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Abstract 

Wireless Sensor Network industrial and civilian applications have been moved closer to 

us since they were originally developed for defense applications. They have been or will be 

widely used in industrial process monitoring and control, earth quake monitoring, healthcare 

applications, construction health monitoring, home automation, traffic control, and space 

exploration. The IEEE802.15.4 standard defines the PHY and MAC layers for low power 

wireless sensor networks. However, applications and research of wireless sensor networking are 

centered on battery powered devices. To remove the battery from the system is the ultimate goal 

of this research by using Energy Harvesting technology, which will largely reduce the wireless 

sensor network maintenance cost, increase the option open to application environments and push 

the speed of wireless sensor network industrialization. 

This thesis tackles the problem of RF link budget and PHY layer design for Energy 

Harvesting Wireless Sensor Network Nodes, through a modification to PHY/MAC layers. To this 

end, a prototype of energy harvesting radio is developed that hinges on burst-communication and 

solar cell energy harvesting techniques. The choice of operating frequency is considered relative 

to transmission range, antenna technology and RF link budget, and quantified by propagation 

measurements at four unlicensed frequencies in the VHF through UHF spectrums. A short 

preamble, PHY payload protocol frame structure and synchronization method are also proposed 

in order to support long sleep period duty cycle necessary in Energy Harvesting Radio systems.  

Some related work has recently begun under a standardization effort known as 802.15.4f.  It is 

hoped that this thesis will contribute to this effort. 

 



 iii

Table of Contents 

List of Figures ............................................................................................................................... vii 

List of Tables .................................................................................................................................. x 

Acknowledgements........................................................................................................................ xi 

CHAPTER 1 Introduction......................................................................................................... 1 

1.1 The Future of Wireless Sensor Networks ....................................................................... 1 

1.2 Current Research on Wireless Sensor Nodes ................................................................. 1 

1.3 Challenges for Energy Harvesting Wireless Sensor Nodes............................................ 2 

1.4 Thesis Organization ........................................................................................................ 2 

CHAPTER 2 K-State Energy Harvesting Radio (EHR) Prototype Demo Board..................... 4 

2.1 RF transmission mode Versus Power Consumption....................................................... 5 

2.2 Design Principle.............................................................................................................. 6 

2.3 Hardware Design ............................................................................................................ 7 

2.4 Software Design............................................................................................................ 11 

2.4.1 RFIC Programming................................................................................................... 11 

2.4.2 Duty Cycle Design.................................................................................................... 13 

2.4.2.1 High CPU Clock, Software Control TX ........................................................... 14 

2.4.2.2 Low CPU Clock, Hardware Control TX........................................................... 15 

2.4.2.3 Computing Active and Sleep Time................................................................... 16 

2.5 Test Results................................................................................................................... 17 

2.5.1 Lab Test .................................................................................................................... 17 

2.5.1.1 Current Consumption Test................................................................................ 17 

2.5.1.2 The Burst Communication Test ........................................................................ 18 

2.5.1.3 The System Reliability Test.............................................................................. 21 

2.5.2 Outdoor Test ............................................................................................................. 21 

2.6 Conclusions................................................................................................................... 22 

CHAPTER 3 RF Link Budgets of EHR Systems ................................................................... 23 

3.1 RF Link Budget Factors................................................................................................ 23 

3.1.1 Propagation ............................................................................................................... 24 



 iv

3.1.2 Antennas ................................................................................................................... 25 

3.1.2.1 Reciprocity........................................................................................................ 25 

3.1.2.2 Antenna Directivity........................................................................................... 25 

3.1.2.3 Gain................................................................................................................... 26 

3.1.2.4 Effective Area ................................................................................................... 26 

3.1.2.5 Antenna Size ..................................................................................................... 26 

3.1.3 Link Budget .............................................................................................................. 27 

3.1.3.1 Antenna Gain Effects on Link Budget.............................................................. 27 

3.1.3.2 Link Budget Examples...................................................................................... 28 

3.1.4 RF Link Budget and The System Design of EHR .................................................... 30 

3.2 UHF/VHF Propagation Comparisons........................................................................... 30 

3.2.1 Experimental Setup................................................................................................... 31 

3.2.1.1 Propagation Links ............................................................................................. 31 

3.2.1.2 Experiment Environment .................................................................................. 31 

3.2.1.3 Antennas ........................................................................................................... 34 

3.2.1.4 Transmitter and Receiver.................................................................................. 37 

3.2.2 Experiment Results ................................................................................................... 39 

3.2.2.1 Received Signal Strength Measurements at Each Frequency........................... 39 

3.2.2.2 Directional Antennas versus Monopole Antenna Results ................................ 42 

3.2.2.3 Path Loss Exponent Comparison...................................................................... 46 

3.2.2.4 Comparison of Four Frequency’s Propagation................................................. 47 

CHAPTER 4 Energy Harvesting Radio System PHY/MAC layer Considerations................ 49 

4.1 IEEE802.15.4 & ZigBee Overview .............................................................................. 50 

4.1.1 PHY General Definition ........................................................................................... 50 

4.1.2 MAC Layer Synchronization.................................................................................... 51 

4.2 Proposed EHR System PHY Layer .............................................................................. 54 

4.2.1 PHY General Definition ........................................................................................... 55 

4.2.2 PHY Frame Structure................................................................................................ 56 

4.2.3 Preamble Design ....................................................................................................... 57 

4.2.3.1 Preamble Length versus Start of Frame Detecting Error.................................. 57 

4.2.3.2 Method for Improving Short Preamble Frame Performance ............................ 60 



 v

4.2.3.3 Preamble Length versus Energy Comsumption................................................ 61 

4.3 Proposed EHR MAC Layer Synchronization............................................................... 62 

4.3.1 Pure-EHR Network Obtaining Synchronization....................................................... 63 

4.3.2 Hybrid-EHR Networks for Obtaining Synchronization ........................................... 66 

4.3.3 Keeping Synchronization.......................................................................................... 69 

4.4 Conclusions................................................................................................................... 69 

CHAPTER 5 Conclusions....................................................................................................... 71 

5.1 Summary....................................................................................................................... 71 

5.2 Challenges and Future Directions................................................................................. 72 

Bibliography ................................................................................................................................. 73 

Appedix A - PHY Layer implementation of K-State Energy Harvesting Receiver System .......... 1 

A.1 RFIC Front-end.................................................................................................................... 1 

A.2 DSP Baseband Design ......................................................................................................... 4 

A.2.1 Subsampling.................................................................................................................. 4 

A.2.2 Digital Low Pass Matched Filter .................................................................................. 6 

A.2.3 Bit-sync ......................................................................................................................... 9 

A.3 DSP Software Implementation .......................................................................................... 12 

A.3.1 Microcontroller Configurations .................................................................................. 12 

A.3.2 Software Architecture ................................................................................................. 14 

A.3.3 Test Result................................................................................................................... 21 

A.4 EHR DSP Code.................................................................................................................. 25 

A.4.1 ADC, LPF, and Bit-Sync File ..................................................................................... 25 

A.4.2 PIC Initialization file................................................................................................... 30 

A.4.3 ISR Interrupt Process file ............................................................................................ 35 

Appedix B - K-State Energy Harvesting Demo Board Schematic ............................................... 37 

Appedix C - Frequency Synthesis Board Schematic and Layout ................................................. 39 

Appedix D - K-State EHR Demo Board Code for 4MHz CPU Clock ......................................... 41 

Appedix E - K-State EHR Demo Board Code for 400kHz CPU Clock ....................................... 51 

Appedix F - Frequency Synthesizer PIC12F509 Code................................................................. 61 

F.1 151MHz Board ................................................................................................................... 61 

F.2 433MHz Board ................................................................................................................... 66 



 vi

F.3 902MHz Board ................................................................................................................... 71 

F.4 2400MHz Board ................................................................................................................. 76 

 



 vii

List of Figures 

Figure 2-1  K-State Energy Harvesting Radio prototype board ..................................................... 5 

Figure 2-2 RF operation mode (a) Continuous operation mode (b) Burst operation mode............ 6 

Figure 2-3 K-State EHR demo board schematic............................................................................. 9 

Figure 2-4 CASIO SA5511S4 solar cells and CASIO fx-260SLOAR Calculators........................ 9 

Figure 2-5 PIC16F676 Pin Diagrams ........................................................................................... 10 

Figure 2-6 K-State Transceiver RFIC block diagram [10] ........................................................... 11 

Figure 2-7 K-State RFIC programming register fields [10] ......................................................... 12 

Figure 2-8 RFIC SPI Programming Timing sequence.................................................................. 13 

Figure 2-9 1.1% Duty cycle with 4MHz CPU clock (above) times diagram (below)screen 

captures of RF output on scope............................................................................................. 15 

Figure 2-10 1.3% Duty Cycle with 400kHz CPU clock............................................................... 16 

Figure 2-11 1% duty cycly capacitor charge-discharge process................................................... 17 

Figure 2-12 Microcontroller PIC16F676 Current consumption measurement with 4MHz clock 

(a) ACTIVE mode current (b) SLEEP mode current............................................................ 18 

Figure 2-13 Four burst clusters with 1% duty cycle ..................................................................... 19 

Figure 2-14 One Active period command signal and burst signal of 400kHz Clock Speed design

............................................................................................................................................... 19 

Figure 2-15 Five burst period ....................................................................................................... 20 

Figure 2-16 433.92MHz modulation signal.................................................................................. 21 

Figure 2-17 Yaesu VR-120 Receiver............................................................................................ 21 

Figure 2-18 EH demo board transmitting range test (a) Satellite view of 0.2km transmission 

range (b) view look back from parking lot (c) view looking inside hallway of RA2097 [11]

............................................................................................................................................... 22 

Figure 3-1 Calculated range at 433 MHz with dipole antennas and 1 kbps data rate................... 29 

Figure 3-2 Calculated range at 2.4 GHz with dipole antennas and 1 kbps data rate .................... 29 

Figure 3-3 Two type of experimental Propagation Links............................................................. 31 

Figure 3-4 Rathbone Hall Engineering Building constructions.................................................... 32 



 viii

Figure 3-5 Measurements location marked on the indoor floor plan and outdoor map : Left is 2nd 

floor plan of Rathbone Hall; Right is the Google earth map of Rathbone Hall.................... 33 

Figure 3-6 Two path used for lower frequency transmitting range measurement ........................ 33 

Figure 3-7 Antennas used in measurement................................................................................... 34 

Figure 3-8 Monopole antenna, Ground plane and antenna reflection coefficients measurements35 

Figure 3-9 151MHz directional antenna S11=-14.9dB, monopole antenna S11=-12.7dB........... 36 

Figure 3-10 433MHz directional antenna S11=-28dB, monopole antenna S11=-12.9dB............ 36 

Figure 3-11 902MHz directional antenna S11=-12.5dB, monopole antenna S11=-10dB............ 36 

Figure 3-12 2400MHz directional antenna S11=-31dB, monopole antenna S11=-13.3dB.......... 37 

Figure 3-13 Portable 10mW Transmitter photo............................................................................ 37 

Figure 3-14 Receiver—Spectrum and monopole antenna ............................................................ 39 

Figure 3-15 151MHz two different link propagation with Path loss Exponent............................ 43 

Figure 3-16 433MHz two different link propagation with Path loss Exponent............................ 44 

Figure 3-17 902MHz two different link propagation with Path loss Exponent............................ 45 

Figure 3-18 2400MHz two different link propagation with Path loss Exponent.......................... 46 

Figure 3-19 Four frequencies propagation comparison ................................................................ 47 

Figure 4-1 K-State Micro-Transceiver Demo Board .................................................................... 50 

Figure 4-2 Frequency band and Data rate of IEEE802.15.4 (IEEE802.15.4 2006) ..................... 51 

Figure 4-3 ZigBee beacon-enabled TX / RX mode [1] ................................................................ 51 

Figure 4-4 IEEE 802.15.4 Superframe structure [1]..................................................................... 52 

Figure 4-5 IEEE802.15.4 super frame sequence with different Beacon Oder.............................. 52 

Figure 4-6 IEEE802.15.4 Sync Time Vs. Duty Cycle.................................................................. 54 

Figure 4-7 PHY Frame Format ..................................................................................................... 56 

Figure 4-8 Preamble test experiment environment....................................................................... 58 

Figure 4-9 Error Probability of SOF versus Input Signal Power of varied preamble length........ 59 

Figure 4-10 SOF detection with various preamble length ............................................................ 60 

Figure 4-11 Energy Consumption VS. Preamble Length ............................................................. 62 

Figure 4-12 Beacon Frame format................................................................................................ 63 

Figure 4-13 Beacon searching process ......................................................................................... 64 

Figure 4-14 Beacon detected process ........................................................................................... 64 

Figure 4-15 Energy Harvesting Radio Sync time versus Duty cycle ........................................... 66 



 ix

Figure 4-16 Hybrid-EHR System Synchronization ...................................................................... 68 

Figure 5-1 IF filter and wideband FM modulation ......................................................................... 2 

Figure 5-2 FSK demodulation (a) Correlator Receiver (b) Non-correlator Receiver..................... 2 

Figure 5-3 One-shot FSK demodulation: (a) Modulation Data, (b) FM Modulated waveform, (c) 

Zero cross Sampling clock, (d) Zero cross pulse & average energy curve............................. 3 

Figure 5-4 Subsampling 10.7 MHz with 75kHz sampling rate ...................................................... 5 

Figure 5-5 Two pole IIR digital low pass filter .............................................................................. 6 

Figure 5-6 Frequency response comparison of designed 1 kHz Low Pass Matched Filter with 

MATLAB function plot .......................................................................................................... 8 

Figure 5-7 output of LPMF (a) Ideal output (b) real output ........................................................... 9 

Figure 5-8 Bit-sync data versus clock........................................................................................... 10 

Figure 5-9 Bit-sync Finite State Machine (FSM) ......................................................................... 11 

Figure 5-10 K-State Micro-Transceiver Demo board block diagram........................................... 12 

Figure 5-11 FSK Demodulation DSP software flow .................................................................... 15 

Figure 5-12 Timer2 ISR................................................................................................................ 16 

Figure 5-13 LPMF procedure ....................................................................................................... 17 

Figure 5-14 LPF calculation coefficient b products ..................................................................... 19 

Figure 5-15 LPF calculation coefficients a products .................................................................... 20 

Figure 5-16 Calculated X shifts .................................................................................................... 21 

Figure 5-17 PHY Layer DSP  test enviroment ............................................................................. 21 

Figure 5-18 10kHz Bandwith FSK modulation ............................................................................ 22 

Figure 5-19 "Zero-cross" detection............................................................................................... 22 

Figure 5-20 512bps Bit-sync Test restults .................................................................................... 23 

Figure 5-21 512bps Bit-sync Test restults .................................................................................... 24 

Figure 5-22 Schematic .................................................................................................................. 37 

Figure 5-23 Layout ....................................................................................................................... 38 

Figure 5-24 Schematic .................................................................................................................. 39 

Figure 5-25 Layout ....................................................................................................................... 40 

 



 x

List of Tables 

Table 2-1 Demo board Electrical Specification.............................................................................. 7 

Table 3-1 quarter-wave antenna size and effective aperture of dipole antenna............................ 34 

Table 3-2 Components list of 10mW un-modulated transmitter .................................................. 38 

Table 3-3 151MHz Propagation measurement results.................................................................. 39 

Table 3-4 433MHz Propagation measurement results.................................................................. 40 

Table 3-5 902MHz Propagation measurement results.................................................................. 41 

Table 3-6 2400MHz Propagation measurement results................................................................ 41 

Table 3-7 Path Loss Exponents comparison................................................................................. 46 

Table 4-1 IEEE802.15.4 Synchronization time calculation.......................................................... 53 

Table 4-2 Barker code................................................................................................................... 56 

Table 4-3 Preamble Length VS. Energy when data rate is 512bps .............................................. 61 

Table 4-4 Sync time and power consumption comparison of EHR and IEEE802.15.4 standard 

radio ...................................................................................................................................... 65 

Table A-1 Two pole LPF coefficients ............................................................................................ 7 

Table A-2 Bit shift and product factor.......................................................................................... 18 

Table A-3 LPF coefficients 2n expression .................................................................................... 18 

 



 xi

Acknowledgements 

This thesis is obviously not the product of my own individual efforts, but the fruit of 

intense collaboration. First and the foremost, I would like to thank my major advisor, Professor 

Bill Kuhn for his excellent guidance, above and beyond the mere technical research. He has truly 

given meaning to the word “advisor”, helping me every step of the academic way. In addition, I 

would also like to express my gratitude towards the other members of my committee, Dr. Don 

Gruenbacher and Dr. Bala Natarajan, for their support and feedback, and my colleagues in 

Wireless Communication Hardware design group. 

I also gratefully acknowledge our research sponsor – Peregrine Semiconductor for their 

support. 

 



 1

CHAPTER 1 Introduction 

1.1 The Future of Wireless Sensor Networks 
Wireless sensor networks (WSN) and associated wireless sensor node devices in 

industrial and civilian applications have seen rapid growth since they were originally motivated 

by military applications. They have been or will be widely used in industrial process monitoring 

and controls, earthquake monitoring, healthcare applications, construction health monitoring, and 

home automation and traffic control.  Additionally, they will help humans to explore outer space, 

planets, and moons. For example, future Mars rovers could plant hundreds of WSN nodes on the 

planet during exploration and then collect data from all nodes over time. They will help humans 

to inspect and monitor the south and north poles, deserts, virgin forests, unfathomable depths of 

the oceans and no man’s lands on the earth. To implement all these applications, battery-free and 

Energy Harvesting Radio(EHR) nodes are preferred. Energy harvesting nodes use energy 

captured from natural or human environments, such as solar, thermal, wind, biological and 

kinetic processes. Unlike traditional battery powered systems, the advantages of energy 

harvesting devices reduce or eliminated the need for manual intervention. Moreover, waste from 

depleted batteries is eliminated, many application environment restrictions are removed, and the 

WSN lifecycle is extended from months or years, to decades or centuries. 

1.2 Current Research on Wireless Sensor Nodes 
The wireless sensor node is an important part of a wireless sensor network. It must handle 

the tasks of gathering sensory information, processing data, and communicating with the 

network. For designing current wireless sensor nodes, IEEE802.15.4 is a main standard to 

interface with.  

IEEE Std 802.15.4 defines the physical layer (PHY) and medium access control (MAC) 

sublayer specifications for low-data-rate wireless connectivity with fixed, portable, and moving 

devices with limited battery consumption, typically operating in the personal operating space 

(POS) of 10m [1]. In the definition, three main frequency bands are used, 2.4GHz for global, 

915MHz in America and 868MHz in Europe. The bit rate ranges from 20kbps to 250kbps. 

BPSK, ASK, and O-QPSK may be used, with DSSS, OCDM (Orthogonal Code Division 
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Multiplexing) spreading methods at the physical layer. CSMA-CA (Carrier Sense Multiple 

Access with Collision Avoidance) channel access method is used at the MAC layer. 

Most current wireless sensor nodes research is focused on battery consumption 

improvements [2] [3] [4], energy/power management [5], application of wireless sensor nodes 

[6], and energy harvesting methods [7]. Few are proposing a PHY or MAC layer. Research of 

narrow-band, spread spectrum, and ultra-wideband (UWB) technologies of PHY layer has been 

evaluated [8].  Research of MAC layer has resulted in talk of the mobility of WSN [9]. Few self-

powered wireless radio commercial products were developed [24]. However, almost all of them 

assume using IEEE802.15.4, Blutooth, or UWB as PHY layer construction and  few have 

proposed approaches to optimize PHY and MAC sublayer on a system level (although very 

recently a new 802.15.4f standards proposal has been launched [25]).  

1.3 Challenges for Energy Harvesting Wireless Sensor Nodes 
The challenges of energy harvesting wireless sensor nodes include several aspects: 

developing an efficient energy harvester, implementing suitable radio systems, and providing 

high energy storage capability. The focus of this thesis is on the radio systems challenges and 

associated solutions. The radio system design challenge includes:  

1. RF transmitting mode versus power consumption 

2. Low power circuit design 

3. Frequency selection versus transmitting performance 

4.  Antenna technology versus RF link budget  

5. PHY layer frame construction versus energy consumptions 

6. Ultra-low duty cycle communication synchronizations 

1.4 Thesis Organization 
In this thesis, three chapters address the energy harvesting wireless sensor nodes design 

challenges listed above. Chapter two addresses points 1 and 2. An EHR prototype demo 

experiment shows a burst communication system employing common indoor solar energy 

harvester panels and capacitor energy storage, and discusses methods for low power circuit 

design. Chapter three is focused on points 3 and 4, addressing frequency selection versus 

transmitting performance and antenna technology versus RF link budget considerations.  Four 
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frequencies’ propagation performance were measured in the VHF/UHF frequency band 

including both indoor and outdoor enviroments. Chapter four focuses on points 5 and 6 and 

investigates the PHY frame construction, and synchronization problems.  Finally chapter five 

(Conclusions) summarizes overall recommendations and possible future directions for the 

research area. 
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CHAPTER 2 K-State Energy Harvesting Radio (EHR) Prototype Demo 

Board 

In this chapter, the design and testing of K-State’s EHR prototype demo board (Figure2-

1) are discussed. The purpose of this part is to prove feasibility of an energy harvesting radio 

system by using burst communication mode techniques at 433MHz operation frequency and 

currently available radio technology. The motivation of this is that most current research and 

industrial products of wireless sensor nodes are still using batteries as power supply. They are 

focused on ways to improve energy management methods, energy efficient wireless sensor 

network protocols, or low power SoC (System on Chip) technologies for short-range use. Unlike 

these efforts, K-State’s EHR prototype is a battery-less wireless sensor node demonstration. The 

demo shows that the energy harvested by four 5cm2 solar panels from indoor lighting is enough 

to support 433MHz bust mode wireless communication with range approaching 0.2km or more. 

In this system, the K-State microtransceiver RFIC [10] is used as the RF front end, and solar 

cells from low-cost calculator products are used as the energy source.  A 16F series PIC micro-

controller serves as the data source and timing subsystem. 



 5

 
Figure 2-1  K-State Energy Harvesting Radio prototype board 

2.1 RF transmission mode Versus Power Consumption 
For an EHR system, to keep the average power consumption at the micro-watt levels 

available with indoor solar-cell harvesters, we must reduce both the average digital baseband 

power consumption and the average RF transceiver power consumption. For a digital baseband 

circuit, the power consumption scales down when processing clock speed reduces, such as the 

DSP chip operation clock. Thus, low power systems can be implemented when processor clocks 

down to the kHz range and continuous operation is possible. Taking notice, the data rate will be 

reduced respectively. Unfortunately, RF circuit power consumption does not reduce when the 

data rate goes lower. The analog parts in RF circuits, such as LNA and VCO must still consume 

the same current even if data rate is lowered. Many techniques are being researched to design 

low power RF circuits, such as using very high quality passive elements, Q-enhanced LC 
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resonant or MEMs circuits to replace the preselect filter and LNA, and using lower power IC 

processes, etc [11], but to-date, none of these techniques offers the possibility of micro-watt RF 

transceiver functions.  

Fortunately, burst mode operation is an effective way to reduce overall average power 

consumption. In burst mode, the active operation period T is broken down into several pieces or 

time slots, t1, t2, …tn including active subperiods and sleep subperiods where ntttT +++= ...21 . 

Thus the whole transmission data volume is broken down into several parts, d1, d2, …dn, . 

Figure2-2 shows the comparison of continuous and burst modes. The red symbol PAVG and the 

dash lines are indicating the average power consumption of operating period. Obviously, using 

burst mode saves power more than using continuous mode.  

 

 
Figure 2-2 RF operation mode (a) Continuous operation mode (b) Burst operation mode 

Therefore, the burst mode has significant advantage for EHR systems since there active 

and sleep alternated processes allow the energy to be re-charged during the SLEEP periods and 

discharged during the ACTIVE periods.  

2.2 Design Principle 
The burst communication mode is the fundamental design idea of the EHR demo board. 

To simulate a data burst, we modulated a 433.92MHz sine-wave signal by a 1kHz square wave 
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burst. Using 1kHz square burst is the same as 1kHz amplitude-shift-keying (ASK) modulated RF 

signal.  With the simulated 1010 pattern created with a 0.5ms square wave burst, a human ear 

recognizable “beep” tone can easily be detected by a commercial receiver for demonstration and 

range testing purposes.  

The AM square wave burst envelope was generated in two ways: (1) Hardware control 

method : turn on and off the radio frequency chip’s RFIC_PW_DN pin directly at 1kHz 

frequency; (2) Software control method : program “LPAena” bit of the RFIC control register to 

switch radio frequency chip between transmitting and standby modes. These two ways were 

designed for different system configurations of CPU operating clock speed and energy storage 

capacitor’s value. The first method, by controlling RFIC hardware pin, requires less CPU 

instruction cycles because of small code size. By contrast, the second method, by programming 

the RFIC register for each pulsing, requires more CPU instruction cycle resources since code 

size is bigger.  

In the design of the whole system, these two methods could be integrated to exploit the 

tradeoffs between the energy consumption and timing consumption. In later parts of this chapter, 

these two different design and measurement results are discussed and compared.  

2.3 Hardware Design 
The main components of the EHR demo board hardware included a K-State RFIC, a 

commercial 5 mW TCXO, a Microchip PIC16F676, a voltage regulator, and SMT Capacitors. 

Table 2-1 is the EHR board’s electrical specification.  

Table 2-1 Demo board Electrical Specification 

Duty cycle ≤ 1.3% 

solar cell output Voltage (two in series) 5.4v 

Solar cell output Current (indoor fluorescent 

lights) 
0.02mA 

Solar cell output Current (40-Watt incandescent 

bulb with 6 inches distance) 
0.32mA 

RFIC supply Voltage range 3.0v~3.3v 

RFIC TX mode Current ≤20mA 

RFIC Sleep mode Current ≤0.01mA 
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RFIC TX Frequency 433.92MHz 

PIC16F676 Operating mode Voltage 1.2v~3.0v 

PIC16F676 Operating mode Current (4kHz) ≤0.5mA 

PIC16F676 Operating mode Current (4MHz) ≤0.74mA 

PIC16F676 Sleeping mode Current(4kHz) ≤0.05mA 

PIC16F676 Sleeping mode Current(4MHz) ≤0.17mA 

3.3v Voltage Regulator Input Voltage range 3.7v~12v 

3.3v Voltage Regulator Output Voltage range 3.3v +/-5% 

3.3v Voltage Regulator Gnd current ≤0.5mA 

 

sleepact

sleepsleepRFsleepPICactactRFactPIC
avg TT

TIITII
I

+

×++×+
=

)()( ____                    (2-1) 

Depends on the electrical specification, we can get the average current of the system 

using the equation (2-1). In the equation (2-1), Iavg is average current of system, IPIC_act is the  

current of the Microcontroller consumed during the active period, IRF_act is the current of the 

RFIC consumed during the active operation period, IPIC_sleep is the current of the Microcontroller 

consumed during the sleep mode, IRF_sleep is the current of the RFIC consumes during the sleep 

mode, Tact is total active time slots and Tsleep is total sleep time slots. The duty cycle, which is the 

ratio of 
sleepact

act

TT
T
+

, can be designed depending on the system requirements, system power 

consumption, energy harvesting capability, and energy storage capability. In section 2, 4, 

example calculations show the relationship of the duty cycle, average current and voltage 

variation. 
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Figure 2-3 K-State EHR demo board schematic 

Figure 2-3 is the K-State EHR demo board schematics. The layout is in Figure A-2. The 

energy is harvested by using four CASIO SA5511S4 solar cells (Figure 2-4). Each can provide 

2.7v dc-voltage, 0.16mA dc-current under a 40-Watt incandescent bulb with 6 inches distance. 

Otherwise, each can provide 2.7v dc-voltage, 0.033mA dc-current under indoor fluorescent 

lights. These solar cells were salvaged from CASIO fx-260SLOAR commercial Calculators. To 

maximize energy harvesting capability, two of them were attached in series and then parallel led 

with another series two to provide 5.4v output at higher current.  

 
Figure 2-4 CASIO SA5511S4 solar cells and CASIO fx-260SLOAR Calculators 

 



 10

The energy storage is using four 220uF SMT capacitors, which are connected in shunt 

between solar cells and power switch. A TPS76130-100MA voltage regulator is put after the 

power switch to provide stable 3.3v dc-voltage for the RFIC and the Microchip PIC.  

The 14 pins chip in the schematic is a Microchip PIC16F676, which is a Flash-Based 8-

bit CMOS, high performance, low power, and wide operating voltage range (2.0v~5.5v) RISC 

CPU. Figure 2-5 shows PIC16F676 pin diagram. This microcontroller can be configured to work 

with several different clock speeds, either an external or an internal clock oscillator.  

 
Figure 2-5 PIC16F676 Pin Diagrams 

 

 The biggest chip in the schematic is K-State RFIC. Figure2-6 shows the RFIC block 

diagram. The PgmClk, PgmData and PgmLatch are serial port interface signals defined by the 

RFIC. The IFout and IFin are the 10.7MHz Intermediate Frequency output and input, which 

connect with an off-chip IF filter. The ADCclk is 1bit ADC sampling clock input pin. The 

ADCout is the 1bit ADC sampling data output pin. The Ref is a 19.2MHz TCXO reference clock 

input pin. 
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Figure 2-6 K-State Transceiver RFIC block diagram [10] 

A 19.2MHz TCXO oscillator is used as RF reference clock, which consume 5mW 

(1.5mA at 3.3v). A DC-490MHz low pass filter is put between the attenuator and the antenna for 

transmitter harmonic attenuation in and receiver preselection/protection from cell phone and 

other strong nearby emitters. 

2.4 Software Design 

2.4.1 RFIC Programming 

The first function of the software is programming the RFIC. The RFIC can be 

programmed to work in TX, RX, or SLEEP modes through a serial port interface (SPI). The 

Microcontroller programs the registers, which are inside the RFIC, through the SPI. Figure2-7 

shows the RFIC programmable register fields [10].   
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Figure 2-7 K-State RFIC programming register fields [10] 

There are 60 bits in the programmable register, which are divided into four main function 

subfields. The VCO/Synth subfield is used to set the synthesizer. The Gain subfield is used to 

control low noise amplifier and IF amplifier. The Control subfield is used to control the chips 

working mode. This includes enable and disable power amplifier, RX/TX mode switch, Sleep/ 

Standby mode switch, etc. The Cal subfield is used to configure RSSI and set the LNA 

frequency. To configure the VCO/Synth, equation (2-2) is used to calculate N and R. Here fref is 

the reference frequency, which is 19.2MHz, and fvco is the frequency of the signal generated by  

 
N
f

R
f vcoref =                                                           (2-2) 

VCO. In “A Low-Power, Radiation-tolerant, RFIC Micro-Transceiver Chipset for Space 

Application” [10], detailed programming steps for the RFIC are provided. Programming should 

begin with Pgm_dat, Pgm_clk, and Latch input pins at zero. Place first bit onto Pgm_dat input 
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pin. Then bring Pgm_clk high and return it to low. Repeat with subsequent bits until all 60 bits 

are entered. Finally, raise Latch line to high state and then issue one more clock to latch data into 

the chip. No changes occur in the RFIC chip’s operation until this final clock rising edge with 

Latch is asserted [10]. Using this description, the programming time sequence is designed as 

shown in Figure 2-8.  

 
Figure 2-8 RFIC SPI Programming Timing sequence 

2.4.2 Duty Cycle Design 

 The second main function of the software is the duty cycle timing control.  The software 

controls the time period switching of the RFIC transmission, sleeping, and energy recharging. 

Timing is critical to keep the system working in a low energy environment. To design the critical 

timing, we should know the accurate CPU instruction operation cycle time. For the PIC16F676, 

one instructions cycle consists of four oscillator periods. As mentioned in the previous design 

principle part, there are two different ways used to implement the RFIC control: one is software 
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controlled and the other one is hardware controlled. Using the software controlled method; the 

CPU oscillator clock is configured with 4 MHz internal high CPU oscillator speeds, which has a 

1 us instruction cycle. Using the hardware controlled method; the clock speed can be reduced to 

conserve energy. In this case, the CPU oscillator clock was configured with 400kHz external RC 

low CPU oscillator speeds, which has a 10 us instruction cycle. These two different 

configurations implementations are discussed and compared below. 

2.4.2.1 High CPU Clock, Software Control TX 

In this design, the microcontroller PIC uses a 4MHz system clock configured by using 

the internal oscillator. The high clock speed is needed in the software controlled case to allow 

repeated program of the 60 bits control register to modulate the bits. The code was written in 

assemble language and the total programming time of writing 60 bits RFIC registers is 0.75ms. 

The code is in Appendix-D. Figure 2-9 shows the resulting 1.1% duty cycle design software 

processing sequence diagram and the RF output captured on an oscilloscope. 
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Figure 2-9 1.1% Duty cycle with 4MHz CPU clock (above) times diagram (below)screen 

captures of RF output on scope 

 

 According to equation  (2-1), the average current of this design is 0.41mA.  

mA
ms

msmAmAmsmAmAI avg 4062.0
1000

989)01.017.0(11)2074.0(
=

×++×+
=  

From above calculated result, it is easy to estimate approximate average power 

consumption of the EHR demo board, which is 0.4062mA*3.3v=1.34mW. To compare the result 

with using batteries instead of the solar cells for this radio, assume we are using a  2.7Ah AA 

batterie. This battery could support the radio board for about 6650 hours (about 277 days). In 

other words, the battery needs to be changed in under a year, whereas the HER radio could 

function indefinitely. 

2.4.2.2 Low CPU Clock, Hardware Control TX 

The second configuration uses a lower CPU clock. The duty cycle is designed as 1.3% 

and the PIC operating clock is using an external RC 400kHz oscillator. Figure 2-10 shows the 

software processing diagram.  
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Figure 2-10 1.3% Duty Cycle with 400kHz CPU clock  

2.4.2.3 Computing Active and Sleep Time 

From Figure 2-10, we can find the active time to be 30ms and the sleep time is 2.3s. To 

determine this duty cycle, we must determine the charging and discharging time of the 

capacitors. The equation (2-3) describes the relationship of the voltage, current, and the capacitor 

values where dv/dt is the voltage changing or discharging rate, i is the current, and C is the 

capacitor value. 

C
dt
dvi =                                        (2-3)  

 

From section 2.3, we note that the EHR demo system has four parallel 220uF capacitors, 

the microcontroller PIC active current is 0.5mA, and the RFIC transmitting current is 20mA. 

Thus the voltage dischargs from capacitor during the 30ms active period is given:  

   v
uF

msmA
C

dtidv 7.0
2204

30)205.0(
=

×
×+

=
×

=  

The time to recharge this 0.7v voltage back using four solar cells, which provides 2x0.13mA 

current, is: 
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suF
mA

vC
i

dvdt 3.22204
13.02
7.0

=××
×

==  

This is why the sleep time was designed as 2.3s when the active time is 30ms. Figure 2-11 shows 

the capacitors charging and discharging process. 

 
Figure 2-11 1% duty cycly capacitor charge-discharge process 

 

The average current of this design can be calculated from equation (2-1) as: 

mA
msms

msmAmAmsmAmAI avg 323.0
230030

2300)01.005.0(30)205.0(
=

+
×++×+

=  

If 2.7Ah AA batteries were used to drive this demo board instead of the solar cells. This 

device could continue work about 8400 hours, approximately 348 days. Although the life time is 

extended compared with the 4 MHz CPU configurations, the total data volume is significantly 

reduced due to the longer cycle time mode necessary by repeated programming of the 60 bit 

RFIC register. 

 In the following part of this chapter, the test in the lab tests and outdoor environment tests 

will show the performance of 400kHz CPU clock EHR board. 

2.5 Test Results 
The measurements of this EHR demo board include Lab and outdoor performance tests. 

In the Lab test, we focused on the center frequency, duty cycle, board power consumption, and 

system reliability.  The outdoor performance test was focused on the transmitting distance, and 

propagation issues inside and outside of the building.  

2.5.1 Lab Test 

2.5.1.1 Current Consumption Test 
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The Microcontroller and the RFIC are the two main power consumption components of 

this demo board. We already knew the RFIC’s action currents was less than 20mA and the 

SLEEP mode currents was less than 0.01mA. The Microcontroller PIC power consumption was 

measured by using the photo board shown in Figure 2-12. This picture shows 4MHz  clock 

configurations current consumption.  The ACTIVE mode current was 0.74mA and SLEEP mode 

was 0.16mA (higher than expected from the datasheet). Use the same technique, we measured 

the 400kHz CPU clock configurations current consumption. The ACTIVE mode current was 

0.5mA and the SLEEP mode was 0.05mA. 

 
Figure 2-12 Microcontroller PIC16F676 Current consumption measurement with 4MHz 

clock (a) ACTIVE mode current (b) SLEEP mode current 

2.5.1.2 The Burst Communication Test 

The Burst communication was measured by using a Tektronix TDS 724D Oscilloscope, 

which is a two channel digital phosphor 500MHz~2GS/s oscilloscope. Figure 2-10 previously 

showed the duty cycle design of using a 400kHz CPU operating clock configuration.Figure 2-13 

is  4 burst signal capture. The channel 1 signal is microcontroller control signal (Command 

signal). The channel 2 signal is the RF output burst signal.  
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. 

Figure 2-13 Four burst clusters with 1% duty cycle 

Figure 2-14 is the zoomed in picture of one burst of the four in Figure 2-13. Channel 1 is 

the Microcontroller programming signal (Command signal) and the channel 2 is the RF output 

burst signal. Compared with Figure 2-10, it matches its design. The whole active period is 30ms. 

  
Figure 2-14 One Active period command signal and burst signal of 400kHz Clock Speed 

design 
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Figure 2-15 is the zoomed in burst period. Five bursts plus the time period of waiting 

TCXO standby, which last 8.68ms. The design time was 8ms. The difference was due to delay 

caused by software and oscilloscope measurement. 

  
Figure 2-15 Five burst period 

Figure 2-16 is the zoomed in picture of one burst signal. It is a 433MHz modulated 

sinwave. 
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Figure 2-16 433.92MHz modulation signal 

2.5.1.3 The System Reliability Test 

For EHR systems, one important capability is that the system re-starts when energy 

satisfies the requirement after it was off.  To test this, we moved the demo board away from the 

lights for about 5 minutes, thus the transmitting was stopped. When we move it back under to the 

lights, it successfully transmitted with expected duty cycle after the capacitor reached full 

charge. 

2.5.2 Outdoor Test 

The purpose of outdoor test was to estimate the transmitting range of the EHR prototype 

board. To test the range, we used a Yaesu VR-120D handheld radio shown in Figure 2-16. The 

VR-120D specifies a sensitivity of 0.6uV, which equates to -111dBm [11]. Since the burst 

clusters are actually are AM modulated signals we could hear a ‘beep’ when we use an AM 

receiver.  

 
Figure 2-17 Yaesu VR-120 Receiver 

Figure 2-18 are google maps with a mark to show the furthest point that the ‘beep’ could 

be heard. The signal was transmitted from within room RA2097 of Rathbone Hall at Kansas 

State University and received in the North parking lot up to approximately 0.2km away. 
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Figure 2-18 EH demo board transmitting range test (a) Satellite view of 0.2km transmission 

range (b) view look back from parking lot (c) view looking inside hallway of RA2097 [11] 

2.6 Conclusions 
This demo board has shown the feasibility of a simple energy harvesting wireless node 

with solar energy harvesting, which uses burst communication mode with very low duty cycle. 

This prototype board has shown the basic hardware skeleton of an energy harvesting wireless 

node including solar cell energy harvester, energy storage, radio and control unit. This chapter 

also has shown the software skeleton of an EHR node, which includes energy storage and 

management, burst communication and duty cycle management. The software allowed the 

system to self-recover after the power was re-satisfied. This demo board also proved that the K-

State 400MHz RFIC is a very good RF front-end working in the energy harvesting applications 

as it has low active and sleep mode power, easy control to implement burst mode, and reliable 

performance.  
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CHAPTER 3 RF Link Budgets of EHR Systems 

In the previous chapter, we demonstrated basic transmission performance by using 

ordinary ASK modulation techniques at 433.92MHz. However, the current IEEE802.15.4 

standard defines 806MHz, 902MHz, and 2.4GHz as allocations for wireless sensor networks. 

Therefore, we investigated which frequency band is most applicable for EHR systems. To 

answer this question, we must understand the properties of electromagnetic waves and their 

propagation in an urban environment, in other words the RF Link budget in an urban 

environment must be understood. For RF communication, electromagnetic wave propagation 

considerations in the presence of natural and man-made structures heavily affects system 

performance, such as transmission range, and power consumption. Additionally, antenna 

technology will need to be considered. 

There are many  radio propagation models for digital wireless communication, such as 

Longley-Rice model for outdoor, Partition Losses (same floor ) for indoor,etct, which provide a 

link model based on random variables and random processes.  Such models allow people to 

simulate the RF signals on computers to improve the real world network deployments. But this is 

outside of our research.  We are not designing a channel model here and will not discuss it.  

Instead, we take a measurements-based approach. 

In this chapter, four unlicensed-band frequencies were picked in the VHF/UHF spectrum 

band, 151MHz, 433MHz, 902MHz and 2.4GHz and measured propagation data are reported and 

compared under two different RF link conditions. A custom 10mW signal source was used as the 

transmitter, and a spectrum analyzer as the receiver to provide accuracy to within 1dB and 

sensitivity to better than -120dBm. Both monopole and low-gain directional antennas were 

employed to represent expected use in an energy harvesting application and the measurement 

environment included both indoor and outdoor features.  

3.1 RF Link Budget Factors 
The choice of frequency spectrum is a fundamental factor for any radio communication 

link. Theoretically, an RF communication system can use any ISM (Industrial, Scientific and 

Medical) frequency for unlicensed applications such as EHR in wireless sensor networks. 
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However, picking a frequency for a radio system is not merely dependant on the frequency 

spectrum allocations available. There are several factors that we should consider, which include 

frequency propagation environment versus transmitting range, antenna  size, energy efficiency 

versus spectrum efficiency, and system complexity. In this section, these factors are considered 

through an examination of propagation and antenna technology first, then evaluating a RF link 

budget, and finally considering a radio system’s complexity.  

3.1.1 Propagation 

Transmitting range is always a key performance consideration of a wireless 

communication system. Electromagnetic wave propagation is one of the significant factors 

affecting transmitting range. An electromagnetic wave has a much more complex structure than 

many other waves (ex. sound waves) [13], and is described by Maxwell’s equations. Maxwell’s 

equations state that a changing magnetic field produces an electric field and a changing electric 

field produces a magnetic field, which indicates that electromagnetic waves are able to self-

propagate [12].  However, the detailed interaction of these waves with the environment, radiation 

path, and antenna techniques used will all affect the transmitting range. 

In free space, the electromagnetic waves are described as spherically propagating 

outward from the source in all directions. The instantaneous rate of energy flow across a area is 

P which is represented by Poynting’s vector equation (3-1) where E is electric intensity and H is 

the 

HEP ×=                                                                 (3-1) 

magnetic intensity [13]. Ideally, the power density on the surface of an imaginary sphere can be 

expressed as equation (3-2) where S is the power density on the surface of the sphere in  

24 d
PS
π

=                                                                (3-2) 

watts/m2, d is the diameter of sphere in meters, and P is the total transmitted power. Thus the 

Equ(3-2) shows the power density of the electromagnetic wave is inversely proportional to d2.   

But, in the real world, the electromagnetic waves are not radiating in an ideal free space 

environment, many different propagation issues occur, such as line-of-sight (LOS) propagation, 

obstructions,  diffraction, refraction, tropospheric and ionospheric propagation. To analyze all 

those propagation models is beyond the scope of this research. We only consider the simple 

model of (3-2), and its varients where the propagation exponent is replaced by values up to 3 or 4 
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to capture such effects. The power at the receiver end may be expressed by equation (3-3), which 

indicates that the path loss equals the ratio of transmitted power to received power ratio.  

R

T
P P

PL =                                                              (3-3) 

The free space path loss (FSPL) is the signal strength loss when the electromagnetic wave 

radiates in free space. Equation (3-4) shows FSPL with frequency f. 

22 )4()4(
c
dfdLFS
π

λ
π

==                                                   (3-4) 

Here, d is distance between transmitter and receiver, λ is the signal’s wave length, f is frequency 

of operation, and c is speed of light in vacuum (3.0E8 m/sec). This formula indicates the 

relationship between operation frequency and transmitting range. From (3-4) we see that FSPL is 

proportional to the square of the operation frequency. In other words, higher operation 

frequency leads to bigger free space loss, which leads to requirements for higher transmitting 

power and energy.  

3.1.2  Antennas 

Antennas are another important factor affecting transmitting range and link budget. It is 

the interface between air and physical radio systems. For every wireless communication system, 

antennas must be employed to radiate and receive electromagnetic energy. There are several 

fundamental concepts of antennas that should be explained so that a RF link budget can be 

evaluated. 

3.1.2.1 Reciprocity 

A  fundamental principle of antennas, called reciprocity, states that antenna performance 

is the same whether radiation or reception is considered [14]. This principle states that the 

measurement of antenna parameters, such as gain, and beamwidth, are the same for both transmit 

and receive.  

3.1.2.2 Antenna Directivity 

In equation (3-2), the assumed radiation of electromagnetic wave has the same power 

density on all parts of the surface of a sphere. This would be called an isotropic radiator. The 
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corresponding antenna is called Isotropic Antenna.  Real world antennas are not isotropic.  They 

concentrate energy in certain directions.  This effect is capture by the concept of antenna gain. 

3.1.2.3 Gain 

 The antenna gain, usually called directivity gain, is defined as the ratio of the radiated 

power density at distance, d in the direction of maximum intensity, to the average power density 

over all angles at distance, d [12]. This is expressed by equation (3-5).  

24 d
P

P
G

T

dirc

π

η=                                                          (3-5) 

Where Pdirc is the power density at d in maximum direction, PT is the power applied to 

the antenna terminals, η is the total antenna efficiency which accounts for all losses in the 

antenna (which includes mismatch losses, conduction losses, and dielectric losses [15]). The 

denominator part is the average power density factor, which is calculated by using ideal isotropic 

antenna power density equation (3-2). 

3.1.2.4 Effective Area 

The effective area Ae or is introduced to determine the amount of power Pr that a receiver 

intercepts from a signal with power density Pdirc passing its location.  Effective area can be 

defined by (3-6).  

edircr APP =                                                              (3-6) 

where  The relationship of effective area and antenna gain is expressed by equation (3-7) where 

G is antenna gain (not in decibel) and λ is wavelength. 

GAe π
λ
4

2

=                                                                 (3-7) 

3.1.2.5 Antenna Size 

 The electrical length of a monopole antenna can be determined from basic antenna 

theory, which says the antenna’s length λ/4 is inversely proportional to its operating frequency f 

according to equation (3-8) where c is the speed of light, λ is wavelength and f is the operation 

frequency. 

f
c

=λ                                                                  (3-8) 
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Obviously, the antenna size is inversely proportional to the operation frequency also.  

 

3.1.3 Link Budget 

 We have explained and reviewed free space RF propagation and basic antenna 

techniques. It is time to move on into a link budget evaluation. The link planning is an essential 

part of a wireless communication network deployment, which will help to avoid resource waste, 

overdesign and poor system performance. A RF link budget is prepared in such a way that 

accounts for the transmitter radiated power and all of the losses in the link prior to the receiver 

[16]. It is not including any components of the noise figure, or digital link loss. A simple RF link 

budget can be expressed as equation (3-9),  

)()()()( dBLdBGdBmPdBmP TXRX −+=                                  (3-9) 

where PRX is the received power in dBm, PTX is the transmitted power, G is product of TX and 

RX gains in the system (antenna gain, etc.), and L is loss (path loss, cable loss, etc.). In the RF 

link budget, the link margin reflects the robustness of a link, which is expressed by equation (3-

10): 

RXRXPath THGLEIRPinLinkM −+−=arg                            (3-10) 

LPath is free space path loss in dB, GRX is the receive gain in dB, THRX is the receiver threshold 

or the minimum received signal level in dBm. The EIRP is the transmit power plus the 

transmitter antenna gain, minus any waveguide and random losses [12]. We do not consider any 

modulation and digitization effects in this RF link margin calculation.  

 

3.1.3.1 Antenna Gain Effects on Link Budget 

 

The free-space path loss is already known from equation (3-4). In RF link budgets, since 

antenna technology is involved, the Friis transmission equation can be modified to express the 

path loss with antenna gain in equation (3-11) where GT is transmitter antenna gain, GR is 

receiver antenna gain (not in dB). 
241
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 Thus, considering the discussion above about antenna effective area, combining 

equation (3-6), (3-7) and (3-11), we could rewrite the free space loss as equation (3-12) 

2

222
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T π
λ

π
===                                (3-12) 

 

 

3.1.3.2 Link Budget Examples 

 

 From the analysis above, we can obtain the following results: 

 First, for a set distance between the transmitter and receiver, since the gains and 

effective areas are constant, the path loss is inversely proportional to the operation frequency f.  

 Second, from previous antenna parts, we know that the antenna size will increase with 

lower operation frequencies. For example, a half-wave dipole antenna at 3GHz is a manageable 

5cm in length, whereas at 300MHz it is 50cm in length. Fortunately, the antenna physical size 

could be shrunk by using special material [17] or some technique like non-planar rings [18]. 

 Third, is equation (3-12), dN where N=2, N is called the path loss exponent, which is for 

RF propagation in free space. However, in the real world, there are lots of reflections, 

diffractions or multipath, and this exponent will vary from 1 to 6 depending on different 

environments. By using equation (3-11), we can easy calculate the transmitted power versus 

transmitting range. Assume PR=10Pn while Pn=kTB and the ideal antenna gain GT and GR are 

1, k is 1.38E-23 and T is 290k, B is 1kHz. Figure 3-1 and 3-2 are 433MHz and 2.4GHz plots of 

transmitting range versus transmit power with 2 to 4 path loss exponents. 
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Figure 3-1 Calculated range at 433 MHz with dipole antennas and 1 kbps data rate 
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Figure 3-2 Calculated range at 2.4 GHz with dipole antennas and 1 kbps data rate 
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3.1.4 RF Link Budget and The System Design of EHR 

So far, we have shown that lower frequency can transmit further than higher frequency 

under same power level, when at least one of the antennas used is low-gain. Unfortunately, most 

commercial WSN products are using the crowed high frequency bands of 800-900MHz, 902-

928MHz (Europe), or 2.4-2.5GHz. The main reasons are because these bands are world wide 

allocation where inexpensive radio transceivers are commercially available and higher data rate 

can be provided [19]. But the negative aspect of using these frequencies is that the range is 

fundamentally limited and interference is very serious from higher power transmitting systems, 

such as WLAN and other fixed transmitters. This is potentially harmful for the power-

constrained EHR systems since the lower power sensor nodes are easily affected by stronger 

signals.  

Obviously, there are many techniques which can be used to detect and recover signals 

within low SNR environment in such crowed frequency bands, such as using MIMO (multiple 

input and multiple output) antenna systems, using CDMA, FDMA or OFDMA multi-access 

techniques, or using convolutional codec etc. But, at the same time, these techniques are 

increasing the complexity, and therefore power consumption of system design. Typically, the 

complex PHY and MAC layer protocol standards are defined assuming battery powered 

operation. On the hardware side, to implement these standards, a wide-band RF front-end, a high 

clock rate FPGA and DSP baseband processor are required.  On the software side, a real-time 

operating system, complex codec algorithms and multi-tasking protocol stacks must be 

implemented that need be run at higher CPU clock rates to guarantee the wireless 

communication real-time capabilities. 

Thus, EHR system designs must consider the system complexity. We propose to use low 

data rates along with low RF operation frequency because it leads simple, low complexity 

implementations, which includes lower power hardware and lower MIPS DSP software design. 

In the following subsections, four unlicensed VHF/UHF frequencies propagation are measured 

and compared by using practical equipments and methods. It will give a practical proof of lower 

frequency’s benefit for energy constrained radio systems.  In the subsequent chapter, the issues 

of low-complexity PHY and MAC layer techniques are considered. 

3.2 UHF/VHF Propagation Comparisons 
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For this research, we selected frequencies of 151MHz, 433MHz, 902MHz and 2400MHz 

for several reasons: First, in 2009 significant new spectrum resources will be freed-up in the 

UHF frequency range in the United States. Around the world, similar and even more dramatic 

changes are occurring [20]. Second, the 2400MHz and 902MHz are ISM frequency band 

allocated to IEEE802.15.4 standard, which is widely used standard of wireless sensor networks. 

433.92MHz is in an unlicensed band widely used for remote-sensing and RFID applications. In 

light of these issues and the previous analysis of the relationship between frequency and energy 

harvesting radio system, we have undertaken a fresh look at which frequencies are most 

appropriate for energy constrained radio systems. 

3.2.1 Experimental Setup 

3.2.1.1 Propagation Links 

Two different links were measured and compared as shown in Figure 3-3. One link was 

measured by using monopole antennas at both transmitter and receiver end. The second link was 

measured by using monopole antenna at receiver end and directional antenna at transmitter end. 

 
Figure 3-3 Two type of experimental Propagation Links 

3.2.1.2 Experiment Environment 
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The testing locations were based at Kansas State University and included both indoor and 

outdoor propagation features. The receiving station was sited indoors, in room RA2097 (2,5 of 

Figure 3-4), on the 2nd floor of the engineering building This building contains four floors and 

consists of a concrete foundation, concrete wall supports, concrete slab floors with metal 

supports (3, 6, 7 of Figure 3-4) and dry wall partitions (4 of Figure 3-4). The spaces between 

floors and walls contain power and cable lines, air conditioning ducts, fire protection sprinklers, 

and steel piping (3,6,7 of Figure3-4). Due to its structural makeup, this building serves as a good 

representative testing environment for construction monitoring applications.  

 
Figure 3-4 Rathbone Hall Engineering Building constructions 

For indoor and outdoor measurements, several points at varying transmission radii away 

from the receiver were selected. Figure 3-5 shows the receiver measurement location mark on 

the Rathbone Hall 2nd floor plan and the outdoor map. 
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Figure 3-5 Measurements location marked on the indoor floor plan and outdoor map : Left 

is 2nd floor plan of Rathbone Hall; Right is the Google earth map of Rathbone Hall 

The points A to E, five group points, were marked on the map. Each group has 4 points 

kept in line, to represent a propagation path, for example A1, A2, A3, A4, and A5.  

 
Figure 3-6 Two path used for lower frequency transmitting range measurement 

Path A 

Path B 
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The outdoor measurement paths were located north and northeast of the Ratbone Hall 

(Figure3-6) due to the fairly open terrain, but included several obstructions such as buildings and 

trees. Two similar sized buildings are located north at distances of 0.16km and 0.27km while a 

taller building is located 0.21km north east.  

The area is relatively flat with maximum elevation variations of approximately 10 meters. 

The path B is higher elevation than path B. Located east of the engineering building is the main 

campus whose buildings are far more congested.  

3.2.1.3 Antennas 

Both directional and non-directional antennas are used for this measurement. For the 

omni-directional tests, monopole antennas were constructed and used at both ends of the link. 

The antennas used as directional antennas were commercial panels and Yagis. Figure 3-7 shows 

antennas pictures used in measurements. 

 
Figure 3-7 Antennas used in measurement 

Table 3-1 shows the relationship between the measured frequency, quarter-wave length 

and the effective aperture of the antennas. For a half-wave length dipole antenna, the effective 

aperture is calculated by equation (3-6) when G =1.6 [15]. 

Table 3-1 quarter-wave antenna size and effective aperture of dipole antenna 

Frequency 

(MHz) 

Quarter-wave 

Length λ/4 (cm) 

Effective Aperture of 

Dipole Antenna (cm2) 

2.4GHz Panel 

& Monopole 

902MHzPanel 

& Monopole 

433MHz Yagi 

& Monopole 

151MHzYagi 

& Monopole 
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151.94 49.36 3102 

433.92 17.28 380 

902 8.31 97.92 

2400 3.12 12.39 

 For monopole antenna, truncated ground planes were used. To validate the antenna 

constructions, reflection coefficients of all antennas were measured prior to use. Figure 3-8 

shows the monopole antenna and the ground planes.  

 
Figure 3-8 Monopole antenna, Ground plane and antenna reflection coefficients 

measurements 

Figures 3-9, 3-10, 3-11 and 3-12 show 151MHz, 433MHz, 902MHz and 2.4GHz 

directional and monopole antenna reflection coefficient S11 measurement results. The S11 

ranged from -15dB to -35dB. 
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Figure 3-9 151MHz directional antenna S11=-14.9dB, monopole antenna S11=-12.7dB 

 
Figure 3-10 433MHz directional antenna S11=-28dB, monopole antenna S11=-12.9dB 

 
Figure 3-11 902MHz directional antenna S11=-12.5dB, monopole antenna S11=-10dB 
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Figure 3-12 2400MHz directional antenna S11=-31dB, monopole antenna S11=-13.3dB 

3.2.1.4 Transmitter and Receiver 

 
Figure 3-13 Portable 10mW Transmitter photo 

The transmitters were designed to output 10mW un-modulated signals and were placed in 

boxes to make them more potable. The transmitter circuit includes a power supply, frequency 

VCO 

Synthesis 

Chip 

LOOP 

Filter 

PIC Micro-

controller 

TCXOLow Pass 

Filter

Amplifier 

Power 

Splitter

Battery 

Coax to 

Antenna
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synthesizer board, amplifier, and an output harmonic filter. Figure 3-13 is the transmitter photo. 

They shared an LMX 2326-based frequency synthesis board, Mini- circuits 15542 power splitter,  

Mini-Circuit ZX60-33LN-S+ power amplifier, and PIC 12F509 microcontroller hardware. The 

VCO, Low Pass Filter and Microcontroller software are selected individually for each frequency. 

Appendix C shows the schematic and layout of frequency synthesis board. Appendix F 

provides the software code for the different frequency synthesizer boards. Table3-2 is the 

components list used to build four frequencies transmitter. 

Table 3-2 Components list of 10mW un-modulated transmitter 

 VCO LPF AMP 
PW 

Splitter 

Synthesis 

Chip 
TCXO 

151MHz ZX95-148+ SLP-200+ 

433MHz ZX95-445+ SLP-450+ 

902MHz ZX95-930C+ SLP-1000+ 

2.4GHz ZX95-2550+ SLP-2950+ 

ZX60-

33LN-S+ 

ZFSC-2-

1W-S+ 
LMX2326 

19.2MHz 

crystal 

oscillator 

 

 The receiver was an Agilent N9320 spectrum analyzer. The minimum receiver power of 

this equipment, with the preamp enabled, is lower than -130dBm so that it is adequate. Figure 3-

14 is a photo of the receiver with a 433MHz monopole antenna attached. The other frequencies 

have similar receiver architecture except antenna length. 
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Figure 3-14 Receiver—Spectrum and monopole antenna 

3.2.2 Experiment Results 

The experiment covered indoor and outdoor environments up to a range of 1.5km. Using 

room RA2097 as the center location, four circles were scribed with two indoor (7m and 30m) 

and two outdoor (40m and 90m) radii. Each circle contains five measurement locations (Figure 

3-5). Beyond 90 meters, the measurement locations were not fixed. 

3.2.2.1 Received Signal Strength Measurements at Each Frequency 

 The propagation measurements for the four frequencies are recorded in Table 3-3, Table 

3-4, Table 3-5 and Table 3-6 with both monopole and directional antennas. In the tables, the item 

Environment indicates indoor or outdoor depending on the location of the transmitter. Item Mark 

is used to mark the location on the map (Figure 3-5). Item Distance in meters is the range 

between transmitter and receiver. Item Power(dBm)_Drc is the received power when the 

directional antenna is used at the transmitter end. Item Power(dBm)_Mon is the received power 

when the monopole antenna is used at the transmitter end. 

Table 3-3 151MHz Propagation measurement results 

151MHz 
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon 
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C2 7.74 -14 -13 
D2 7.74 -13 -20 
E2 7.74 -21 -23 
A2 7.74 -28 -24 
B2 7.74 -17 -21 
C 31.3 -30 -38 
D 31.3 -36 -42 
E 31.3 -31 -36 
A 31.3 -38 -44 

Indoor 

B 31.3 -32 -40 
A3 43.86 -63 -74 
B3 46.36 -64 -68 
C3 52.65 -60 -74 
D3 41.36 -45 -59 
E3 45 -69 -61 
A4 85 -70 -74 
B4 84 -79 -82 
C4 83 -72 -86 
D4 90 -85 -92 
E4 83 -64 -82 
A5 129 -86 N/A 
A6 165 -86 N/A 
A7 323 -88 N/A 
A9 1100 -104 N/A 
A10 1130 -103 N/A 

Outdoor 

A8 1460 -110 N/A 
 

Table 3-4 433MHz Propagation measurement results 

433MHz 
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon 

C2 7.74 -19 -27 
D2 7.74 -22 -25 
E2 7.74 -29 -27 
A2 7.74 -22 -33 
B2 7.74 -25 -29 
C 31.3 -36 -42 
D 31.3 -43 -50 
E 31.3 -39 -42 
A 31.3 -45 -54 

Indoor 

B 31.3 -43 -43 
A3 43.86 -64 -75 
B3 46.36 -65 -74 
C3 52.65 -65 -77 
D3 41.36 -52 -65 
E3 45 -73 -84 
A4 85 -68 -80 

Outdoor 

B4 84 -70 -80 
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C4 83 -68 -77 
D4 90 -86 -96 
E4 83 -74 -85 
A5 129 -74 -83 
A6 165 -80 -89 
A7 323 -97 -95 
A433-
8 496 -115 -120 
A433-
9 672 -120 -122 

 

Table 3-5 902MHz Propagation measurement results 

900MHz 
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon 

C2 7.74 -21 -31 
D2 7.74 -31 -35 
E2 7.74 -29 -34 
A2 7.74 -32 -34 
B2 7.74 -31 -36 
C 31.3 -43 -49 
D 31.3 -55 -58 
E 31.3 -41 -51 
A 31.3 -53 -58 

Indoor 

B 31.3 -49 -57 
A3 43.86 -72 -85 
B3 46.36 -63 -75 
C3 52.65 -71 -80 
D3 41.36 -61 -75 
E3 45 -73 -74 
A4 85 -78 -88 
B4 84 -77 -90 
C4 83 -72 -84 
D4 90 -95 -97 
E4 83 -71 -86 
A5 129 -86 -99 
A6 165 -95 -102 
A7 323 -109 -110 
A900-
8 353 -114 N/A 
A900-
9 379 -110 N/A 

Outdoor 

A900-
A 537 -120 N/A 

 

Table 3-6 2400MHz Propagation measurement results 

2400MHz 
Environment Mark Distance(m) Power(dBm)_Drc Power(dBm)_Mon 
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C2 7.74 -32 -43 
D2 7.74 -45 -47 
E2 7.74 -41 -42 
A2 7.74 -39 -43 
B2 7.74 -44 -45 
C 31.3 -59 -69 
D 31.3 -59 -69 
E 31.3 -61 -69 
A 31.3 -65 -72 

Indoor 

B 31.3 -53 -63 
A3 43.86 -92 -97 
B3 46.36 -80 -91 
C3 52.65 -91 -98 
D3 41.36 -75 -86 
E3 45 -78 -89 
A4 85 -82 -98 
B4 84 -92 -98 
C4 83 -93 -98 
D4 90 -98 -104 
E4 83 -90 -100 
A5 129 -82 -101 
A6 165 -88 -115 

Outdoor 

A2400-
7 198 -120 -125 

 

 

3.2.2.2 Directional Antennas versus Monopole Antenna Results 

Figure 3-15 shows 151MHz propagation comparisons using the directional versus non-

directional antenna. The blue circles are for the directional antenna at the transmitter end. 
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Figure 3-15 151MHz two different link propagation with Path loss Exponent 

Obviously, using directional antenna can improve reception by almost 6dB over using the 

monopole antenna on average, which is consistent with the estimated gain of the Yagi beam 

antenna. The indoor path loss exponent N is 3 and the outdoor path loss exponent N is 3.2. Note 

that the received signal power experienced a 12 dB step decrease around 50m because of an 

indoor/outdoor boundary. 
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Figure 3-16 433MHz two different link propagation with Path loss Exponent 

 

Figure3-16 shows results at 433 MHz.  This data shows that using directional antenna can 

improve reception by almost 8dB over using the monopole antenna on average, which is again 

consistent with the estimated yagi antenna gain. The indoor path loss exponent N is 3.5 and the 

outdoor path loss exponent N is 4.3. The indoor/outdoor boundary produced a 10dB step of 

excess path loss. 

 

 



 45

100 101 102 103 104-120

-100

-80

-60

-40

-20

0

Distance (m)

R
ec

ei
ve

d 
P

ow
er

 (d
B

m
)

902MHz indoor+outdoor Received Power vs. Distance 

 

 

Directional Antenna
Monopole Antenna

N=4.5

N=4

 
Figure 3-17 902MHz two different link propagation with Path loss Exponent 

 

Figure3-17 shows that using flat-panel directional antenna (comparable in physical size 

to the yagis) can improve reception by almost 12dB over using the monopole antenna on average 

at 902 MHz. The indoor path loss exponent N is 4 and the outdoor path loss exponent N is 4.5. 

The indoor/outdoor boundary of 902MHz experienced a 20dB step of excess path loss. 
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Figure 3-18 2400MHz two different link propagation with Path loss Exponent 

 

Figure3-18 shows that using similar-sized directional antennas can improve reception by 

almost 12.5dB over using the monopole antenna on average at 2400 MHz. The indoor path loss 

exponent N is 4.2 and the outdoor path loss exponent N is 4.8. The indoor/outdoor boundary of 

2400MHz experienced a 29dB step of excess path loss. 

 

3.2.2.3 Path Loss Exponent Comparison 

Table 3-7 shows path loss exponent comparison of all these four frequencies. From this 

table, we note that in addition to its theoretical free-space path loss disadvantages, the higher 

frequency suffers from higher path loss exponents in a terrestrial link environment.  Thus, the 

advantages of lower frequencies are even higher than expected when both ends of the link use 

relatively non-directional antennas. 

 

Table 3-7 Path Loss Exponents comparison 
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 151MHz 433MHz 902MHz 2400MHz 

Indoor 3 3.5 4 4.2 

Outdoor 3.2 4.3 4.5 4.8 

 

3.2.2.4 Comparison of Four Frequency’s Propagation 

 To more easily compare the four frequency’s propagation, Figure 3-19 shows the results 

when the directional antenna is used at transmitter end and  
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Figure 3-19 Four frequencies propagation comparison 

monopole antenna is used at receiver end. From the Figure 3-19, on average, the 151MHz signal 

strength is 6dB better than 433MHz, 9dB better than 902MHz, and 19dB better than 2400MHz at 

the same distance point. At the same receive power level, -120dBm, the 151MHz, 433MHz, 

902MHz, and 2400MHz frequencies can achieve distances of 1.46km, 0.672km, 0.537km, and 

0.198km, respectively for low-rate systems with sensitivities in the range of -110 to -120 dBm. 

Finally, note that the received signal power experienced a step decrease around 50m because of 
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an indoor/outdoor boundary for all frequencies, but the step is higher at 2400 MHz, which is 

consistent with diffraction effect theory.  
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CHAPTER 4 Energy Harvesting Radio System PHY/MAC layer 

Considerations 

IEEE802.15.4 is defined as a standard for wireless sensor networks, but there has not 

been a defined technique for energy harvesting which demands an extremely low power supply 

stipulation. In Chapter 2, it was demonstrated that a burst communication, solar cell supported 

energy harvesting radio demo board requires average power consumption of 1mw or less. In 

Chapter 3, the choice of operating frequency based on propagation issues has been analyzed.  

Wesaw that the use of lower frequency benefits energy constrained radio system by as much as 

20 dB, which translates to an energy advantage of up to a factor of 100. Lower frequencies were 

shown to propagate up to a radius of 1km with a 10mW transmit burst for low data-rate 

applications.   This is much further than the 10m propagation radius defined within the 

IEEE802.15.4. However, the demo board lacks a protocol stack and only implemented an energy 

harvesting power transmitter. As we demonstrate in this chapter, it is impossible to apply the 

IEEE802.15.4 physical layer (PHY) and medium access control (MAC) layer synchronization 

techniques to this burst communication system directly. This is due to the constraints placed on 

energy consumption by the harvesting application. A more efficient physical layer frame format 

design would aid in this problem.  

This chapter proposes VHF/UHF EHR system physical layer and medium access control 

layer synchronization techniques. The hardware validation is based on the existing K-State 

Micro-transceiver demo board (Figure 4-1), which offers the opportunity to prototype suitable 

receiveing functionality to complement the transmitter demonstrations of Chapter 2 and 3. The 

reason for the non-applicability of IEEE802.15.4 is prooven by analyzing its PHY and MAC 

layer definition in sections 4.2 and 4.3, and a new PHY layer specification and MAC 

synchronization method are then proposed.  Appendix A gives additional information on the 

hardware and software used in the validation of these methods. 



 50

 
Figure 4-1 K-State Micro-Transceiver Demo Board 

4.1 IEEE802.15.4 & ZigBee Overview 

4.1.1 PHY General Definition 

The IEEE802.15.4 standard defines the physical layer and medium access control 

sublayer specifications for low-data-rate wireless connectivity with fixed, portable, and moving 

devices that have limited power consumption requirements. ZigBee, the commercial name of this 

standard defined by the ZigBee Alliance, defines all layers, including network and application 

layers of IEEE802.15.4. Mesh networks with both star and peer to peer topologies are typical 

implementations.  

The PHY layer defines two frequency bands, 2.4GHz and 868/915 MHz. Both bands use 

direct sequence spread spectrum (DSSS) modulation. Specifications of these frequency bands 

and data rate are shown within Figure 4-2. 
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Figure 4-2 Frequency band and Data rate of IEEE802.15.4 (IEEE802.15.4 2006)  

 

ZigBee supports peer-to-peer and star network topologies. Two main kinds of devices are 

contained in the network, coordinator and network device. A “Beacon” frame transmitted by 

coordinators periodically is used to setup synchronization of the networking. There are two 

transmitting (TX) and receiving (RX) modes of a “Beacon-enabled” network shown in Figure 4-

3. One is uplink and the other is downlink. Since, in one ZigBee network, the devices are not 

operating (TX / RX) continuously, they are working on active and inactive mode alternately with 

a specific duty cycle definition. 

 
Figure 4-3 ZigBee beacon-enabled TX / RX mode [1] 

4.1.2 MAC Layer Synchronization 

A SuperFrame structure (Figure 4-4) is defined in IEEE802.15.4 bounded by the 

transmission of a beacon frame and can have an active portion and an inactive portion [1]. In 
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Figure 4-4, there are several variables, which are used to define the length of the superframe. SD 

is the active superframe duration. BI is the beacon frame interval. The variable 

aBaseSuperframeDuration is the number of symbols forming a superframe when the SO  

 
Figure 4-4 IEEE 802.15.4 Superframe structure [1] 

(superframe order) is equal to 0. This variable is a constant, 960 symbols, equal to the product of 

the number of slots contained in any superframe ( aNumSuperframeSlots is 16) and the number 

of symbols forming a superframe slot (aBaseSlotDuration is 60). The variable BO is the beacon 

frame order, which decides the duty cycle (the ratio of the active period to inactive period). 

Figure 4-5 shows the different duty cycle frames when the variable BO is defined as different 

numbers. 

 
Figure 4-5 IEEE802.15.4 super frame sequence with different Beacon Oder 

 In IEEE802.15.4 (2006) section 7.5.4, it defines the MAC synchronization method: “To 

acquire beacon synchronization, a device shall enable its receiver and search for at most 
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[aBaseSuperframeDuration*(2n+1)] symbols, where n is the value of macBeaconOrder (BO) 

[1].” Thus, depending on the data rate, the minimum (when SO=0, a superframe only has one 

active portion) active time, inactive time and synchronization time can be calculated by using 

equation (4.1), (4.2) and (4.3). 

DataRatesymbolsDataRateionframeDurataBaseSuperionTimeActivePort /960/ ==      (4.1) 

ionTimeActivePortDataRateionframeDurataBaseSuperrtionTimeInactivePo BO −×= /)2(   (4.2) 

DataRateionframeDurataBaseSupereMaxSyncTim BO /)12( +×=                      (4.3) 

Table 4-1 shows the calculation results when BO equals from 1 to 10 by using 868MHz, 

BPSK, 20kbps PHY channel and 2.4GHz, O-QPSK, 250kbps (1symbol=4bits) PHY channel. 

Figure 4-6 shows sync time versus the duty cycle plots based on the Table 4-1 results.  

Table 4-1 IEEE802.15.4 Synchronization time calculation 

Frequency and Time 
Beacon Order=1 

DutyCycle50% 

Beacon Order=2 

DutyCycle25% 

Beacon Order=3 

DutyCycle11% 

Beacon Order=4 

DutyCycle6.25% 

Beacon Order=5 

DutyCycle3.13% 

Active Time (s) 0.048 0.048 0.048 0.048 0.048 
Inactive Time(s) 0.048 0.144 0.336 0.72 1.488 
SuperFrameLen(s) 0.096 0.192 0.384 0.768 1.536 

868MHz, 

BPSK, 

20kbps 
Sync Time(s) 0.144 0.250 0.432 0.816 1.584 
Active Time(s) 0.0038 0.0038 0.0038 0.0038 0.0038 
Inactive Time(s) 0.0038 0.0115 0.027 0.0576 0.1190 
SuperFrameLen(s) 0.0077 0.0153 0.0307 0.0614 0.1228 

2.4GHz,  

O-QPSK, 

250kbps 
Sync Time(s) 0.012 0.0191 0.035 0.0652 0.1266 

Frequency and Time 
Beacon Order=6 

DutyCycle1.6% 

Beacon Order=7 

DutyCycle0.78% 

Beacon Order=8 

DutyCycle0.36% 

Beacon Order=9 

DutyCycle0.18% 

BeaconOrder=10 

DutyCycle0.09% 

Active Time (s) 0.048 0.048 0.048 0.048 0.048 
Inactive Time(s) 3.024 6.048 12.096 24.53 49.10 
SuperFrameLen(s) 3.072 6.144 12.288 24.578 49.15 

868MHz, 

BPSK, 

20kbps 
Sync Time(s) 3.120 6.192 12.336 24.626 49.2 
Active Time(s) 0.0038 0.0038 0.0038 0.0038 0.0038 
Inactive Time(s) 0.2419 0.488 0.9792 1.9622 3.928 
SuperFrameLen(s) 0.2457 0.536 0.9830 1.9660 3.932 

2.4GHz,  

O-QPSK, 

250kbps 
Sync Time(s) 0.2495 0.584 0.9868 1.9698 3.96 
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Figure 4-6 IEEE802.15.4 Sync Time Vs. Duty Cycle 

 From these results, we notice that it will take a substantial time to sync when the duty 

cycle is very low. From Table 4-1, when the duty cycle is 0.09%, it takes 49.2 seconds when 

working at 868MHz and it takes 3.96 seconds when working at 2.4GHz. This is not practical for 

a wireless sensor network, in which all coordinators, RFD and FFD devices are energy 

harvesting radios. We call this kind of network pure-EHR systems. This is because the radio has 

to stay on long enough to receive the beacon, assuming they do not yet know the network timing. 

For example, K-State’s energy harvesting demo board has a duty cycle of 1.2% with a 30ms 

active portion and a 2.3s inactive portion. There are four 220uF capacitors used to save harvested 

energy from solar cells. Thus, if active RX period is 3.96 seconds, using the equation (2.3), the 

discharged voltage will be V
uF

msmAdv 92
2204

39605.20
=

×
×

= . This is impossible to be implemented on 

EHR system. A new MAC layer synchronization method therefore needs be designed for pure-

EHR system that it  is discussed in section 4.3. 

4.2 Proposed EHR System PHY Layer 
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In this section, we propose a new method for synchronization which is applicable to 

highly energy-constrained network nodes.  The proposed EHR’s PHY layer solves the problem 

discussed above, including energy efficiency and synchronization energy consumption. 

4.2.1 PHY General Definition 

The assumptions used for PHY specifications of this application are: 

• Central operation frequency (aCentralRFFeq) :  433.92MHz 

• Modulation : FM wideband modulation with ±10kHz bandwidth 

• Bit rate (aMaxBitRate) : ≤ 20kHz 

• Maximum physical protocol frame length (aMaxPHYFSize) ≤ odActivePeriBitRate× , 

while the ActivePeriod is the active time period of burst communication system.  

The central operation frequency (aCentralRFFeq) was selected as the VHF/UHF 

frequency band based on propagation measurements in the previous chapter. The central 

operation frequency of 433.92MHz delivers good transmission range performance.  

The modulation method was selected to use FSK due to its faster synchronization 

property. 

The bit rate is selected for a long range energy harvesting radio system. It is defined by 

the variable aMaxBitRate.   

The maximum physical frame length is decided by this variable. For example, when 

aMaxBitRate is 1 kbps, and aActivePeriod is 30ms (as seen in chapter 2), the maximum physical 

layer frame length is 30 bits, and the maximum frame length is 150 bits if aMaxBitRate is 5 kbps.  

These rates are consistent with the -110 to -120 dBm sensitivity levels assumed in the 

measurements of Chapter 3. 

The preamble and start of frame (SOF) parameters are significant parts of PHY protocol 

frame.  They provide bit and frame synchronization for PHY layer, and decide the sync time. As 

we will show, the length of these parameters affects both PHY frame length and energy 

efficiency of EHR systems. 
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4.2.2 PHY Frame Structure 

 
Figure 4-7 PHY Frame Format 

Figure 4-7 defines the PROPOSED PHY frame format for EHR systems. 

• Preamble: The Preamble field is used by the receiver to obtain bit synchronization 

with an incoming RF signal. The length of preamble, defined by the 

aPreambleLength variable, indicates how many bits are included in the preamble 

field.  In section 4.2.3, we discusse the preamble design for EHR systems. 

• SOF: The start of the frame is used to indicate the end of the preamble training 

sequence and the start of the message packet. The length is defined by the 

aSOFLength variable and the sequence is defined by the aSOFSequence variable. 

The Barker code, in Table 4-2, has lower autocorrelation properties and it is good 

to be used as the EHR start of frame sequence. The aSOFSequence “1101” has 

been used in measurements later because of its short active period. 

Table 4-2 Barker code 

aSOFLength aSOFSequence(Barker code) 

1 0 

2 0 1 

3 0 0 1 

4 0 0 1 0 

5 0 0 0 1 0 

7 0 0 0 1 1 0 1 

11 0 0 0 1 1 1 0 1 1 0 1 

13 0 0 0 0 0 1 1 0 0 1 0 1 0 
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• Frame Length: The Frame Length field is 4 bits in length and specifies the total 

number of octets (1 octet = 8 bits) contained in the PHY payload.  It has a value 

between 0 and aMaxPHYPayloadSize ( 0 ≤ aMaxPHYPayloadSize ≤ 24 ). 

• PHY Payload: This is a variable length containing the data of PHY packet.  

 

The frame length field is defined as 4 bits because of the burst communication type and 

low bit rate considerations. The energy harvesting prototype demo board of Chapter 2 was 

designed with a 30ms burst communication active period.  

The PHY payload size could be larger, for example 10 octets (80 bits).   There are two 

methods, which help to achieve this goal: (1) increase the active period time; (2) increase the 

transmitting data rate. The active transmitting period time can be increased by utilizing larger 

energy storage capacitors. The active capacitor discharging period has increased so the capacitor 

charging period must be increased too. For example, if the current active period (30ms) was 

increased to 300ms, with a data rate of 1 kHz, 300 bits or roughly 37 octets could be transmitted 

during a single duty cycle. However, the recharge time then increases too from 2.3 seconds to 

approximately ½ minute. This tradeoff introduces another dimension of the energy harvesting 

systems. 

4.2.3 Preamble Design 

For an EHR with low data rate and highly constrained on-time, minimizing the preamble 

length is critical to maximizing data volume that can be transmitted. This section will discuss the 

preamble length design and validation measurements. The minimum preamble length is 

determining by the shortest time that the receiver can bit-sync with the RF receiving signal. The 

demodulation, bit-sync, and  DSP software used in experimental validation are described in 

Appendix A.  

4.2.3.1 Preamble Length versus Start of Frame Detecting Error 

The experimental validation environment includes a waveform generator, a signal 

generator, K-State’s microtransceiver demo board and an oscilloscope. Figure 4-8 shows the 

experimental setup.  
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Figure 4-8 Preamble test experiment environment 

 

The PHY frame was constructed using a waveform generator, which can create arbitrary bit 

sequences. Nine different types of frames were constructed using 6, 10, 20, 24, 28, 40, 80, 90 

and 100 bit preamble lengths. The RF signal power range of -90dbm to -108dbm was set by 

signal generator. Figure 4-9 shows the resulting error detection probability of SOF field versus 

RF signal power of varied preamble length curves.  Note that the receiver (described in 

Appendix A) employed a 40 kHz IF filter, which is about 10 times larger than a matched filter 

for the assumed data rate.  Hence, a 10 dB better sensitivity can be achieved than that shown in 

Figure 4-9 at a given error rate.  Note also that values and error-rate curve slopes above power 

levels of -98 dBm are only estimates, since the number of trials at each data point was limited (< 

100). 
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Figure 4-9 Error Probability of SOF versus Input Signal Power of varied preamble length 

Figure 4-9 shows the following phenomenon:  

1) To keep same error level, shorter preamble frames need more transmission power. 

2) The error probability is very high when the preamble length is less than 10bits. 

 These results are collected by embedding a test flag within the bit-sync code. A pulse 

from the microcontroller I/O pin was generated when the test code detected a correct SOF 

sequence from incoming signal. Meanwhile, the demodulated and recovered bit sequence was 

output through an additional I/O pin. These two pins were probed and plotted using an 

oscilloscope.  Figure 4-10 is screen capture of 30bits, 40bits, 50bits and 60bits preamble frames 

SOF detection. Therefore, we could observe if the software detected the SOF in the right place. 

By observing the output, error probability of SOF versus input signal power curve could be 

plotted. 
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Figure 4-10 SOF detection with various preamble length  

4.2.3.2 Method for Improving Short Preamble Frame Performance 

The slope of 6 bits and 10 bits preamble curve in Figure 4-9 could be increased by using 

dynamic bit-sync lock window calculation or adaptive TX power method. Additionally, the 

transmit power could be decreased by a decrease in receiver bandwidth as previously mentioned. 

Dynamic bit-sync lock window is different with the fixed bit-sync lock window. The 

largest lock loop window of a state machine could be used at very beginning synchronization 

processing. The large the lock loop window, the greater increase of bit-sync speed, but this will 

decrease the data recover accuracy. In practice, once a “0101” sequence is detected, shrinking 

the lock loop window to a proper size will increase the data recover accuracy.. 

Adaptive TX power involves transmitting more power during preamble period, but 

transmitting less power for the PHY payload part from the transmitter end. This will aid the 

receiver to sync the incoming bit stream with a short preamble sequence, but it may increase 

power consumption on the transmitter side. 

The best way to increase receiver sensitivity is to decrease the receiver’snoise figure. For 

this demo board, the noise figure could be decreased by 3 to 5dbm, which should shift the curve 

left  by 3 to 5dbm as well. 
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These methods were not implemented in K-State EHR demo board because it beyond of 

the research. 

4.2.3.3 Preamble Length versus Energy Comsumption 

 Although Figure 4-8 has been shown the basic information of error probability of start of 

frame sequence versus transmission power consumption, the energy consumption should be 

more direct viewing for energy harvesting design. Table 4-3 shows calculation result of energy 

consumption of various preamble length frames based on the Figure 4-7 testing results. 

Table 4-3 Preamble Length VS. Energy when data rate is 512bps 

Preamble 
Len (bits) 

SOF Len 
(bits) 

Payload 
Len (bits) 

P_RX 
(dbm) 

P_TX 
(dbm) 

P_TX 
(mw) 

TX_Per 
(s) 

TX_Ener
gy (J) 

6 4 72 -90 18 63.09 0.1602 10.11e-3 
10 4 72 -94.61 13.39 21.83 0.1680 3.67e-3 
20 4 72 -97.22 10.78 11.96 0.1875 2.24e-3 
28 4 72 -97.54 10.46 11.12 0.2031 2.26e-3 
40 4 72 -98 10 10 0.2266 2.27-e3 
 

 In Table 4-3, Payload Len item indicates that the test frames use same physical payload 

size 72 bits.  

SOF Len item indicates that the start of frame field of PHY frame is 4 bits (‘1101’ 

sequence is used).  

P_RX (dbm) is received power in dbm unit, which was power level fed into receiver 

antenna.  These values were the X axis value when the Error Of SOF value of Y axis were same 

in Figure 4-20. Here Error Of SOF is 10-1. 

P_TX(dbm) is transmitted power in dbm unit left from transmitter antenna. Assume 

10mw power is used to transmit 40bits preamble length frame. The difference power in dbm unit 

is ∆P_RX=P_RX(x) – P_RX(40) where x corresping to preamble length. Thus, the P_TX(dbm) 

could be calculated by adding this ∆P_RX on  10dbm. 

P_TX(mw) is transmitted power in mw unit left from transmitter antenna. This value is 

nothing but convert the dbm into mw unit. 

TX_Per is transmitting active period in second unit. Since the data rate is 512bps for this 

test, the total frame length divided by 512bps gave out the transmitting time. For example, the 
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preamble length is10 bits, SOF is 4 bits and PHY payload is 72 bits, the transmitting period is 

s
bps

bits 168.0
512

)72410(
=

++ . 

TX_Energy is transmitting energy used at transmitter side to send ( PreambleLen + 

SOFLen + PHYPayloadLen ) length frame. This energy is calculated by TX_Per(s)*P_TX(mw). 

Figure 4-11 shows the Energy consumption (mJ) versus Preamble Length (bits). This plot 

shows that a preamble length of 20 bits has good performance for its lower energy consumption. 
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Figure 4-11 Energy Consumption VS. Preamble Length 

4.3 Proposed EHR MAC Layer Synchronization 
In previous senction 4.1.2,  we have found that the IEEE802.15.4 defined 

synchronization method is not practical for pure-EHR systems, in which all corrodinators, RFD 

and FFD devices are energy harvesting radios. Thus, a new method for lower duty cycle EHR 

systems should be proposed. However, the WSN could be a hyrib-EHR system, in which some 

corrodinators are not energy harvesting radio but a power supplied node. With the reliable power 

supply, the synronization method will be different. 
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4.3.1 Pure-EHR Network Obtaining Synchronization 

In the pure-EHR network, all WSN node devices are energy harvesting radio. Same as 

IEEE802.15.4 standard networking topologist definition, the energy harvesting radio systems 

have both star and peer-to-peer network topologies. The EHR network follows the IEEE802.15.4 

definition, so there are PAN coordinator, coordinator, FFD, and RFD devices in the network.  

Same as IEEE802.15.4, the superframe concept is used to define the different duty cycle 

(Figure 4-3 and Figure 4-4). The beacon frame is also be used for synchronization, which is 

transmitted from PAN coordinator periodically. The structure of beacon frame is shown in 

Figure 4-12, which start at the beginning of the active portion of a superframe within and occupy 

less than one slot duration. The beacon frame holds the beacon sequence number, which is 

represented by aBeaconSequenceNumber variable. This aBeaconSequenceNumber variable’s 

value lies between 0 and aMaxBeaconSequence, which is related to the system duty cycle. The 

field BeaconControl contains the beacon’s control bits to indicate this is a beacon frame. 

 
Figure 4-12 Beacon Frame format 

The synchronization of the EHR systems is designed different from IEEE802.15.4 

standard since the receiver can only be on for very brief period. The device in IEEE802.15.4 

network is active to scan beacon frame as most [aBaseSuperframeDuration*(2n+1)] symbols. 

But the EHR couldn’t work in an active mode for that long duration especially when the duty 

cycle is low (n is big). Since the EHR is communicating in burst mode, a burst receiving method 

is designed to sync. The sync processes are:  

1. The EH receiver will receive at least 2 slots time duration data when power is on. 

Decode the received data to judge if the beacon frame is detected. If the beacon frame 

was not detected, the receiver will enter inactive mode to sleep a defined inactive 

duration.  

2. When the EH receiver first time wake up, if the beacon frame was not detected, the 

receiver will enter inactive mode to sleep a defined inactive duration plus one slot 

duration. 
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3. When the EH receiver second time wake up, if the beacon frame still was not 

detected, the receiver will enter inactive mode to sleep a defined inactive duration 

plus two slots duration.  

4. Therefore, with the increase of the receiver waking up, the sleep duration will 

increase one slot each time. The sleep duration will be reset when the waking up time 

touch the maximum number of slots of a Beacon Interval or a beacon frame is found. 

5. Once the EH receiver detect the beacon frame, it will reset the local timer so that it 

could sync with the remote Coordinator using a suitable low powerd accurate timer. 

The keeping synchronization method is beyond of this research that it will not be 

discussed here. 

The Figure 4-13 shows the process 2, 3 and 4 to obtain the synronization. 

 
Figure 4-13 Beacon searching process 

The Figure 4-14 shows the process 5 that a beacon frame has been detected. 

 
Figure 4-14 Beacon detected process 
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Here is an example of synchronization timing. The each time sleep duration could be 

expressed as (TBI + i*TSLOT ), where TBI  is the time interval of two beacon frame, TSLOT is time 

duration of one slot, and i is from 0 to the maximum slots number of one beacon interval 

duration. When use 1.3% duty cycle PDC =0.013 with 30ms active duariton TACT, and 2.3s 

inactive duration TINACT defined in K-State EH demo board, the number of slots in one beacon 

interval duration  KSLT  = 777, which is calculated by using equation (4.4).  

SLOT

INACTACT

SLOT

BI
SLT T

TT
T
TK

+
==                                                       (4.4) 

The relationship between duty cycle, active duration, inactive duration and beacon interval is 

expressed by equation (4.5). 

DC

DCACT
ACTINACTACTBI P

PT
TTTT

)1( −
+=+=                                                (4.5) 

 

The maximum synchronization time TmaxSYNC =1757s ≈ 30min, is calculated by using equation. 

∑
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+×+=
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SLOTSLOTBISYNC TTiTT

0
max )(                                                 (4.6) 

 Obviously, the different duty cycle leads to different synchronization durations since 

KSLT is changing with duty cycle as well as the TBI. Table 4-4 shows the duty cycle versus 

synchronization durations using K-State’s EHR prototype and using IEEE802.15.4 

syncronization method. Since the K-State EHR board duty cycle is designed for PDC  ≤ 1.3 

(Table 2-1) and the active duration is 30ms for low CPU clock design, 5 duty cycles 

between 0.09%~1.6% were selected to compare with IEEE802.15.4. 

Table 4-4 Sync time and power consumption comparison of EHR and IEEE802.15.4 

standard radio  

EH demo board IEEE802.15.4 
Duty cycle 

Sync time 
Active duration voltage 

drop (v) * 

Active duration voltage 

drop (v) * 

1.6% 30 minutes 0.7 72.7 

0.78% 123 minutes 0.7 144.2 

0.36% 9.6 hours 0.7 286.5 

0.18% 39 hours 0.7 573.1 
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0.09% 6.4 days 0.7 1146.4 
(*The active duration voltage drop is calculated by using equation (2.3) and assumes active/inactive current are 20.5mA 

and 0.06mA. These number came from Chapter 2, Duty Cycle Design,  section “Low CPU Clock, Hardware control TX”) 

For IEEE802.15.4, none of the voltage drops are possible; they are shown only to 

emphasize the need for the proposed new synchronization technique. 

Figure 4-15 is the plot of EHR sync time versus duty cycle. 
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Figure 4-15 Energy Harvesting Radio Sync time versus Duty cycle 

4.3.2 Hybrid-EHR Networks for Obtaining Synchronization 

The problem was found from the Table 4-4 that the synchronization period becomes over 

10 hours when the duty cycle is less than 0.36%. This will happen especially when the energy 

harvesting source is weak so that the device has to sleep longer to recharge capacitors. Thus, a 

hybrid-EHR netowork is proposed, in which some coordinators are not energy harvesting radios 

but have higher power supplies. That means the coordinator can transmit beacon frames in a 

continuous mode instead of the burst mode without energy concerns.  Hence, synchronization 

can occur more quickly for the nodes in the network that use energy harvesting. 



 67

There are two considerations. One is assuming we have enough spectrum resource so that 

a specific pilot channel can be set up to transmit beacon frames specifically (Figure 4-16(a)). 

1. The WSN coordinator continually transmits beacon frame clusters using a pilot 

channel (only for synchronization accessing without data transmission); 

2. The beacon frame cluster contains multiple numbers of beacon frames. Each beacon 

frame includes the synchronization information (eg. Cycled beacon frame number 

255~0) to indicate the left time from the next data frame transmitting or receiving 

time moment;  

3. The EH devices of the WSN wakes up to receive the beacon frame on the pilot 

channel periodically with its defined duty cycle as in the pure-EHR systems 

definition. It shifts one slot each time and once it has detected one beacon frame, the 

EH device will jump to the data channel and  adjust the local timer depending on the 

synchronization information packaged inside of the beacon frame.  It will then sleep 

until the next data frame transmitting or receiving time moment; 

The other case is the limited spectrum resource environment. In this case the beacon 

frame and the data frame must share the same channel. Thus the beacon frame and the data frame 

are transmitted alternately in one channel (Figure 4-16(b)). 

1. The coordinators transmit the beason frame cluster periodically but with a high duty 

cycle design (since the coordinators are not EH powered). The beacon frame cluster is 

alternated with active data frames during  active period of the duty cycle; 

2. The EH devices of the EHR wake up to receive the beacon frame as with the pure-

EHR network and  shift one slot each time until find the synchronization 
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Figure 4-16 Hybrid-EHR System Synchronization 

Thus, when the EHR systems work at ultra-low duty cycle while the powered nodes 

operate at higher duty cycles.  The EH devices will find synchronization immediately when the 

pilot channel is used, and the maximum synchronization time will be reduced to a couple of duty 

cycle durations when the beacon and data frame share one channel. For example, when the duty 

cycle is 0.005%, the beacon interval BI is 600s≈10min. If the powered coordinator transmits 

continuous beacon frame clusters in the pilot channel, it will find the synchronization 
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immediately. If the coordinator transmits periodically beacon frame clusters and data frames in 

same channel with a 50% duty cycle, it will take at as much as 2*BI≈20min to find the 

synchronization.  In either case, the time will be substantially reduced from the pure EHR 

network design and should be useable for most EHR applications.. 

4.3.3 Keeping Synchronization 

To keeping synchronization is an important function of the MAC layer. The keeping 

synchronization is that once the EHR node obtained the synchronization, it should periodically 

check and adjust local timer to keep synchronization with the networking. However, we don’t 

propose any technique on this area, we only list several popular techniques, which have been 

used for wireless sensor network applications. The fundamentals technique key words are listed 

below the technique. 

• NTP : Network Time Protocol 
o Used in internet 
o Local sync to NTP server 

• RBS : Reference Broadcast [21] 
o Reference message is broadcast (Receiver-Receiver) 

• TPSN : Timing-sync protocol for sensor networks [22] 
• FTSP : Flooding time synchronization protocol [23] 

o MAC layer time stamping 
o Used by Crossbow (a ZigBee products company) 

 
For EHR systems, keeping synchronization design could reference these techniques but it 

difinitly can not use them directly. This will be a future research direction for EHR systems.  

4.4 Conclusions 
In this chapter, we overviewed the IEEE802.15.4 standard for wireless sensor networks, 

including the PHY layer frame structure and the MAC layer schronization processes. Since this 

standard is not defined for battery-free WSN nodes, it is impossible to use it as PHY and MAC 

layer definition for energy harvesting radio sytems. For an EHR system with low data rates and 

highly constrained on-time, minimizing the PHY preamble length is critical to maximizing data 

volumes that can be transmitted. Thus, a preamble design was discussed and validated by using 

K-State Micro-transceiver demo board and EHR DSP software. Another part of this chapter 

covered MAC layer synchronization design. Since an EHR uses capacitors as energy storage to 

support the burst communication, the IEEE802.15.4 sync-process would lead to impractical 



 70

voltage drops if it was used for EHR system. Thus, we proposed MAC synchronization for EHR 

systems.  The technique may be used in either pure EHR networks where all nodes, including the 

coordinator, are subject to EH power constraints.  Alternatively, for faster synchronization, a 

hybrid technique, where coordinator nodes have higher energy sources, can be considered. 
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CHAPTER 5 Conclusions 

5.1 Summary 
Current research in the wireless sensor network area has focused mainly on smart energy 

management, effective synchronization algorithms, and energy efficient network protocols. An 

industry wireless sensor network standard, IEEE802.15.4, is defined to serve a set of industrial, 

residential and medical applications with a short transmission range (<10m) and battery supply 

operation in the 868/915MHz or 2.4GHz frequency bands. 

However, the desire for the future wireless sensor network application s includes battery-

free nodes, extended RF range, and self-network organization. To satisfy these desires, the 

challenges of energy harvesting power source operation, RF communication modes, RF link 

budgets and propagation, and synchronization techniques should be considered simultaneously. 

In this thesis, we proposed solutions for energy harvesting radio systems including their 

PHY layer frame structure and MAC layer synchronization techniques. Firstly, we developed an 

energy harvesting radio (EHR) prototype demo board using indoor solar cells as the energy 

harvesting source. This is a bettary-free, burst communication mode radio node. The radio uses 

433MHz as its RF operation frequency, and the average current is less than 0.32mA. Secondly, 

four VHF/UHF frequency’s propagation, 151MHz, 433MHz, 902MHz, and 2.4GHz, were 

measured using different antenna techniques, demonstrating that the lower frequencies can 

transmit further and have a smaller path-lost exponent than the higher frequencies typically used. 

The transmission range at 10 mW transmit power can extend up to 1 km using 151MHz, and 0.7 

km using 433MHz from indoor to outdoor with a directional antenna at one end and monopole 

antenna at the other. Finally, two proposed MAC layer synchronization techniques were 

discussed for both pure-EHR and hybrid-EHR systems. The IEEE802.15.4 defined 

synchronization method cannot be used for the low duty cycle energy harvesting regime since 

the synchronization duration is too long to be supported by the energy captured in reasonable 

sized capacitors. The proposed synchronization method works at ultra-low duty cycle (<2%) 

along with burst communication mode.  

 



 72

5.2 Challenges and Future Directions 
Although the prototype energy harvesting radio system and its PHY/MAC consideration 

discussed in this thesis is a good solution for battery-free, long distance, and low-cost WSN, 

there are still several challenges and future research directions that need to be mentioned. 

The most important challenge is low speed interactive communication. When using EHR 

nodes, the duty cycle has to be kept low to maintain average power consumption at sub-

milliWatt levels. Especially when the energy harvesting sources are weak, the duty cycle will be 

very low. For example, if the device awakes once per hour, transmitting four data frames will 

require four hours. Thus, a compact application protocol layer is required to solve this challenge. 

For EHR PHY/MAC layer implementations, keeping timeslot synchronization will be 

one of the most important points. New techniques to keep synchronization under ultra-low power 

consumption constraints are needed.  In addition, future work is needed to design a network layer 

and higher application layer for an EHR system.  .  Some related work has recently begun under 

a standardization effort known as 802.15.4f.  It is hoped that this thesis will contribute to this 

effort. 
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Appedix A - PHY Layer implementation of K-State Energy 

Harvesting Receiver System 

The whole energy harvesting system can be divided into two parts: the RFIC front-end 

and the DSP baseband.   The RFIC front-end  provides a physical data transmitting service. The 

DSP baseband provides modulation and MAC layer provides the sampling, matched filter, bit-

sync and frame-sync services. 

A.1 RFIC Front-end 
The RFIC Front-end is provided by the K-State micro-transceiver. This micro-

transceiver’s specifications are: 

1. Operating frequency (fc) of 433.92Mhz (a unlicensed band) 

2. IF frequency( fIF) of 10.7MHz 

3. IF filter bandwidth (BWIF) of  40 kHz 

4. FM frequency deviation (∆f) of  ±10kHz 

5. Receiver sensitivity ≥ -120dbm 

6. Low current consumption  (Iop) < 20mA during both TX and RX modes 

7. Data rate (Rd  or fm) of 1 kbps 

This system is designed as a Wideband FM modulation system and has implementing 

FSK modulation for this RFIC Front-end. Equation (A-1) is used to describe a Narrowbnad or 

Wideband FM system.  

 
mf
fΔ

=β                                                                   Equ(A-1) 

β less than one indicates Narrowband FM, whereas β  greater than one indicates 

Wideband FM. The IF filter bandwidth (BWIF) of 40 kHz is greater than the Wideband FM 

modulation bandwidth of 20 kHz, so, that the FM modulated signal is passed through the IF 

filter. Thus, to implement FSK in this RFIC front-end is possible. Figure A-1 show spectrum 

relationship between IF filter and Wideband FM modulation. 



 2

 
Figure 5-1 IF filter and wideband FM modulation 

A discussion of typical FSK demodulation is needed prior to discussing a One-shot 

method. Typically, FSK demodulation has coherent and non-coherent methods. Figure A-2 

shows block diagram of those demodulation methods. The correlator Receiver design (a) 

requires the receiver to generate the same phase and frequency carry wave s(t) to mix with 

 
Figure 5-2 FSK demodulation (a) Correlator Receiver (b) Non-correlator Receiver 

the received signal r(t). Following the mixing operation is a matched filter h(T-t) that aids in 

providing maximum SNR at sampling instant time tm. Once the signal is sampled a envelope 

detector will recover the sent digital signal.. The non-correlator receiver design (b)does not 

provide the same phase and frequency carry wave, but utilizes two matched band-pass filters, 

H1(w) and H2(w), to match the RF pulses corresponding to the digital signal. These two filters 

operate at the center frequency, ff c Δ± , with reasonable bandwidth (since the band pass filter 
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has ring-up and ring-down time ≈ 1/BW of the filter). The filters are followed by an envelope 

detector with an outputs at t=Tb. These outputs r0 and r1 have Gaussian noise components n0 and 

n1 (with a standard deviation of σn). The outputs are sent to a comparator, which will output a 

zero if 01 rr <  and output a one if 01 rr > . These two receivers can be implemented either in 

hardware or software in DSP, but high MIPS would be needed for the DSP option. 

 
Figure 5-3 One-shot FSK demodulation: (a) Modulation Data, (b) FM Modulated 

waveform, (c) Zero cross Sampling clock, (d) Zero cross pulse & average energy curve 

 A One-shot FSK Demodulation will replace the previously mentioned methods based on 

an existing 16-bit microcontroller and K-State RFIC front-end. This technique is based on digital 

signal processing and statistical signal processing. Figure A-3 is diagram of this method. We 

called it “One-shot” since the K-State Micro-transceiver provides 1-bit ADC IF output. A one is 

outputted if the IF waveform is above threshold, otherwise a zero is outputted. A serial sequence 

denoted as x0,x1,x2…xn  can be created by sampling the output of the 1-bit ADC.   Detecting 

“zero crossings” allows for the detection of frequency changes and leads to recovery of the sent 

digital signal.  “Zero crossings” imply that xn-1 is zero and xn is one. A FM modulated signal 

varies the operation frequency up and down to denote the digital bit being sent. We assume that a 

zero is modulated to ff c Δ−  and one is modulated to ff c Δ+ . A “zero crossing” denotes that a 

one is detected, while a zero is detected if there was not a zero crossing” in y0,y1,y2…yn  serial 
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sequence. Thus Y(n) contains dense clusters of ones if high frequencies are sampled, 

alternatively  thin clusters of ones if low frequencies are sampled. If think Y(n) serial as a pulse 

serial, to get average energy of it, we can easily get a waveform, which is similar with 

modulation data waveform. Figure 4-4 shows the One-shot demodulation technique using a“zero 

cross” detector. 

The objective of Analog FM demodulation is to reproduce the original waveform. Digital 

communication systems have inputs that are sets of finite symbols (here they are either 0’s or 

1’s). The objective of receiver is not to reproduce the waveform exactly but to decipher which  

symbol has been transmitted. The average energy level curve in Figure 4-4(d) reflects the input 

transmitted symbol with noise.  

Now the issue is how to obtain the serial sequence Y(n) with a 16bit Microcontroller 

sampler. Subsampling and matched filtering techniques are solutions for this issue. 

A.2 DSP Baseband Design 

A.2.1 Subsampling 

Nyquist-Shannon sampling theorem states that an analog signal that has been sampled 

can be perfectly reconstructed from the samples if the sampling rate is equal to or greater than 

2*f samples per second, where f is the highest frequency of original signal. This is also called 

oversampling. The K-State RFIC operates at 433.92MHz and a Intermediate Frequency (IF) of 

10.7MHz. Using the Nyquist theorem, we should use at least 2 × 433.93 = 867.86 MHz sampling 

rate or sample once every 1.15ns. It is impossible to implement this fast sampling rate on a 16bit, 

or 32bit low power consuming microcontroller. But, the Nyquist oversampling theorem is 

adequate for baseband signal. For a band limited pass band signal, the Nyquist sampling theorem 

can be reworked that if the sampling rate equal to or greater than 2*B samples per second, where 

B is the bandwidth of band pass signal. Again, the pass band analog signal can be perfectly 

reconstructed from the samples if the 2*B sampling rate is observed. This is called subsampling. 

Subsampling only is adequate for band limited systems. 

Base upon the above sampling theorem foundation, we designed a subsampling system 

for K-State 433.92MHz FM micro-transceiver front-end. Since the FM frequency deviation is 

±10kHz, the modulated signal lies between 433.93 MHz and 433.91 MHz. that the 

corresponding IF frequency are between 10.69 MHz and 10.71 MHz with a pass band bandwidth 
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20 kHz. The sampling rate is designed at 75 kHz, which is much greater than 20 kHz bandwidth, 

to sample 10.7 MHz IF 1-bit ADC output. The front-end outputs a one if the IF frequency is 

above the threshold, otherwise it outputs a zero. A external 75 kHz sampling clock can be 

provided to front-end from the microcontroller. 

 
Figure 5-4 Subsampling 10.7 MHz with 75kHz sampling rate 

 The important purpose of subsampling is to down convert the 10.7 MHz IF frequency to 

a baseband frequency which could be processed by 16bit microcontroller. This can be seen in 

both time-domain and frequency-domain representations. Figure A-4(a) shows the time-domain 

representation of the subsampled signal. We sample the 10.7 MHz FM signal at 

...)3,2,1(3.13
75

1
=×=× nusn

kHz
n  . A output pulse indicates a zero crossing, while no pulse 

indicates no “zero crossing”.   Since the FM modulated signal is 20 kHz bandwidth compared 

with 75 kHz sampling rate we are still oversampling. We assume FM modulates a one using the 

high frequency of kHzfm 10+  and a zero using the low frequency of kHzfm 10− . Thus, in 

Figure A-4(a) we see dense pulse cluster samples indicating high frequency and sparsely pulse 
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samples indicate low frequency. If we acquire the average energy of these pulses, we will get a 

waveform with a threshold above zero.  

 FigureA-4(b) shows the frequency-domain representation of the subsampled signal. The 

10.7 MHz 1-bit ADC IF is sampled at a sampling rate ...)3,2,1(75 =×= nkHznf s  using 

impulses., These impulses mix the IF frequency with these fs frequencies and it can be down 

convert or up convert to the center at fs. When n is equal to 143, MHzf s 725.10= . When fs is 

mixed to 10.7 MHz, it down converts the IF signal to be centered around ±25 kHz. When n is 

equal to 142, MHzf s 65.10= . When this fs mixes with 10.7 MHz, it down converts the IF signal 

to be center around  ±50 kHz. The Figure A-4(b) shows all spectrums of mixed signals.  

 Thus, subsampling provides a good way to down convert higher pass band signals to 

lower baseband signals. This allows a 16-bit microcontroller to process the lower sampled signal 

competently and allows the one-shot FSK demodulation to be implemented. A new issue 

becomes how to recover the average energy level curve of Y(n) binary serial sequence? If a D/A 

convertor is not utilized, then the task is easy. Since we do NOT have an D/A in our PIC24 

microcontroller the software method is only way to implement this. Therefore, a matched filter 

becomes the best way to solve this. 

A.2.2 Digital Low Pass Matched Filter 

A digital low pass matched filter (LPMF), with a 1 kHz cut off frequency, has two 

functions The first function is frequencies greater than 1 kHz are block. The second function is to 

match the 1 kHz data rate to recover the data pulse sequence with lower noise. Since the filter is 

filtering not only higher frequency signals, but also noise, it can increase the SNR of signal. 

 
Figure 5-5 Two pole IIR digital low pass filter 

In order to implement LPMF in real-time, a 2-pole IIR low pass filter is designed. This 

allows for low MIPS consumption and linear system stability.. The Figure A-5 is diagram of two 
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pole IIR filter. Filter coefficients dependent on the cut off frequency and sampling frequency are 

needed to for the filter design.  

In S-domain, a 2-pole filter can be expressed as  

12
1)(

2 +×+
=

ss
sH                                                        Equ (4-2) 

The cut off frequency is ccc fwkHzf π21 =→=  

Thus                                     
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where 21 =A  

The IIR filter Z-domain function  

    
)(
)()( 2

0
1

12

2
0

1
12

01
2

2

01
2

2

zX
zY

zazaa
zbzbb

azaza
bzbzb

zH =
++
++

=
++
++

= −−

−−

                       Equ(4-7) 

The Y(z) output of filter is aset of y(n),y(n-1),y(n-2) taps. They(n) tap represent the current 

output and y(n-p) tap represents the past outputs. The X(z) tap, input of filter, is a set of x(n), 

x(n-1), x(n-2) taps. The x(n) tap represent the current input and x(n-p) tap represent the past 

inputs. 

Thus )2()1()2()1()()( 010122 −−−−−+−+= nyanyanxbnxbnxbnya                            Equ(4-8) 

If we normalize a2=1 and divide each coefficient by a2, then we can get current output y(n) 

             )2()1()2()1()()( '
0

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny                            Equ(4-9) 

From Equ(4-6) we can calculate the filter’s coefficients a’ and b’. 

Since Ts = 13.3uS, wc = 2πfc=6.28 krad/s, The coefficients are shown in Table A-1: 

Table A-1 Two pole LPF coefficients 



 8

a2=1 a1=-1.419 a0=0.5533 

b2=0.0336 b1=0.0671 a0=0.0336 

 

To verify that the coefficients are correct for the design, we used MATLAB to calculate 

the coefficients and to plot the filter response. This detail will be discussed in software 

implementation. Figure A-6 shows the frequency response comparison of the self-calculated 

coefficients and the MATLAB butter() function calculated coefficients. 
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Figure 5-6 Frequency response comparison of designed 1 kHz Low Pass Matched Filter 

with MATLAB function plot 

The input X(z) came from RF front-end output is either a 1 or 0. We map X(z) to -214 and 

+214 before we put it into LPMF for three important reasons:  

1. In order to divide 0 with DC voltage threshold 

2. We use a 16-bits Microcontroller without floating operation. The highest bit is used to 

indicate sign.  In the case of left shifting causing overflow, we only use 14 bits to 

save the data 



 9

3. We use shift (<<,>>) and plus (+) operations instead of the product operation (x) to 

implement float operation so that we can save CPU operating cycle and make it 

possible to implement on a low CPU clock 

The ideal output of low pass matched filter are a points set of recovered FSK data 

sequences similar to the ones shown below. The levels are between -214 and +214 representing 0 

and 1 respectively. But, in the real world, since input sampling will be affected by noise, the 

output from RF front-end will be affected too. Figure A-7(a) shows the ideal and real world 

output of a low pass matched filter and (b) shows the real world output of a low pass matched 

filter. 

 
Figure 5-7 output of LPMF (a) Ideal output (b) real output 

From Figure A-7, a new issue needs to be considered. Which points in the output of 

LPMF are the rising edge and which are falling edge? Which points are the middle of a pulse and 

where can we get the data we expect? To answer this question, we need to perform a Bit-sync. 

Bit-sync aids in the detectection of risinging edges and provides a phase locked clock with 

waveform. This allows the data to be sampled in the middle of each pulse.  

A.2.3 Bit-sync 
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 Bit-sync is providing bit synchronization with fixed data rate in our design. It tracks the 

present signal and aligns its local clock with the detected bit transition. It generates a phase 

locked clock and aligns the clock raising edge at the middle of each data pulse meanwhile which 

frequency can be shifted little by little if data pulse raising edge shifted. Figure A-8 is diagram of 

Bit-sync. 

 
Figure 5-8 Bit-sync data versus clock 

 There are two main steps that need to be realized a bit-sync algorithm. The first step is 

detecting bit transitions in which the algorithm searches the bit transition or threshold crossing. 

The second step is aligning the data in which the algorithm is aligning a clock based on a Finite 

State Machine (FSM). 

 To detect a transition, we need to process the Y(n) serial sequence. Y(n) has a real-time 

output of the LPMF at 75 kHz. Since a 512 bps data rate is 200us / bit, there are almost 150 

samples (75  kHz = 13.33us) during a single bit period. Thus, we do not need to detect Y(n) at 

the 75 kHz sampling rate, instead we can sample it at a much lower rate. In this design, we 

sample 1/3 of subsampling frequency, which is 25 kHz. That means, we have 50 samples of each 

bit and it is enough to detect bit transition. This also aids in reducing the microcontroller 

processing burden, saving MIPS. 

 A 50 state FSM is designed  because the 25 kHz sampling frequency and 512 bps bit rate. 

The amount of FSM states can be calculated using  equation (4-10). The BitPeriod is 1/512 and 

the BitSyncSamplingRate is 1/25kHz giving us 48.8 states.  

plingRateBitSyncSam
BitPeriodFSM =#                                              Equ(4-10) 
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Figure A-9 shows the Bit-sync FSM design and state transfer path.   Every 1/3 of the LPMF 

outputs will be put into the Bit-sync process and the output drives state transfer. The FSM 

starts as the state S0. The state transfers from S0 to S46 whenever it detects a bit transition or 

not. If a transition has occurred it should be recorded into a single transition flag variable. At 

state S24, which should be middle of a bit period, a sync-clock raising edge is generated. At 

state S46, the transition flag variable is checked to see if a transition occurred.   If a transition 

had occured the state goes back to S0, otherwise it progresses to the next state.  

 
Figure 5-9 Bit-sync Finite State Machine (FSM) 

Which means a transition happened before expected and the sync-clock needs to catch up to 

align the data. At state S47, the expected state to reset the state machine, if the transition 

occurred, state machine goes back to state S0, otherwise transfer to the next state. At state S48, 

1 sampling later, if the transition occurred, state machine transfer back to state S0, otherwise 

transfer to the last state. At state S49, whatever happened before or at this state, transfer back 

to state S1. One situation is that the transition had occurred at this state,  which is 2 samples 

later than expected. Going back to state S1 instead of state S0 will shorten the Sync-clock next 

rising edge by one sample. Another situation is that a transition did not occur during the whole 
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FSM process (S0 to S49). This  generally implies that two of same bits were transmitted. Thus 

going back to state S1 instead of state S0 will shorten Sync-clock too. The second situation 

may cause sync-clock shifting after long repeated bit transmitting, but it will re-sync as long as 

the bit stream changed. 

A.3 DSP Software Implementation 

A.3.1 Microcontroller Configurations 

All design theory has been addressed and now it is time to explain software 

implementation. The existing K-State Demo board hardware design block diagram is shown in 

Figure A-10. Microchip PIC24HJ256, high-performance, 16-Bit Microcontroller is employed as 

the center process unit. 

 
 Figure 5-10 K-State Micro-Transceiver Demo board block diagram 

It is NOT a physical DSP architecture, but the features on the microcontroller are adequate 

enough to implement the low data rate, FSK One-shot demodulation and Bit-sync DSP 

processes. The microcontroller runs on a 19.6MHz clock configuration and capable of running 

up to 9600000 instructions per second. The main features of this microcontroller are: 

• Modified Harvard architecture 
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• C compiler optimized instruction set 

• 16-bit wide data path 

• 24-bit wide instructions 

• Linear program memory addressing up to 4M instruction words 

• Linear data memory addressing up to 64 Kbytes 

• 256 Kbytes flash program memory and 16 Kbytes Data SRAM 

• 71 base assembly instructions : mostly 1 word / 1cycle 

• Sixteen 16-bit General Purpose Registers 

• Software stack 

• CMOS Flash Technology leads low-power consumption 

 

It also provides interrupt controller and many peripherals: 

• Interrupt Controller 

 5-cycle latency 

 118 interrupt vectors 

• Digital I/O 

 85 programmable digital I/O pins 

 Output pins can drive from 3.0v to 3.6v 

 4mA sink on all I/O pins 

• Timer/PWM 

 Nine 16-bit timers/counters or pair up to four 32-bit timers 

 Output compare provides 16-bit Glitchless PWM mode 

• Communication Modules 

 3-wire SPI—support 8/16-bit data 

 I2C—Full Multi-Master Slave mode,7/10-bit addressing, and bus collision 

detection 

 UART 

 Enhanced CAN 

• System management 

 External, internal RC clock with 
2
OSC

CY
F

F =  
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 Power-up timer 

 Watchdog timer 

 Reset by multiple sources 

• Power management 

 On-chip 2.5v voltage regulator 

 Switch clock sources in real time 

 Idle, sleep and Doze modes with fast wake-up 

We are not using all of those features, but all of them are helpful to design low-power 

consumption EH demo board.  

In this design the microcontroller is working at below configuration: 

• FOSC using 19.2 MHz External clock. Instruction cycle is 0.104us since 2
OSC

CY
F

F =
 

where FCY is instruction execution speed and FOSC is oscillator source speed 

• 3.3v power supply 

• Watchdog timer disable 

• One SPI be used to program RFIC 

• One I2C be used to program LCD 

• 16bit Timer2 is used as 1-bit ADC sampling clock 

• Digital GPIOs are used to connect 1-bit ADC Sampling, LEDs andPush buttons 

• One PWM compare interface used with Timer2 to generate PWM testing pulse 

A.3.2 Software Architecture 

The software is designed around a real-time, embedded communication software 

architecture. Figure A-11 shows the main() function flow. There is a dead-loop (while(1)) after 

initializing microcontroller and RFIC front-end. The LPMF and Bit-Sync techniques are 

implemented inside of this dead-loop. A closer look at subsampling, Low Pass Matched Filter 

and Bit-sync software implementations will further be discussed. 
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Figure 5-11 FSK Demodulation DSP software flow 

The 75 kHz subsampling is implemented by using Timer2’s interrupt on the 

microcontroller. Timer2 is enabled and its PR2 register, which is the timer period register, is set 

to 127 to generate 127* FCY =13.2us = 75 kHz interrupt. Every 13.2us, the Timer2 Interrupt 
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Service Router (ISR) will be entered periodic. Inside Timer2 ISR, a 1-bit ADC sampling clock is 

sent to RFIC and a 1-bit ADC sample of IF signal is read back. Since zero crossings are detected, 

one history sample is stored. Two variables are used to do this, one is called _curSample 

_prevSample, which stores the current and previous samples respectively. Before a return from 

ISR, a 75 kHz sampling flag, _t2_int, is set to notify main() function to enter the low pass filter 

procedure and to clear the the Timer2 interrupt flag. Figure A-12 shows Timer2 ISR procedure 

flow. 

 
Figure 5-12 Timer2 ISR 

The Low pass matched filter model is implemented inside of the main() function infinite 

loop. While in the infinite loop, the program is checking if a 1-bit ADC output has been sampled 

by checking the _t2_int variable. If it was, then it sets it to one then enters the LPMF module. 

Otherwise, it stays in the while dead loop. Figure A-13 shows the flow of LPMF module. The 

LPMF module has two routes to process the existence of zero crossings. Since the 1-bit ADC 
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outputs either a 0 or a 1, a _curSample of 1 and _prevSample of 0 indicates that a zero crossing 

has occurred.  The sample is mapped to +214 and -214 for a zero crossing and no zero crossing 

respectively.   The current output of LPMF is denoted by y(n), which can be calculated via 

equation (4-9) )2()1()2()1()()( '
2

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny . Because the IIR 

filter’s coefficients are real numbers, floating point operations are required to solve this equation 

(4-9).  

 
Figure 5-13 LPMF procedure 

 

The real time system floating point operation requires at least two conditions: one is 

enough data width path and enough MIPS capability. It is easy to implement this equation by any 

program language if those two conditions are met. This system utilizes real-time DSP software 

on a microcontroller that offers a 16bit wide data path and operates on a 19.6 MHz clock.. It is 

difficult to describe a precision floating point data using 16-bit data wide path since the shortest 

float point standard of IEEE-754 is 32bits. The computational time complexity or time consumed 

by float multiplication on 19.6MHz clock speed will not be fast enough to match real-time 

requirement. Any integer number can be expressed as a sum of ±2p serial values where p is a 

positive integer.   Any number smaller than 1 can be expressed as a sum of ±2n serial values 
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where n is a negative integer. For instance,13=23 + 22 + 21, 1.419=20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 + 

2-10… The more components added, the result will be more precise. Thus a multiply operation 

could be expressed as 13*1.419= 13*( 20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 + 2-10). 

Therefore if any number multiplied by 2p will be equal to this number left shifted by p 

bits, given that p is positive. If p is negative, any number multiplied with 2pequal to this number 

right shifted by p bits. The Table A-2 shows right shift and left shift bits equivalent factors.  

Table A-2 Bit shift and product factor 

Right 

shift bits 

Product 

factors 

Right 

shift bits 

Product 

factors 

Left 

shift bits

Product 

factors 

Left 

shift bits 

Product 

factors 

21 2 26 64 2-1 0.5 2-6 0.015625 

22 4 27 128 2-2 0.25 2-7 0.007813 

23 8 28 256 2-3 0.125 2-8 0.003906 

24 16 29 512 2-4 0.0625 2-9 0.001953 

25 32 210 1024 2-5 0.03125 2-10 0.000977 

In this design, the 2 pole LPF digital filter coefficient are shown in Table 4-5,   

a0=1 a1= -1.419 a2=0.5533 

b0=0.0336 b1=0.0671 b2=0.0336 

It can be re-wrote by using shift and product factor format in Table A-3. 

Table A-3 LPF coefficients 2n expression 

Coefficient (float) Coefficient (integer) 

a0=1  20 

a1=-1.419  -(20 + 2-2 + 2-3 + 2-5 + 2-7 + 2-8 + 2-10) 

a2=0.5533  2-1 + 2-5 + 2-6 + 2-8 + 2-9 + 2-11  

b0=0.0336  2-5 + 2-9 + 2-12 

b1=0.0671  2-4 + 2-8 + 2-11  

b2=0.0336  2-5 + 2-9 + 2-12  

 

Here is an example to calculate the filter transfer function equation (4-9) : 

)2()1()2()1()()( '
2

'
1

'
0

'
1

'
2 −−−−−+−+= nyanyanxbnxbnxbny  
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Where x(i) and y(i) are integer number between -214 and +214.  The example assumes the 1st 

sample, +214, coming into LPF: 

 Since n=2, x(0) =  x(1) = 0 , x(2) = +214=16384; y(0) = y(1) = y(2) =0. 

Then the calculation is rewritten using shift and plus operation into: 

)222222(0)2222222(0
)222(0)222(0)222(16384)(

119865110875320

129511841295

−−−−−−−−−−−−

−−−−−−−−−

+++++×−++++++×−

++×+++×+++×=ny
Equ(4-11) 

The following assemble code in Figure A-14 are implemented the sum of coefficients b products 

parts of equation (4-11). Three components result are stored in w3,w4,w5 register separately. 

 
Figure 5-14 LPF calculation coefficient b products 

The Figure A-154-29 shows LPF implementation of sum of the coefficient a products and the 

two parts result are stored in w6 and w7 registers. 

;Calculate X shifts  
 mov _x1, w4     ; w4=x1 
 mov  w4, _x2     ;  x2=x1 
 mov _x2, w5     ;  w5=x2 
 mov _x0, w3     ;  w3=x0 
 mov  w3, _x1     ;  x1=x0, 
 mov #0x4000, w3      
 mov w3, _x0     ;  x0=16384 
  
 ;( (_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]) ) 
 asr w3, #5, w6      ;w6 = _x0>>5 
 asr w3, #9, w7     ;w7 = _x0>>9 
 asr w3, #12, w8     ;w8 = _x0>>12 
 
 add w6, w7, w3     ;w3 = w6+w7 
 add w3, w8, w3     ;w3 = w8+w3 

 
 ;( (_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]) ) 
 asr w4, #4, w6      ;w6 = _x1>>4 
 asr w4, #8, w7     ;w7 = _x1>>8 
 asr w4, #11, w8     ;w8 = _x1>>11 
 
 add w6, w7, w4     ;w4 = w6+w7 
 add w4, w8, w4     ;w4 = w8+w4 
 
 ;( (_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]) ) 
 asr w5, #5, w6      ;w6 = _x1>>5 
 asr w5, #9, w7     ;w7 = _x1>>9 
 asr w5, #12,w8     ;w8 = _x1>>12 
 
 add w6, w7, w5     ;w5 = w6+w7 
 add w5, w8, w5     ;w5 = w8+w5 
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Figure 5-15 LPF calculation coefficients a products 

Then, it needs to calculate the sum of all products as well as update y(i)s since x(i) was updated 

at the beginning of  “Calculated X shifts” part. Figure A-16 shows this. 

 

;Calculate Y shifts 
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) -    
                 (_y1>>a1[4]) - (_y1>>a1[5]) - (_y1>>a1[6])) 
 ;asr w3, #0, wx     ;shift 0 
 mov _y1, w6 
 asr w6, #2, w7    ;w7 = _y1>>2 
 asr w6, #3, w8    ;w8 = _y1>>3 
 asr w6, #5, w9    ;w9 = _y1>>5 
 asr w6, #7, w10    ;w10= _y1>>7 
 asr w6, #8, w11    ;w11= _y1>>8 
 asr w6, #10, w12    ;w12= _y1>>10 
 
 add w6, w7, w6    ;w12= _y1>>0 + w7 
 add w6, w8, w6    ;w6 = w6+w8 
 add w6, w9, w6    ;w6 = w6+w9 
 add w6, w10,w6    ;w6 = w6+w10 
 add w6, w11,w6    ;w6 = w6+w11 
 add w6, w12,w6    ;w6 = w6+w12 
 
 ;-( (_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) +  
                 (_y2>>a2[4]) + (_y2>>a2[5]) ) 
 mov _y2, w7 
 asr w7, #1, w8    ;w8 = _y1>>2 
 asr w7, #5, w9    ;w9 = _y1>>3 
 asr w7, #6, w10    ;w10= _y1>>5 
 asr w7, #8, w11    ;w11= _y1>>7 
 asr w7, #9, w12    ;w12= _y1>>8 
 asr w7, #11,w13    ;w13= _y1>>11 
 
 add w8, w9, w7    ;w7 = w8+w9 
 add w7, w10,w7     ;w7 = w7+w10 
 add w7, w11,w7    ;w7 = w7+w11 
 add w7, w12,w7    ;w7 = w7+w12 
 add w7, w13,w7    ;w7 = w7+w13 

 ; lpf_out = w3+w4+w5-(-w6)-w7 
 add w3, w4, w3    ;w3 = w3+w4 
 add w3, w5, w3    ;w3 = w3+w5 
 add w3, w6, w3    ;w3 = w3+w6 
 sub w3, w7, w0    ;w0 = w3-w7 
 
 ; update y0,y1,y2 
 mov w0, _y0    ;y0=lpf_out 
 mov _y1, w4 
 mov w4, _y2    ;y2=y1 
 mov w0, _y1    ;y1=y0 
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Figure 5-16 Calculated X shifts 

A.3.3 Test Result 

 In this section, the DSP software test results are discussed. The test environment shows in 

Figure A-17.  A RIGOL DG 2021A function/Arbitrary waveform generator is used to generate 

the PHY layer frame including preamble, SOF and PHY payload. The generated bit stream feed 

into a HP 8648 Signal Generator. This Signal generator is doing FSK modulation as well as 

modulating the signal to 433.92MHz. The Agilent 54622D Oscilloscope is used to probe the 

output signal from circuit board. The HP ESA-L150000A Spectrum Analyzer is used to check 

the frequency spectrum. 

 
Figure 5-17 PHY Layer DSP  test enviroment 

1. One shot FSK demodulation test 

First, we are designing 10kHz broad narrow band FSK modulation. So using the 

spectrum analyzer could check the modulation bandwidth. Figure A-18 shows the spectrum of 

FSK signal. 
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Figure 5-18 10kHz Bandwith FSK modulation 

Second, the one-shot FSK demodulation method and digital filter were tested by 

generating PWM pulse. The one-shot FSK demodulation concept was shown in the Figure A-3.  

We would like to see if the pulse will be generated when a “zero-cross” is detected. Figure A-19  

shows the PWM (Pulse Width Modulation) density corresponds with the transmitted bit stream 

screen capture from oscilloscope.  The channel 2 signal is PWM pulse, which is generated by 

setting a microcontroller PWM timer. When a “zero-cross” is detected, a PWM pulse is  

     
Figure 5-19 "Zero-cross" detection 
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generated and  the pulse duty cycle is set depends on the 1bit ADC output value (1 or 0). In this 

case, when 1bit ADC output 1,  the PWM pulse duty cycle is 100%. Otherwise, the duty cycle is 

10%. The channel 1 signal is transmitted data. From Figure 4-33, the pulse density is distinctly 

higher when transmitted signal is 1.  

2. bit-sync test 

The bit-sync is expected to generate a clock to lock the data sequence so that the raise 

edge of the clock locates at the right center of the bit period. Figure A-20 shows the test screen 

capture of bit sequence and the locked clock. 

  

  
Figure 5-20 512bps Bit-sync Test restults 

3. Data recovered test 

The final goal is to recover the transmitted data. To test this, hook both the created 

arbitrary bits sequence and recovered data output pin to oscilloscope. The Figure A-21 is screen 

captures. The input signal power are -80dbm, -90dbm, -93dbm and  -100dbm. 
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(a) -80dbm                                                           (b) -90dbm 

  
(c) -93dbm                                                          (d) -100dbm 

Figure 5-21 512bps Bit-sync Test restults 
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A.4  EHR DSP Code 

A.4.1 ADC, LPF, and Bit-Sync File 
;****************************************************************************** 
;  FileName: main.s           * 
;  Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz  * 
;  Complier:  MPLAB C30 / ASM30         * 
;  Linker:    MPLAB LINK30          * 
;  Description : This is the file including the core function of ADC Sampling,* 
;     LPF and the Bit-sync in assembly language.    * 
;  Author      Date  Version    * 
;  Xiaohu Zhang     10/05/2008 v1.0    * 
;****************************************************************************** 
 
 
;************************************************************************ 
; Function : _main 
; 
; PreCondition: Implement 1-bit Sync;                                    
;      Doing 25kHz sample for 75kHz;                       
;      To judge if this BIT is 0-cross      
;      Energy Harvesting Radio (EHR); 
; Overview: This is the entrance of the Energy Harvesting Radio Physical 
;   Layer DSP implementation. The main function of this file  
;   includes 1bit ADC 75kHz subsampling, Zero-cross detector, 
;   1kHz two pole Low Pass Filter, 3:1 data decimation, and 
;           Bit sync.  
;************************************************************************ 
.global _main 
_main: 
 
 call _main_c    ;call main_c() 
 
_IF_TIMER2_INT_: 
 btss _t2_int,#0   ; check the 75kHz Timer2 Interrupt flag 
 goto _IF_TIMER2_INT_   ; goto process Timer2 interrupt requirement 
 
 mov _curSample, w1   ; Update sampling bit 
 mov _prevSample,w2 
 cp   w1,w2    ; w1-w2 if curSample-prevSample=1 means 
curSample=1&prevSample=0 
 bra  LEU, ADC_NON_CROSS_    ; w1<=w2 unsigned less than or equal,jump to 
_ADC_OUT_O_ 
 
;ADC 75kHz sample processing & 1kHz LPF 
;Two bratch : one is ADC_0_CROSS_ 
;             one is ADC_NON_CROSS_  
ADC_0_CROSS_: 
 ;bset PORTE,#0     ; used to test the input of LPF 
;Calculate X shifts  
 mov _x1, w4     ; w4=x1 
 mov  w4, _x2     ; x2=x1 
 mov _x2, w5     ; w5=x2 
 mov _x0, w3     ; w3=x0 
 mov  w3, _x1     ; x1=x0, 
 mov #0x4000, w3      
 mov w3, _x0     ; x0=16384 
  
 ;( (_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]) ) 
 asr w3, #5, w6     ;w6 = _x0>>5 
 asr w3, #9, w7     ;w7 = _x0>>9 
 asr w3, #12, w8    ;w8 = _x0>>12 
 
 add w6, w7, w3     ;w3 = w6+w7 
 add w3, w8, w3     ;w3 = w8+w3 
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 ;( (_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]) ) 
; mov _x1, w4 
 asr w4, #4, w6     ;w6 = _x1>>4 
 asr w4, #8, w7     ;w7 = _x1>>8 
 asr w4, #11, w8    ;w8 = _x1>>11 
 
 add w6, w7, w4     ;w4 = w6+w7 
 add w4, w8, w4     ;w4 = w8+w4 
 
 ;( (_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]) ) 
 asr w5, #5, w6     ;w6 = _x2>>5 
 asr w5, #9, w7     ;w7 = _x2>>9 
 asr w5, #12,w8     ;w8 = _x2>>12 
 
 add w6, w7, w5     ;w5 = w6+w7 
 add w5, w8, w5     ;w5 = w8+w5 
 
;Calculate Y shifts 
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) - (_y1>>a1[4]) - 
(_y1>>a1[5]) - (_y1>>a1[6])) 
 ;asr w3, #0, wx     ;shift 0 
 mov _y1, w6 
 asr w6, #2, w7     ;w7 = _y1>>2 
 asr w6, #3, w8     ;w8 = _y1>>3 
 asr w6, #5, w9     ;w9 = _y1>>5 
 asr w6, #7, w10    ;w10= _y1>>7 
 asr w6, #8, w11    ;w11= _y1>>8 
 asr w6, #10, w12    ;w12= _y1>>10 
 
 add w6, w7, w6     ;w12= _y1>>0 + w7 
 add w6, w8, w6     ;w6 = w6+w8 
 add w6, w9, w6     ;w6 = w6+w9 
 add w6, w10,w6     ;w6 = w6+w10 
 add w6, w11,w6     ;w6 = w6+w11 
 add w6, w12,w6     ;w6 = w6+w12 
 
 ;-( (_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) + (_y2>>a2[4]) + 
(_y2>>a2[5]) ) 
 mov _y2, w7 
 asr w7, #1, w8     ;w8 = _y2>>2 
 asr w7, #5, w9     ;w9 = _y2>>3 
 asr w7, #6, w10    ;w10= _y2>>5 
 asr w7, #8, w11    ;w11= _y2>>7 
 asr w7, #9, w12    ;w12= _y2>>8 
 asr w7, #11,w13    ;w13= _y2>>11 
 
 add w8, w9, w7     ;w7 = w8+w9 
 add w7, w10,w7     ;w7 = w7+w10 
 add w7, w11,w7     ;w7 = w7+w11 
 add w7, w12,w7     ;w7 = w7+w12 
 add w7, w13,w7     ;w7 = w7+w13 
 
 ; lpf_out = w3+w4+w5-(-w6)-w7 
 add w3, w4, w3     ;w3 = w3+w4 
 add w3, w5, w3     ;w3 = w3+w5 
 add w3, w6, w3     ;w3 = w3+w6 
 sub w3, w7, w0     ;w0 = w3-w7  Using w0 to return 
value 
 
 ; update y0,y1,y2 
 mov w0, _y0     ;y0=lpf_out 
 mov _y1, w4 
 mov w4, _y2     ;y2=y1 
 mov w0, _y1     ;y1=y0 
 ;goto MAP_LPF_OUT_ 
 ;goto BIT_SYNC_ 
goto DATA_BIT_1_ 
 
 
 
ADC_NON_CROSS_: 
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 ;bclr PORTE,#0     ; used to test the input of LPF 
 ;Calculate X shifts  
 mov _x1, w4     ; w4=x1 
 mov  w4, _x2     ; x2=x1 
 mov _x2, w5     ; w5=x2 
 mov _x0, w3     ; w3=x0 
 mov  w3, _x1     ; x1=x0, 
 mov #0xc000, w3    
 mov w3, _x0     ; x0=-16384 
  
 ;( (_x0>>b0[0]) + (_x0>>b0[1]) + (_x0>>b0[2]) ) 
 asr w3, #5, w6     ;w6 = _x0>>5 
 asr w3, #9, w7     ;w7 = _x0>>9 
 asr w3, #12, w8    ;w8 = _x0>>12 
 
 add w6, w7, w3     ;w3 = w6+w7 
 add w3, w8, w3     ;w3 = w8+w3 
 
 ;( (_x1>>b1[0]) + (_x1>>b1[1]) + (_x1>>b1[2]) ) 
; mov _x1, w4 
 asr w4, #4, w6     ;w6 = _x1>>4 
 asr w4, #8, w7     ;w7 = _x1>>8 
 asr w4, #11, w8    ;w8 = _x1>>11 
 
 add w6, w7, w4     ;w4 = w6+w7 
 add w4, w8, w4     ;w4 = w8+w4 
 
 ;( (_x2>>b2[0]) + (_x2>>b2[1]) + (_x2>>b2[2]) ) 
 asr w5, #5, w6     ;w6 = _x2>>5 
 asr w5, #9, w7     ;w7 = _x2>>9 
 asr w5, #12, w8    ;w8 = _x2>>12 
 
 add w6, w7, w5     ;w5 = w6+w7 
 add w5, w8, w5     ;w5 = w8+w5 
 
;Calculate Y shifts 
 ;-(-(_y1>>a1[0]) - (_y1>>a1[1]) - (_y1>>a1[2]) - (_y1>>a1[3]) - (_y1>>a1[4]) - 
(_y1>>a1[5]) - (_y1>>a1[6])) 
 ;asr w3, #0, wx     ;shift 0 
 mov _y1, w6 
 asr w6, #2, w7     ;w7 = _y1>>2 
 asr w6, #3, w8     ;w8 = _y1>>3 
 asr w6, #5, w9     ;w9 = _y1>>5 
 asr w6, #7, w10    ;w10= _y1>>7 
 asr w6, #8, w11    ;w11= _y1>>8 
 asr w6, #10, w12    ;w12= _y1>>10 
 
 add w6, w7, w6     ;w12= _y1>>0 + w7 
 add w6, w8, w6     ;w6 = w6+w8 
 add w6, w9, w6     ;w6 = w6+w9 
 add w6, w10,w6     ;w6 = w6+w10 
 add w6, w11,w6     ;w6 = w6+w11 
 add w6, w12,w6     ;w6 = w6+w12 
 
 ;-( (_y2>>a2[0]) + (_y2>>a2[1]) + (_y2>>a2[2]) + (y2>>a2[3]) + (_y2>>a2[4]) + 
(_y2>>a2[5]) ) 
 mov _y2, w7 
 asr w7, #1, w8     ;w8 = _y2>>2 
 asr w7, #5, w9     ;w9 = _y2>>3 
 asr w7, #6, w10    ;w10= _y2>>5 
 asr w7, #8, w11    ;w11= _y2>>7 
 asr w7, #9, w12    ;w12= _y2>>8 
 asr w7, #11, w13    ;w13= _y2>>11 
 
 add w8, w9, w7     ;w7 = w8+w9 
 add w7, w10,w7     ;w7 = w7+w10 
 add w7, w11,w7     ;w7 = w7+w11 
 add w7, w12,w7     ;w7 = w7+w12 
 add w7, w13,w7     ;w7 = w7+w13 
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 ; lpf_out = w3+w4+w5-(-w6)-w7 
 add w3, w4, w3     ;w3 = w3+w4 
 add w3, w5, w3     ;w3 = w3+w5 
 add w3, w6, w3     ;w3 = w3+w6 
 sub w3, w7, w0     ;w0 = w3-w7 Using w0 to return value 
 
 ; update y0,y1,y2  
 mov w0, _y0     ;y0=lpf_out=w0 
 mov _y1, w4 
 mov w4, _y2     ;y2=y1  
 mov w0, _y1     ;y1=y0 
 ;w0 still keeping lpf_out until BIT_25KHZ_SAMPLE_ 
 
 
DATA_BIT_1_:      ; output the data 
; the number is used as a threshold caused by subsampling 
 

mov #0xEc78,w10    ;-5000 -1000 -2000 -3200 -3000 -2500 -1000 -2200 -1800 -1500 -1200  - 
    ;2000is good 

 mov #0,w3 
 cp w0,w10 
 bra LT, BIT_SYNC_    ; if(w0<w10) jump 
 mov #1,w3 
 
;1 Bit Sync code 
;Doing 25kHz sample for 75kHz  
;To judge if this BIT is 0-cross 
BIT_SYNC_: 
 dec _one_third     ; one_third-- 
 bra NZ,RETURN_T2INT_    ; if(one_third>0) jump  
 mov #3, w1     ; if(one_third==0) w1=3 
 mov w1, _one_third    ; reset one_third=3 
 
UPDATE_BIT_: 
 mov w3, _curBit    ; update _curBit 
 mov  _syncdBit,w4 
 ;if transition happend 
 cp w4,w3     ; w3 = w4 - w3 
 bra LEU,FSM_CHECK_    ; w4<=w3 jump to FSM_CHECK_ 
 bset _transFlag,#0    ; w4>w3 fall edge occured, set _transFlag 
 
;Check current FSM if==23,24 or 25 
FSM_CHECK_: 
 ;Check current FSM sate 
 mov _cur_FSM, w1  
 cp w1,#24 
 bra Z,SYNC_CLOCK_UP_   ; jump to generate 1BIT SYNC CLOCK 
  
 ;mov #46,w14  
 mov #38,w14  
 cp w1,w14 
 bra GEU,IF_TRANSITED_   ; (cur_FSM>=S22) jump to process TRANSITION DETECT 
 goto FSM_TRANS_   ; (cur_FSM<S22&&cur_FSM!=smp_FSM) FSM Transfer 
 
IF_TRANSITED_:     ; s23,s24,s25 and s25 
 mov #49,w14  
 cp w1,w14 
 bra GEU, TRANS_2BITS_   ; (cur_FSM>=S25) jump 
 cp0 _transFlag    ; if(transFlag==0) for s23,s24,s25 
 bra Z, FSM_TRANS_   ; (transFlag==0) cur_FSM++ 
 goto RESET_FSM_  ; (transFlag==1) Transition happended then reset cur_FSM=0 
 
; State machine transfer 
FSM_TRANS_:  
 inc _cur_FSM 
 clr _transFlag    ; clear the transflag if cur_FSM<47 
 goto RETURN_T2INT_  
 
; Recorve Data output 
SYNC_CLOCK_UP_: 
 mov _curBit,w3 
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 mov w3,_syncdBit 
 inc _cur_FSM 
 clr _transFlag    ; clear the _transFlag 
 bset PORTD,#0 
 
 ;Update Start Of Frame 
 SL _StartOfFrame   ; left shift 1bit of Start Of Frame  
 
 ;Recovered Data 
 CP0 w3 
 bra Z, DATA_BIT_0_ 
 bset PORTE,#3 
 bset _StartOfFrame,#0   ; update lowest SOF bit=1 
 goto RETURN_T2INT_ 
DATA_BIT_0_: 
 bclr PORTE,#3 
 bclr _StartOfFrame,#0   ; update lowest SOF bit=0 
 
; Detect Start Of Frame 
SOF_DETEC_: 
 mov _StartOfFrame, w4   ; w4 = _StartOfFrame 
 and #0x000f,w4    ; w4 = _StartOfFrame & 0x000f 
 xor w4,#0x000e,w5   ; w4 = 0x00001110 xor _StartOfFrame[0:3] 
 cp0 w5     ; w5=1:ERROR_SOF; w5=0:OK_SOF. 
 bra NZ, SOF_ERROR 
 bset PORTE,#1    ; Generate pulse to indicate Correct SOF 
  
SOF_ERROR:  
; End of Detect SOF 
 goto RETURN_T2INT_ 
   
TRANS_2BITS_:     ; there are two "0" or "1" transmitting without 
transition between 
; cp0 _transFlag    ; if(transFlag==1) jump to state0 
; bra NZ, RESET_FSM_ 
 mov #1,w1   ; them. Update the state from 26(2 laters than 24) to 3 
 mov w1,_cur_FSM 
 goto SYNC_CLOCK_DOWN_   ; goto return 
 ;goto SYNC_BIT_OUT1_ 
 
RESET_FSM_: 
 clr _cur_FSM    ; reset cur_FSM=0; 
 clr _transFlag    ; clear transFlag=0; 
 
SYNC_CLOCK_DOWN_:  
 bclr PORTD,#0    ; RD0=0 to pull down BIT_SYNC_CLOCK down edge  
 ;goto SAMPLING_CLK_LOW_  ; goto next sample loop 
 
;Must make this before setting TMR6 in case PR6<2  
;(Only RETURN_T2INT 2 instructions after TRM6 running)  
RETURN_T2INT_: 
 bclr PORTE,#1    ; Clear pulse of SOF indication 
 bclr _t2_int, #0   ; clear _T2IF interrupt flag 
 goto _IF_TIMER2_INT_ 
  
return  ; 
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A.4.2 PIC Initialization file 
/***************************************************************************** 
*  FileName : IniPIC.c 
*  Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz 
*  Complier:  MPLAB C30 / ASM30 
*  Linker:    MPLAB LINK30 
*  Description : This is the function file in which the C functions are included, 
*    sunch as microprocessor initilization functions. 
* 
*  Author     Date   Version 
*  Xiaohu Zhang    10/05/2008  v1.0 
******************************************************************************/ 
#include "LPF_H.h" 
#include "lpf_buf.h" 
 
//__CONFIG (GSS_OFF); 
 
void main_c(); 
double LPF_1BIT_FLOAT(unsigned char in_bit); 
inline signed short int LPF_1BIT_INT(signed short int in_16int); 
//void LFP(double *a, double *b, unsigned char *buf, double buf_len, double *lpf_out); 
void pic_init(); 
void timer_init(); 
void interrupts_init(); 
void activateRxMode(void);     //Set RFIC RX mode Copy from Joe's 
code 
void RxDemod(void);       //Set RFIC FM Demodulation 
mode Cope from Joe's code 
 
inline void timer6_start(short int pr); 
inline void timer6_stop(); 
 
typedef struct _BUF_{ 
 unsigned char bit0 :1; 
    unsigned char bit1 :1; 
 unsigned char bit2 :1; 
 unsigned char bit3 :1; 
 unsigned char bit4 :1; 
 unsigned char bit5 :1; 
 unsigned char bit6 :1; 
 unsigned char bit7 :1; 
}BUF; 
 
/*LPF coefficient*/ 
double a[3]={1.0,   -1.4190, 0.5533}; 
double b[3]={0.0336, 0.0671, 0.0336}; 
 
/*Right Shifts & Plus bits Filter coefficients*/ 
signed int a0=0; 
signed int a1[]={0,2,3,5,7,8,10}; 
signed int a2[]={1,5,6,8,9,11}; 
signed int b0[]={5,9,12}; 
signed int b1[]={4,8,11}; 
signed int b2[]={5,9,12}; 
 
/*LPF input parameter*/ 
volatile signed short int x0=0, x1=0, x2=0; 
volatile signed short int y0=0, y1=0, y2=0; 
 
short int tmr6_pr=120; 
short int MY_PWM=128; 
unsigned int asm_buf; 
unsigned short int asm_lpf_out_int; 
unsigned short int asm_lpf_out_lev; 
short int asm_pr1; 
 
/*Input Sample*/ 
volatile signed short int IN_SAMPLE=0; 
 
/* 512bps Bit-sync State Machine*/ 
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enum FSM{S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,S11,S12, 
    S13,S14,S15,S16,S17,S18,S19,S20,S21,S22,S23,S24,S25,S26, 
    S27,S28,S29,S30,S31,S32,S33,S34,S35,S36,S37,S38,S39,S40, 
    S41,S42,S43,S44,S45,S46,S47,S48,S49,S50}; 
enum FSM cur_FSM=S0;    // Current State 
enum FSM pre_FSM=S0;    // Previous State 
enum FSM smp_FSM=S12;     // Sampling state 
unsigned short int curBit=0;   // Current 25kHz bit sample 
unsigned short int prevBit=0;   // Previous 25kHz bit sample 
unsigned short int transFlag=0;  // Transition flag 0-No 1-Yes 
unsigned short int syncdBit=0;  // Syncronized Output Bit 
unsigned short int StartOfFrame=0;  //Start of Frame string 
volatile unsigned short int one_third=3;  // 1/3 of 75KHZ sampling rate 
volatile unsigned short int t2_int=0; //flag of Timer2 interrupt 1:INT happened; 0:NO INT. 
 
/***************************************************************************** 
*  Function : void main() 
*  Input: 
*  Return: 
*  Description: This function finish PIC initialization. 
* 
*  Author     Date   Version 
*  Xiaohu Zhang    10/05/2008  v1.0 
******************************************************************************/ 
void main_c() 
{ 
 signed short int in_sint=0;  
 signed short int lpf_out_int[sizeof(buf)/6]; 
    signed short int lpf_out_lev[sizeof(buf)/6]; 
 
 long int buf_len=sizeof(buf)/6; 
 long int i=0; 
 short int pr=0; 
 short int pr1[sizeof(buf)/6]; 
 
 
 memset(lpf_out_int,0,sizeof(lpf_out_int)); 
 memset(lpf_out_lev,0,sizeof(lpf_out_int)); 
 memset(pr1,0,sizeof(pr1)); 
 pic_init(); 
 initRFICBits(); 
 
 _TRISE0 = 0; 
     _TRISE1 = 0;  
 _TRISE2 = 0; 
     _TRISE3 = 0; 
 _RE0 = 0; 
     _RE1 = 0;     //Light LED 
 _RE2 = 0; 
     
  
 activateRxMode(); 
 RxDemod(); 
}; 
 
 
/************************************************************************************** 
*  Function : int pic_init(void) 
*  Input:    NONE; 
*  Return:    int -- sucessful / fail. 
* 
*  Description: Initialize PIC. 
*        
* 
*  Author      Date     Version 
*  Xiaohu Zhang     10/05/2008    v1.0 
***************************************************************************************/ 
void pic_init() 
{ 
 timer_init(); 
 gpio_init(); 
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 initSPI1(); 
 interrupts_init(); 
 
 //If using PWM should open this block 
 //Initialize OCM 
/* 
 OC1CONbits.OCM = 0b000; // Disable OCM 
 OC1RS= 0; 
 OC1CONbits.OCTSEL = 0; // Select Timer2 
 OC1R = 0; 
 OC1CONbits.OCM = 0b110; // PWM mode on OC1 
*/ 
   
} 
/************************************************************************************** 
*  Function : int gpio_init(void) 
*  Input:    NONE; 
*  Return:    NONE; 
* 
*  Description: Initialize PIC GPIO. 
*        
* 
*  Author      Date     Version 
*  Xiaohu Zhang     10/05/2008    v1.0 
***************************************************************************************/ 
void gpio_init(void) 
{ 
 _TRISD0  = 0;        //Set as BIT_SYNC_CLOCK as Output 
    _RD0 = 0;    //Set low 
 _TRISD6  = 0;        //Set RFIC_ADC_CLK_P as Output 
 _TRISD7  = 0;        //Set RFIC_ADC_CLK_N as Output 
 _TRISD9  = 1;        //Set RFIC_ADC_OUT_P as Input 
 _TRISD10 = 1;        //Set RFIC_ADC_OUT_N as Input 
 
 _TRISE0 = 0;   //Set LED as Output 
 _TRISE1 = 0;   //Set LED as Output 
 _TRISE2 = 0;   //Set LED as Output  
 _TRISE3 = 0;   //Set LED as Output 
} 
/************************************************************************************** 
*  Function : int timer_init(void) 
*  Input:    NONE; 
*  Return:    NONE; 
* 
*  Description: Initialize PIC TIMER. 
*        
* 
*  Author      Date     Version 
*  Xiaohu Zhang     10/05/2008    v1.0 
***************************************************************************************/ 
void timer_init(void) 
{ 
 /*Timer2/3 Configuration*/  
 T2CON = 0B0000000000000000;            
 _T2IP = 0x02;   /*  _TON = 0;   // Stop timer 
         _TSIDL = 1; // Stop in idle mode 
         _TGATE = 0; // Gated time accumulation disabled 
         _TCKPS = 0; // 1:1 prescale 
         _T32   = 1; // 32-bit timer 
         _TCS   = 0; // Internal clock Fcy 
         _T2IP  = 2; // Timer2 propority is 2 lower than T6 
     */ 
 
  
 /*Timer6 Configure as 16 bits timer*/  
 T6CON = 0B0000000000000000; 
 _T6IP = 0x02;  // Set the priority of Timer6 
 PR6 = 0x0;    /* _TON = 0;   // Stop timer 
         _TSIDL = 1; // Stop in idle mode 
         _TGATE = 0; // Gated time accumulation disabled 
         _TCKPS = 0; // 1:1 prescale 
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         _T32   = 1; // 32-bit timer 
         _TCS   = 0; // Internal clock Fcy 
      */ 
 /*Timer7 Configure as 32 bits timer*/  
 T7CON = 0B0000000000000000;      
 PR7 = 0x0;    /* _TON = 0;   // Stop timer 
         _TSIDL = 1; // Stop in idle mode 
         _TGATE = 0; // Gated time accumulation disabled 
         _TCKPS = 0; // 1:1 prescale 
         _T32   = 1; // 32-bit timer 
         _TCS   = 0; // Internal clock Fcy 
      */ 
  
 /*Timer8 Configure as 16 bits timer*/  
 T8CON = 0B0000000000000000;       
 PR8 = 0x0;   /* _TON = 0;   // Stop timer 
         _TSIDL = 1; // Stop in idle mode 
        _TGATE = 0; // Gated time accumulation disabled 
        _TCKPS = 0; // 1:1 prescale 
        _T32   = 0; // 16-bit timer 
        _TCS   = 0; // Internal clock Fcy 
     */ 
 
 /*Timer9 Configure as 16 bits timer*/  
 T9CON = 0B0010000000000000;        
 PR9 = 0x0;    /* _TON = 0;   // Stop timer  
         _TSIDL = 1; // Stop in idle mode 
         _TGATE = 0; // Gated time accumulation disabled 
         _TCKPS = 0; // 1:1 prescale 
         _T32   = 0; // 16-bit timer 
         _TCS   = 0; // Internal clock Fcy 
      */ 
} 
 
/************************************************************************************** 
*  Function : int interrupts_init(void) 
*  Input:    NONE; 
*  Return:    NONE; 
* 
*  Description: Initialize PIC. 
*        
* 
*  Author    Date     Version 
*  Xiaohu Zhang   10/05/2008    v1.0 
***************************************************************************************/ 
void interrupts_init() 
{ 
 /* Initialize & Configure Interrupts */ 
 SR     = 0x00; 
 CORCON = 0x0c;       //causes the lcd to break 
 INTCON1= 0x00; 
 INTCON2= 0x1f;       // 0b0000000000011111 set fall-edge interrupts sensitive 
  
 /*clear all interrupts flag*/  
 IFS0 = 0; 
 IFS1 = 0; 
 IFS2 = 0; 
 IFS3 = 0; 
 IFS4 = 0; 
 
 _T2IE = 1;   //Enable Timer2 
 _T3IE = 1;   //Enable Timer3 
 _T4IE = 1;   //Enable Timer4 
 _T5IE = 1;   //Enable Timer5 
 _T6IE = 1;   //Enable Timer6 
 _T7IE = 1;   //Enable Timer7 
 _T8IE = 1;   //Enable Timer8 
 _T9IE = 1;   //Enable Timer9 
  
 AD1PCFGL = 0xFFFF;  //Configure ADC1 ANx pins as digital I/O 
 AD1PCFGH = 0xFFFF;  //Configure ADC1 ANx pins as digital I/O 
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 AD2PCFGL = 0xFFFF;  //Configure ADC2 ANx pins as digital I/O 
  
 _CN2IE = 1;    //Enable CN2 interrupt (UP Button) 
 _CN3IE = 1;    //Enable CN3 interrupt (DN Button) 
 _CN4IE = 1;    //Enable CN4 interrupt (SEL Button) 
 _CN5IE = 1;    //Enable CN5 interrupt (LFT Button) 
 _CN6IE = 1;    //Enable CN6 interrupt (RGT Button) 
  
 _CNIF = 0;       //Clear Change Notification Interrupt Flag 
 _CNIE = 1;       //Enable Change Notification Interrupts 
 _CNIP = 5;       //Change Notification Interrupt Priority bits 
  
 /* SPI1 Transfer Complete Interrupt Configuration */ 
 _SPI1IF = 0;     //Clear SPI1 Event Interrupt Flag Status bit 
 _SPI1IE = 1;     //Enable SPI1 Transfer Complete Interrupt 
 _SPI1IP = 7;     //SPI1 Event Interrupt Priority bits (Highest Priority) 
} 
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A.4.3 ISR Interrupt Process file 
;***************************************************************************** 
;  FileName : isr_.asm 
;  Processor: PIC24HJ256 / External clock 19.2MHz --> Fcyl = 19.2/2 = 9.6MHz 
;  Complier:  MPLAB C30 / ASM30 
;  Linker:    MPLAB LINK30 
;  Description : This is the Interrupt Services Route function file. 
;  Author      Date     Version 
;  Xiaohu Zhang     10/05/2008    v1.0 
;******************************************************************************/ 
.include "p24hj256gp610.inc" 
 
;Global variables 
 
;.text 
 
;Global function be called in C 
.global _AsmReset 
.global __T2Interrupt 
.global __T6Interrupt 
 
_AsmReset: 
 clr _x0 
 clr _x1 
 clr _x2 
 clr _y0 
 clr _y1 
 clr _y2 
 
;***********************************************************************; 
; Function: T2Interrupt 
; Decription : Timer 2 ISR.                                             ;  
;                                                                       ; 
;***********************************************************************; 
 
__T2Interrupt: 
 
 push w0 
 push w1 
 
SAMPLING_CLK_HIGH_: 
 mov #0xff3f,w0  
 and PORTD,WREG    ; w0 = PORTD & w0 
 ior #0x80,w0 
 mov w0, PORTD 
  
; Update prevSample = curSample 
 mov  _curSample, w1     
 mov  w1,_prevSample 
 
 
;Update current 75kHz sample 
UPDATE_SAMPLE_: 
 mov  #1, w1    ; w1 = 1 
 btss PORTD,#0x9   ; if RD9==1 jump to ADC_OUT_1; 
 mov  #0, w1    ; (RD9==0) w1 = 0; 
 mov  w1, _curSample   ; update _curSample 
 
;Must make this before setting TMR6 in case PR6<2  
;(Only RETURN_T2INT 2 instructions after TRM6 running)  
SAMPLING_CLK_LOW_: 
 mov #0xff3f,w0 
 and PORTD,WREG    ; w0 = PORTD & w0 
 ior #0x40,w0 
 mov w0, PORTD 
 
 pop w1 
 pop w0 
  
;Set the timer2 interrupt flag 
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 bset _t2_int,#0 
;Clear the interrupt flag 
 bclr IFS0,#7 
RETFIE  ;return from ISR 
 
 
;***********************************************************************; 
; Function: _T6Interrupt                                                ; 
; Description : Timer 6 ISR.                                            ; 
;***********************************************************************; 
_myT6Interrupt: 
; bclr PORTD, #0    ; _RD0=0 Pull down PWM 
 bclr LATD,#0 
 clr PR6     ; PR6=0 clear timer period register 
 bclr T6CON, #15   ; _TON=0 Stop Timer6 
 bclr IFS2,  #15   ; _T6IF=0 clear Timer6 interrupt flag  
 return 
;.end 
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Appedix B - K-State Energy Harvesting Demo Board Schematic 

 
Figure 5-22 Schematic 
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Figure 5-23 Layout
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Appedix C - Frequency Synthesis Board Schematic and Layout 

 
Figure 5-24 Schematic 
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Figure 5-25 Layout 
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Appedix D - K-State EHR Demo Board Code for 4MHz CPU Clock 

; Program peregine1#200uF10uF4M.asm 
; 
; Test program for Peregine 1# board. 
; By  William B. Kuhn, Xiaohu Zhang 
; Created 08/13/07. 
; 
; 
; TEST PLAN 2. The RFIC working depends on CC0, CCpic charge and discharge. 
;********************* 
; CC0   = 200uF 
; CC1   = N/A 
; CCpic = 10uF 
;********************* 
;Design: 
;Two charging capacitor are used here. One is CC0=200uF used to drive RFIC working for 0.012s at 
least; another is CCpic=10uF used to drive Microchip PIC16f676 working at 4MHz. 
; 
; 
; This program provides the 60 bits of programming needed to set 
; the fab4 transceiver chip to transmitt mode with full gain and sleep mode 
; enabled. To keep low power consuming, we use <1% duty cycle that means during 1 second, xx ms 
are occupied by RFIC to transmitt data and the remain time, xxx ms, RFIC will enter sleep mode to 
save power.    
; The synthesizer is setup to transimitt a frequency close to CCSDS channel 1  
; using integer-N mode.  The transmit freq is at 404.4 MHz. 
; In the control field, LPAena is set to 1 to put the TR switch into transmit mode and Stby_bar 
is set to 0 to allow RFIC slepping. See other programs for details on the programming bits. 
 
 
; Meta data for the compiler 
 list p = 16f676 
 radix dec 
 include <p16f676.inc> 
 errorlevel  -302              ; suppress arg range msg from list file 
 
; Configure the chip for Code protect off, Data Code protect off, Brownout detect off, MCLR 
disabled,  
; WDT disabled, Powerup timer enabled, and internal oscillator (with no use of output pin) 
 
    __CONFIG   _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_ON & _PWRTE_ON & 
_INTRC_OSC_NOCLKOUT  
 
; '__CONFIG' directive is used to embed configuration word within .asm file. 
; The lables following the directive are located in the respective .inc file. 
; See data sheet for additional information on configuration word settings. 
 
; Symbolic constants 
 
REG_EN  equ 0   ; RC0 (pin 10) ; Voltage regulator enable signal 
 
STATCLK  equ 1 ; RC1 (pin 9)  ; Serial programming input and status output register 
control pins 
LATCH  equ 2 ; RC2 (pin 8) 
STATDAT  equ 3 ; RA3 (pin 4) 
PGMCLK  equ 4 ; RC4 (pin 6) 
PGMDAT  equ 5 ; RC5 (pin 5) 
 
PW_CMP_H equ 0   ; RA0 (pin13)  ; Solar cell voltage compare 
PW_CMP_L       equ 1   ; RA1 (pin12) 
PIC_RST  equ 2   ; RA2 (pin11)  ; PIC reset button 
RFIC_PW_DN     equ 3   ; RC3 (pin7)   ; RFIC Power Down pin 
LED            equ 4   ; RA4 (pin3)   ; LED 
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; Register assignments 
 
 cblock 0x20 
w_temp    ; temporary used in (unimplemented) ISR at 0x004 
status_temp   ; ditto 
pclath_temp   ; temporary used in ISR 
numbits    ; # of bits to write to rfic 
temp    ; temporary 
count    ; counter used in delay function 
stat_group   ; which status grouping to read / display 
    ; 0 = temp, 1 = synthlock, 2 = rssi, 4 = spare 
temperature   ; variable to shift status bits into 
synth_lock   ; variable to shift status bits into 
rssi    ; variable to shift status bits into 
pulse_cnt   ; # of pulse send during wake up period, which is  
    ; determined by the frequency of modulation signal 
reg_ctl    ; control subfield 
tmr1_int_flg   ; flag used to indicate whether timer interrupt occured 
tmr1_int_cnt   ; # of timer1 interrupts #*0xffff 
tmr1_H    ; the left timing number high byte 
tmr1_L    ; the left timing number low byte 
sleep_cnt   ; # of WDT sleep period depends on the WDT presca 
 endc 
 
 
; ******************  Start of program ************************** 
 
; Setup reset vector to skip over interrupt subroutines, if any 
 org 0x00 
  goto start 
 
; An interrupt service routine template.  (Not used in this program) 
 org 0x004             ; interrupt vector location 
  ; SAVE current status register 
  movwf   w_temp           ; save off current W register contents 
  movf STATUS,w          ; move status register into W register 
  movwf status_temp       ; save off contents of STATUS register 
  movf PCLATH,w    ; move pclath register into w register 
  movwf   pclath_temp    ; save off contents of PCLATH register 
 
 
  ; isr code can go here or be located as a call subroutine elsewhere 
  clrf STATUS 
  btfsc PIR1, TMR1IF   ; timer1 overflow interrupt 
  call TMR1_INT   ; yes 
   
  btfsc   INTCON, INTF   ; if RA2 pin interrupt occure 
  call    RA2_INT   ; yes 
 
 
  ; RESTORED status register 
  movf pclath_temp,w     ; retrieve copy of PCLATH register 
  movwf   PCLATH            ; restore pre-isr PCLATH register contents 
  movf    status_temp,w     ; retrieve copy of STATUS register 
  movwf STATUS            ; restore pre-isr STATUS register contents 
  swapf   w_temp,f 
  swapf   w_temp,w          ; restore pre-isr W register contents 
  retfie                    ; return from interrupt 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  
  ;  Calibration of internal oscillator (from 16f676 template code)  
  bsf     STATUS,RP0        ; set file register bank to 1  
  call    0x3FF             ; retrieve factory calibration value 
  movwf   OSCCAL            ; update register with factory cal value  
  bcf     STATUS,RP0        ; set file register bank to 0 
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  ; initialize the PIC and its I/O ports 
  call initPIC 
 
  bcf PORTC, REG_EN   ; Disable voltage regulator wait for CC0 charging 
  bsf    PORTC, RFIC_PW_DN ; Power down RFIC 
 
  clrwdt    ; clear WDT 
 
  bsf     PORTA, LED 
  call    wait10ms 
  bcf     PORTA, LED 
  call    wait10ms 
  bsf     PORTA, LED 
  call    wait10ms 
  bcf     PORTA, LED 
     
cc0_1st_charge      ; CC0(du=+5.2v i=0.16mA:dt=7.15s) at same time
 CCpic(du=+2.7v i=0.16mA:dt=0.168sec) 
  movlw   3    ; CC0 charge time 7.15sec = 2.3sec *  3.1 
  movwf   sleep_cnt 
cc0_1st_charging     ; WDT period=2.3s 
  call    sleep_set 
  sleep 
  nop 
  decfsz  sleep_cnt,f 
  goto    cc0_1st_charging 
 
  clrwdt     ; clear WDT 
 
  ; initialize program variables to zero 
  movlw 0 
  movwf stat_group 
  movwf temperature 
  movwf synth_lock 
  movwf rssi 
  movwf  reg_ctl 
  movwf   tmr1_int_flg 
 
  movlw 5   ; initialize the pulse counter as 5 because we use 
1kHz AM signal to test  
  movlw   pulse_cnt  ; that 5ms burst is the button line to makes a nice 
'beep'. 
 
  clrwdt    ; clear WDT 
 
 
main_loop 
 
enable_reg 
  bsf    PORTC, REG_EN ; Enable Voltage Regulator to drive RFIC 
  clrwdt    ; clear WDT 
   
rf_transmit 
  clrwdt    ; clear WDT 
  call rf_tx   ; send BEEP  cc0(dt=0.011s-0.013s i=21mA : du=-1.24v) 
CCpic(dt=0.015s i=0.50mA : du=-0.75v) 
  clrwdt    ; clear WDT 
 
disable_reg 
  bcf  PORTC, REG_EN ; Disable Voltage Regulator to stop discharge from 
CC0 
 
c_recharge; cc0(du=1.24v i=0.16mA : dt=1.7s) CCpic(du=0.75v i=0.16mA : dt=0.46s) WDT period=2.3s 
  movlw   1    ; Just only sleep 2.3s, if want more then 
increase this value 
  movwf   sleep_cnt 
c_recharging 
  call    sleep_set 
  sleep 
  nop 
  decfsz sleep_cnt, f 
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  goto c_recharging 
  clrwdt 
  goto main_loop 
 
; ************************** 
; initPIC 
; Initialize I/O port direction, pullups, and other control registers 
; ************************** 
 
initPIC  
 
  bcf  STATUS, RP0 ; set to bank 0 (just in case) 
 
  ; disable interrupts and disconnect  comparator 
  bcf  INTCON, GIE ; this is the default on PowerOnReset (POR), but 
never hurts 
  movlw 0x07   ; disconnect comparator by setting CM2:CM0 high 
  movwf CMCON 
 
  bsf STATUS, RP0  ; set to bank 1 for the following high registers 
 
  clrf ANSEL   ; set all pins (ports A and C) to be digital 
 
  movlw 0x0F   ; set port A pins to be inputs, except bit RA4, RA5, 
  movwf TRISA 
 
  movlw 0xff   ; enable all weak pullups (this is the default, so 
not really needed) 
  movwf WPUA 
   
  movlw   0x00   ; disable PORTA pin change interrupt 
  movwf IOCA 
 
  ; initialize port C 
  movlw 0x00   ; set all to outputs, except RC3 which is STATDAT 
  movwf TRISC 
 
  ; set initial  values on ports 
  bcf  STATUS, RP0 ; set back to bank 0 
 
  ; set Port A and Port C 
  ; Set Power Down RFIC, turn off LED, all set as 0 except RA3 
  clrf    PORTA 
  clrf PORTC 
 
  ; initialize Timer1 interrupt 
  clrf T1CON   ; stop timer1, T1_OSC disabled, prescaler=1:1 
         clrf TMR1H 
  clrf TMR1L 
  clrf INTCON   ; disable interrupts 
  bsf     STATUS, RP0 ; set bank 1 
  clrf PIE1   ; disable peripheral interrupts 
  bcf  STATUS, RP0 ; set bank 0 
  clrf PIR1   ; clear peripheral interrupts flag 
  movlw   0x04   ; internal clock, 1:1 prescaler, timer1 stop 
  movwf   T1CON 
   
 
  ; initialize interrupt control register 
  movlw   b'11010000'  ; enable Gloable interrupts, enable Peripheral 
interrupts, enable RA2 interrupts; 
  movwf   INTCON 
 
  ; set OPTION_REG at last step 
  bsf     STATUS, RP0 ; set bank 1 
  movlw 0x3f   ; Interrupt on falling edge of RA2/INT pin; 
Prescaler is assigned to the WDT; WDT Rate 2.3s=18ms*128 
  movwf OPTION_REG   
  bcf  STATUS, RP0 ; set back to bank for normal use 0 !!! 
 
  retlw 0 
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; ************************** 
; rf_tx 
; Program RFIC to Transmit 5 burst 
; ************************** 
rf_tx 
 
rfic_pw_on  
  bcf     PORTC, RFIC_PW_DN 
 
pgm_standby 
   movlw B'00001000' ; standby: pwr_sw_out_sw enable, PW_CTL_1 enable 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
 
   ; wait TCXO work stably for 3500us 
   movlw 0xF2  ; 3500us timing 0xf253 = 0xffff- 3500 
   movwf TMR1H 
 
   movlw 0x53 
   movwf TMR1L 
 
   call  tmr1_on  ; enable timer1 
 
wait_tcxo  
   btfss tmr1_int_flg,0 
   goto  wait_tcxo 
   call  tmr1_off  ; disable timer1  
   bcf   tmr1_int_flg,0; clear tmr1_int_flg bit0 
 
pgm_TX 
   ; 1st pulse of AM burst 
   movlw B'10001000' ; enable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
   movlw B'00001000' ; disable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
 
   ; 2nd pulse of AM burst 
   movlw B'10001000' ; enable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
   movlw B'00001000' ; disable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
 
   ; 3rd pulse of AM burst 
   movlw B'10001000' ; enable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
   movlw B'00001000' ; disable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
 
 
   ; 4th pulse of AM burst 
   movlw B'10001000' ; enable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
   movlw B'00001000' ; disable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
 
 
   ; 5th pulse of AM burst 
   movlw B'10001000' ; enable LPA 
   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode 
   movlw B'00001000' ; disable LPA 
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   movwf reg_ctl  ; initialize control byte 
   call  pgm_tx_mode    
 
rfic_pw_off 
   bsf   PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2 
 
  return 
 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output lsb first (right shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of lsb 
  btfsc temp,0  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf  PORTC, PGMDAT 
  goto outbits_clk 
outbits_clr bcf PORTC, PGMDAT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf  PORTC, PGMCLK 
  bcf  PORTC, PGMCLK 
 
  ; process the next bit, or return if all done 
  rrf  temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
 
; ************************* 
; latchbits 
; latch the bits shifted in with outbits 
; ************************* 
 
latchbits ; Bring latch line high and then toggle the clock line 
   bsf  PORTC, LATCH 
   bsf  PORTC, PGMCLK 
   bcf  PORTC, PGMCLK 
   bcf  PORTC, LATCH 
   retlw 0 
 
 
; ********************************* 
; pgm_tx_mode 
; Programs synth, control, etc bits. 
; See program header for explanation of bit pattern 
; ********************************** 
 
pgm_tx_mode ; Program 60 bits of control (see program header) 
 
  ; 33 bits of VCO and synthesizer bits first... 
  ; coarse tune 
  movlw 4 
  movwf numbits 
  movlw B'1011' ; 420 to 455 MHz range 
  call outbits 
 
  ; lower 8 bits of fractional count 
  movlw 8 
  movwf numbits 
     movlw B'00000000'   
  call outbits 
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  ; upper 2 bits of fractional count 
  movlw 2 
  movwf numbits 
  movlw B'00' 
  call outbits 
 
  ; lower 8 bits of N count 
  movlw 8 
  movwf numbits 
  movlw B'01011101' 
  call outbits 
 
  ; upper 2 bits of N count 
  movlw 2 
  movwf numbits 
  movlw B'00' 
  call outbits 
 
  ; 7 bit ref divider  
  movlw 7 
  movwf numbits 
  movlw B'0000100' 
  call outbits 
 
  ; 2 bits of SDM control 
  movlw 2 
  movwf numbits 
  movlw B'00' 
  call outbits 
 
  ; now for the remaining 27 bits... 
  ; all 14 attenuator bits = 0 (no attenuation) 
  movlw 7 
  movwf numbits 
  movlw B'0000000' 
  call outbits 
  movlw 7 
  movwf numbits 
  movlw B'0000000' 
  call outbits 
 
  ; 8 bits of config control (LPAenabled) 
  movlw 8 
  movwf numbits 
  movf reg_ctl,W  ; move reg_ctl content to W 
  call outbits 
 
  ; 5 more bits (lna freq alignment=4, RSSIenable=0, and spare=0) 
  movlw 5 
  movwf numbits 
  movlw B'01100' 
  call outbits 
 
  ; latch the bits into the chip and return 
  call  latchbits 
  retlw 0 
 
; ************************************ 
; wait1ms 
; Delays by about 1 milliseconds 
; ************************************ 
wait1ms movlw 1 
  movwf count  ; outer loop ms counter 
 
wait1ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait1ms_inner decf temp,F  ; dec inner counter -- 2us 
  btfss STATUS,Z  ; check zero flag  -- 2us 
  goto wait10ms_inner ; continue if not zero -- 4us 
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  decfsz count, F   ; dec outer counter 
  goto wait10ms_outer ; continue if not zero 
 
  retlw 0 
 
; ************************************ 
; wait10ms 
; Delays by about 10 milliseconds 
; ************************************ 
wait10ms movlw 10 
  movwf count  ; outer loop ms counter 
 
wait10ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait10ms_inner decf temp,F  ; dec inner counter -- 2us 
  btfss STATUS,Z  ; check zero flag  -- 2us 
  goto wait10ms_inner ; continue if not zero -- 4us 
 
  decfsz count, F   ; dec outer counter 
  goto wait10ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************ 
; wait20ms 
; Delays by about 100 milliseconds 
; ************************************ 
wait20ms movlw 20 
  movwf count  ; outer loop ms counter 
 
wait20ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait20ms_inner decf temp,F  ; dec inner counter -- 2us 
  btfss STATUS,Z  ; check zero flag  -- 2us 
  goto wait20ms_inner ; continue if not zero -- 4us 
 
  decfsz count, F   ; dec outer counter 
  goto wait20ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************ 
; wait100ms 
; Delays by about 100 milliseconds 
; ************************************ 
wait100ms movlw 100 
  movwf count  ; outer loop ms counter 
 
wait100ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait100ms_inner decf temp,F  ; dec inner counter -- 2us 
   btfss STATUS,Z  ; check zero flag  -- 2us 
   goto wait100ms_inner ; continue if not zero -- 4us 
 
   decfsz count, F   ; dec outer counter 
   goto wait100ms_outer ; continue if not zero 
 
   retlw 0 
 
 
 
; ************************************ 
; wait1sec 
; Delays by about 1 second 
; ************************************ 
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wait1sec  call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
 
   retlw 0 
 
; ************************************ 
; wait10sec 
; Delays by about 10 second 
; ************************************ 
wait10sec  call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
 
   retlw 0 
 
 
; ************************************ 
; tmr1_on 
; Enable timer1 with 100us waiting 
;  
; ************************************ 
tmr1_on  
  ;movlw 0xFF   ; 200us timing = 0xffff- 200= 0xff37 
  ;movwf TMR1H 
 
  ;movlw 0x37 
  ;movwf TMR1L 
 
  bsf   T1CON, TMR1ON ; start timer1 on 
  bsf   STATUS, RP0  ; set bank 1 
  bsf   PIE1, TMR1IE  ; enable timer1 
  bcf   STATUS, RP0  ; set bank 0 
 
  return 
 
; ************************************ 
; tmr1_off 
; Disable timer1 with 100us waiting 
;  
; ************************************ 
tmr1_off 
 
  bcf   T1CON, TMR1ON ; stop timer1 on 
  bsf   STATUS, RP0  ; set bank 1 
  bcf   PIE1, TMR1IE  ; disable timer1 
  bcf   STATUS, RP0  ; set bank 0 
 
  return 
 
 
; ************************************ 
; tmr1_timing 
; Timer1 timing 
; set timer to wait us = tmr1_int_cnt*0xffffus + (tmr1_H + tmrl_L)us 
; ************************************ 
tmrl_timing 
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   call   tmr1_on   ; enable timer1 as rollover running 
wait_big_loop 
   btfss  tmr1_int_flg,0 
   goto   wait_big_loop 
    
   bcf    tmr1_int_flg,0  ; clear tmr1_int_flg bit0 
   decfsz tmr1_int_cnt,F    ; if 15 times over 
   goto   wait_big_loop 
   call   tmr1_off  ; disable timer1 to change counter   
 
   ; set sleep timer to wait the left time= tmrl_H + tmr1_L 
   movf   tmr1_H, W 
   movwf  TMR1H 
 
   movf   tmr1_L, W 
   movwf  TMR1L 
 
   call   tmr1_on   ; enable timer1 
 
wait_small_loop 
   btfss  tmr1_int_flg,0 
   goto   wait_small_loop 
   call   tmr1_off  ; disable timer1 
 
   bcf    tmr1_int_flg,0    ; clear tmr1_int_flg bit0 
 
   return 
 
 
; ************************************ 
; TMR1_INT 
; ISR of timer1 overflow. 
;  
; ************************************ 
TMR1_INT   
 bsf tmr1_int_flg,0 ; set tmr1_int_flg bit0 as 1  
 bcf PIR1, TMR1IF ; clear the TIMER1 interrupt flag 
 return   ; isr return 
 
RA2_INT 
 bcf INTCON, INTF ; clear RA2 interrupt flag 
 movlw 0x00 
 movwf PCL 
 
 
sleep_set   
  movlw 0x00  ; DISABLE all weak pullups (this is the default, so not 
really needed) 
  movwf WPUA 
 
  movlw   0x07 
  movwf   CMCON  ; Comparator OFF 
 
  bcf     VRCON,   VREN ; CVref circuit power down 
  bcf     ADCON0,  ADON ; A/D Converter shut-off1 
 
  return 
 
;  that's all  
 end 
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Appedix E - K-State EHR Demo Board Code for 400kHz CPU 

Clock 

; Program peregine3# 433.92MHz TX.asm 
; 
; Test program for Peregine 1# board. 
; By  Xiaohu Zhang, William B. Kuhn 
; Created 08/23/07. 
; 
; This code is used to test the TX frequency. That means it will transmite 
; always. 
; 
; 
; TEST PLAN 2. The RFIC working depends on CC0, CCpic charge and discharge. 
;********************* 
; CC0   = 200uF 
; CC1   = N/A 
; CCpic = 10uF 
;********************* 
;Design: 
;  Two charging capacitor are used here. One is CC0=220uF used to drive RFIC  
;  working for 0.012s at least; another is CCpic=10uF used to drive Microchip 
;  PIC16f676 are give power by 3.3v voltage regulator. So voltage regulator 
;  are always working. 
;  PIC16F676 operating specifications: 
;      Operating Frequency  :  400kH 
;      Oscillator Period    :  2.5uS 
;      Instruction Exe Time :  10uS = 4*2.5uS 
;      Operating Current    :  0.16mA 
;      Sleeping  Current    : 
;      TIMER1 Counte/time   :  10uS 
; 
; This program provides the 60 bits of programming needed to set 
; the fab4 transceiver chip to transmitt mode with full gain and sleep mode 
; enabled. To keep low power consuming, we use <1% duty cycle that means during  
; 1 second, xx ms are occupied by RFIC to transmitt data and the remain time, 
; xxx ms, RFIC will enter sleep mode to save power.    
; The synthesizer is setup to transimitt a frequency close to CCSDS channel 1  
; using integer-N mode.  The transmit freq is at 404.4 MHz. 
; 
; In the control field, LPAena is set to 1 to put the TR switch into transmit mode 
; and Stby_bar is set to 0 to allow RFIC slepping. 
; 
; See other programs for details on the programming bits. 
 
 
; Meta data for the compiler 
 list p = 16f676 
 radix dec 
 include <p16f676.inc> 
 errorlevel  -302              ; suppress arg range msg from list file 
 
; Configure the chip for Code protect off, Data Code protect off, Brownout detect off, MCLR 
disabled, WDT disabled, Powerup timer enabled, and internal oscillator (with no use of output pin) 
 
    __CONFIG   _CP_OFF & _CPD_OFF & _BODEN_OFF & _MCLRE_OFF & _WDT_OFF & _PWRTE_ON & 
_EXTRC_OSC_NOCLKOUT  
 
; '__CONFIG' directive is used to embed configuration word within .asm file. 
; The lables following the directive are located in the respective .inc file. 
; See data sheet for additional information on configuration word settings. 
 
 
; Symbolic constants 
 
REG_EN   equ 0   ; RC0 (pin 10) ; Voltage regulator enable signal 
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STATCLK   equ 1 ; RC1 (pin 9)  ; Serial programming input and status output 
register control pins 
LATCH   equ 2 ; RC2 (pin 8) 
;STATDAT   equ 3 ; RC3 (pin 7) 
STATDAT   equ 3 ; RA3 (pin 4)  ; RA3 can only be used as INPUT 
PGMCLK   equ 4 ; RC4 (pin 6) 
PGMDAT   equ 5 ; RC5 (pin 5) 
 
PW_CMP_H  equ 0   ; RA0 (pin 13)  ; Solar cell voltage compare 
PW_CMP_L         equ 1   ; RA1 (pin 12) 
 
PIC_RST   equ 2   ; RA2 (pin 11)  ; PIC reset button 
;RFIC_PW_DN       equ 3   ; RA3 (pin4)   ; RFIC Power Down pin 
RFIC_PW_DN       equ 3   ; RC3 (pin 7)   ; RFIC Power Down pin 
LED              equ 4   ; RA4 (pin 3)   ; LED 
 
 
 
 
; Register assignments 
 
 cblock 0x20 
w_temp    ; temporary used in (unimplemented) ISR at 0x004 
status_temp   ; ditto 
pclath_temp   ; temporary used in ISR 
 
numbits    ; # of bits to write to rfic 
temp    ; temporary 
count    ; counter used in delay function 
 
stat_group   ; which status grouping to read / display 
     ; 0 = temp, 1 = synthlock, 2 = rssi, 4 = spare 
 
temperature   ; variable to shift status bits into 
synth_lock   ; variable to shift status bits into 
rssi    ; variable to shift status bits into 
 
pulse_cnt   ; # of pulse send during wake up period, which is  
     ; determined by the frequency of modulation signal 
 
reg_ctl    ; control subfield 
 
tmr1_int_flg   ; flag used to indicate whether timer interrupt occured 
tmr1_int_cnt   ; # of timer1 interrupts #*0xffff 
tmr1_H    ; the left timing number high byte 
tmr1_L    ; the left timing number low byte 
 
sleep_cnt   ; # of WDT sleep period depends on the WDT presca 
 endc 
 
 
 
; ******************  Start of program ************************** 
 
; Setup reset vector to skip over interrupt subroutines, if any 
 org 0x00 
  goto start 
 
; An interrupt service routine template.  (Not used in this program) 
 org 0x004             ; interrupt vector location 
  ; SAVE current status register 
  movwf   w_temp           ; save off current W register contents 
  movf STATUS,w          ; move status register into W register 
  movwf status_temp       ; save off contents of STATUS register 
  movf PCLATH,w    ; move pclath register into w register 
  movwf   pclath_temp    ; save off contents of PCLATH register 
 
 
  ; isr code can go here or be located as a call subroutine elsewhere 
  clrf STATUS 
  btfsc PIR1, TMR1IF   ; timer1 overflow interrupt 
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  call TMR1_INT   ; yes 
   
  btfsc   INTCON, INTF   ; if RA2 pin interrupt occure 
  call    RA2_INT   ; yes 
 
 
  ; RESTORED status register 
  movf pclath_temp,w     ; retrieve copy of PCLATH register 
  movwf   PCLATH            ; restore pre-isr PCLATH register contents 
  movf    status_temp,w     ; retrieve copy of STATUS register 
  movwf STATUS            ; restore pre-isr STATUS register contents 
  swapf   w_temp,f 
  swapf   w_temp,w          ; restore pre-isr W register contents 
  retfie                    ; return from interrupt 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  
  ;  Calibration of internal oscillator (from 16f676 template code)  
;  call    0x3FF             ; retrieve factory calibration value 
  bsf     STATUS,RP0        ; set file register bank to 1  
  call    0x3FF             ; retrieve factory calibration value 
  movwf   OSCCAL            ; update register with factory cal value  
  bcf     STATUS,RP0        ; set file register bank to 0 
 
  ; initialize the PIC and its I/O ports 
  call initPIC 
 
  bsf     PORTA, LED 
  call    wait10ms 
  bcf     PORTA, LED 
  call    wait10ms 
  bsf     PORTA, LED 
  call    wait10ms 
  bcf     PORTA, LED 
 
  ; initialize program variables to zero 
  movlw 0 
  movwf stat_group 
  movwf temperature 
  movwf synth_lock 
  movwf rssi 
  movwf  reg_ctl 
  movwf   tmr1_int_flg 
 
  movlw 5; initialize the pulse counter as 5 because we use 1kHz AM signal to test  
  movlw   pulse_cnt ; that 5ms burst is the button line to makes a nice 'beep'. 
 
  call    en_sw_software  ; enable software switch to enable vdd_vco 
 
  call wait20ms 
 
;pgm_TX 
 
  movlw B'10001000' ; enable LPA 
  movwf reg_ctl  ; initialize control byte 
  call  pgm_tx_mode 
  bcf   PORTC, RFIC_PW_DN 
 
main_loop 
 
  bsf     PORTA, LED ; Cannot be here because drop too much current 
  call    wait100ms 
  bcf     PORTA, LED 
  call    wait100ms 
 
  clrwdt   ; clear WDT 
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  goto main_loop 
 
; ************************** 
; initPIC 
; Initialize I/O port direction, pullups, and other control registers 
; ************************** 
 
initPIC  
 
  bcf  STATUS, RP0 ; set to bank 0 (just in case) 
 
  ; disable interrupts and disconnect  comparator 
  bcf  INTCON, GIE ; this is the default on PowerOnReset (POR), but 
never hurts 
  movlw 0x07   ; disconnect comparator by setting CM2:CM0 high 
  movwf CMCON 
 
  bsf  STATUS, RP0 ; set to bank 1 for the following high registers 
  clrf ANSEL   ; set all pins (ports A and C) to be digital 
 
  movlw 0x2F   ; set port A pins to be inputs, except LED bit RA4, 
  movwf TRISA 
 
  movlw 0xff   ; enable all weak pullups (this is the default, so 
not really needed) 
  movwf WPUA 
   
  movlw   0x00   ; disable PORTA pin change interrupt 
  movwf IOCA 
 
  ; initialize port C 
  movlw 0x00   ; set all to outputs 
  movwf TRISC 
 
  ; set initial  values on ports 
  bcf  STATUS, RP0 ; set back to bank 0 
 
  ; set Port A and Port C 
  ;movlw   0x08   ; Set Power Down RFIC, turn off LED, all set as 0 
except RA3 
  ;movlw   0x00 
  ;movwf   PORTA 
  clrf    PORTA 
  movlw   0x08 
  movwf   PORTC 
  ;clrf PORTC 
 
  ; initialize Timer1 interrupt 
  clrf T1CON   ; stop timer1, T1_OSC disabled, prescaler=1:1 
       clrf TMR1H 
  clrf TMR1L 
  clrf INTCON   ; disable interrupts 
  bsf STATUS, RP0  ; set bank 1 
  clrf PIE1   ; disable peripheral interrupts 
  bcf STATUS, RP0  ; set bank 0 
  clrf PIR1   ; clear peripheral interrupts flag 
  movlw   0x04   ; internal clock, 1:1 prescaler, timer1 stop 
  movwf   T1CON 
   
 
  ; initialize interrupt control register 
  movlw   b'11010000'  ; enable Gloable interrupts, enable Peripheral 
interrupts, enable RA2 interrupts; 
  movwf   INTCON 
 
  ; set OPTION_REG at last step 
  bsf     STATUS, RP0 ; set bank 1 
  movlw 0x3E   ; Interrupt on falling edge of RA2/INT pin; 
Prescaler is assigned to the WDT; WDT Rate 1.15s=18ms*64 
  movwf OPTION_REG   
  bcf STATUS, RP0 ; set back to bank for normal use 0 !!! 
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  retlw 0 
 
; ************************** 
; en_sw_software 
; Enable software switch to enable vdd_vco 
; ************************** 
en_sw_software 
  movlw B'00001000'  ; enable standy_bar---enable sw_software   
  movwf reg_ctl       ; initialize control byte 
  call  pgm_tx_mode 
  return 
 
; ************************** 
; dis_sw_software 
; disable software switch to enable vdd_vco 
; ************************** 
dis_sw_software 
  movlw B'00000000'  ; enable standy_bar---enable sw_software   
  movwf reg_ctl      ; initialize control byte 
  call  pgm_tx_mode 
  return 
 
 
; ************************** 
; rf_tx 
; Program RFIC to Transmit 5 burst 
; ************************** 
rf_tx 
 
pgm_TX 
   ; 1st pulse of AM burst 
   movlw B'10001000' ; enable LPA 
 
   movwf reg_ctl  ; initialize control byte 
 
   call  pgm_tx_mode 
    
   ; wait TCXO work stably for 3500us=0x0DAC , due to Timer1 count cycle = 
10uS 
   movlw 0xFE   ; 3500us timing 0xfea1 = 0xffff- 350 
   movwf TMR1H 
   movlw 0xA1 
   movwf TMR1L 
 
   call  tmr1_on  ; enable timer1 
 
wait_tcxo  
   btfss tmr1_int_flg,0 
   goto  wait_tcxo 
   call  tmr1_off  ; disable timer1  
   bcf   tmr1_int_flg,0; clear tmr1_int_flg bit0 
 
 
TX_1st_beep  
   bcf   PORTC, RFIC_PW_DN    
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
   bsf   PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2 
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
 
 
TX_2nd_beep  
   bcf   PORTC, RFIC_PW_DN    
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
   bsf   PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2 
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
 
 
TX_3rd_beep  
   bcf   PORTC, RFIC_PW_DN    
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
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   bsf   PORTC, RFIC_PW_DN  ; Power off RFIC, disable PW_CTL_2 
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
 
TX_4th_beep  
   bcf   PORTC, RFIC_PW_DN    
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
   bsf   PORTC, RFIC_PW_DN ; Power off RFIC, disable PW_CTL_2 
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
 
 
TX_5th_beep  
   bcf   PORTC, RFIC_PW_DN    
   call  waitP5ms   ; wait 0.5mS for 1kHz AM beep 
   bsf   PORTC, RFIC_PW_DN  ; Power off RFIC, disable PW_CTL_2 
   ;call  waitP5ms  ; wait 0.5mS for 1kHz AM beep 
 
  return 
 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output lsb first (right shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of lsb 
  btfsc temp,0  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf  PORTC, PGMDAT 
  goto outbits_clk 
outbits_clr bcf PORTC, PGMDAT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf  PORTC, PGMCLK 
  bcf  PORTC, PGMCLK 
 
  ; process the next bit, or return if all done 
  rrf  temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
 
; ************************* 
; latchbits 
; latch the bits shifted in with outbits 
; ************************* 
 
latchbits ; Bring latch line high and then toggle the clock line 
   bsf  PORTC, LATCH 
   bsf  PORTC, PGMCLK 
   bcf  PORTC, PGMCLK 
   bcf  PORTC, LATCH 
   retlw 0 
 
 
; ********************************* 
; pgm_tx_mode 
; Programs synth, control, etc bits. 
; See program header for explanation of bit pattern 
; ********************************** 
 
pgm_tx_mode ; Program 60 bits of control (see program header) 
 
  ; 33 bits of VCO and synthesizer bits first... 
  ; coarse tune 
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  movlw 4 
  movwf numbits 
  ;movlw B'1011' ; 420 to 455 MHz range 
  movlw B'1011' ; 400 to 445 MHz range 
  call outbits 
 
  ; lower 8 bits of fractional count 
  movlw 8 
  movwf numbits 
  movlw B'10011010'  ; 433.92MHz  410  -->432.018 
  call outbits 
 
  ; upper 2 bits of fractional count 
  movlw 2 
  movwf numbits 
  movlw B'01'; 433.92MHz 
  call outbits 
 
  ; lower 8 bits of N count 
  movlw 8 
  movwf numbits 
  movlw B'01011010' ; 433.92MHz  90   
  call outbits 
 
  ; upper 2 bits of N count 
  movlw 2 
  movwf numbits 
  movlw B'00' 
  call outbits 
 
  ; 7 bit ref divider  
  movlw 7 
  movwf numbits 
  movlw B'0000100' 
  call outbits 
 
  ; 2 bits of SDM control 
  movlw 2 
  movwf numbits 
  movlw B'11' 
  call outbits 
 
  ; now for the remaining 27 bits... 
  ; all 14 attenuator bits = 0 (no attenuation) 
  movlw 7 
  movwf numbits 
  movlw B'0000000' 
  call outbits 
  movlw 7 
  movwf numbits 
  movlw B'0000000' 
  call outbits 
 
  ; 8 bits of config control (LPAenabled) 
  movlw 8 
  movwf numbits 
  movf reg_ctl,W  ; move reg_ctl content to W 
  call outbits 
 
  ; 5 more bits (lna freq alignment=4, RSSIenable=0, and spare=0) 
  movlw 5 
  movwf numbits 
  movlw B'01100' 
  call outbits 
 
 
  ; latch the bits into the chip and return 
  call  latchbits 
  retlw 0 
 
; ************************************ 
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; wait0.5ms 
; Delays by about 0.5 milliseconds 
; ************************************ 
waitP5ms  movlw 12 
    movwf temp  ; inner loop counter (12.5 * 40us = 0.5ms) 
 
waitP5ms_inner decf temp,F  ; dec inner counter -- 20us 
    btfss STATUS,Z  ; check zero flag  -- 20us 
    goto waitP5ms_inner ; continue if not zero -- 40us 
 
    retlw 0 
 
; ************************************ 
; wait1ms 
; Delays by about 1 milliseconds 
; ************************************ 
wait1ms   movlw 25 
    movwf temp  ; inner loop counter (25 times 40us = 1ms) 
 
wait1ms_inner decf temp,F  ; dec inner counter -- 20us 
    btfss STATUS,Z  ; check zero flag  -- 20us 
    goto wait1ms_inner ; continue if not zero -- 40us 
 
    retlw 0 
 
; ************************************ 
; wait10ms 
; Delays by about 10 milliseconds 
; ************************************ 
wait10ms  movlw 250 
    movwf temp  ; inner loop counter (250 times 40us = 10ms) 
 
wait10ms_inner decf temp,F  ; dec inner counter -- 20us 
    btfss STATUS,Z  ; check zero flag  -- 20us 
    goto wait10ms_inner ; continue if not zero -- 40us 
 
    retlw 0 
 
 
; ************************************ 
; wait20ms 
; Delays by about 20 milliseconds 
; ************************************ 
wait20ms movlw 2 
   movwf count  ; outer loop ms counter 
 
wait20ms_outer movlw 250 
    movwf temp  ; inner loop counter (250 times 40us = 10ms) 
 
wait20ms_inner decf temp,F  ; dec inner counter -- 20us 
    btfss STATUS,Z  ; check zero flag  -- 20us 
    goto wait20ms_inner ; continue if not zero -- 40us 
 
    decfsz count, F   ; dec outer counter 
    goto wait20ms_outer ; continue if not zero 
 
    retlw 0 
 
 
; ************************************ 
; wait100ms 
; Delays by about 100 milliseconds 
; ************************************ 
wait100ms movlw 10 
   movwf count  ; outer loop ms counter 
 
wait100ms_outer movlw 250 
    movwf temp  ; inner loop counter (250 times 40us = 10ms) 
 
wait100ms_inner decf temp,F  ; dec inner counter -- 20us 
    btfss STATUS,Z  ; check zero flag  -- 20us 
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    goto wait100ms_inner ; continue if not zero -- 40us 
 
    decfsz count, F   ; dec outer counter 
    goto wait100ms_outer ; continue if not zero 
 
    retlw 0 
 
 
 
; ************************************ 
; wait1sec 
; Delays by about 1 second 
; ************************************ 
wait1sec  call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
   call wait100ms 
 
   retlw 0 
 
; ************************************ 
; wait10sec 
; Delays by about 10 second 
; ************************************ 
wait10sec  call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
   call wait1sec 
 
   retlw 0 
 
 
; ************************************ 
; tmr1_on 
; Enable timer1 with 100us waiting 
;  
; ************************************ 
tmr1_on  
  ;movlw 0xFF    ; 200us timing = 0xffff- 200= 0xff37 
  ;movwf TMR1H 
 
  ;movlw 0x37 
  ;movwf TMR1L 
 
  bsf   T1CON, TMR1ON  ; start timer1 on 
  bsf   STATUS, RP0  ; set bank 1 
  bsf   PIE1, TMR1IE  ; enable timer1 
  bcf   STATUS, RP0  ; set bank 0 
 
  return 
 
; ************************************ 
; tmr1_off 
; Disable timer1 with 100us waiting 
;  
; ************************************ 
tmr1_off 
 
  bcf   T1CON, TMR1ON  ; stop timer1 on 
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  bsf   STATUS, RP0  ; set bank 1 
  bcf   PIE1, TMR1IE  ; disable timer1 
  bcf   STATUS, RP0  ; set bank 0 
 
  return 
 
 
; ************************************ 
; tmr1_timing 
; Timer1 timing 
; set timer to wait us = tmr1_int_cnt*0xffffus + (tmr1_H + tmrl_L)us 
; ************************************ 
tmrl_timing 
   call   tmr1_on   ; enable timer1 as rollover running 
wait_big_loop 
   btfss  tmr1_int_flg,0 
   goto   wait_big_loop 
    
   bcf    tmr1_int_flg,0  ; clear tmr1_int_flg bit0 
   decfsz tmr1_int_cnt,F    ; if 15 times over 
   goto   wait_big_loop 
   call   tmr1_off  ; disable timer1 to change counter  
 
   ; set sleep timer to wait the left time= tmrl_H + tmr1_L 
   movf   tmr1_H, W 
   movwf  TMR1H 
 
   movf   tmr1_L, W 
   movwf  TMR1L 
 
   call   tmr1_on   ; enable timer1 
 
wait_small_loop 
   btfss  tmr1_int_flg,0 
   goto   wait_small_loop 
   call   tmr1_off  ; disable timer1 
   bcf    tmr1_int_flg,0    ; clear tmr1_int_flg bit0 
 
   return 
 
 
; ************************************ 
; TMR1_INT 
; ISR of timer1 overflow. 
;  
; ************************************ 
TMR1_INT 
   
 bsf tmr1_int_flg,0 ; set tmr1_int_flg bit0 as 1 
 bcf PIR1, TMR1IF ; clear the TIMER1 interrupt flag  
 return   ; isr return 
 
RA2_INT 
 bcf INTCON, INTF ; clear RA2 interrupt flag 
 movlw 0x00 
 movwf PCL 
 
sleep_set   
  movlw 0x00; DISABLE all weak pullups (this is the default, so not really needed) 
  movwf WPUA 
  movlw   0x07 
  movwf   CMCON   ;Comparator OFF 
  bcf     VRCON,   VREN   ; CVref circuit power down 
  bcf     ADCON0,  ADON   ; A/D Converter shut-off1 
  return 
 
;  that's all  
 
 End 
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Appedix F - Frequency Synthesizer PIC12F509 Code 

F.1 151MHz Board 
 
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter 
; By    William B. Kuhn 
; Created  11/25/00 
; Revised 12/01/06 for use with 12F509 
; Revised   8/17/07 for downconversion of LRIT signal to 138.000 MHz 
 
; Modified  Xiaohu Zhang  5/22/2008 
; Modified to be used for 151.94MHz transmiter 
;      f_vco = 151.94e6 = [32*B + A] * (19.2e6/R)  --> 151.94e6 = (N*19.2e6)/R 
;      when N = 7597 then R = 960 
;    thus B = 237, A = 13 and R = 960 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 1 0 1 1 0 1 0 1 1  0  1  1  1  0  0  0  0  0  0 
; 
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 0 0 0 1 1 1  1  0  0  0  0  0  0  0  0  1 
 
 
; This program sets up the National Semiconductor LMX2326 synthesizer chip 
; and increments through channels when a switch is pressed. 
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz 
; clock), and programs one of 10 channels from 138 MHz to 147 MHz. 
; On powerup, the channel is set to 138 MHz.  Each press of the channel up 
; switch will advance to the next channel, 1 MHz higher.  After channel 10 
; is reached (147 MHz), the synth is programmed to an invalid channel to force 
; the lock light to go out (useful for testing and also for knowing where one 
; is in the sequence).  At the next press, channel 1 is again programmed 
; and the sequence repeats. 
 
 
 
; Meta data for the compiler 
; This is for a 12f509 with 1024 words of program and 41 file registers 
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs 
 list p = 12f509 
 radix dec 
 include <p12f509.inc> 
 
; Configure the chip for MCLR disabled, Code protect off, 
; WDT disabled, and crystal oscillator 
 __config H'0a' 
 
; Symbolic constants 
 
NUMCHAN  equ 20 ; number of channels we can tune to 
CLKBIT  equ 0 ; GPIO bit 0 is clock bit on synth 
DATABIT  equ 1 ; GPIO bit 1 is data bit on synth 
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth 
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch 
 
LED1  equ 5 ; GPIO bit 5 is LED1 
 
; Register assignments 
 
channel  equ 8 ; current channel 
numbits  equ 9 ; # of bits to write to synth 
Ndiv  equ 10 ; low order byte of N reg 
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temp  equ 11 ; temporary 
count  equ 12 ; counter for delay loop 
 
 
; ******************  Start of program ************************** 
 
; Setup reset vector to skip over subroutines, which must reside 
; in first 256 addresses 
 org 0 
 goto start 
 
; ************************** 
; initGPIO 
; Initialize I/O port direction and set bits to zero 
; ************************** 
 
initGPIO ; first set the option register bits to allow GP2 to be an output 
  movlw B'10001111' 
  option 
 
  ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs 
  movlw B'11011000' 
  tris 6 
 
  ; clear the outputs (probably redundant with reset state, but hey...) 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
  ;bcf GPIO, SWITCHBIT 
 
  retlw 0 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output msb first (left shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of msb 
  btfsc temp,7  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf GPIO, DATABIT 
  goto outbits_clk 
outbits_clr bcf GPIO, DATABIT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf GPIO, CLKBIT 
  bcf GPIO, CLKBIT 
 
  ; process the next bit, or return if all done 
  rlf temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
; ************************* 
; latchbits 
; toggles the LE line on the synth to latch the bits shifted in with outbits 
; ************************* 
 
latchbits bsf GPIO, LATCHBIT 
  bcf GPIO, LATCHBIT 
  retlw 0 
 
 
; ********************************* 
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; initF 
; Initialize the F register (programming reg) on the synth. 
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001), 
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is 
; selected (C2:C1 = 11). 
; ********************************** 
 
initF 
  ; F19 
  movlw  1 
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; F18:F11 = 0 
  movlw 8 
  movwf numbits 
  clrw 
  call outbits 
 
  ; F10:F7 = 0, F6:F3 set as explained above 
  movlw 8 
  movwf numbits 
  ;movlw B'00001001' 
  movlw B'00001000' ;f3--f5--110 active high 
  call outbits 
 
  ; F2:F1 and C2:C1 set as explained above 
  movlw 4 
  movwf numbits 
  movlw B'00110000' 
  call outbits 
 
  ; latch the bits into the synthesizer and return 
  call  latchbits 
  retlw 0 
 
 
; ******************************* 
; initR 
; R = 96 = 0110 0000 
; Initialize the R register in the synth to divide by 960 (19.2 MHz ->  80kHz) 
;  
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 0 0 1 1 0 0  0  0  0  0  0  0  0  0  0  1 
 
initR  ; begin by writing top 5 bits to register 
  ; (sets lock-detect precision to one and zeros test mode bits) 
  movlw 5  
  movwf numbits  
  movlw H'80' 
  call  outbits  
 
  ; next, write R14:R7  
  movlw 8 
  movwf numbits 
  movlw   b'00000001' 
  call outbits 
 
  ; write R6:R1 
  movlw 6 
  movwf numbits 
  movlw   b'10000000' 
  call outbits 
 
  ; finally, write two lsb's as zero to designate R register 
  movlw 2 
  movwf numbits 
  clrw  
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  call outbits 
 
  ; latch the bits into the synth and return 
  call latchbits 
  retlw 0 
 
; ************************ 
; inc_chan 
; Increments the current channel, wrapping to zero if max channel reached 
; ************************ 
 
inc_chan incf channel, F 
  movlw NUMCHAN + 1 
  subwf channel, W 
  btfsc STATUS, Z 
 
  clrf channel 
  retlw 0 
 
; ********************************* 
; writeN 
; N = 759.5 --> B=23  A=22 
; 151.94e9 = [32*B + A] * (19.2e6/96) 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 0 1 1 0 1 1 1 1 0  1  0  0  0  0  0  0  0  0  0 
writeN 
  ;msb 
  movlw  1 
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; write first 8 bits of B N18:N11 
  movlw 8 
  movwf numbits 
  movlw   b'00000000' 
  call outbits 
 
  ; write last 5 bits of B  N10:N6 
  movlw 5 
  movwf numbits 
  movlw   b'10111000' 
  call outbits 
 
  ; write last 5 bits of A  N5:N1 
  movlw 5 
  movwf numbits 
  movlw   b'10110000' 
  call outbits 
 
  ; write two control bits designating this as N register 
  movlw 2 
  movwf numbits 
  movlw H'40' 
  call outbits 
 
  ; latch into synth and return 
  call latchbits 
  retlw 0 
 
; ************************************ 
; wait250ms 
; Delays by about 250 milliseconds 
; ************************************ 
 
wait250ms movlw 250 
  movwf count  ; outer loop ms counter 
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wait250ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait250ms_inner decf temp,F  ; dec inner counter -- 1us 
  btfss STATUS,Z  ; check zero flag  -- 1us 
  goto wait250ms_inner ; continue if not zero -- 2us 
 
  decfsz count, F   ; dec outer counter 
  goto wait250ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  ; initialize the PIC and its I/O ports 
  call initGPIO 
 
  ; initialize the synthesizer and channel number 
  call initF  ; initialize the programming setup regs 
  call initR  ; initialize the ref freq divisor 
  call writeN  ; write the N divisor for this channel 
 
  ; clear output (especially for when the last bit is '1') 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  bsf  GPIO,LED1 
  call wait250ms 
  call wait250ms 
  bcf     GPIO,LED1 
 
main_loop  
; loop, checking channel switch for press (SWITCHBIT = 0) 
 
  btfsc GPIO, SWITCHBIT 
  goto    main_loop 
  
  call writeN  ; write the N divisor for this channel 
 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  ; clear output (especially for when the last bit is '1') 
  bsf  GPIO,LED1   
  call wait250ms 
  bcf     GPIO,LED1 
 
  goto main_loop 
 
 end 
 
 

 

 

 

 

 



 66

F.2 433MHz Board 
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter 
; By    William B. Kuhn 
; Created  11/25/00 
; Revised 12/01/06 for use with 12F509 
; Revised   8/17/07 for downconversion of LRIT signal to 138.000 MHz 
 
; Modified  Xiaohu Zhang  5/22/2008 
; Modified to be used for 433.92MHz transmiter 
;      f_vco = 433.92e6 = [32*B + A] * (19.2e6/R)  --> 433.92e6 = (N*19.2e6)/R 
;      when N = 1130 then R = 50 
;    thus B = 35, A = 10 and R = 50 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 0 1 0 1 0 1 1 0 0  0  1  0  0  0  0  0  0  0  0 
; 
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 1 0 0 1 1 0 0 0  0  0  0  0  0  0  0  0  0  1 
 
 
; This program sets up the National Semiconductor LMX2326 synthesizer chip 
; and increments through channels when a switch is pressed. 
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz 
; clock), and programs one of 10 channels from 138 MHz to 147 MHz. 
; On powerup, the channel is set to 138 MHz.  Each press of the channel up 
; switch will advance to the next channel, 1 MHz higher.  After channel 10 
; is reached (147 MHz), the synth is programmed to an invalid channel to force 
; the lock light to go out (useful for testing and also for knowing where one 
; is in the sequence).  At the next press, channel 1 is again programmed 
; and the sequence repeats. 
 
 
; Meta data for the compiler 
; This is for a 12f509 with 1024 words of program and 41 file registers 
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs 
 list p = 12f509 
 radix dec 
 include <p12f509.inc> 
 
; Configure the chip for MCLR disabled, Code protect off, 
; WDT disabled, and crystal oscillator 
 __config H'0a' 
 
; Symbolic constants 
 
NUMCHAN  equ 20 ; number of channels we can tune to 
CLKBIT  equ 0 ; GPIO bit 0 is clock bit on synth 
DATABIT  equ 1 ; GPIO bit 1 is data bit on synth 
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth 
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch 
 
LED1  equ 5 ; GPIO bit 5 is LED1 
 
; Register assignments 
 
channel  equ 8 ; current channel 
numbits  equ 9 ; # of bits to write to synth 
Ndiv  equ 10 ; low order byte of N reg 
temp  equ 11 ; temporary 
count  equ 12 ; counter for delay loop 
 
 
 
 
; ******************  Start of program ************************** 
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; Setup reset vector to skip over subroutines, which must reside 
; in first 256 addresses 
 org 0 
 goto start 
 
; ************************** 
; initGPIO 
; Initialize I/O port direction and set bits to zero 
; ************************** 
 
initGPIO ; first set the option register bits to allow GP2 to be an output 
  movlw B'10001111' 
  option 
 
  ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs 
  movlw B'11011000' 
  tris 6 
 
  ; clear the outputs (probably redundant with reset state, but hey...) 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
  ;bcf GPIO, SWITCHBIT 
 
  retlw 0 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output msb first (left shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of msb 
  btfsc temp,7  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf GPIO, DATABIT 
  goto outbits_clk 
outbits_clr bcf GPIO, DATABIT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf GPIO, CLKBIT 
  bcf GPIO, CLKBIT 
 
  ; process the next bit, or return if all done 
  rlf temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
; ************************* 
; latchbits 
; toggles the LE line on the synth to latch the bits shifted in with outbits 
; ************************* 
 
latchbits bsf GPIO, LATCHBIT 
  bcf GPIO, LATCHBIT 
  retlw 0 
 
 
; ********************************* 
; initF 
; Initialize the F register (programming reg) on the synth. 
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001), 
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is 
; selected (C2:C1 = 11). 
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; ********************************** 
 
initF 
  ; F19 
  movlw  1 
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; F18:F11 = 0 
  movlw 8 
  movwf numbits 
  clrw 
  call outbits 
 
  ; F10:F7 = 0, F6:F3 set as explained above 
  movlw 8 
  movwf numbits 
  ;movlw B'00001001' 
  movlw B'00001000' ;f3--f5--110 active high 
  call outbits 
 
  ; F2:F1 and C2:C1 set as explained above 
  movlw 4 
  movwf numbits 
  movlw B'00110000' 
  call outbits 
 
  ; latch the bits into the synthesizer and return 
  call  latchbits 
  retlw 0 
 
 
; ******************************* 
; initR 
; Initialize the R register in the synth to divide by 50 (19.2 MHz ->  384kHz) 
;  
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 1 0 0 1 1 0 0 0  0  0  0  0  0  0  0  0  0  1 
 
initR  ; begin by writing top 5 bits to register 
  ; (sets lock-detect precision to one and zeros test mode bits) 
  movlw 5  
  movwf numbits  
  movlw H'80' 
  call  outbits  
 
  ; next, write R14:R7 divisor bits as all zeros 
  movlw 8 
  movwf numbits 
  movlw   b'00000000' 
  call outbits 
 
  ; write R6:R1 = 08h to give divide by 8 
  movlw 6 
  movwf numbits 
  movlw   b'11001000' 
  call outbits 
 
  ; finally, write two lsb's as zero to designate R register 
  movlw 2 
  movwf numbits 
  clrw  
  call outbits 
 
  ; latch the bits into the synth and return 
  call latchbits 
  retlw 0 
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; ************************ 
; inc_chan 
; Increments the current channel, wrapping to zero if max channel reached 
; ************************ 
 
inc_chan incf channel, F 
  movlw NUMCHAN + 1 
  subwf channel, W 
  btfsc STATUS, Z 
 
  clrf channel 
  retlw 0 
 
 
; ********************************* 
; writeN 
; N = 1130 --> B=35  A=10 
; 433.92e9 = [32*B + A] * (19.2e6/50) 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 0 1 0 1 0 1 1 0 0  0  1  0  0  0  0  0  0  0  0 
writeN 
  ;msb 
  movlw  1  
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; write first 8 bits of B N18:N11 
  movlw 8 
  movwf numbits 
  movlw   b'00000001' 
  call outbits 
 
  ; write last 5 bits of B  N10:N6 
  movlw 5 
  movwf numbits 
  movlw   b'00011000' 
  call outbits 
 
  ; write last 5 bits of A  N5:N1 
  movlw 5 
  movwf numbits 
  movlw   b'01010000' 
  call outbits 
 
  ; write two control bits designating this as N register 
  movlw 2 
  movwf numbits 
  movlw H'40' 
  call outbits 
 
  ; latch into synth and return 
  call latchbits 
  retlw 0 
 
; ************************************ 
; wait250ms 
; Delays by about 250 milliseconds 
; ************************************ 
 
wait250ms movlw 250 
  movwf count  ; outer loop ms counter 
 
wait250ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait250ms_inner decf temp,F  ; dec inner counter -- 1us 
  btfss STATUS,Z  ; check zero flag  -- 1us 
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  goto wait250ms_inner ; continue if not zero -- 2us 
 
  decfsz count, F   ; dec outer counter 
  goto wait250ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  ; initialize the PIC and its I/O ports 
  call initGPIO 
 
  ; initialize the synthesizer and channel number 
  call initF  ; initialize the programming setup regs 
  call initR  ; initialize the ref freq divisor 
  call writeN  ; write the N divisor for this channel 
 
  ; clear output (especially for when the last bit is '1') 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  bsf  GPIO,LED1 
  call wait250ms 
  call wait250ms 
  bcf     GPIO,LED1 
 
main_loop  
; loop, checking channel switch for press (SWITCHBIT = 0) 
 
 
  btfsc GPIO, SWITCHBIT 
  goto    main_loop 
 
  call writeN  ; write the N divisor for this channel 
 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  ; clear output (especially for when the last bit is '1') 
  bsf GPIO,LED1   
  call wait250ms 
  bcf     GPIO,LED1 
 
  goto main_loop 
 
 end 
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F.3 902MHz Board 
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter 
; By    William B. Kuhn 
; Created  11/25/00 
; Revised 12/01/06 for use with 12F509 
; Revised   8/17/07 for downconversion of LRIT signal to 138.000 MHz 
 
; Modified  Xiaohu Zhang 
; Modified to be used for 902MHz transmiter 
;      f_vco = 902e6 = [32*B + A] * (19.2e6/R)  --> 902e6 = (N*19.2e6)/R 
;      when N = 2255 then R = 48 
;    thus B = 70, A = 15 and R = 48 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 1 1 1 0 0 0 1 1 0  0  0  1  0  0  0  0  0  0  0 
; 
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 0 1 1 0 0 0  0  0  0  0  0  0  0  0  0  1 
 
 
; This program sets up the National Semiconductor LMX2326 synthesizer chip 
; and increments through channels when a switch is pressed. 
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz 
; clock), and programs one of 10 channels from 138 MHz to 147 MHz. 
; On powerup, the channel is set to 138 MHz.  Each press of the channel up 
; switch will advance to the next channel, 1 MHz higher.  After channel 10 
; is reached (147 MHz), the synth is programmed to an invalid channel to force 
; the lock light to go out (useful for testing and also for knowing where one 
; is in the sequence).  At the next press, channel 1 is again programmed 
; and the sequence repeats. 
 
 
; Meta data for the compiler 
; This is for a 12f509 with 1024 words of program and 41 file registers 
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs 
 list p = 12f509 
 radix dec 
 include <p12f509.inc> 
 
; Configure the chip for MCLR disabled, Code protect off, 
; WDT disabled, and crystal oscillator 
 __config H'0a' 
 
 
; Symbolic constants 
 
NUMCHAN  equ 20 ; number of channels we can tune to 
CLKBIT  equ 0 ; GPIO bit 0 is clock bit on synth 
DATABIT  equ 1 ; GPIO bit 1 is data bit on synth 
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth 
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch 
 
LED1  equ 5 ; GPIO bit 5 is LED1 
 
; Register assignments 
 
channel  equ 8 ; current channel 
numbits  equ 9 ; # of bits to write to synth 
Ndiv  equ 10 ; low order byte of N reg 
temp  equ 11 ; temporary 
count  equ 12 ; counter for delay loop 
 
 
; ******************  Start of program ************************** 
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; Setup reset vector to skip over subroutines, which must reside 
; in first 256 addresses 
 org 0 
 goto start 
 
; ************************** 
; initGPIO 
; Initialize I/O port direction and set bits to zero 
; ************************** 
 
initGPIO ; first set the option register bits to allow GP2 to be an output 
  movlw B'10001111' 
  option 
 
  ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs 
  movlw B'11011000' 
  tris 6 
 
  ; clear the outputs (probably redundant with reset state, but hey...) 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
  ;bcf GPIO, SWITCHBIT 
 
  retlw 0 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output msb first (left shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of msb 
  btfsc temp,7  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf GPIO, DATABIT 
  goto outbits_clk 
outbits_clr bcf GPIO, DATABIT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf GPIO, CLKBIT 
  bcf GPIO, CLKBIT 
 
  ; process the next bit, or return if all done 
  rlf temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
; ************************* 
; latchbits 
; toggles the LE line on the synth to latch the bits shifted in with outbits 
; ************************* 
 
latchbits bsf GPIO, LATCHBIT 
  bcf GPIO, LATCHBIT 
  retlw 0 
 
 
; ********************************* 
; initF 
; Initialize the F register (programming reg) on the synth. 
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001), 
; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is 
; selected (C2:C1 = 11). 
; ********************************** 
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initF 
  ; F19 
  movlw  1 
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; F18:F11 = 0 
  movlw 8 
  movwf numbits 
  clrw 
  call outbits 
 
  ; F10:F7 = 0, F6:F3 set as explained above 
  movlw 8 
  movwf numbits 
  ;movlw B'00001001' 
  movlw B'00001000' ;f3--f5--110 active high 
  call outbits 
 
  ; F2:F1 and C2:C1 set as explained above 
  movlw 4 
  movwf numbits 
  movlw B'00110000' 
  call outbits 
 
  ; latch the bits into the synthesizer and return 
  call  latchbits 
  retlw 0 
 
; ******************************* 
; initR 
; Initialize the R register in the synth to divide by 48 (19.2 MHz ->  400kHz) 
;  
;      R-reg 
;     LSB   |----------------  R   ----------|-- TEST ---|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 0 1 1 0 0 0  0  0  0  0  0  0  0  0  0  1 
 
initR  ; begin by writing top 5 bits to register 
  ; (sets lock-detect precision to one and zeros test mode bits) 
  movlw 5  
  movwf numbits  
  movlw H'80' 
  call  outbits  
 
  ; next, write R14:R7 divisor bits as all zeros 
  movlw 8 
  movwf numbits 
  movlw   b'00000000' 
  call outbits 
 
  ; write R6:R1 = 08h to give divide by 8 
  movlw 6 
  movwf numbits 
  movlw   b'11000000' 
  call outbits 
 
  ; finally, write two lsb's as zero to designate R register 
  movlw 2 
  movwf numbits 
  clrw  
  call outbits 
 
  ; latch the bits into the synth and return 
  call latchbits 
  retlw 0 
 
; ************************ 
; inc_chan 
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; Increments the current channel, wrapping to zero if max channel reached 
; ************************ 
 
inc_chan incf channel, F 
  movlw NUMCHAN + 1 
  subwf channel, W 
  btfsc STATUS, Z 
 
  clrf channel 
  retlw 0 
 
 
; ********************************* 
; writeN 
; N = 2255 --> B=70  A=15 
; 902e6 = [32*B + A] * (19.2e6/48) 
; 
;      N-reg : 
;     LSB   |--- A ---|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 1 1 1 0 0 0 1 1 0  0  0  1  0  0  0  0  0  0  0 
writeN 
  ;msb 
  movlw  1  
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; write first 8 bits of B N18:N11 
  movlw 8 
  movwf numbits 
  movlw   b'00000010' 
  call outbits 
 
  ; write last 5 bits of B  N10:N6 
  movlw 5 
  movwf numbits 
  movlw   b'00110000' 
  call outbits 
 
  ; write last 5 bits of A  N5:N1 
  movlw 5 
  movwf numbits 
  movlw   b'00111000' 
  call outbits 
 
  ; write two control bits designating this as N register 
  movlw 2 
  movwf numbits 
  movlw H'40' 
  call outbits 
 
  ; latch into synth and return 
  call latchbits 
  retlw 0 
 
; ************************************ 
; wait250ms 
; Delays by about 250 milliseconds 
; ************************************ 
 
wait250ms movlw 250 
  movwf count  ; outer loop ms counter 
 
wait250ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait250ms_inner decf temp,F  ; dec inner counter -- 1us 
  btfss STATUS,Z  ; check zero flag  -- 1us 
  goto wait250ms_inner ; continue if not zero -- 2us 
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  decfsz count, F   ; dec outer counter 
  goto wait250ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  ; initialize the PIC and its I/O ports 
  call initGPIO 
 
  ; initialize the synthesizer and channel number 
  call initF  ; initialize the programming setup regs 
  call initR  ; initialize the ref freq divisor 
  call writeN  ; write the N divisor for this channel 
 
  ; clear output (especially for when the last bit is '1') 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  bsf  GPIO,LED1 
  call wait250ms 
  call wait250ms 
  bcf     GPIO,LED1 
 
main_loop  
; loop, checking channel switch for press (SWITCHBIT = 0) 
 
  btfsc GPIO, SWITCHBIT 
  goto    main_loop 
 
  call writeN  ; write the N divisor for this channel 
 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  ; clear output (especially for when the last bit is '1') 
  bsf  GPIO,LED1   
  call wait250ms 
  bcf     GPIO,LED1 
 
  goto main_loop 
 
 end 
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F.4 2400MHz Board 
; Frequency synthesizer controller for EECE662/664 GOES Satellite Downconverter 
; By    William B. Kuhn 
; Created  11/25/00 
; Revised 12/01/06 for use with 12F509 
; Revised   8/17/07 for downconversion of LRIT signal to 138.000 MHz 
 
; Modified  Xiaohu Zhang 
; Modified to be used for 2.4GHz transmiter 
;      f_vco = 2.4e9 = [32*B + A] * (19.2e6/R)  --> 2.4e9 = (N*19.2e6)/R 
;      when N = 1000 then R = 8 
;    thus B = 31, A = 8 and R = 8 
; 
;      N-reg : 
;     LSB    |-- A --|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 0 0 0 1 0 1 1 1 1  1  0  0  0  0  0  0  0  0  0 
; 
;      R-reg 
;     LSB    |---------------  R   -----------|-- TEST --|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 1 0 0 0 0 0  0  0  0  0  0  0  0  0  0  1 
 
 
; This program sets up the National Semiconductor LMX2326 synthesizer chip 
; and increments through channels when a switch is pressed. 
; The synthesizer is programmed for a reference frequency of 500 kHz (1/8 of 4 MHz 
; clock), and programs one of 10 channels from 138 MHz to 147 MHz. 
; On powerup, the channel is set to 138 MHz.  Each press of the channel up 
; switch will advance to the next channel, 1 MHz higher.  After channel 10 
; is reached (147 MHz), the synth is programmed to an invalid channel to force 
; the lock light to go out (useful for testing and also for knowing where one 
; is in the sequence).  At the next press, channel 1 is again programmed 
; and the sequence repeats. 
 
 
 
; Meta data for the compiler 
; This is for a 12f509 with 1024 words of program and 41 file registers 
; However, for ease of use (no bank switching), we will limit code to 512 words and 25 file regs 
 list p = 12f509 
 radix dec 
 include <p12f509.inc> 
 
; Configure the chip for MCLR disabled, Code protect off, 
; WDT disabled, and crystal oscillator 
 __config H'0a' 
 
 
; Symbolic constants 
 
NUMCHAN  equ 20 ; number of channels we can tune to 
CLKBIT  equ 0 ; GPIO bit 0 is clock bit on synth 
DATABIT  equ 1 ; GPIO bit 1 is data bit on synth 
LATCHBIT equ 2 ; GPIO bit 2 is LE (latch) bit on synth 
SWITCHBIT equ 3 ; GPIO bit 3 is channel up switch 
 
LED1  equ 5 ; GPIO bit 5 is LED1 
 
; Register assignments 
 
channel  equ 8 ; current channel 
numbits  equ 9 ; # of bits to write to synth 
Ndiv  equ 10 ; low order byte of N reg 
temp  equ 11 ; temporary 
count  equ 12 ; counter for delay loop 
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; ******************  Start of program ************************** 
 
; Setup reset vector to skip over subroutines, which must reside 
; in first 256 addresses 
 org 0 
 goto start 
 
; ************************** 
; initGPIO 
; Initialize I/O port direction and set bits to zero 
; ************************** 
 
initGPIO ; first set the option register bits to allow GP2 to be an output 
  movlw B'10001111' 
  option 
 
  ; next, set the tristate register to enable GP0 -> GP2 and GP5 as outputs 
  movlw B'11011000' 
  tris 6 
 
  ; clear the outputs (probably redundant with reset state, but hey...) 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
  ;bcf GPIO, SWITCHBIT 
 
  retlw 0 
 
; ************************ 
; outbits 
; Shifts number of bits specified in 'numbits' from W into synthesizer. 
; Data is output msb first (left shifted) 
; ************************ 
 
outbits  movwf temp ; save data passed in from W 
 
outbits_loop ; branch to set or clear bit depending on value of msb 
  btfsc temp,7  
  goto outbits_set   
  goto outbits_clr 
 
outbits_set ; set or clear the data bit on the synth 
  bsf GPIO, DATABIT 
  goto outbits_clk 
outbits_clr bcf GPIO, DATABIT 
 
outbits_clk ; toggle the clock line to input bit to synth 
  bsf GPIO, CLKBIT 
  bcf GPIO, CLKBIT 
 
  ; process the next bit, or return if all done 
  rlf temp, F 
  decfsz numbits, F 
  goto outbits_loop 
  retlw 0 
 
; ************************* 
; latchbits 
; toggles the LE line on the synth to latch the bits shifted in with outbits 
; ************************* 
 
latchbits bsf GPIO, LATCHBIT 
  bcf GPIO, LATCHBIT 
  retlw 0 
 
 
; ********************************* 
; initF 
; Initialize the F register (programming reg) on the synth. 
; VCO slope as + (F6=1), digital lock detect is selected (F5:F3=001), 
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; Powerdown/reset is disabled (F2:F1 = 00), and the initialization mode is 
; selected (C2:C1 = 11). 
; ********************************** 
 
initF 
  ; F19 
  movlw  1 
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; F18:F11 = 0 
  movlw 8 
  movwf numbits 
  clrw 
  call outbits 
 
  ; F10:F7 = 0, F6:F3 set as explained above 
  movlw 8 
  movwf numbits 
  ;movlw B'00001001' 
  movlw B'00001000' ;f3--f5--110 active high 
  call outbits 
 
  ; F2:F1 and C2:C1 set as explained above 
  movlw 4 
  movwf numbits 
  movlw B'00110000' 
  call outbits 
 
  ; latch the bits into the synthesizer and return 
  call  latchbits 
  retlw 0 
 
 
; ******************************* 
; initR 
; Initialize the R register in the synth to divide by 64 (19.2 MHz ->  300kHz) 
;  
;      R-reg 
;     LSB    |---------------  R   -----------|-- TEST --|MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       0  0 0 0 0 0 0 0 1 0 0  0  0  0  0  0  0  0  0  0  1 
 
initR  ; begin by writing top 5 bits to register 
  ; (sets lock-detect precision to one and zeros test mode bits) 
  movlw 5  
  movwf numbits  
  movlw H'80' 
  call  outbits  
 
  ; next, write R14:R7 divisor bits as all zeros 
  movlw 8 
  movwf numbits 
  movlw   b'00000001' 
  call outbits 
 
  ; write R6:R1 = 08h to give divide by 8 
  movlw 6 
  movwf numbits 
  movlw   b'00000000' 
  call outbits 
 
  ; finally, write two lsb's as zero to designate R register 
  movlw 2 
  movwf numbits 
  clrw  
  call outbits 
 
  ; latch the bits into the synth and return 
  call latchbits 
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  retlw 0 
 
; ************************ 
; inc_chan 
; Increments the current channel, wrapping to zero if max channel reached 
; ************************ 
 
inc_chan incf channel, F 
  movlw NUMCHAN + 1 
  subwf channel, W 
  btfsc STATUS, Z 
 
  clrf channel 
  retlw 0 
 
 
; ********************************* 
; writeN 
; N = 8000 --> B=250  A=0 
; 2.4e9 = [32*B + A] * (19.2e6/64) 
;      N-reg : 
;     LSB    |--- A --|---------------  B ---------------| MSB 
;      C1 C2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
;       1  0 0 0 0 0 0 0 1 0 1  1  1  1  1  0  0  0  0  0  0 
writeN 
  ;msb 
  movlw  1  
  movwf  numbits 
  clrw 
  call   outbits 
 
  ; write first 8 bits of B N18:N11 
  movlw 8 
  movwf numbits 
  movlw   b'00000111' 
  call outbits 
 
  ; write last 5 bits of B  N10:N6 
  movlw 5 
  movwf numbits 
  movlw   b'11010000' 
  call outbits 
 
  ; write last 5 bits of A  N5:N1 
  movlw 5 
  movwf numbits 
  movlw   b'00000000' 
  call outbits 
 
  ; write two control bits designating this as N register 
  movlw 2 
  movwf numbits 
  movlw H'40' 
  call outbits 
 
  ; latch into synth and return 
  call latchbits 
  retlw 0 
 
; ************************************ 
; wait250ms 
; Delays by about 250 milliseconds 
; ************************************ 
 
wait250ms movlw 250 
  movwf count  ; outer loop ms counter 
 
wait250ms_outer movlw 250 
  movwf temp  ; inner loop counter (250 times 4us = 1ms) 
 
wait250ms_inner decf temp,F  ; dec inner counter -- 1us 
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  btfss STATUS,Z  ; check zero flag  -- 1us 
  goto wait250ms_inner ; continue if not zero -- 2us 
 
  decfsz count, F   ; dec outer counter 
  goto wait250ms_outer ; continue if not zero 
 
  retlw 0 
 
 
; ************************************** 
; The main routine 
; ************************************** 
 
start  ; initialize the PIC and its I/O ports 
  call initGPIO 
 
  ; initialize the synthesizer and channel number 
  call initF  ; initialize the programming setup regs 
  call initR  ; initialize the ref freq divisor 
  call writeN  ; write the N divisor for this channel 
 
  ; clear output (especially for when the last bit is '1') 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  bsf  GPIO,LED1 
  call wait250ms 
  call wait250ms 
  bcf     GPIO,LED1 
 
main_loop  
; loop, checking channel switch for press (SWITCHBIT = 0) 
 
 
  btfsc GPIO, SWITCHBIT 
  goto    main_loop 
  
 
  call writeN  ; write the N divisor for this channel 
 
  bcf GPIO, DATABIT 
  bcf GPIO, CLKBIT 
  bcf GPIO, LATCHBIT 
 
  ; clear output (especially for when the last bit is '1') 
  bsf  GPIO,LED1   
  call wait250ms 
  bcf     GPIO,LED1 
 
  goto main_loop 
 
 end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


