8.7 1.26 94.93 

0.15 2.8 0.41 95.33 
0.075 3.3 0.48 95.81 

Dust (passing # 200) 28.1   
CS-2    

4.75 45.2 7.89 7.89 
2.36 107.9 18.82 26.71 
1.18 127.8 22.30 49.01 
0.6 86.6 15.11 64.11 
0.3 57.8 10.08 74.20 

0.15 30 5.23 79.43 
0.075 20.3 3.54 82.97 

Dust (passing # 200) 96.4   
CS-2A    

4.75 2.5 0.57 0.57 
2.36 51.9 11.78 12.35 
1.18 96.3 21.86 34.21 
0.6 79.4 18.02 52.24 
0.3 61.7 14.01 66.24 

0.15 33.6 7.63 73.87 
0.075 21.2 4.81 78.68 

Dust (passing # 200) 92.4   
CS-2B    

4.75 27.4 4.21 4.21 
2.36 431.6 66.30 70.51 
1.18 144.9 22.26 92.76 
0.6 31 4.76 97.53 
0.3 6.1 0.94 98.46 

0.15 1.3 0.20 98.66 
0.075 1.1 0.17 98.83 

Dust (passing # 200) 7.3   
SSG-4    

4.75 0 0.00 0.00 
2.36 2 0.44 0.44 
1.18 26.1 5.75 6.19 
0.6 85.8 18.92 25.11 
0.3 233.7 51.52 76.63 

0.15 91.9 20.26 96.89 
0.075 10.1 2.23 99.12 

Dust (passing # 200) 2.4   
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Table B.2 Sieve Analysis of Individual Aggregate on K-25 Project 
 
CG-2    
Sieve Openings, (mm) Retained, (gm) % Retained Cumulative % Retained 

4.75 151.8 15.17 15.17 
2.36 231.8 23.16 38.33 
1.18 162.3 16.22 54.55 
0.6 110.6 11.05 65.60 
0.3 102.3 10.22 75.82 

0.15 82.7 8.26 84.08 
0.075 58.9 5.89 89.97 

Dust (passing # 200) 100.9   
CG-5    

4.75 52.1 5.21 5.21 
2.36 153.6 15.36 20.57 
1.18 254.2 25.42 45.99 
0.6 177.2 17.72 63.71 
0.3 172.1 17.21 80.92 

0.15 98.4 9.84 90.76 
0.075 38.5 3.85 94.61 

Dust (passing # 200) 53.6   
SSG-1    

4.75 115 11.5 11.5 
2.36 154.4 15.44 26.94 
1.18 182.2 18.22 45.16 
0.6 173 17.3 62.46 
0.3 235.8 23.58 86.04 

0.15 100.9 10.09 96.13 
0.075 17.2 1.72 97.85 

Dust (passing # 200) 21.2   
MFS-5    

4.75 28.9 2.89 2.89 
2.36 14.7 1.47 4.36 
1.18 13.9 1.39 5.75 
0.6 15.5 1.55 7.3 
0.3 22 2.2 9.5 

0.15 39.3 3.93 13.43 
0.075 107.3 10.73 24.16 

Dust (passing # 200) 759.2   
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Table B.3 Combined Aggregate Gradation of US-160 Mix with 35% Natural Sand Content 
 
Material CS-1B CS-2 CS-2A CS-2B SSG-4 

Blend Target % Used 32 12 7 14 35 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00     0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 11.83 3.78 7.89 0.95 0.57 0.04 4.21 0.59 0.00 0.00 5 0-10 
#8 67.84 21.71 26.71 3.21 12.35 0.86 70.51 9.87 0.44 0.15 36   
#16 89.12 28.52 49.01 5.88 34.21 2.39 92.76 12.99 6.19 2.17 52 40-70 
#30 93.67 29.97 64.11 7.69 52.24 3.66 97.53 13.65 25.11 8.79 64   
#50 94.93 30.38 74.20 8.90 66.24 4.64 98.46 13.78 76.63 26.82 85   
#100 95.33 30.51 79.43 9.53 73.87 5.17 98.66 13.81 96.89 33.91 93   
#200 95.81 30.66 82.97 9.96 78.68 5.51 98.83 13.84 99.12 34.69 94.7 88-94 
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Table B.4 Combined Aggregate Gradation of US-160 Mix with 25% Natural Sand Content 
 
Material CS-1B CS-2 CS-2A CS-2B SSG-4 

Blend Target % Used 40 12 7 16 25 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00     0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 11.83 4.73 7.89 0.95 0.57 0.04 4.21 0.67 0.00 0.00 6 0-10 
#8 67.84 27.14 26.71 3.21 12.35 0.86 70.51 11.28 0.44 0.11 43   
#16 89.12 35.65 49.01 5.88 34.21 2.39 92.76 14.84 6.19 1.55 60 40-70 
#30 93.67 37.47 64.11 7.69 52.24 3.66 97.53 15.60 25.11 6.28 71   
#50 94.93 37.97 74.20 8.90 66.24 4.64 98.46 15.75 76.63 19.16 86   
#100 95.33 38.13 79.43 9.53 73.87 5.17 98.66 15.79 96.89 24.22 93   
#200 95.81 38.32 82.97 9.96 78.68 5.51 98.83 15.81 99.12 24.78 94.4 88-94 
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Table B.5 Combined Aggregate Gradation of US-160 Mix with 15% Natural Sand Content 
 
Material CS-1B CS-2 CS-2A CS-2B SSG-4 

Blend Target % Used 45 12 7 21 15 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00     0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 11.83 5.32 7.89 0.95 0.57 0.04 4.21 0.88 0.00 0.00 7 0-10 
#8 67.84 30.53 26.71 3.21 12.35 0.86 70.51 14.81 0.44 0.07 49   
#16 89.12 40.10 49.01 5.88 34.21 2.39 92.76 19.48 6.19 0.93 69 40-70 
#30 93.67 42.15 64.11 7.69 52.24 3.66 97.53 20.48 25.11 3.77 78   
#50 94.93 42.72 74.20 8.90 66.24 4.64 98.46 20.68 76.63 11.49 88   
#100 95.33 42.90 79.43 9.53 73.87 5.17 98.66 20.72 96.89 14.53 93   
#200 95.81 43.12 82.97 9.96 78.68 5.51 98.83 20.75 99.12 14.87 94.2 88-94 
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Table B.6 Combined Aggregate Gradation of K-25 Mix with 35% Natural Sand Content 
 
Material CG-2 CG-5 SSG-1 MFS-5 

Blend Target % Used 30 33 35 2 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00 0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 15.17 4.55 5.21 1.72 11.50 4.03 2.89 0.06 10 0-10 
#8 38.33 11.50 20.57 6.79 26.94 9.43 4.36 0.09 28   
#16 54.55 16.36 45.99 15.18 45.16 15.81 5.75 0.12 47 40-70 
#30 65.60 19.68 63.71 21.02 62.46 21.86 7.30 0.15 63   
#50 75.82 22.75 80.92 26.70 86.04 30.11 9.50 0.19 80   
#100 84.08 25.22 90.76 29.95 96.13 33.65 13.43 0.27 89   
#200 89.97 26.99 94.61 31.22 97.85 34.25 24.16 0.48 93 88-94 
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Table B.7 Combined Aggregate Gradation of K-25 Mix with 25% Natural Sand Content 
 
Material CG-2 CG-5 SSG-1 MFS-5 

Blend Target % Used 34 39 25 2 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00 0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 15.17 5.16 5.21 2.03 11.50 2.88 2.89 0.06 10 0-10 
#8 38.33 13.03 20.57 8.02 26.94 6.74 4.36 0.09 28   
#16 54.55 18.55 45.99 17.94 45.16 11.29 5.75 0.12 48 40-70 
#30 65.60 22.30 63.71 24.85 62.46 15.62 7.30 0.15 63   
#50 75.82 25.78 80.92 31.56 86.04 21.51 9.50 0.19 79   
#100 84.08 28.59 90.76 35.40 96.13 24.03 13.43 0.27 88   
#200 89.97 30.59 94.61 36.90 97.85 24.46 24.16 0.48 92 88-94 
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Table B.8 Combined Aggregate Gradation of K-25 Mix with 15% Natural Sand Content 
 
Material CG-2 CG-5 SSG-1 MFS-5 

Blend Target % Used 40 43 15 2 
Sieve 
Size 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

% 
Ret. 

% 
Batch 

1/2 0 0.00 0 0.00 0 0.00 0 0.00 0 0 
3/8 0 0.00 0 0.00 0 0.00 0 0.00 0 0-5 
#4 15.17 6.07 5.21 2.24 11.50 1.73 2.89 0.06 10 0-10 
#8 38.33 15.33 20.57 8.85 26.94 4.04 4.36 0.09 28   
#16 54.55 21.82 45.99 19.78 45.16 6.77 5.75 0.12 48 40-70 
#30 65.60 26.24 63.71 27.40 62.46 9.37 7.30 0.15 63   
#50 75.82 30.33 80.92 34.80 86.04 12.91 9.50 0.19 78   
#100 84.08 33.63 90.76 39.03 96.13 14.42 13.43 0.27 87   
#200 89.97 35.99 94.61 40.68 97.85 14.68 24.16 0.48 92 88-94 
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Table B.9 Gmm, Gmb, and Air Voids Results of HWTD Test Specimens for US-160 

Laboratory Mixes with PG 64-22 

 

Natural 
Sand 

Content 

Sample 
ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target 
% Va 

35 

S_35 HT11 

7 

2.241 

2.387 

93.90 6.10 

6.19 

7% ± 1% 

S_35 HT12 2.241 93.89 6.11 
S_35 HT13 2.238 93.76 6.24 
S_35 HT14 2.237 93.70 6.30 
S_35 HT21 2.227 

2.392 

93.09 6.91 

6.95 S_35 HT22 2.227 93.12 6.88 
S_35 HT23 2.228 93.14 6.86 
S_35 HT24 2.221 92.85 7.15 
S_35 HT31 2.236 

2.398 

93.23 6.77 

6.84 S_35 HT32 2.233 93.13 6.87 
S_35 HT33 2.233 93.10 6.90 
S_35 HT34 2.235 93.20 6.80 

25 

S_25 HT11 

6.8 

2.254 

2.416 

93.31 6.69 

6.51 

7% ± 1% 

S_25 HT12 2.257 93.41 6.59 
S_25 HT13 2.261 93.57 6.43 
S_25 HT14 2.263 93.68 6.32 
S_25 HT21 2.255 

2.408 

93.66 6.34 

6.25 S_25 HT22 2.254 93.61 6.39 
S_25 HT23 2.260 93.86 6.14 
S_25 HT24 2.260 93.86 6.14 
S_25 HT31 2.250 

2.408 

93.42 6.58 

6.38 S_25 HT32 2.257 93.71 6.29 
S_25 HT33 2.256 93.71 6.29 
S_25 HT34 2.254 93.62 6.38 

15 

S_15 HT11 

6.75 

2.254 

2.414 

93.36 6.64 

6.67 

7% ± 1% 

S_15 HT12 2.257 93.50 6.50 
S_15 HT13 2.250 93.21 6.79 
S_15 HT14 2.251 93.25 6.75 
S_15 HT21 2.250 

2.407 

93.49 6.51 

6.52 S_15 HT22 2.254 93.64 6.36 
S_15 HT23 2.248 93.38 6.62 
S_15 HT24 2.248 93.39 6.61 
S_15 HT31 2.245 

2.41 

93.17 6.83 

6.83 S_15 HT32 2.248 93.29 6.71 
S_15 HT33 2.241 92.98 7.02 
S_15 HT34 2.247 93.24 6.76 

 
 
 



 

 183 

Table B.10 Gmm, Gmb, and Air Voids Results of HWTD Test Specimens for US-160 

Laboratory Mixes with PG 70-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11 

6.8 

2.218 

2.384 

93.06 6.94 

6.91 

7% ± 1% 

S_35 HT12 2.222 93.22 6.78 
S_35 HT13 2.220 93.12 6.88 
S_35 HT14 2.216 92.95 7.05 
S_35 HT21 2.227 

2.389 

93.21 6.79 

6.87 S_35 HT22 2.225 93.12 6.88 
S_35 HT23 2.227 93.21 6.79 
S_35 HT24 2.221 92.98 7.02 
S_35 HT31 2.226 

2.387 

93.24 6.76 

6.66 S_35 HT32 2.229 93.37 6.63 
S_35 HT33 2.230 93.43 6.57 
S_35 HT34 2.228 93.33 6.67 

25 

S_25 HT11 

6.6 

2.228 

2.387 

93.34 6.66 

6.79 

7% ± 1% 

S_25 HT12 2.223 93.13 6.87 
S_25 HT13 2.227 93.31 6.69 
S_25 HT14 2.222 93.08 6.92 
S_25 HT21 2.231 

2.386 

93.51 6.49 

6.63 S_25 HT22 2.228 93.37 6.63 
S_25 HT23 2.223 93.19 6.81 
S_25 HT24 2.229 93.40 6.60 
S_25 HT31 2.229 

2.393 

93.15 6.85 

6.88 S_25 HT32 2.229 93.15 6.85 
S_25 HT33 2.228 93.09 6.91 
S_25 HT34 2.228 93.09 6.91 

15 

S_15 HT11 

6.6 

2.225 

2.394 

92.96 7.04 

6.87 

7% ± 1% 

S_15 HT12 2.231 93.21 6.79 
S_15 HT13 2.228 93.07 6.93 
S_15 HT14 2.233 93.27 6.73 
S_15 HT21 2.231 

2.384 

93.58 6.42 

6.39 S_15 HT22 2.234 93.70 6.30 
S_15 HT23 2.228 93.44 6.56 
S_15 HT24 2.234 93.71 6.29 
S_15 HT31 2.231 

2.391 

93.30 6.70 

6.66 S_15 HT32 2.234 93.43 6.57 
S_15 HT33 2.228 93.17 6.83 
S_15 HT34 2.234 93.44 6.56 
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Table B.11 Gmm, Gmb, and Air Voids Results of HWTD Test Specimens for K-25 

Laboratory Mixes with PG 64-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11 

6.1 

2.213 

2.402 

92.13 7.87 

7.72 

7% ± 1% 

S_35 HT12 2.219 92.38 7.62 
S_35 HT13 2.214 92.19 7.81 
S_35 HT14 2.220 92.42 7.58 
S_35 HT21 2.224 

2.401 

92.61 7.39 

7.20 S_35 HT22 2.231 92.93 7.07 
S_35 HT23 2.230 92.90 7.10 
S_35 HT24 2.227 92.75 7.25 
S_35 HT31 2.216 

2.404 

92.16 7.84 

7.82 S_35 HT32 2.214 92.11 7.89 
S_35 HT33 2.216 92.18 7.82 
S_35 HT34 2.219 92.29 7.71 

25 

S_25 HT11 

5.6 

2.233 

2.41 

92.66 7.34 

7.28 

7% ± 1% 

S_25 HT12 2.231 92.58 7.42 
S_25 HT13 2.239 92.90 7.10 
S_25 HT14 2.235 92.74 7.26 
S_25 HT21 2.236 

2.408 

92.84 7.16 

7.12 S_25 HT22 2.239 93.00 7.00 
S_25 HT23 2.237 92.91 7.09 
S_25 HT24 2.234 92.77 7.23 
S_25 HT31 2.234 

2.398 

93.17 6.83 

6.77 S_25 HT32 2.237 93.30 6.70 
S_25 HT33 2.239 93.35 6.65 
S_25 HT34 2.233 93.12 6.88 

15 

S_15 HT11 

5.4 

2.262 

2.419 

93.51 6.49 

6.51 

7% ± 1% 

S_15 HT12 2.263 93.57 6.43 
S_15 HT13 2.259 93.40 6.60 
S_15 HT14 2.261 93.47 6.53 
S_15 HT21 2.253 

2.416 

93.24 6.76 

6.68 S_15 HT22 2.253 93.27 6.73 
S_15 HT23 2.256 93.36 6.64 
S_15 HT24 2.256 93.39 6.61 
S_15 HT31 2.254 

2.417 

93.24 6.76 

6.83 S_15 HT32 2.254 93.24 6.76 
S_15 HT33 2.250 93.09 6.91 
S_15 HT34 2.251 93.13 6.87 
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Table B.12 Gmm, Gmb, and Air Voids Results of HWTD Test Specimens for K-25 

Laboratory Mixes with PG 70-22 

 

 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11 

5.7 

2.241 

2.416 

92.77 7.23 

7.22 

7% ± 1% 

S_35 HT12 2.240 92.70 7.30 
S_35 HT13 2.244 92.87 7.13 
S_35 HT14 2.242 92.80 7.20 
S_35 HT21 2.240 

2.42 

92.58 7.42 

7.26 S_35 HT22 2.242 92.65 7.35 
S_35 HT23 2.246 92.83 7.17 
S_35 HT24 2.248 92.90 7.10 
S_35 HT31 2.240 

2.41 

92.95 7.05 

7.05 S_35 HT32 2.237 92.84 7.16 
S_35 HT33 2.241 92.98 7.02 
S_35 HT34 2.242 93.03 6.97 

25 

S_25 HT11 

5.5 

2.243 

2.414 

92.92 7.08 

7.06 

7% ± 1% 

S_25 HT12 2.244 92.95 7.05 
S_25 HT13 2.244 92.97 7.03 
S_25 HT14 2.243 92.93 7.07 
S_25 HT21 2.250 

2.414 

93.22 6.78 

6.87 S_25 HT22 2.249 93.16 6.84 
S_25 HT23 2.246 93.04 6.96 
S_25 HT24 2.247 93.08 6.92 
S_25 HT31 2.247 

2.397 

93.76 6.24 

6.31 S_25 HT32 2.245 93.65 6.35 
S_25 HT33 2.247 93.74 6.26 
S_25 HT34 2.244 93.60 6.40 

15 

S_15 HT11 

5.4 

2.254 

2.42 

93.16 6.84 

6.78 

7% ± 1% 

S_15 HT12 2.256 93.24 6.76 
S_15 HT13 2.254 93.15 6.85 
S_15 HT14 2.258 93.32 6.68 
S_15 HT21 2.258 

2.424 

93.14 6.86 

6.88 S_15 HT22 2.259 93.18 6.82 
S_15 HT23 2.256 93.07 6.93 
S_15 HT24 2.257 93.10 6.90 
S_15 HT31 2.251 

2.42 

93.00 7.00 

6.87 S_15 HT32 2.250 92.98 7.02 
S_15 HT33 2.258 93.32 6.68 
S_15 HT34 2.256 93.22 6.78 
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Figure B.1 HWTD performance of US-160 mixes with 35% natural sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2 HWTD performance of US-160 mixes with 25% natural sand 
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Figure B.3 HWTD performance of US-160 mixes with 15% natural sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4 HWTD performance of K-25 mixes with 35% natural sand 
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Figure B.5 HWTD performance of K-25 mixes with 25% natural sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.6 HWTD performance of K-25 mixes with 15% natural sand 
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Table B.13 HWTD Test Output of US-160 and K-25 Mixes 

 

Aggregate 
Source 

PG 
Binder NSC 

Design 
Asphalt 
Content 

(%) 

Creep Slope 
(No. of wheel 
pass/mm rut 

depth) 

SIP 
(No. of 

wheel pass) 

Stripping Slope 
(No. of wheel 
pass/mm rut 

depth) 

US-160 

64-22 
35 7 1333 4758 259 
25 6.8 10000 13917 949 
15 6.75 5220 10050 820 

70-22 
35 6.8 922 2957 250 
25 6.6 833 2817 253 
15 6.6 1185 3167 448 

K-25 

64-22 
35 6.1 5808 9813 446 
25 5.6 5952 11833 428 
15 5.4 8472 11875 773 

70-22 
35 5.7 3438 7562 631 
25 5.5 9733 16095 814 
15 5.4 9192 16095 625 

Note:  NSC = Natural Sand Content 
 SIP = Stripping Inflection Point 
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Table B.14 Gmm, Gmb, and Air Voids Results of KT-56 Test Specimens for US-160 

Laboratory Mixes with PG 64-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11(C) 

7 

2.220 2.396 92.66 7.34 
7.02 

7% ± 0.5% 

S_35 HT12 (C)  2.221 2.389 92.97 7.03 
S_35 HT13 (C)  2.228 2.389 93.27 6.73 

S_35 HT14 (UC) 2.228 2.396 93.01 6.99 
7.06 S_35 HT15 (UC) 2.223 2.396 92.78 7.22 

S_35 HT16 (UC) 2.224 2.389 93.09 6.91 

25 

S_25 HT11(C)  

6.8 

2.222 2.396 92.73 7.27 
7.23 

7% ± 0.5% 

S_25 HT12 (C)  2.221 2.396 92.71 7.29 
S_25 HT13 (C)  2.227 2.403 92.67 7.33 

S_25 HT14 (UC) 2.228 2.396 92.97 7.03 
7.34 S_25 HT15 (UC) 2.229 2.403 92.76 7.24 

S_25 HT16 (UC) 2.224 2.403 92.55 7.45 

15 

S_15 HT11 (C)  

6.75 

2.244 2.406 93.27 6.73 
6.79 

7% ± 0.5% 

S_15 HT12 (C)  2.243 2.404 93.29 6.71 
S_15 HT13 (C)  2.239 2.404 93.14 6.86 

S_15 HT14 (UC) 2.241 2.406 93.13 6.87 
6.78 S_15 HT15 (UC) 2.240 2.406 93.12 6.88 

S_15 HT16 (UC) 2.243 2.404 93.32 6.68 
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Table B.15 Gmm, Gmb, and Air Voids Results of KT-56 Test Specimens for US-160 

Laboratory Mixes with PG 70-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11(C) 

7 

2.218 2.385 93.01 6.99 
7.12 

7% ± 0.5% 

S_35 HT12 (C)  2.213 2.384 92.84 7.16 
S_35 HT13 (C)  2.215 2.384 92.90 7.10 

S_35 HT14 (UC) 2.212 2.385 92.74 7.26 
6.95 S_35 HT15 (UC) 2.221 2.385 93.12 6.88 

S_35 HT16 (UC) 2.217 2.384 92.97 7.03 

25 

S_25 HT11(C)  

6.8 

2.233 2.39 93.45 6.55 
6.67 

7% ± 0.5% 

S_25 HT12 (C)  2.225 2.389 93.12 6.88 
S_25 HT13 (C)  2.229 2.389 93.30 6.70 

S_25 HT14 (UC) 2.234 2.39 93.45 6.55 
6.86 S_25 HT15 (UC) 2.226 2.39 93.14 6.86 

S_25 HT16 (UC) 2.225 2.389 93.14 6.86 

15 

S_15 HT11 (C)  

6.75 

2.221 2.393 92.82 7.18 
7.31 

7% ± 0.5% 

S_15 HT12 (C)  2.219 2.393 92.72 7.28 
S_15 HT13 (C)  2.218 2.397 92.52 7.48 

S_15 HT14 (UC) 2.218 2.393 92.69 7.31 
7.30 S_15 HT15 (UC) 2.224 2.397 92.80 7.20 

S_15 HT16 (UC) 2.220 2.397 92.60 7.40 
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Table B.16 Gmm, Gmb, and Air Voids Results of KT-56 Test Specimens for K-25 Laboratory 

Mixes with PG 64-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11(C) 

7 

2.224 2.401 92.64 7.36 
7.29 

7% ± 0.5% 

S_35 HT12 (C)  2.228 2.402 92.75 7.25 
S_35 HT13 (C)  2.229 2.402 92.79 7.21 

S_35 HT14 (UC) 2.225 2.401 92.67 7.33 
7.27 S_35 HT15 (UC) 2.227 2.401 92.75 7.25 

S_35 HT16 (UC) 2.227 2.402 92.72 7.28 

25 

S_25 HT11(C)  

6.8 

2.235 2.406 92.89 7.11 
7.12 

7% ± 0.5% 

S_25 HT12 (C)  2.235 2.406 92.88 7.12 
S_25 HT13 (C)  2.245 2.419 92.80 7.20 

S_25 HT14 (UC) 2.236 2.406 92.94 7.06 
7.19 S_25 HT15 (UC) 2.245 2.419 92.81 7.19 

S_25 HT16 (UC) 2.245 2.419 92.81 7.19 

15 

S_15 HT11 (C)  

6.75 

2.242 2.401 93.38 6.62 
6.81 

7% ± 0.5% 

S_15 HT12 (C)  2.246 2.416 92.95 7.05 
S_15 HT13 (C)  2.246 2.416 92.96 7.04 

S_15 HT14 (UC) 2.245 2.401 93.48 6.52 
7.05 S_15 HT15 (UC) 2.240 2.401 93.31 6.69 

S_15 HT16 (UC) 2.237 2.416 92.59 7.41 
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Table B.17 Gmm, Gmb, and Air Voids Results of KT-56 Test Specimens for K-25 Laboratory 

Mixes with PG 70-22 

 

Natural 
Sand 

Content 
Sample ID 

Design 
AC 
(%) 

Gmb Gmm %Gmm 
@ Nf 

% Va 
Average 

% Va 
Target  
% Va 

35 

S_35 HT11(C) 

7 

2.244 2.421 92.70 7.30 
7.24 

7% ± 0.5% 

S_35 HT12 (C)  2.242 2.417 92.77 7.23 
S_35 HT13 (C)  2.242 2.417 92.75 7.25 

S_35 HT14 (UC) 2.247 2.421 92.81 7.19 
7.30 S_35 HT15 (UC) 2.244 2.421 92.70 7.30 

S_35 HT16 (UC) 2.240 2.417 92.69 7.31 

25 

S_25 HT11(C)  

6.8 

2.245 2.418 92.83 7.17 
7.23 

7% ± 0.5% 

S_25 HT12 (C)  2.243 2.419 92.74 7.26 
S_25 HT13 (C)  2.242 2.419 92.69 7.31 

S_25 HT14 (UC) 2.244 2.418 92.82 7.18 
7.29 S_25 HT15 (UC) 2.242 2.418 92.71 7.29 

S_25 HT16 (UC) 2.243 2.419 92.71 7.29 

15 

S_15 HT11 (C)  

6.75 

2.248 2.424 92.74 7.26 
7.14 

7% ± 0.5% 

S_15 HT12 (C)  2.248 2.42 92.90 7.10 
S_15 HT13 (C)  2.250 2.42 92.97 7.03 

S_15 HT14 (UC) 2.250 2.424 92.84 7.16 
7.13 S_15 HT15 (UC) 2.248 2.424 92.72 7.28 

S_15 HT16 (UC) 2.251 2.42 93.02 6.98 
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Table B.18 Thickness, Diameter, and Indirect Tensile Strength of KT-56, US-160 

Laboratory Mixes 

 

Sample ID Thickness, T 
(mm) 

AVG. 
T 

(mm) 

Diameter, D 
(mm) 

AVG. 
D 

(mm) 

Load 
(N) 

Tensile 
Strength, 
St, (kPa) 

AVG. 
St, 

(kPa) 

TSR, 
(%) 

KS_35 
C (PG 
64-22) 

1 97.88 97.88 97.88 97.88 150.15 150.23 150.18 150.19 18832.83 816 
865 

103 

4 98.02 97.83 97.88 97.91 150.16 150.28 150.19 150.21 19837.64 859 
5 97.77 97.69 97.93 97.80 150.30 150.29 150.30 150.30 21268.11 921 

KS_35 
UC 
(PG 
64-22) 

2 97.67 97.66 97.74 97.69 150.04 150.07 150.08 150.06 20855.78 906 
841 3 97.67 97.70 97.66 97.68 150.16 150.28 150.30 150.25 17524.23 760 

6 97.71 97.81 97.69 97.74 150.08 150.12 150.13 150.11 19727.32 856 
KS_25 
C (PG 
64-22) 

1 97.89 97.95 97.88 97.91 150.47 150.36 150.26 150.36 17082.10 739 
760 

95 

2 97.89 97.94 97.92 97.92 150.56 150.45 150.11 150.37 17525.12 758 
4 97.83 97.82 97.77 97.81 150.23 150.31 150.21 150.25 18085.57 783 

KS_25 
UC 
(PG 
64-22) 

3 97.62 97.70 97.65 97.66 150.09 150.22 150.29 150.20 16467.83 715 
799 5 97.89 98.00 98.01 97.97 150.04 150.15 150.13 150.11 19474.23 843 

6 97.73 97.78 97.73 97.75 150.24 150.14 150.11 150.16 19339.90 839 
KS_15 
C (PG 
64-22) 

1 98.00 98.04 98.13 98.06 150.33 150.27 150.20 150.27 18533.48 801 
809 

75 

3 98.02 98.17 97.99 98.06 150.21 150.27 150.32 150.27 16318.82 705 
4 98.14 98.16 98.03 98.11 150.16 150.27 150.21 150.21 21341.95 922 

KS_15 
UC 
(PG 
64-22) 

2 98.00 97.99 97.91 97.97 150.14 150.30 150.15 150.20 21358.41 924 
1075 5 97.92 97.87 97.86 97.88 150.20 150.20 150.03 150.14 28007.28 1213 

6 98.15 98.30 97.97 98.14 150.14 150.11 150.10 150.12 25148.99 1087 
KS_35 
C (PG 
70-22) 

1 97.98 97.86 97.72 97.85 150.41 150.38 150.41 150.40 18650.91 807 
813 

88 

3 97.63 97.75 97.61 97.66 150.59 150.36 150.21 150.39 19757.13 856 
5 97.75 97.93 97.81 97.83 150.48 150.37 150.13 150.33 17925.88 776 

KS_35 
UC 
(PG 
70-22) 

2 97.67 97.65 97.67 97.66 150.12 150.21 150.23 150.19 21752.05 944 
926 4 97.71 97.70 97.70 97.70 150.10 150.22 150.26 150.19 21490.07 932 

6 97.93 97.64 97.63 97.73 150.17 150.25 150.22 150.21 20810.86 902 
KS_25 
C (PG 
70-22) 

2 97.72 97.61 97.61 97.65 150.14 150.20 150.35 150.23 19097.93 829 
803 

94 

3 97.76 97.96 97.82 97.85 150.35 150.27 150.19 150.27 18573.96 804 
4 97.54 97.57 97.61 97.57 150.23 150.38 150.21 150.27 17854.27 775 

KS_25 
UC 
(PG 
70-22) 

1 97.47 97.48 97.63 97.53 150.15 150.17 150.18 150.17 18872.86 820 
854 5 97.73 97.69 97.71 97.71 150.27 150.24 150.11 150.21 20158.78 874 

6 97.57 97.62 97.62 97.60 150.28 150.19 150.15 150.21 19952.39 866 
KS_15 
C (PG 
70-22) 

1 98.06 98.01 98.06 98.04 150.12 150.16 150.12 150.13 19560.97 846 
880 

95 

3 98.00 98.01 97.99 98.00 150.11 150.10 150.27 150.16 19859.88 859 
4 97.98 98.04 97.89 97.97 150.20 150.29 150.15 150.21 21643.52 936 

KS_15 
UC 
(PG 
70-22) 

2 98.12 98.09 97.93 98.05 150.18 150.17 150.11 150.15 19911.47 861 
930 5 97.95 97.97 97.78 97.90 150.13 150.10 150.08 150.10 21880.60 948 

6 97.94 97.93 97.88 97.92 150.09 150.10 150.10 150.10 22655.00 981 
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Table B.19 Thickness, Diameter, and Indirect Tensile Strength of KT-56, K-25 Laboratory 

Mixes 

 

Sample ID 
Thickness, T 

(mm) 

AVG. 
T, 

(mm) 
Diameter, D 

(mm) 

AVG. 
D, 

(mm) 
Load 
(N) 

Tensile 
Strength, 
St, (kPa) 

AVG. 
St, 

(kPa) 
TSR, 
(%) 

KS_35 
C (PG 
64-22) 

1 97.69 97.69 97.57 97.65 150.4 151 150.4 150.47 28131.82 1219 
1167 

74 

2 97.5 97.6 97.52 97.54 150.5 150 150.4 150.44 27626.53 1199 
5 97.78 97.84 97.78 97.80 150.5 151 150.5 150.50 25081.38 1085 

KS_35 
UC (PG 
64-22) 

3 97.59 97.65 97.57 97.60 150.1 150 150 150.04 35483.03 1543 
1588 4 97.54 97.55 97.5 97.53 150.2 150 150 150.07 36897.05 1605 

6 97.66 97.66 97.65 97.66 150 150 149.9 149.93 37151.48 1615 
KS_25 
C (PG 
64-22) 

1 97.91 97.88 97.89 97.89 150.6 151 150.4 150.51 24331.45 1051 
1156 

73 

5 97.91 97.98 98 97.96 150.2 150 150.4 150.29 28922.68 1251 
6 98.17 97.81 97.81 97.93 150.3 151 150.4 150.43 27010.92 1167 

KS_25 
UC (PG 
64-22) 

2 97.67 97.86 97.6 97.71 150 150 150.1 150.06 37004.69 1607 
1592 3 97.68 97.68 97.65 97.67 150 150 150 149.98 37910.30 1648 

4 97.73 97.6 97.63 97.65 149.9 150 149.9 149.92 35009.76 1522 
KS_15 
C (PG 
64-22) 

1 97.78 97.74 97.68 97.73 150.3 150 150.2 150.24 25028.01 1085 
1120 

81 

2 97.76 97.67 97.69 97.71 150.2 150 150.1 150.16 22706.15 985 
4 97.81 97.92 97.87 97.87 150.7 150 150.2 150.36 29842.08 1291 

KS_15 
UC (PG 
64-22) 

3 97.63 97.63 97.66 97.64 150.2 150 150.1 150.15 27914.31 1212 
1380 5 97.73 97.78 97.85 97.79 150 150 149.9 149.89 33747.42 1466 

6 97.7 97.8 97.68 97.73 149.9 150 150 149.95 33654.01 1462 
KS_35 
C (PG 
70-22) 

1 97.65 97.66 97.69 97.67 150.3 150 150.3 150.27 26250.76 1139 
1037 

82 

4 97.73 97.78 97.66 97.72 150.4 150 150.4 150.41 23296.84 1009 
6 97.85 97.75 97.73 97.78 150.4 150 150.1 150.29 22203.53 962 

KS_35 
UC (PG 
70-22) 

2 97.65 97.87 97.64 97.72 150 150 150 150.02 30140.54 1309 
1265 3 97.71 97.82 97.75 97.76 150 150 149.9 149.94 30612.03 1329 

5 97.72 97.65 97.74 97.70 150 150 150 150.03 26648.41 1157 
KS_25 
C (PG 
70-22) 

3 97.66 97.63 97.74 97.68 150.2 151 150.3 150.38 23835.05 1033 
983 

74 

4 97.63 97.73 97.61 97.66 150.4 150 150.5 150.46 22302.27 966 
5 97.65 97.61 97.73 97.66 150.5 150 150.2 150.32 21905.51 950 

KS_25 
UC (PG 
70-22) 

1 97.71 97.63 97.68 97.67 150 150 150 149.99 24274.96 1055 
1325 2 97.66 97.65 97.7 97.67 150 150 150 150.03 33556.60 1458 

6 97.59 97.56 97.59 97.58 150.1 150 150 150.07 33604.20 1461 
KS_15 
C (PG 
70-22) 

1 97.76 97.66 97.66 97.69 150.5 151 150.4 150.47 25850.44 1120 
1053 

81 

4 97.06 97.71 97.81 97.53 150.4 150 150.3 150.27 22599.40 982 
6 97.94 97.72 97.72 97.79 150.3 150 150.1 150.22 24432.86 1059 

KS_15 
UC (PG 
70-22) 

2 97.56 97.68 97.56 97.60 150 150 149.9 149.97 33399.14 1453 
1307 3 97.72 97.64 97.62 97.66 150 150 150 150.03 26671.54 1159 

5 97.56 97.54 97.67 97.59 150.1 150 150.1 150.08 30111.63 1309 
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Figure B.7 Flexural stiffness variation of K-25 mixes with PG 64-22 in fatigue-beam test 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8 Flexural stiffness variation of K-25 mixes with PG 70-22 in fatigue-beam test 
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Figure B.9 Flexural stiffness variation of K-25 mixes with 15% river sand in fatigue-beam 

test 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.10 Flexural stiffness variation of K-25 mixes with 25% river sand in fatigue-beam 

test 
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Figure B.11 Flexural stiffness variation of K-25 mixes with 25% river sand in fatigue-beam 

test 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.12 Flexural stiffness variation of US-160 mixes with PG 64-22 in fatigue-beam test 
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Figure B.13 Flexural stiffness variation of US-160 mixes with PG 70-22 in fatigue-beam test 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.14 Flexural stiffness variation of US-160 mixes with 15% river sand in fatigue-

beam 
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Figure B.15 Flexural stiffness variation of US-160 mixes with 25% river sand in fatigue-

beam 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.16 Flexural stiffness variation of US-160 mixes with 35% river sand in fatigue-

beam 
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Appendix C - Statistical Analysis of Laboratory 4.75-mm NMAS 

Mixture (SAS Input/Output Files) 
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Determination of Significant Volumetric Parameter by ANOVA 
data; 
input AGG PG NSR AC; 
cards; 
1 3 35 7.00 
1 3 25 6.80 
1 3 15 6.75 
1 4 35 6.80 
1 4 25 6.60 
1 4 15 6.60 
2 3 35 6.10 
2 3 25 5.60 
2 3 15 5.40 
2 4 35 5.70 
2 4 25 5.50 
2 4 15 5.40 
; 
proc glm; 
title ‘GLM W Interaction’; 
class AGG PG NSR; 
model AC = AGG PG NSR AGG*PG PG*NSR NSR*AGG; 
run; 
 
proc glm; 
title ‘GLM W/O Interaction’; 
class AGG PG NSR; 
model AC = AGG PG NSR; 
run;
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ANOVA Output File for Design Asphalt Content 
 

The SAS System             16:11 Sunday, July 30, 2006  11 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: AC 
 

Number of Observations Read          12 
Number of Observations Used          12 

 
 

Analysis of Variance 
 

Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 

 
Model                     3        4.26490        1.42163     107.57    <.0001 

Error                     8        0.10573        0.01322 
Corrected Total          11        4.37062 

 
 

Root MSE              0.11496    R-Square     0.9758 
Dependent Mean        6.18750    Adj R-Sq     0.9667 

Coeff Var             1.85796 
 
 

Parameter Estimates 
 

Parameter       Standard 
Variable     DF       Estimate          Error    t Value    Pr > |t| 

 
Intercept     1        6.39271        0.11674      54.76      <.0001 
AGG           1       -1.14167        0.06637     -17.20      <.0001 
PG            1       -0.17500        0.06637      -2.64      0.0299 
NSR           1        0.01812        0.00406       4.46      0.0021 
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Determination of Significant Volumetric Parameter by MANOVA 

data; 
input AGG PG NSR AC VMA VFA Gmm DP EAC; 
cards; 
0 0 35 7 16.123 73.136 89.315 0.996 5.322 
0 0 25 6.8 15.32 74.243 87.837 1.099 5.096 
0 0 15 6.75 15.643 73.397 85.533 1.211 4.79 
0 1 35 6.8 15.631 73.993 89.431 1.019 5.2 
0 1 25 6.6 15.265 74.016 87.891 1.105 5.069 
0 1 15 6.6 15.279 73.346 85.599 1.153 5.029 
1 0 35 6.1 16.491 78.87 89.993 1.197 5.847 
1 0 25 5.6 16.036 75.093 89.354 1.478 5.478 
1 0 15 5.4 15.651 74.716 88.956 1.526 5.243 
1 1 35 5.7 15.472 78 90.373 1.299 5.388 
1 1 25 5.5 16.266 70.734 88.394 1.541 5.191 
1 1 15 5.4 15 75.7 89.577 1.589 5.033 
; 
proc print; 
run; 
 
proc reg; 
model AC VMA VFA Gmm DP EAC = AGG PG NSR; 
mtest / details print; 
run; 
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MANOVA Output File 
 

The SAS System             16:11 Sunday, July 30, 2006   1 
 
           Obs    AGG    PG    NSR     AC       VMA       VFA       Gmm       DP      EAC 
 
             1     0      0     35    7.00    16.123    73.136    89.315    0.996    5.322 
             2     0      0     25    6.80    15.320    74.243    87.837    1.099    5.096 
             3     0      0     15    6.75    15.643    73.397    85.533    1.211    4.790 
             4     0      1     35    6.80    15.631    73.993    89.431    1.019    5.200 
             5     0      1     25    6.60    15.265    74.016    87.891    1.105    5.069 
             6     0      1     15    6.60    15.279    73.346    85.599    1.153    5.029 
             7     1      0     35    6.10    16.491    78.870    89.993    1.197    5.847 
             8     1      0     25    5.60    16.036    75.093    89.354    1.478    5.478 
             9     1      0     15    5.40    15.651    74.716    88.956    1.526    5.243 
            10     1      1     35    5.70    15.472    78.000    90.373    1.299    5.388 
            11     1      1     25    5.50    16.266    70.734    88.394    1.541    5.191 
            12     1      1     15    5.40    15.000    75.700    89.577    1.589    5.033 

 
 

The SAS System             16:11 Sunday, July 30, 2006   2 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: AC 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3        4.26490        1.42163     107.57    <.0001 
            Error                     8        0.10573        0.01322 
            Corrected Total          11        4.37062 
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                         Root MSE              0.11496    R-Square     0.9758 
                         Dependent Mean        6.18750    Adj R-Sq     0.9667 
                         Coeff Var             1.85796 
 
 
                                         Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1        6.39271        0.11674      54.76      <.0001 
                 AGG           1       -1.14167        0.06637     -17.20      <.0001 
                 PG            1       -0.17500        0.06637      -2.64      0.0299 
                 NSR           1        0.01812        0.00406       4.46      0.0021 
                                            
 

The SAS System             16:11 Sunday, July 30, 2006   3 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: VMA 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3        1.26344        0.42115       3.26    0.0806 
            Error                     8        1.03353        0.12919 
            Corrected Total          11        2.29698 
 
 
                         Root MSE              0.35943    R-Square     0.5500 
                         Dependent Mean       15.68142    Adj R-Sq     0.3813 
                         Coeff Var             2.29209 
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                                         Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1       15.06942        0.36501      41.29      <.0001 
                 AGG           1        0.27583        0.20752       1.33      0.2204 
                 PG            1       -0.39183        0.20752      -1.89      0.0957 
                 NSR           1        0.02680        0.01271       2.11      0.0680 

 
 

The SAS System             16:11 Sunday, July 30, 2006   4 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: VFA 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3       17.01852        5.67284       1.29    0.3425 
            Error                     8       35.18665        4.39833 
            Corrected Total          11       52.20517 
 
 
                         Root MSE              2.09722    R-Square     0.3260 
                         Dependent Mean       74.60367    Adj R-Sq     0.0732 
                         Coeff Var             2.81115 
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Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1       71.85650        2.12974      33.74      <.0001 
                 AGG           1        1.83033        1.21083       1.51      0.1691 
                 PG            1       -0.61100        1.21083      -0.50      0.6274 
                 NSR           1        0.08550        0.07415       1.15      0.2822 

 
 

The SAS System             16:11 Sunday, July 30, 2006   5 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: Gmm 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3       21.32076        7.10692       9.35    0.0054 
            Error                     8        6.07983        0.75998 
            Corrected Total          11       27.40059 
 
 
                         Root MSE              0.87177    R-Square     0.7781 
                         Dependent Mean       88.52108    Adj R-Sq     0.6949 
                         Coeff Var             0.98481 
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Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1       84.62573        0.88528      95.59      <.0001 
                 AGG           1        1.84017        0.50332       3.66      0.0064 
                 PG            1        0.04617        0.50332       0.09      0.9292 
                 NSR           1        0.11809        0.03082       3.83      0.0050 

 
 

The SAS System             16:11 Sunday, July 30, 2006   6 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: DP 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3        0.46961        0.15654      38.88    <.0001 
            Error                     8        0.03221        0.00403 
            Corrected Total          11        0.50182 
 
 
                         Root MSE              0.06345    R-Square     0.9358 
                         Dependent Mean        1.26775    Adj R-Sq     0.9117 
                         Coeff Var             5.00531 
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Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1        1.38308        0.06444      21.46      <.0001 
                 AGG           1        0.34117        0.03664       9.31      <.0001 
                 PG            1        0.03317        0.03664       0.91      0.3917 
                 NSR           1       -0.01210        0.00224      -5.39      0.0007 

 
 

The SAS System             16:11 Sunday, July 30, 2006   7 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                       Dependent Variable: EAC 
 
                               Number of Observations Read          12 
                               Number of Observations Used          12 
 
 
                                         Analysis of Variance 
 
                                                Sum of           Mean 
            Source                   DF        Squares         Square    F Value    Pr > F 
 
            Model                     3        0.64130        0.21377      11.17    0.0031 
            Error                     8        0.15314        0.01914 
            Corrected Total          11        0.79444 
 
 
                         Root MSE              0.13836    R-Square     0.8072 
                         Dependent Mean        5.22383    Adj R-Sq     0.7349 
                         Coeff Var             2.64858 
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Parameter Estimates 
 
                                      Parameter       Standard 
                 Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
                 Intercept     1        4.63712        0.14050      33.00      <.0001 
                 AGG           1        0.27900        0.07988       3.49      0.0082 
                 PG            1       -0.14433        0.07988      -1.81      0.1084 
                 NSR           1        0.02078        0.00489       4.25      0.0028 

 
 

The SAS System             16:11 Sunday, July 30, 2006   8 
 
                                          The REG Procedure 
                                            Model: MODEL1 
                                         Multivariate Test 1 
 
                                        L Ginv(X'X) L'   LB-cj 
 
         0.3333333333                 0                 0      -1.141666667      0.2758333333 
                    0      0.3333333333                 0            -0.175      -0.391833333 
                    0                 0           0.00125          0.018125            0.0268 
 
                                        L Ginv(X'X) L'   LB-cj 
 
                  1.8303333333      1.8401666667      0.3411666667             0.279 
                        -0.611      0.0461666667      0.0331666667      -0.144333333 
                        0.0855         0.1180875           -0.0121          0.020775 
 
 
                                  Inv(L Ginv(X'X) L')    Inv()(LB-cj) 
 
                    3                 0                 0            -3.425            0.8275 
                    0                 3                 0            -0.525           -1.1755 
                    0                 0               800              14.5             21.44 
 
                                  Inv(L Ginv(X'X) L')    Inv()(LB-cj) 
 
                         5.491            5.5205            1.0235             0.837 
                        -1.833            0.1385            0.0995            -0.433 
                          68.4             94.47             -9.68             16.62 
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                                           Error Matrix (E) 
 
0.1057291667      0.0791791667      0.8730666667      -0.355747917      -0.038329167         0.0510375 
0.0791791667        1.03353475      -3.852139667      -1.603139417        0.02946125         0.0748545 
0.8730666667      -3.852139667      35.186651333      2.7551046667      -0.833873667      0.8191033333 
-0.355747917      -1.603139417      2.7551046667       6.079826625      0.0815220833      -0.131961417 
-0.038329167        0.02946125      -0.833873667      0.0815220833      0.0322120833      -0.047940833 
   0.0510375         0.0748545      0.8191033333      -0.131961417      -0.047940833      0.1531418333 
 
 
                                         Hypothesis Matrix (H) 
 
4.2648958333      -0.350416667      -4.708366667      -4.614539583      -1.361358333        -0.5785625 
-0.350416667      1.2634441667      4.0659513333          4.000265         -0.016096      0.8459523333 
-4.708366667      4.0659513333      17.018523333      18.096916667      0.9849116667          3.217562 
-4.614539583          4.000265      18.096916667      21.320760292      0.7449171667      3.4828435833 
-1.361358333         -0.016096      0.9849116667      0.7449171667      0.4696121667      0.0700933333 
  -0.5785625      0.8459523333          3.217562      3.4828435833      0.0700933333      0.6412998333 

 
 

 
                                     Hypothesis + Error Matrix (T) 
 
    4.370625        -0.2712375           -3.8353        -4.9702875        -1.3996875         -0.527525 
  -0.2712375      2.2969789167      0.2138116667      2.3971255833        0.01336525      0.9208068333 
     -3.8353      0.2138116667      52.205174667      20.852021333          0.151038      4.0366653333 
  -4.9702875      2.3971255833      20.852021333      27.400586917        0.82643925      3.3508821667 
  -1.3996875        0.01336525          0.151038        0.82643925        0.50182425         0.0221525 
   -0.527525      0.9208068333      4.0366653333      3.3508821667         0.0221525      0.7944416667 
 
 
                                             Eigenvectors 
 
    0.243979         -0.110439         -0.031477          0.004513         -0.580765         -0.046767 
   -0.197483          0.377403          0.016454          0.125761         -1.288153         -0.250994 
    2.269154          0.125070          0.090357         -0.020242          6.265459          0.967357 
    1.107248         -1.400498         -0.190507         -0.090427          3.114795          3.952835 
   -0.002553         -0.243655          0.140810         -0.067212         -0.204455                 0 
    1.746831         -0.368005          0.006203          0.281421          4.591861                 0 
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                                              Eigenvalues 
 
                                                 0.996143 
                                                 0.946077 
                                                 0.594356 
                                             3.408888E-16 
                                             -3.96586E-17 
                                             -1.09774E-15 
 
 
                            Multivariate Statistics and F Approximations 
 
                                         S=3    M=1    N=0.5 
 
           Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
 
           Wilks' Lambda               0.00008436      13.24        18    8.9706    0.0002 
           Pillai's Trace              2.53657669       4.56        18        15    0.0024 
           Hotelling-Lawley Trace    277.30195843      61.62        18    2.6667    0.0051 
           Roy's Greatest Root       258.29179012     215.24         6         5    <.0001 
 
                    NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
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SAS Input File for Rutting Prediction Model 
data abc1; 
input PG CA1 CA2 NSC NWP Block$; 
PGCA1 = PG*CA1; 
PGCA2 = PG*CA2; 
PGNSC = PG*NSC; 
logNWP = log(NWP); 
recipNWP = 1/NWP; 
CA1sq = CA1*CA1; 
PGCA1sq = PG*CA1sq; 
cards; 
0 32 26 35 8650 B1 
0 40 28 25 20000 B1 
0 45 33 15 20000 B1 
1 32 26 35 6070 B1 
1 40 28 25 5428 B1 
1 45 33 15 11600 B1 
0 32 26 35 8500 B2 
0 40 28 25 20000 B2 
0 45 33 15 15750 B2 
1 32 26 35 5950 B2 
1 40 28 25 6200 B2 
1 45 33 15 7950 B2 
0 32 26 35 4600 B3 
0 40 28 25 20000 B3 
0 45 33 15 16450 B3 
1 32 26 35 5750 B3 
1 40 28 25 7550 B3 
1 45 33 15 7950 B3 
; 
proc reg data=abc1; 
   model NWP = PG CA1/selection = forward; 
   model NWP = PG CA2/selection = forward; 
   model NWP = PG NSC/selection = forward; 
run; 
proc reg data=abc1; 
   model NWP = PG CA1; 
run; 
proc reg data=abc1; 
   model NWP = PG CA1 PGCA1; 
run; 
proc reg data=abc1; 
   model NWP = PG CA2 PGCA2; 
run; 
proc reg data=abc1; 
   model NWP = PG NSC PGNSC; 
run; 
proc reg data=abc1; 
   model logNWP = PG CA1 PGCA1; 
run; 
proc reg data=abc1; 
   model recipNWP = PG CA1 PGCA1; 
run; 
proc reg data=abc1; 
   model NWP = PG CA1 PGCA1sq CA1sq; 
run; 
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SAS Input File for Moisture Damage Prediction Model 
data abc1; 
input PG CA1 CA2 NSC TSR; 
PGCA1 = PG*CA1; 
PGCA2 = PG*CA2; 
PGNSC = PG*NSC; 
logTSR = log(TSR); 
recipTSR = 1/TSR; 
CA2sq = CA2*CA2; 
PGCA2sq = PG*CA2sq; 
cards; 
0 32 26 35 103 
0 40 28 25 95 
0 45 33 15 75 
1 32 26 35 88 
1 40 28 25 94 
1 45 33 15 95 
; 
proc reg data=abc1; 
  model TSR = PG CA1/selection = forward; 
  model TSR = PG CA2/selection = forward; 
   model TSR = PG NSC/selection = forward; 
run; 
quit; 
proc reg data=abc1; 
   model TSR = PG; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model TSR = PG CA1 PGCA1; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model TSR = PG CA2; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model TSR = PG CA2 PGCA2; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model TSR = PG NSC PGNSC; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model logTSR = PG CA2 PGCA2; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model recipTSR = PG CA2 PGCA2; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model TSR = PG CA2 CA2sq PGCA2sq; 
   *plot r.*p.; 
run; 
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SAS Input File for Moisture Damage Prediction Model 
data abc1; 
input PG CA1 CA2 NSC FS Block$; 
PGCA1 = PG*CA1; 
PGCA2 = PG*CA2; 
PGNSC = PG*NSC; 
logFS = log(FS); 
recipFS = 1/FS; 
NSCsq = NSC*NSC; 
PGNSCsq = PG*NSCsq; 
cards; 
0 30 33 35 25 B1 
0 34 39 25 31 B1 
0 40 43 15 40 B1 
1 30 33 35 30 B1 
1 34 39 25 28 B1 
1 40 43 15 31 B1 
0 30 33 35 25 B2 
0 34 39 25 32 B2 
0 40 43 15 35 B2 
1 30 33 35 30 B2 
1 34 39 25 31 B2 
1 40 43 15 31 B2 
; 
proc reg data=abc1; 
   model FS = PG CA1/selection = forward; 
   model FS = PG CA2/selection = forward; 
   model FS = PG NSC/selection = forward; 
   run; 
   quit; 
proc reg data=abc1; 
   model FS = PG CA1 PGCA1; 
run; 
proc reg data=abc1; 
   model FS = PG CA2 PGCA2; 
run; 
proc reg data=abc1; 
   model FS = PG NSC PGNSC; 
run; 
proc reg data=abc1; 
   model FS = PG NSC; 
run; 
proc reg data=abc1; 
   model logFS = PG NSC PGNSC; 
run; 
 
proc reg data=abc1; 
   model recipFS = PG NSC PGNSC; 
   *plot r.*p.; 
run; 
proc reg data=abc1; 
   model FS = PG NSC PGNSC NSCsq PGNSCsq; 
run; 
quit; 
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Figure C 1 Gaussian distribution of Hamburg Wheel Testing Device laboratory data with 

respect to aggregate subsets and binder grades on K-25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C 3 Gaussian distribution of laboratory moisture susceptibility test data with 

respect to aggregate subsets and binder grades US-160 
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Figure C 3 Gaussian distribution of laboratory beam fatigue test data with respect to  

aggregate subsets and binder grades US-160 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C 4 Gaussian distribution of laboratory beam fatigue test data with respect to 

aggregate subsets and binder grades K-25 
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Figure C 5 Residual plot of rutting prediction model equation for US-160 mixes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C 6 Residual plot of moisture damage prediction equation for US-160 mixes 
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Figure C 7 Residual plot of fatigue life prediction equation for US-160 mixes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C 8 Residual plot of fatigue life prediction equation for K-25 mixes 
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Appendix D - Multi-Objective Optimization of 4.75-mm NMAS 

Mixture 
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Optimization Input File for US-160 Mixes 
namespace SM_475 
{ 
    public partial class Form1 : Form 
    { 
        public Form1() 
        { 
            InitializeComponent(); 
        } 
 
        private void btnOptimize_Click(object sender, EventArgs e) 
        { 
            //Optimize_v2(); 
            Optimize(); 
        } 
 
        private void Optimize() 
        { 
            int[] upperBounds = new int[] { 1, 45, 33, 35 }; 
            int[] lowerBounds = new int[] { 0, 32, 26, 15 }; 
 
            int totalValue = 93; 
 
            double minNWP = 20000; 
            double minTSR = 80; 
            //double maxTSR = 100; 
            double maxFS = 50; 
            //double minFS = 0;  
 
            StreamWriter writer = new StreamWriter("output.txt"); 
            writer.WriteLine("PG, CA1, CA2, NSC, TSR, NWP, FS, TSR_Accept, NWP_Accept, FS_Accept, ALL_Accept"); 
 
            for (int pgCount = lowerBounds[0]; pgCount <= upperBounds[0]; pgCount = pgCount + 1) 
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            { 
                for (int ca1Count = lowerBounds[1]; ca1Count <= upperBounds[1]; ca1Count++) 
                { 
                    for (int ca2Count = lowerBounds[2]; ca2Count <= upperBounds[2]; ca2Count++) 
                    { 
                        for (int nscCount = lowerBounds[3]; nscCount <= upperBounds[3]; nscCount++) 
                        { 
                            if (ca1Count + ca2Count + nscCount != totalValue) continue; 
 
                            //double TSR = 207 - 139.205 * pgCount - 4 * ca2Count + 4.846 * pgCount * ca2Count; 
                            //double NWP = -18516 + 16639 * pgCount + 856.395 * ca1Count - 624.66 * pgCount * ca1Count; 
                            //double FS = 46.4167 - 21.25 * pgCount - 0.575 * nscCount + 0.65 * pgCount * nscCount; 
 
                            double TSR = 207 - 139.205 * pgCount - 4 * ca2Count + 4.846 * pgCount * ca2Count; 
                            double NWP = -18516 + 16639 * pgCount + 856.395 * ca1Count - 624.66 * pgCount * ca1Count; 
                            double FS = 46.54 - 21.25 * pgCount - 0.575 * nscCount + 0.65 * pgCount * nscCount; 
 
                            int NWP_Accept = (NWP >= minNWP) ? 1 : 0; 
                            int TSR_Accept = (TSR >= minTSR) ? 1 : 0; 
                            int FS_Accept = (FS <= maxFS) ? 1 : 0; 
 
                            int ALL_Accept = ((NWP_Accept == 1) && (TSR_Accept == 1) && (FS_Accept == 1)) ? 1 : 0; 
 
                            writer.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}",  
                                pgCount, ca1Count, ca2Count, nscCount, TSR, NWP, FS, TSR_Accept, NWP_Accept, FS_Accept, 
ALL_Accept); 
                        } 
                    } 
                } 
            } 
            writer.Close(); 
 
        } 
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Optimization Input File for K-25 Mixes 
 

private void Optimize_v2() 
        { 
            int[] upperBounds = new int[] { 1, 40, 43, 35 }; 
            int[] lowerBounds = new int[] { 0, 30, 33, 15 }; 
 
            int totalValue = 98; 
 
            double minNWP = 20000; 
            //double minTSR = 80; 
            //double maxTSR = 100; 
            double maxFS = 50; 
            //double minFS = 0;  
 
            StreamWriter writer = new StreamWriter("output_v2.txt"); 
            writer.WriteLine("PG, CA1, CA2, NSC, NWP, FS, NWP_Accept, FS_Accept, ALL_Accept"); 
 
            for (int pgCount = lowerBounds[0]; pgCount <= upperBounds[0]; pgCount = pgCount + 1) 
            { 
                for (int ca1Count = lowerBounds[1]; ca1Count <= upperBounds[1]; ca1Count++) 
                { 
                    for (int ca2Count = lowerBounds[2]; ca2Count <= upperBounds[2]; ca2Count++) 
                    { 
                        for (int nscCount = lowerBounds[3]; nscCount <= upperBounds[3]; nscCount++) 
                        { 
                            if (ca1Count + ca2Count + nscCount != totalValue) continue; 
 
                            //double TSR = 207 - 139.205 * pgCount - 4 * ca2Count + 4.846 * pgCount * ca2Count; 
                            //double NWP = 24056 - 274.75 * nscCount; 
                            //double FS = 46.95833 - 15.54167 * pgCount - 0.625 * nscCount + 0.575 * pgCount * nscCount; 
                            double NWP = -3791.03 + 547.26 * ca2Count; 
                            double FS = 46.95833 - 15.54167 * pgCount - 0.625 * nscCount + 0.575 * pgCount * nscCount; 



 

 225 

 
                            int NWP_Accept = (NWP >= minNWP) ? 1 : 0; 
                            //int TSR_Accept = (TSR >= minTSR) ? 1 : 0; 
                            int FS_Accept = (FS <= maxFS) ? 1 : 0; 
 
                            int ALL_Accept = ((NWP_Accept == 1) && (FS_Accept == 1)) ? 1 : 0; 
 
                            writer.WriteLine("{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}", 
                                pgCount, ca1Count, ca2Count, nscCount, NWP, FS, NWP_Accept, FS_Accept, ALL_Accept); 
                        } 
                    } 
                } 
            } 
            writer.Close(); 
 
        } 
    } 
} 
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Optimization Output File for US-160 Mixes 
 

SL_NO PG CA1 CA2 NSC TSR NWP FS TSR 
Accept 

NWP 
Accept 

FS 
Accept 

ALL 
Accept 

105 0 45 26 22 103 20021.78 33.767 1 1 1 1 
106 0 45 27 21 99 20021.78 34.342 1 1 1 1 
107 0 45 28 20 95 20021.78 34.917 1 1 1 1 
108 0 45 29 19 91 20021.78 35.492 1 1 1 1 
109 0 45 30 18 87 20021.78 36.067 1 1 1 1 
110 0 45 31 17 83 20021.78 36.642 1 1 1 1 
111 0 45 32 16 79 20021.78 37.217 0 1 1 0 
112 0 45 33 15 75 20021.78 37.792 0 1 1 0 
97 0 44 26 23 103 19165.38 33.192 1 0 1 0 
98 0 44 27 22 99 19165.38 33.767 1 0 1 0 
99 0 44 28 21 95 19165.38 34.342 1 0 1 0 

100 0 44 29 20 91 19165.38 34.917 1 0 1 0 
101 0 44 30 19 87 19165.38 35.492 1 0 1 0 
102 0 44 31 18 83 19165.38 36.067 1 0 1 0 
103 0 44 32 17 79 19165.38 36.642 0 0 1 0 
104 0 44 33 16 75 19165.38 37.217 0 0 1 0 
89 0 43 26 24 103 18308.99 32.617 1 0 1 0 
90 0 43 27 23 99 18308.99 33.192 1 0 1 0 
91 0 43 28 22 95 18308.99 33.767 1 0 1 0 
92 0 43 29 21 91 18308.99 34.342 1 0 1 0 
93 0 43 30 20 87 18308.99 34.917 1 0 1 0 
94 0 43 31 19 83 18308.99 35.492 1 0 1 0 
95 0 43 32 18 79 18308.99 36.067 0 0 1 0 
96 0 43 33 17 75 18308.99 36.642 0 0 1 0 
81 0 42 26 25 103 17452.59 32.042 1 0 1 0 
82 0 42 27 24 99 17452.59 32.617 1 0 1 0 
83 0 42 28 23 95 17452.59 33.192 1 0 1 0 
84 0 42 29 22 91 17452.59 33.767 1 0 1 0 
85 0 42 30 21 87 17452.59 34.342 1 0 1 0 
86 0 42 31 20 83 17452.59 34.917 1 0 1 0 
87 0 42 32 19 79 17452.59 35.492 0 0 1 0 
88 0 42 33 18 75 17452.59 36.067 0 0 1 0 
73 0 41 26 26 103 16596.2 31.467 1 0 1 0 
74 0 41 27 25 99 16596.2 32.042 1 0 1 0 
75 0 41 28 24 95 16596.2 32.617 1 0 1 0 
76 0 41 29 23 91 16596.2 33.192 1 0 1 0 
77 0 41 30 22 87 16596.2 33.767 1 0 1 0 
78 0 41 31 21 83 16596.2 34.342 1 0 1 0 
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79 0 41 32 20 79 16596.2 34.917 0 0 1 0 
80 0 41 33 19 75 16596.2 35.492 0 0 1 0 
65 0 40 26 27 103 15739.8 30.892 1 0 1 0 
66 0 40 27 26 99 15739.8 31.467 1 0 1 0 
67 0 40 28 25 95 15739.8 32.042 1 0 1 0 
68 0 40 29 24 91 15739.8 32.617 1 0 1 0 
69 0 40 30 23 87 15739.8 33.192 1 0 1 0 
70 0 40 31 22 83 15739.8 33.767 1 0 1 0 
71 0 40 32 21 79 15739.8 34.342 0 0 1 0 
72 0 40 33 20 75 15739.8 34.917 0 0 1 0 
57 0 39 26 28 103 14883.41 30.317 1 0 1 0 
58 0 39 27 27 99 14883.41 30.892 1 0 1 0 
59 0 39 28 26 95 14883.41 31.467 1 0 1 0 
60 0 39 29 25 91 14883.41 32.042 1 0 1 0 
61 0 39 30 24 87 14883.41 32.617 1 0 1 0 
62 0 39 31 23 83 14883.41 33.192 1 0 1 0 
63 0 39 32 22 79 14883.41 33.767 0 0 1 0 
64 0 39 33 21 75 14883.41 34.342 0 0 1 0 
49 0 38 26 29 103 14027.01 29.742 1 0 1 0 
50 0 38 27 28 99 14027.01 30.317 1 0 1 0 
51 0 38 28 27 95 14027.01 30.892 1 0 1 0 
52 0 38 29 26 91 14027.01 31.467 1 0 1 0 
53 0 38 30 25 87 14027.01 32.042 1 0 1 0 
54 0 38 31 24 83 14027.01 32.617 1 0 1 0 
55 0 38 32 23 79 14027.01 33.192 0 0 1 0 
56 0 38 33 22 75 14027.01 33.767 0 0 1 0 
41 0 37 26 30 103 13170.62 29.167 1 0 1 0 
42 0 37 27 29 99 13170.62 29.742 1 0 1 0 
43 0 37 28 28 95 13170.62 30.317 1 0 1 0 
44 0 37 29 27 91 13170.62 30.892 1 0 1 0 
45 0 37 30 26 87 13170.62 31.467 1 0 1 0 
46 0 37 31 25 83 13170.62 32.042 1 0 1 0 
47 0 37 32 24 79 13170.62 32.617 0 0 1 0 
48 0 37 33 23 75 13170.62 33.192 0 0 1 0 
33 0 36 26 31 103 12314.22 28.592 1 0 1 0 
34 0 36 27 30 99 12314.22 29.167 1 0 1 0 
35 0 36 28 29 95 12314.22 29.742 1 0 1 0 
36 0 36 29 28 91 12314.22 30.317 1 0 1 0 
37 0 36 30 27 87 12314.22 30.892 1 0 1 0 
38 0 36 31 26 83 12314.22 31.467 1 0 1 0 
39 0 36 32 25 79 12314.22 32.042 0 0 1 0 
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40 0 36 33 24 75 12314.22 32.617 0 0 1 0 
25 0 35 26 32 103 11457.83 28.017 1 0 1 0 
26 0 35 27 31 99 11457.83 28.592 1 0 1 0 
27 0 35 28 30 95 11457.83 29.167 1 0 1 0 
28 0 35 29 29 91 11457.83 29.742 1 0 1 0 
29 0 35 30 28 87 11457.83 30.317 1 0 1 0 
30 0 35 31 27 83 11457.83 30.892 1 0 1 0 
31 0 35 32 26 79 11457.83 31.467 0 0 1 0 
32 0 35 33 25 75 11457.83 32.042 0 0 1 0 
17 0 34 26 33 103 10601.43 27.442 1 0 1 0 
18 0 34 27 32 99 10601.43 28.017 1 0 1 0 
19 0 34 28 31 95 10601.43 28.592 1 0 1 0 
20 0 34 29 30 91 10601.43 29.167 1 0 1 0 
21 0 34 30 29 87 10601.43 29.742 1 0 1 0 
22 0 34 31 28 83 10601.43 30.317 1 0 1 0 
23 0 34 32 27 79 10601.43 30.892 0 0 1 0 
24 0 34 33 26 75 10601.43 31.467 0 0 1 0 
9 0 33 26 34 103 9745.035 26.867 1 0 1 0 

10 0 33 27 33 99 9745.035 27.442 1 0 1 0 
11 0 33 28 32 95 9745.035 28.017 1 0 1 0 
12 0 33 29 31 91 9745.035 28.592 1 0 1 0 
13 0 33 30 30 87 9745.035 29.167 1 0 1 0 
14 0 33 31 29 83 9745.035 29.742 1 0 1 0 
15 0 33 32 28 79 9745.035 30.317 0 0 1 0 
16 0 33 33 27 75 9745.035 30.892 0 0 1 0 
1 0 32 26 35 103 8888.64 26.292 1 0 1 0 
2 0 32 27 34 99 8888.64 26.867 1 0 1 0 
3 0 32 28 33 95 8888.64 27.442 1 0 1 0 
4 0 32 29 32 91 8888.64 28.017 1 0 1 0 
5 0 32 30 31 87 8888.64 28.592 1 0 1 0 
6 0 32 31 30 83 8888.64 29.167 1 0 1 0 
7 0 32 32 29 79 8888.64 29.742 0 0 1 0 
8 0 32 33 28 75 8888.64 30.317 0 0 1 0 

217 1 45 26 22 89.791 8551.075 26.817 1 0 1 0 
218 1 45 27 21 90.637 8551.075 26.742 1 0 1 0 
219 1 45 28 20 91.483 8551.075 26.667 1 0 1 0 
220 1 45 29 19 92.329 8551.075 26.592 1 0 1 0 
221 1 45 30 18 93.175 8551.075 26.517 1 0 1 0 
222 1 45 31 17 94.021 8551.075 26.442 1 0 1 0 
223 1 45 32 16 94.867 8551.075 26.367 1 0 1 0 
224 1 45 33 15 95.713 8551.075 26.292 1 0 1 0 
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209 1 44 26 23 89.791 8319.34 26.892 1 0 1 0 
210 1 44 27 22 90.637 8319.34 26.817 1 0 1 0 
211 1 44 28 21 91.483 8319.34 26.742 1 0 1 0 
212 1 44 29 20 92.329 8319.34 26.667 1 0 1 0 
213 1 44 30 19 93.175 8319.34 26.592 1 0 1 0 
214 1 44 31 18 94.021 8319.34 26.517 1 0 1 0 
215 1 44 32 17 94.867 8319.34 26.442 1 0 1 0 
216 1 44 33 16 95.713 8319.34 26.367 1 0 1 0 
201 1 43 26 24 89.791 8087.605 26.967 1 0 1 0 
202 1 43 27 23 90.637 8087.605 26.892 1 0 1 0 
203 1 43 28 22 91.483 8087.605 26.817 1 0 1 0 
204 1 43 29 21 92.329 8087.605 26.742 1 0 1 0 
205 1 43 30 20 93.175 8087.605 26.667 1 0 1 0 
206 1 43 31 19 94.021 8087.605 26.592 1 0 1 0 
207 1 43 32 18 94.867 8087.605 26.517 1 0 1 0 
208 1 43 33 17 95.713 8087.605 26.442 1 0 1 0 
193 1 42 26 25 89.791 7855.87 27.042 1 0 1 0 
194 1 42 27 24 90.637 7855.87 26.967 1 0 1 0 
195 1 42 28 23 91.483 7855.87 26.892 1 0 1 0 
196 1 42 29 22 92.329 7855.87 26.817 1 0 1 0 
197 1 42 30 21 93.175 7855.87 26.742 1 0 1 0 
198 1 42 31 20 94.021 7855.87 26.667 1 0 1 0 
199 1 42 32 19 94.867 7855.87 26.592 1 0 1 0 
200 1 42 33 18 95.713 7855.87 26.517 1 0 1 0 
185 1 41 26 26 89.791 7624.135 27.117 1 0 1 0 
186 1 41 27 25 90.637 7624.135 27.042 1 0 1 0 
187 1 41 28 24 91.483 7624.135 26.967 1 0 1 0 
188 1 41 29 23 92.329 7624.135 26.892 1 0 1 0 
189 1 41 30 22 93.175 7624.135 26.817 1 0 1 0 
190 1 41 31 21 94.021 7624.135 26.742 1 0 1 0 
191 1 41 32 20 94.867 7624.135 26.667 1 0 1 0 
192 1 41 33 19 95.713 7624.135 26.592 1 0 1 0 
177 1 40 26 27 89.791 7392.4 27.192 1 0 1 0 
178 1 40 27 26 90.637 7392.4 27.117 1 0 1 0 
179 1 40 28 25 91.483 7392.4 27.042 1 0 1 0 
180 1 40 29 24 92.329 7392.4 26.967 1 0 1 0 
181 1 40 30 23 93.175 7392.4 26.892 1 0 1 0 
182 1 40 31 22 94.021 7392.4 26.817 1 0 1 0 
183 1 40 32 21 94.867 7392.4 26.742 1 0 1 0 
184 1 40 33 20 95.713 7392.4 26.667 1 0 1 0 
169 1 39 26 28 89.791 7160.665 27.267 1 0 1 0 
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170 1 39 27 27 90.637 7160.665 27.192 1 0 1 0 
171 1 39 28 26 91.483 7160.665 27.117 1 0 1 0 
172 1 39 29 25 92.329 7160.665 27.042 1 0 1 0 
173 1 39 30 24 93.175 7160.665 26.967 1 0 1 0 
174 1 39 31 23 94.021 7160.665 26.892 1 0 1 0 
175 1 39 32 22 94.867 7160.665 26.817 1 0 1 0 
176 1 39 33 21 95.713 7160.665 26.742 1 0 1 0 
161 1 38 26 29 89.791 6928.93 27.342 1 0 1 0 
162 1 38 27 28 90.637 6928.93 27.267 1 0 1 0 
163 1 38 28 27 91.483 6928.93 27.192 1 0 1 0 
164 1 38 29 26 92.329 6928.93 27.117 1 0 1 0 
165 1 38 30 25 93.175 6928.93 27.042 1 0 1 0 
166 1 38 31 24 94.021 6928.93 26.967 1 0 1 0 
167 1 38 32 23 94.867 6928.93 26.892 1 0 1 0 
168 1 38 33 22 95.713 6928.93 26.817 1 0 1 0 
153 1 37 26 30 89.791 6697.195 27.417 1 0 1 0 
154 1 37 27 29 90.637 6697.195 27.342 1 0 1 0 
155 1 37 28 28 91.483 6697.195 27.267 1 0 1 0 
156 1 37 29 27 92.329 6697.195 27.192 1 0 1 0 
157 1 37 30 26 93.175 6697.195 27.117 1 0 1 0 
158 1 37 31 25 94.021 6697.195 27.042 1 0 1 0 
159 1 37 32 24 94.867 6697.195 26.967 1 0 1 0 
160 1 37 33 23 95.713 6697.195 26.892 1 0 1 0 
145 1 36 26 31 89.791 6465.46 27.492 1 0 1 0 
146 1 36 27 30 90.637 6465.46 27.417 1 0 1 0 
147 1 36 28 29 91.483 6465.46 27.342 1 0 1 0 
148 1 36 29 28 92.329 6465.46 27.267 1 0 1 0 
149 1 36 30 27 93.175 6465.46 27.192 1 0 1 0 
150 1 36 31 26 94.021 6465.46 27.117 1 0 1 0 
151 1 36 32 25 94.867 6465.46 27.042 1 0 1 0 
152 1 36 33 24 95.713 6465.46 26.967 1 0 1 0 
137 1 35 26 32 89.791 6233.725 27.567 1 0 1 0 
138 1 35 27 31 90.637 6233.725 27.492 1 0 1 0 
139 1 35 28 30 91.483 6233.725 27.417 1 0 1 0 
140 1 35 29 29 92.329 6233.725 27.342 1 0 1 0 
141 1 35 30 28 93.175 6233.725 27.267 1 0 1 0 
142 1 35 31 27 94.021 6233.725 27.192 1 0 1 0 
143 1 35 32 26 94.867 6233.725 27.117 1 0 1 0 
144 1 35 33 25 95.713 6233.725 27.042 1 0 1 0 
129 1 34 26 33 89.791 6001.99 27.642 1 0 1 0 
130 1 34 27 32 90.637 6001.99 27.567 1 0 1 0 
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131 1 34 28 31 91.483 6001.99 27.492 1 0 1 0 
132 1 34 29 30 92.329 6001.99 27.417 1 0 1 0 
133 1 34 30 29 93.175 6001.99 27.342 1 0 1 0 
134 1 34 31 28 94.021 6001.99 27.267 1 0 1 0 
135 1 34 32 27 94.867 6001.99 27.192 1 0 1 0 
136 1 34 33 26 95.713 6001.99 27.117 1 0 1 0 
121 1 33 26 34 89.791 5770.255 27.717 1 0 1 0 
122 1 33 27 33 90.637 5770.255 27.642 1 0 1 0 
123 1 33 28 32 91.483 5770.255 27.567 1 0 1 0 
124 1 33 29 31 92.329 5770.255 27.492 1 0 1 0 
125 1 33 30 30 93.175 5770.255 27.417 1 0 1 0 
126 1 33 31 29 94.021 5770.255 27.342 1 0 1 0 
127 1 33 32 28 94.867 5770.255 27.267 1 0 1 0 
128 1 33 33 27 95.713 5770.255 27.192 1 0 1 0 
113 1 32 26 35 89.791 5538.52 27.792 1 0 1 0 
114 1 32 27 34 90.637 5538.52 27.717 1 0 1 0 
115 1 32 28 33 91.483 5538.52 27.642 1 0 1 0 
116 1 32 29 32 92.329 5538.52 27.567 1 0 1 0 
117 1 32 30 31 93.175 5538.52 27.492 1 0 1 0 
118 1 32 31 30 94.021 5538.52 27.417 1 0 1 0 
119 1 32 32 29 94.867 5538.52 27.342 1 0 1 0 
120 1 32 33 28 95.713 5538.52 27.267 1 0 1 0 
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Optimization Output File for K-25 Mixes 
 

SL_NO PG CA1 CA2 NSC NWP FS NWP_Accept FS_Accept ALL_Accept 
121 0 40 43 15 19934.75 37.58333 0 1 0 
242 1 40 43 15 19934.75 30.66666 0 1 0 
110 0 39 43 16 19660 36.95833 0 1 0 
120 0 40 42 16 19660 36.95833 0 1 0 
231 1 39 43 16 19660 30.61666 0 1 0 
241 1 40 42 16 19660 30.61666 0 1 0 
99 0 38 43 17 19385.25 36.33333 0 1 0 
109 0 39 42 17 19385.25 36.33333 0 1 0 
119 0 40 41 17 19385.25 36.33333 0 1 0 
220 1 38 43 17 19385.25 30.56666 0 1 0 
230 1 39 42 17 19385.25 30.56666 0 1 0 
240 1 40 41 17 19385.25 30.56666 0 1 0 
88 0 37 43 18 19110.5 35.70833 0 1 0 
98 0 38 42 18 19110.5 35.70833 0 1 0 
108 0 39 41 18 19110.5 35.70833 0 1 0 
118 0 40 40 18 19110.5 35.70833 0 1 0 
209 1 37 43 18 19110.5 30.51666 0 1 0 
219 1 38 42 18 19110.5 30.51666 0 1 0 
229 1 39 41 18 19110.5 30.51666 0 1 0 
239 1 40 40 18 19110.5 30.51666 0 1 0 
77 0 36 43 19 18835.75 35.08333 0 1 0 
87 0 37 42 19 18835.75 35.08333 0 1 0 
97 0 38 41 19 18835.75 35.08333 0 1 0 
107 0 39 40 19 18835.75 35.08333 0 1 0 
117 0 40 39 19 18835.75 35.08333 0 1 0 
198 1 36 43 19 18835.75 30.46666 0 1 0 
208 1 37 42 19 18835.75 30.46666 0 1 0 
218 1 38 41 19 18835.75 30.46666 0 1 0 
228 1 39 40 19 18835.75 30.46666 0 1 0 
238 1 40 39 19 18835.75 30.46666 0 1 0 
66 0 35 43 20 18561 34.45833 0 1 0 
76 0 36 42 20 18561 34.45833 0 1 0 
86 0 37 41 20 18561 34.45833 0 1 0 
96 0 38 40 20 18561 34.45833 0 1 0 
106 0 39 39 20 18561 34.45833 0 1 0 
116 0 40 38 20 18561 34.45833 0 1 0 
187 1 35 43 20 18561 30.41666 0 1 0 
197 1 36 42 20 18561 30.41666 0 1 0 
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207 1 37 41 20 18561 30.41666 0 1 0 
217 1 38 40 20 18561 30.41666 0 1 0 
227 1 39 39 20 18561 30.41666 0 1 0 
237 1 40 38 20 18561 30.41666 0 1 0 
55 0 34 43 21 18286.25 33.83333 0 1 0 
65 0 35 42 21 18286.25 33.83333 0 1 0 
75 0 36 41 21 18286.25 33.83333 0 1 0 
85 0 37 40 21 18286.25 33.83333 0 1 0 
95 0 38 39 21 18286.25 33.83333 0 1 0 
105 0 39 38 21 18286.25 33.83333 0 1 0 
115 0 40 37 21 18286.25 33.83333 0 1 0 
176 1 34 43 21 18286.25 30.36666 0 1 0 
186 1 35 42 21 18286.25 30.36666 0 1 0 
196 1 36 41 21 18286.25 30.36666 0 1 0 
206 1 37 40 21 18286.25 30.36666 0 1 0 
216 1 38 39 21 18286.25 30.36666 0 1 0 
226 1 39 38 21 18286.25 30.36666 0 1 0 
236 1 40 37 21 18286.25 30.36666 0 1 0 
44 0 33 43 22 18011.5 33.20833 0 1 0 
54 0 34 42 22 18011.5 33.20833 0 1 0 
64 0 35 41 22 18011.5 33.20833 0 1 0 
74 0 36 40 22 18011.5 33.20833 0 1 0 
84 0 37 39 22 18011.5 33.20833 0 1 0 
94 0 38 38 22 18011.5 33.20833 0 1 0 
104 0 39 37 22 18011.5 33.20833 0 1 0 
114 0 40 36 22 18011.5 33.20833 0 1 0 
165 1 33 43 22 18011.5 30.31666 0 1 0 
175 1 34 42 22 18011.5 30.31666 0 1 0 
185 1 35 41 22 18011.5 30.31666 0 1 0 
195 1 36 40 22 18011.5 30.31666 0 1 0 
205 1 37 39 22 18011.5 30.31666 0 1 0 
215 1 38 38 22 18011.5 30.31666 0 1 0 
225 1 39 37 22 18011.5 30.31666 0 1 0 
235 1 40 36 22 18011.5 30.31666 0 1 0 
33 0 32 43 23 17736.75 32.58333 0 1 0 
43 0 33 42 23 17736.75 32.58333 0 1 0 
53 0 34 41 23 17736.75 32.58333 0 1 0 
63 0 35 40 23 17736.75 32.58333 0 1 0 
73 0 36 39 23 17736.75 32.58333 0 1 0 
83 0 37 38 23 17736.75 32.58333 0 1 0 
93 0 38 37 23 17736.75 32.58333 0 1 0 
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103 0 39 36 23 17736.75 32.58333 0 1 0 
113 0 40 35 23 17736.75 32.58333 0 1 0 
154 1 32 43 23 17736.75 30.26666 0 1 0 
164 1 33 42 23 17736.75 30.26666 0 1 0 
174 1 34 41 23 17736.75 30.26666 0 1 0 
184 1 35 40 23 17736.75 30.26666 0 1 0 
194 1 36 39 23 17736.75 30.26666 0 1 0 
204 1 37 38 23 17736.75 30.26666 0 1 0 
214 1 38 37 23 17736.75 30.26666 0 1 0 
224 1 39 36 23 17736.75 30.26666 0 1 0 
234 1 40 35 23 17736.75 30.26666 0 1 0 
22 0 31 43 24 17462 31.95833 0 1 0 
32 0 32 42 24 17462 31.95833 0 1 0 
42 0 33 41 24 17462 31.95833 0 1 0 
52 0 34 40 24 17462 31.95833 0 1 0 
62 0 35 39 24 17462 31.95833 0 1 0 
72 0 36 38 24 17462 31.95833 0 1 0 
82 0 37 37 24 17462 31.95833 0 1 0 
92 0 38 36 24 17462 31.95833 0 1 0 
102 0 39 35 24 17462 31.95833 0 1 0 
112 0 40 34 24 17462 31.95833 0 1 0 
143 1 31 43 24 17462 30.21666 0 1 0 
153 1 32 42 24 17462 30.21666 0 1 0 
163 1 33 41 24 17462 30.21666 0 1 0 
173 1 34 40 24 17462 30.21666 0 1 0 
183 1 35 39 24 17462 30.21666 0 1 0 
193 1 36 38 24 17462 30.21666 0 1 0 
203 1 37 37 24 17462 30.21666 0 1 0 
213 1 38 36 24 17462 30.21666 0 1 0 
223 1 39 35 24 17462 30.21666 0 1 0 
233 1 40 34 24 17462 30.21666 0 1 0 
11 0 30 43 25 17187.25 31.33333 0 1 0 
21 0 31 42 25 17187.25 31.33333 0 1 0 
31 0 32 41 25 17187.25 31.33333 0 1 0 
41 0 33 40 25 17187.25 31.33333 0 1 0 
51 0 34 39 25 17187.25 31.33333 0 1 0 
61 0 35 38 25 17187.25 31.33333 0 1 0 
71 0 36 37 25 17187.25 31.33333 0 1 0 
81 0 37 36 25 17187.25 31.33333 0 1 0 
91 0 38 35 25 17187.25 31.33333 0 1 0 
101 0 39 34 25 17187.25 31.33333 0 1 0 
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111 0 40 33 25 17187.25 31.33333 0 1 0 
132 1 30 43 25 17187.25 30.16666 0 1 0 
142 1 31 42 25 17187.25 30.16666 0 1 0 
152 1 32 41 25 17187.25 30.16666 0 1 0 
162 1 33 40 25 17187.25 30.16666 0 1 0 
172 1 34 39 25 17187.25 30.16666 0 1 0 
182 1 35 38 25 17187.25 30.16666 0 1 0 
192 1 36 37 25 17187.25 30.16666 0 1 0 
202 1 37 36 25 17187.25 30.16666 0 1 0 
212 1 38 35 25 17187.25 30.16666 0 1 0 
222 1 39 34 25 17187.25 30.16666 0 1 0 
232 1 40 33 25 17187.25 30.16666 0 1 0 
10 0 30 42 26 16912.5 30.70833 0 1 0 
20 0 31 41 26 16912.5 30.70833 0 1 0 
30 0 32 40 26 16912.5 30.70833 0 1 0 
40 0 33 39 26 16912.5 30.70833 0 1 0 
50 0 34 38 26 16912.5 30.70833 0 1 0 
60 0 35 37 26 16912.5 30.70833 0 1 0 
70 0 36 36 26 16912.5 30.70833 0 1 0 
80 0 37 35 26 16912.5 30.70833 0 1 0 
90 0 38 34 26 16912.5 30.70833 0 1 0 
100 0 39 33 26 16912.5 30.70833 0 1 0 
131 1 30 42 26 16912.5 30.11666 0 1 0 
141 1 31 41 26 16912.5 30.11666 0 1 0 
151 1 32 40 26 16912.5 30.11666 0 1 0 
161 1 33 39 26 16912.5 30.11666 0 1 0 
171 1 34 38 26 16912.5 30.11666 0 1 0 
181 1 35 37 26 16912.5 30.11666 0 1 0 
191 1 36 36 26 16912.5 30.11666 0 1 0 
201 1 37 35 26 16912.5 30.11666 0 1 0 
211 1 38 34 26 16912.5 30.11666 0 1 0 
221 1 39 33 26 16912.5 30.11666 0 1 0 
9 0 30 41 27 16637.75 30.08333 0 1 0 

19 0 31 40 27 16637.75 30.08333 0 1 0 
29 0 32 39 27 16637.75 30.08333 0 1 0 
39 0 33 38 27 16637.75 30.08333 0 1 0 
49 0 34 37 27 16637.75 30.08333 0 1 0 
59 0 35 36 27 16637.75 30.08333 0 1 0 
69 0 36 35 27 16637.75 30.08333 0 1 0 
79 0 37 34 27 16637.75 30.08333 0 1 0 
89 0 38 33 27 16637.75 30.08333 0 1 0 
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130 1 30 41 27 16637.75 30.06666 0 1 0 
140 1 31 40 27 16637.75 30.06666 0 1 0 
150 1 32 39 27 16637.75 30.06666 0 1 0 
160 1 33 38 27 16637.75 30.06666 0 1 0 
170 1 34 37 27 16637.75 30.06666 0 1 0 
180 1 35 36 27 16637.75 30.06666 0 1 0 
190 1 36 35 27 16637.75 30.06666 0 1 0 
200 1 37 34 27 16637.75 30.06666 0 1 0 
210 1 38 33 27 16637.75 30.06666 0 1 0 
8 0 30 40 28 16363 29.45833 0 1 0 

18 0 31 39 28 16363 29.45833 0 1 0 
28 0 32 38 28 16363 29.45833 0 1 0 
38 0 33 37 28 16363 29.45833 0 1 0 
48 0 34 36 28 16363 29.45833 0 1 0 
58 0 35 35 28 16363 29.45833 0 1 0 
68 0 36 34 28 16363 29.45833 0 1 0 
78 0 37 33 28 16363 29.45833 0 1 0 
129 1 30 40 28 16363 30.01666 0 1 0 
139 1 31 39 28 16363 30.01666 0 1 0 
149 1 32 38 28 16363 30.01666 0 1 0 
159 1 33 37 28 16363 30.01666 0 1 0 
169 1 34 36 28 16363 30.01666 0 1 0 
179 1 35 35 28 16363 30.01666 0 1 0 
189 1 36 34 28 16363 30.01666 0 1 0 
199 1 37 33 28 16363 30.01666 0 1 0 
7 0 30 39 29 16088.25 28.83333 0 1 0 

17 0 31 38 29 16088.25 28.83333 0 1 0 
27 0 32 37 29 16088.25 28.83333 0 1 0 
37 0 33 36 29 16088.25 28.83333 0 1 0 
47 0 34 35 29 16088.25 28.83333 0 1 0 
57 0 35 34 29 16088.25 28.83333 0 1 0 
67 0 36 33 29 16088.25 28.83333 0 1 0 
128 1 30 39 29 16088.25 29.96666 0 1 0 
138 1 31 38 29 16088.25 29.96666 0 1 0 
148 1 32 37 29 16088.25 29.96666 0 1 0 
158 1 33 36 29 16088.25 29.96666 0 1 0 
168 1 34 35 29 16088.25 29.96666 0 1 0 
178 1 35 34 29 16088.25 29.96666 0 1 0 
188 1 36 33 29 16088.25 29.96666 0 1 0 
6 0 30 38 30 15813.5 28.20833 0 1 0 

16 0 31 37 30 15813.5 28.20833 0 1 0 
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26 0 32 36 30 15813.5 28.20833 0 1 0 
36 0 33 35 30 15813.5 28.20833 0 1 0 
46 0 34 34 30 15813.5 28.20833 0 1 0 
56 0 35 33 30 15813.5 28.20833 0 1 0 
127 1 30 38 30 15813.5 29.91666 0 1 0 
137 1 31 37 30 15813.5 29.91666 0 1 0 
147 1 32 36 30 15813.5 29.91666 0 1 0 
157 1 33 35 30 15813.5 29.91666 0 1 0 
167 1 34 34 30 15813.5 29.91666 0 1 0 
177 1 35 33 30 15813.5 29.91666 0 1 0 
5 0 30 37 31 15538.75 27.58333 0 1 0 

15 0 31 36 31 15538.75 27.58333 0 1 0 
25 0 32 35 31 15538.75 27.58333 0 1 0 
35 0 33 34 31 15538.75 27.58333 0 1 0 
45 0 34 33 31 15538.75 27.58333 0 1 0 
126 1 30 37 31 15538.75 29.86666 0 1 0 
136 1 31 36 31 15538.75 29.86666 0 1 0 
146 1 32 35 31 15538.75 29.86666 0 1 0 
156 1 33 34 31 15538.75 29.86666 0 1 0 
166 1 34 33 31 15538.75 29.86666 0 1 0 
4 0 30 36 32 15264 26.95833 0 1 0 

14 0 31 35 32 15264 26.95833 0 1 0 
24 0 32 34 32 15264 26.95833 0 1 0 
34 0 33 33 32 15264 26.95833 0 1 0 
125 1 30 36 32 15264 29.81666 0 1 0 
135 1 31 35 32 15264 29.81666 0 1 0 
145 1 32 34 32 15264 29.81666 0 1 0 
155 1 33 33 32 15264 29.81666 0 1 0 
3 0 30 35 33 14989.25 26.33333 0 1 0 

13 0 31 34 33 14989.25 26.33333 0 1 0 
23 0 32 33 33 14989.25 26.33333 0 1 0 
124 1 30 35 33 14989.25 29.76666 0 1 0 
134 1 31 34 33 14989.25 29.76666 0 1 0 
144 1 32 33 33 14989.25 29.76666 0 1 0 
2 0 30 34 34 14714.5 25.70833 0 1 0 

12 0 31 33 34 14714.5 25.70833 0 1 0 
123 1 30 34 34 14714.5 29.71666 0 1 0 
133 1 31 33 34 14714.5 29.71666 0 1 0 
1 0 30 33 35 14439.75 25.08333 0 1 0 

122 1 30 33 35 14439.75 29.66666 0 1 0 
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