

VHF & UHF ENERGY HARVESTING RADIO SYSTEM

PHYSICAL AND MAC LAYER CONSIDERATIONS

by

XIAOHU ZHANG

B.S., Xi’an Jiaotong University, 2001

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Electrical and Computer Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009

Approved by:

Major Professor
William B. Kuhn

Abstract

Wireless Sensor Network industrial and civilian applications have been moved closer to

us since they were originally developed for defense applications. They have been or will be

widely used in industrial process monitoring and control, earth quake monitoring, healthcare

applications, construction health monitoring, home automation, traffic control, and space

exploration. The IEEE802.15.4 standard defines the PHY and MAC layers for low power

wireless sensor networks. However, applications and research of wireless sensor networking are

centered on battery powered devices. To remove the battery from the system is the ultimate goal

of this research by using Energy Harvesting technology, which will largely reduce the wireless

sensor network maintenance cost, increase the option open to application environments and push

the speed of wireless sensor network industrialization.

This thesis tackles the problem of RF link budget and PHY layer design for Energy

Harvesting Wireless Sensor Network Nodes, through a modification to PHY/MAC layers. To this

end, a prototype of energy harvesting radio is developed that hinges on burst-communication and

solar cell energy harvesting techniques. The choice of operating frequency is considered relative

to transmission range, antenna technology and RF link budget, and quantified by propagation

measurements at four unlicensed frequencies in the VHF through UHF spectrums. A short

preamble, PHY payload protocol frame structure and synchronization method are also proposed

in order to support long sleep period duty cycle necessary in Energy Harvesting Radio systems.

Some related work has recently begun under a standardization effort known as 802.15.4f. It is

hoped that this thesis will contribute to this effort.

 iii

Table of Contents

List of Figures ... vii

List of Tables .. x

Acknowledgements.. xi

CHAPTER 1 Introduction... 1

1.1 The Future of Wireless Sensor Networks ... 1

1.2 Current Research on Wireless Sensor Nodes ... 1

1.3 Challenges for Energy Harvesting Wireless Sensor Nodes.. 2

1.4 Thesis Organization .. 2

CHAPTER 2 K-State Energy Harvesting Radio (EHR) Prototype Demo Board..................... 4

2.1 RF transmission mode Versus Power Consumption... 5

2.2 Design Principle.. 6

2.3 Hardware Design .. 7

2.4 Software Design.. 11

2.4.1 RFIC Programming... 11

2.4.2 Duty Cycle Design.. 13

2.4.2.1 High CPU Clock, Software Control TX ... 14

2.4.2.2 Low CPU Clock, Hardware Control TX... 15

2.4.2.3 Computing Active and Sleep Time... 16

2.5 Test Results... 17

2.5.1 Lab Test .. 17

2.5.1.1 Current Consumption Test.. 17

2.5.1.2 The Burst Communication Test .. 18

2.5.1.3 The System Reliability Test.. 21

2.5.2 Outdoor Test ... 21

2.6 Conclusions... 22

CHAPTER 3 RF Link Budgets of EHR Systems ... 23

3.1 RF Link Budget Factors.. 23

3.1.1 Propagation ... 24

 iv

3.1.2 Antennas ... 25

3.1.2.1 Reciprocity.. 25

3.1.2.2 Antenna Directivity... 25

3.1.2.3 Gain... 26

3.1.2.4 Effective Area ... 26

3.1.2.5 Antenna Size ... 26

3.1.3 Link Budget .. 27

3.1.3.1 Antenna Gain Effects on Link Budget.. 27

3.1.3.2 Link Budget Examples.. 28

3.1.4 RF Link Budget and The System Design of EHR .. 30

3.2 UHF/VHF Propagation Comparisons... 30

3.2.1 Experimental Setup... 31

3.2.1.1 Propagation Links ... 31

3.2.1.2 Experiment Environment .. 31

3.2.1.3 Antennas ... 34

3.2.1.4 Transmitter and Receiver.. 37

3.2.2 Experiment Results ... 39

3.2.2.1 Received Signal Strength Measurements at Each Frequency........................... 39

3.2.2.2 Directional Antennas versus Monopole Antenna Results 42

3.2.2.3 Path Loss Exponent Comparison.. 46

3.2.2.4 Comparison of Four Frequency’s Propagation... 47

CHAPTER 4 Energy Harvesting Radio System PHY/MAC layer Considerations................ 49

4.1 IEEE802.15.4 & ZigBee Overview .. 50

4.1.1 PHY General Definition ... 50

4.1.2 MAC Layer Synchronization.. 51

4.2 Proposed EHR System PHY Layer .. 54

4.2.1 PHY General Definition ... 55

4.2.2 PHY Frame Structure.. 56

4.2.3 Preamble Design ... 57

4.2.3.1 Preamble Length versus Start of Frame Detecting Error.................................. 57

4.2.3.2 Method for Improving Short Preamble Frame Performance 60

 v

4.2.3.3 Preamble Length versus Energy Comsumption.. 61

4.3 Proposed EHR MAC Layer Synchronization... 62

4.3.1 Pure-EHR Network Obtaining Synchronization... 63

4.3.2 Hybrid-EHR Networks for Obtaining Synchronization ... 66

4.3.3 Keeping Synchronization.. 69

4.4 Conclusions... 69

CHAPTER 5 Conclusions... 71

5.1 Summary... 71

5.2 Challenges and Future Directions... 72

Bibliography ... 73

Appedix A - PHY Layer implementation of K-State Energy Harvesting Receiver System 1

A.1 RFIC Front-end.. 1

A.2 DSP Baseband Design ... 4

A.2.1 Subsampling.. 4

A.2.2 Digital Low Pass Matched Filter .. 6

A.2.3 Bit-sync ... 9

A.3 DSP Software Implementation .. 12

A.3.1 Microcontroller Configurations .. 12

A.3.2 Software Architecture ... 14

A.3.3 Test Result... 21

A.4 EHR DSP Code.. 25

A.4.1 ADC, LPF, and Bit-Sync File ... 25

A.4.2 PIC Initialization file... 30

A.4.3 ISR Interrupt Process file .. 35

Appedix B - K-State Energy Harvesting Demo Board Schematic ... 37

Appedix C - Frequency Synthesis Board Schematic and Layout ... 39

Appedix D - K-State EHR Demo Board Code for 4MHz CPU Clock ... 41

Appedix E - K-State EHR Demo Board Code for 400kHz CPU Clock 51

Appedix F - Frequency Synthesizer PIC12F509 Code... 61

F.1 151MHz Board ... 61

F.2 433MHz Board ... 66

 vi

F.3 902MHz Board ... 71

F.4 2400MHz Board ... 76

 vii

List of Figures

Figure 2-1 K-State Energy Harvesting Radio prototype board ... 5

Figure 2-2 RF operation mode (a) Continuous operation mode (b) Burst operation mode............ 6

Figure 2-3 K-State EHR demo board schematic... 9

Figure 2-4 CASIO SA5511S4 solar cells and CASIO fx-260SLOAR Calculators........................ 9

Figure 2-5 PIC16F676 Pin Diagrams ... 10

Figure 2-6 K-State Transceiver RFIC block diagram [10] ... 11

Figure 2-7 K-State RFIC programming register fields [10] ... 12

Figure 2-8 RFIC SPI Programming Timing sequence.. 13

Figure 2-9 1.1% Duty cycle with 4MHz CPU clock (above) times diagram (below)screen

captures of RF output on scope... 15

Figure 2-10 1.3% Duty Cycle with 400kHz CPU clock... 16

Figure 2-11 1% duty cycly capacitor charge-discharge process... 17

Figure 2-12 Microcontroller PIC16F676 Current consumption measurement with 4MHz clock

(a) ACTIVE mode current (b) SLEEP mode current.. 18

Figure 2-13 Four burst clusters with 1% duty cycle ... 19

Figure 2-14 One Active period command signal and burst signal of 400kHz Clock Speed design

... 19

Figure 2-15 Five burst period ... 20

Figure 2-16 433.92MHz modulation signal.. 21

Figure 2-17 Yaesu VR-120 Receiver.. 21

Figure 2-18 EH demo board transmitting range test (a) Satellite view of 0.2km transmission

range (b) view look back from parking lot (c) view looking inside hallway of RA2097 [11]

... 22

Figure 3-1 Calculated range at 433 MHz with dipole antennas and 1 kbps data rate................... 29

Figure 3-2 Calculated range at 2.4 GHz with dipole antennas and 1 kbps data rate 29

Figure 3-3 Two type of experimental Propagation Links... 31

Figure 3-4 Rathbone Hall Engineering Building constructions.. 32

 viii

Figure 3-5 Measurements location marked on the indoor floor plan and outdoor map : Left is 2nd

floor plan of Rathbone Hall; Right is the Google earth map of Rathbone Hall.................... 33

Figure 3-6 Two path used for lower frequency transmitting range measurement 33

Figure 3-7 Antennas used in measurement... 34

Figure 3-8 Monopole antenna, Ground plane and antenna reflection coefficients measurements35

Figure 3-9 151MHz directional antenna S11=-14.9dB, monopole antenna S11=-12.7dB........... 36

Figure 3-10 433MHz directional antenna S11=-28dB, monopole antenna S11=-12.9dB............ 36

Figure 3-11 902MHz directional antenna S11=-12.5dB, monopole antenna S11=-10dB............ 36

Figure 3-12 2400MHz directional antenna S11=-31dB, monopole antenna S11=-13.3dB.......... 37

Figure 3-13 Portable 10mW Transmitter photo.. 37

Figure 3-14 Receiver—Spectrum and monopole antenna .. 39

Figure 3-15 151MHz two different link propagation with Path loss Exponent............................ 43

Figure 3-16 433MHz two different link propagation with Path loss Exponent............................ 44

Figure 3-17 902MHz two different link propagation with Path loss Exponent............................ 45

Figure 3-18 2400MHz two different link propagation with Path loss Exponent.......................... 46

Figure 3-19 Four frequencies propagation comparison .. 47

Figure 4-1 K-State Micro-Transceiver Demo Board .. 50

Figure 4-2 Frequency band and Data rate of IEEE802.15.4 (IEEE802.15.4 2006) 51

Figure 4-3 ZigBee beacon-enabled TX / RX mode [1] .. 51

Figure 4-4 IEEE 802.15.4 Superframe structure [1]... 52

Figure 4-5 IEEE802.15.4 super frame sequence with different Beacon Oder.............................. 52

Figure 4-6 IEEE802.15.4 Sync Time Vs. Duty Cycle.. 54

Figure 4-7 PHY Frame Format ... 56

Figure 4-8 Preamble test experiment environment... 58

Figure 4-9 Error Probability of SOF versus Input Signal Power of varied preamble length........ 59

Figure 4-10 SOF detection with various preamble length .. 60

Figure 4-11 Energy Consumption VS. Preamble Length ... 62

Figure 4-12 Beacon Frame format.. 63

Figure 4-13 Beacon searching process ... 64

Figure 4-14 Beacon detected process ... 64

Figure 4-15 Energy Harvesting Radio Sync time versus Duty cycle ... 66

 ix

Figure 4-16 Hybrid-EHR System Synchronization .. 68

Figure 5-1 IF filter and wideband FM modulation ... 2

Figure 5-2 FSK demodulation (a) Correlator Receiver (b) Non-correlator Receiver..................... 2

Figure 5-3 One-shot FSK demodulation: (a) Modulation Data, (b) FM Modulated waveform, (c)

Zero cross Sampling clock, (d) Zero cross pulse & average energy curve............................. 3

Figure 5-4 Subsampling 10.7 MHz with 75kHz sampling rate .. 5

Figure 5-5 Two pole IIR digital low pass filter .. 6

Figure 5-6 Frequency response comparison of designed 1 kHz Low Pass Matched Filter with

MATLAB function plot .. 8

Figure 5-7 output of LPMF (a) Ideal output (b) real output ... 9

Figure 5-8 Bit-sync data versus clock... 10

Figure 5-9 Bit-sync Finite State Machine (FSM) ... 11

Figure 5-10 K-State Micro-Transceiver Demo board block diagram... 12

Figure 5-11 FSK Demodulation DSP software flow .. 15

Figure 5-12 Timer2 ISR.. 16

Figure 5-13 LPMF procedure ... 17

Figure 5-14 LPF calculation coefficient b products ... 19

Figure 5-15 LPF calculation coefficients a products .. 20

Figure 5-16 Calculated X shifts .. 21

Figure 5-17 PHY Layer DSP test enviroment ... 21

Figure 5-18 10kHz Bandwith FSK modulation .. 22

Figure 5-19 "Zero-cross" detection... 22

Figure 5-20 512bps Bit-sync Test restults .. 23

Figure 5-21 512bps Bit-sync Test restults .. 24

Figure 5-22 Schematic .. 37

Figure 5-23 Layout ... 38

Figure 5-24 Schematic .. 39

Figure 5-25 Layout ... 40

 x

List of Tables

Table 2-1 Demo board Electrical Specification.. 7

Table 3-1 quarter-wave antenna size and effective aperture of dipole antenna............................ 34

Table 3-2 Components list of 10mW un-modulated transmitter .. 38

Table 3-3 151MHz Propagation measurement results.. 39

Table 3-4 433MHz Propagation measurement results.. 40

Table 3-5 902MHz Propagation measurement results.. 41

Table 3-6 2400MHz Propagation measurement results.. 41

Table 3-7 Path Loss Exponents comparison... 46

Table 4-1 IEEE802.15.4 Synchronization time calculation.. 53

Table 4-2 Barker code... 56

Table 4-3 Preamble Length VS. Energy when data rate is 512bps .. 61

Table 4-4 Sync time and power consumption comparison of EHR and IEEE802.15.4 standard

radio .. 65

Table A-1 Two pole LPF coefficients .. 7

Table A-2 Bit shift and product factor.. 18

Table A-3 LPF coefficients 2n expression .. 18

 xi

Acknowledgements

This thesis is obviously not the product of my own individual efforts, but the fruit of

intense collaboration. First and the foremost, I would like to thank my major advisor, Professor

Bill Kuhn for his excellent guidance, above and beyond the mere technical research. He has truly

given meaning to the word “advisor”, helping me every step of the academic way. In addition, I

would also like to express my gratitude towards the other members of my committee, Dr. Don

Gruenbacher and Dr. Bala Natarajan, for their support and feedback, and my colleagues in

Wireless Communication Hardware design group.

I also gratefully acknowledge our research sponsor – Peregrine Semiconductor for their

support.

 1

CHAPTER 1 Introduction

1.1 The Future of Wireless Sensor Networks
Wireless sensor networks (WSN) and associated wireless sensor node devices in

industrial and civilian applications have seen rapid growth since they were originally motivated

by military applications. They have been or will be widely used in industrial process monitoring

and controls, earthquake monitoring, healthcare applications, construction health monitoring, and

home automation and traffic control. Additionally, they will help humans to explore outer space,

planets, and moons. For example, future Mars rovers could plant hundreds of WSN nodes on the

planet during exploration and then collect data from all nodes over time. They will help humans

to inspect and monitor the south and north poles, deserts, virgin forests, unfathomable depths of

the oceans and no man’s lands on the earth. To implement all these applications, battery-free and

Energy Harvesting Radio(EHR) nodes are preferred. Energy harvesting nodes use energy

captured from natural or human environments, such as solar, thermal, wind, biological and

kinetic processes. Unlike traditional battery powered systems, the advantages of energy

harvesting devices reduce or eliminated the need for manual intervention. Moreover, waste from

depleted batteries is eliminated, many application environment restrictions are removed, and the

WSN lifecycle is extended from months or years, to decades or centuries.

1.2 Current Research on Wireless Sensor Nodes
The wireless sensor node is an important part of a wireless sensor network. It must handle

the tasks of gathering sensory information, processing data, and communicating with the

network. For designing current wireless sensor nodes, IEEE802.15.4 is a main standard to

interface with.

IEEE Std 802.15.4 defines the physical layer (PHY) and medium access control (MAC)

sublayer specifications for low-data-rate wireless connectivity with fixed, portable, and moving

devices with limited battery consumption, typically operating in the personal operating space

(POS) of 10m [1]. In the definition, three main frequency bands are used, 2.4GHz for global,

915MHz in America and 868MHz in Europe. The bit rate ranges from 20kbps to 250kbps.

BPSK, ASK, and O-QPSK may be used, with DSSS, OCDM (Orthogonal Code Division

 2

Multiplexing) spreading methods at the physical layer. CSMA-CA (Carrier Sense Multiple

Access with Collision Avoidance) channel access method is used at the MAC layer.

Most current wireless sensor nodes research is focused on battery consumption

improvements [2] [3] [4], energy/power management [5], application of wireless sensor nodes

[6], and energy harvesting methods [7]. Few are proposing a PHY or MAC layer. Research of

narrow-band, spread spectrum, and ultra-wideband (UWB) technologies of PHY layer has been

evaluated [8]. Research of MAC layer has resulted in talk of the mobility of WSN [9]. Few self-

powered wireless radio commercial products were developed [24]. However, almost all of them

assume using IEEE802.15.4, Blutooth, or UWB as PHY layer construction and few have

proposed approaches to optimize PHY and MAC sublayer on a system level (although very

recently a new 802.15.4f standards proposal has been launched [25]).

1.3 Challenges for Energy Harvesting Wireless Sensor Nodes
The challenges of energy harvesting wireless sensor nodes include several aspects:

developing an efficient energy harvester, implementing suitable radio systems, and providing

high energy storage capability. The focus of this thesis is on the radio systems challenges and

associated solutions. The radio system design challenge includes:

1. RF transmitting mode versus power consumption

2. Low power circuit design

3. Frequency selection versus transmitting performance

4. Antenna technology versus RF link budget

5. PHY layer frame construction versus energy consumptions

6. Ultra-low duty cycle communication synchronizations

1.4 Thesis Organization
In this thesis, three chapters address the energy harvesting wireless sensor nodes design

challenges listed above. Chapter two addresses points 1 and 2. An EHR prototype demo

experiment shows a burst communication system employing common indoor solar energy

harvester panels and capacitor energy storage, and discusses methods for low power circuit

design. Chapter three is focused on points 3 and 4, addressing frequency selection versus

transmitting performance and antenna technology versus RF link budget considerations. Four

 3

frequencies’ propagation performance were measured in the VHF/UHF frequency band

including both indoor and outdoor enviroments. Chapter four focuses on points 5 and 6 and

investigates the PHY frame construction, and synchronization problems. Finally chapter five

(Conclusions) summarizes overall recommendations and possible future directions for the

research area.

 4

CHAPTER 2 K-State Energy Harvesting Radio (EHR) Prototype Demo

Board

In this chapter, the design and testing of K-State’s EHR prototype demo board (Figure2-

1) are discussed. The purpose of this part is to prove feasibility of an energy harvesting radio

system by using burst communication mode techniques at 433MHz operation frequency and

currently available radio technology. The motivation of this is that most current research and

industrial products of wireless sensor nodes are still using batteries as power supply. They are

focused on ways to improve energy management methods, energy efficient wireless sensor

network protocols, or low power SoC (System on Chip) technologies for short-range use. Unlike

these efforts, K-State’s EHR prototype is a battery-less wireless sensor node demonstration. The

demo shows that the energy harvested by four 5cm2 solar panels from indoor lighting is enough

to support 433MHz bust mode wireless communication with range approaching 0.2km or more.

In this system, the K-State microtransceiver RFIC [10] is used as the RF front end, and solar

cells from low-cost calculator products are used as the energy source. A 16F series PIC micro-

controller serves as the data source and timing subsystem.

 5

Figure 2-1 K-State Energy Harvesting Radio prototype board

2.1 RF transmission mode Versus Power Consumption
For an EHR system, to keep the average power consumption at the micro-watt levels

available with indoor solar-cell harvesters, we must reduce both the average digital baseband

power consumption and the average RF transceiver power consumption. For a digital baseband

circuit, the power consumption scales down when processing clock speed reduces, such as the

DSP chip operation clock. Thus, low power systems can be implemented when processor clocks

down to the kHz range and continuous operation is possible. Taking notice, the data rate will be

reduced respectively. Unfortunately, RF circuit power consumption does not reduce when the

data rate goes lower. The analog parts in RF circuits, such as LNA and VCO must still consume

the same current even if data rate is lowered. Many techniques are being researched to design

low power RF circuits, such as using very high quality passive elements, Q-enhanced LC

 6

resonant or MEMs circuits to replace the preselect filter and LNA, and using lower power IC

processes, etc [11], but to-date, none of these techniques offers the possibility of micro-watt RF

transceiver functions.

Fortunately, burst mode operation is an effective way to reduce overall average power

consumption. In burst mode, the active operation period T is broken down into several pieces or

time slots, t1, t2, …tn including active subperiods and sleep subperiods where ntttT +++= ...21 .

Thus the whole transmission data volume is broken down into several parts, d1, d2, …dn, .

Figure2-2 shows the comparison of continuous and burst modes. The red symbol PAVG and the

dash lines are indicating the average power consumption of operating period. Obviously, using

burst mode saves power more than using continuous mode.

Figure 2-2 RF operation mode (a) Continuous operation mode (b) Burst operation mode

Therefore, the burst mode has significant advantage for EHR systems since there active

and sleep alternated processes allow the energy to be re-charged during the SLEEP periods and

discharged during the ACTIVE periods.

2.2 Design Principle
The burst communication mode is the fundamental design idea of the EHR demo board.

To simulate a data burst, we modulated a 433.92MHz sine-wave signal by a 1kHz square wave

 7

burst. Using 1kHz square burst is the same as 1kHz amplitude-shift-keying (ASK) modulated RF

signal. With the simulated 1010 pattern created with a 0.5ms square wave burst, a human ear

recognizable “beep” tone can easily be detected by a commercial receiver for demonstration and

range testing purposes.

The AM square wave burst envelope was generated in two ways: (1) Hardware control

method : turn on and off the radio frequency chip’s RFIC_PW_DN pin directly at 1kHz

frequency; (2) Software control method : program “LPAena” bit of the RFIC control register to

switch radio frequency chip between transmitting and standby modes. These two ways were

designed for different system configurations of CPU operating clock speed and energy storage

capacitor’s value. The first method, by controlling RFIC hardware pin, requires less CPU

instruction cycles because of small code size. By contrast, the second method, by programming

the RFIC register for each pulsing, requires more CPU instruction cycle resources since code

size is bigger.

In the design of the whole system, these two methods could be integrated to exploit the

tradeoffs between the energy consumption and timing consumption. In later parts of this chapter,

these two different design and measurement results are discussed and compared.

2.3 Hardware Design
The main components of the EHR demo board hardware included a K-State RFIC, a

commercial 5 mW TCXO, a Microchip PIC16F676, a voltage regulator, and SMT Capacitors.

Table 2-1 is the EHR board’s electrical specification.

Table 2-1 Demo board Electrical Specification

Duty cycle ≤ 1.3%

solar cell output Voltage (two in series) 5.4v

Solar cell output Current (indoor fluorescent

lights)
0.02mA

Solar cell output Current (40-Watt incandescent

bulb with 6 inches distance)
0.32mA

RFIC supply Voltage range 3.0v~3.3v

RFIC TX mode Current ≤20mA

RFIC Sleep mode Current ≤0.01mA

 8

RFIC TX Frequency 433.92MHz

PIC16F676 Operating mode Voltage 1.2v~3.0v

PIC16F676 Operating mode Current (4kHz) ≤0.5mA

PIC16F676 Operating mode Current (4MHz) ≤0.74mA

PIC16F676 Sleeping mode Current(4kHz) ≤0.05mA

PIC16F676 Sleeping mode Current(4MHz) ≤0.17mA

3.3v Voltage Regulator Input Voltage range 3.7v~12v

3.3v Voltage Regulator Output Voltage range 3.3v +/-5%

3.3v Voltage Regulator Gnd current ≤0.5mA

sleepact

sleepsleepRFsleepPICactactRFactPIC
avg TT

TIITII
I

+

×++×+
=

)()(____ (2-1)

Depends on the electrical specification, we can get the average current of the system

using the equation (2-1). In the equation (2-1), Iavg is average current of system, IPIC_act is the

current of the Microcontroller consumed during the active period, IRF_act is the current of the

RFIC consumed during the active operation period, IPIC_sleep is the current of the Microcontroller

consumed during the sleep mode, IRF_sleep is the current of the RFIC consumes during the sleep

mode, Tact is total active time slots and Tsleep is total sleep time slots. The duty cycle, which is the

ratio of
sleepact

act

TT
T
+

, can be designed depending on the system requirements, system power

consumption, energy harvesting capability, and energy storage capability. In section 2, 4,

example calculations show the relationship of the duty cycle, average current and voltage

variation.

 9

Figure 2-3 K-State EHR demo board schematic

Figure 2-3 is the K-State EHR demo board schematics. The layout is in Figure A-2. The

energy is harvested by using four CASIO SA5511S4 solar cells (Figure 2-4). Each can provide

2.7v dc-voltage, 0.16mA dc-current under a 40-Watt incandescent bulb with 6 inches distance.

Otherwise, each can provide 2.7v dc-voltage, 0.033mA dc-current under indoor fluorescent

lights. These solar cells were salvaged from CASIO fx-260SLOAR commercial Calculators. To

maximize energy harvesting capability, two of them were attached in series and then parallel led

with another series two to provide 5.4v output at higher current.

Figure 2-4 CASIO SA5511S4 solar cells and CASIO fx-260SLOAR Calculators

 10

The energy storage is using four 220uF SMT capacitors, which are connected in shunt

between solar cells and power switch. A TPS76130-100MA voltage regulator is put after the

power switch to provide stable 3.3v dc-voltage for the RFIC and the Microchip PIC.

The 14 pins chip in the schematic is a Microchip PIC16F676, which is a Flash-Based 8-

bit CMOS, high performance, low power, and wide operating voltage range (2.0v~5.5v) RISC

CPU. Figure 2-5 shows PIC16F676 pin diagram. This microcontroller can be configured to work

with several different clock speeds, either an external or an internal clock oscillator.

Figure 2-5 PIC16F676 Pin Diagrams

 The biggest chip in the schematic is K-State RFIC. Figure2-6 shows the RFIC block

diagram. The PgmClk, PgmData and PgmLatch are serial port interface signals defined by the

RFIC. The IFout and IFin are the 10.7MHz Intermediate Frequency output and input, which

connect with an off-chip IF filter. The ADCclk is 1bit ADC sampling clock input pin. The

ADCout is the 1bit ADC sampling data output pin. The Ref is a 19.2MHz TCXO reference clock

input pin.

 11

Figure 2-6 K-State Transceiver RFIC block diagram [10]

A 19.2MHz TCXO oscillator is used as RF reference clock, which consume 5mW

(1.5mA at 3.3v). A DC-490MHz low pass filter is put between the attenuator and the antenna for

transmitter harmonic attenuation in and receiver preselection/protection from cell phone and

other strong nearby emitters.

2.4 Software Design

2.4.1 RFIC Programming

The first function of the software is programming the RFIC. The RFIC can be

programmed to work in TX, RX, or SLEEP modes through a serial port interface (SPI). The

Microcontroller programs the registers, which are inside the RFIC, through the SPI. Figure2-7

shows the RFIC programmable register fields [10].

 12

Figure 2-7 K-State RFIC programming register fields [10]

There are 60 bits in the programmable register, which are divided into four main function

subfields. The VCO/Synth subfield is used to set the synthesizer. The Gain subfield is used to

control low noise amplifier and IF amplifier. The Control subfield is used to control the chips

working mode. This includes enable and disable power amplifier, RX/TX mode switch, Sleep/

Standby mode switch, etc. The Cal subfield is used to configure RSSI and set the LNA

frequency. To configure the VCO/Synth, equation (2-2) is used to calculate N and R. Here fref is

the reference frequency, which is 19.2MHz, and fvco is the frequency of the signal generated by

N
f

R
f vcoref = (2-2)

VCO. In “A Low-Power, Radiation-tolerant, RFIC Micro-Transceiver Chipset for Space

Application” [10], detailed programming steps for the RFIC are provided. Programming should

begin with Pgm_dat, Pgm_clk, and Latch input pins at zero. Place first bit onto Pgm_dat input

 13

pin. Then bring Pgm_clk high and return it to low. Repeat with subsequent bits until all 60 bits

are entered. Finally, raise Latch line to high state and then issue one more clock to latch data into

the chip. No changes occur in the RFIC chip’s operation until this final clock rising edge with

Latch is asserted [10]. Using this description, the programming time sequence is designed as

shown in Figure 2-8.

Figure 2-8 RFIC SPI Programming Timing sequence

2.4.2 Duty Cycle Design

 The second main function of the software is the duty cycle timing control. The software

controls the time period switching of the RFIC transmission, sleeping, and energy recharging.

Timing is critical to keep the system working in a low energy environment. To design the critical

timing, we should know the accurate CPU instruction operation cycle time. For the PIC16F676,

one instructions cycle consists of four oscillator periods. As mentioned in the previous design

principle part, there are two different ways used to implement the RFIC control: one is software

 14

controlled and the other one is hardware controlled. Using the software controlled method; the

CPU oscillator clock is configured with 4 MHz internal high CPU oscillator speeds, which has a

1 us instruction cycle. Using the hardware controlled method; the clock speed can be reduced to

conserve energy. In this case, the CPU oscillator clock was configured with 400kHz external RC

low CPU oscillator speeds, which has a 10 us instruction cycle. These two different

configurations implementations are discussed and compared below.

2.4.2.1 High CPU Clock, Software Control TX

In this design, the microcontroller PIC uses a 4MHz system clock configured by using

the internal oscillator. The high clock speed is needed in the software controlled case to allow

repeated program of the 60 bits control register to modulate the bits. The code was written in

assemble language and the total programming time of writing 60 bits RFIC registers is 0.75ms.

The code is in Appendix-D. Figure 2-9 shows the resulting 1.1% duty cycle design software

processing sequence diagram and the RF output captured on an oscilloscope.

 15

Figure 2-9 1.1% Duty cycle with 4MHz CPU clock (above) times diagram (below)screen

captures of RF output on scope

 According to equation (2-1), the average current of this design is 0.41mA.

mA
ms

msmAmAmsmAmAI avg 4062.0
1000

989)01.017.0(11)2074.0(
=

×++×+
=

From above calculated result, it is easy to estimate approximate average power

consumption of the EHR demo board, which is 0.4062mA*3.3v=1.34mW. To compare the result

with using batteries instead of the solar cells for this radio, assume we are using a 2.7Ah AA

batterie. This battery could support the radio board for about 6650 hours (about 277 days). In

other words, the battery needs to be changed in under a year, whereas the HER radio could

function indefinitely.

2.4.2.2 Low CPU Clock, Hardware Control TX

The second configuration uses a lower CPU clock. The duty cycle is designed as 1.3%

and the PIC operating clock is using an external RC 400kHz oscillator. Figure 2-10 shows the

software processing diagram.

 16

2.33s 2.33s 2.33s

30ms 2.3s

Active Sleep

A

Wait until
TCXO stable

3.5ms

Burst
1

Burst
2

Burst
5

Burst
3

Burst
4

1ms

.5 .5

4.5ms 7.1ms

B C FD E G

7.1ms

H

7.1ms are used to program 60 bits
register of RFIC

Active Sleep Active Sleep

30ms 2.3s 30ms 2.3s

Active

7.1ms

Enable software
switch

Enable LPA Disable
software switch

Program
RFIC

1kbps ASK simulate signal

Figure 2-10 1.3% Duty Cycle with 400kHz CPU clock

2.4.2.3 Computing Active and Sleep Time

From Figure 2-10, we can find the active time to be 30ms and the sleep time is 2.3s. To

determine this duty cycle, we must determine the charging and discharging time of the

capacitors. The equation (2-3) describes the relationship of the voltage, current, and the capacitor

values where dv/dt is the voltage changing or discharging rate, i is the current, and C is the

capacitor value.

C
dt
dvi = (2-3)

From section 2.3, we note that the EHR demo system has four parallel 220uF capacitors,

the microcontroller PIC active current is 0.5mA, and the RFIC transmitting current is 20mA.

Thus the voltage dischargs from capacitor during the 30ms active period is given:

 v
uF

msmA
C

dtidv 7.0
2204

30)205.0(
=

×
×+

=
×

=

The time to recharge this 0.7v voltage back using four solar cells, which provides 2x0.13mA

current, is:

 17

suF
mA

vC
i

dvdt 3.22204
13.02
7.0

=××
×

==

This is why the sleep time was designed as 2.3s when the active time is 30ms. Figure 2-11 shows

the capacitors charging and discharging process.

Figure 2-11 1% duty cycly capacitor charge-discharge process

The average current of this design can be calculated from equation (2-1) as:

mA
msms

msmAmAmsmAmAI avg 323.0
230030

2300)01.005.0(30)205.0(
=

+
×++×+

=

If 2.7Ah AA batteries were used to drive this demo board instead of the solar cells. This

device could continue work about 8400 hours, approximately 348 days. Although the life time is

extended compared with the 4 MHz CPU configurations, the total data volume is significantly

reduced due to the longer cycle time mode necessary by repeated programming of the 60 bit

RFIC register.

 In the following part of this chapter, the test in the lab tests and outdoor environment tests

will show the performance of 400kHz CPU clock EHR board.

2.5 Test Results
The measurements of this EHR demo board include Lab and outdoor performance tests.

In the Lab test, we focused on the center frequency, duty cycle, board power consumption, and

system reliability. The outdoor performance test was focused on the transmitting distance, and

propagation issues inside and outside of the building.

2.5.1 Lab Test

2.5.1.1 Current Consumption Test

 18

The Microcontroller and the RFIC are the two main power consumption components of

this demo board. We already knew the RFIC’s action currents was less than 20mA and the

SLEEP mode currents was less than 0.01mA. The Microcontroller PIC power consumption was

measured by using the photo board shown in Figure 2-12. This picture shows 4MHz clock

configurations current consumption. The ACTIVE mode current was 0.74mA and SLEEP mode

was 0.16mA (higher than expected from the datasheet). Use the same technique, we measured

the 400kHz CPU clock configurations current consumption. The ACTIVE mode current was

0.5mA and the SLEEP mode was 0.05mA.

Figure 2-12 Microcontroller PIC16F676 Current consumption measurement with 4MHz

clock (a) ACTIVE mode current (b) SLEEP mode current

2.5.1.2 The Burst Communication Test

The Burst communication was measured by using a Tektronix TDS 724D Oscilloscope,

which is a two channel digital phosphor 500MHz~2GS/s oscilloscope. Figure 2-10 previously

showed the duty cycle design of using a 400kHz CPU operating clock configuration.Figure 2-13

is 4 burst signal capture. The channel 1 signal is microcontroller control signal (Command

signal). The channel 2 signal is the RF output burst signal.

 19

.

Figure 2-13 Four burst clusters with 1% duty cycle

Figure 2-14 is the zoomed in picture of one burst of the four in Figure 2-13. Channel 1 is

the Microcontroller programming signal (Command signal) and the channel 2 is the RF output

burst signal. Compared with Figure 2-10, it matches its design. The whole active period is 30ms.

Figure 2-14 One Active period command signal and burst signal of 400kHz Clock Speed

design

 20

Figure 2-15 is the zoomed in burst period. Five bursts plus the time period of waiting

TCXO standby, which last 8.68ms. The design time was 8ms. The difference was due to delay

caused by software and oscilloscope measurement.

Figure 2-15 Five burst period

Figure 2-16 is the zoomed in picture of one burst signal. It is a 433MHz modulated

sinwave.

 21

Figure 2-16 433.92MHz modulation signal

2.5.1.3 The System Reliability Test

For EHR systems, one important capability is that the system re-starts when energy

satisfies the requirement after it was off. To test this, we moved the demo board away from the

lights for about 5 minutes, thus the transmitting was stopped. When we move it back under to the

lights, it successfully transmitted with expected duty cycle after the capacitor reached full

charge.

2.5.2 Outdoor Test

The purpose of outdoor test was to estimate the transmitting range of the EHR prototype

board. To test the range, we used a Yaesu VR-120D handheld radio shown in Figure 2-16. The

VR-120D specifies a sensitivity of 0.6uV, which equates to -111dBm [11]. Since the burst

clusters are actually are AM modulated signals we could hear a ‘beep’ when we use an AM

receiver.

Figure 2-17 Yaesu VR-120 Receiver

Figure 2-18 are google maps with a mark to show the furthest point that the ‘beep’ could

be heard. The signal was transmitted from within room RA2097 of Rathbone Hall at Kansas

State University and received in the North parking lot up to approximately 0.2km away.

 22

Figure 2-18 EH demo board transmitting range test (a) Satellite view of 0.2km transmission

range (b) view look back from parking lot (c) view looking inside hallway of RA2097 [11]

2.6 Conclusions
This demo board has shown the feasibility of a simple energy harvesting wireless node

with solar energy harvesting, which uses burst communication mode with very low duty cycle.

This prototype board has shown the basic hardware skeleton of an energy harvesting wireless

node including solar cell energy harvester, energy storage, radio and control unit. This chapter

also has shown the software skeleton of an EHR node, which includes energy storage and

management, burst communication and duty cycle management. The software allowed the

system to self-recover after the power was re-satisfied. This demo board also proved that the K-

State 400MHz RFIC is a very good RF front-end working in the energy harvesting applications

as it has low active and sleep mode power, easy control to implement burst mode, and reliable

performance.

 23

CHAPTER 3 RF Link Budgets of EHR Systems

In the previous chapter, we demonstrated basic transmission performance by using

ordinary ASK modulation techniques at 433.92MHz. However, the current IEEE802.15.4

standard defines 806MHz, 902MHz, and 2.4GHz as allocations for wireless sensor networks.

Therefore, we investigated which frequency band is most applicable for EHR systems. To

answer this question, we must understand the properties of electromagnetic waves and their

propagation in an urban environment, in other words the RF Link budget in an urban

environment must be understood. For RF communication, electromagnetic wave propagation

considerations in the presence of natural and man-made structures heavily affects system

performance, such as transmission range, and power consumption. Additionally, antenna

technology will need to be considered.

There are many radio propagation models for digital wireless communication, such as

Longley-Rice model for outdoor, Partition Losses (same floor) for indoor,etct, which provide a

link model based on random variables and random processes. Such models allow people to

simulate the RF signals on computers to improve the real world network deployments. But this is

outside of our research. We are not designing a channel model here and will not discuss it.

Instead, we take a measurements-based approach.

In this chapter, four unlicensed-band frequencies were picked in the VHF/UHF spectrum

band, 151MHz, 433MHz, 902MHz and 2.4GHz and measured propagation data are reported and

compared under two different RF link conditions. A custom 10mW signal source was used as the

transmitter, and a spectrum analyzer as the receiver to provide accuracy to within 1dB and

sensitivity to better than -120dBm. Both monopole and low-gain directional antennas were

employed to represent expected use in an energy harvesting application and the measurement

environment included both indoor and outdoor features.

3.1 RF Link Budget Factors
The choice of frequency spectrum is a fundamental factor for any radio communication

link. Theoretically, an RF communication system can use any ISM (Industrial, Scientific and

Medical) frequency for unlicensed applications such as EHR in wireless sensor networks.

 24

However, picking a frequency for a radio system is not merely dependant on the frequency

spectrum allocations available. There are several factors that we should consider, which include

frequency propagation environment versus transmitting range, antenna size, energy efficiency

versus spectrum efficiency, and system complexity. In this section, these factors are considered

through an examination of propagation and antenna technology first, then evaluating a RF link

budget, and finally considering a radio system’s complexity.

3.1.1 Propagation

Transmitting range is always a key performance consideration of a wireless

communication system. Electromagnetic wave propagation is one of the significant factors

affecting transmitting range. An electromagnetic wave has a much more complex structure than

many other waves (ex. sound waves) [13], and is described by Maxwell’s equations. Maxwell’s

equations state that a changing magnetic field produces an electric field and a changing electric

field produces a magnetic field, which indicates that electromagnetic waves are able to self-

propagate [12]. However, the detailed interaction of these waves with the environment, radiation

path, and antenna techniques used will all affect the transmitting range.

In free space, the electromagnetic waves are described as spherically propagating

outward from the source in all directions. The instantaneous rate of energy flow across a area is

P which is represented by Poynting’s vector equation (3-1) where E is electric intensity and H is

the

HEP ×= (3-1)

magnetic intensity [13]. Ideally, the power density on the surface of an imaginary sphere can be

expressed as equation (3-2) where S is the power density on the surface of the sphere in

24 d
PS
π

= (3-2)

watts/m2, d is the diameter of sphere in meters, and P is the total transmitted power. Thus the

Equ(3-2) shows the power density of the electromagnetic wave is inversely proportional to d2.

But, in the real world, the electromagnetic waves are not radiating in an ideal free space

environment, many different propagation issues occur, such as line-of-sight (LOS) propagation,

obstructions, diffraction, refraction, tropospheric and ionospheric propagation. To analyze all

those propagation models is beyond the scope of this research. We only consider the simple

model of (3-2), and its varients where the propagation exponent is replaced by values up to 3 or 4

 25

to capture such effects. The power at the receiver end may be expressed by equation (3-3), which

indicates that the path loss equals the ratio of transmitted power to received power ratio.

R

T
P P

PL = (3-3)

The free space path loss (FSPL) is the signal strength loss when the electromagnetic wave

radiates in free space. Equation (3-4) shows FSPL with frequency f.

22)4()4(
c
dfdLFS
π

λ
π

== (3-4)

Here, d is distance between transmitter and receiver, λ is the signal’s wave length, f is frequency

of operation, and c is speed of light in vacuum (3.0E8 m/sec). This formula indicates the

relationship between operation frequency and transmitting range. From (3-4) we see that FSPL is

proportional to the square of the operation frequency. In other words, higher operation

frequency leads to bigger free space loss, which leads to requirements for higher transmitting

power and energy.

3.1.2 Antennas

Antennas are another important factor affecting transmitting range and link budget. It is

the interface between air and physical radio systems. For every wireless communication system,

antennas must be employed to radiate and receive electromagnetic energy. There are several

fundamental concepts of antennas that should be explained so that a RF link budget can be

evaluated.

3.1.2.1 Reciprocity

A fundamental principle of antennas, called reciprocity, states that antenna performance

is the same whether radiation or reception is considered [14]. This principle states that the

measurement of antenna parameters, such as gain, and beamwidth, are the same for both transmit

and receive.

3.1.2.2 Antenna Directivity

In equation (3-2), the assumed radiation of electromagnetic wave has the same power

density on all parts of the surface of a sphere. This would be called an isotropic radiator. The

 26

corresponding antenna is called Isotropic Antenna. Real world antennas are not isotropic. They

concentrate energy in certain directions. This effect is capture by the concept of antenna gain.

3.1.2.3 Gain

 The antenna gain, usually called directivity gain, is defined as the ratio of the radiated

power density at distance, d in the direction of maximum intensity, to the average power density

over all angles at distance, d [12]. This is expressed by equation (3-5).

24 d
P

P
G

T

dirc

π

η= (3-5)

Where Pdirc is the power density at d in maximum direction, PT is the power applied to

the antenna terminals, η is the total antenna efficiency which accounts for all losses in the

antenna (which includes mismatch losses, conduction losses, and dielectric losses [15]). The

denominator part is the average power density factor, which is calculated by using ideal isotropic

antenna power density equation (3-2).

3.1.2.4 Effective Area

The effective area Ae or is introduced to determine the amount of power Pr that a receiver

intercepts from a signal with power density Pdirc passing its location. Effective area can be

defined by (3-6).

edircr APP = (3-6)

where The relationship of effective area and antenna gain is expressed by equation (3-7) where

G is antenna gain (not in decibel) and λ is wavelength.

GAe π
λ
4

2

= (3-7)

3.1.2.5 Antenna Size

 The electrical length of a monopole antenna can be determined from basic antenna

theory, which says the antenna’s length λ/4 is inversely proportional to its operating frequency f

according to equation (3-8) where c is the speed of light, λ is wavelength and f is the operation

frequency.

f
c

=λ (3-8)

 27

Obviously, the antenna size is inversely proportional to the operation frequency also.

3.1.3 Link Budget

 We have explained and reviewed free space RF propagation and basic antenna

techniques. It is time to move on into a link budget evaluation. The link planning is an essential

part of a wireless communication network deployment, which will help to avoid resource waste,

overdesign and poor system performance. A RF link budget is prepared in such a way that

accounts for the transmitter radiated power and all of the losses in the link prior to the receiver

[16]. It is not including any components of the noise figure, or digital link loss. A simple RF link

budget can be expressed as equation (3-9),

)()()()(dBLdBGdBmPdBmP TXRX −+= (3-9)

where PRX is the received power in dBm, PTX is the transmitted power, G is product of TX and

RX gains in the system (antenna gain, etc.), and L is loss (path loss, cable loss, etc.). In the RF

link budget, the link margin reflects the robustness of a link, which is expressed by equation (3-

10):

RXRXPath THGLEIRPinLinkM −+−=arg (3-10)

LPath is free space path loss in dB, GRX is the receive gain in dB, THRX is the receiver threshold

or the minimum received signal level in dBm. The EIRP is the transmit power plus the

transmitter antenna gain, minus any waveguide and random losses [12]. We do not consider any

modulation and digitization effects in this RF link margin calculation.

3.1.3.1 Antenna Gain Effects on Link Budget

The free-space path loss is already known from equation (3-4). In RF link budgets, since

antenna technology is involved, the Friis transmission equation can be modified to express the

path loss with antenna gain in equation (3-11) where GT is transmitter antenna gain, GR is

receiver antenna gain (not in dB).
241
⎟
⎠
⎞

⎜
⎝
⎛==
λ
πd

GGP
PL

RTR

T (3-11)

 28

 Thus, considering the discussion above about antenna effective area, combining

equation (3-6), (3-7) and (3-11), we could rewrite the free space loss as equation (3-12)

2

222

2

2)4()4(
cGG

fd
GG
d

P
PL

TRTRR

T π
λ

π
=== (3-12)

3.1.3.2 Link Budget Examples

 From the analysis above, we can obtain the following results:

 First, for a set distance between the transmitter and receiver, since the gains and

effective areas are constant, the path loss is inversely proportional to the operation frequency f.

 Second, from previous antenna parts, we know that the antenna size will increase with

lower operation frequencies. For example, a half-wave dipole antenna at 3GHz is a manageable

5cm in length, whereas at 300MHz it is 50cm in length. Fortunately, the antenna physical size

could be shrunk by using special material [17] or some technique like non-planar rings [18].

 Third, is equation (3-12), dN where N=2, N is called the path loss exponent, which is for

RF propagation in free space. However, in the real world, there are lots of reflections,

diffractions or multipath, and this exponent will vary from 1 to 6 depending on different

environments. By using equation (3-11), we can easy calculate the transmitted power versus

transmitting range. Assume PR=10Pn while Pn=kTB and the ideal antenna gain GT and GR are

1, k is 1.38E-23 and T is 290k, B is 1kHz. Figure 3-1 and 3-2 are 433MHz and 2.4GHz plots of

transmitting range versus transmit power with 2 to 4 path loss exponents.

 29

100 101 102 10310-1

100

101

102

103

104

Transmitting Power (mw)

Tr
an

sm
itt

in
g

R
an

ge
 (k

m
)

Tansmitting range Vs Transmitting power at 433MHz

Path Loss Exponent N=2
Path Loss Exponent N=3
Path Loss Exponent N=4

Figure 3-1 Calculated range at 433 MHz with dipole antennas and 1 kbps data rate

100 101 102 10310-1

100

101

102

103

104

Transmitting Power (mw)

Tr
an

sm
itt

in
g

R
an

ge
 (k

m
)

Tansmitting range Vs Transmitting power at 2400MHz

Path Loss Exponent N=2
Path Loss Exponent N=3
Path Loss Exponent N=4

Figure 3-2 Calculated range at 2.4 GHz with dipole antennas and 1 kbps data rate

 30

3.1.4 RF Link Budget and The System Design of EHR

So far, we have shown that lower frequency can transmit further than higher frequency

under same power level, when at least one of the antennas used is low-gain. Unfortunately, most

commercial WSN products are using the crowed high frequency bands of 800-900MHz, 902-

928MHz (Europe), or 2.4-2.5GHz. The main reasons are because these bands are world wide

allocation where inexpensive radio transceivers are commercially available and higher data rate

can be provided [19]. But the negative aspect of using these frequencies is that the range is

fundamentally limited and interference is very serious from higher power transmitting systems,

such as WLAN and other fixed transmitters. This is potentially harmful for the power-

constrained EHR systems since the lower power sensor nodes are easily affected by stronger

signals.

Obviously, there are many techniques which can be used to detect and recover signals

within low SNR environment in such crowed frequency bands, such as using MIMO (multiple

input and multiple output) antenna systems, using CDMA, FDMA or OFDMA multi-access

techniques, or using convolutional codec etc. But, at the same time, these techniques are

increasing the complexity, and therefore power consumption of system design. Typically, the

complex PHY and MAC layer protocol standards are defined assuming battery powered

operation. On the hardware side, to implement these standards, a wide-band RF front-end, a high

clock rate FPGA and DSP baseband processor are required. On the software side, a real-time

operating system, complex codec algorithms and multi-tasking protocol stacks must be

implemented that need be run at higher CPU clock rates to guarantee the wireless

communication real-time capabilities.

Thus, EHR system designs must consider the system complexity. We propose to use low

data rates along with low RF operation frequency because it leads simple, low complexity

implementations, which includes lower power hardware and lower MIPS DSP software design.

In the following subsections, four unlicensed VHF/UHF frequencies propagation are measured

and compared by using practical equipments and methods. It will give a practical proof of lower

frequency’s benefit for energy constrained radio systems. In the subsequent chapter, the issues

of low-complexity PHY and MAC layer techniques are considered.

3.2 UHF/VHF Propagation Comparisons

 31

For this research, we selected frequencies of 151MHz, 433MHz, 902MHz and 2400MHz

for several reasons: First, in 2009 significant new spectrum resources will be freed-up in the

UHF frequency range in the United States. Around the world, similar and even more dramatic

changes are occurring [20]. Second, the 2400MHz and 902MHz are ISM frequency band

allocated to IEEE802.15.4 standard, which is widely used standard of wireless sensor networks.

433.92MHz is in an unlicensed band widely used for remote-sensing and RFID applications. In

light of these issues and the previous analysis of the relationship between frequency and energy

harvesting radio system, we have undertaken a fresh look at which frequencies are most

appropriate for energy constrained radio systems.

3.2.1 Experimental Setup

3.2.1.1 Propagation Links

Two different links were measured and compared as shown in Figure 3-3. One link was

measured by using monopole antennas at both transmitter and receiver end. The second link was

measured by using monopole antenna at receiver end and directional antenna at transmitter end.

Figure 3-3 Two type of experimental Propagation Links

3.2.1.2 Experiment Environment

 32

The testing locations were based at Kansas State University and included both indoor and

outdoor propagation features. The receiving station was sited indoors, in room RA2097 (2,5 of

Figure 3-4), on the 2nd floor of the engineering building This building contains four floors and

consists of a concrete foundation, concrete wall supports, concrete slab floors with metal

supports (3, 6, 7 of Figure 3-4) and dry wall partitions (4 of Figure 3-4). The spaces between

floors and walls contain power and cable lines, air conditioning ducts, fire protection sprinklers,

and steel piping (3,6,7 of Figure3-4). Due to its structural makeup, this building serves as a good

representative testing environment for construction monitoring applications.

Figure 3-4 Rathbone Hall Engineering Building constructions

For indoor and outdoor measurements, several points at varying transmission radii away

from the receiver were selected. Figure 3-5 shows the receiver measurement location mark on

the Rathbone Hall 2nd floor plan and the outdoor map.

 33

Figure 3-5 Measurements location marked on the indoor floor plan and outdoor map : Left

is 2nd floor plan of Rathbone Hall; Right is the Google earth map of Rathbone Hall

The points A to E, five group points, were marked on the map. Each group has 4 points

kept in line, to represent a propagation path, for example A1, A2, A3, A4, and A5.

Figure 3-6 Two path used for lower frequency transmitting range measurement

Path A

Path B

 34

The outdoor measurement paths were located north and northeast of the Ratbone Hall

(Figure3-6) due to the fairly open terrain, but included several obstructions such as buildings and

trees. Two similar sized buildings are located north at distances of 0.16km and 0.27km while a

taller building is located 0.21km north east.

The area is relatively flat with maximum elevation variations of approximately 10 meters.

The path B is higher elevation than path B. Located east of the engineering building is the main

campus whose buildings are far more congested.

3.2.1.3 Antennas

Both directional and non-directional antennas are used for this measurement. For the

omni-directional tests, monopole antennas were constructed and used at both ends of the link.

The antennas used as directional antennas were commercial panels and Yagis. Figure 3-7 shows

antennas pictures used in measurements.

Figure 3-7 Antennas used in measurement

Table 3-1 shows the relationship between the measured frequency, quarter-wave length

and the effective aperture of the antennas. For a half-wave length dipole antenna, the effective

aperture is calculated by equation (3-6) when G =1.6 [15].

Table 3-1 quarter-wave antenna size and effective aperture of dipole antenna

Frequency

(MHz)

Quarter-wave

Length λ/4 (cm)

Effective Aperture of

Dipole Antenna (cm2)

2.4GHz Panel

& Monopole

902MHzPanel

& Monopole

433MHz Yagi

& Monopole

151MHzYagi

& Monopole

 35

151.94 49.36 3102

433.92 17.28 380

902 8.31 97.92

2400 3.12 12.39

 For monopole antenna, truncated ground planes were used. To validate the antenna

constructions, reflection coefficients of all antennas were measured prior to use. Figure 3-8

shows the monopole antenna and the ground planes.

Figure 3-8 Monopole antenna, Ground plane and antenna reflection coefficients

measurements

Figures 3-9, 3-10, 3-11 and 3-12 show 151MHz, 433MHz, 902MHz and 2.4GHz

directional and monopole antenna reflection coefficient S11 measurement results. The S11

ranged from -15dB to -35dB.

 36

Figure 3-9 151MHz directional antenna S11=-14.9dB, monopole antenna S11=-12.7dB

Figure 3-10 433MHz directional antenna S11=-28dB, monopole antenna S11=-12.9dB

Figure 3-11 902MHz directional antenna S11=-12.5dB, monopole antenna S11=-10dB

 37

Figure 3-12 2400MHz directional antenna S11=-31dB, monopole antenna S11=-13.3dB

3.2.1.4 Transmitter and Receiver

Figure 3-13 Portable 10mW Transmitter photo

The transmitters were designed to output 10mW un-modulated signals and were placed in

boxes to make them more potable. The transmitter circuit includes a power supply, frequency

VCO

Synthesis

Chip

LOOP

Filter

PIC Micro-

controller

TCXOLow Pass

Filter

Amplifier

Power

Splitter

Battery

Coax to

Antenna

 38

synthesizer board, amplifier, and an output harmonic filter. Figure 3-13 is the transmitter photo.

They shared an LMX 2326-based frequency synthesis board, Mini- circuits 15542 power splitter,

Mini-Circuit ZX60-33LN-S+ power amplifier, and PIC 12F509 microcontroller hardware. The

VCO, Low Pass Filter and Microcontroller software are selected individually for each frequency.

Appendix C shows the schematic and layout of frequency synthesis board. Appendix F

provides the software code for the different frequency synthesizer boards. Table3-2 is the

components list used to build four frequencies transmitter.

Table 3-2 Components list of 10mW un-modulated transmitter

 VCO LPF AMP
PW

Splitter

Synthesis

Chip
TCXO

151MHz ZX95-148+ SLP-200+

433MHz ZX95-445+ SLP-450+

902MHz ZX95-930C+ SLP-1000+

2.4GHz ZX95-2550+ SLP-2950+

ZX60-

33LN-S+

ZFSC-2-

1W-S+
LMX2326

19.2MHz

crystal

oscillator

 The receiver was an Agilent N9320 spectrum analyzer. The minimum receiver power of

this equipment, with the preamp enabled, is lower than -130dBm so that it is adequate. Figure 3-

14 is a photo of the receiver with a 433MHz monopole antenna attached. The other frequencies

have similar receiver architecture except antenna length.

 39

Figure 3-14 Receiver—Spectrum and monopole antenna

3.2.2 Experiment Results

The experiment covered indoor and outdoor environments up to a range of 1.5km. Using

room RA2097 as the center location, four circles were scribed with two indoor (7m and 30m)

and two outdoor (40m and 90m) radii. Each circle contains five measurement locations (Figure

3-5). Beyond 90 meters, the measurement locations were not fixed.

3.2.2.1 Received Signal Strength Measurements at Each Frequency

 The propagation measurements for the four frequencies are recorded in Table 3-3, Table

3-4, Table 3-5 and Table 3-6 with both monopole and directional antennas. In the tables, the item

Environment indicates indoor or outdoor depending on the location of the transmitter. Item Mark

is used to mark the location on the map (Figure 3-5). Item Distance in meters is the range

between transmitter and receiver. Item Power(dBm)_Drc is the received power when the

directional antenna is used at the transmitter end. Item Power(dBm)_Mon is the received power

when the monopole antenna is used at the transmitter end.

Table 3-3 151MHz Propagation measurement results

151MHz
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon

 40

C2 7.74 -14 -13
D2 7.74 -13 -20
E2 7.74 -21 -23
A2 7.74 -28 -24
B2 7.74 -17 -21
C 31.3 -30 -38
D 31.3 -36 -42
E 31.3 -31 -36
A 31.3 -38 -44

Indoor

B 31.3 -32 -40
A3 43.86 -63 -74
B3 46.36 -64 -68
C3 52.65 -60 -74
D3 41.36 -45 -59
E3 45 -69 -61
A4 85 -70 -74
B4 84 -79 -82
C4 83 -72 -86
D4 90 -85 -92
E4 83 -64 -82
A5 129 -86 N/A
A6 165 -86 N/A
A7 323 -88 N/A
A9 1100 -104 N/A
A10 1130 -103 N/A

Outdoor

A8 1460 -110 N/A

Table 3-4 433MHz Propagation measurement results

433MHz
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon

C2 7.74 -19 -27
D2 7.74 -22 -25
E2 7.74 -29 -27
A2 7.74 -22 -33
B2 7.74 -25 -29
C 31.3 -36 -42
D 31.3 -43 -50
E 31.3 -39 -42
A 31.3 -45 -54

Indoor

B 31.3 -43 -43
A3 43.86 -64 -75
B3 46.36 -65 -74
C3 52.65 -65 -77
D3 41.36 -52 -65
E3 45 -73 -84
A4 85 -68 -80

Outdoor

B4 84 -70 -80

 41

C4 83 -68 -77
D4 90 -86 -96
E4 83 -74 -85
A5 129 -74 -83
A6 165 -80 -89
A7 323 -97 -95
A433-
8 496 -115 -120
A433-
9 672 -120 -122

Table 3-5 902MHz Propagation measurement results

900MHz
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon

C2 7.74 -21 -31
D2 7.74 -31 -35
E2 7.74 -29 -34
A2 7.74 -32 -34
B2 7.74 -31 -36
C 31.3 -43 -49
D 31.3 -55 -58
E 31.3 -41 -51
A 31.3 -53 -58

Indoor

B 31.3 -49 -57
A3 43.86 -72 -85
B3 46.36 -63 -75
C3 52.65 -71 -80
D3 41.36 -61 -75
E3 45 -73 -74
A4 85 -78 -88
B4 84 -77 -90
C4 83 -72 -84
D4 90 -95 -97
E4 83 -71 -86
A5 129 -86 -99
A6 165 -95 -102
A7 323 -109 -110
A900-
8 353 -114 N/A
A900-
9 379 -110 N/A

Outdoor

A900-
A 537 -120 N/A

Table 3-6 2400MHz Propagation measurement results

2400MHz
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon

 42

C2 7.74 -32 -43
D2 7.74 -45 -47
E2 7.74 -41 -42
A2 7.74 -39 -43
B2 7.74 -44 -45
C 31.3 -59 -69
D 31.3 -59 -69
E 31.3 -61 -69
A 31.3 -65 -72

Indoor

B 31.3 -53 -63
A3 43.86 -92 -97
B3 46.36 -80 -91
C3 52.65 -91 -98
D3 41.36 -75 -86
E3 45 -78 -89
A4 85 -82 -98
B4 84 -92 -98
C4 83 -93 -98
D4 90 -98 -104
E4 83 -90 -100
A5 129 -82 -101
A6 165 -88 -115

Outdoor

A2400-
7 198 -120 -125

3.2.2.2 Directional Antennas versus Monopole Antenna Results

Figure 3-15 shows 151MHz propagation comparisons using the directional versus non-

directional antenna. The blue circles are for the directional antenna at the transmitter end.

 43

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d
P

ow
er

 (d
B

m
)

151MHz indoor+outdoor Received Power vs. Distance

Directional Antenna
Monopole Antenna

N=3

N=3.2

Figure 3-15 151MHz two different link propagation with Path loss Exponent

Obviously, using directional antenna can improve reception by almost 6dB over using the

monopole antenna on average, which is consistent with the estimated gain of the Yagi beam

antenna. The indoor path loss exponent N is 3 and the outdoor path loss exponent N is 3.2. Note

that the received signal power experienced a 12 dB step decrease around 50m because of an

indoor/outdoor boundary.

 44

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d
P

ow
er

 (d
B

m
)

433MHz indoor+outdoor Received Power vs. Distance

Directional Antenna
Monopole Antenna

N=3.5

N=4.3

Figure 3-16 433MHz two different link propagation with Path loss Exponent

Figure3-16 shows results at 433 MHz. This data shows that using directional antenna can

improve reception by almost 8dB over using the monopole antenna on average, which is again

consistent with the estimated yagi antenna gain. The indoor path loss exponent N is 3.5 and the

outdoor path loss exponent N is 4.3. The indoor/outdoor boundary produced a 10dB step of

excess path loss.

 45

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d
P

ow
er

 (d
B

m
)

902MHz indoor+outdoor Received Power vs. Distance

Directional Antenna
Monopole Antenna

N=4.5

N=4

Figure 3-17 902MHz two different link propagation with Path loss Exponent

Figure3-17 shows that using flat-panel directional antenna (comparable in physical size

to the yagis) can improve reception by almost 12dB over using the monopole antenna on average

at 902 MHz. The indoor path loss exponent N is 4 and the outdoor path loss exponent N is 4.5.

The indoor/outdoor boundary of 902MHz experienced a 20dB step of excess path loss.

 46

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d
P

ow
er

 (d
B

m
)

2400MHz indoor+outdoor Received Power vs. Distance

Directional Antenna
Monopole Antenna

N=4.2

N=4.8

Figure 3-18 2400MHz two different link propagation with Path loss Exponent

Figure3-18 shows that using similar-sized directional antennas can improve reception by

almost 12.5dB over using the monopole antenna on average at 2400 MHz. The indoor path loss

exponent N is 4.2 and the outdoor path loss exponent N is 4.8. The indoor/outdoor boundary of

2400MHz experienced a 29dB step of excess path loss.

3.2.2.3 Path Loss Exponent Comparison

Table 3-7 shows path loss exponent comparison of all these four frequencies. From this

table, we note that in addition to its theoretical free-space path loss disadvantages, the higher

frequency suffers from higher path loss exponents in a terrestrial link environment. Thus, the

advantages of lower frequencies are even higher than expected when both ends of the link use

relatively non-directional antennas.

Table 3-7 Path Loss Exponents comparison

 47

 151MHz 433MHz 902MHz 2400MHz

Indoor 3 3.5 4 4.2

Outdoor 3.2 4.3 4.5 4.8

3.2.2.4 Comparison of Four Frequency’s Propagation

 To more easily compare the four frequency’s propagation, Figure 3-19 shows the results

when the directional antenna is used at transmitter end and

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d
P

ow
er

 (d
B

m
)

Four frequencies propagation comparison

151MHz
433MHz
902MHz
2400MHz

Figure 3-19 Four frequencies propagation comparison

monopole antenna is used at receiver end. From the Figure 3-19, on average, the 151MHz signal

strength is 6dB better than 433MHz, 9dB better than 902MHz, and 19dB better than 2400MHz at

the same distance point. At the same receive power level, -120dBm, the 151MHz, 433MHz,

902MHz, and 2400MHz frequencies can achieve distances of 1.46km, 0.672km, 0.537km, and

0.198km, respectively for low-rate systems with sensitivities in the range of -110 to -120 dBm.

Finally, note that the received signal power experienced a step decrease around 50m because of

 48

an indoor/outdoor boundary for all frequencies, but the step is higher at 2400 MHz, which is

consistent with diffraction effect theory.

 49

CHAPTER 4 Energy Harvesting Radio System PHY/MAC layer

Considerations

IEEE802.15.4 is defined as a standard for wireless sensor networks, but there has not

been a defined technique for energy harvesting which demands an extremely low power supply

stipulation. In Chapter 2, it was demonstrated that a burst communication, solar cell supported

energy harvesting radio demo board requires average power consumption of 1mw or less. In

Chapter 3, the choice of operating frequency based on propagation issues has been analyzed.

Wesaw that the use of lower frequency benefits energy constrained radio system by as much as

20 dB, which translates to an energy advantage of up to a factor of 100. Lower frequencies were

shown to propagate up to a radius of 1km with a 10mW transmit burst for low data-rate

applications. This is much further than the 10m propagation radius defined within the

IEEE802.15.4. However, the demo board lacks a protocol stack and only implemented an energy

harvesting power transmitter. As we demonstrate in this chapter, it is impossible to apply the

IEEE802.15.4 physical layer (PHY) and medium access control (MAC) layer synchronization

techniques to this burst communication system directly. This is due to the constraints placed on

energy consumption by the harvesting application. A more efficient physical layer frame format

design would aid in this problem.

This chapter proposes VHF/UHF EHR system physical layer and medium access control

layer synchronization techniques. The hardware validation is based on the existing K-State

Micro-transceiver demo board (Figure 4-1), which offers the opportunity to prototype suitable

receiveing functionality to complement the transmitter demonstrations of Chapter 2 and 3. The

reason for the non-applicability of IEEE802.15.4 is prooven by analyzing its PHY and MAC

layer definition in sections 4.2 and 4.3, and a new PHY layer specification and MAC

synchronization method are then proposed. Appendix A gives additional information on the

hardware and software used in the validation of these methods.

 50

Figure 4-1 K-State Micro-Transceiver Demo Board

4.1 IEEE802.15.4 & ZigBee Overview

4.1.1 PHY General Definition

The IEEE802.15.4 standard defines the physical layer and medium access control

sublayer specifications for low-data-rate wireless connectivity with fixed, portable, and moving

devices that have limited power consumption requirements. ZigBee, the commercial name of this

standard defined by the ZigBee Alliance, defines all layers, including network and application

layers of IEEE802.15.4. Mesh networks with both star and peer to peer topologies are typical

implementations.

The PHY layer defines two frequency bands, 2.4GHz and 868/915 MHz. Both bands use

direct sequence spread spectrum (DSSS) modulation. Specifications of these frequency bands

and data rate are shown within Figure 4-2.

 51

Figure 4-2 Frequency band and Data rate of IEEE802.15.4 (IEEE802.15.4 2006)

ZigBee supports peer-to-peer and star network topologies. Two main kinds of devices are

contained in the network, coordinator and network device. A “Beacon” frame transmitted by

coordinators periodically is used to setup synchronization of the networking. There are two

transmitting (TX) and receiving (RX) modes of a “Beacon-enabled” network shown in Figure 4-

3. One is uplink and the other is downlink. Since, in one ZigBee network, the devices are not

operating (TX / RX) continuously, they are working on active and inactive mode alternately with

a specific duty cycle definition.

Figure 4-3 ZigBee beacon-enabled TX / RX mode [1]

4.1.2 MAC Layer Synchronization

A SuperFrame structure (Figure 4-4) is defined in IEEE802.15.4 bounded by the

transmission of a beacon frame and can have an active portion and an inactive portion [1]. In

 52

Figure 4-4, there are several variables, which are used to define the length of the superframe. SD

is the active superframe duration. BI is the beacon frame interval. The variable

aBaseSuperframeDuration is the number of symbols forming a superframe when the SO

Figure 4-4 IEEE 802.15.4 Superframe structure [1]

(superframe order) is equal to 0. This variable is a constant, 960 symbols, equal to the product of

the number of slots contained in any superframe (aNumSuperframeSlots is 16) and the number

of symbols forming a superframe slot (aBaseSlotDuration is 60). The variable BO is the beacon

frame order, which decides the duty cycle (the ratio of the active period to inactive period).

Figure 4-5 shows the different duty cycle frames when the variable BO is defined as different

numbers.

Figure 4-5 IEEE802.15.4 super frame sequence with different Beacon Oder

 In IEEE802.15.4 (2006) section 7.5.4, it defines the MAC synchronization method: “To

acquire beacon synchronization, a device shall enable its receiver and search for at most

 53

[aBaseSuperframeDuration*(2n+1)] symbols, where n is the value of macBeaconOrder (BO)

[1].” Thus, depending on the data rate, the minimum (when SO=0, a superframe only has one

active portion) active time, inactive time and synchronization time can be calculated by using

equation (4.1), (4.2) and (4.3).

DataRatesymbolsDataRateionframeDurataBaseSuperionTimeActivePort /960/ == (4.1)

ionTimeActivePortDataRateionframeDurataBaseSuperrtionTimeInactivePo BO −×= /)2((4.2)

DataRateionframeDurataBaseSupereMaxSyncTim BO /)12(+×= (4.3)

Table 4-1 shows the calculation results when BO equals from 1 to 10 by using 868MHz,

BPSK, 20kbps PHY channel and 2.4GHz, O-QPSK, 250kbps (1symbol=4bits) PHY channel.

Figure 4-6 shows sync time versus the duty cycle plots based on the Table 4-1 results.

Table 4-1 IEEE802.15.4 Synchronization time calculation

Frequency and Time
Beacon Order=1

DutyCycle50%

Beacon Order=2

DutyCycle25%

Beacon Order=3

DutyCycle11%

Beacon Order=4

DutyCycle6.25%

Beacon Order=5

DutyCycle3.13%

Active Time (s) 0.048 0.048 0.048 0.048 0.048
Inactive Time(s) 0.048 0.144 0.336 0.72 1.488
SuperFrameLen(s) 0.096 0.192 0.384 0.768 1.536

868MHz,

BPSK,

20kbps
Sync Time(s) 0.144 0.250 0.432 0.816 1.584
Active Time(s) 0.0038 0.0038 0.0038 0.0038 0.0038
Inactive Time(s) 0.0038 0.0115 0.027 0.0576 0.1190
SuperFrameLen(s) 0.0077 0.0153 0.0307 0.0614 0.1228

2.4GHz,

O-QPSK,

250kbps
Sync Time(s) 0.012 0.0191 0.035 0.0652 0.1266

Frequency and Time
Beacon Order=6

DutyCycle1.6%

Beacon Order=7

DutyCycle0.78%

Beacon Order=8

DutyCycle0.36%

Beacon Order=9

DutyCycle0.18%

BeaconOrder=10

DutyCycle0.09%

Active Time (s) 0.048 0.048 0.048 0.048 0.048
Inactive Time(s) 3.024 6.048 12.096 24.53 49.10
SuperFrameLen(s) 3.072 6.144 12.288 24.578 49.15

868MHz,

BPSK,

20kbps
Sync Time(s) 3.120 6.192 12.336 24.626 49.2
Active Time(s) 0.0038 0.0038 0.0038 0.0038 0.0038
Inactive Time(s) 0.2419 0.488 0.9792 1.9622 3.928
SuperFrameLen(s) 0.2457 0.536 0.9830 1.9660 3.932

2.4GHz,

O-QPSK,

250kbps
Sync Time(s) 0.2495 0.584 0.9868 1.9698 3.96

 54

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100
IEEE802.15.4 Sync Time VS. DutyCycle

Sync Time (s)

D
ut

y
C

yc
le

868MHz
2400MHz

Figure 4-6 IEEE802.15.4 Sync Time Vs. Duty Cycle

 From these results, we notice that it will take a substantial time to sync when the duty

cycle is very low. From Table 4-1, when the duty cycle is 0.09%, it takes 49.2 seconds when

working at 868MHz and it takes 3.96 seconds when working at 2.4GHz. This is not practical for

a wireless sensor network, in which all coordinators, RFD and FFD devices are energy

harvesting radios. We call this kind of network pure-EHR systems. This is because the radio has

to stay on long enough to receive the beacon, assuming they do not yet know the network timing.

For example, K-State’s energy harvesting demo board has a duty cycle of 1.2% with a 30ms

active portion and a 2.3s inactive portion. There are four 220uF capacitors used to save harvested

energy from solar cells. Thus, if active RX period is 3.96 seconds, using the equation (2.3), the

discharged voltage will be V
uF

msmAdv 92
2204

39605.20
=

×
×

= . This is impossible to be implemented on

EHR system. A new MAC layer synchronization method therefore needs be designed for pure-

EHR system that it is discussed in section 4.3.

4.2 Proposed EHR System PHY Layer

 55

In this section, we propose a new method for synchronization which is applicable to

highly energy-constrained network nodes. The proposed EHR’s PHY layer solves the problem

discussed above, including energy efficiency and synchronization energy consumption.

4.2.1 PHY General Definition

The assumptions used for PHY specifications of this application are:

• Central operation frequency (aCentralRFFeq) : 433.92MHz

• Modulation : FM wideband modulation with ±10kHz bandwidth

• Bit rate (aMaxBitRate) : ≤ 20kHz

• Maximum physical protocol frame length (aMaxPHYFSize) ≤ odActivePeriBitRate× ,

while the ActivePeriod is the active time period of burst communication system.

The central operation frequency (aCentralRFFeq) was selected as the VHF/UHF

frequency band based on propagation measurements in the previous chapter. The central

operation frequency of 433.92MHz delivers good transmission range performance.

The modulation method was selected to use FSK due to its faster synchronization

property.

The bit rate is selected for a long range energy harvesting radio system. It is defined by

the variable aMaxBitRate.

The maximum physical frame length is decided by this variable. For example, when

aMaxBitRate is 1 kbps, and aActivePeriod is 30ms (as seen in chapter 2), the maximum physical

layer frame length is 30 bits, and the maximum frame length is 150 bits if aMaxBitRate is 5 kbps.

These rates are consistent with the -110 to -120 dBm sensitivity levels assumed in the

measurements of Chapter 3.

The preamble and start of frame (SOF) parameters are significant parts of PHY protocol

frame. They provide bit and frame synchronization for PHY layer, and decide the sync time. As

we will show, the length of these parameters affects both PHY frame length and energy

efficiency of EHR systems.

 56

4.2.2 PHY Frame Structure

Figure 4-7 PHY Frame Format

Figure 4-7 defines the PROPOSED PHY frame format for EHR systems.

• Preamble: The Preamble field is used by the receiver to obtain bit synchronization

with an incoming RF signal. The length of preamble, defined by the

aPreambleLength variable, indicates how many bits are included in the preamble

field. In section 4.2.3, we discusse the preamble design for EHR systems.

• SOF: The start of the frame is used to indicate the end of the preamble training

sequence and the start of the message packet. The length is defined by the

aSOFLength variable and the sequence is defined by the aSOFSequence variable.

The Barker code, in Table 4-2, has lower autocorrelation properties and it is good

to be used as the EHR start of frame sequence. The aSOFSequence “1101” has

been used in measurements later because of its short active period.

Table 4-2 Barker code

aSOFLength aSOFSequence(Barker code)

1 0

2 0 1

3 0 0 1

4 0 0 1 0

5 0 0 0 1 0

7 0 0 0 1 1 0 1

11 0 0 0 1 1 1 0 1 1 0 1

13 0 0 0 0 0 1 1 0 0 1 0 1 0

 57

• Frame Length: The Frame Length field is 4 bits in length and specifies the total

number of octets (1 octet = 8 bits) contained in the PHY payload. It has a value

between 0 and aMaxPHYPayloadSize (0 ≤ aMaxPHYPayloadSize ≤ 24).

• PHY Payload: This is a variable length containing the data of PHY packet.

The frame length field is defined as 4 bits because of the burst communication type and

low bit rate considerations. The energy harvesting prototype demo board of Chapter 2 was

designed with a 30ms burst communication active period.

The PHY payload size could be larger, for example 10 octets (80 bits). There are two

methods, which help to achieve this goal: (1) increase the active period time; (2) increase the

transmitting data rate. The active transmitting period time can be increased by utilizing larger

energy storage capacitors. The active capacitor discharging period has increased so the capacitor

charging period must be increased too. For example, if the current active period (30ms) was

increased to 300ms, with a data rate of 1 kHz, 300 bits or roughly 37 octets could be transmitted

during a single duty cycle. However, the recharge time then increases too from 2.3 seconds to

approximately ½ minute. This tradeoff introduces another dimension of the energy harvesting

systems.

4.2.3 Preamble Design

For an EHR with low data rate and highly constrained on-time, minimizing the preamble

length is critical to maximizing data volume that can be transmitted. This section will discuss the

preamble length design and validation measurements. The minimum preamble length is

determining by the shortest time that the receiver can bit-sync with the RF receiving signal. The

demodulation, bit-sync, and DSP software used in experimental validation are described in

Appendix A.

4.2.3.1 Preamble Length versus Start of Frame Detecting Error

The experimental validation environment includes a waveform generator, a signal

generator, K-State’s microtransceiver demo board and an oscilloscope. Figure 4-8 shows the

experimental setup.

 58

Figure 4-8 Preamble test experiment environment

The PHY frame was constructed using a waveform generator, which can create arbitrary bit

sequences. Nine different types of frames were constructed using 6, 10, 20, 24, 28, 40, 80, 90

and 100 bit preamble lengths. The RF signal power range of -90dbm to -108dbm was set by

signal generator. Figure 4-9 shows the resulting error detection probability of SOF field versus

RF signal power of varied preamble length curves. Note that the receiver (described in

Appendix A) employed a 40 kHz IF filter, which is about 10 times larger than a matched filter

for the assumed data rate. Hence, a 10 dB better sensitivity can be achieved than that shown in

Figure 4-9 at a given error rate. Note also that values and error-rate curve slopes above power

levels of -98 dBm are only estimates, since the number of trials at each data point was limited (<

100).

 59

-108 -106 -104 -102 -100 -98 -96 -94 -92 -90
10-3

10-2

10-1

100

Input Signal Power (dBm)

E
rro

r o
f S

O
F

Input Signal Power VS. Error of SOF of various Preamble Length

Preamble 6bits
Preamble 10bits
Preamble 20bits
Preamble 24bits
Preamble 28bits
Preamble 40bits
Preamble 80bits
Preamble 90bits
Preamble 100bits

Figure 4-9 Error Probability of SOF versus Input Signal Power of varied preamble length

Figure 4-9 shows the following phenomenon:

1) To keep same error level, shorter preamble frames need more transmission power.

2) The error probability is very high when the preamble length is less than 10bits.

 These results are collected by embedding a test flag within the bit-sync code. A pulse

from the microcontroller I/O pin was generated when the test code detected a correct SOF

sequence from incoming signal. Meanwhile, the demodulated and recovered bit sequence was

output through an additional I/O pin. These two pins were probed and plotted using an

oscilloscope. Figure 4-10 is screen capture of 30bits, 40bits, 50bits and 60bits preamble frames

SOF detection. Therefore, we could observe if the software detected the SOF in the right place.

By observing the output, error probability of SOF versus input signal power curve could be

plotted.

 60

Figure 4-10 SOF detection with various preamble length

4.2.3.2 Method for Improving Short Preamble Frame Performance

The slope of 6 bits and 10 bits preamble curve in Figure 4-9 could be increased by using

dynamic bit-sync lock window calculation or adaptive TX power method. Additionally, the

transmit power could be decreased by a decrease in receiver bandwidth as previously mentioned.

Dynamic bit-sync lock window is different with the fixed bit-sync lock window. The

largest lock loop window of a state machine could be used at very beginning synchronization

processing. The large the lock loop window, the greater increase of bit-sync speed, but this will

decrease the data recover accuracy. In practice, once a “0101” sequence is detected, shrinking

the lock loop window to a proper size will increase the data recover accuracy..

Adaptive TX power involves transmitting more power during preamble period, but

transmitting less power for the PHY payload part from the transmitter end. This will aid the

receiver to sync the incoming bit stream with a short preamble sequence, but it may increase

power consumption on the transmitter side.

The best way to increase receiver sensitivity is to decrease the receiver’snoise figure. For

this demo board, the noise figure could be decreased by 3 to 5dbm, which should shift the curve

left by 3 to 5dbm as well.

 61

These methods were not implemented in K-State EHR demo board because it beyond of

the research.

4.2.3.3 Preamble Length versus Energy Comsumption

 Although Figure 4-8 has been shown the basic information of error probability of start of

frame sequence versus transmission power consumption, the energy consumption should be

more direct viewing for energy harvesting design. Table 4-3 shows calculation result of energy

consumption of various preamble length frames based on the Figure 4-7 testing results.

Table 4-3 Preamble Length VS. Energy when data rate is 512bps

Preamble
Len (bits)

SOF Len
(bits)

Payload
Len (bits)

P_RX
(dbm)

P_TX
(dbm)

P_TX
(mw)

TX_Per
(s)

TX_Ener
gy (J)

6 4 72 -90 18 63.09 0.1602 10.11e-3
10 4 72 -94.61 13.39 21.83 0.1680 3.67e-3
20 4 72 -97.22 10.78 11.96 0.1875 2.24e-3
28 4 72 -97.54 10.46 11.12 0.2031 2.26e-3
40 4 72 -98 10 10 0.2266 2.27-e3

 In Table 4-3, Payload Len item indicates that the test frames use same physical payload

size 72 bits.

SOF Len item indicates that the start of frame field of PHY frame is 4 bits (‘1101’

sequence is used).

P_RX (dbm) is received power in dbm unit, which was power level fed into receiver

antenna. These values were the X axis value when the Error Of SOF value of Y axis were same

in Figure 4-20. Here Error Of SOF is 10-1.

P_TX(dbm) is transmitted power in dbm unit left from transmitter antenna. Assume

10mw power is used to transmit 40bits preamble length frame. The difference power in dbm unit

is ∆P_RX=P_RX(x) – P_RX(40) where x corresping to preamble length. Thus, the P_TX(dbm)

could be calculated by adding this ∆P_RX on 10dbm.

P_TX(mw) is transmitted power in mw unit left from transmitter antenna. This value is

nothing but convert the dbm into mw unit.

TX_Per is transmitting active period in second unit. Since the data rate is 512bps for this

test, the total frame length divided by 512bps gave out the transmitting time. For example, the

 62

preamble length is10 bits, SOF is 4 bits and PHY payload is 72 bits, the transmitting period is

s
bps

bits 168.0
512

)72410(
=

++ .

TX_Energy is transmitting energy used at transmitter side to send (PreambleLen +

SOFLen + PHYPayloadLen) length frame. This energy is calculated by TX_Per(s)*P_TX(mw).

Figure 4-11 shows the Energy consumption (mJ) versus Preamble Length (bits). This plot

shows that a preamble length of 20 bits has good performance for its lower energy consumption.

0 10 20 30 40 50 60 70 80
2

3

4

5

6

7

8

9

10

11
x 10-3 Preamble Length VS Engery w/ PHY Payload 72bits, SOF 4bits, 512bps

Preamble Length (bits)

E
ne

rg
y

(J
)

Figure 4-11 Energy Consumption VS. Preamble Length

4.3 Proposed EHR MAC Layer Synchronization
In previous senction 4.1.2, we have found that the IEEE802.15.4 defined

synchronization method is not practical for pure-EHR systems, in which all corrodinators, RFD

and FFD devices are energy harvesting radios. Thus, a new method for lower duty cycle EHR

systems should be proposed. However, the WSN could be a hyrib-EHR system, in which some

corrodinators are not energy harvesting radio but a power supplied node. With the reliable power

supply, the synronization method will be different.

 63

4.3.1 Pure-EHR Network Obtaining Synchronization

In the pure-EHR network, all WSN node devices are energy harvesting radio. Same as

IEEE802.15.4 standard networking topologist definition, the energy harvesting radio systems

have both star and peer-to-peer network topologies. The EHR network follows the IEEE802.15.4

definition, so there are PAN coordinator, coordinator, FFD, and RFD devices in the network.

Same as IEEE802.15.4, the superframe concept is used to define the different duty cycle

(Figure 4-3 and Figure 4-4). The beacon frame is also be used for synchronization, which is

transmitted from PAN coordinator periodically. The structure of beacon frame is shown in

Figure 4-12, which start at the beginning of the active portion of a superframe within and occupy

less than one slot duration. The beacon frame holds the beacon sequence number, which is

represented by aBeaconSequenceNumber variable. This aBeaconSequenceNumber variable’s

value lies between 0 and aMaxBeaconSequence, which is related to the system duty cycle. The

field BeaconControl contains the beacon’s control bits to indicate this is a beacon frame.

Figure 4-12 Beacon Frame format

The synchronization of the EHR systems is designed different from IEEE802.15.4

standard since the receiver can only be on for very brief period. The device in IEEE802.15.4

network is active to scan beacon frame as most [aBaseSuperframeDuration*(2n+1)] symbols.

But the EHR couldn’t work in an active mode for that long duration especially when the duty

cycle is low (n is big). Since the EHR is communicating in burst mode, a burst receiving method

is designed to sync. The sync processes are:

1. The EH receiver will receive at least 2 slots time duration data when power is on.

Decode the received data to judge if the beacon frame is detected. If the beacon frame

was not detected, the receiver will enter inactive mode to sleep a defined inactive

duration.

2. When the EH receiver first time wake up, if the beacon frame was not detected, the

receiver will enter inactive mode to sleep a defined inactive duration plus one slot

duration.

 64

3. When the EH receiver second time wake up, if the beacon frame still was not

detected, the receiver will enter inactive mode to sleep a defined inactive duration

plus two slots duration.

4. Therefore, with the increase of the receiver waking up, the sleep duration will

increase one slot each time. The sleep duration will be reset when the waking up time

touch the maximum number of slots of a Beacon Interval or a beacon frame is found.

5. Once the EH receiver detect the beacon frame, it will reset the local timer so that it

could sync with the remote Coordinator using a suitable low powerd accurate timer.

The keeping synchronization method is beyond of this research that it will not be

discussed here.

The Figure 4-13 shows the process 2, 3 and 4 to obtain the synronization.

Figure 4-13 Beacon searching process

The Figure 4-14 shows the process 5 that a beacon frame has been detected.

Figure 4-14 Beacon detected process

 65

Here is an example of synchronization timing. The each time sleep duration could be

expressed as (TBI + i*TSLOT), where TBI is the time interval of two beacon frame, TSLOT is time

duration of one slot, and i is from 0 to the maximum slots number of one beacon interval

duration. When use 1.3% duty cycle PDC =0.013 with 30ms active duariton TACT, and 2.3s

inactive duration TINACT defined in K-State EH demo board, the number of slots in one beacon

interval duration KSLT = 777, which is calculated by using equation (4.4).

SLOT

INACTACT

SLOT

BI
SLT T

TT
T
TK

+
== (4.4)

The relationship between duty cycle, active duration, inactive duration and beacon interval is

expressed by equation (4.5).

DC

DCACT
ACTINACTACTBI P

PT
TTTT

)1(−
+=+= (4.5)

The maximum synchronization time TmaxSYNC =1757s ≈ 30min, is calculated by using equation.

∑
=

+×+=
SLTK

i
SLOTSLOTBISYNC TTiTT

0
max)((4.6)

 Obviously, the different duty cycle leads to different synchronization durations since

KSLT is changing with duty cycle as well as the TBI. Table 4-4 shows the duty cycle versus

synchronization durations using K-State’s EHR prototype and using IEEE802.15.4

syncronization method. Since the K-State EHR board duty cycle is designed for PDC ≤ 1.3

(Table 2-1) and the active duration is 30ms for low CPU clock design, 5 duty cycles

between 0.09%~1.6% were selected to compare with IEEE802.15.4.

Table 4-4 Sync time and power consumption comparison of EHR and IEEE802.15.4

standard radio

EH demo board IEEE802.15.4
Duty cycle

Sync time
Active duration voltage

drop (v) *

Active duration voltage

drop (v) *

1.6% 30 minutes 0.7 72.7

0.78% 123 minutes 0.7 144.2

0.36% 9.6 hours 0.7 286.5

0.18% 39 hours 0.7 573.1

 66

0.09% 6.4 days 0.7 1146.4
(*The active duration voltage drop is calculated by using equation (2.3) and assumes active/inactive current are 20.5mA

and 0.06mA. These number came from Chapter 2, Duty Cycle Design, section “Low CPU Clock, Hardware control TX”)

For IEEE802.15.4, none of the voltage drops are possible; they are shown only to

emphasize the need for the proposed new synchronization technique.

Figure 4-15 is the plot of EHR sync time versus duty cycle.

100 101 102 103 104 105 10610-4

10-3

10-2

10-1

100
EH Radio Sync Time VS. DutyCycle (50%~0.09%)

Sync Time (s)

D
ut

y
C

yc
le

433MHz

Figure 4-15 Energy Harvesting Radio Sync time versus Duty cycle

4.3.2 Hybrid-EHR Networks for Obtaining Synchronization

The problem was found from the Table 4-4 that the synchronization period becomes over

10 hours when the duty cycle is less than 0.36%. This will happen especially when the energy

harvesting source is weak so that the device has to sleep longer to recharge capacitors. Thus, a

hybrid-EHR netowork is proposed, in which some coordinators are not energy harvesting radios

but have higher power supplies. That means the coordinator can transmit beacon frames in a

continuous mode instead of the burst mode without energy concerns. Hence, synchronization

can occur more quickly for the nodes in the network that use energy harvesting.

 67

There are two considerations. One is assuming we have enough spectrum resource so that

a specific pilot channel can be set up to transmit beacon frames specifically (Figure 4-16(a)).

1. The WSN coordinator continually transmits beacon frame clusters using a pilot

channel (only for synchronization accessing without data transmission);

2. The beacon frame cluster contains multiple numbers of beacon frames. Each beacon

frame includes the synchronization information (eg. Cycled beacon frame number

255~0) to indicate the left time from the next data frame transmitting or receiving

time moment;

3. The EH devices of the WSN wakes up to receive the beacon frame on the pilot

channel periodically with its defined duty cycle as in the pure-EHR systems

definition. It shifts one slot each time and once it has detected one beacon frame, the

EH device will jump to the data channel and adjust the local timer depending on the

synchronization information packaged inside of the beacon frame. It will then sleep

until the next data frame transmitting or receiving time moment;

The other case is the limited spectrum resource environment. In this case the beacon

frame and the data frame must share the same channel. Thus the beacon frame and the data frame

are transmitted alternately in one channel (Figure 4-16(b)).

1. The coordinators transmit the beason frame cluster periodically but with a high duty

cycle design (since the coordinators are not EH powered). The beacon frame cluster is

alternated with active data frames during active period of the duty cycle;

2. The EH devices of the EHR wake up to receive the beacon frame as with the pure-

EHR network and shift one slot each time until find the synchronization

 68

… ...

… ...
t

A

Beacon

Beacon slot

Beacon detecting slots

9 8 7 6

…...

…...

8

1 Active
Period RX

BI BI BI

5 4 3 2 1 0

1 Active
Period RX

1 Active
Period RX

1 Active
Period RX

1 Active
Period RX

Coordinator
Pilot

Channel

EH Device

...

...

t

9

Beacon cluster

Beacon slot

Beacon detecting slots

8 7 6 5

…...

…...

BI + n slots

1 Active
Period RX

BI+n slot BI

4 3 2 1 0

1 Active
Period RX

1 Active
Period RX

1 Active
Period RX

Coordinator

EH Device

(a) Multi-channel network

(b) One channel network

BI BI

Inactive

Data TX/RX slot

Data TX/RX slot

A 9 8 7 6 5 4 3 2 1 0 A 9 8 7 6 5 4 3 2 1 0

Data Frame

…...

…...
Coordinator

Data
Channel

Data Frame Data Frame

9 8 7 6 5 4 3 2 1 0

Data Frame

BI

9 8 7 6 5 4 3 2 1 0

Figure 4-16 Hybrid-EHR System Synchronization

Thus, when the EHR systems work at ultra-low duty cycle while the powered nodes

operate at higher duty cycles. The EH devices will find synchronization immediately when the

pilot channel is used, and the maximum synchronization time will be reduced to a couple of duty

cycle durations when the beacon and data frame share one channel. For example, when the duty

cycle is 0.005%, the beacon interval BI is 600s≈10min. If the powered coordinator transmits

continuous beacon frame clusters in the pilot channel, it will find the synchronization

 69

immediately. If the coordinator transmits periodically beacon frame clusters and data frames in

same channel with a 50% duty cycle, it will take at as much as 2*BI≈20min to find the

synchronization. In either case, the time will be substantially reduced from the pure EHR

network design and should be useable for most EHR applications..

4.3.3 Keeping Synchronization

To keeping synchronization is an important function of the MAC layer. The keeping

synchronization is that once the EHR node obtained the synchronization, it should periodically

check and adjust local timer to keep synchronization with the networking. However, we don’t

propose any technique on this area, we only list several popular techniques, which have been

used for wireless sensor network applications. The fundamentals technique key words are listed

below the technique.

• NTP : Network Time Protocol
o Used in internet
o Local sync to NTP server

• RBS : Reference Broadcast [21]
o Reference message is broadcast (Receiver-Receiver)

• TPSN : Timing-sync protocol for sensor networks [22]
• FTSP : Flooding time synchronization protocol [23]

o MAC layer time stamping
o Used by Crossbow (a ZigBee products company)

For EHR systems, keeping synchronization design could reference these techniques but it

difinitly can not use them directly. This will be a future research direction for EHR systems.

4.4 Conclusions
In this chapter, we overviewed the IEEE802.15.4 standard for wireless sensor networks,

including the PHY layer frame structure and the MAC layer schronization processes. Since this

standard is not defined for battery-free WSN nodes, it is impossible to use it as PHY and MAC

layer definition for energy harvesting radio sytems. For an EHR system with low data rates and

highly constrained on-time, minimizing the PHY preamble length is critical to maximizing data

volumes that can be transmitted. Thus, a preamble design was discussed and validated by using

K-State Micro-transceiver demo board and EHR DSP software. Another part of this chapter

covered MAC layer synchronization design. Since an EHR uses capacitors as energy storage to

support the burst communication, the IEEE802.15.4 sync-process would lead to impractical

 70

voltage drops if it was used for EHR system. Thus, we proposed MAC synchronization for EHR

systems. The technique may be used in either pure EHR networks where all nodes, including the

coordinator, are subject to EH power constraints. Alternatively, for faster synchronization, a

hybrid technique, where coordinator nodes have higher energy sources, can be considered.

 71

CHAPTER 5 Conclusions

5.1 Summary
Current research in the wireless sensor network area has focused mainly on smart energy

management, effective synchronization algorithms, and energy efficient network protocols. An

industry wireless sensor network standard, IEEE802.15.4, is defined to serve a set of industrial,

residential and medical applications with a short transmission range (<10m) and battery supply

operation in the 868/915MHz or 2.4GHz frequency bands.

However, the desire for the future wireless sensor network application s includes battery-

free nodes, extended RF range, and self-network organization. To satisfy these desires, the

challenges of energy harvesting power source operation, RF communication modes, RF link

budgets and propagation, and synchronization techniques should be considered simultaneously.

In this thesis, we proposed solutions for energy harvesting radio systems including their

PHY layer frame structure and MAC layer synchronization techniques. Firstly, we developed an

energy harvesting radio (EHR) prototype demo board using indoor solar cells as the energy

harvesting source. This is a bettary-free, burst communication mode radio node. The radio uses

433MHz as its RF operation frequency, and the average current is less than 0.32mA. Secondly,

four VHF/UHF frequency’s propagation, 151MHz, 433MHz, 902MHz, and 2.4GHz, were

measured using different antenna techniques, demonstrating that the lower frequencies can

transmit further and have a smaller path-lost exponent than the higher frequencies typically used.

The transmission range at 10 mW transmit power can extend up to 1 km using 151MHz, and 0.7

km using 433MHz from indoor to outdoor with a directional antenna at one end and monopole

antenna at the other. Finally, two proposed MAC layer synchronization techniques were

discussed for both pure-EHR and hybrid-EHR systems. The IEEE802.15.4 defined

synchronization method cannot be used for the low duty cycle energy harvesting regime since

the synchronization duration is too long to be supported by the energy captured in reasonable

sized capacitors. The proposed synchronization method works at ultra-low duty cycle (<2%)

along with burst communication mode.

 72

5.2 Challenges and Future Directions
Although the prototype energy harvesting radio system and its PHY/MAC consideration

discussed in this thesis is a good solution for battery-free, long distance, and low-cost WSN,

there are still several challenges and future research directions that need to be mentioned.

The most important challenge is low speed interactive communication. When using EHR

nodes, the duty cycle has to be kept low to maintain average power consumption at sub-

milliWatt levels. Especially when the energy harvesting sources are weak, the duty cycle will be

very low. For example, if the device awakes once per hour, transmitting four data frames will

require four hours. Thus, a compact application protocol layer is required to solve this challenge.

For EHR PHY/MAC layer implementations, keeping timeslot synchronization will be

one of the most important points. New techniques to keep synchronization under ultra-low power

consumption constraints are needed. In addition, future work is needed to design a network layer

and higher application layer for an EHR system. . Some related work has recently begun under

a standardization effort known as 802.15.4f. It is hoped that this thesis will contribute to this

effort.

 73

Bibliography

[1] IEEE Computer Society, “IEEE Std 802.15.4TM-2006”, New York, NY, 2006

[2] Simjee, F., Chou, P.H, “Everlast:Long-life, Supercapacitor-operated Wireless Sensor

Node”, Lower Power Electronics and Design, 2006.

[3] Hang Su, Xi Zhang, “Battery-Aware TDMA Scheduling Schemes for Wireless Sensor

Networks”, In Global Telecommunications Conference, 2008.

[4] J.Alberola, J.Pelegri, R. Lajara, Juan J. Perez, “Solar Inexhaustible Power Source for

Wireless Sensor Node”, In IEEE International Instrumentation and Measurement Technology

Conference (FMTC), 2008.

[5] Eliasson, J, Lindgren, P., Delsing, J., Tompson, S.J, Yi-Bing Cheng, “A Power

Management Architecture for Sensor Nodes”, In Wireless Communications and Networking

Conference, 2007

[6] Youssef, M., Yousif, A., EI-Sheimy, N., Noureldin, A, “A Novel Earthquake

Warning System Based on Virtual MIMO-Wireless Sensor Networks”, In Electrical and

Computer Engineering Canadian Conference, 2007.

[7] D’Souza, M., Bialkowski, K.,Postula, A., Ros,M, “A Wireless Sensor Node

Architecture Using Remote Power Charging, for Interaction Applications”, Digital System

Design Architectures, Methods and Tools, 2007

[8] K.Daniel Wong, “Physical Layer Considerations for Wireless Sensor Networks”, In

International Conference on Networking, Sensing & Control IEEE, 2004

[9] Raviraj, P., Sharif, H., Hempel, M., Song Ci, “MOBMAC – an energy efficient and

low latency MAC for mobile wireless sensor networks”, Systems Communications, 2005

[10] William Kuhn, Jeongmin Jeon, and Kai Wong, “A Low-Power, Radiation-tolerant,

RFIC Micro-Transceiver Chipset for Space Applications”, NASA VLSI Symposium, 2007

[11] Bill Kuhn, “White Paper on Energy Harvesting Radio Transceivers”, 2007

[12] John S. Seybold, “Introduction to RF Propagation”, John Wiley & Sons, 2005

[13] Christopher Coleman, “An Introduction to Radio Frequency Engineering”, The press

Syndicate of the University of CAMBRIDGE, 2004

 74

[14] W.L.Stutzman and G.A.Thiele, “Antenna Theory and Design, 2nd ed”, Wiley,

Hoboken, 1998

[15] Kai Chang, “Handbook of Microwave and Optical Components”, Microwave

passive & Antenna Components, Volume 1, 1997

[16] B.Sklar, “Digital Communications Fundamentals and Applications, 2nd ed”,

Prentice-Hall, Upper Saddle River, 2001

[17] Foroozesh, A.; Shafal, L, “Size reductin of a microstrip antenna with dielectric

superstrate using meta-materials: artificial magnetic conductors versus magneto-dielectrics”, In

Antennas and Propagation Society International Symposium IEEE, 2006.

[18] Collins,S.; Antar, Y.M.M, “Antenna size reduction using non-planar rings”,

Electronics Letters, Volume 38, Page(s):677-679, 2002

[19] Carol Wilson, “Frequency Bands for Wireless Sensor Networks”, CSIRO ICT

Centern, Australia

[20] Ane Kristoffsersson, “Digital Switchover and Spectrum Dividend Market Status

2006”, HiQ, 2006

[21] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization

using Reference Broadcasts”, In Proceedings of the 5th symposium on Operating systems design

and implementation, 2002

[22] S. Ganeriwal, M. Srivastava, “Timing-sync Protocol for Sensor Networks (TPSN)

on Berkeley Motes NESL”, 2003

[23] Miklos Maroti, Branislav Kusy, Gyula Simon, Akos Ledeczi, “The Flooding Time

Synchronization Protocol”, In Proceedings of 2nd International Conference on Embedded

Networked Sensor Systems, 2004

[24] EnOcean Inc, “Dolphin system architecture for self-powered sensors and wireless

sensor networks”.

[25] http://ieee802.org/15/pub/TG4f.html

 1

Appedix A - PHY Layer implementation of K-State Energy

Harvesting Receiver System

The whole energy harvesting system can be divided into two parts: the RFIC front-end

and the DSP baseband. The RFIC front-end provides a physical data transmitting service. The

DSP baseband provides modulation and MAC layer provides the sampling, matched filter, bit-

sync and frame-sync services.

A.1 RFIC Front-end
The RFIC Front-end is provided by the K-State micro-transceiver. This micro-

transceiver’s specifications are:

1. Operating frequency (fc) of 433.92Mhz (a unlicensed band)

2. IF frequency(fIF) of 10.7MHz

3. IF filter bandwidth (BWIF) of 40 kHz

4. FM frequency deviation (∆f) of ±10kHz

5. Receiver sensitivity ≥ -120dbm

6. Low current consumption (Iop) < 20mA during both TX and RX modes

7. Data rate (Rd or fm) of 1 kbps

This system is designed as a Wideband FM modulation system and has implementing

FSK modulation for this RFIC Front-end. Equation (A-1) is used to describe a Narrowbnad or

Wideband FM system.

mf
fΔ

=β Equ(A-1)

β less than one indicates Narrowband FM, whereas β greater than one indicates

Wideband FM. The IF filter bandwidth (BWIF) of 40 kHz is greater than the Wideband FM

modulation bandwidth of 20 kHz, so, that the FM modulated signal is passed through the IF

filter. Thus, to implement FSK in this RFIC front-end is possible. Figure A-1 show spectrum

relationship between IF filter and Wideband FM modulation.

 2

Figure 5-1 IF filter and wideband FM modulation

A discussion of typical FSK demodulation is needed prior to discussing a One-shot

method. Typically, FSK demodulation has coherent and non-coherent methods. Figure A-2

shows block diagram of those demodulation methods. The correlator Receiver design (a)

requires the receiver to generate the same phase and frequency carry wave s(t) to mix with

Figure 5-2 FSK demodulation (a) Correlator Receiver (b) Non-correlator Receiver

the received signal r(t). Following the mixing operation is a matched filter h(T-t) that aids in

providing maximum SNR at sampling instant time tm. Once the signal is sampled a envelope

detector will recover the sent digital signal.. The non-correlator receiver design (b)does not

provide the same phase and frequency carry wave, but utilizes two matched band-pass filters,

H1(w) and H2(w), to match the RF pulses corresponding to the digital signal. These two filters

operate at the center frequency, ff c Δ± , with reasonable bandwidth (since the band pass filter

 3

has ring-up and ring-down time ≈ 1/BW of the filter). The filters are followed by an envelope

detector with an outputs at t=Tb. These outputs r0 and r1 have Gaussian noise components n0 and

n1 (with a standard deviation of σn). The outputs are sent to a comparator, which will output a

zero if 01 rr < and output a one if 01 rr > . These two receivers can be implemented either in

hardware or software in DSP, but high MIPS would be needed for the DSP option.

Figure 5-3 One-shot FSK demodulation: (a) Modulation Data, (b) FM Modulated

waveform, (c) Zero cross Sampling clock, (d) Zero cross pulse & average energy curve

 A One-shot FSK Demodulation will replace the previously mentioned methods based on

an existing 16-bit microcontroller and K-State RFIC front-end. This technique is based on digital

signal processing and statistical signal processing. Figure A-3 is diagram of this method. We

called it “One-shot” since the K-State Micro-transceiver provides 1-bit ADC IF output. A one is

outputted if the IF waveform is above threshold, otherwise a zero is outputted. A serial sequence

denoted as x0,x1,x2…xn can be created by sampling the output of the 1-bit ADC. Detecting

“zero crossings” allows for the detection of frequency changes and leads to recovery of the sent

digital signal. “Zero crossings” imply that xn-1 is zero and xn is one. A FM modulated signal

varies the operation frequency up and down to denote the digital bit being sent. We assume that a

zero is modulated to ff c Δ− and one is modulated to ff c Δ+ . A “zero crossing” denotes that a

one is detected, while a zero is detected if there was not a zero crossing” in y0,y1,y2…yn serial

 4

sequence. Thus Y(n) contains dense clusters of ones if high frequencies are sampled,

alternatively thin clusters of ones if low frequencies are sampled. If think Y(n) serial as a pulse

serial, to get average energy of it, we can easily get a waveform, which is similar with

modulation data waveform. Figure 4-4 shows the One-shot demodulation technique using a“zero

cross” detector.

The objective of Analog FM demodulation is to reproduce the original waveform. Digital

communication systems have inputs that are sets of finite symbols (here they are either 0’s or

1’s). The objective of receiver is not to reproduce the waveform exactly but to decipher which

symbol has been transmitted. The average energy level curve in Figure 4-4(d) reflects the input

transmitted symbol with noise.

Now the issue is how to obtain the serial sequence Y(n) with a 16bit Microcontroller

sampler. Subsampling and matched filtering techniques are solutions for this issue.

A.2 DSP Baseband Design

A.2.1 Subsampling

Nyquist-Shannon sampling theorem states that an analog signal that has been sampled

can be perfectly reconstructed from the samples if the sampling rate is equal to or greater than

2*f samples per second, where f is the highest frequency of original signal. This is also called

oversampling. The K-State RFIC operates at 433.92MHz and a Intermediate Frequency (IF) of

10.7MHz. Using the Nyquist theorem, we should use at least 2 × 433.93 = 867.86 MHz sampling

rate or sample once every 1.15ns. It is impossible to implement this fast sampling rate on a 16bit,

or 32bit low power consuming microcontroller. But, the Nyquist oversampling theorem is

adequate for baseband signal. For a band limited pass band signal, the Nyquist sampling theorem

can be reworked that if the sampling rate equal to or greater than 2*B samples per second, where

B is the bandwidth of band pass signal. Again, the pass band analog signal can be perfectly

reconstructed from the samples if the 2*B sampling rate is observed. This is called subsampling.

Subsampling only is adequate for band limited systems.

Base upon the above sampling theorem foundation, we designed a subsampling system

for K-State 433.92MHz FM micro-transceiver front-end. Since the FM frequency deviation is

±10kHz, the modulated signal lies between 433.93 MHz and 433.91 MHz. that the

corresponding IF frequency are between 10.69 MHz and 10.71 MHz with a pass band bandwidth

 5

20 kHz. The sampling rate is designed at 75 kHz, which is much greater than 20 kHz bandwidth,

to sample 10.7 MHz IF 1-bit ADC output. The front-end outputs a one if the IF frequency is

above the threshold, otherwise it outputs a zero. A external 75 kHz sampling clock can be

provided to front-end from the microcontroller.

Figure 5-4 Subsampling 10.7 MHz with 75kHz sampling rate

 The important purpose of subsampling is to down convert the 10.7 MHz IF frequency to

a baseband frequency which could be processed by 16bit microcontroller. This can be seen in

both time-domain and frequency-domain representations. Figure A-4(a) shows the time-domain

representation of the subsampled signal. We sample the 10.7 MHz FM signal at

...)3,2,1(3.13
75

1
=×=× nusn

kHz
n . A output pulse indicates a zero crossing, while no pulse

indicates no “zero crossing”. Since the FM modulated signal is 20 kHz bandwidth compared

with 75 kHz sampling rate we are still oversampling. We assume FM modulates a one using the

high frequency of kHzfm 10+ and a zero using the low frequency of kHzfm 10− . Thus, in

Figure A-4(a) we see dense pulse cluster samples indicating high frequency and sparsely pulse

 6

samples indicate low frequency. If we acquire the average energy of these pulses, we will get a

waveform with a threshold above zero.

 FigureA-4(b) shows the frequency-domain representation of the subsampled signal. The

10.7 MHz 1-bit ADC IF is sampled at a sampling rate ...)3,2,1(75 =×= nkHznf s using

impulses., These impulses mix the IF frequency with these fs frequencies and it can be down

convert or up convert to the center at fs. When n is equal to 143, MHzf s 725.10= . When fs is

mixed to 10.7 MHz, it down converts the IF signal to be centered around ±25 kHz. When n is

equal to 142, MHzf s 65.10= . When this fs mixes with 10.7 MHz, it down converts the IF signal

to be center around ±50 kHz. The Figure A-4(b) shows all spectrums of mixed signals.

 Thus, subsampling provides a good way to down convert higher pass band signals to

lower baseband signals. This allows a 16-bit microcontroller to process the lower sampled signal

competently and allows the one-shot FSK demodulation to be implemented. A new issue

becomes how to recover the average energy level curve of Y(n) binary serial sequence? If a D/A

convertor is not utilized, then the task is easy. Since we do NOT have an D/A in our PIC24

microcontroller the software method is only way to implement this. Therefore, a matched filter

becomes the best way to solve this.

A.2.2 Digital Low Pass Matched Filter

A digital low pass matched filter (LPMF), with a 1 kHz cut off frequency, has two

functions The first function is frequencies greater than 1 kHz are block. The second function is to

match the 1 kHz data rate to recover the data pulse sequence with lower noise. Since the filter is

filtering not only higher frequency signals, but also noise, it can increase the SNR of signal.

Figure 5-5 Two pole IIR digital low pass filter

In order to implement LPMF in real-time, a 2-pole IIR low pass filter is designed. This

allows for low MIPS consumption and linear system stability.. The Figure A-5 is diagram of two

 7

pole IIR filter. Filter coefficients dependent on the cut off frequency and sampling frequency are

needed to for the filter design.

In S-domain, a 2-pole filter can be expressed as

12
1)(

2 +×+
=

ss
sH Equ (4-2)

The cut off frequency is ccc fwkHzf π21 =→=

Thus
1)(2)(

1)(
2 ++

=

cc

c

w
s

w
sw

sH Equ(4-3)

For IIR filter, a bilinear transform is needed by replacing s with

1
12

1
12

1

1

+
−

=
+
−

≈ −

−

z
z

Tz
z

T
s

ss

 where
kHz

Ts 75
1

= is the sampling time period Equ(4-5)

So H(z) becomes
]1

2
)(

4[]
)(

82[]1
2

)(
4[

12)(
1

22
21

2

2

+−+−+++

++
=

cscscscscs wT
A

wT
z

wT
z

wT
A

wT

zzzH

Equ(4-6)

where 21 =A

The IIR filter Z-domain function

)(
)()(2

0
1

12

2
0

1
12

01
2

2

01
2

2

zX
zY

zazaa
zbzbb

azaza
bzbzb

zH =
++
++

=
++
++

= −−

−−

 Equ(4-7)

The Y(z) output of filter is aset of y(n),y(n-1),y(n-2) taps. They(n) tap represent the current

output and y(n-p) tap represents the past outputs. The X(z) tap, input of filter, is a set of x(n),

x(n-1), x(n-2) taps. The x(n) tap represent the current input and x(n-p) tap represent the past

inputs.

Thus)2()1()2()1()()(010122 −−−−−+−+= nyanyanxbnxbnxbnya Equ(4-8)

If we normalize a2=1 and divide each coefficient by a2, then we can get current output y(n)

)2()1()2()1()()('
0

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny Equ(4-9)

From Equ(4-6) we can calculate the filter’s coefficients a’ and b’.

Since Ts = 13.3uS, wc = 2πfc=6.28 krad/s, The coefficients are shown in Table A-1:

Table A-1 Two pole LPF coefficients

 8

a2=1 a1=-1.419 a0=0.5533

b2=0.0336 b1=0.0671 a0=0.0336

To verify that the coefficients are correct for the design, we used MATLAB to calculate

the coefficients and to plot the filter response. This detail will be discussed in software

implementation. Figure A-6 shows the frequency response comparison of the self-calculated

coefficients and the MATLAB butter() function calculated coefficients.

102 103 104
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104 using MATLAB filter() function with a/b/x

F(Hz)

P
W

102 103 104
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104 Self-Defined function with a/b/x

F(Hz)

P
W

Figure 5-6 Frequency response comparison of designed 1 kHz Low Pass Matched Filter

with MATLAB function plot

The input X(z) came from RF front-end output is either a 1 or 0. We map X(z) to -214 and

+214 before we put it into LPMF for three important reasons:

1. In order to divide 0 with DC voltage threshold

2. We use a 16-bits Microcontroller without floating operation. The highest bit is used to

indicate sign. In the case of left shifting causing overflow, we only use 14 bits to

save the data

 9

3. We use shift (<<,>>) and plus (+) operations instead of the product operation (x) to

implement float operation so that we can save CPU operating cycle and make it

possible to implement on a low CPU clock

The ideal output of low pass matched filter are a points set of recovered FSK data

sequences similar to the ones shown below. The levels are between -214 and +214 representing 0

and 1 respectively. But, in the real world, since input sampling will be affected by noise, the

output from RF front-end will be affected too. Figure A-7(a) shows the ideal and real world

output of a low pass matched filter and (b) shows the real world output of a low pass matched

filter.

Figure 5-7 output of LPMF (a) Ideal output (b) real output

From Figure A-7, a new issue needs to be considered. Which points in the output of

LPMF are the rising edge and which are falling edge? Which points are the middle of a pulse and

where can we get the data we expect? To answer this question, we need to perform a Bit-sync.

Bit-sync aids in the detectection of risinging edges and provides a phase locked clock with

waveform. This allows the data to be sampled in the middle of each pulse.

A.2.3 Bit-sync

 10

 Bit-sync is providing bit synchronization with fixed data rate in our design. It tracks the

present signal and aligns its local clock with the detected bit transition. It generates a phase

locked clock and aligns the clock raising edge at the middle of each data pulse meanwhile which

frequency can be shifted little by little if data pulse raising edge shifted. Figure A-8 is diagram of

Bit-sync.

Figure 5-8 Bit-sync data versus clock

 There are two main steps that need to be realized a bit-sync algorithm. The first step is

detecting bit transitions in which the algorithm searches the bit transition or threshold crossing.

The second step is aligning the data in which the algorithm is aligning a clock based on a Finite

State Machine (FSM).

 To detect a transition, we need to process the Y(n) serial sequence. Y(n) has a real-time

output of the LPMF at 75 kHz. Since a 512 bps data rate is 200us / bit, there are almost 150

samples (75 kHz = 13.33us) during a single bit period. Thus, we do not need to detect Y(n) at

the 75 kHz sampling rate, instead we can sample it at a much lower rate. In this design, we

sample 1/3 of subsampling frequency, which is 25 kHz. That means, we have 50 samples of each

bit and it is enough to detect bit transition. This also aids in reducing the microcontroller

processing burden, saving MIPS.

 A 50 state FSM is designed because the 25 kHz sampling frequency and 512 bps bit rate.

The amount of FSM states can be calculated using equation (4-10). The BitPeriod is 1/512 and

the BitSyncSamplingRate is 1/25kHz giving us 48.8 states.

plingRateBitSyncSam
BitPeriodFSM =# Equ(4-10)

 11

Figure A-9 shows the Bit-sync FSM design and state transfer path. Every 1/3 of the LPMF

outputs will be put into the Bit-sync process and the output drives state transfer. The FSM

starts as the state S0. The state transfers from S0 to S46 whenever it detects a bit transition or

not. If a transition has occurred it should be recorded into a single transition flag variable. At

state S24, which should be middle of a bit period, a sync-clock raising edge is generated. At

state S46, the transition flag variable is checked to see if a transition occurred. If a transition

had occured the state goes back to S0, otherwise it progresses to the next state.

Figure 5-9 Bit-sync Finite State Machine (FSM)

Which means a transition happened before expected and the sync-clock needs to catch up to

align the data. At state S47, the expected state to reset the state machine, if the transition

occurred, state machine goes back to state S0, otherwise transfer to the next state. At state S48,

1 sampling later, if the transition occurred, state machine transfer back to state S0, otherwise

transfer to the last state. At state S49, whatever happened before or at this state, transfer back

to state S1. One situation is that the transition had occurred at this state, which is 2 samples

later than expected. Going back to state S1 instead of state S0 will shorten the Sync-clock next

rising edge by one sample. Another situation is that a transition did not occur during the whole

 12

FSM process (S0 to S49). This generally implies that two of same bits were transmitted. Thus

going back to state S1 instead of state S0 will shorten Sync-clock too. The second situation

may cause sync-clock shifting after long repeated bit transmitting, but it will re-sync as long as

the bit stream changed.

A.3 DSP Software Implementation

A.3.1 Microcontroller Configurations

All design theory has been addressed and now it is time to explain software

implementation. The existing K-State Demo board hardware design block diagram is shown in

Figure A-10. Microchip PIC24HJ256, high-performance, 16-Bit Microcontroller is employed as

the center process unit.

 Figure 5-10 K-State Micro-Transceiver Demo board block diagram

It is NOT a physical DSP architecture, but the features on the microcontroller are adequate

enough to implement the low data rate, FSK One-shot demodulation and Bit-sync DSP

processes. The microcontroller runs on a 19.6MHz clock configuration and capable of running

up to 9600000 instructions per second. The main features of this microcontroller are:

• Modified Harvard architecture

 13

• C compiler optimized instruction set

• 16-bit wide data path

• 24-bit wide instructions

• Linear program memory addressing up to 4M instruction words

• Linear data memory addressing up to 64 Kbytes

• 256 Kbytes flash program memory and 16 Kbytes Data SRAM

• 71 base assembly instructions : mostly 1 word / 1cycle

• Sixteen 16-bit General Purpose Registers

• Software stack

• CMOS Flash Technology leads low-power consumption

It also provides interrupt controller and many peripherals:

• Interrupt Controller

 5-cycle latency

 118 interrupt vectors

• Digital I/O

 85 programmable digital I/O pins

 Output pins can drive from 3.0v to 3.6v

 4mA sink on all I/O pins

• Timer/PWM

 Nine 16-bit timers/counters or pair up to four 32-bit timers

 Output compare provides 16-bit Glitchless PWM mode

• Communication Modules

 3-wire SPI—support 8/16-bit data

 I2C—Full Multi-Master Slave mode,7/10-bit addressing, and bus collision

detection

 UART

 Enhanced CAN

• System management

 External, internal RC clock with
2
OSC

CY
F

F =

 14

 Power-up timer

 Watchdog timer

 Reset by multiple sources

• Power management

 On-chip 2.5v voltage regulator

 Switch clock sources in real time

 Idle, sleep and Doze modes with fast wake-up

We are not using all of those features, but all of them are helpful to design low-power

consumption EH demo board.

In this design the microcontroller is working at below configuration:

• FOSC using 19.2 MHz External clock. Instruction cycle is 0.104us since 2
OSC

CY
F

F =

where FCY is instruction execution speed and FOSC is oscillator source speed

• 3.3v power supply

• Watchdog timer disable

• One SPI be used to program RFIC

• One I2C be used to program LCD

• 16bit Timer2 is used as 1-bit ADC sampling clock

• Digital GPIOs are used to connect 1-bit ADC Sampling, LEDs andPush buttons

• One PWM compare interface used with Timer2 to generate PWM testing pulse

A.3.2 Software Architecture

The software is designed around a real-time, embedded communication software

architecture. Figure A-11 shows the main() function flow. There is a dead-loop (while(1)) after

initializing microcontroller and RFIC front-end. The LPMF and Bit-Sync techniques are

implemented inside of this dead-loop. A closer look at subsampling, Low Pass Matched Filter

and Bit-sync software implementations will further be discussed.

 15

Figure 5-11 FSK Demodulation DSP software flow

The 75 kHz subsampling is implemented by using Timer2’s interrupt on the

microcontroller. Timer2 is enabled and its PR2 register, which is the timer period register, is set

to 127 to generate 127* FCY =13.2us = 75 kHz interrupt. Every 13.2us, the Timer2 Interrupt

 16

Service Router (ISR) will be entered periodic. Inside Timer2 ISR, a 1-bit ADC sampling clock is

sent to RFIC and a 1-bit ADC sample of IF signal is read back. Since zero crossings are detected,

one history sample is stored. Two variables are used to do this, one is called _curSample

_prevSample, which stores the current and previous samples respectively. Before a return from

ISR, a 75 kHz sampling flag, _t2_int, is set to notify main() function to enter the low pass filter

procedure and to clear the the Timer2 interrupt flag. Figure A-12 shows Timer2 ISR procedure

flow.

Figure 5-12 Timer2 ISR

The Low pass matched filter model is implemented inside of the main() function infinite

loop. While in the infinite loop, the program is checking if a 1-bit ADC output has been sampled

by checking the _t2_int variable. If it was, then it sets it to one then enters the LPMF module.

Otherwise, it stays in the while dead loop. Figure A-13 shows the flow of LPMF module. The

LPMF module has two routes to process the existence of zero crossings. Since the 1-bit ADC

 17

outputs either a 0 or a 1, a _curSample of 1 and _prevSample of 0 indicates that a zero crossing

has occurred. The sample is mapped to +214 and -214 for a zero crossing and no zero crossing

respectively. The current output of LPMF is denoted by y(n), which can be calculated via

equation (4-9))2()1()2()1()()('
2

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny . Because the IIR

filter’s coefficients are real numbers, floating point operations are required to solve this equation

(4-9).

Figure 5-13 LPMF procedure

The real time system floating point operation requires at least two conditions: one is

enough data width path and enough MIPS capability. It is easy to implement this equation by any

program language if those two conditions are met. This system utilizes real-time DSP software

on a microcontroller that offers a 16bit wide data path and operates on a 19.6 MHz clock.. It is

difficult to describe a precision floating point data using 16-bit data wide path since the shortest

float point standard of IEEE-754 is 32bits. The computational time complexity or time consumed

by float multiplication on 19.6MHz clock speed will not be fast enough to match real-time

requirement. Any integer number can be expressed as a sum of ±2p serial values where p is a

positive integer. Any number smaller than 1 can be expressed as a sum of ±2n serial values

 18

where n is a negative integer. For instance,13=23 + 22 + 21, 1.419=20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 +

2-10… The more components added, the result will be more precise. Thus a multiply operation

could be expressed as 13*1.419= 13*(20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 + 2-10).

Therefore if any number multiplied by 2p will be equal to this number left shifted by p

bits, given that p is positive. If p is negative, any number multiplied with 2pequal to this number

right shifted by p bits. The Table A-2 shows right shift and left shift bits equivalent factors.

Table A-2 Bit shift and product factor

Right

shift bits

Product

factors

Right

shift bits

Product

factors

Left

shift bits

Product

factors

Left

shift bits

Product

factors

21 2 26 64 2-1 0.5 2-6 0.015625

22 4 27 128 2-2 0.25 2-7 0.007813

23 8 28 256 2-3 0.125 2-8 0.003906

24 16 29 512 2-4 0.0625 2-9 0.001953

25 32 210 1024 2-5 0.03125 2-10 0.000977

In this design, the 2 pole LPF digital filter coefficient are shown in Table 4-5,

a0=1 a1= -1.419 a2=0.5533

b0=0.0336 b1=0.0671 b2=0.0336

It can be re-wrote by using shift and product factor format in Table A-3.

Table A-3 LPF coefficients 2n expression

Coefficient (float) Coefficient (integer)

a0=1 20

a1=-1.419 -(20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 + 2-10)

a2=0.5533 2-1 + 2-5 + 2-6 + 2-8 + 2-9 + 2-11

b0=0.0336 2-5 + 2-9 + 2-12

b1=0.0671 2-4 + 2-8 + 2-11

b2=0.0336 2-5 + 2-9 + 2-12

Here is an example to calculate the filter transfer function equation (4-9) :

)2()1()2()1()()('
2

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny

 19

Where x(i) and y(i) are integer number between -214 and +214. The example assumes the 1st

sample, +214, coming into LPF:

 Since n=2, x(0) = x(1) = 0 , x(2) = +214=16384; y(0) = y(1) = y(2) =0.

Then the calculation is rewritten using shift and plus operation into:

)222222(0)2222222(0
)222(0)222(0)222(16384)(

119865110875320

129511841295

−−−−−−−−−−−−

−−−−−−−−−

+++++×−++++++×−

++×+++×+++×=ny
Equ(4-11)

The following assemble code in Figure A-14 are implemented the sum of coefficients b products

parts of equation (4-11). Three components result are stored in w3,w4,w5 register separately.

Figure 5-14 LPF calculation coefficient b products

The Figure A-154-29 shows LPF implementation of sum of the coefficient a products and the

two parts result are stored in w6 and w7 registers.

;Calculate X shifts
 mov _x1, w4 ; w4=x1
 mov w4, _x2 ; x2=x1
 mov _x2, w5 ; w5=x2
 mov _x0, w3 ; w3=x0
 mov w3, _x1 ; x1=x0,
 mov #0x4000, w3
 mov w3, _x0 ; x0=16384

 ;((_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]))
 asr w3, #5, w6 ;w6 = _x0>>5
 asr w3, #9, w7 ;w7 = _x0>>9
 asr w3, #12, w8 ;w8 = _x0>>12

 add w6, w7, w3 ;w3 = w6+w7
 add w3, w8, w3 ;w3 = w8+w3

 ;((_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]))
 asr w4, #4, w6 ;w6 = _x1>>4
 asr w4, #8, w7 ;w7 = _x1>>8
 asr w4, #11, w8 ;w8 = _x1>>11

 add w6, w7, w4 ;w4 = w6+w7
 add w4, w8, w4 ;w4 = w8+w4

 ;((_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]))
 asr w5, #5, w6 ;w6 = _x1>>5
 asr w5, #9, w7 ;w7 = _x1>>9
 asr w5, #12,w8 ;w8 = _x1>>12

 add w6, w7, w5 ;w5 = w6+w7
 add w5, w8, w5 ;w5 = w8+w5

 20

Figure 5-15 LPF calculation coefficients a products

Then, it needs to calculate the sum of all products as well as update y(i)s since x(i) was updated

at the beginning of “Calculated X shifts” part. Figure A-16 shows this.

;Calculate Y shifts
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) -
 (_y1>>a1[4]) - (_y1>>a1[5]) - (_y1>>a1[6]))
 ;asr w3, #0, wx ;shift 0
 mov _y1, w6
 asr w6, #2, w7 ;w7 = _y1>>2
 asr w6, #3, w8 ;w8 = _y1>>3
 asr w6, #5, w9 ;w9 = _y1>>5
 asr w6, #7, w10 ;w10= _y1>>7
 asr w6, #8, w11 ;w11= _y1>>8
 asr w6, #10, w12 ;w12= _y1>>10

 add w6, w7, w6 ;w12= _y1>>0 + w7
 add w6, w8, w6 ;w6 = w6+w8
 add w6, w9, w6 ;w6 = w6+w9
 add w6, w10,w6 ;w6 = w6+w10
 add w6, w11,w6 ;w6 = w6+w11
 add w6, w12,w6 ;w6 = w6+w12

 ;-((_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) +
 (_y2>>a2[4]) + (_y2>>a2[5]))
 mov _y2, w7
 asr w7, #1, w8 ;w8 = _y1>>2
 asr w7, #5, w9 ;w9 = _y1>>3
 asr w7, #6, w10 ;w10= _y1>>5
 asr w7, #8, w11 ;w11= _y1>>7
 asr w7, #9, w12 ;w12= _y1>>8
 asr w7, #11,w13 ;w13= _y1>>11

 add w8, w9, w7 ;w7 = w8+w9
 add w7, w10,w7 ;w7 = w7+w10
 add w7, w11,w7 ;w7 = w7+w11
 add w7, w12,w7 ;w7 = w7+w12
 add w7, w13,w7 ;w7 = w7+w13

 ; lpf_out = w3+w4+w5-(-w6)-w7
 add w3, w4, w3 ;w3 = w3+w4
 add w3, w5, w3 ;w3 = w3+w5
 add w3, w6, w3 ;w3 = w3+w6
 sub w3, w7, w0 ;w0 = w3-w7

 ; update y0,y1,y2
 mov w0, _y0 ;y0=lpf_out
 mov _y1, w4
 mov w4, _y2 ;y2=y1
 mov w0, _y1 ;y1=y0

 21

Figure 5-16 Calculated X shifts

A.3.3 Test Result

 In this section, the DSP software test results are discussed. The test environment shows in

Figure A-17. A RIGOL DG 2021A function/Arbitrary waveform generator is used to generate

the PHY layer frame including preamble, SOF and PHY payload. The generated bit stream feed

into a HP 8648 Signal Generator. This Signal generator is doing FSK modulation as well as

modulating the signal to 433.92MHz. The Agilent 54622D Oscilloscope is used to probe the

output signal from circuit board. The HP ESA-L150000A Spectrum Analyzer is used to check

the frequency spectrum.

Figure 5-17 PHY Layer DSP test enviroment

1. One shot FSK demodulation test

First, we are designing 10kHz broad narrow band FSK modulation. So using the

spectrum analyzer could check the modulation bandwidth. Figure A-18 shows the spectrum of

FSK signal.

 22

Figure 5-18 10kHz Bandwith FSK modulation

Second, the one-shot FSK demodulation method and digital filter were tested by

generating PWM pulse. The one-shot FSK demodulation concept was shown in the Figure A-3.

We would like to see if the pulse will be generated when a “zero-cross” is detected. Figure A-19

shows the PWM (Pulse Width Modulation) density corresponds with the transmitted bit stream

screen capture from oscilloscope. The channel 2 signal is PWM pulse, which is generated by

setting a microcontroller PWM timer. When a “zero-cross” is detected, a PWM pulse is

Figure 5-19 "Zero-cross" detection

 23

generated and the pulse duty cycle is set depends on the 1bit ADC output value (1 or 0). In this

case, when 1bit ADC output 1, the PWM pulse duty cycle is 100%. Otherwise, the duty cycle is

10%. The channel 1 signal is transmitted data. From Figure 4-33, the pulse density is distinctly

higher when transmitted signal is 1.

2. bit-sync test

The bit-sync is expected to generate a clock to lock the data sequence so that the raise

edge of the clock locates at the right center of the bit period. Figure A-20 shows the test screen

capture of bit sequence and the locked clock.

Figure 5-20 512bps Bit-sync Test restults

3. Data recovered test

The final goal is to recover the transmitted data. To test this, hook both the created

arbitrary bits sequence and recovered data output pin to oscilloscope. The Figure A-21 is screen

captures. The input signal power are -80dbm, -90dbm, -93dbm and -100dbm.

 24

(a) -80dbm (b) -90dbm

(c) -93dbm (d) -100dbm

Figure 5-21 512bps Bit-sync Test restults

 25

A.4 EHR DSP Code

A.4.1 ADC, LPF, and Bit-Sync File
;**
; FileName: main.s *
; Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz *
; Complier: MPLAB C30 / ASM30 *
; Linker: MPLAB LINK30 *
; Description : This is the file including the core function of ADC Sampling,*
; LPF and the Bit-sync in assembly language. *
; Author Date Version *
; Xiaohu Zhang 10/05/2008 v1.0 *
;**

;**
; Function : _main
;
; PreCondition: Implement 1-bit Sync;
; Doing 25kHz sample for 75kHz;
; To judge if this BIT is 0-cross
; Energy Harvesting Radio (EHR);
; Overview: This is the entrance of the Energy Harvesting Radio Physical
; Layer DSP implementation. The main function of this file
; includes 1bit ADC 75kHz subsampling, Zero-cross detector,
; 1kHz two pole Low Pass Filter, 3:1 data decimation, and
; Bit sync.
;**
.global _main
_main:

 call _main_c ;call main_c()

_IF_TIMER2_INT_:
 btss _t2_int,#0 ; check the 75kHz Timer2 Interrupt flag
 goto _IF_TIMER2_INT_ ; goto process Timer2 interrupt requirement

 mov _curSample, w1 ; Update sampling bit
 mov _prevSample,w2
 cp w1,w2 ; w1-w2 if curSample-prevSample=1 means
curSample=1&prevSample=0
 bra LEU, ADC_NON_CROSS_ ; w1<=w2 unsigned less than or equal,jump to
_ADC_OUT_O_

;ADC 75kHz sample processing & 1kHz LPF
;Two bratch : one is ADC_0_CROSS_
; one is ADC_NON_CROSS_
ADC_0_CROSS_:
 ;bset PORTE,#0 ; used to test the input of LPF
;Calculate X shifts
 mov _x1, w4 ; w4=x1
 mov w4, _x2 ; x2=x1
 mov _x2, w5 ; w5=x2
 mov _x0, w3 ; w3=x0
 mov w3, _x1 ; x1=x0,
 mov #0x4000, w3
 mov w3, _x0 ; x0=16384

 ;((_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]))
 asr w3, #5, w6 ;w6 = _x0>>5
 asr w3, #9, w7 ;w7 = _x0>>9
 asr w3, #12, w8 ;w8 = _x0>>12

 add w6, w7, w3 ;w3 = w6+w7
 add w3, w8, w3 ;w3 = w8+w3

 26

 ;((_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]))
; mov _x1, w4
 asr w4, #4, w6 ;w6 = _x1>>4
 asr w4, #8, w7 ;w7 = _x1>>8
 asr w4, #11, w8 ;w8 = _x1>>11

 add w6, w7, w4 ;w4 = w6+w7
 add w4, w8, w4 ;w4 = w8+w4

 ;((_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]))
 asr w5, #5, w6 ;w6 = _x2>>5
 asr w5, #9, w7 ;w7 = _x2>>9
 asr w5, #12,w8 ;w8 = _x2>>12

 add w6, w7, w5 ;w5 = w6+w7
 add w5, w8, w5 ;w5 = w8+w5

;Calculate Y shifts
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) - (_y1>>a1[4]) -
(_y1>>a1[5]) - (_y1>>a1[6]))
 ;asr w3, #0, wx ;shift 0
 mov _y1, w6
 asr w6, #2, w7 ;w7 = _y1>>2
 asr w6, #3, w8 ;w8 = _y1>>3
 asr w6, #5, w9 ;w9 = _y1>>5
 asr w6, #7, w10 ;w10= _y1>>7
 asr w6, #8, w11 ;w11= _y1>>8
 asr w6, #10, w12 ;w12= _y1>>10

 add w6, w7, w6 ;w12= _y1>>0 + w7
 add w6, w8, w6 ;w6 = w6+w8
 add w6, w9, w6 ;w6 = w6+w9
 add w6, w10,w6 ;w6 = w6+w10
 add w6, w11,w6 ;w6 = w6+w11
 add w6, w12,w6 ;w6 = w6+w12

 ;-((_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) + (_y2>>a2[4]) +
(_y2>>a2[5]))
 mov _y2, w7
 asr w7, #1, w8 ;w8 = _y2>>2
 asr w7, #5, w9 ;w9 = _y2>>3
 asr w7, #6, w10 ;w10= _y2>>5
 asr w7, #8, w11 ;w11= _y2>>7
 asr w7, #9, w12 ;w12= _y2>>8
 asr w7, #11,w13 ;w13= _y2>>11

 add w8, w9, w7 ;w7 = w8+w9
 add w7, w10,w7 ;w7 = w7+w10
 add w7, w11,w7 ;w7 = w7+w11
 add w7, w12,w7 ;w7 = w7+w12
 add w7, w13,w7 ;w7 = w7+w13

 ; lpf_out = w3+w4+w5-(-w6)-w7
 add w3, w4, w3 ;w3 = w3+w4
 add w3, w5, w3 ;w3 = w3+w5
 add w3, w6, w3 ;w3 = w3+w6
 sub w3, w7, w0 ;w0 = w3-w7 Using w0 to return
value

 ; update y0,y1,y2
 mov w0, _y0 ;y0=lpf_out
 mov _y1, w4
 mov w4, _y2 ;y2=y1
 mov w0, _y1 ;y1=y0
 ;goto MAP_LPF_OUT_
 ;goto BIT_SYNC_
goto DATA_BIT_1_

ADC_NON_CROSS_:

 27

 ;bclr PORTE,#0 ; used to test the input of LPF
 ;Calculate X shifts
 mov _x1, w4 ; w4=x1
 mov w4, _x2 ; x2=x1
 mov _x2, w5 ; w5=x2
 mov _x0, w3 ; w3=x0
 mov w3, _x1 ; x1=x0,
 mov #0xc000, w3
 mov w3, _x0 ; x0=-16384

 ;((_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]))
 asr w3, #5, w6 ;w6 = _x0>>5
 asr w3, #9, w7 ;w7 = _x0>>9
 asr w3, #12, w8 ;w8 = _x0>>12

 add w6, w7, w3 ;w3 = w6+w7
 add w3, w8, w3 ;w3 = w8+w3

 ;((_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]))
; mov _x1, w4
 asr w4, #4, w6 ;w6 = _x1>>4
 asr w4, #8, w7 ;w7 = _x1>>8
 asr w4, #11, w8 ;w8 = _x1>>11

 add w6, w7, w4 ;w4 = w6+w7
 add w4, w8, w4 ;w4 = w8+w4

 ;((_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]))
 asr w5, #5, w6 ;w6 = _x2>>5
 asr w5, #9, w7 ;w7 = _x2>>9
 asr w5, #12, w8 ;w8 = _x2>>12

 add w6, w7, w5 ;w5 = w6+w7
 add w5, w8, w5 ;w5 = w8+w5

;Calculate Y shifts
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) - (_y1>>a1[4]) -
(_y1>>a1[5]) - (_y1>>a1[6]))
 ;asr w3, #0, wx ;shift 0
 mov _y1, w6
 asr w6, #2, w7 ;w7 = _y1>>2
 asr w6, #3, w8 ;w8 = _y1>>3
 asr w6, #5, w9 ;w9 = _y1>>5
 asr w6, #7, w10 ;w10= _y1>>7
 asr w6, #8, w11 ;w11= _y1>>8
 asr w6, #10, w12 ;w12= _y1>>10

 add w6, w7, w6 ;w12= _y1>>0 + w7
 add w6, w8, w6 ;w6 = w6+w8
 add w6, w9, w6 ;w6 = w6+w9
 add w6, w10,w6 ;w6 = w6+w10
 add w6, w11,w6 ;w6 = w6+w11
 add w6, w12,w6 ;w6 = w6+w12

 ;-((_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) + (_y2>>a2[4]) +
(_y2>>a2[5]))
 mov _y2, w7
 asr w7, #1, w8 ;w8 = _y2>>2
 asr w7, #5, w9 ;w9 = _y2>>3
 asr w7, #6, w10 ;w10= _y2>>5
 asr w7, #8, w11 ;w11= _y2>>7
 asr w7, #9, w12 ;w12= _y2>>8
 asr w7, #11, w13 ;w13= _y2>>11

 add w8, w9, w7 ;w7 = w8+w9
 add w7, w10,w7 ;w7 = w7+w10
 add w7, w11,w7 ;w7 = w7+w11
 add w7, w12,w7 ;w7 = w7+w12
 add w7, w13,w7 ;w7 = w7+w13

 28

 ; lpf_out = w3+w4+w5-(-w6)-w7
 add w3, w4, w3 ;w3 = w3+w4
 add w3, w5, w3 ;w3 = w3+w5
 add w3, w6, w3 ;w3 = w3+w6
 sub w3, w7, w0 ;w0 = w3-w7 Using w0 to return value

 ; update y0,y1,y2
 mov w0, _y0 ;y0=lpf_out=w0
 mov _y1, w4
 mov w4, _y2 ;y2=y1
 mov w0, _y1 ;y1=y0
 ;w0 still keeping lpf_out until BIT_25KHZ_SAMPLE_

DATA_BIT_1_: ; output the data
; the number is used as a threshold caused by subsampling

mov #0xEc78,w10 ;-5000 -1000 -2000 -3200 -3000 -2500 -1000 -2200 -1800 -1500 -1200 -
 ;2000is good

 mov #0,w3
 cp w0,w10
 bra LT, BIT_SYNC_ ; if(w0<w10) jump
 mov #1,w3

;1 Bit Sync code
;Doing 25kHz sample for 75kHz
;To judge if this BIT is 0-cross
BIT_SYNC_:
 dec _one_third ; one_third--
 bra NZ,RETURN_T2INT_ ; if(one_third>0) jump
 mov #3, w1 ; if(one_third==0) w1=3
 mov w1, _one_third ; reset one_third=3

UPDATE_BIT_:
 mov w3, _curBit ; update _curBit
 mov _syncdBit,w4
 ;if transition happend
 cp w4,w3 ; w3 = w4 - w3
 bra LEU,FSM_CHECK_ ; w4<=w3 jump to FSM_CHECK_
 bset _transFlag,#0 ; w4>w3 fall edge occured, set _transFlag

;Check current FSM if==23,24 or 25
FSM_CHECK_:
 ;Check current FSM sate
 mov _cur_FSM, w1
 cp w1,#24
 bra Z,SYNC_CLOCK_UP_ ; jump to generate 1BIT SYNC CLOCK

 ;mov #46,w14
 mov #38,w14
 cp w1,w14
 bra GEU,IF_TRANSITED_ ; (cur_FSM>=S22) jump to process TRANSITION DETECT
 goto FSM_TRANS_ ; (cur_FSM<S22&&cur_FSM!=smp_FSM) FSM Transfer

IF_TRANSITED_: ; s23,s24,s25 and s25
 mov #49,w14
 cp w1,w14
 bra GEU, TRANS_2BITS_ ; (cur_FSM>=S25) jump
 cp0 _transFlag ; if(transFlag==0) for s23,s24,s25
 bra Z, FSM_TRANS_ ; (transFlag==0) cur_FSM++
 goto RESET_FSM_ ; (transFlag==1) Transition happended then reset cur_FSM=0

; State machine transfer
FSM_TRANS_:
 inc _cur_FSM
 clr _transFlag ; clear the transflag if cur_FSM<47
 goto RETURN_T2INT_

; Recorve Data output
SYNC_CLOCK_UP_:
 mov _curBit,w3

 29

 mov w3,_syncdBit
 inc _cur_FSM
 clr _transFlag ; clear the _transFlag
 bset PORTD,#0

 ;Update Start Of Frame
 SL _StartOfFrame ; left shift 1bit of Start Of Frame

 ;Recovered Data
 CP0 w3
 bra Z, DATA_BIT_0_
 bset PORTE,#3
 bset _StartOfFrame,#0 ; update lowest SOF bit=1
 goto RETURN_T2INT_
DATA_BIT_0_:
 bclr PORTE,#3
 bclr _StartOfFrame,#0 ; update lowest SOF bit=0

; Detect Start Of Frame
SOF_DETEC_:
 mov _StartOfFrame, w4 ; w4 = _StartOfFrame
 and #0x000f,w4 ; w4 = _StartOfFrame & 0x000f
 xor w4,#0x000e,w5 ; w4 = 0x00001110 xor _StartOfFrame[0:3]
 cp0 w5 ; w5=1:ERROR_SOF; w5=0:OK_SOF.
 bra NZ, SOF_ERROR
 bset PORTE,#1 ; Generate pulse to indicate Correct SOF

SOF_ERROR:
; End of Detect SOF
 goto RETURN_T2INT_

TRANS_2BITS_: ; there are two "0" or "1" transmitting without
transition between
; cp0 _transFlag ; if(transFlag==1) jump to state0
; bra NZ, RESET_FSM_
 mov #1,w1 ; them. Update the state from 26(2 laters than 24) to 3
 mov w1,_cur_FSM
 goto SYNC_CLOCK_DOWN_ ; goto return
 ;goto SYNC_BIT_OUT1_

RESET_FSM_:
 clr _cur_FSM ; reset cur_FSM=0;
 clr _transFlag ; clear transFlag=0;

SYNC_CLOCK_DOWN_:
 bclr PORTD,#0 ; RD0=0 to pull down BIT_SYNC_CLOCK down edge
 ;goto SAMPLING_CLK_LOW_ ; goto next sample loop

;Must make this before setting TMR6 in case PR6<2
;(Only RETURN_T2INT 2 instructions after TRM6 running)
RETURN_T2INT_:
 bclr PORTE,#1 ; Clear pulse of SOF indication
 bclr _t2_int, #0 ; clear _T2IF interrupt flag
 goto _IF_TIMER2_INT_

return ;

 30

A.4.2 PIC Initialization file
/***
* FileName : IniPIC.c
* Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz
* Complier: MPLAB C30 / ASM30
* Linker: MPLAB LINK30
* Description : This is the function file in which the C functions are included,
* sunch as microprocessor initilization functions.
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
**/
#include "LPF_H.h"
#include "lpf_buf.h"

//__CONFIG (GSS_OFF);

void main_c();
double LPF_1BIT_FLOAT(unsigned char in_bit);
inline signed short int LPF_1BIT_INT(signed short int in_16int);
//void LFP(double *a, double *b, unsigned char *buf, double buf_len, double *lpf_out);
void pic_init();
void timer_init();
void interrupts_init();
void activateRxMode(void); //Set RFIC RX mode Copy from Joe's
code
void RxDemod(void); //Set RFIC FM Demodulation
mode Cope from Joe's code

inline void timer6_start(short int pr);
inline void timer6_stop();

typedef struct _BUF_{
 unsigned char bit0 :1;
 unsigned char bit1 :1;
 unsigned char bit2 :1;
 unsigned char bit3 :1;
 unsigned char bit4 :1;
 unsigned char bit5 :1;
 unsigned char bit6 :1;
 unsigned char bit7 :1;
}BUF;

/*LPF coefficient*/
double a[3]={1.0, -1.4190, 0.5533};
double b[3]={0.0336, 0.0671, 0.0336};

/*Right Shifts & Plus bits Filter coefficients*/
signed int a0=0;
signed int a1[]={0,2,3,5,7,8,10};
signed int a2[]={1,5,6,8,9,11};
signed int b0[]={5,9,12};
signed int b1[]={4,8,11};
signed int b2[]={5,9,12};

/*LPF input parameter*/
volatile signed short int x0=0, x1=0, x2=0;
volatile signed short int y0=0, y1=0, y2=0;

short int tmr6_pr=120;
short int MY_PWM=128;
unsigned int asm_buf;
unsigned short int asm_lpf_out_int;
unsigned short int asm_lpf_out_lev;
short int asm_pr1;

/*Input Sample*/
volatile signed short int IN_SAMPLE=0;

/* 512bps Bit-sync State Machine*/

 31

enum FSM{S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,S11,S12,
 S13,S14,S15,S16,S17,S18,S19,S20,S21,S22,S23,S24,S25,S26,
 S27,S28,S29,S30,S31,S32,S33,S34,S35,S36,S37,S38,S39,S40,
 S41,S42,S43,S44,S45,S46,S47,S48,S49,S50};
enum FSM cur_FSM=S0; // Current State
enum FSM pre_FSM=S0; // Previous State
enum FSM smp_FSM=S12; // Sampling state
unsigned short int curBit=0; // Current 25kHz bit sample
unsigned short int prevBit=0; // Previous 25kHz bit sample
unsigned short int transFlag=0; // Transition flag 0-No 1-Yes
unsigned short int syncdBit=0; // Syncronized Output Bit
unsigned short int StartOfFrame=0; //Start of Frame string
volatile unsigned short int one_third=3; // 1/3 of 75KHZ sampling rate
volatile unsigned short int t2_int=0; //flag of Timer2 interrupt 1:INT happened; 0:NO INT.

/***
* Function : void main()
* Input:
* Return:
* Description: This function finish PIC initialization.
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
**/
void main_c()
{
 signed short int in_sint=0;
 signed short int lpf_out_int[sizeof(buf)/6];
 signed short int lpf_out_lev[sizeof(buf)/6];

 long int buf_len=sizeof(buf)/6;
 long int i=0;
 short int pr=0;
 short int pr1[sizeof(buf)/6];

 memset(lpf_out_int,0,sizeof(lpf_out_int));
 memset(lpf_out_lev,0,sizeof(lpf_out_int));
 memset(pr1,0,sizeof(pr1));
 pic_init();
 initRFICBits();

 _TRISE0 = 0;
 _TRISE1 = 0;
 _TRISE2 = 0;
 _TRISE3 = 0;
 _RE0 = 0;
 _RE1 = 0; //Light LED
 _RE2 = 0;

 activateRxMode();
 RxDemod();
};

/**
* Function : int pic_init(void)
* Input: NONE;
* Return: int -- sucessful / fail.
*
* Description: Initialize PIC.
*
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
***/
void pic_init()
{
 timer_init();
 gpio_init();

 32

 initSPI1();
 interrupts_init();

 //If using PWM should open this block
 //Initialize OCM
/*
 OC1CONbits.OCM = 0b000; // Disable OCM
 OC1RS= 0;
 OC1CONbits.OCTSEL = 0; // Select Timer2
 OC1R = 0;
 OC1CONbits.OCM = 0b110; // PWM mode on OC1
*/

}
/**
* Function : int gpio_init(void)
* Input: NONE;
* Return: NONE;
*
* Description: Initialize PIC GPIO.
*
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
***/
void gpio_init(void)
{
 _TRISD0 = 0; //Set as BIT_SYNC_CLOCK as Output
 _RD0 = 0; //Set low
 _TRISD6 = 0; //Set RFIC_ADC_CLK_P as Output
 _TRISD7 = 0; //Set RFIC_ADC_CLK_N as Output
 _TRISD9 = 1; //Set RFIC_ADC_OUT_P as Input
 _TRISD10 = 1; //Set RFIC_ADC_OUT_N as Input

 _TRISE0 = 0; //Set LED as Output
 _TRISE1 = 0; //Set LED as Output
 _TRISE2 = 0; //Set LED as Output
 _TRISE3 = 0; //Set LED as Output
}
/**
* Function : int timer_init(void)
* Input: NONE;
* Return: NONE;
*
* Description: Initialize PIC TIMER.
*
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
***/
void timer_init(void)
{
 /*Timer2/3 Configuration*/
 T2CON = 0B0000000000000000;
 _T2IP = 0x02; /* _TON = 0; // Stop timer
 _TSIDL = 1; // Stop in idle mode
 _TGATE = 0; // Gated time accumulation disabled
 _TCKPS = 0; // 1:1 prescale
 _T32 = 1; // 32-bit timer
 _TCS = 0; // Internal clock Fcy
 _T2IP = 2; // Timer2 propority is 2 lower than T6
 */

 /*Timer6 Configure as 16 bits timer*/
 T6CON = 0B0000000000000000;
 _T6IP = 0x02; // Set the priority of Timer6
 PR6 = 0x0; /* _TON = 0; // Stop timer
 _TSIDL = 1; // Stop in idle mode
 _TGATE = 0; // Gated time accumulation disabled
 _TCKPS = 0; // 1:1 prescale

 33

 _T32 = 1; // 32-bit timer
 _TCS = 0; // Internal clock Fcy
 */
 /*Timer7 Configure as 32 bits timer*/
 T7CON = 0B0000000000000000;
 PR7 = 0x0; /* _TON = 0; // Stop timer
 _TSIDL = 1; // Stop in idle mode
 _TGATE = 0; // Gated time accumulation disabled
 _TCKPS = 0; // 1:1 prescale
 _T32 = 1; // 32-bit timer
 _TCS = 0; // Internal clock Fcy
 */

 /*Timer8 Configure as 16 bits timer*/
 T8CON = 0B0000000000000000;
 PR8 = 0x0; /* _TON = 0; // Stop timer
 _TSIDL = 1; // Stop in idle mode
 _TGATE = 0; // Gated time accumulation disabled
 _TCKPS = 0; // 1:1 prescale
 _T32 = 0; // 16-bit timer
 _TCS = 0; // Internal clock Fcy
 */

 /*Timer9 Configure as 16 bits timer*/
 T9CON = 0B0010000000000000;
 PR9 = 0x0; /* _TON = 0; // Stop timer
 _TSIDL = 1; // Stop in idle mode
 _TGATE = 0; // Gated time accumulation disabled
 _TCKPS = 0; // 1:1 prescale
 _T32 = 0; // 16-bit timer
 _TCS = 0; // Internal clock Fcy
 */
}

/**
* Function : int interrupts_init(void)
* Input: NONE;
* Return: NONE;
*
* Description: Initialize PIC.
*
*
* Author Date Version
* Xiaohu Zhang 10/05/2008 v1.0
***/
void interrupts_init()
{
 /* Initialize & Configure Interrupts */
 SR = 0x00;
 CORCON = 0x0c; //causes the lcd to break
 INTCON1= 0x00;
 INTCON2= 0x1f; // 0b0000000000011111 set fall-edge interrupts sensitive

 /*clear all interrupts flag*/
 IFS0 = 0;
 IFS1 = 0;
 IFS2 = 0;
 IFS3 = 0;
 IFS4 = 0;

 _T2IE = 1; //Enable Timer2
 _T3IE = 1; //Enable Timer3
 _T4IE = 1; //Enable Timer4
 _T5IE = 1; //Enable Timer5
 _T6IE = 1; //Enable Timer6
 _T7IE = 1; //Enable Timer7
 _T8IE = 1; //Enable Timer8
 _T9IE = 1; //Enable Timer9

 AD1PCFGL = 0xFFFF; //Configure ADC1 ANx pins as digital I/O
 AD1PCFGH = 0xFFFF; //Configure ADC1 ANx pins as digital I/O

 34

 AD2PCFGL = 0xFFFF; //Configure ADC2 ANx pins as digital I/O

 _CN2IE = 1; //Enable CN2 interrupt (UP Button)
 _CN3IE = 1; //Enable CN3 interrupt (DN Button)
 _CN4IE = 1; //Enable CN4 interrupt (SEL Button)
 _CN5IE = 1; //Enable CN5 interrupt (LFT Button)
 _CN6IE = 1; //Enable CN6 interrupt (RGT Button)

 _CNIF = 0; //Clear Change Notification Interrupt Flag
 _CNIE = 1; //Enable Change Notification Interrupts
 _CNIP = 5; //Change Notification Interrupt Priority bits

 /* SPI1 Transfer Complete Interrupt Configuration */
 _SPI1IF = 0; //Clear SPI1 Event Interrupt Flag Status bit
 _SPI1IE = 1; //Enable SPI1 Transfer Complete Interrupt
 _SPI1IP = 7; //SPI1 Event Interrupt Priority bits (Highest Priority)
}

 35

A.4.3 ISR Interrupt Process file
;***
; FileName : isr_.asm
; Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz
; Complier: MPLAB C30 / ASM30
; Linker: MPLAB LINK30
; Description : This is the Interrupt Services Route function file.
; Author Date Version
; Xiaohu Zhang 10/05/2008 v1.0
;**/
.include "p24hj256gp610.inc"

;Global variables

;.text

;Global function be called in C
.global _AsmReset
.global __T2Interrupt
.global __T6Interrupt

_AsmReset:
 clr _x0
 clr _x1
 clr _x2
 clr _y0
 clr _y1
 clr _y2

;***;
; Function: T2Interrupt
; Decription : Timer 2 ISR. ;
; ;
;***;

__T2Interrupt:

 push w0
 push w1

SAMPLING_CLK_HIGH_:
 mov #0xff3f,w0
 and PORTD,WREG ; w0 = PORTD & w0
 ior #0x80,w0
 mov w0, PORTD

; Update prevSample = curSample
 mov _curSample, w1
 mov w1,_prevSample

;Update current 75kHz sample
UPDATE_SAMPLE_:
 mov #1, w1 ; w1 = 1
 btss PORTD,#0x9 ; if RD9==1 jump to ADC_OUT_1;
 mov #0, w1 ; (RD9==0) w1 = 0;
 mov w1, _curSample ; update _curSample

;Must make this before setting TMR6 in case PR6<2
;(Only RETURN_T2INT 2 instructions after TRM6 running)
SAMPLING_CLK_LOW_:
 mov #0xff3f,w0
 and PORTD,WREG ; w0 = PORTD & w0
 ior #0x40,w0
 mov w0, PORTD

 pop w1
 pop w0

;Set the timer2 interrupt flag

 36

 bset _t2_int,#0
;Clear the interrupt flag
 bclr IFS0,#7
RETFIE ;return from ISR

;***;
; Function: _T6Interrupt ;
; Description : Timer 6 ISR. ;
;***;
_myT6Interrupt:
; bclr PORTD, #0 ; _RD0=0 Pull down PWM
 bclr LATD,#0
 clr PR6 ; PR6=0 clear timer period register
 bclr T6CON, #15 ; _TON=0 Stop Timer6
 bclr IFS2, #15 ; _T6IF=0 clear Timer6 interrupt flag
 return
;.end

 37

Appedix B - K-State Energy Harvesting Demo Board Schematic

Figure 5-22 Schematic

 38

Figure 5-23 Layout

 39

Appedix C - Frequency Synthesis Board Schematic and Layout

Figure 5-24 Schematic

 40

Figure 5-25 Layout

 41

Appedix D - K-State EHR Demo Board Code for 4MHz CPU Clock

; Program peregine1#200uF10uF4M.asm
;
; Test program for Peregine 1# board.
; By William B. Kuhn, Xiaohu Zhang
; Created 08/13/07.
;
;
; TEST PLAN 2. The RFIC working depends on CC0, CCpic charge and discharge.
;*********************
; CC0 = 200uF
; CC1 = N/A
; CCpic = 10uF
;*********************
;Design:
;Two charging capacitor are used here. One is CC0=200uF used to drive RFIC working for 0.012s at
least; another is CCpic=10uF used to drive Microchip PIC16f676 working at 4MHz.
;
;
; This program provides the 60 bits of programming needed to set
; the fab4 transceiver chip to transmitt mode with full gain and sleep mode
; enabled. To keep low power consuming, we use <1% duty cycle that means during 1 second, xx ms
are occupied by RFIC to transmitt data and the remain time, xxx ms, RFIC will enter sleep mode to
save power.
; The synthesizer is setup to transimitt a frequency close to CCSDS channel 1
; using integer-N mode. The transmit freq is at 404.4 MHz.
; In the control field, LPAena is set to 1 to put the TR switch into transmit mode and Stby_bar
is set to 0 to allow RFIC slepping. See other programs for details on the programming bits.

; Meta data for the compiler
 list p = 16f676
 radix dec
 include <p16f676.inc>
 errorlevel -302 ; suppress arg range msg from list file

; Configure the chip for Code protect off, Data Code protect off, Brownout detect off, MCLR
disabled,
; WDT disabled, Powerup timer enabled, and internal oscillator (with no use of output pin)

 __CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_ON & _PWRTE_ON &
_INTRC_OSC_NOCLKOUT

; '__CONFIG' directive is used to embed configuration word within .asm file.
; The lables following the directive are located in the respective .inc file.
; See data sheet for additional information on configuration word settings.

; Symbolic constants

REG_EN equ 0 ; RC0 (pin 10) ; Voltage regulator enable signal

STATCLK equ 1 ; RC1 (pin 9) ; Serial programming input and status output register
control pins
LATCH equ 2 ; RC2 (pin 8)
STATDAT equ 3 ; RA3 (pin 4)
PGMCLK equ 4 ; RC4 (pin 6)
PGMDAT equ 5 ; RC5 (pin 5)

PW_CMP_H equ 0 ; RA0 (pin13) ; Solar cell voltage compare
PW_CMP_L equ 1 ; RA1 (pin12)
PIC_RST equ 2 ; RA2 (pin11) ; PIC reset button
RFIC_PW_DN equ 3 ; RC3 (pin7) ; RFIC Power Down pin
LED equ 4 ; RA4 (pin3) ; LED

 42

; Register assignments

 cblock 0x20
w_temp ; temporary used in (unimplemented) ISR at 0x004
status_temp ; ditto
pclath_temp ; temporary used in ISR
numbits ; # of bits to write to rfic
temp ; temporary
count ; counter used in delay function
stat_group ; which status grouping to read / display
 ; 0 = temp, 1 = synthlock, 2 = rssi, 4 = spare
temperature ; variable to shift status bits into
synth_lock ; variable to shift status bits into
rssi ; variable to shift status bits into
pulse_cnt ; # of pulse send during wake up period, which is
 ; determined by the frequency of modulation signal
reg_ctl ; control subfield
tmr1_int_flg ; flag used to indicate whether timer interrupt occured
tmr1_int_cnt ; # of timer1 interrupts #*0xffff
tmr1_H ; the left timing number high byte
tmr1_L ; the left timing number low byte
sleep_cnt ; # of WDT sleep period depends on the WDT presca
 endc

; ****************** Start of program **************************

; Setup reset vector to skip over interrupt subroutines, if any
 org 0x00
 goto start

; An interrupt service routine template. (Not used in this program)
 org 0x004 ; interrupt vector location
 ; SAVE current status register
 movwf w_temp ; save off current W register contents
 movf STATUS,w ; move status register into W register
 movwf status_temp ; save off contents of STATUS register
 movf PCLATH,w ; move pclath register into w register
 movwf pclath_temp ; save off contents of PCLATH register

 ; isr code can go here or be located as a call subroutine elsewhere
 clrf STATUS
 btfsc PIR1, TMR1IF ; timer1 overflow interrupt
 call TMR1_INT ; yes

 btfsc INTCON, INTF ; if RA2 pin interrupt occure
 call RA2_INT ; yes

 ; RESTORED status register
 movf pclath_temp,w ; retrieve copy of PCLATH register
 movwf PCLATH ; restore pre-isr PCLATH register contents
 movf status_temp,w ; retrieve copy of STATUS register
 movwf STATUS ; restore pre-isr STATUS register contents
 swapf w_temp,f
 swapf w_temp,w ; restore pre-isr W register contents
 retfie ; return from interrupt

; **************************************
; The main routine
; **************************************

start
 ; Calibration of internal oscillator (from 16f676 template code)
 bsf STATUS,RP0 ; set file register bank to 1
 call 0x3FF ; retrieve factory calibration value
 movwf OSCCAL ; update register with factory cal value
 bcf STATUS,RP0 ; set file register bank to 0

 43

 ; initialize the PIC and its I/O ports
 call initPIC

 bcf PORTC, REG_EN ; Disable voltage regulator wait for CC0 charging
 bsf PORTC, RFIC_PW_DN ; Power down RFIC

 clrwdt ; clear WDT

 bsf PORTA, LED
 call wait10ms
 bcf PORTA, LED
 call wait10ms
 bsf PORTA, LED
 call wait10ms
 bcf PORTA, LED

cc0_1st_charge ; CC0(du=+5.2v i=0.16mA:dt=7.15s) at same time
 CCpic(du=+2.7v i=0.16mA:dt=0.168sec)
 movlw 3 ; CC0 charge time 7.15sec = 2.3sec * 3.1
 movwf sleep_cnt
cc0_1st_charging ; WDT period=2.3s
 call sleep_set
 sleep
 nop
 decfsz sleep_cnt,f
 goto cc0_1st_charging

 clrwdt ; clear WDT

 ; initialize program variables to zero
 movlw 0
 movwf stat_group
 movwf temperature
 movwf synth_lock
 movwf rssi
 movwf reg_ctl
 movwf tmr1_int_flg

 movlw 5 ; initialize the pulse counter as 5 because we use
1kHz AM signal to test
 movlw pulse_cnt ; that 5ms burst is the button line to makes a nice
'beep'.

 clrwdt ; clear WDT

main_loop

enable_reg
 bsf PORTC, REG_EN ; Enable Voltage Regulator to drive RFIC
 clrwdt ; clear WDT

rf_transmit
 clrwdt ; clear WDT
 call rf_tx ; send BEEP cc0(dt=0.011s-0.013s i=21mA : du=-1.24v)
CCpic(dt=0.015s i=0.50mA : du=-0.75v)
 clrwdt ; clear WDT

disable_reg
 bcf PORTC, REG_EN ; Disable Voltage Regulator to stop discharge from
CC0

c_recharge; cc0(du=1.24v i=0.16mA : dt=1.7s) CCpic(du=0.75v i=0.16mA : dt=0.46s) WDT period=2.3s
 movlw 1 ; Just only sleep 2.3s, if want more then
increase this value
 movwf sleep_cnt
c_recharging
 call sleep_set
 sleep
 nop
 decfsz sleep_cnt, f

 44

 goto c_recharging
 clrwdt
 goto main_loop

; **************************
; initPIC
; Initialize I/O port direction, pullups, and other control registers
; **************************

initPIC

 bcf STATUS, RP0 ; set to bank 0 (just in case)

 ; disable interrupts and disconnect comparator
 bcf INTCON, GIE ; this is the default on PowerOnReset (POR), but
never hurts
 movlw 0x07 ; disconnect comparator by setting CM2:CM0 high
 movwf CMCON

 bsf STATUS, RP0 ; set to bank 1 for the following high registers

 clrf ANSEL ; set all pins (ports A and C) to be digital

 movlw 0x0F ; set port A pins to be inputs, except bit RA4, RA5,
 movwf TRISA

 movlw 0xff ; enable all weak pullups (this is the default, so
not really needed)
 movwf WPUA

 movlw 0x00 ; disable PORTA pin change interrupt
 movwf IOCA

 ; initialize port C
 movlw 0x00 ; set all to outputs, except RC3 which is STATDAT
 movwf TRISC

 ; set initial values on ports
 bcf STATUS, RP0 ; set back to bank 0

 ; set Port A and Port C
 ; Set Power Down RFIC, turn off LED, all set as 0 except RA3
 clrf PORTA
 clrf PORTC

 ; initialize Timer1 interrupt
 clrf T1CON ; stop timer1, T1_OSC disabled, prescaler=1:1
 clrf TMR1H
 clrf TMR1L
 clrf INTCON ; disable interrupts
 bsf STATUS, RP0 ; set bank 1
 clrf PIE1 ; disable peripheral interrupts
 bcf STATUS, RP0 ; set bank 0
 clrf PIR1 ; clear peripheral interrupts flag
 movlw 0x04 ; internal clock, 1:1 prescaler, timer1 stop
 movwf T1CON

 ; initialize interrupt control register
 movlw b'11010000' ; enable Gloable interrupts, enable Peripheral
interrupts, enable RA2 interrupts;
 movwf INTCON

 ; set OPTION_REG at last step
 bsf STATUS, RP0 ; set bank 1
 movlw 0x3f ; Interrupt on falling edge of RA2/INT pin;
Prescaler is assigned to the WDT; WDT Rate 2.3s=18ms*128
 movwf OPTION_REG
 bcf STATUS, RP0 ; set back to bank for normal use 0 !!!

 retlw 0

 45

; **************************
; rf_tx
; Program RFIC to Transmit 5 burst
; **************************
rf_tx

rfic_pw_on
 bcf PORTC, RFIC_PW_DN

pgm_standby
 movlw B'00001000' ; standby: pwr_sw_out_sw enable, PW_CTL_1 enable
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

 ; wait TCXO work stably for 3500us
 movlw 0xF2 ; 3500us timing 0xf253 = 0xffff- 3500
 movwf TMR1H

 movlw 0x53
 movwf TMR1L

 call tmr1_on ; enable timer1

wait_tcxo
 btfss tmr1_int_flg,0
 goto wait_tcxo
 call tmr1_off ; disable timer1
 bcf tmr1_int_flg,0; clear tmr1_int_flg bit0

pgm_TX
 ; 1st pulse of AM burst
 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 movlw B'00001000' ; disable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

 ; 2nd pulse of AM burst
 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 movlw B'00001000' ; disable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

 ; 3rd pulse of AM burst
 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 movlw B'00001000' ; disable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

 ; 4th pulse of AM burst
 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 movlw B'00001000' ; disable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

 ; 5th pulse of AM burst
 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 movlw B'00001000' ; disable LPA

 46

 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode

rfic_pw_off
 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2

 return

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output lsb first (right shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of lsb
 btfsc temp,0
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf PORTC, PGMDAT
 goto outbits_clk
outbits_clr bcf PORTC, PGMDAT

outbits_clk ; toggle the clock line to input bit to synth
 bsf PORTC, PGMCLK
 bcf PORTC, PGMCLK

 ; process the next bit, or return if all done
 rrf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; latch the bits shifted in with outbits
; *************************

latchbits ; Bring latch line high and then toggle the clock line
 bsf PORTC, LATCH
 bsf PORTC, PGMCLK
 bcf PORTC, PGMCLK
 bcf PORTC, LATCH
 retlw 0

; *********************************
; pgm_tx_mode
; Programs synth, control, etc bits.
; See program header for explanation of bit pattern
; **********************************

pgm_tx_mode ; Program 60 bits of control (see program header)

 ; 33 bits of VCO and synthesizer bits first...
 ; coarse tune
 movlw 4
 movwf numbits
 movlw B'1011' ; 420 to 455 MHz range
 call outbits

 ; lower 8 bits of fractional count
 movlw 8
 movwf numbits
 movlw B'00000000'
 call outbits

 47

 ; upper 2 bits of fractional count
 movlw 2
 movwf numbits
 movlw B'00'
 call outbits

 ; lower 8 bits of N count
 movlw 8
 movwf numbits
 movlw B'01011101'
 call outbits

 ; upper 2 bits of N count
 movlw 2
 movwf numbits
 movlw B'00'
 call outbits

 ; 7 bit ref divider
 movlw 7
 movwf numbits
 movlw B'0000100'
 call outbits

 ; 2 bits of SDM control
 movlw 2
 movwf numbits
 movlw B'00'
 call outbits

 ; now for the remaining 27 bits...
 ; all 14 attenuator bits = 0 (no attenuation)
 movlw 7
 movwf numbits
 movlw B'0000000'
 call outbits
 movlw 7
 movwf numbits
 movlw B'0000000'
 call outbits

 ; 8 bits of config control (LPAenabled)
 movlw 8
 movwf numbits
 movf reg_ctl,W ; move reg_ctl content to W
 call outbits

 ; 5 more bits (lna freq alignment=4, RSSIenable=0, and spare=0)
 movlw 5
 movwf numbits
 movlw B'01100'
 call outbits

 ; latch the bits into the chip and return
 call latchbits
 retlw 0

; ************************************
; wait1ms
; Delays by about 1 milliseconds
; ************************************
wait1ms movlw 1
 movwf count ; outer loop ms counter

wait1ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait1ms_inner decf temp,F ; dec inner counter -- 2us
 btfss STATUS,Z ; check zero flag -- 2us
 goto wait10ms_inner ; continue if not zero -- 4us

 48

 decfsz count, F ; dec outer counter
 goto wait10ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait10ms
; Delays by about 10 milliseconds
; ************************************
wait10ms movlw 10
 movwf count ; outer loop ms counter

wait10ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait10ms_inner decf temp,F ; dec inner counter -- 2us
 btfss STATUS,Z ; check zero flag -- 2us
 goto wait10ms_inner ; continue if not zero -- 4us

 decfsz count, F ; dec outer counter
 goto wait10ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait20ms
; Delays by about 100 milliseconds
; ************************************
wait20ms movlw 20
 movwf count ; outer loop ms counter

wait20ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait20ms_inner decf temp,F ; dec inner counter -- 2us
 btfss STATUS,Z ; check zero flag -- 2us
 goto wait20ms_inner ; continue if not zero -- 4us

 decfsz count, F ; dec outer counter
 goto wait20ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait100ms
; Delays by about 100 milliseconds
; ************************************
wait100ms movlw 100
 movwf count ; outer loop ms counter

wait100ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait100ms_inner decf temp,F ; dec inner counter -- 2us
 btfss STATUS,Z ; check zero flag -- 2us
 goto wait100ms_inner ; continue if not zero -- 4us

 decfsz count, F ; dec outer counter
 goto wait100ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait1sec
; Delays by about 1 second
; ************************************

 49

wait1sec call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms

 retlw 0

; ************************************
; wait10sec
; Delays by about 10 second
; ************************************
wait10sec call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec

 retlw 0

; ************************************
; tmr1_on
; Enable timer1 with 100us waiting
;
; ************************************
tmr1_on
 ;movlw 0xFF ; 200us timing = 0xffff- 200= 0xff37
 ;movwf TMR1H

 ;movlw 0x37
 ;movwf TMR1L

 bsf T1CON, TMR1ON ; start timer1 on
 bsf STATUS, RP0 ; set bank 1
 bsf PIE1, TMR1IE ; enable timer1
 bcf STATUS, RP0 ; set bank 0

 return

; ************************************
; tmr1_off
; Disable timer1 with 100us waiting
;
; ************************************
tmr1_off

 bcf T1CON, TMR1ON ; stop timer1 on
 bsf STATUS, RP0 ; set bank 1
 bcf PIE1, TMR1IE ; disable timer1
 bcf STATUS, RP0 ; set bank 0

 return

; ************************************
; tmr1_timing
; Timer1 timing
; set timer to wait us = tmr1_int_cnt*0xffffus + (tmr1_H + tmrl_L)us
; ************************************
tmrl_timing

 50

 call tmr1_on ; enable timer1 as rollover running
wait_big_loop
 btfss tmr1_int_flg,0
 goto wait_big_loop

 bcf tmr1_int_flg,0 ; clear tmr1_int_flg bit0
 decfsz tmr1_int_cnt,F ; if 15 times over
 goto wait_big_loop
 call tmr1_off ; disable timer1 to change counter

 ; set sleep timer to wait the left time= tmrl_H + tmr1_L
 movf tmr1_H, W
 movwf TMR1H

 movf tmr1_L, W
 movwf TMR1L

 call tmr1_on ; enable timer1

wait_small_loop
 btfss tmr1_int_flg,0
 goto wait_small_loop
 call tmr1_off ; disable timer1

 bcf tmr1_int_flg,0 ; clear tmr1_int_flg bit0

 return

; ************************************
; TMR1_INT
; ISR of timer1 overflow.
;
; ************************************
TMR1_INT
 bsf tmr1_int_flg,0 ; set tmr1_int_flg bit0 as 1
 bcf PIR1, TMR1IF ; clear the TIMER1 interrupt flag
 return ; isr return

RA2_INT
 bcf INTCON, INTF ; clear RA2 interrupt flag
 movlw 0x00
 movwf PCL

sleep_set
 movlw 0x00 ; DISABLE all weak pullups (this is the default, so not
really needed)
 movwf WPUA

 movlw 0x07
 movwf CMCON ; Comparator OFF

 bcf VRCON, VREN ; CVref circuit power down
 bcf ADCON0, ADON ; A/D Converter shut-off1

 return

; that's all
 end

 51

Appedix E - K-State EHR Demo Board Code for 400kHz CPU

Clock

; Program peregine3# 433.92MHz TX.asm
;
; Test program for Peregine 1# board.
; By Xiaohu Zhang, William B. Kuhn
; Created 08/23/07.
;
; This code is used to test the TX frequency. That means it will transmite
; always.
;
;
; TEST PLAN 2. The RFIC working depends on CC0, CCpic charge and discharge.
;*********************
; CC0 = 200uF
; CC1 = N/A
; CCpic = 10uF
;*********************
;Design:
; Two charging capacitor are used here. One is CC0=220uF used to drive RFIC
; working for 0.012s at least; another is CCpic=10uF used to drive Microchip
; PIC16f676 are give power by 3.3v voltage regulator. So voltage regulator
; are always working.
; PIC16F676 operating specifications:
; Operating Frequency : 400kH
; Oscillator Period : 2.5uS
; Instruction Exe Time : 10uS = 4*2.5uS
; Operating Current : 0.16mA
; Sleeping Current :
; TIMER1 Counte/time : 10uS
;
; This program provides the 60 bits of programming needed to set
; the fab4 transceiver chip to transmitt mode with full gain and sleep mode
; enabled. To keep low power consuming, we use <1% duty cycle that means during
; 1 second, xx ms are occupied by RFIC to transmitt data and the remain time,
; xxx ms, RFIC will enter sleep mode to save power.
; The synthesizer is setup to transimitt a frequency close to CCSDS channel 1
; using integer-N mode. The transmit freq is at 404.4 MHz.
;
; In the control field, LPAena is set to 1 to put the TR switch into transmit mode
; and Stby_bar is set to 0 to allow RFIC slepping.
;
; See other programs for details on the programming bits.

; Meta data for the compiler
 list p = 16f676
 radix dec
 include <p16f676.inc>
 errorlevel -302 ; suppress arg range msg from list file

; Configure the chip for Code protect off, Data Code protect off, Brownout detect off, MCLR
disabled, WDT disabled, Powerup timer enabled, and internal oscillator (with no use of output pin)

 __CONFIG _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF & _PWRTE_ON &
_EXTRC_OSC_NOCLKOUT

; '__CONFIG' directive is used to embed configuration word within .asm file.
; The lables following the directive are located in the respective .inc file.
; See data sheet for additional information on configuration word settings.

; Symbolic constants

REG_EN equ 0 ; RC0 (pin 10) ; Voltage regulator enable signal

 52

STATCLK equ 1 ; RC1 (pin 9) ; Serial programming input and status output
register control pins
LATCH equ 2 ; RC2 (pin 8)
;STATDAT equ 3 ; RC3 (pin 7)
STATDAT equ 3 ; RA3 (pin 4) ; RA3 can only be used as INPUT
PGMCLK equ 4 ; RC4 (pin 6)
PGMDAT equ 5 ; RC5 (pin 5)

PW_CMP_H equ 0 ; RA0 (pin 13) ; Solar cell voltage compare
PW_CMP_L equ 1 ; RA1 (pin 12)

PIC_RST equ 2 ; RA2 (pin 11) ; PIC reset button
;RFIC_PW_DN equ 3 ; RA3 (pin4) ; RFIC Power Down pin
RFIC_PW_DN equ 3 ; RC3 (pin 7) ; RFIC Power Down pin
LED equ 4 ; RA4 (pin 3) ; LED

; Register assignments

 cblock 0x20
w_temp ; temporary used in (unimplemented) ISR at 0x004
status_temp ; ditto
pclath_temp ; temporary used in ISR

numbits ; # of bits to write to rfic
temp ; temporary
count ; counter used in delay function

stat_group ; which status grouping to read / display
 ; 0 = temp, 1 = synthlock, 2 = rssi, 4 = spare

temperature ; variable to shift status bits into
synth_lock ; variable to shift status bits into
rssi ; variable to shift status bits into

pulse_cnt ; # of pulse send during wake up period, which is
 ; determined by the frequency of modulation signal

reg_ctl ; control subfield

tmr1_int_flg ; flag used to indicate whether timer interrupt occured
tmr1_int_cnt ; # of timer1 interrupts #*0xffff
tmr1_H ; the left timing number high byte
tmr1_L ; the left timing number low byte

sleep_cnt ; # of WDT sleep period depends on the WDT presca
 endc

; ****************** Start of program **************************

; Setup reset vector to skip over interrupt subroutines, if any
 org 0x00
 goto start

; An interrupt service routine template. (Not used in this program)
 org 0x004 ; interrupt vector location
 ; SAVE current status register
 movwf w_temp ; save off current W register contents
 movf STATUS,w ; move status register into W register
 movwf status_temp ; save off contents of STATUS register
 movf PCLATH,w ; move pclath register into w register
 movwf pclath_temp ; save off contents of PCLATH register

 ; isr code can go here or be located as a call subroutine elsewhere
 clrf STATUS
 btfsc PIR1, TMR1IF ; timer1 overflow interrupt

 53

 call TMR1_INT ; yes

 btfsc INTCON, INTF ; if RA2 pin interrupt occure
 call RA2_INT ; yes

 ; RESTORED status register
 movf pclath_temp,w ; retrieve copy of PCLATH register
 movwf PCLATH ; restore pre-isr PCLATH register contents
 movf status_temp,w ; retrieve copy of STATUS register
 movwf STATUS ; restore pre-isr STATUS register contents
 swapf w_temp,f
 swapf w_temp,w ; restore pre-isr W register contents
 retfie ; return from interrupt

; **************************************
; The main routine
; **************************************

start
 ; Calibration of internal oscillator (from 16f676 template code)
; call 0x3FF ; retrieve factory calibration value
 bsf STATUS,RP0 ; set file register bank to 1
 call 0x3FF ; retrieve factory calibration value
 movwf OSCCAL ; update register with factory cal value
 bcf STATUS,RP0 ; set file register bank to 0

 ; initialize the PIC and its I/O ports
 call initPIC

 bsf PORTA, LED
 call wait10ms
 bcf PORTA, LED
 call wait10ms
 bsf PORTA, LED
 call wait10ms
 bcf PORTA, LED

 ; initialize program variables to zero
 movlw 0
 movwf stat_group
 movwf temperature
 movwf synth_lock
 movwf rssi
 movwf reg_ctl
 movwf tmr1_int_flg

 movlw 5; initialize the pulse counter as 5 because we use 1kHz AM signal to test
 movlw pulse_cnt ; that 5ms burst is the button line to makes a nice 'beep'.

 call en_sw_software ; enable software switch to enable vdd_vco

 call wait20ms

;pgm_TX

 movlw B'10001000' ; enable LPA
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 bcf PORTC, RFIC_PW_DN

main_loop

 bsf PORTA, LED ; Cannot be here because drop too much current
 call wait100ms
 bcf PORTA, LED
 call wait100ms

 clrwdt ; clear WDT

 54

 goto main_loop

; **************************
; initPIC
; Initialize I/O port direction, pullups, and other control registers
; **************************

initPIC

 bcf STATUS, RP0 ; set to bank 0 (just in case)

 ; disable interrupts and disconnect comparator
 bcf INTCON, GIE ; this is the default on PowerOnReset (POR), but
never hurts
 movlw 0x07 ; disconnect comparator by setting CM2:CM0 high
 movwf CMCON

 bsf STATUS, RP0 ; set to bank 1 for the following high registers
 clrf ANSEL ; set all pins (ports A and C) to be digital

 movlw 0x2F ; set port A pins to be inputs, except LED bit RA4,
 movwf TRISA

 movlw 0xff ; enable all weak pullups (this is the default, so
not really needed)
 movwf WPUA

 movlw 0x00 ; disable PORTA pin change interrupt
 movwf IOCA

 ; initialize port C
 movlw 0x00 ; set all to outputs
 movwf TRISC

 ; set initial values on ports
 bcf STATUS, RP0 ; set back to bank 0

 ; set Port A and Port C
 ;movlw 0x08 ; Set Power Down RFIC, turn off LED, all set as 0
except RA3
 ;movlw 0x00
 ;movwf PORTA
 clrf PORTA
 movlw 0x08
 movwf PORTC
 ;clrf PORTC

 ; initialize Timer1 interrupt
 clrf T1CON ; stop timer1, T1_OSC disabled, prescaler=1:1
 clrf TMR1H
 clrf TMR1L
 clrf INTCON ; disable interrupts
 bsf STATUS, RP0 ; set bank 1
 clrf PIE1 ; disable peripheral interrupts
 bcf STATUS, RP0 ; set bank 0
 clrf PIR1 ; clear peripheral interrupts flag
 movlw 0x04 ; internal clock, 1:1 prescaler, timer1 stop
 movwf T1CON

 ; initialize interrupt control register
 movlw b'11010000' ; enable Gloable interrupts, enable Peripheral
interrupts, enable RA2 interrupts;
 movwf INTCON

 ; set OPTION_REG at last step
 bsf STATUS, RP0 ; set bank 1
 movlw 0x3E ; Interrupt on falling edge of RA2/INT pin;
Prescaler is assigned to the WDT; WDT Rate 1.15s=18ms*64
 movwf OPTION_REG
 bcf STATUS, RP0 ; set back to bank for normal use 0 !!!

 55

 retlw 0

; **************************
; en_sw_software
; Enable software switch to enable vdd_vco
; **************************
en_sw_software
 movlw B'00001000' ; enable standy_bar---enable sw_software
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 return

; **************************
; dis_sw_software
; disable software switch to enable vdd_vco
; **************************
dis_sw_software
 movlw B'00000000' ; enable standy_bar---enable sw_software
 movwf reg_ctl ; initialize control byte
 call pgm_tx_mode
 return

; **************************
; rf_tx
; Program RFIC to Transmit 5 burst
; **************************
rf_tx

pgm_TX
 ; 1st pulse of AM burst
 movlw B'10001000' ; enable LPA

 movwf reg_ctl ; initialize control byte

 call pgm_tx_mode

 ; wait TCXO work stably for 3500us=0x0DAC , due to Timer1 count cycle =
10uS
 movlw 0xFE ; 3500us timing 0xfea1 = 0xffff- 350
 movwf TMR1H
 movlw 0xA1
 movwf TMR1L

 call tmr1_on ; enable timer1

wait_tcxo
 btfss tmr1_int_flg,0
 goto wait_tcxo
 call tmr1_off ; disable timer1
 bcf tmr1_int_flg,0; clear tmr1_int_flg bit0

TX_1st_beep
 bcf PORTC, RFIC_PW_DN
 call waitP5ms ; wait 0.5mS for 1kHz AM beep
 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2
 call waitP5ms ; wait 0.5mS for 1kHz AM beep

TX_2nd_beep
 bcf PORTC, RFIC_PW_DN
 call waitP5ms ; wait 0.5mS for 1kHz AM beep
 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2
 call waitP5ms ; wait 0.5mS for 1kHz AM beep

TX_3rd_beep
 bcf PORTC, RFIC_PW_DN
 call waitP5ms ; wait 0.5mS for 1kHz AM beep

 56

 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2
 call waitP5ms ; wait 0.5mS for 1kHz AM beep

TX_4th_beep
 bcf PORTC, RFIC_PW_DN
 call waitP5ms ; wait 0.5mS for 1kHz AM beep
 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2
 call waitP5ms ; wait 0.5mS for 1kHz AM beep

TX_5th_beep
 bcf PORTC, RFIC_PW_DN
 call waitP5ms ; wait 0.5mS for 1kHz AM beep
 bsf PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2
 ;call waitP5ms ; wait 0.5mS for 1kHz AM beep

 return

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output lsb first (right shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of lsb
 btfsc temp,0
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf PORTC, PGMDAT
 goto outbits_clk
outbits_clr bcf PORTC, PGMDAT

outbits_clk ; toggle the clock line to input bit to synth
 bsf PORTC, PGMCLK
 bcf PORTC, PGMCLK

 ; process the next bit, or return if all done
 rrf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; latch the bits shifted in with outbits
; *************************

latchbits ; Bring latch line high and then toggle the clock line
 bsf PORTC, LATCH
 bsf PORTC, PGMCLK
 bcf PORTC, PGMCLK
 bcf PORTC, LATCH
 retlw 0

; *********************************
; pgm_tx_mode
; Programs synth, control, etc bits.
; See program header for explanation of bit pattern
; **********************************

pgm_tx_mode ; Program 60 bits of control (see program header)

 ; 33 bits of VCO and synthesizer bits first...
 ; coarse tune

 57

 movlw 4
 movwf numbits
 ;movlw B'1011' ; 420 to 455 MHz range
 movlw B'1011' ; 400 to 445 MHz range
 call outbits

 ; lower 8 bits of fractional count
 movlw 8
 movwf numbits
 movlw B'10011010' ; 433.92MHz 410 -->432.018
 call outbits

 ; upper 2 bits of fractional count
 movlw 2
 movwf numbits
 movlw B'01'; 433.92MHz
 call outbits

 ; lower 8 bits of N count
 movlw 8
 movwf numbits
 movlw B'01011010' ; 433.92MHz 90
 call outbits

 ; upper 2 bits of N count
 movlw 2
 movwf numbits
 movlw B'00'
 call outbits

 ; 7 bit ref divider
 movlw 7
 movwf numbits
 movlw B'0000100'
 call outbits

 ; 2 bits of SDM control
 movlw 2
 movwf numbits
 movlw B'11'
 call outbits

 ; now for the remaining 27 bits...
 ; all 14 attenuator bits = 0 (no attenuation)
 movlw 7
 movwf numbits
 movlw B'0000000'
 call outbits
 movlw 7
 movwf numbits
 movlw B'0000000'
 call outbits

 ; 8 bits of config control (LPAenabled)
 movlw 8
 movwf numbits
 movf reg_ctl,W ; move reg_ctl content to W
 call outbits

 ; 5 more bits (lna freq alignment=4, RSSIenable=0, and spare=0)
 movlw 5
 movwf numbits
 movlw B'01100'
 call outbits

 ; latch the bits into the chip and return
 call latchbits
 retlw 0

; ************************************

 58

; wait0.5ms
; Delays by about 0.5 milliseconds
; ************************************
waitP5ms movlw 12
 movwf temp ; inner loop counter (12.5 * 40us = 0.5ms)

waitP5ms_inner decf temp,F ; dec inner counter -- 20us
 btfss STATUS,Z ; check zero flag -- 20us
 goto waitP5ms_inner ; continue if not zero -- 40us

 retlw 0

; ************************************
; wait1ms
; Delays by about 1 milliseconds
; ************************************
wait1ms movlw 25
 movwf temp ; inner loop counter (25 times 40us = 1ms)

wait1ms_inner decf temp,F ; dec inner counter -- 20us
 btfss STATUS,Z ; check zero flag -- 20us
 goto wait1ms_inner ; continue if not zero -- 40us

 retlw 0

; ************************************
; wait10ms
; Delays by about 10 milliseconds
; ************************************
wait10ms movlw 250
 movwf temp ; inner loop counter (250 times 40us = 10ms)

wait10ms_inner decf temp,F ; dec inner counter -- 20us
 btfss STATUS,Z ; check zero flag -- 20us
 goto wait10ms_inner ; continue if not zero -- 40us

 retlw 0

; ************************************
; wait20ms
; Delays by about 20 milliseconds
; ************************************
wait20ms movlw 2
 movwf count ; outer loop ms counter

wait20ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 40us = 10ms)

wait20ms_inner decf temp,F ; dec inner counter -- 20us
 btfss STATUS,Z ; check zero flag -- 20us
 goto wait20ms_inner ; continue if not zero -- 40us

 decfsz count, F ; dec outer counter
 goto wait20ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait100ms
; Delays by about 100 milliseconds
; ************************************
wait100ms movlw 10
 movwf count ; outer loop ms counter

wait100ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 40us = 10ms)

wait100ms_inner decf temp,F ; dec inner counter -- 20us
 btfss STATUS,Z ; check zero flag -- 20us

 59

 goto wait100ms_inner ; continue if not zero -- 40us

 decfsz count, F ; dec outer counter
 goto wait100ms_outer ; continue if not zero

 retlw 0

; ************************************
; wait1sec
; Delays by about 1 second
; ************************************
wait1sec call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms
 call wait100ms

 retlw 0

; ************************************
; wait10sec
; Delays by about 10 second
; ************************************
wait10sec call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec
 call wait1sec

 retlw 0

; ************************************
; tmr1_on
; Enable timer1 with 100us waiting
;
; ************************************
tmr1_on
 ;movlw 0xFF ; 200us timing = 0xffff- 200= 0xff37
 ;movwf TMR1H

 ;movlw 0x37
 ;movwf TMR1L

 bsf T1CON, TMR1ON ; start timer1 on
 bsf STATUS, RP0 ; set bank 1
 bsf PIE1, TMR1IE ; enable timer1
 bcf STATUS, RP0 ; set bank 0

 return

; ************************************
; tmr1_off
; Disable timer1 with 100us waiting
;
; ************************************
tmr1_off

 bcf T1CON, TMR1ON ; stop timer1 on

 60

 bsf STATUS, RP0 ; set bank 1
 bcf PIE1, TMR1IE ; disable timer1
 bcf STATUS, RP0 ; set bank 0

 return

; ************************************
; tmr1_timing
; Timer1 timing
; set timer to wait us = tmr1_int_cnt*0xffffus + (tmr1_H + tmrl_L)us
; ************************************
tmrl_timing
 call tmr1_on ; enable timer1 as rollover running
wait_big_loop
 btfss tmr1_int_flg,0
 goto wait_big_loop

 bcf tmr1_int_flg,0 ; clear tmr1_int_flg bit0
 decfsz tmr1_int_cnt,F ; if 15 times over
 goto wait_big_loop
 call tmr1_off ; disable timer1 to change counter

 ; set sleep timer to wait the left time= tmrl_H + tmr1_L
 movf tmr1_H, W
 movwf TMR1H

 movf tmr1_L, W
 movwf TMR1L

 call tmr1_on ; enable timer1

wait_small_loop
 btfss tmr1_int_flg,0
 goto wait_small_loop
 call tmr1_off ; disable timer1
 bcf tmr1_int_flg,0 ; clear tmr1_int_flg bit0

 return

; ************************************
; TMR1_INT
; ISR of timer1 overflow.
;
; ************************************
TMR1_INT

 bsf tmr1_int_flg,0 ; set tmr1_int_flg bit0 as 1
 bcf PIR1, TMR1IF ; clear the TIMER1 interrupt flag
 return ; isr return

RA2_INT
 bcf INTCON, INTF ; clear RA2 interrupt flag
 movlw 0x00
 movwf PCL

sleep_set
 movlw 0x00; DISABLE all weak pullups (this is the default, so not really needed)
 movwf WPUA
 movlw 0x07
 movwf CMCON ;Comparator OFF
 bcf VRCON, VREN ; CVref circuit power down
 bcf ADCON0, ADON ; A/D Converter shut-off1
 return

; that's all

 End

 61

Appedix F - Frequency Synthesizer PIC12F509 Code

F.1 151MHz Board

; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter
; By William B. Kuhn
; Created 11/25/00
; Revised 12/01/06 for use with 12F509
; Revised 8/17/07 for downconversion of LRIT signal to 138.000 MHz

; Modified Xiaohu Zhang 5/22/2008
; Modified to be used for 151.94MHz transmiter
; f_vco = 151.94e6 = [32*B + A] * (19.2e6/R) --> 151.94e6 = (N*19.2e6)/R
; when N = 7597 then R = 960
; thus B = 237, A = 13 and R = 960
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

; This program sets up the National Semiconductor LMX2326 synthesizer chip
; and increments through channels when a switch is pressed.
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz
; clock), and programs one of 10 channels from 138 MHz to 147 MHz.
; On powerup, the channel is set to 138 MHz. Each press of the channel up
; switch will advance to the next channel, 1 MHz higher. After channel 10
; is reached (147 MHz), the synth is programmed to an invalid channel to force
; the lock light to go out (useful for testing and also for knowing where one
; is in the sequence). At the next press, channel 1 is again programmed
; and the sequence repeats.

; Meta data for the compiler
; This is for a 12f509 with 1024 words of program and 41 file registers
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs
 list p = 12f509
 radix dec
 include <p12f509.inc>

; Configure the chip for MCLR disabled, Code protect off,
; WDT disabled, and crystal oscillator
 __config H'0a'

; Symbolic constants

NUMCHAN equ 20 ; number of channels we can tune to
CLKBIT equ 0 ; GPIO bit 0 is clock bit on synth
DATABIT equ 1 ; GPIO bit 1 is data bit on synth
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch

LED1 equ 5 ; GPIO bit 5 is LED1

; Register assignments

channel equ 8 ; current channel
numbits equ 9 ; # of bits to write to synth
Ndiv equ 10 ; low order byte of N reg

 62

temp equ 11 ; temporary
count equ 12 ; counter for delay loop

; ****************** Start of program **************************

; Setup reset vector to skip over subroutines, which must reside
; in first 256 addresses
 org 0
 goto start

; **************************
; initGPIO
; Initialize I/O port direction and set bits to zero
; **************************

initGPIO ; first set the option register bits to allow GP2 to be an output
 movlw B'10001111'
 option

 ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs
 movlw B'11011000'
 tris 6

 ; clear the outputs (probably redundant with reset state, but hey...)
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT
 ;bcf GPIO, SWITCHBIT

 retlw 0

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output msb first (left shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of msb
 btfsc temp,7
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf GPIO, DATABIT
 goto outbits_clk
outbits_clr bcf GPIO, DATABIT

outbits_clk ; toggle the clock line to input bit to synth
 bsf GPIO, CLKBIT
 bcf GPIO, CLKBIT

 ; process the next bit, or return if all done
 rlf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; toggles the LE line on the synth to latch the bits shifted in with outbits
; *************************

latchbits bsf GPIO, LATCHBIT
 bcf GPIO, LATCHBIT
 retlw 0

; *********************************

 63

; initF
; Initialize the F register (programming reg) on the synth.
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001),
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is
; selected (C2:C1 = 11).
; **********************************

initF
 ; F19
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; F18:F11 = 0
 movlw 8
 movwf numbits
 clrw
 call outbits

 ; F10:F7 = 0, F6:F3 set as explained above
 movlw 8
 movwf numbits
 ;movlw B'00001001'
 movlw B'00001000' ;f3--f5--110 active high
 call outbits

 ; F2:F1 and C2:C1 set as explained above
 movlw 4
 movwf numbits
 movlw B'00110000'
 call outbits

 ; latch the bits into the synthesizer and return
 call latchbits
 retlw 0

; *******************************
; initR
; R = 96 = 0110 0000
; Initialize the R register in the synth to divide by 960 (19.2 MHz -> 80kHz)
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

initR ; begin by writing top 5 bits to register
 ; (sets lock-detect precision to one and zeros test mode bits)
 movlw 5
 movwf numbits
 movlw H'80'
 call outbits

 ; next, write R14:R7
 movlw 8
 movwf numbits
 movlw b'00000001'
 call outbits

 ; write R6:R1
 movlw 6
 movwf numbits
 movlw b'10000000'
 call outbits

 ; finally, write two lsb's as zero to designate R register
 movlw 2
 movwf numbits
 clrw

 64

 call outbits

 ; latch the bits into the synth and return
 call latchbits
 retlw 0

; ************************
; inc_chan
; Increments the current channel, wrapping to zero if max channel reached
; ************************

inc_chan incf channel, F
 movlw NUMCHAN + 1
 subwf channel, W
 btfsc STATUS, Z

 clrf channel
 retlw 0

; *********************************
; writeN
; N = 759.5 --> B=23 A=22
; 151.94e9 = [32*B + A] * (19.2e6/96)
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
writeN
 ;msb
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; write first 8 bits of B N18:N11
 movlw 8
 movwf numbits
 movlw b'00000000'
 call outbits

 ; write last 5 bits of B N10:N6
 movlw 5
 movwf numbits
 movlw b'10111000'
 call outbits

 ; write last 5 bits of A N5:N1
 movlw 5
 movwf numbits
 movlw b'10110000'
 call outbits

 ; write two control bits designating this as N register
 movlw 2
 movwf numbits
 movlw H'40'
 call outbits

 ; latch into synth and return
 call latchbits
 retlw 0

; ************************************
; wait250ms
; Delays by about 250 milliseconds
; ************************************

wait250ms movlw 250
 movwf count ; outer loop ms counter

 65

wait250ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait250ms_inner decf temp,F ; dec inner counter -- 1us
 btfss STATUS,Z ; check zero flag -- 1us
 goto wait250ms_inner ; continue if not zero -- 2us

 decfsz count, F ; dec outer counter
 goto wait250ms_outer ; continue if not zero

 retlw 0

; **************************************
; The main routine
; **************************************

start ; initialize the PIC and its I/O ports
 call initGPIO

 ; initialize the synthesizer and channel number
 call initF ; initialize the programming setup regs
 call initR ; initialize the ref freq divisor
 call writeN ; write the N divisor for this channel

 ; clear output (especially for when the last bit is '1')
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 bsf GPIO,LED1
 call wait250ms
 call wait250ms
 bcf GPIO,LED1

main_loop
; loop, checking channel switch for press (SWITCHBIT = 0)

 btfsc GPIO, SWITCHBIT
 goto main_loop

 call writeN ; write the N divisor for this channel

 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 ; clear output (especially for when the last bit is '1')
 bsf GPIO,LED1
 call wait250ms
 bcf GPIO,LED1

 goto main_loop

 end

 66

F.2 433MHz Board
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter
; By William B. Kuhn
; Created 11/25/00
; Revised 12/01/06 for use with 12F509
; Revised 8/17/07 for downconversion of LRIT signal to 138.000 MHz

; Modified Xiaohu Zhang 5/22/2008
; Modified to be used for 433.92MHz transmiter
; f_vco = 433.92e6 = [32*B + A] * (19.2e6/R) --> 433.92e6 = (N*19.2e6)/R
; when N = 1130 then R = 50
; thus B = 35, A = 10 and R = 50
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

; This program sets up the National Semiconductor LMX2326 synthesizer chip
; and increments through channels when a switch is pressed.
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz
; clock), and programs one of 10 channels from 138 MHz to 147 MHz.
; On powerup, the channel is set to 138 MHz. Each press of the channel up
; switch will advance to the next channel, 1 MHz higher. After channel 10
; is reached (147 MHz), the synth is programmed to an invalid channel to force
; the lock light to go out (useful for testing and also for knowing where one
; is in the sequence). At the next press, channel 1 is again programmed
; and the sequence repeats.

; Meta data for the compiler
; This is for a 12f509 with 1024 words of program and 41 file registers
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs
 list p = 12f509
 radix dec
 include <p12f509.inc>

; Configure the chip for MCLR disabled, Code protect off,
; WDT disabled, and crystal oscillator
 __config H'0a'

; Symbolic constants

NUMCHAN equ 20 ; number of channels we can tune to
CLKBIT equ 0 ; GPIO bit 0 is clock bit on synth
DATABIT equ 1 ; GPIO bit 1 is data bit on synth
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch

LED1 equ 5 ; GPIO bit 5 is LED1

; Register assignments

channel equ 8 ; current channel
numbits equ 9 ; # of bits to write to synth
Ndiv equ 10 ; low order byte of N reg
temp equ 11 ; temporary
count equ 12 ; counter for delay loop

; ****************** Start of program **************************

 67

; Setup reset vector to skip over subroutines, which must reside
; in first 256 addresses
 org 0
 goto start

; **************************
; initGPIO
; Initialize I/O port direction and set bits to zero
; **************************

initGPIO ; first set the option register bits to allow GP2 to be an output
 movlw B'10001111'
 option

 ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs
 movlw B'11011000'
 tris 6

 ; clear the outputs (probably redundant with reset state, but hey...)
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT
 ;bcf GPIO, SWITCHBIT

 retlw 0

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output msb first (left shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of msb
 btfsc temp,7
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf GPIO, DATABIT
 goto outbits_clk
outbits_clr bcf GPIO, DATABIT

outbits_clk ; toggle the clock line to input bit to synth
 bsf GPIO, CLKBIT
 bcf GPIO, CLKBIT

 ; process the next bit, or return if all done
 rlf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; toggles the LE line on the synth to latch the bits shifted in with outbits
; *************************

latchbits bsf GPIO, LATCHBIT
 bcf GPIO, LATCHBIT
 retlw 0

; *********************************
; initF
; Initialize the F register (programming reg) on the synth.
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001),
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is
; selected (C2:C1 = 11).

 68

; **********************************

initF
 ; F19
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; F18:F11 = 0
 movlw 8
 movwf numbits
 clrw
 call outbits

 ; F10:F7 = 0, F6:F3 set as explained above
 movlw 8
 movwf numbits
 ;movlw B'00001001'
 movlw B'00001000' ;f3--f5--110 active high
 call outbits

 ; F2:F1 and C2:C1 set as explained above
 movlw 4
 movwf numbits
 movlw B'00110000'
 call outbits

 ; latch the bits into the synthesizer and return
 call latchbits
 retlw 0

; *******************************
; initR
; Initialize the R register in the synth to divide by 50 (19.2 MHz -> 384kHz)
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

initR ; begin by writing top 5 bits to register
 ; (sets lock-detect precision to one and zeros test mode bits)
 movlw 5
 movwf numbits
 movlw H'80'
 call outbits

 ; next, write R14:R7 divisor bits as all zeros
 movlw 8
 movwf numbits
 movlw b'00000000'
 call outbits

 ; write R6:R1 = 08h to give divide by 8
 movlw 6
 movwf numbits
 movlw b'11001000'
 call outbits

 ; finally, write two lsb's as zero to designate R register
 movlw 2
 movwf numbits
 clrw
 call outbits

 ; latch the bits into the synth and return
 call latchbits
 retlw 0

 69

; ************************
; inc_chan
; Increments the current channel, wrapping to zero if max channel reached
; ************************

inc_chan incf channel, F
 movlw NUMCHAN + 1
 subwf channel, W
 btfsc STATUS, Z

 clrf channel
 retlw 0

; *********************************
; writeN
; N = 1130 --> B=35 A=10
; 433.92e9 = [32*B + A] * (19.2e6/50)
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
writeN
 ;msb
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; write first 8 bits of B N18:N11
 movlw 8
 movwf numbits
 movlw b'00000001'
 call outbits

 ; write last 5 bits of B N10:N6
 movlw 5
 movwf numbits
 movlw b'00011000'
 call outbits

 ; write last 5 bits of A N5:N1
 movlw 5
 movwf numbits
 movlw b'01010000'
 call outbits

 ; write two control bits designating this as N register
 movlw 2
 movwf numbits
 movlw H'40'
 call outbits

 ; latch into synth and return
 call latchbits
 retlw 0

; ************************************
; wait250ms
; Delays by about 250 milliseconds
; ************************************

wait250ms movlw 250
 movwf count ; outer loop ms counter

wait250ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait250ms_inner decf temp,F ; dec inner counter -- 1us
 btfss STATUS,Z ; check zero flag -- 1us

 70

 goto wait250ms_inner ; continue if not zero -- 2us

 decfsz count, F ; dec outer counter
 goto wait250ms_outer ; continue if not zero

 retlw 0

; **************************************
; The main routine
; **************************************

start ; initialize the PIC and its I/O ports
 call initGPIO

 ; initialize the synthesizer and channel number
 call initF ; initialize the programming setup regs
 call initR ; initialize the ref freq divisor
 call writeN ; write the N divisor for this channel

 ; clear output (especially for when the last bit is '1')
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 bsf GPIO,LED1
 call wait250ms
 call wait250ms
 bcf GPIO,LED1

main_loop
; loop, checking channel switch for press (SWITCHBIT = 0)

 btfsc GPIO, SWITCHBIT
 goto main_loop

 call writeN ; write the N divisor for this channel

 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 ; clear output (especially for when the last bit is '1')
 bsf GPIO,LED1
 call wait250ms
 bcf GPIO,LED1

 goto main_loop

 end

 71

F.3 902MHz Board
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter
; By William B. Kuhn
; Created 11/25/00
; Revised 12/01/06 for use with 12F509
; Revised 8/17/07 for downconversion of LRIT signal to 138.000 MHz

; Modified Xiaohu Zhang
; Modified to be used for 902MHz transmiter
; f_vco = 902e6 = [32*B + A] * (19.2e6/R) --> 902e6 = (N*19.2e6)/R
; when N = 2255 then R = 48
; thus B = 70, A = 15 and R = 48
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

; This program sets up the National Semiconductor LMX2326 synthesizer chip
; and increments through channels when a switch is pressed.
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz
; clock), and programs one of 10 channels from 138 MHz to 147 MHz.
; On powerup, the channel is set to 138 MHz. Each press of the channel up
; switch will advance to the next channel, 1 MHz higher. After channel 10
; is reached (147 MHz), the synth is programmed to an invalid channel to force
; the lock light to go out (useful for testing and also for knowing where one
; is in the sequence). At the next press, channel 1 is again programmed
; and the sequence repeats.

; Meta data for the compiler
; This is for a 12f509 with 1024 words of program and 41 file registers
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs
 list p = 12f509
 radix dec
 include <p12f509.inc>

; Configure the chip for MCLR disabled, Code protect off,
; WDT disabled, and crystal oscillator
 __config H'0a'

; Symbolic constants

NUMCHAN equ 20 ; number of channels we can tune to
CLKBIT equ 0 ; GPIO bit 0 is clock bit on synth
DATABIT equ 1 ; GPIO bit 1 is data bit on synth
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch

LED1 equ 5 ; GPIO bit 5 is LED1

; Register assignments

channel equ 8 ; current channel
numbits equ 9 ; # of bits to write to synth
Ndiv equ 10 ; low order byte of N reg
temp equ 11 ; temporary
count equ 12 ; counter for delay loop

; ****************** Start of program **************************

 72

; Setup reset vector to skip over subroutines, which must reside
; in first 256 addresses
 org 0
 goto start

; **************************
; initGPIO
; Initialize I/O port direction and set bits to zero
; **************************

initGPIO ; first set the option register bits to allow GP2 to be an output
 movlw B'10001111'
 option

 ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs
 movlw B'11011000'
 tris 6

 ; clear the outputs (probably redundant with reset state, but hey...)
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT
 ;bcf GPIO, SWITCHBIT

 retlw 0

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output msb first (left shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of msb
 btfsc temp,7
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf GPIO, DATABIT
 goto outbits_clk
outbits_clr bcf GPIO, DATABIT

outbits_clk ; toggle the clock line to input bit to synth
 bsf GPIO, CLKBIT
 bcf GPIO, CLKBIT

 ; process the next bit, or return if all done
 rlf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; toggles the LE line on the synth to latch the bits shifted in with outbits
; *************************

latchbits bsf GPIO, LATCHBIT
 bcf GPIO, LATCHBIT
 retlw 0

; *********************************
; initF
; Initialize the F register (programming reg) on the synth.
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001),
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is
; selected (C2:C1 = 11).
; **********************************

 73

initF
 ; F19
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; F18:F11 = 0
 movlw 8
 movwf numbits
 clrw
 call outbits

 ; F10:F7 = 0, F6:F3 set as explained above
 movlw 8
 movwf numbits
 ;movlw B'00001001'
 movlw B'00001000' ;f3--f5--110 active high
 call outbits

 ; F2:F1 and C2:C1 set as explained above
 movlw 4
 movwf numbits
 movlw B'00110000'
 call outbits

 ; latch the bits into the synthesizer and return
 call latchbits
 retlw 0

; *******************************
; initR
; Initialize the R register in the synth to divide by 48 (19.2 MHz -> 400kHz)
;
; R-reg
; LSB |---------------- R ----------|-- TEST ---|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

initR ; begin by writing top 5 bits to register
 ; (sets lock-detect precision to one and zeros test mode bits)
 movlw 5
 movwf numbits
 movlw H'80'
 call outbits

 ; next, write R14:R7 divisor bits as all zeros
 movlw 8
 movwf numbits
 movlw b'00000000'
 call outbits

 ; write R6:R1 = 08h to give divide by 8
 movlw 6
 movwf numbits
 movlw b'11000000'
 call outbits

 ; finally, write two lsb's as zero to designate R register
 movlw 2
 movwf numbits
 clrw
 call outbits

 ; latch the bits into the synth and return
 call latchbits
 retlw 0

; ************************
; inc_chan

 74

; Increments the current channel, wrapping to zero if max channel reached
; ************************

inc_chan incf channel, F
 movlw NUMCHAN + 1
 subwf channel, W
 btfsc STATUS, Z

 clrf channel
 retlw 0

; *********************************
; writeN
; N = 2255 --> B=70 A=15
; 902e6 = [32*B + A] * (19.2e6/48)
;
; N-reg :
; LSB |--- A ---|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
writeN
 ;msb
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; write first 8 bits of B N18:N11
 movlw 8
 movwf numbits
 movlw b'00000010'
 call outbits

 ; write last 5 bits of B N10:N6
 movlw 5
 movwf numbits
 movlw b'00110000'
 call outbits

 ; write last 5 bits of A N5:N1
 movlw 5
 movwf numbits
 movlw b'00111000'
 call outbits

 ; write two control bits designating this as N register
 movlw 2
 movwf numbits
 movlw H'40'
 call outbits

 ; latch into synth and return
 call latchbits
 retlw 0

; ************************************
; wait250ms
; Delays by about 250 milliseconds
; ************************************

wait250ms movlw 250
 movwf count ; outer loop ms counter

wait250ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait250ms_inner decf temp,F ; dec inner counter -- 1us
 btfss STATUS,Z ; check zero flag -- 1us
 goto wait250ms_inner ; continue if not zero -- 2us

 75

 decfsz count, F ; dec outer counter
 goto wait250ms_outer ; continue if not zero

 retlw 0

; **************************************
; The main routine
; **************************************

start ; initialize the PIC and its I/O ports
 call initGPIO

 ; initialize the synthesizer and channel number
 call initF ; initialize the programming setup regs
 call initR ; initialize the ref freq divisor
 call writeN ; write the N divisor for this channel

 ; clear output (especially for when the last bit is '1')
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 bsf GPIO,LED1
 call wait250ms
 call wait250ms
 bcf GPIO,LED1

main_loop
; loop, checking channel switch for press (SWITCHBIT = 0)

 btfsc GPIO, SWITCHBIT
 goto main_loop

 call writeN ; write the N divisor for this channel

 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 ; clear output (especially for when the last bit is '1')
 bsf GPIO,LED1
 call wait250ms
 bcf GPIO,LED1

 goto main_loop

 end

 76

F.4 2400MHz Board
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter
; By William B. Kuhn
; Created 11/25/00
; Revised 12/01/06 for use with 12F509
; Revised 8/17/07 for downconversion of LRIT signal to 138.000 MHz

; Modified Xiaohu Zhang
; Modified to be used for 2.4GHz transmiter
; f_vco = 2.4e9 = [32*B + A] * (19.2e6/R) --> 2.4e9 = (N*19.2e6)/R
; when N = 1000 then R = 8
; thus B = 31, A = 8 and R = 8
;
; N-reg :
; LSB |-- A --|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
;
; R-reg
; LSB |--------------- R -----------|-- TEST --|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

; This program sets up the National Semiconductor LMX2326 synthesizer chip
; and increments through channels when a switch is pressed.
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz
; clock), and programs one of 10 channels from 138 MHz to 147 MHz.
; On powerup, the channel is set to 138 MHz. Each press of the channel up
; switch will advance to the next channel, 1 MHz higher. After channel 10
; is reached (147 MHz), the synth is programmed to an invalid channel to force
; the lock light to go out (useful for testing and also for knowing where one
; is in the sequence). At the next press, channel 1 is again programmed
; and the sequence repeats.

; Meta data for the compiler
; This is for a 12f509 with 1024 words of program and 41 file registers
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs
 list p = 12f509
 radix dec
 include <p12f509.inc>

; Configure the chip for MCLR disabled, Code protect off,
; WDT disabled, and crystal oscillator
 __config H'0a'

; Symbolic constants

NUMCHAN equ 20 ; number of channels we can tune to
CLKBIT equ 0 ; GPIO bit 0 is clock bit on synth
DATABIT equ 1 ; GPIO bit 1 is data bit on synth
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch

LED1 equ 5 ; GPIO bit 5 is LED1

; Register assignments

channel equ 8 ; current channel
numbits equ 9 ; # of bits to write to synth
Ndiv equ 10 ; low order byte of N reg
temp equ 11 ; temporary
count equ 12 ; counter for delay loop

 77

; ****************** Start of program **************************

; Setup reset vector to skip over subroutines, which must reside
; in first 256 addresses
 org 0
 goto start

; **************************
; initGPIO
; Initialize I/O port direction and set bits to zero
; **************************

initGPIO ; first set the option register bits to allow GP2 to be an output
 movlw B'10001111'
 option

 ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs
 movlw B'11011000'
 tris 6

 ; clear the outputs (probably redundant with reset state, but hey...)
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT
 ;bcf GPIO, SWITCHBIT

 retlw 0

; ************************
; outbits
; Shifts number of bits specified in 'numbits' from W into synthesizer.
; Data is output msb first (left shifted)
; ************************

outbits movwf temp ; save data passed in from W

outbits_loop ; branch to set or clear bit depending on value of msb
 btfsc temp,7
 goto outbits_set
 goto outbits_clr

outbits_set ; set or clear the data bit on the synth
 bsf GPIO, DATABIT
 goto outbits_clk
outbits_clr bcf GPIO, DATABIT

outbits_clk ; toggle the clock line to input bit to synth
 bsf GPIO, CLKBIT
 bcf GPIO, CLKBIT

 ; process the next bit, or return if all done
 rlf temp, F
 decfsz numbits, F
 goto outbits_loop
 retlw 0

; *************************
; latchbits
; toggles the LE line on the synth to latch the bits shifted in with outbits
; *************************

latchbits bsf GPIO, LATCHBIT
 bcf GPIO, LATCHBIT
 retlw 0

; *********************************
; initF
; Initialize the F register (programming reg) on the synth.
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001),

 78

; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is
; selected (C2:C1 = 11).
; **********************************

initF
 ; F19
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; F18:F11 = 0
 movlw 8
 movwf numbits
 clrw
 call outbits

 ; F10:F7 = 0, F6:F3 set as explained above
 movlw 8
 movwf numbits
 ;movlw B'00001001'
 movlw B'00001000' ;f3--f5--110 active high
 call outbits

 ; F2:F1 and C2:C1 set as explained above
 movlw 4
 movwf numbits
 movlw B'00110000'
 call outbits

 ; latch the bits into the synthesizer and return
 call latchbits
 retlw 0

; *******************************
; initR
; Initialize the R register in the synth to divide by 64 (19.2 MHz -> 300kHz)
;
; R-reg
; LSB |--------------- R -----------|-- TEST --|MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

initR ; begin by writing top 5 bits to register
 ; (sets lock-detect precision to one and zeros test mode bits)
 movlw 5
 movwf numbits
 movlw H'80'
 call outbits

 ; next, write R14:R7 divisor bits as all zeros
 movlw 8
 movwf numbits
 movlw b'00000001'
 call outbits

 ; write R6:R1 = 08h to give divide by 8
 movlw 6
 movwf numbits
 movlw b'00000000'
 call outbits

 ; finally, write two lsb's as zero to designate R register
 movlw 2
 movwf numbits
 clrw
 call outbits

 ; latch the bits into the synth and return
 call latchbits

 79

 retlw 0

; ************************
; inc_chan
; Increments the current channel, wrapping to zero if max channel reached
; ************************

inc_chan incf channel, F
 movlw NUMCHAN + 1
 subwf channel, W
 btfsc STATUS, Z

 clrf channel
 retlw 0

; *********************************
; writeN
; N = 8000 --> B=250 A=0
; 2.4e9 = [32*B + A] * (19.2e6/64)
; N-reg :
; LSB |--- A --|--------------- B ---------------| MSB
; C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
; 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0
writeN
 ;msb
 movlw 1
 movwf numbits
 clrw
 call outbits

 ; write first 8 bits of B N18:N11
 movlw 8
 movwf numbits
 movlw b'00000111'
 call outbits

 ; write last 5 bits of B N10:N6
 movlw 5
 movwf numbits
 movlw b'11010000'
 call outbits

 ; write last 5 bits of A N5:N1
 movlw 5
 movwf numbits
 movlw b'00000000'
 call outbits

 ; write two control bits designating this as N register
 movlw 2
 movwf numbits
 movlw H'40'
 call outbits

 ; latch into synth and return
 call latchbits
 retlw 0

; ************************************
; wait250ms
; Delays by about 250 milliseconds
; ************************************

wait250ms movlw 250
 movwf count ; outer loop ms counter

wait250ms_outer movlw 250
 movwf temp ; inner loop counter (250 times 4us = 1ms)

wait250ms_inner decf temp,F ; dec inner counter -- 1us

 80

 btfss STATUS,Z ; check zero flag -- 1us
 goto wait250ms_inner ; continue if not zero -- 2us

 decfsz count, F ; dec outer counter
 goto wait250ms_outer ; continue if not zero

 retlw 0

; **************************************
; The main routine
; **************************************

start ; initialize the PIC and its I/O ports
 call initGPIO

 ; initialize the synthesizer and channel number
 call initF ; initialize the programming setup regs
 call initR ; initialize the ref freq divisor
 call writeN ; write the N divisor for this channel

 ; clear output (especially for when the last bit is '1')
 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 bsf GPIO,LED1
 call wait250ms
 call wait250ms
 bcf GPIO,LED1

main_loop
; loop, checking channel switch for press (SWITCHBIT = 0)

 btfsc GPIO, SWITCHBIT
 goto main_loop

 call writeN ; write the N divisor for this channel

 bcf GPIO, DATABIT
 bcf GPIO, CLKBIT
 bcf GPIO, LATCHBIT

 ; clear output (especially for when the last bit is '1')
 bsf GPIO,LED1
 call wait250ms
 bcf GPIO,LED1

 goto main_loop

 end

