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Abstract 
Knowledge of the genetic bases of grain quality traits will complement plant breeding efforts to 

improve the end use value of sorghum (Sorghum bicolor (L.) Moench). The objective of the first 

experiment was to assess marker-trait associations for 10 grain quality traits through candidate 

gene association mapping on a diverse panel of 300 sorghum accessions. The 10 grain quality 

traits were measured using the single kernel characterization system (SKCS) and near-infrared 

reflectance spectroscopy (NIRS). The analysis of the accessions through 1,290 genome-wide 

single nucleotide polymorphisms (SNPs) separated the panel into five subpopulations that 

corresponded to three major sorghum races (durra, kafir, and caudatum), one intermediate race 

(guinea-caudatum), and one working group (zerazera/caudatum). Association analysis between 

333 SNPs in candidate genes/loci and grain quality traits resulted in eight significant marker-trait 

associations. A SNP in starch synthase IIa (SSIIa) gene was associated with kernel hardness 

(KH) with a likelihood ratio–based R
2 

(RLR
2
) value of 0.08. SNPs in starch synthase (SSIIb) gene 

(RLR
2
 = 0.10) and loci pSB1120 (RLR

2 
= 0.09) was associated with starch content. 

Sorghum is a crop well adapted to the semi arid regions of the world and my harbor 

genes for drought tolerance. The objective of second experiment was to identify quantitative trait 

loci (QTLs) for yield potential and drought tolerance. From a cross between Tx436 (food grain 

type) and 00MN7645 (drought tolerant) 248 recombinant inbred lines (RILs) was developed. 

Multi-location trials were conducted in 8 environments to evaluate agronomic performance of 

the RILs under favorable and drought stress conditions. The 248 RILs and their parents were 

genotyped by genotyping-by-sequencing (GBS). A subset of 800 SNPs was used for linkage map 

construction and QTL detection. Composite interval mapping identified a major QTLs for grain 

yield in chromosome 8 and QTL for flowering time in chromosome 9 under favorable 

conditions. Three major QTLs were detected for grain yield in chromosomes 1, 6, and 8 and two 

flowering time QTLs on chromosome 1 under drought conditions. Six QTLs were identified for 

stay green: two on chromosome 4; one each on chromosome 5, 6, 7, and 10 under drought 

conditions. 



GENOMIC MAPPING FOR GRAIN YIELD, STAY GREEN, AND GRAIN QUALITY 

TRAITS IN SORGHUM 

 

 

 

by 

 

 

SIVAKUMAR SUKUMARAN 

 

 

 

 

B.Sc., Kerala Agricultural University, 2002 

M.Sc., Tamil Nadu Agricultural University, 2006 

 

 

 

A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

Department of Agronomy 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2012 

 

Approved by: 

 

Major Professor 

Dr. Jianming Yu 



Copyright 

SIVAKUMAR SUKUMARAN 

2012 



Abstract 
Knowledge of the genetic bases of grain quality traits will complement plant breeding efforts to 

improve the end use value of sorghum (Sorghum bicolor (L.) Moench). The objective of the first 

experiment was to assess marker-trait associations for 10 grain quality traits through candidate 

gene association mapping on a diverse panel of 300 sorghum accessions. The 10 grain quality 

traits were measured using the single kernel characterization system (SKCS) and near-infrared 

reflectance spectroscopy (NIRS). The analysis of the accessions through 1,290 genome-wide 

single nucleotide polymorphisms (SNPs) separated the panel into five subpopulations that 

corresponded to three major sorghum races (durra, kafir, and caudatum), one intermediate race 

(guinea-caudatum), and one working group (zerazera/caudatum). Association analysis between 

333 SNPs in candidate genes/loci and grain quality traits resulted in eight significant marker-trait 

associations. A SNP in starch synthase IIa (SSIIa) gene was associated with kernel hardness 

(KH) with a likelihood ratio–based R
2 

(RLR
2
) value of 0.08. SNPs in starch synthase (SSIIb) gene 

(RLR
2
 = 0.10) and loci pSB1120 (RLR

2 
= 0.09) was associated with starch content. 

Sorghum is a crop well adapted to the semi arid regions of the world and my harbor 

genes for drought tolerance. The objective of second experiment was to identify quantitative trait 
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the RILs under favorable and drought stress conditions. The 248 RILs and their parents were 
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construction and QTL detection. Composite interval mapping identified a major QTLs for grain 

yield in chromosome 8 and QTL for flowering time in chromosome 9 under favorable 
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CHAPTER 1- REVIEW OF LITERATURE: ASSOCIATION 

MAPPING 

 

Abstract 

Association mapping studies in plants continue to contribute not only in detecting the genetic 

basis of variation in physiological, developmental, and morphological traits (e.g., flowering time, 

plant height, grain quality, nutrient content, and seed shattering) but also in bringing together 

researchers to create community resources and genetic platforms. Association mapping is well 

positioned to exploit the advances in next generation genomic technologies and high-throughput 

phenotyping. At the same time, researchers in plant genetics and related disciplines need to 

develop improved genetic designs and computational tools to address the challenges of genetic 

mapping such as missing heritability, new gene identification, genotyping-by-sequencing, and 

rare alleles. In this chapter, we describe major progress in understanding population structure, 

advancements in design and implementation of association mapping, and examples of 

association mapping in maize, rice, Arabidopsis, wheat, barley, soybean, and sorghum. Finally, 

major opportunities with potential implications in plant genetics are discussed. 

 

Introduction 

The plant genetics and breeding research community’s priority is to ensure food security for the 

ever-growing population with limited land and water resources by increasing yield potential and 

stability of major crops. Genomic tools, plant breeding methods, genetic designs, and 

biotechnologies need to be integrated to modify the adaptive, agronomic, and economic 

characteristics of different plants to meet the challenge. Two connected components of this 

general effort are gene identification and complex trait dissection. While gene identification 

focuses on individual genes, complex trait dissection emphasizes the genetic contribution and 

modes of action from many loci that result in phenotypic variation. Linkage mapping and 

association mapping are the most commonly used methods for dissecting complex traits and 

identifying genes underlying trait variations in plants, animals, and human genetics (Risch and 

Merikangas 1996).  
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Association mapping provides a great platform to exploit genomic technologies and plant 

germplasm resources simultaneously (Zhu et al. 2008). Compared with the traditional bi-parental 

linkage analysis, association mapping offers several advantages. Association mapping 

populations are typically assembled with diverse lines from breeding programs or sampled 

accessions from germplasm banks. As a result, researchers can initiate genotyping and 

phenotyping activities with this approach while developing complementary linkage mapping 

populations. Because association mapping utilizes the historic recombination present in the 

panel, a higher mapping resolution is expected. The approach is also fast, and it can 

accommodate a large number of accessions and analyze a higher number of alleles (Myles et al. 

2009; Zhu et al. 2008). 

Based on the scale of the research, association mapping can be classified into either 

targeted studies with candidate genes or large-scale genome-wide association studies (GWAS) 

(Zhu et al. 2008). A combined approach also can be taken in which a specific genomic region is 

subjected to a high-resolution scan with a large number of markers. The candidate gene approach 

focuses on targeted traits and genes with known biochemical pathways. In GWAS with high 

genome coverage of SNP markers, it is possible to identify genes with previously unknown 

functions. Another integrated approach, Nested Association Mapping (NAM), has been adopted 

in plants to combine the advantages of linkage analysis and association mapping (Yu et al. 

2008). Although earlier association mapping studies focused mainly on candidate genes 

(Thornsberry et al. 2001) with limited sample sizes and marker numbers, recent advances in 

genomic technologies have enabled GWAS in many plant species (Fig. 1). We encourage 

interested readers to refer to earlier reviews (Flint-Garcia et al. 2003; Zhu et al. 2008) for specific 

details of linkage disequilibrium and association mapping. In this chapter, we will focus on 

major achievements: understanding of the population structure, research strategies, and examples 

and progress in major crops. We then outline the significant challenges that have broad 

implications.  

 

Population structure and false positives 

Because an association mapping panel is often an assembled population, rather than a random 

mated or a designed population, the presence of population structure (i.e., unequal genetic 

relationships among groups of individuals) often can lead to false positive discoveries if this 
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structure is not adequately accounted for during the analysis of marker-trait association. In 

general, population structure can arise due to differences in geographical origins, local 

adaptations, or breeding history of the lines in the panel (Yu et al. 2006).  

 As is often true in many crops, multiple levels of relatedness frequently exist in 

association mapping populations as a result of assembling lines and accessions from different 

geographical regions or breeding programs (i.e., major grouping patterns) as well as different 

levels of relationship among individuals within individual breeding programs (i.e., pairwise 

relationship). In such cases, some markers may appear to be significantly associated with the trait 

of interest from a simple test, but their frequency distributions are in fact correlated with the 

population structure. Understanding the structure of the population, developing methods to 

accurately infer the structure, and conducting association analysis with appropriate models are 

critical to reduce or eliminate these spurious associations or false positives. 

Association mapping samples generally fall into five categories based on the population 

structure and familial relatedness. The population structure is associated with local adaptation or 

diversifying selection, and the familial relationship is associated with the recent coancestry. The 

five categories are (1) ideal samples with subtle population structure and familial relatedness, (2) 

samples with familial relationship, (3) samples with population structure, (4) samples with both 

population structure and familial relationships, and (5) samples with severe population structure 

and familial relationships (Zhu and Yu 2009). It is possible to statistically quantify population 

structure using neutral markers and account for the structure in identifying marker-trait 

associations (Yu et al. 2006). Several methods have been used to control for population structure 

in association mapping (Fig. 2). These include genomic control (Devlin and Roeder 1999), 

structured association (Pritchard et al. 2000b), principal component analysis (PCA) (Patterson et 

al. 2006; Price et al. 2006), unified mixed model (Yu et al. 2006), non-metric multidimensional 

scaling (nMDS) (Zhu and Yu 2009), and techniques to increase computational speed based on 

MLM, compressed MLM, and P3D (Zhang et al. 2010b).  

Earlier methods of correcting genetic relatedness were based on general linear models 

(GLM), but recent methods mainly use the mixed linear model (MLM) to account for population 

structure and familial relatedness. The unified mixed model (Yu et al. 2006) approach for 

association mapping that accounts for multiple levels of relatedness considers both population 

structure and pairwise relatedness. In this model, the population structure (Q matrix) estimated 
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using STRUCTURE software (Pritchard et al. 2000a) is fitted as a fixed effect, and the kinship 

(K matrix) among individuals estimated using SPAGeDi (Hardy and Vekemans 2002) is 

incorporated as the variance-covariance structure of the random effects of the individuals in the 

MLM for association mapping (Yu et al. 2006). This K estimate adjusts the identity by descent 

(IBD) by adjusting the probability of identity by state (IBS) between two individuals with the 

average probability of identity by state between random individuals. 

Principle component analysis of the genotypic data transforms the variation into a series 

of orthogonal continuous axes, and these components, typically the first few, can then be used to 

replace Q to adjust for population structure. EIGENSTRAT is one software package that can be 

used to infer PCA (Price et al. 2006). Unlike Q, computing of PCA needs no assumptions about 

the number of groups in a population. In the unified mixed model, the principal components’ 

axes can be fit as a fixed effect with K matrix as the random effect (Zhu and Yu 2009). 

Alternatively, nMDS can be used. A comparison of nMDS and PCA using the simulated and 

empirical data from cross- and self-pollinated species showed that models with nMDS resulted in 

higher power and fewer false positives (Zhu and Yu 2009).  

 One question emerges as PCA or nMDS is used for population structure control: How 

many components one must fit into model to account for the population structure, and should this 

number be the same for all traits, or vary for different traits? A two-stage dimension 

determination approach was proposed for PCA and nMDS (Zhu and Yu 2009). In general, a 

model testing should be conducted to select the most appropriate models based on the Bayesian 

Information Content (BIC), the lower the better. All relevant models are compared under 

maximum likelihood (ML). With the selected model, all markers can be then tested for marker-

trait association. The corresponding Quantitle-Quantile (Q-Q) plot of the selected model has 

been shown; indeed, different numbers of PCAs are needed to have adequate, but not excessive, 

control for population. 

 Using MLM as the core, newer and faster algorithms have been developed to speed up 

GWAS analysis, particularly when hundreds of thousands of SNPs are tested. Efficient mixed-

model association (EMMA) corrects sample structures by accounting for pairwise relatedness 

between individuals and uses enough markers by modeling phenotype distribution. This method 

is related to a method developed to simulate a null distribution of variance component test 

statistics (Crainiceanu and Ruppert 2004). EMMA increases the computational speed and 
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efficiency of mixed model analysis by enabling statistical tests with single-dimensional 

optimization. The method also avoids the redundant, computationally expensive matrix 

operations at iteration and allows converge to the global optimum of the likelihood in variance 

component estimation with high confidence. This capability was demonstrated in in silico whole-

genome association mapping of mouse, Arabidopsis, and maize datasets. Results from the 

EMMA method are consistent with published results in reducing false positives and are faster 

than the previous methods while performing near global optimization (Kang et al. 2010; Kang et 

al. 2008).  

Compressed MLM is another approach that clusters individuals into groups based on 

kinship estimates, thereby reducing the effective sample size to improve speed in subpopulation 

determination. Compressed MLM is equivalent to MLM when each group is treated as a single 

group, and compressed MLM is equal to GLM when all the individuals are in one group. This 

method is an extension of the pedigree-based sire model (Henderson 1975) with modifications 

(Zhang et al. 2010b). SSR markers were the predominant molecular markers for determining 

population structure and familial relatedness, but recent advances in the sequencing technology, 

higher genome density, lower mutation rate, and ease of detection through high-throughput 

systems have made single nucleotide polymorphisms (SNPs) the markers of choice. However, 

with decreasing genotyping costs and increasing numbers of individuals studied, more promising 

methods are needed to control population structure and the familial relatedness in association 

mapping.  

  

Nested association Mapping (NAM) 

Ideally, an association mapping population can be genotyped once but phenotyped repeatedly for 

the same sets of traits and new sets of traits; thus, it is advantageous to have a population that can 

be used by the research community for different purposes. With this in mind, the maize 

community has developed a nested association mapping (NAM) population to integrate the 

advantages of linkage analysis and association mapping, with the ultimate goal of dissecting 

complex traits in maize (Yu et al. 2008). The aims of developing NAM population were to (1) 

capture maize genetic diversity, (2) exploit the historical recombinations in maize, (3) use a 

genetic design that can take advantage of next-generation sequencing technologies, (4) generate 

materials for evaluation of agronomic traits in the field locations of the temperate regions, (5) 
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develop a population with enough power to detect QTLs and resolve QTLs to the gene level, and 

(6) provide a community resource that will enable a wide range of community efforts and 

databases for researchers. A publicly available resource of immortal lines with 26 founders 

represents the global diversity of maize. A set of 25 diverse inbred lines were crossed to common 

reference maize inbred line B73, and 5,000 distinct genotypes were created. The 5,000 genotypes 

are called NAM recombinant inbred lines (NAM RILs).  

In essence, NAM is a multiple RIL population derived from crosses between a common 

founder line and a set of founders. The strategy of NAM is to genotype common-parent-specific 

(CPS) markers on the founders and progenies but to sequence the founders completely or densely 

with high-density markers. The genetic information from the CPS is projected from the founders 

to the progenies after genotyping the founders with high-density markers. Projecting genetic 

information from the parents to the progenies also reduces genotyping costs. The concept of 

NAM involves the development of a population. Instead of assembling existing lines to form a 

population, NAM selects a diverse set of founders. It also provides high allele richness, high 

statistical power, good mapping resolution, low sensitivity to genetic heterogeneity, low 

requirement of SNP markers in the progenies, and is amenable to repeated phenotyping (Yu et al. 

2008). A series of maize NAM studies has been conducted on genetic map (McMullen et al. 

2009), flowering time (Buckler et al. 2009), leaf architecture (Tian et al. 2011), and disease 

resistance (Kump et al. 2011; Poland et al. 2010). These studies will be reviewed in section 2.4. 

 

Software for association mapping 

The most commonly used and frequently updated software for association mapping is TASSEL 

(Trait Analysis by aSSociation, Evolution and Linkage), which is written in Java and can be used 

in virtually any operating system (Bradbury et al. 2007). TASSEL implements GLM, MLM, 

compressed MLM, and P3D approaches for marker-trait association analysis. Other notable 

functions include evolutionary analysis, computation of LD, imputation of missing data, and data 

visualization. The program allows calculating and visualizing LD graphically.  

Structured association (Pritchard et al. 2000b) as well as the unified mixed model (Yu et 

al. 2006) were first implemented in TASSEL to reduce the risk of false positives. The Q + K 

method was implemented in TASSEL as a mixed linear model (MLM) function. TASSEL earlier 

employed an EM (expectation-maximization) algorithm for MLM analysis. To increase 
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computing speed and analyze larger datasets, the EMMA algorithm was incorporated into 

TASSEL. To increase the statistical power, model compression was added.  

For even larger datasets, a newer method estimates the population parameters once, then 

estimates the parameters for test markers were included. Called population parameters previously 

determined (P3D) (Zhang et al. 2010b), this method is available in the newer version of 

TASSEL, and compressed estimation of variance components are available in software EMMAX 

(Kang et al. 2010). EMMA eXpedited (EMMAX) is publically available software that 

implements a variance component approach for GWAS. EMMAX is built on EMMA’s previous 

approach.  

ASREML is a complete package with different modules for mixed model analysis 

(Gilmour et al. 2002). SAS and R software are generic tools that can be used for association 

mapping. 

GAPIT (Genome Association and Prediction Integrated Tool) is a new tool in the R 

package that can perform genome-wide association study (Lipka et al. 2012). It integrates the 

unified mixed model, EMMA, P3D, and compressed MLM with genomic prediction. This 

software handles large genotypic datasets by subdividing them into multiple files, but the 

memory requirement remains the same. Genomic predictions are done using a method developed 

by Zhou et al. (2011; in progress). GAPIT can conduct hierarchical clustering and kinship 

matrices based on user input and linkage information. The results are produced in the form of Q-

Q plot, Manhattan plot, PCA, and association tables. 

 

Computational speed 

The unified mixed model method originally developed by Yu et al. (2006) is a widely used 

technique to correct genetic relatedness in association mapping studies; however, in analyzing 

genome-wide datasets, solving the mixed model requires a huge amount of computing power. 

The computing time for solving an MLM increases with the cube of the number of individuals. 

One approach to reducing computing time is compressed MLM (Zhang et al. 2010b), which 

decreases the effective sample size of such datasets by clustering individuals into groups. The 

rationale behind this method has its roots in the sire-model approach (Quass and Pollak, 1996).  

 A complementary approach to compressed MLM, population parameters previously 

determined (P3D), has been proposed to reduce computing time by skipping the iteration process 
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in each individual marker test. In the first step, a base MLM without fitting any marker effect is 

solved for the variance components. In the second step, an individual marker test with MLM 

simply uses variance components from the first step without solving the specific mixed model 

again (Zhang et al. 2010b). This practice has been used in previous mixed model analyses to save 

computing time (Yu et al. 2005), but the need to reduce the computational burden of MLM is 

much higher in GWAS. Compressed MLM and P3D, when implemented jointly, significantly 

reduce computing time and maintain statistical power (Zhang et al. 2010b). These methods are 

implemented in the software program TASSEL (Bradbury et al. 2007). A different residual 

analysis approach was also proposed to conduct fast genome-wide pedigree-based association 

analysis (Aulchenko et al. 2007).  

 A variance component approach implemented in a publicly available software package, 

EMMA eXpedited (EMMAX) (Kang et al. 2010), reduces computing time for analyzing large 

GWAS datasets. First, a pairwise relatedness matrix is computed from high-density markers and 

used to represent the sample structure. Secondly, the contribution of the sample structure to the 

phenotype using a variance component model is estimated, resulting in an estimated covariance 

matrix of phenotypes that models the effect of genetic relatedness on the phenotypes. Thirdly, a 

generalized least square (GLS) F-test (Kariya and Kurata 2004) is applied to each marker to 

detect associations accounting for the sample structure using the covariance matrix. A study on 

the welcome trust consortium data (Browning and Browning 2008) found that EMMAX 

outperforms both PCA (Price et al. 2006) and genomic control (Devlin et al. 2001). 

 FaST-LMM, a factored spectrally transformed linear mixed model, was recently 

proposed to further address the computational issues of MLM. FaST-LMM is an algorithm for 

genome-wide association studies that scales linearly with sample size in both runtime and 

memory use. With data from 15,000 individuals, FaST-LMM ran an order of magnitude faster 

than current algorithms; whereas data for 120,000 individuals were analyzed with FaST-LMM in 

few hours, current algorithms failed. The LMM corrects for confounding by measuring genetic 

similarity using methods of identify by descent and a realized relationship matrix (RRM), 

estimated by using a small sample of markers. FaST-LMM can produce results similar to the 

LMM by reformulating the LMMs with two conditions: (1) SNP used to estimate genetic 

similarity is less than the number of individuals in the dataset, and (2) the RRM is used to 
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determine these similarities. This method requires a single spectral decomposition but does not 

assume variance parameters are same across the SNPs. 

 

Achievements 

Association mapping in plants 

Association mapping in plants provides a powerful, complementary approach to existing QTL 

mapping and cloning with bi-parental populations, mutational dissection, and transgenic 

approaches. It has been widely adopted in almost all major crop species for gene identification, 

QTL validation, and to understand the genetic basis of complex traits (Zhu et al. 2008). 

Association mapping also has led to the development of common community resources in 

important crop species, including maize, rice, sorghum, soybean, and barley. Linkage 

disequilibrium estimation among a diverse set of accessions within a species typically provides 

basic knowledge about the potential resolution of association mapping and the marker density 

requirement. Following these LD studies, population structure analysis of the assembled 

association mapping is examined in details. The resulting information is then incorporated into 

either candidate-gene or genome-wide association analysis. 

 One of the major benefits of association mapping is the diversity captured across many 

different traits. Unlike specific bi-parental populations in which certain trait differences exist, 

most of the assembled association mapping panels can be used to study a host of traits so that 

questions from different angles can be studied, including basic biology, plant architecture, 

development, agronomic performance, adaptive characteristics, and nutritional value (Atwell et 

al. 2010; Flint-Garcia et al. 2005). 

 

GWAS in plants 

GWAS has become a routine research component in human disease studies and has been carried 

out with some success in plants. To dissect complex traits through whole-genome association 

mapping, diverse germplasm panels have been established in Arabidopsis (Nordborg et al. 2005), 

maize (Yu and Buckler 2006), rice (Huang et al. 2010), wheat (Breseghello and Sorrells 2006b), 

sorghum (Casa et al. 2008), barley (Caldwell et al. 2006), and soybean (Lu et al. 2011) (Fig. 2). 

In this section, we describe some of the experiments that have been successful in detecting 

marker-trait associations following GWAS strategies in plants (Table 1). 
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Arabidopsis example 

Arabidopsis thaliana is a natural organism that exists in a wide range of habitats. Arabidopsis 

HapMap is a resource to study the evolutionary as well as functional genetics of natural 

populations to resolve complex trait variation due to single genes or individual nucleotides 

(Clark et al. 2007). Based on the genome analysis, LD decays rapidly in this species, within 50kb 

(Platt et al. 2010). As a model species with a small genome, Arabidopsis has been a frontrunner 

in association studies. The 1001 Genomes project is sequencing 1001 geographically diverse 

Arabidopsis strains (Weigel and Mott 2009). In the first phase of the project, 80 strains from 

eight regions of the native species range were sequenced and analyzed (Cao et al. 2011). Another 

report claims that 471 genomes have been sequenced (unpublished data). Two recent GWAS 

studies in Arabidopsis are reviewed below. 

 The feasibility of GWAS in plants was demonstrated by studying a sample Arabidopsis 

thaliana global population. The genotyped sample consisted of 95 accessions for which a 

number of phenotypes were available (Zhao et al. 2007), plus a set of 96 accessions for which 

flowering traits were available (Atwell et al. 2010). The genotyping chip containing 250,000 

SNPs was used to genotype the accessions; thereby, the SNP density was one SNP per 500 bp, 

which is comparable to studies in humans. The phenotypes studied were related to flowering, 

plant defense, element concentrations, and developmental traits. This association sample has a 

highly complex population structure. The mixed model approach performed well in controlling 

the population structure when compared with other methods commonly used in human genetics. 

Even though the degree of confounding was different among phenotypes, association analysis 

effectively identified single genes with known functional polymorphism. Compared with the 

human GWAS, the sample size was low, but the identification of the gene was possible due to 

the genetic architecture of the trait. These studies are replicable under controlled conditions that 

eliminate environmental noise (Atwell et al. 2010).  

 Another comprehensive study of linkage and association mapping of flowering time was 

conducted under field and greenhouse conditions (Brachi et al. 2010). The experiment involved 

phenotyping 20,000 plants over two winters under field conditions. A set of 184 natural 

accessions from around the world was genotyped with 216,509 SNPs, and 4,366 RILs derived 

from 13 independent crosses were also examined. More than 60 QTLs with small to medium 
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effects were identified. The highlight of this research was that linkage mapping, which has a 

higher power to distinguish true positives from false positives than association mapping, should 

be integrated with GWAS. Another important finding was that the major genes governing 

flowering time in greenhouse conditions were not associated with flowering time in field 

conditions. Instead, a number of genes involved in the regulation of the plant circadian clock 

were associated (Brachi et al. 2010).  

 

Maize example 

The genetic diversity between two different maize inbred lines is roughly equivalent to the 

diversity between a man and a chimp (Buckler et al. 2006). The maize genome contains about 

50,000 genes, and most of the genome comprises repetitive and transposable elements (Schnable 

et al. 2009). The huge genetic diversity of maize make high-resolution mapping possible, but 

also requires large numbers of SNPs and systematic analysis (Yu and Buckler 2006). Several 

maize association mapping populations have been assembled (Camus-Kulandaivelu et al. 2006; 

Flint-Garcia et al. 2005; Liu et al. 2003; Palaisa et al. 2003; Remington et al. 2001; Yu et al. 

2008). 

The Maize HapMap project is an excellent resource for plant geneticists to conduct 

association mapping. The first HapMap in maize (Gore et al. 2009) identified several million 

polymorphisms (1.4 million SNPs and 200,000 indels) among 27 diverse maize inbred lines and 

showed that the maize genome is characterized by highly divergent haplotypes. The second 

maize HapMap (HapMapV2) resulted in the identification of high-quality genotypic data of 50 

million SNPs and small indels. These efforts provide the foundation for dissecting the complex 

trait variation in maize by uniting breeding efforts around the world. 

To determine whether standing variation in the regulatory genes in maize contributes to 

variation in Balsas teosinte, association mapping was conducted on 584 Balsas teosinte 

individuals. Forty-eight markers from 9 candidate regulatory genes were tested against 13 traits 

for plant and inflorescence architecture. Ten associations involving five candidate genes were 

significantly identified after correcting for multiple testing. The maize homolog 

of FLORICAULA of Antirrhinum zfl2 was associated with plant height. The maize homolog of 

APETALA1 of Arabidopsis zap1 was associated with inflorescence branching. Five SNPs in the 
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maize domestication gene, teosinte branched1, were significantly associated with either plant or 

inflorescence architecture (Weber et al. 2007).  

To address vitamin A deficiency, the leading cause of blindness , disease, and death from 

severe infections in children. breeding for increased β-carotene (βC) levels in cereal grains 

(biofortification) is a realistic approach because β-carotene is a precursor of vitamin A. In the 

first study, association mapping coupled with linkage analysis, expression analysis, and 

mutagenesis identified variation in the lycopene epsilon cyclase (lcyE) gene that accounts for 

58% of the variation in the α-carotene versus β-carotene branches of the carotenoid pathway and 

a threefold difference in provitamin A compounds. The lcyE gene was significantly associated 

with the branching and carotenoid content (Harjes et al. 2008).  

In the second study, three association mapping populations were used. SSR and SNP 

markers were used to estimate the population structure and kinship matrices. GWAS identified a 

rare variation in the crtRB1 gene in maize, which increases the β-carotene concentration and 

conversion in maize kernels (Yan et al. 2010). Results from these studies will facilitate breeding 

for increased β-carotene levels in cereal grains, thereby addressing the dietary vitamin-A 

deficiency in the developing world. This is a good example of cross-validating the QTLs using a 

combination of association mapping and linkage mapping strategies. 

This NAM population has been used to elucidate the genetic basis of resistance to 

southern leaf blight (SLB) disease. SLB resistance was measured on a nine-point scale in three 

environments. The SLB index values varied among the founder lines, with B73 being the least 

resistant. The heritability of the SLB index was 87%, indicating potential for accurate mapping. 

Joint–linkage analysis identified 32 QTLs with small additive effects on SLB resistance. 

Genome-wide association tests of Maize HapMap were conducted by imputing the founder SNPs 

onto the NAM RILs; SNPs within and outside the QTLs were found to be associated with the 

variation for SLB resistance. Limited LD was observed around some SNPs, which indicates that 

NAM population is good for high-resolution mapping. But half of the QTLs detected by the bi-

parental mating studies were not detected in NAM, due to either low frequency or absence of the 

alleles (Kump et al. 2011). 

To gain insight into the genetic architecture of quantitative resistance to plant pathogens, 

the NAM RILs were evaluated for resistance to northern leaf blight (NLB). Using 1.6 million 

SNPs, multiple candidate genes related to plant defense were identified. Twenty-nine QTLs were 
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identified, most of which had multiple alleles. The study concluded that the large amount of 

variation present in the phenotype could be attributed to a number of loci with small effects 

(Poland et al. 2010). 

Over the years, maize yield in the United States has increased because of reduced 

planting density and efficient light capture, which has been possible because breeders changed 

the plant architecture by selecting for small leaf angle and leaf size. One study by Tian et al. 

focused on the genetic basis of the factors responsible for increased yield in corn. They 

considered the  genetic basis of leaf architecture traits in maize and identified key genes through 

a GWAS on the NAM population (Tian et al. 2011). This study demonstrated that the genetic 

architecture of the leaf traits (upper leaf angle, leaf length, and width) are dominated by QTLs 

with small effects, little epistasis, and environmental interaction or pleiotropy. The study showed 

that the variation in the liguleless genes has contributed to more upright leaves. For these three 

leaf traits, 30–36 QTLs were identified. 

Flowering time is one of the traits most thoroughly studied by the plant community. It is 

a complex trait that controls the plant’s adaptation to the local conditions. In maize, diversity-

based dissection of flowering time is problematic due to tight linkage and population structure. 

Buckler et al. studied one million plants on the NAM population for flowering time over eight 

environments and identified numerous QTLs with small effects (Buckler et al. 2009). This study 

evaluated 5,000 lines plus 500 checks in four environments over two years for flowering time. 

Days to silking (DS) and days to anthesis (DA) were scored, and anthesis silking interval (ASI) 

was calculated. The QTLs were mapped on the 25 families separately using composite interval 

mapping (CIM) and jointly by joint inclusive composite interval mapping (JICIM). JICIM 

identified twice as many significant QTLs as the individual family analysis. No single QTL with 

large effects was detected in the study. The NAM founders showed allelic differences for allelic 

effects. This study showed that for an adaptive trait like flowering time, the genetic architecture 

of the trait is controlled by small additive genes with few genetic effects or environmental 

interactions. This finding for maize differs from Arabidopsis and rice, where the flowering time 

is controlled by fewer genes with large effects, epistasis, and environmental interactions. 

Structured association analyses have been used to identify pleiotropic genes associated 

with correlated complex traits. To evaluate the hypothesis that the genes controlling multiple 

disease resistance (MDR) is present in maize, a mixed model approach for structured association 
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was extended to multivariate analysis. This analysis of a panel of 253 maize inbred lines 

identified high positive genetic correlations between resistances to southern leaf blight (SLB), 

northern leaf blight (NLB), and gray leaf spot (GLS). A glutathione S-transferase gene (GST) 

was conferring resistance to the three diseases. These successful examples in maize will 

encourage GWAS studies in other crops (Wisser et al. 2011).  

 

Rice example 

Rice is staple food for half of the world’s population, and rice varieties are adapted to varied 

climatic regions around the globe. Rice is a highly self-fertilizing species with a high-quality 

reference genome (Sequencing Project International Rice 2005) and phenotyping resources. The 

genome of domesticated rice contains information that could explain a large amount of the 

morphological, physiological, and ecological variation present in most of the cultivars 

throughout out the world (McNally et al. 2009).  

Seed shattering is a major trait in the domestication of crop plants. Konishi et al. studied 

loss of seed shattering through haplotype analysis and association analysis in various rice 

collections. The study revealed that an SNP highly associated in japonica subspecies was the 

target for artificial selection. QTL analysis revealed that the loss of seed shattering might have 

occurred independently in japonica and indica varieties. A QTL of seed shattering in 

chromosome 1(qSH1) explained 68.6% of the total phenotypic variation in the population. Fine-

mapping the qSH1 gene with 10,388 plants located the natural variation to a 612 bp and 

identified one SNP. The complementation tests proved that the qSH1 gene was the homolog of 

the RLP gene in Arabidopsis. The researchers also verified the SNP using association analysis of 

the rice core collections, which indicated that it was highly associated with the degree of seed 

shattering among the temperate japonica rice cultivars. This SNP was a target of artificial 

selection in rice domestication (Konishi et al. 2006). 

Apart from seed shattering, domestication of rice is associated with improvement in grain 

size, grain number, panicle size, grain quality, plant architecture, and flowering time, but the 

prime objective in domesticating rice is increasing grain yield. Through fine-mapping, 

complementation testing, expression analysis, and haplotype testing, researchers found that a 

deletion in a QTL, qSW5 (QTL for seed width on chromosome 5) gene resulted in a significant 

increase in sink size and increased yield of the rice grains (Shomura et al. 2008). 
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To access the variation present within and between rice cultivars and landraces, the 

International Rice Functional Genomics Consortium (IRFGC) initiated an SNP discovery project 

(McNally et al. 2006). With this project, rice was the first crop plant for which a high-quality 

reference genome sequence from a single variety was produced. Through whole-genome 

comparisons of the 21 rice genomes including cultivars, landraces, and breeding materials 

(publically available in www.oryzasnp.org), 160,000 non-redundant SNPs were identified. This 

provides the foundation for high-resolution genotyping of hundreds or thousands of varieties 

(Huang et al. 2010).  

Rice domestication was a complex process. The deep genetic divergence between the two 

main varietal groups (indica and japonica) suggests domestication of rice from two distinct wild 

populations. GWAS was performed in rice to understand the genome-wide patterns of 

polymorphism, to characterize population structure, and to infer the introgression history of 

domesticated Asian rice. The analysis showed that a key gene, SD1 (OsGA20 oxidase), 

determines plant height and was responsible for green revolution (Zhao et al. 2010). 

GWAS was performed on 517 landraces of rice with 3.6 million SNPs to understand the 

genetic basis of diverse varieties in rice. A Rice HapMap was created and GWAS was performed 

for 14 agronomic traits. The LD decay of indica and japonica were between 123kb and 167kb. 

The simple as well as the compressed MLM models were used to identify the association signals. 

On average, the loci identified through GWAS explained ~36 % of the phenotypic variance. The 

highly significant associations of six loci were close to the previously identified genes. The 

researchers reported that an approach which integrates the second genome sequencing and 

GWAS could be used as a powerful complementary strategy to traditional linkage mapping in 

dissecting complex traits (Huang et al. 2010). 

Genome-wide association mapping revealed a rich architecture of complex traits in rice. 

Numerous common variants influencing physiological, developmental, and morphological traits 

were identified by a genome-wide association study based on genotyping 44,100 SNP variants 

across 413 diverse accessions of O. sativa collected from 82 countries that were systematically 

phenotyped for 34 traits. Significant heterogeneity was observed in the genetic architecture 

associated with subpopulation structure and response to environments. This study was an open-

source translational research platform for genome-wide association studies in rice that directly 
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linked molecular variation in genes and metabolic pathways with the germplasm resources 

needed to accelerate varietal development and crop improvement (Zhao et al. 2011). 

The work of Zhao et al. was followed with another GWAS in a more diverse sample of 

950 worldwide varieties that included indica and japonica subspecies. The researchers identified 

32 new loci associated with flowering time and grain-related traits using the compressed MLM 

approach. The study reveals that an integrated approach following sequencing-based GWAS and 

functional genome annotation has the potential to reveal more true marker-trait associations 

(Huang et al. 2012). 

 

Community resources in Wheat, Barley, Soybean, and Sorghum 

Wheat is a challenging crop in terms of conducting association mapping owing to hexaploidy, 

an unfinished genome sequence, and difficulties in sequencing and allocating sequences to the A, 

B, or D genome. Earlier research in wheat has contributed significantly to our understanding of 

the potential and strategy of association mapping in crops (Breseghello and Sorrells 2006a, b; 

Sorrells and Yu 2009). Scaling up studies in wheat is hampered mainly by the lack of a large 

number of SNPs, but concerted efforts have been made to sequence the wheat genome, which 

would greatly facilitate association mapping studies and related research. The International 

Wheat Genome Sequencing Consortium (IWGSC) (http://wheat.pw.usda.gov/PhysicalMapping) 

was established by plant scientists, plant breeders, and producers to understand the structure and 

function of the wheat genome (www.wheatgenome.org). Most notably, three custom high-

throughput SNP genotyping assays (1,536-, 9,000- and 50,000-SNP) based on Illumina 

BeadArray and Infinium platforms have been developed (Chao et al. 2010) (E Akhunov, 

personal communication). A set of 2,994 wheat lines were genotyped with the 9,000-SNP iSelect 

assay (Cavanagh et al. 2013, manuscript in review). 

To understand the genetic diversity, population structure, and linkage disequilibrium in 

U.S. elite winter wheat, 205 elite breeding lines were analyzed from U.S. winter wheat breeding 

programs. The accessions were from the Southern and Northern Regional Performance 

Nurseries, the Regional Germplasm Observation Nursery, the elite hard winter wheat nursery at 

Oklahoma State University, the Uniform Eastern Soft Red Winter Wheat Nursery, and the 

Uniform Southern Soft Red Winter Wheat Nursery, plus 22 major cultivars recently released in 

the hard winter wheat region. Researchers genotyped the 205 elite breeding lines using 245 SSR 

http://www.wheatgenome.org/
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markers. Population structure, LD, cluster analysis, and PCA revealed that these collections were 

highly structured based on their geographical location. The soft and hard winter wheat was 

separated in the study. The hard winter wheat had more genetic diversity than the soft winter 

wheat. The LD decay was about 10 cM in the genome (Zhang et al. 2010a).  

One of the conclusions from the study was that modern breeding practices maintain 

reasonable genetic diversity in major U.S. winter wheat breeding gene pools. Also, the presence 

of higher genetic diversity in hard winter wheat could be used to broaden genetic diversity in soft 

winter wheat. LD blocks in the genome were identified, but the majority of the genome has 

lower LD decay, which indicates these could be used for association mapping studies. This study 

focused on evaluating the germplasm for genetic diversity in the current breeding programs, 

which will facilitate the use of this information to future cultivar release programs (Zhang et al. 

2010a). 

Efforts to analyze wheat genetic resources for conducting wheat association studies are 

progressing. Akhunov et al. performed analysis of nucleotide diversity to construct an SNP 

database in wheat. They studied about 2,114 genes for nucleotide diversity in T. aestivum, T. 

dicoccodies and synthetic 6x wheat. Genetic diversity was similar between A and B genome but 

was reduced in the D genome. The low variance of the D genome was together with an excess of 

rare alleles in some genes. The researchers discovered a total of 5,471 SNPs in 1,791 genes. 

Studying T. aestivum and T .dicoccodies is a good strategy to develop SNP markers in wheat, 

where ancestral species are the source of genetic variability. Self pollination and homeologous 

chromosome pairing could lead to loss of variability in wheat (Akhunov et al. 2010).  

Another study on the population structure and genome-wide linkage disequilibrium in 

wheat used 1536 SNPs (Chao et al. 2010). This study used a panel of 478 spring wheat cultivars 

from 17 populations across the United States and Mexico, and the population structure analysis 

identified 9 clusters, indicating that previously inferred populations share a common genetic 

identity. The assessment of LD and population structure in this assembled panel of diverse lines 

provides critical information for the development of genetic resources for genome-wide 

association mapping of agronomically important traits in wheat (Chao et al., 2010). 

 

Barley has a high degree of population sub-structure due to breeding activities. More 

coordinated community-based approaches are followed in crop plants, and barley is no 
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exception. Eight founding institutions from six countries have initiated a sequencing project in 

barley called The International Barley Sequencing Consortium (Schulte et al. 2009). 

Vernalization requirements for flowering in winter and spring-sown barley is a major 

subdivision. Major flowering time loci (VRN-H1 and VRN-H2) in barley were identified through 

association mapping by studying 429 spring and winter barley accession from Europe (Cockram 

et al. 2008).  

Even if the population structure were correlated with the phenotype, by effectively using 

the statistical methods developed, successful GWAS could be conducted even using low marker 

density. This assumption was validated by successfully mapping 15 morphological traits in 

barley. Five hundred barley cultivars were genotyped with 1,536 SNPs. The traits studied were 

seasonal growth (1H), grain lateral nerve speculation (2H), awn anthocyanin coloration, awn 

anthocyanin intensity, auricle anthocyanin coloration, auricle anthocyanin intensity, lemma nerve 

anthocyanin intensity (2H), grain aleurone color (4H), hairiness of leaf sheath (4H), rachille hair 

type (5H), ear attitude (5H), and grain ventral furrow hair (6H) were significantly associated. By 

developing a double haploid (DH) population from two of the inbreds in the GWAS panel 

differing in the anthocyanin pigmentation, the ANT2 gene on chromosome 2H was fine-mapped 

and validated by genotyping the population using the 1,536 SNP array (Cockram et al. 2010). 

GWA studies have been conducted to understand the genetic basis of domestication in 

barley, in which domestication has changed the morphological feature of the inflorescence 

architecture and resulted in two-rowed and six-rowed forms derived from the ancestor two-row 

wild types. The development of the six-row barley is controlled by a gene, VRS1, on 

chromosome 2H. But the genome-wide scans show that INTERMEDIUM-C located on 

chromosome 4H is an ortholog of the maize domestication gene TEOSINTE BRANCHED 

1(TB1), which acts as the modifier of the of the VRS1 gene. Ramsay et al. conducted genome-

wide association scans of 190 barley cultivars by genotyping them with 2,463 biallelic SNPs. 

This experiment identified 3 genomic regions on chromosomes 1HL, 2HL, and 4HS associated 

with the row type. The association on 2H was the VRS1 gene. The researchers also identified 17 

coding mutations in TB1 correlated with lateral spikelet fertility. The INT-C as an ortholog of 

ZmTB1 and the confirmation of its involvement in determining both the fertility of the lateral 

spikelets and of tillering was carried out using a combination of genome-wide association 
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mapping, and studying conservation of synteny and a collection of well-characterized mutant 

stocks (Ramsay et al. 2011). 

 

Soybean is an autogamous plant species that exhibits high variation in LD across its genome, 

indicating that a large number of markers is needed to perform GWAS. The LD pattern in 

soybean was identified by a study that focused on three genomic regions varying from 336 to 

574 kb. The populations used were 26 accessions of the wild ancestor of soybean (Glycine soja 

Seib. et Zucc.), 52 Asian G. max landraces, 17 Asian landrace introductions that became the 

ancestors of North American (N. Am.) cultivars, and 25 elite cultivars from N. Am. In the three 

cultivated G. max groups, LD extended from 90 to 574 kb (Hyten et al. 2007).  

Despite high LD in soybean, efforts are ongoing to sequence a number of landraces and 

cultivars to further understand the genetic structure and to perform association mapping. 

Seventeen wild and 14 cultivated soybean genomes were sequenced to x5 depth and >90% 

coverage using the Illumina Genome Analyzer II platform. A comparison of the patterns of 

genetic variation between wild and cultivated soybean indentified high allele diversity among the 

wild soybean. Researchers also identified a set of 205,614 tag SNPs useful for LD mapping and 

linkage analysis. This is a valuable resource for the analysis of wild soybeans and to facilitate 

future breeding and quantitative trait analysis. 

Large-scale SNP discovery has been conducted by deep resequencing of a reduced 

representation library (Hyten et al. 2010). Researchers then used the generated SNPs to create a 

high-resolution map that assisted in the assembly of scaffolds from the 8x whole genome 

shortgun sequences into pseudomolecules corresponding to soybean chromosomes. As in other 

crops, the release of the soybean genome sequence (Schmutz et al. 2010) would speed up 

association mapping related research. Concerted efforts are ongoing to develop a large sorghum 

NAM population with 5,600 lines (B. Diers, personal communication). A set of 40 soybean lines 

was selected from lines nominated by the soybean community to maximize the genetic diversity 

based on clustering analysis with 1536 SNPs. The lines were then crossed to IA302, a high-yield 

line. 

 

Sorghum is a staple food for the people in sub-Saharan Africa. Its C4 photosynthesis, drought 

resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in 
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Africa. Release of the sorghum genome sequence (Paterson et al. 2009) greatly facilitated 

research in association mapping. Efforts have been made to assemble information and 

community resources to conduct association mapping in sorghum and to investigate the LD in 

sorghum (Casa et al. 2008; Hamblin et al. 2004). Sorghum is an excellent species for association 

study owing to selfing, low sequence diversity, high LD compared with maize, and availability 

of a sequenced genome. The variation in sorghum is four-fold less than that of maize (Hamblin 

et al. 2004).  

 A recent SNP discovery project through resequencing 8 diverse sorghum accessions 

successfully identified 283,000 SNPs (Nelson et al. 2011). This study used the restriction site 

associated DNA (RAD) approach to construct the sequencing library from only genomic DNA 

fragments whose 5' ends about the recognition site of the selected restriction enzymes, Pst or 

BsrFI. SNP discovery rate of the RAD approach was 10-fold higher than that of a semi-random 

library (digestion by HpaII and fragment size selection of 200-2000 bp).  

A panel of 377 lines of sorghum representing major cultivated lines and lines from the 

sorghum conversion program (SCP) were assembled and characterized for eight traits. 

Population structure and linkage disequilibrium were estimated (Casa et al. 2008). A 300-line set 

(a subset of the 377-line set) has also been characterized for grain quality and genes were 

identified (unpublished results). A 2000-line sorghum NAM population also has been developed 

by crossing 10 diverse sorghum lines selected from the sorghum diversity panel with a common 

parent, Tx430 (Yu et al. 2012). 

Candidate gene association mapping has been conducted in sorghum to map the plant 

height gene. In this study, the sorghum diversity panel was used to effectively characterize the 

phenotypic effects of the dw3 mutation and to fine-map a second, epistatic dwarfing QTL on 

sorghum chromosome 9 (Brown et al. 2008). In addition, sweet sorghum has the potential to 

become the crop for bio-energy production. Association mapping has been conducted on sweet 

sorghum for brix and plant height (Murray et al. 2009). Different sweet sorghum collections 

were also analyzed for population structure and genetic diversity (Ali et al. 2008; Wang et al. 

2009a).  

Challenges and opportunities 

Next-generation sequencing technologies provide new opportunities and challenges to the plant 

genetics communities (Fig. 3). New strategies for high-throughput large-scale phenotyping need 
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to be developed to match the level of the genotyping/resequencing capacity. Improved 

bioinformatics, database, statistical methods, and genetic designs are needed for the large-scale 

data generated from sequencers, fields, growth chambers, greenhouses, and analytical equipment 

and scanners. Many new areas will be incorporated into association mapping; for example, 

genotyping strategies will be tested for detecting copy number variation (CNV) (Rogers and 

Bendich 1987; Springer et al. 2009) and presence-absence variation (PAV) (Springer et al. 

2009). Resequencing strategies using RNA-seq (Wang et al. 2009b), exome sequencing (Ng et 

al. 2009), and genotyping-by-sequencing (GBS) are being optimized.  

 High-throughput phenotyping is likely to be the most expensive part of plant genetic 

studies. Phenotypes used in association mapping are being expanded from the traditional, labor-

intensive phenotyping to gene expression, and protein/metabolite level. New techniques such as 

CT-SCAN, near infrared (NIR) spectroscopy, single kernel characterization system for grain 

quality, global positioning system, and image analysis are all being exploited for faster and more 

accurate phenotyping. More studies focusing on rare alleles, CR-GWAS (Zhu et al. 2011), 

multiple alleles, computational speed, data storage, and computational power are also needed. 

Validation of the results using RNA-seq and other approaches will be important. Methylation in 

the genome could be used as a marker (Laird 2003) and or as a trait (Lukens and Zhan 2007). 

Integration of association mapping will certainly be integrated with other areas such as MutMap 

(Abe et al. 2012), next-generation mapping (NGM) (Schneeberger et al. 2009), genomic 

selection (Bernardo and Yu 2007a; Meuwissen et al. 2001), and comparative mapping. 

 

Missing heritability 

Association mapping strategy is based on the thought that the common phenotypic variation will 

be caused by common genetic variation, but in most GWA studies, identified significant 

associations explain little of the phenotypic variation. Most of the studies on flowering time 

estimate heritability of flowering time as greater than 80%, but none of the studies have 

identified QTL or SNPs that can explain 80% of the phenotype variation. Consequently, Manolio 

et al. were correct to call the missing heritability in GWAS the “dark matter” of human genetics 

(Manolio et al. 2009). 

The most important factor that accounts for the missing heritability is the genetic 

structure of the trait under study. The inability to explain missing heritability also could be 
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attributed to a number of factors: genotype by environment interaction, a larger number of 

variants of smaller effects yet to be found; rare variants (possibly with larger effects) that are 

poorly detected by available genotyping arrays that focus on variants present in 5% or more of 

the population; structural variants poorly captured by existing arrays; low power to detect gene–

gene interactions, inadequate accounting for shared environment among relatives, statistical 

issues, copy number variation (CNV), and multiple testing issues. The power of GWAS to detect 

variants of modest effect and low frequency remains lacking due to the low frequency of 

functional alleles in the mapping population, the low influence of low-frequency alleles on the 

population, and/or lower detection power of the association mapping strategy. The phenotypic 

variation caused by numerous small-effect alleles will be difficult to detect compared with a 

small number of large-effect alleles; this is a challenge for any complex trait dissection studies, 

including association mapping. Also, while estimating the heritability, whether we are correctly 

accounting for environmental variances remains a question. Scientists still believe that these are 

early days to explain missing heritability. The solution is to bridge the gap between the 

phenotypic variation present in the sample and the variation that can be explained by the marker.  

 

New gene identification 

If the complete genome sequence is unavailable while conducting association, newer genes with 

small effects always will be missed in GWAS. The candidate gene approach is always biased 

from the beginning, and multiple testing issues and genetic epistasis adds to the problem of lower 

detection rate of rare alleles. The presently used association mapping methods have limited 

power to identify new genes. As described earlier, the candidate gene approach uses an SNP 

discovery panel that limits detection of polymorphism to only a small sample. GWAS methods 

also focus on variation between a limited number of genotypes due to the sequencing cost. 

Reduced sequencing costs could change the statistics of new gene identification.  

A newly developed and improved approach that combines LD mapping and linkage 

analysis, NAM also has disadvantages in identification of new genes. First, in maize where the 

LD decays at 2kb, 1.6 million markers may not be able to capture the complete SNP diversity 

present in the genome, but this method could be useful in new gene identification in self-

fertilizing, low-LD decay species. Secondly, only SNP and INDEL are detected in NAM, and 

presence absence variations (PAV), and copy number variations (CNV) are not accounted. Third, 
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a medium number of founders are used in GWAS, which may not capture all the variations 

available in the species, and fourth, the rare functional alleles cannot be detected because of the 

lower number of founders used in developing the populations. So identification of new genes 

through GWAS is still a challenge, which could be addressed by developing new methods that 

can accommodate higher genome coverage and a higher number of sequenced individuals. 

 

GBS: Genotyping-by-sequencing 

Rapidly evolving sequencing and genotyping technologies have fundamentally changed not only 

the design of specific breeding and selection strategies in crops, but also how the vast amount of 

available germplasm diversity can be utilized efficiently (Bernardo and Yu 2007b; Heffner et al. 

2009; Tester and Langridge 2010). Routine use of GS in plant breeding is becoming possible 

because of the significantly reduced cost of obtaining molecular marker information, particularly 

SNPs, thanks to the development of high-throughput technology from DNA extraction, sample 

preparation, and array-based genotyping technologies as well as cutting-edge GBS technology 

(Metzker 2010). Current GBS research includes species with a sequenced genome (Huang et al. 

2009b), such as rice, maize, and sorghum, and those without, such as wheat and barley 

(Chutimanitsakun et al. 2011). High-throughput genome sequencing was earlier approached 

through hybridization-based methods that were laborious, time-consuming, and expensive to 

design for specific mapping populations. Next-generation sequencing technologies have 

improved output and made possible sequencing of multiple samples at the same time. 

Sequencing-based high-throughput genotyping combines the advantages of cost-effectiveness, 

less time, and dense marker data. A sliding window approach for analyzing the SNPs collectively 

rather than individually was used on 150 RILs derived from the cross between indica and 

japonica rice cultivars. The SNP calling in this method is based on a recombination break point 

and sliding window. Based on the sequence-based genetic map, a 100-kb region was identified 

for plant height that is related to a green revolution gene (Huang et al. 2009a). Other approaches 

attempt to construct the GBS library by reducing the genome complexity through restriction 

enzymes (REs). Methylation-sensitive REs are used to reduce the genome complexity so lower 

copy regions are targeted with higher efficiency. This method simplifies the challenges of 

sequence alignment problems (Elshire et al. 2011).  
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GBS is an alternative to complex, expensive protocols for sequencing. It has a wide range 

of applications on breeding, population studies, germplasm characterization, and marker-trait 

association of diverse germplasms. In the future, plant breeders may be able to do a genomic 

selection without having prior information about the germplasm. The most important question 

about GBS is the DNA quality. This technology will accelerate GWAS in crop species and 

model organisms. 

 

Rare alleles 

At present, GWAS is unable to detect rare variants through common SNP markers (Ott et al. 

2011). The power to detect an association is a function of allele frequency, and rare alleles have 

little influence on the population, which renders their detection difficult. The difficulty in 

detecting the rare alleles is more of a methodological problem than a statistical issue. Rare alleles 

are supposed to play an important role in the genetics of complex traits, but methodologies to test 

the interactions at the genome level are lacking due to multiple testing problems. Data mining 

and multivariate analysis methods have not been not successful in addressing the rare variant 

issue.  

A composite resequencing–based approach could be a solution to the problem of 

accommodating ever-increasing genomic data. This approach integrates next-generation 

sequencing, exome sequencing, whole genome sequencing, prediction of biological function of 

SNPs based on gene prediction, statistical test for rare allele variants, and development of 

genome databases and gene networks. These approaches could be integrated in rare allele testing 

and were successfully practiced to identify marker-trait associations in Arabidopsis empirical 

data (Zhu et al. 2011). The method follows the following steps: (1) analyzing gene fragments 

with statistical methods to identify significant test for gene fragments, (2) testing for genes with 

common variants to see if prior candidate genes that were significant at 0.001 could be detected 

by earlier methods, (3) testing rare variants, and (4) using the gene network AraNet to verify the 

tested genes. Interested readers are directed to Zhu et al. (2011) for more details. When 

employed on empirical data, these methods showed that a weighted sum test and function-aided 

sum test were more consistent than the sum test (Zhu et al. 2011). A comparison of results from 

the three tests could reduce the number of false positives from testing rare alleles. 

 



25 
 

Conclusion 

Association mapping has become one of the major approaches in gene discovery and complex 

trait dissection in plants. Combined with genetic designs in plant genetics, the development of 

immortal populations such as NAM showcased the potential of what can be achieved by 

assimilating knowledge and discovery in other research areas. Concerted efforts are ongoing in 

almost all major plan species, and we expect great findings in these studies. 
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Tables and Figures 

Table 1. 1 Examples of association mapping study in different crops. 

 

Species Trait / objective Population Marker Reference 

Arabidopsis 107 phenotypes  191 accessions 250,000 SNPs Atwell et al., 2010 

Arabidopsis Flowering time 184 accessions + 

4,366 RILs 

216,509 SNPs Branchi et al., 2010 

Zea mays Leaf angle, leaf length, and 

width  

Maize NAM  1.6 million SNPs Tian et al., 2011 

Zea mays Southern leaf blight disease Maize NAM  1.6 million SNPs Kump et al., 2011 

Zea mays Provitamin A 288 lines Candidate genes Harjes et al., 2008 

Zea mays Provitamin A 681 maize germplasm Candidate genes Yan et al., 2010 

Oryza sativa 14 agronomic traits 517 landraces 3.6 million SNPs Huang et al., 2010 

Oryza sativa Flowering time and 10 grain-

related traits 

950 worldwide 

accessions 

4,1 million SNPs Huang et al., 2012 

Triticum aestivum To understand genetic diversity, 

population structure, and 

linkage disequilibrium 

205 elite breeding 

lines 

245 SSRs Zhang et al., 2010 

Triticum durum Drought-adaptive traits and 

grain yield 

189 elite durum 90 SSRs Maccaferri et al., 

2010 

Hordeum vulgare 15 morphological traits 500 cultivars + DH 

populations 

1536 SNPs Cockram  et al., 2010 

Hordeum vulgare Domestication traits 190 cultivars 2463 SNPs Ramsay et al., 2011 
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Figure 1. 1 Achievements in association mapping methods and future challenges. 
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Figure 1. 2. A sample of publications based on population size and scale of markers. 
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Figure 1. 3. Future opportunities and challenges that are related to association mapping and the 

general complex trait dissection and selection. 
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CHAPTER 2- ASSOCIATION MAPPING FOR GRAIN QUALITY 

IN SORGHUM 

 

Abstract 

Knowledge of the genetic bases of grain quality traits will complement plant breeding efforts to 

improve the end use value of sorghum (Sorghum bicolor (L.) Moench). Candidate gene 

association mapping was employed on a diverse panel of 300 sorghum accessions to assess 

marker-trait associations for 10 grain quality traits, measured using the single kernel 

characterization system (SKCS) and near-infrared reflectance spectroscopy (NIRS). The analysis 

of the accessions through 1,290 genome-wide SNPs (single nucleotide polymorphisms) 

separated the panel into five subpopulations that corresponded to three major sorghum races 

(durra, kafir, and caudatum), one intermediate race (guinea-caudatum), and one working group 

(zerazera/caudatum). These subpopulations differed in kernel hardness, acid detergent fiber, and 

total digestible nutrients. After model testing, association analysis between 333 SNPs in 

candidate genes/loci and grain quality traits resulted in eight significant marker-trait associations. 

A SNP in starch synthase IIa (SSIIa) gene was associated with kernel hardness (KH) with a 

likelihood ratio–based R
2 

(RLR
2
) value of 0.08, and a SNP in starch synthase (SSIIb) gene was 

associated with starch content with an RLR
2
 value of 0.10, and a SNP in loci pSB1120 was 

associated with starch content with an RLR
2 

value of 0.09. 
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Introduction 

Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop used as human food in the 

semi-arid tropics of African and Asian continents by ~500 million people (de Wet, 1978). It is a 

gluten-free cereal used as whole grain as well as ground flour and it is a source of energy, 

protein, vitamins, minerals, and nutraceuticals such as antioxidant phenolics and cholesterol-

lowering waxes (Taylor et al., 2006). Grain quality varies among different types of sorghum and 

their cultivated environments. Genetic improvement of grain quality can help sorghum to adapt 

to varying demands for end-use products. 

Grain quality is differentiated by biochemical and physical characteristics in sorghum. 

Kernel hardness (KH) affects grain mold resistance (Jambunathan et al., 1992), grain storage 

ability, insect resistance (Bueso et al., 2000), milling behavior (Suhendro et al., 2000), flour 

particle size, cooking properties (Anglani, 1998; Bettge et al., 2000), and parameters such as 

adhesion, cooked grain texture, alkali gel stiffness (Cagampang and Kirleis, 1984), porridge 

quality (Akingbala and Rooney, 1987), and production of high-quality couscous granules 

(Aboubacar and Hamaker, 1999). Sorghum kernels are round and small in size and vary from 

about 3–4 mm in diameter. Variation in kernel diameter (KD) exists among cultivars (Wills and 

Ali, 1983). Large sorghum kernels with corneous endosperm are usually preferred for human 

consumption and are associated with desirable physical and chemical quality parameters such as 

high protein concentration, low ash, high milling yields, high water absorbance flour, bright 

white color, and large particle size (Lee et al., 2002). Small-kernel sorghum that is more likely to 

be harder and more difficult to mill, is not popular in the grain market (Wills and Ali, 1983). 

Kernel weight (KW) contributes to grain yield, and its components (kernel moisture content and 

kernel density) are correlated with milling value. Sorghum grain contains higher levels of acid 

detergent fiber (ADF) than yellow corn (Zea mays L.), and high-tannin varieties contain higher 

amounts of ADF than non-tannin sorghum (Douglas et al., 1990). Chemical quality parameters 

such as crude protein (CP), fat (F), phosphorous (P), starch, and total digestible nutrients (TDN) 

directly influence sorghum nutritional value. Starch content in sorghum kernels affects the 

consistency of thick porridge, cooked couscous firmness, and rollability (Beta et al., 2001). 

Genetic mapping of grain quality traits has been conducted in different cereal crops such 

as maize (Zea mays L.) (Cook et al., 2012; Wilson et al., 2004), rice (Oryza sativa L.) (Tian et 

al., 2009), wheat (Triticum aestivum L.) (Bordes et al., 2011; Reif et al., 2011), and sorghum (de 
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Alencar Figueiredo et al., 2010). Starch is one of the most important grain quality parameters in 

cereals that provide the basis of subsistence for world population. Four enzymes, Adinosine 

diphosphate glucose pyrophosphorylase (ADGPP), starch synthase (SS), starch branching 

enzyme (SBE), and starch debranching enzyme (DBE) catalyze starch biosynthesis in cereals 

(Preiss and Sivak, 1998). Given that the pathways and enzymes related to grain quality are 

similar in cereals, it was not unexpected that genes identified through earlier mutational studies 

are similar to the genes identified by association studies at the population level. 

A community resource, sorghum diversity panel was recently established by a collection 

of sorghum accessions representing all major cultivated races, including lines from the Sorghum 

Conversion Program (SCP), elite breeding lines, and their progenitors from all around the United 

States (Casa et al., 2008). The SCP converted tropical lines to photoperiod-insensitive short 

plants (Stephens et al., 1967). The level of population structure and familial relatedness in this 

diversity panel was previously assessed using 47 simple sequence repeat (SSR) markers (Casa et 

al., 2008). Another study analyzed 216 SCP lines using 434 single nucleotide polymorphisms 

(SNPs) and classified the lines into 4 subpopulations that corresponded closely to four major 

races. A combined analysis of the breeding lines and lines from the SCP program has not been 

conducted with a large number of markers; furthermore, genetic mapping studies will 

complement breeders’ efforts to improve grain quality in sorghum. The present research was 

undertaken to identify marker-trait associations for grain quality traits in sorghum. 

 

Materials and Methods 

Plant Germplasm and Phenotypic Characterization 

Three hundred lines from the sorghum diversity panel, including 251 SCP lines, and 49 

important breeding lines and their progenitors from the U.S. served as the genetic material for 

this study. The sorghum accessions were planted with randomized complete block design in 

Manhattan, KS, and West Lafayette, IN, with two replications in 2007 and 2008. Seeds harvested 

from 10 selfed sorghum heads were analyzed for grain quality using the single kernel 

characterization system (SKCS) (Martin et al., 1993) and near-infrared reflectance spectroscopy 

(NIRS) (Pasquini, 2003). SKCS provided data on KH, KD, and KW, and NIRS provided data on 

ADF, C, CP, F, P, S, and TDN. 
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Single Kernel Characterization System 

The SKCS was the device used to measure physical properties of sorghum kernels such as KH 

and size characteristics (Bean, 2006; Pedersen, 1996). Seeds of 287 lines from two years and two 

replications were analyzed through SKCS. Three hundred individual grains were crushed 

between a serrated rotor and a crescent, and parameters for KH, KD, and KW were estimated 

and reported. KH was reported as kernel hardness index. 

 

Near-Infrared Reflectance Spectroscopy 

NIRS utilizes the near-infrared region of the electromagnetic spectrum (about 800 nm–2500 nm) 

to determine the concentration of physical and chemical constituents in agricultural materials 

(Pasquini, 2003). NIRS was used to predict the amount of ADF, CP, F, C, P, S, and TDN in 

sorghum kernel. A total of 15g of seed were ground in a UDY cyclone mill (UDY Corporation, 

Fort Collins, CO) with a 1-mm screen, a stainless steel grinding ring, and an aluminum impeller. 

Two hundred and sixty-nine lines from 2 replications in Manhattan (2007) were scanned using a 

Foss NIRSystem 6500 monochromator. High R
2
 values were obtained for various traits using a 

validation set of 52 samples. The R
2
 for S, CP, F, ADF, and P contents were 0.99, 0.98, 0.91, 

0.88, and 0.88, respectively. On the basis of the statistical parameters mentioned above, NIRS 

was demonstrated to be efficient and accurate in predicting chemical grain quality traits in this 

panel. 

 

Genotyping and Candidate Genes 

Two different genotyping assays were conducted: 1) a genome-wide assay of 1,536 SNPs (Yu, 

2011), and 2) candidate gene/loci assay of 384 SNPs (Murray, 2009). The 1,536 SNPs assay was 

designed to achieve maximum genome coverage. The average distance between SNPs was 400 

kb except in the centromere regions. The 384 SNPs assay was developed from SNPs discovered 

in previously published studies (Hamblin, 2004; Hamblin, 2005; Hamblin, 2006; Hamblin, 2007; 

Murray, 2009), starch pathways (Hamblin et al., 2007), sucrose pathways (Murray, 2009), and 

carotenoid pathways (Salas Fernandez et al., 2009). Out of 226 loci represented in the 384 SNPs 

assay, 39 loci were candidate genes from starch, sucrose, and carotenoid pathways and the 

remainder were candidate loci distributed across 10 chromosomes. An Illumina GoldenGate 

assay was used to genotype the samples. Out of the 1,536 SNPs assay, 1,290 SNPs and out of the 

http://en.wikipedia.org/wiki/Infra-red
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
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384 SNPs assay, 333 SNPs were successful and polymorphic. The program fastPHASE was used 

to impute missing data (Scheet and Stephens, 2006). 

 

Statistical Analysis 

DNA Marker Profile 

PowerMarker version 3.25 (Liu and Muse, 2005) was used to calculate Chord distance (Cavalli-

Sforza and Edwards, 1967) among accessions. It was also used to compute molecular diversity 

statistics and to construct the Neighbor Joining (NJ) tree with 100 replications of bootstrapping. 

 

Population Structure Analysis 

The program STRUCTURE, version 2.2.3 (Pritchard, 2000), was used to detect population 

structure and assign individuals to subpopulations. The STRUCTURE program was run 10 times 

for each subpopulation (k) value, ranging from 1–15, using the admixture model with 20,000 

replicates for burn-in and 20,000 replicates during analysis. The final subpopulations were 

determined on the basis of 1) likelihood plot of models, 2) stability of grouping patterns across 

10 runs, 3) germplasm information or “breeder’s knowledge,” 4) cluster analysis (NJ tree), and 

5) principal component analysis (PCA). On the basis of this information, we chose k = 5 as the 

optimal grouping. Out of the 10 runs for k = 5, the run with the highest likelihood value was 

selected to assign the posterior membership coefficients (Q) to each accession (Supplementary 

Table 1). A graphical bar plot was then generated with the posterior membership coefficients 

(Fig. 1A), and plots were also plotted for k = 2, 3, 4, and 5 for result interpretation. 

To validate the genetic structure and to test marker-trait associations, PCA and nonmetric 

multidimensional scaling (nMDS) were conducted and K matrix was calculated. PCA was 

conducted to construct a plot of the most significant axes for grouping pattern variation and to 

obtain axes for further model testing and association mapping (Patterson, 2006; Price, 2006; Zhu, 

2009). The combined display of the color-coded subpopulation memberships from 

STRUCTURE with other analyses, NJ tree (Fig. 1B), and PCA (Fig. 2A), are shown. Kinship 

(K) was calculated with SPAGeDi 1.3 (Loiselle et al., 1995; Hardy and Vekemans, 2002). 
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Model Comparison and Association Analysis 

We compared different models to assess the effect of population structure on association 

mapping of various grain quality traits measured in this diversity panel. Following the previously 

recommended procedures (Yu, 2006; Zhu, 2009), we tested various mixed models with 

subpopulation membership percentage (Q), nMDS, and PCA as fixed covariates, and kinship as 

random effect. The dimension of PCA and nMDS were determined for each trait individually. 

Among all possible models (the simple model, Q, K, PCA, nMDS (Zhu, 2009), Q+K (Yu, 2006), 

PCA+K, and nMDS+K), the best fit model was determined for each trait based on the Bayesian 

Information Criterion (BIC). The selected models were then used to test marker-trait associations 

between 333 SNPs and 10 grain quality traits. Marker-trait associations were tested in TASSEL 

(Bradbury, 2007) and were also verified in SAS (SAS institute, 1999). Subsequently, quantile-

quantile (Q-Q) plots of the F-test statistics for the SNP markers were plotted to assess the 

adequacy of the best model in controlling type I errors (Fig. 2.5). SNPs that passed the threshold 

of p-value < 10
-03

 were deemed significant if minor allele frequency (MAF) was greater than 5%. 

In addition, likelihood-ratio-based R
2
 was calculated for significant SNPs to provide a general 

measure for the effect of SNPs in mixed-model association mapping of the traits (Sun et al., 

2010). RLR
2
 is a generalized form of R

2
 in linear regression model that allows comparisons across 

models with different random and fixed components. 

 

Results 

 

Population Structure and Genetic Diversity 

From the SNP data, the STRUCTURE analysis revealed five subpopulations (G1, G2, G3, G4, 

and G5) that contained 49, 46, 52, 49, and 69 accessions, respectively (Fig. 1A). The NJ tree 

analysis also clustered the data into five branches (B) (Fig. 1B). The color-coded branches 

support the five subpopulation classification. Each subpopulation closely corresponded to durra, 

kafir, zerazera/caudatum, guinea, and caudatum (Fig. 1C). G1 mainly consists of accessions 

from the race durra (79.6%), G2 comprises kafir (91.3%), G3 consists of the zerazera-caudatum 

working group (75%), G4 comprises the guinea-caudatum intermediate race (61.2%), and G5 

consists of the caudatum race (63.8%). The genetic group guinea-caudatum is the race guinea in 

traditional classification. We used information from two earlier studies about the sorghum 
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diversity panel to classify the accessions into genetic groups and races (Brown, 2011; Casa, 

2008). 

The results from PCA showed that PC1 explains 11.6% variation in the data by 

separating G1 from G2, G3, G4, and G5, and PC2 explains 6.9% variation in the data by 

separating G4 from G1, G2, G3, and G5 (Fig. 2A). The PCA was color-coded based on the 

structure results and it generally agrees with STRUCTURE classification of five subpopulations. 

Even though bicolor is a major race of sorghum, it did not form a specific subpopulation in this 

diversity panel. We also generated a world map of the accessions based on their sources/origins 

(Fig. 2B). Results from STRUCTURE analysis, NJ tree, and PCA were consistent. Taken 

together, the sorghum diversity panel was classified into five subpopulations: three main 

sorghum races (durra, kafir, and caudatum), one intermediate race (guinea-caudatum), and a 

working group (zerazera-caudatum). 

 

Trait Variation 

Data analysis showed a high amount of diversity for grain quality traits. KH, KW, and KD from 

SKCS showed high consistency across years and environments that were recorded from two 

locations for two years. The repeatability of KH, KW, and KD were 0.79, 0.84, and 0.78, 

respectively. The correlation coefficients (r) were calculated for all traits. KH was significantly 

correlated with all traits except starch. KW and KD were positively correlated (r
 
= 0.91). Protein 

content and P content were positively correlated (r
 
= 0.75). KD and F were negatively correlated 

(r= -.24). CP was significantly associated with all traits except KW, KD, and F. Starch content 

was negatively correlated with ADF (r
 
= -.68), Ca (r = -.31), CP, (r = -.75), F (r = -.25), and P (r

 

= -.68) (Table 1). 

In addition, KH, ADF, and TDN showed significant differences among the five 

subpopulations (Fig. 3). Caudatum in G5 had the lowest KH (Fig. 3A) and TDN (Fig. 3C) and 

the highest ADF (Fig. 3B) values. The accessions that formed G3, zerazera-caudatum, had the 

highest KH and TDN values, followed by guinea-caudatum (G4). Durra (G1) and kafir (G2) 

accessions had higher KH values than the caudatum (G5), but lower values than zerazera-

caudatum (G3) and guinea-caudatum (G4). Caudatum in G5 were significantly different from 

other subpopulations for these three traits. Other phenotypic traits were not significantly different 

among the subpopulations. 
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Marker-Trait Association Analysis 

The model comparisons revealed that the mixed model with K matrix was the best model for 

eight phenotypic traits: KH, KW, KD, ADF, CP, F, starch, and TDN. The simple model was the 

best model for testing Ca and nMDS2 for P. The intersection of phenotypic data (300 accessions) 

and genotypic data (265 accessions) yielded combined data set of 200 accessions with both 

genotypic and phenotypic data. Eight significant marker-trait associations between the SNPs on 

the candidate genes and grain quality traits were detected after filtering for MAF of 0.05 (Table 

2). The Q-Q plots for each phenotype showed that the model tested were effective in controlling 

type I error (Fig. 2.5). SNPs associated with grain quality traits were checked for the distribution 

of alleles among subpopulations (Fig. 2.6).  

Data analysis revealed three significant SNPs associated with KH: SB00214.1, 

SB00214.2, and SB00116.3 have with p-values of 1.84 x 10
-04

, 1.84 x 10
-04

, and 7.94 x 10
-04

, 

respectively. The consistency of association between significant SNPs and alleles with the trait 

was checked by plotting the number of alleles in the accessions among five subpopulations (Fig. 

4). Accessions with allele A in the SNP SB00214.1 and the accessions with allele T in the SNP 

SB00214.2 had significantly higher KH values in all subpopulations except in G1 (Fig. 4). 

SB00214.1 and SB00214.2 were located in the locus pSB1700, and SB00116.3 was in starch 

synthase IIa (SSIIa) gene. The values of RLR
2
 for these SNPs were 8–10%. Except in G2 and G4, 

accessions with allele A in the SNP SB00116.3 had higher KH values. 

Ca, P, and starch had significant SNPs associated with it (Table 2). Two significant SNPs 

were associated with C. SB00156.1 and SB00054.1 was significantly associated with Ca; with p-

values 5.36 x 10
-04

 and 9.04 x 10
-04

, respectively, each explained 6% of the variation. Except in 

G4, accessions with allele A in the SNP SB00156.1 had higher Ca content values. In the SNP 

SB00054.1, accessions with allele C had higher Ca content values except in G2. SB00068.1 in 

candidate loci pSB0140 in chromosome 6 was significantly associated with P content with a p-

value of 5.83 x 10
-04

. This SNP explained 5% of the variation in P. Accessions with allele G had 

higher P content values in all subpopulations, and the allele A was fixed in G1, G2, and G3. Two 

significant SNPs were associated with starch. SB00115.3 in candidate gene SSIIb was associated 

with a p-value of 3.67 x 10
-04

, and SB00086.1 in pSB1120 was associated with a p-value of 6.19 

x 10
-04

. The SNP in SSIIb explained 10% of the variation and the SNP SB00086.1 explained 9% 

of the variation in starch. Accessions with allele A in the SNP SB00115.3 had higher starch 
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content values in G1 and G5. The accession with allele C in the SNP SB00086.1 had higher 

starch content values except in G3 (Fig. 4). 

 

Discussion 

Diversity and Classification in Sorghum 

Sorghum is considered to have been domesticated around 5,000–7,000 years ago in the 

northeastern part of Africa, the present-day Ethiopia (Jennings and Cock, 1977). Earlier efforts to 

classify sorghum were mainly based on color of grains and glumes, presence/absence of awn, 

and stem characteristics. The most complete classification of sorghum was in the early part of the 

last century (Snowden, 1936). In 1972, another classification based on the spikelet characteristics 

was proposed (Harlan and Dewet, 1972), and cultivated sorghum was mainly classified into five 

major races. According to that system, bicolor and guinea races have open panicles, kafir and 

durra races have compact heads, and caudatum spikelets vary in their head type. Broomcorn 

generally falls in bicolor type, and feterita is considered to be of caudatum type (Harlan and 

Dewet, 1972). Notably, no barrier between these sorghum races prevents them from crossing and 

mixing, so a considerable amount of variation within the five races results from admixture that 

separates them into about 15 mixed races and nearly 70 working groups (Murty, 1967). Sorghum 

races also vary in their geographical origin and adaptation (Fig. 2B). The race bicolor is grown 

almost everywhere in Africa and does not have a characteristic geographical distribution or 

ecological adaptation. Guineas have hard seeds and are resistant to insects and mold damage 

under wet conditions. They are grown in the high rainfall areas of West Africa. 

We found that the genetic group guinea-caudatum forms a subgroup with high KH values 

compared with caudatum (Fig. 3A). This genetic group closely corresponds to the race guinea in 

traditional classification (Brown, 2011). The caudatum race is one of the most important one; 

almost all modern hybrid sorghums in the U.S. are caudatum or are mixed with caudatum. 

Caudatum has higher yielding ability, bright seed color, and good seed quality. This race is found 

mixed with other races of sorghum and the working group zerazera-caudatum had the highest 

KH characteristics (Fig. 3A). The race kafir is found in the southern part of Africa and India. 

Durra is a drought-tolerant race and is present in India and northern parts of Africa; it is also 

found mixed with guinea and caudatum. 
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Earlier efforts to support phenotype-based racial classification in sorghum with genotypic 

data were successful (Aldrich, 1992; Perumal, 2007; Folkertsma, 2005; Casa, 2008; Brown, 

2011), but there is some disagreement between phenotype- and genotype-based racial 

classifications. One hypothesis is that, in phenotype-based racial classification of sorghum, the 

traits used (panicle and spikelet characters) are controlled by a limited number of genomic 

regions but, in genotype-based classification a large number of markers are used to classify 

sorghum races i.e. STRUCTURE classification is based on random markers distributed across 

the genome that can capture the genomic variation among sorghum races. However, in an earlier 

study, 216 SCP lines were classified into four genetic groups that closely corresponded to major 

traditional races (Brown, 2011) except bicolor and bicolor didn’t form a separate subpopulation. 

Our study showed similar patterns; the race bicolor was present in G2–G5 but was not present in 

the subpopulation G1, which had mostly kafir. Although bicolor is considered the progenitor of 

all sorghum races (de Wet, 1978), parallel domestication and theories of multiple origin of the 

sorghum races remain valid. The race kafir might have originated from an early bicolor or a wild 

race Sorghum verticilliflorum (Smith and Frederiksen, 2000). Electrophoresis data from an 

earlier study suggest that the race kafir was different from the other four major races in protein 

patterns (Shechter and Wet, 1975).  

A recent study of domestication of the shattering gene in cereals reported multiple 

Shattering1 (Sh1) alleles for domesticated races in sorghum, and the Sh1 allele in Tx623 (an 

important breeding line) found in kafir and bicolor from south and east Africa is different from 

the alleles found in guinea and durras, which is different from caudatum (Lin et al., 2012). The 

race bicolor had multiple alleles of the sh1 gene and didn’t have a dominant sh1 haplotype that 

indicates wide distribution of this race. The four major races of sorghum probably have multiple 

independent domestication events (Lin et al., 2012). However, in this sorghum diversity panel 

zerazera/caudatum formed a separate subpopulation. Our results indicated that this 300 line 

sorghum diverse collection was separated into five different subpopulations that closely 

corresponded to four major traditional races and a working group. 

 

Association Analysis 

We followed the unified mixed model approach to account for spurious associations that result 

from population structure and familial relatedness (Yu, 2006). In deciding the best model to test 
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marker-trait associations, we compared and tested different models for the best fit to the 

phenotypic data. Testing a mixed model with the K matrix in SAS is not a straightforward 

approach and may encounter convergence problems. The best-fit model (the lowest BIC model) 

was selected for testing markers for each trait; if each phenotype were not tested with the best 

model, directly fitting both Q and K may overcorrect population structure and familial 

relatedness for some traits and result in type II error (Zhu and Yu, 2009).  

The SNPs that were significant with MAF < 0.05 were not reported and improved 

methods are needed, to address and identify the true positives (Zhu, 2011). The percentage of 

variation explained was calculated as RLR
2
 that is appropriate for mixed model–based association 

mapping. After controlling for population structure and admixture, we found eight SNPs on the 

candidate genes to be significantly associated with the grain quality traits. Candidate gene 

association mapping approach complements genome-wide association studies (GWAS) and 

traditional linkage mapping. By using a sufficient number of SNPs coupled with careful selection 

of candidate genes, this approach can establish the gene-trait relationship at the population level. 

 

Marker-Trait Associations 

A SNP on the candidate gene SSIIa located on chromosome 10 was associated with KH and 

explained 8% of the variation in the trait. Earlier studies on kernel hardness in sorghum, wheat, 

and rice suggest that starch content and the distribution of proteins and lipids on the surface of 

starch granules are important factors in determining grain hardness (Cagampang and Kirleis, 

1984; Chen et al., 2012; Guzman et al., 2012; Morris et al., 1994; Yan et al., 2010). Sorghum 

grain hardness is related to the vitreousness of the grain and the vitreousness is related to 

amylose content which is a major component of starch (Cagampang and Kirleis, 1984). The 

maize homologue of SSIIa gene is sugary2 (su2) gene that is in the starch synthesis pathway 

(Hamblin, 2007). Also, the gelatinization temperature in rice is genetically controlled by the 

SSIIa gene that is related to KH (Yan et al., 2010). So these evidences suggest that the gene 

SSIIa from the starch synthesis pathway plays an important role in KH. 

SNPs associated with KH (SB00214.1 and SB00214.2) explained 10% of the variation in 

the trait and they were located in the locus pSB1700 on chromosome 3. A bioinformatics analysis 

of the locus revealed that pSB1700 locus is similar to sad1 protein in Oryza sativa and SUN4 

domain protein in Zea mays. The translated nucleotide of pSB1700 had 49% identity with the 
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SUN4 protein in maize. These proteins are present in the inner nuclear membrane in a cell and 

form a link between other proteins, nucleoskeleton, and cytoskeleton that is important in the 

structure and shape of a cell (Murphy et al., 2010). SNPs SB00156.1 and SB00054.1 associated 

with C content were located in chromosome 3 at 50 cM and 59 cM, respectively. SB00156.1 was 

located in a locus, pSB0289 that was predicted to produce serine/threonine-protein kinase. The 

function of SNP SB00054.1, in locus PRC1044 in chromosome 6, is not known from NCBI 

searches. A SNP, SB00068.1 in pSB0140 locus in chromosome 6, explained 5% of the variation 

in P content. A SNP on the candidate locus pSB1120 on chromosome 3 was significantly 

associated with S content and explained 9% of the variation in the trait. BLAST searches 

provided the function of this locus as a gene producing 3-ketoacyl-CoA synthase. These five 

SNPs-trait associations are novel associations. 

A SNP on the starch synthase IIb (SSIIb) gene on chromosome 2 was found to be 

significantly associated with S content and explained 10% of the variation in the trait. The maize 

homologue of this gene is SSIIb. Starch synthase is an enzyme required for starch synthesis in 

the endosperm of cereals (Fujita et al., 2011). Candidate gene association mapping in maize 

(Wilson et al., 2004) and rice (Tian et al., 2009) suggest that the starch synthase is an important 

enzyme in determining starch content and quality in cereals. The genes from starch synthesis 

pathways form a regulatory network and influence grain quality parameters (Tian et al., 2009). In 

sweet wheat, in the absence of the granule bound starch synthase II, starch is not formed in its 

kernels (Shimbata et al., 2011). The findings about the trait differences among different 

subpopulations and the identified SNPs from the present study can be further exploited in 

improving grain quality in sorghum and related cereals. 
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Tables and Figures 

Table 2.1. Mean, standard deviation, and correlation of grain quality traits across sorghum accessions. The number of accessions used 

was 247 for KH, KW, and KD, and 274 for ADF, Ca, CP, F, P, starch, and TDN. 

   Correlation (r) 

Traits Mean SD KH KW KD ADF Ca CP F P Starch TDN 

KH 78.15 18.97 -          

KW 24.40 5.20 -.32*** -         

KD 1.70 0.38 -.33*** .91*** -        

ADF 4.81 0.91 -.18** -.07 -.08 -       

C 0.06 0.01 .23*** -.07 -.12 .21*** -      

CP 13.85 1.67 .18** .13 .05 .43*** .31*** -     

F 3.25 0.41 .33*** -.22*** -.24*** .05 .52*** -.05 -    

P 0.45 0.05 .23*** .04 -.04 .28*** .33*** .75*** .20*** -   

S 69.26 2.44 -.09 .02 .10 -.68*** -.31*** -.75*** -.25*** -.68*** -  

TDN 84.84 1.40 -.16** .07 .08 -.99*** -.21*** -.43*** -.05 -.28*** .67*** - 

 

KH = kernel hardness, KW = kernel weight, KD = kernel diameter, ADF = acid detergent fiber, C = calcium, CP = crude protein, 

F = Fat, P = phosphorous, S = starch, and TDN = total digestible nutrients, SD = standard deviation, * = p < 0.05, ** = p < 0.01, 

*** = p < 0.001. 
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Table 2.2 Significant SNPs in candidate genes associated with grain quality traits. 

SNP Locus/gene Ch Alleles MAF Trait 

P-value 

(Best 

model) 

P-value 

(Simple 

model) 

RLR
2 

(SNP) 

RLR
2 

(SNP 

+ Best 

model) 

Predicted gene function 

SB00214.1 pSB1700 3 C/A 0.17 KH 1.84E-04 3.70E-03 0.10 0.53 Hypothetical protein 

SB00214.2 pSB1700 3 A/T 0.17 KH 1.84E-04 3.70E-03 0.10 0.53 Hypothetical protein 

SB00116.3 SSIIa 10 A/T 0.28 KH 7.94E-04 3.54E-03 0.08 0.51 Starch synthase IIa 

SB00156.1 pSB0289 3 G/A 0.22 Ca 5.36E-04 5.36E-04 0.06 0.06 
Serine/threonine-protein 

kinase 

SB00054.1 PRC1044 3 C/G 0.36 Ca 9.04E-04 9.04E-04 0.06 0.06 Hypothetical protein 

SB00068.1 pSB0140 6 A/G 0.07 P 5.83E-04 1.04E-03 0.05 0.07 Peptide transporter PTR2 

SB00115.3 SSIIb 2 A/G 0.17 Starch 3.67E-04 1.18E-03 0.10 0.32 Starch synthase IIb 

SB00086.1 pSB1120 3 C/A 0.31 Starch 6.19E-04 1.02E-03 0.09 0.31 3-ketoacyl-CoA synthase 

Ch = Chromosome, MAF = minor allele frequency, KH = kernel hardness, Ca = calcium, P = phosphorous, RLR
2 

=
 
Likelihood ratio-

based R
2
. 
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 Table 2.3. Information on the sorghum diversity panel: 265 accessions used in the study and their likelihood values, subpopulation 

membership (Pop), traditional classification, classification by Casa et al. (2008), and origin. 

 

No Name Q1 Q2 Q3 Q4 Q5 Pop Traditional Casa et al., 2008 Origin 

1 01MN1589 B 0.146 0.750 0.040 0.005 0.059 2 bicolor kafir USA 

2 88V1080 0.048 0.255 0.191 0.336 0.170 4 inbred line caudatum USA 

3 AJABSIDO 0.229 0.001 0.001 0.065 0.704 5 bicolor milo-feterita Sudan 

4 AR2002 0.198 0.015 0.172 0.223 0.392 5 bicolor caudatum USA 

5 BAZ9504 0.132 0.778 0.000 0.086 0.004 2 breeding line kafir USA 

6 BDLO357 0.009 0.346 0.626 0.009 0.010 3 breeding line zerazera-caudatum USA 

7 B.OK11 0.000 0.999 0.000 0.000 0.001 2 kafir kafir USA 

8 B.Tx2752 0.134 0.864 0.001 0.001 0.000 2 breeding line kafir USA 

9 B.Tx2928 0.003 0.634 0.234 0.050 0.079 2 breeding line kafir USA 

10 B.Tx3042 0.284 0.715 0.000 0.001 0.000 2 kafir kafir USA 

11 B.Tx3197 0.000 0.999 0.000 0.000 0.001 2 kafir kafir USA 

12 B.Tx378 0.026 0.973 0.000 0.000 0.001 2 kafir kafir USA 

13 B.Tx399 0.248 0.750 0.001 0.001 0.000 2 kafir kafir USA 

14 B.Tx406 0.324 0.674 0.000 0.001 0.001 2 kafir kafir USA 

15 B.Tx615 0.000 0.998 0.001 0.000 0.001 2 breeding line kafir USA 

16 B.Tx623 0.000 0.464 0.534 0.000 0.002 3 kafir zerazera-caudatum USA 

17 B.Tx623(BMX) 0.001 0.425 0.573 0.000 0.001 3 kafir zerazera-caudatum USA 

18 B.Tx626 0.002 0.439 0.559 0.001 0.000 3 kafir zerazera-caudatum USA 

19 B.Tx631 0.001 0.702 0.297 0.000 0.000 2 kafir kafir USA 

20 B.Tx635 0.002 0.413 0.195 0.037 0.353 5 kafir kafir USA 

21 B.Tx641 0.120 0.498 0.203 0.096 0.083 2 breeding line kafir USA 

22 B.Tx642 0.911 0.087 0.000 0.001 0.001 1 durra durra USA 

23 B.Tx643 0.118 0.439 0.440 0.001 0.002 3 breeding line kafir USA 

24 B.Tx645 0.080 0.501 0.416 0.002 0.001 2 breeding line kafir USA 

25 CAPROCK 0.437 0.562 0.000 0.001 0.000 2 breeding line milo-feterita USA 

26 CHILTEX 0.118 0.466 0.001 0.053 0.362 2 breeding line milo-feterita USA 

27 COMBINE 7078 0.803 0.193 0.001 0.001 0.002 1 kafir milo-feterita USA 
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28 CS3541 0.003 0.230 0.461 0.001 0.305 3 cultivar kafir n/a 

29 CSM63 0.005 0.001 0.004 0.979 0.011 4 cultivar guinea-caudatum  Mali 

30 DORADO 0.000 0.000 0.998 0.000 0.002 3 cultivar zerazera-caudatum n/a 

31 EBA3 0.980 0.000 0.002 0.009 0.009 1 breeding line durra n/a 

32 

FETERITA 

GISHESH 0.207 0.001 0.001 0.081 0.710 5 cultivar milo-feterita n/a 

33 HEGARI 0.001 0.000 0.004 0.001 0.994 5 n/a caudatum n/a 

34 ICSV400 0.000 0.000 0.996 0.000 0.004 3 cultivar zerazera-caudatum S. Africa 

35 ICSV745 0.001 0.111 0.600 0.091 0.197 3 cultivar zerazera-caudatum S. Africa 

36 IS 3620C 0.125 0.140 0.002 0.731 0.002 4 breeding line guinea-bicolor n/a 

37 JOCORO 0.004 0.005 0.854 0.002 0.135 3 durra zerazera-caudatum India 

38 KARPER 0.152 0.660 0.014 0.154 0.020 2 n/a kafir n/a 

39 KAT83369 0.000 0.000 0.998 0.000 0.002 3 cultivar zerazera-caudatum n/a 

40 KS115 0.497 0.001 0.056 0.250 0.196 1 caudatum-bicolor caudatum Uganda 

41 KUYUMA 0.000 0.000 0.999 0.000 0.001 3 cultivar zerazera-caudatum n/a 

42 LG70 0.088 0.250 0.442 0.194 0.026 3 cultivar zerazera-caudatum USA 

43 LIANTANGAI 0.562 0.187 0.001 0.134 0.116 1 breeding line durra China 

44 M35-1 0.998 0.000 0.001 0.001 0.000 1 cultivar durra India 

45 MACIA 0.001 0.000 0.938 0.000 0.061 3 c zerazera zerazera-caudatum n/a 

46 MALISOR 84-7 0.005 0.096 0.891 0.001 0.007 3 cultivar zerazera-caudatum Mali 

47 MARTIN 0.128 0.871 0.000 0.000 0.001 2 n/a kafir n/a 

48 MARUPANTSE 0.001 0.998 0.000 0.001 0.000 2 n/a kafir Botswana 

49 MR732 0.001 0.006 0.886 0.104 0.003 3 cultivar zerazera-caudatum Niger 

50 N263B 0.036 0.416 0.456 0.091 0.001 3 cultivar zerazera-caudatum USA 

51 N268B 0.325 0.575 0.073 0.004 0.023 2 n/a kafir USA 

52 NN 01 0.001 0.001 0.002 0.996 0.000 4 n/a caudatum n/a 

53 P721 0.018 0.139 0.815 0.024 0.004 3 cultivar zerazera-caudatum USA 

54 P850029 0.005 0.006 0.986 0.001 0.002 3 breeding line zerazera-caudatum USA 

55 P898012 0.001 0.000 0.035 0.000 0.964 5 cultivar caudatum USA 

56 P9517 0.004 0.570 0.292 0.100 0.034 2 n/a kafir USA 

57 PINKKAFIR 0.001 0.998 0.000 0.000 0.001 2 kafir kafir USA 

58 PINOLERO 1 0.060 0.095 0.842 0.001 0.002 3 cultivar zerazera-caudatum Nicaragua 

59 PLAINSMAN 0.416 0.583 0.000 0.001 0.000 2 breeding line milo-feterita USA 
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60 QL3INDIA 0.010 0.983 0.002 0.006 0.000 2 n/a kafir India 

61 R9188 0.231 0.227 0.321 0.221 0.000 3 cultivar milo-feterita n/a 

62 REDBINE-60 0.223 0.775 0.001 0.000 0.001 2 breeding line kafir USA 

63 REDKAFIR 0.001 0.999 0.000 0.000 0.000 2 breeding line kafir USA 

64 R.TAM2566 0.082 0.000 0.737 0.001 0.180 3 breeding line zerazera-caudatum USA 

65 R.TAM428 0.042 0.072 0.883 0.001 0.002 3 breeding line zerazera-caudatum USA 

66 R.Tx2737 0.184 0.186 0.002 0.627 0.001 4 breeding line guinea-caudatum  USA 

67 R.Tx2783 0.182 0.128 0.648 0.017 0.025 3 breeding line zerazera-caudatum USA 

68 R.Tx2903 0.329 0.231 0.387 0.053 0.000 3 inbred line milo-feterita USA 

69 R.Tx2907 0.050 0.158 0.267 0.425 0.100 4 caudatum caudatum Sudan 

70 R.Tx2917 0.365 0.188 0.359 0.087 0.001 3 inbred line milo-feterita USA 

71 R.Tx430 0.050 0.077 0.222 0.649 0.002 4 breeding line milo-feterita USA 

72 R.Tx431 0.474 0.149 0.356 0.004 0.017 1 breeding line milo-feterita USA 

73 R.Tx432 0.001 0.370 0.627 0.001 0.001 3 breeding line zerazera-caudatum USA 

74 R.Tx433 0.449 0.096 0.451 0.003 0.001 3 caudatum zerazera-caudatum Ethiopia 

75 R.Tx434 0.399 0.023 0.576 0.001 0.001 3 breeding line zerazera-caudatum USA 

76 R.Tx435 0.007 0.237 0.205 0.547 0.004 4 breeding line guinea-caudatum  USA 

77 R.Tx436 0.238 0.224 0.317 0.220 0.001 3 inbred line milo-feterita USA 

78 R.Tx437 0.074 0.073 0.346 0.382 0.125 4 breeding line milo-feterita USA 

79 SC1017 0.922 0.001 0.001 0.046 0.030 1 durra-bicolor durra Ethiopia 

80 SC103 0.001 0.048 0.205 0.001 0.745 5 caudatum caudatum S. Africa 

81 SC1033 0.951 0.002 0.001 0.028 0.018 1 durra-bicolor durra Ethiopia 

82 SC1038 0.985 0.001 0.001 0.007 0.006 1 durra-bicolor durra Ethiopia 

83 SC1047 0.998 0.001 0.000 0.001 0.000 1 durra durra Ethiopia 

84 SC1055 0.012 0.081 0.400 0.003 0.504 5 caudatum zerazera-caudatum Sudan 

85 SC1056 0.020 0.003 0.440 0.009 0.528 5 other zerazera-caudatum Sudan 

86 SC1057 0.005 0.195 0.148 0.281 0.371 5 caudatum milo-feterita Uganda 

87 SC1063 0.028 0.308 0.001 0.663 0.000 4 durra-bicolor guinea-caudatum  Ethiopia 

88 SC1070 0.001 0.474 0.001 0.523 0.001 4 durra kafir Ethiopia 

89 SC1076 0.005 0.011 0.002 0.886 0.096 4 caudatum-bicolor guinea-caudatum  Nigeria 

90 SC1077 0.005 0.018 0.442 0.007 0.528 5 caudatum zerazera-caudatum Nigeria 

91 SC108 0.001 0.000 0.998 0.000 0.001 3 caudatum zerazera-caudatum Ethiopia 

92 SC1080 0.001 0.992 0.000 0.005 0.002 2 kafir kafir S. Africa 
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93 SC1085 0.862 0.001 0.024 0.063 0.050 1 durra durra India 

94 SC110 0.001 0.000 0.918 0.000 0.081 3 caudatum zerazera-caudatum Ethiopia 

95 SC1104 0.010 0.130 0.152 0.064 0.644 5 kafir-bicolor caudatum Uganda 

96 SC1108 0.091 0.427 0.005 0.447 0.030 4 guinea guinea-caudatum  India 

97 SC115 0.031 0.002 0.321 0.104 0.542 5 caudatum-bicolor guinea-caudatum  Uganda 

98 SC1154 0.994 0.000 0.001 0.002 0.003 1 durra-bicolor durra Ethiopia 

99 SC1155 0.970 0.001 0.001 0.028 0.000 1 durra durra Ethiopia 

100 SC1158 0.819 0.074 0.001 0.105 0.001 1 durra-bicolor durra Ethiopia 

101 SC118 0.079 0.000 0.145 0.001 0.775 5 caudatum caudatum Sudan 

102 SC1201 0.159 0.531 0.045 0.164 0.101 2 guinea-caudatum kafir Other 

103 SC1203 0.097 0.118 0.161 0.336 0.288 4 other caudatum Brazil 

104 SC121 0.001 0.002 0.078 0.001 0.918 5 caudatum caudatum S. Africa 

105 SC1211 0.270 0.184 0.006 0.230 0.310 5 kafir-caudatum guinea-bicolor C. America 

106 SC1212 0.000 0.001 0.084 0.001 0.914 5 caudatum caudatum Venezuela 

107 SC1214 0.044 0.083 0.264 0.005 0.604 5 guinea-caudatum caudatum 

Burkina 

Faso 

108 SC124 0.692 0.001 0.001 0.223 0.083 1 durra-bicolor guinea-bicolor Ethiopia 

109 SC1251 0.003 0.073 0.479 0.008 0.437 3 guinea zerazera-caudatum India 

110 SC1271 0.002 0.001 0.960 0.000 0.037 3 caudatum zerazera-caudatum Ethiopia 

111 SC1319 0.001 0.001 0.766 0.001 0.231 3 caudatum zerazera-caudatum Ethiopia 

112 SC1320 0.001 0.001 0.770 0.001 0.227 3 caudatum zerazera-caudatum Ethiopia 

113 SC1321 0.216 0.031 0.096 0.176 0.481 5 guinea-caudatum guinea-caudatum  Sudan 

114 SC1328 0.191 0.004 0.130 0.162 0.513 5 caudatum caudatum Sudan 

115 SC1337 0.001 0.001 0.001 0.996 0.001 4 guinea guinea-caudatum  Mali 

116 SC1345 0.006 0.001 0.171 0.050 0.772 5 caudatum caudatum Mali 

117 SC135 0.824 0.053 0.003 0.110 0.010 1 durra-bicolor durra Ethiopia 

118 SC1356 0.106 0.069 0.115 0.145 0.565 5 caudatum caudatum Sudan 

119 SC1416 0.855 0.001 0.004 0.139 0.001 1 durra-bicolor durra Niger  

120 SC1424 0.126 0.136 0.008 0.678 0.052 4 kafir-durra guinea-bicolor Mali 

121 SC1426 0.001 0.000 0.000 0.998 0.001 4 guinea guinea-caudatum  Mali 

122 SC1429 0.001 0.505 0.003 0.423 0.068 2 guinea guinea-caudatum  Zimbabwe 

123 SC144 0.547 0.001 0.084 0.309 0.059 1 durra-caudatum milo-feterita Ethiopia 

124 SC1465 0.005 0.028 0.461 0.007 0.499 3 other guinea-bicolor Sudan 
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125 SC1476 0.097 0.069 0.132 0.054 0.648 5 other caudatum Sudan 

126 SC1484 0.997 0.001 0.001 0.001 0.000 1 other durra Somalia 

127 SC155 0.695 0.083 0.001 0.158 0.063 1 durra-bicolor durra Ethiopia 

128 SC175 0.070 0.000 0.658 0.001 0.271 3 caudatum zerazera-caudatum Ethiopia 

129 SC192 0.756 0.151 0.037 0.026 0.030 1 durra durra India 

130 SC199 0.998 0.001 0.000 0.000 0.001 1 durra durra India 

131 SC206 0.948 0.010 0.001 0.040 0.001 1 durra durra Ethiopia 

132 SC209 0.884 0.109 0.001 0.002 0.004 1 durra durra India 

133 SC21 0.802 0.023 0.001 0.173 0.001 1 kafir-bicolor guinea-bicolor Ethiopia 

134 SC214 0.946 0.019 0.002 0.032 0.001 1 durra-bicolor durra India 

135 SC22 0.996 0.001 0.001 0.001 0.001 1 durra durra Ethiopia 

136 SC224 0.129 0.250 0.002 0.596 0.023 4 bicolor guinea-bicolor Ethiopia 

137 SC240 0.998 0.001 0.000 0.000 0.001 1 durra durra India 

138 SC25 0.935 0.059 0.000 0.005 0.001 1 durra durra Ethiopia 

139 SC265 0.001 0.000 0.001 0.998 0.000 4 guinea guinea-caudatum  West Volta 

140 SC283 0.002 0.443 0.002 0.518 0.035 4 guinea guinea-caudatum  Tanzania 

141 SC295 0.005 0.085 0.001 0.908 0.001 4 guinea guinea-caudatum  Nigeria 

142 SC299 0.002 0.001 0.000 0.996 0.001 4 guinea guinea-caudatum  Nigeria 

143 SC303 0.139 0.126 0.001 0.729 0.005 4 caudatum guinea-bicolor Ethiopia 

144 SC305 0.059 0.182 0.003 0.644 0.112 4 guinea-caudatum guinea-bicolor Chad 

145 SC309 0.629 0.004 0.007 0.247 0.113 1 bicolor guinea-bicolor Sudan 

146 SC319 0.003 0.001 0.260 0.005 0.731 5 caudatum-bicolor caudatum Uganda 

147 SC320 0.144 0.148 0.006 0.247 0.455 5 kafir caudatum Chad 

148 SC323 0.002 0.145 0.058 0.474 0.321 4 caudatum guinea-caudatum  Sudan 

149 SC325 0.032 0.351 0.003 0.277 0.337 5 caudatum guinea-caudatum  USA 

150 SC328 0.002 0.003 0.291 0.002 0.702 5 other caudatum Uganda 

151 SC33 0.953 0.044 0.000 0.001 0.002 1 durra durra Ethiopia 

152 SC333 0.099 0.006 0.001 0.155 0.739 5 durra caudatum Ethiopia 

153 SC334 0.029 0.023 0.107 0.095 0.746 5 caudatum guinea-caudatum  Sudan 

154 SC348 0.027 0.001 0.001 0.971 0.000 4 caudatum guinea-caudatum  Nigeria 

155 SC35 0.998 0.000 0.000 0.001 0.001 1 durra durra Ethiopia 

156 SC373 0.007 0.000 0.016 0.928 0.049 4 caudatum guinea-caudatum  Nigeria 

157 SC38 0.999 0.000 0.000 0.000 0.001 1 durra durra Ethiopia 
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158 SC391 0.001 0.001 0.000 0.997 0.001 4 caudatum guinea-caudatum  Egypt 

159 SC396 0.002 0.000 0.001 0.995 0.002 4 caudatum guinea-caudatum  Nigeria 

160 SC399 0.126 0.012 0.002 0.803 0.057 4 caudatum guinea-caudatum  Nigeria 

161 SC411 0.160 0.069 0.109 0.649 0.013 4 caudatum-bicolor guinea-caudatum  Sudan 

162 SC418 0.001 0.122 0.126 0.216 0.535 5 kafir-caudatum guinea-caudatum  Tanzania 

163 SC42 0.011 0.117 0.178 0.292 0.402 5 kafir guinea-caudatum  S. Africa 

164 SC420 0.023 0.001 0.148 0.120 0.708 5 kafir-caudatum caudatum Sudan 

165 SC423 0.046 0.002 0.413 0.003 0.536 5 caudatum zerazera-caudatum Sudan 

166 SC425 0.145 0.043 0.002 0.177 0.633 5 durra-caudatum guinea-bicolor Sudan 

167 SC441 0.758 0.128 0.005 0.084 0.025 1 durra durra India 

168 SC449 0.268 0.319 0.002 0.356 0.055 4 kafir-bicolor guinea-caudatum  Uganda 

169 SC465 0.003 0.368 0.002 0.502 0.125 4 guinea guinea-caudatum  Arabia 

170 SC467 0.807 0.189 0.001 0.002 0.001 1 durra-bicolor durra India 

171 SC473 0.880 0.109 0.001 0.009 0.001 1 durra durra India 

172 SC480 0.998 0.001 0.000 0.000 0.001 1 durra durra India 

173 SC489 0.937 0.061 0.001 0.001 0.000 1 durra durra India 

174 SC49 0.019 0.103 0.074 0.153 0.651 5 guinea-caudatum caudatum Sudan 

175 SC498 0.998 0.000 0.000 0.000 0.002 1 durra durra India 

176 SC500 0.998 0.001 0.000 0.001 0.000 1 durra durra India 

177 SC502 0.217 0.048 0.237 0.044 0.454 5 durra-caudatum caudatum Sudan 

178 SC51 0.297 0.021 0.032 0.211 0.439 5 caudatum caudatum Sudan 

179 SC53 0.332 0.058 0.005 0.033 0.572 5 durra-caudatum milo-feterita Sudan 

180 SC532 0.049 0.069 0.001 0.881 0.000 4 guinea guinea-caudatum  West Volta 

181 SC55 0.216 0.001 0.001 0.151 0.631 5 caudatum milo-feterita Sudan 

182 SC557 0.141 0.144 0.036 0.423 0.256 4 durra guinea-caudatum  Ethiopia 

183 SC56 0.147 0.029 0.186 0.067 0.571 5 caudatum guinea-caudatum  Sudan 

184 SC562 0.163 0.001 0.003 0.147 0.686 5 caudatum caudatum Sudan 

185 SC563 0.174 0.079 0.079 0.353 0.315 4 caudatum caudatum Nigeria 

186 SC564 0.109 0.014 0.002 0.137 0.738 5 caudatum caudatum Uganda 

187 SC566 0.002 0.005 0.011 0.972 0.010 4 caudatum guinea-caudatum  Nigeria 

188 SC566-14 0.002 0.005 0.004 0.979 0.010 4 caudatum guinea-caudatum  Nigeria 

189 SC569 0.003 0.000 0.001 0.995 0.001 4 caudatum guinea-caudatum  Nigeria 

190 SC57 0.218 0.001 0.046 0.103 0.632 5 caudatum caudatum Uganda 
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191 SC572 0.187 0.001 0.133 0.005 0.674 5 kafir-caudatum caudatum China 

192 SC574 0.009 0.050 0.276 0.062 0.603 5 caudatum caudatum Pakistan 

193 SC58 0.143 0.034 0.187 0.093 0.543 5 caudatum caudatum Sudan 

194 SC587 0.998 0.001 0.000 0.001 0.000 1 durra durra India 

195 SC59 0.012 0.249 0.010 0.364 0.365 5 caudatum-bicolor guinea-caudatum  Sudan 

196 SC598 0.786 0.116 0.059 0.036 0.003 1 other milo-feterita Uganda 

197 SC599 0.013 0.311 0.330 0.124 0.222 3 caudatum caudatum USA 

198 SC60 0.002 0.001 0.309 0.001 0.687 5 caudatum caudatum Sudan 

199 SC603 0.029 0.786 0.000 0.183 0.002 2 guinea kafir Tanzania 

200 SC605 0.120 0.144 0.004 0.704 0.028 4 guinea guinea-bicolor Kenya 

201 SC606 0.159 0.305 0.097 0.093 0.346 5 guinea-bicolor caudatum China 

202 SC609 0.061 0.741 0.001 0.196 0.001 2 bicolor kafir China 

203 SC621 0.718 0.162 0.001 0.108 0.011 1 bicolor durra India 

204 SC623 0.132 0.391 0.019 0.312 0.146 4 durra-bicolor guinea-caudatum  Congo 

205 SC627 0.023 0.928 0.014 0.027 0.008 2 caudatum kafir Nigeria 

206 SC628 0.002 0.997 0.000 0.001 0.000 2 kafir kafir S. Africa 

207 SC63 0.074 0.038 0.015 0.135 0.738 5 caudatum guinea-caudatum  Sudan 

208 SC630 0.001 0.998 0.000 0.000 0.001 2 kafir kafir Zambia 

209 SC637 0.010 0.033 0.117 0.002 0.838 5 kafir-caudatum caudatum Uganda 

210 SC639 0.005 0.281 0.056 0.004 0.654 5 kafir-caudatum caudatum India 

211 SC64 0.011 0.001 0.545 0.009 0.434 3 kafir-caudatum caudatum Sudan 

212 SC641 0.001 0.001 0.147 0.000 0.851 5 kafir-caudatum caudatum Uganda 

213 SC645 0.001 0.083 0.142 0.001 0.773 5 kafir-caudatum caudatum Uganda 

214 SC648 0.015 0.930 0.001 0.052 0.002 2 kafir-caudatum kafir S. Africa 

215 SC655 0.003 0.036 0.144 0.016 0.801 5 caudatum caudatum Sudan 

216 SC659 0.001 0.963 0.001 0.030 0.005 2 guinea-kafir kafir USA 

217 SC663 0.001 0.997 0.000 0.001 0.001 2 guinea-kafir kafir USA 

218 SC671 0.007 0.558 0.002 0.365 0.068 2 kafir-caudatum kafir Kenya 

219 SC672 0.005 0.865 0.001 0.074 0.055 2 kafir-caudatum kafir Zimbabwe 

220 SC673 0.001 0.997 0.000 0.001 0.001 2 kafir-caudatum kafir Zimbabwe 

221 SC679 0.002 0.034 0.006 0.801 0.157 4 guinea-caudatum caudatum Sudan 

222 SC701 0.066 0.005 0.248 0.017 0.664 5 caudatum zerazera-caudatum Sudan 

223 SC702 0.237 0.013 0.073 0.015 0.662 5 caudatum zerazera-caudatum Sudan 
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224 SC704 0.002 0.006 0.003 0.001 0.988 5 caudatum caudatum Japan 

225 SC708 0.012 0.006 0.218 0.004 0.760 5 caudatum caudatum Uganda 

226 SC720 0.001 0.069 0.273 0.001 0.656 5 caudatum caudatum Kenya 

227 SC725 0.060 0.059 0.192 0.028 0.661 5 caudatum caudatum Japan 

228 SC734 0.014 0.982 0.001 0.002 0.001 2 caudatum kafir Sudan 

229 SC738 0.110 0.110 0.146 0.069 0.565 5 caudatum caudatum Sudan 

230 SC748 0.032 0.099 0.465 0.002 0.402 3 guinea-caudatum zerazera-caudatum Sudan 

231 SC749 0.223 0.382 0.001 0.002 0.392 5 caudatum-bicolor milo-feterita Japan 

232 SC757 0.003 0.969 0.001 0.005 0.022 2 kafir kafir Botswana 

233 SC760 0.043 0.024 0.181 0.005 0.747 5 kafir-caudatum caudatum Sudan 

234 SC782 0.061 0.779 0.000 0.159 0.001 2 caudatum kafir India 

235 SC790 0.186 0.111 0.355 0.002 0.346 3 caudatum bicolor Sudan 

236 SC798 0.001 0.007 0.542 0.002 0.448 3 durra caudatum Ethiopia 

237 SC803 0.004 0.001 0.480 0.006 0.509 3 caudatum zerazera-caudatum Sudan 

238 SC805 0.005 0.001 0.801 0.003 0.190 3 caudatum caudatum Uganda 

239 SC833 0.934 0.060 0.002 0.003 0.001 1 durra durra India 

240 SC855 0.547 0.067 0.003 0.281 0.102 1 durra guinea-bicolor Egypt 

241 SC91 0.003 0.010 0.002 0.984 0.001 4 other guinea-caudatum  Zimbabwe 

242 SC910 0.618 0.122 0.012 0.245 0.003 1 Guinea-durra durra India 

243 SC929 0.887 0.053 0.001 0.001 0.058 1 caudatum durra S. Africa 

244 SC937 0.358 0.244 0.007 0.389 0.002 4 bicolor 

sudanense-

broomcorn Sudan 

245 SC941 0.215 0.260 0.006 0.287 0.232 4 bicolor 

sudanense-

broomcorn Sudan 

246 SC942 0.374 0.176 0.006 0.439 0.005 4 bicolor 

sudanense-

broomcorn Sudan 

247 SC949 0.143 0.662 0.001 0.159 0.035 2 guinea kafir Nigeria 

248 SC964 0.001 0.000 0.292 0.000 0.707 5 caudatum caudatum Uganda 

249 SC968 0.632 0.053 0.002 0.260 0.053 1 durra-bicolor guinea-bicolor Zimbabwe 

250 SC970 0.006 0.002 0.163 0.099 0.730 5 other caudatum Uganda 

251 SC971 0.003 0.313 0.003 0.532 0.149 4 kafir-durra guinea-caudatum  USA 

252 SC979 0.066 0.017 0.735 0.001 0.181 3 caudatum zerazera-caudatum Ethiopia 

253 SC982 0.001 0.005 0.786 0.010 0.198 3 caudatum zerazera-caudatum Ethiopia 
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254 SC984 0.001 0.000 0.824 0.001 0.174 3 caudatum zerazera-caudatum Ethiopia 

255 SC991 0.059 0.319 0.007 0.496 0.119 4 bicolor guinea-caudatum  Uganda 

256 SEGAOLANE 0.002 0.919 0.001 0.065 0.013 2 n/a kafir n/a 

257 SEPON82 0.001 0.001 0.812 0.002 0.184 3 guinea zerazera-caudatum Senegal 

258 SOBERANO 0.001 0.000 0.997 0.000 0.002 3 cultivar zerazera-caudatum C. America 

259 SRN39 0.148 0.002 0.183 0.047 0.620 5 cultivar caudatum n/a 

260 SURENO 0.001 0.000 0.712 0.000 0.287 3 cultivar zerazera-caudatum C. America 

261 TX2741 0.136 0.150 0.394 0.318 0.002 3 inbred line milo-feterita USA 

262 TX2882 0.154 0.039 0.319 0.463 0.025 4 breeding line milo-feterita USA 

263 TX2891 0.118 0.101 0.281 0.003 0.497 5 breeding line caudatum USA 

264 TX2911 0.137 0.312 0.193 0.004 0.354 5 cultivar kafir USA 

265 WHITEKAFIR 0.001 0.997 0.000 0.001 0.001 2 breeding line kafir USA 

 

n\a = no information available
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Figure 2. 1. Diversity analysis of the sorghum accessions: (A) STRUCTURE results inferring 

five subpopulations. (G). (B) Neighbor-joining tree: branches (B1–B5) color-coded based on 

STRUCTURE results. (C) Distribution of races among five subpopulations. D: durra, K: kafir, 

ZC: zerazera-caudatum, B: bicolor, GB: guinea-bicolor, MF: milo-feterita, SB: sudanese-

broomcorn, C: caudatum, and GC: guinea-caudatum. 
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Figure 2.2. General congruence among principal component analysis (PCA), STRUCTURE 

classification, and race classification. (A) PCA and STRUCTURE classification. Each color 

represents a subpopulation based on STRUCTURE results. (B) Distribution of 265 sorghum 

accessions based on its collection site/origin. Red triangle = G1, green triangle = G2, blue circles 

= G3, yellow boxes = G4, and pink boxes = G5. 
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Figure 2. 3. Significant variations in grain quality traits found among different subpopulations of 

sorghum diversity panel. (a) KH: kernel hardness. (b) ADF: acid detergent fiber. (c) TDN: total 

digestible nutrients. The error bar represents the standard error. G1, G2, G3, G4, and G5 consist 

of 49, 46, 52, 49, and 69 accessions, respectively. 
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Figure 2.4. Consistency of SNP alleles are shown across five subpopulations. Each bar 

represents mean value of accessions with significant SNP allele. Error bar represents the standard 

error. 
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Figure 2.5. Quantile-quantile plots of the 10 grain quality traits with 1,523 SNP markers. The Q-

Q plots showed the control of type I error by the selected models. KH = kernel hardness, KW = 

kernel weight, KD = kernel diameter, ADF = acid detergent fiber, Ca = calcium, CP = crude 

protein, F = Fat, P = phosphorous, S = starch, and TDN = total digestible nutrients. 
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Figure 2.6 Variation in the frequency of significant SNPs associated with grain quality traits 

across the five subpopulations. Each bar represents the number of alleles for each SNP in the 

subpopulation. 
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CHAPTER 3- LITERATURE REVIEW: DROUGHT 

TOLERANCE 

 

Introduction 

Grain sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain crop grown 

across about 99 countries in the world. It is a predominantly self pollinating crop native to Sub- 

Saharan Africa and has been cultivated for centuries as a staple in much of Africa and Asia. It is 

an important source of food, feed, and bio-fuel especially in the semi-arid tropics due to its wide 

adaptation to the harsh, drought prone environments. It has gained considerable importance as a 

fodder and feed crop in the last decade in US. Sorghum is a tropical C4 grass with a relatively 

compact genome of 736MB (Brown et al. 2006) and it has been sequenced .  

Drought is a major constraint in sorghum production worldwide and is considered as the 

most important cause of yield reduction in crop plants. Even though sorghum is well adapted to 

the hot and dry environments in Africa and Asia, sorghum cultivation in US is checked by 

frequent drought and high temperature. More than 80% of the sorghum hybrids in USA are 

grown in non-irrigated conditions and are prone to drought stress thereby reduced yield. 

Sorghum is regarded as a model for studying drought tolerance among the grass species, 

particularly due to its synteny with genome of maize. When sorghum hybrids are exposed to 

drought, rapid and premature leaf senescence occurs which could lead to charcoal rot, stalk 

lodging, and significant yield losses.  

So breeding for drought tolerance in sorghum is an important objective. But conventional 

methods to evaluate drought tolerance under natural field conditions are difficult due to 

unpredictable moisture stress and large genotype by environment interactions. QTL mapping is 

the most popular traditional method to detect complex traits in plants. So the focus has changed 

to study QTLs for drought tolerance and genome mapping for drought tolerance (Tuberosa 

2003). However, the plant responses to drought stress are complex and consistent QTL for grain 

yield and drought tolerance are still lacking.  
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Drought tolerance physiology 

Plants that are tolerant to drought have evolved certain adaptive mechanisms with different 

degree of tolerance. It is determined by genetic plasticity that allows them to survive the adverse 

conditions or change specific growth habits that avoid stress conditions. Drought stress leads to 

cellular dehydration, which causes osmotic stress and removal of water from the cytoplasm into 

the extracellular space resulting in a reduction of the cytosolic and vacuolar volumes. Another 

consequence is the production of reactive oxygen species which negatively affect cellular 

structures and metabolism. Early response to drought involves decrease in photosynthesis and 

rising levels of plant hormone Abscissic acid (Bartels and Sunkar 2005). 

Plant’s resistance to drought has been divided in to three different types: drought escape, 

drought avoidance, and drought tolerance strategies. These strategies are not mutually exclusive 

and plants may combine a range of response types. Plants that escape drought exhibit a high 

degree of developmental plasticity and complete their life cycle before physiological water 

deficit occurs. This is more common with the plants that grow in arid environments. Drought 

avoidance is a mechanism for avoiding lower water status in tissues during drought by 

maintaining cell turgor pressure and cell volume either through aggressive water uptake with an 

extensive root system or through reduction of water loss from transpiration and other non-

stomatal pathways (Chaves et al. 2003). Plants can overcome drought conditions by avoiding 

tissue dehydration, while maintaining tissue water potential as high as possible, or by tolerating 

low tissue water potential. There are two characters related to drought avoidance (i) minimizing 

water loss (ii) maximizing water uptake. Water loss is minimized by closing stomata by reducing 

light absorbance through rolled leaves, a dense trichome layer increasing reflectance, or steep 

leaf angles or by decreasing canopy leaf area through reduced growth and shedding of older 

leaves. Water uptake is maximized by adjusting the allocation pattern, increasing the root uptake 

(Jackson et al. 2000). The epi-cuticular wax and cuticle structure determines the hydraulic 

permeability of the leaf surface and sorghum has high epi-cuticular resistance which prevents 

water loss when stomata are closed.  

Plants that are drought tolerant maintain metabolic activities even at low water potential. 

Osmotic adjustment and antioxidant capacity highly influence drought tolerance. When plants 

experience water stress, the accumulation of compatible solutes in the cells lowers osmotic 

potential in the cell that helps to maintain the turgor of both shoots and roots that is osmotic 
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adjustment. Improved reproductive success also includes better partitioning of assimilates to 

developing fruits (Gebbing et al., 1999). This is associated with plant’s ability to mobilize the 

reserves for fruit production, this ability is increased in drought tolerant plants (Yang et al. 

2001). 

Plant’s adjustments to the low resources in arid environments include altered leaf 

structure, increased proportions of assimilates allocation to roots, slow growth rates, and slow 

organ turnover rates (Poorter.H and Nagel. 2000). Whereas short lived organs like leaves can be 

discarded in response to stress, long lived organs must optimize their resource gain. Tolerance to 

low tissue water potential involves osmotic adjustment, more rigid cell walls or smaller cells. 

(Wilson et al., 1980). Stomatal closure together with leaf growth inhibition is the earliest 

responses to drought protecting the plants from earliest water loss, which might result in cell 

dehydration. Stomatal closure is likely to be mediated by chemical signals travelling from the 

dehydration roots to the shoots (Chaves et al. 2003). 

 

Drought tolerance pathways 

Drought is a complex trait that has more than one specific pathway involved in the expression of 

the trait. The regulatory circuits include stress sensors, signaling pathways comprising a network 

of protein-protein interactions, transcription factors, promoters, proteins, and other metabolites. 

Each gene produces a polypeptide to enhance or restrict a biochemical action in a pathway. 

Differential stress tolerances are attributed to differences in plant reactivity in terms of stress 

perception, signal transduction, appropriate gene expression programs, and other novel metabolic 

pathways. 

At least four signal transduction pathways involved in plant responses to osmotic stress 

are investigated by researchers; two are ABA dependent (I and II) and two are ABA independent 

(I and II) (Shinozaki and Yamaguchi-Shinozaki., 2007). Until now two ABA dependent 

pathways are known to mediate gene expression in plants during osmotic stress. The distinction 

is largely based on cis- elements that exist in the promoters of ABA inducible genes. The ABA 

dependent pathways are thought to mediate the gene expression through an ABRE element and b-

ZIP transcription factors (Busk and Pages, 1998). ABA dependent pathway I require protein 

synthesis to activate transcription factors MYC/MYB or b-ZIP which bind to DNA regions other 

than the ABREs. ABA-dependent pathway II activates b-ZIP (Hollung et al. 1997; Nakagawa et 
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al. 1996), a transcription factor that turns on gene expression through binding to ABREs. The 

main ABA biosynthetic pathway starts from carotinoids C-40. Biochemical studies have 

indicated that 9 cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. 

The induction of the NCED gene by drought stress has been reported in maize, tomato, 

Arabidopsis, bean, and cowpea (Bartels et al., 2007) 

Comparative analysis of Arabidopsis with rice (Oryza sativa) showed that among the 73 

genes identified as stress inducible in rice, 51 genes has shown similar responses to stress 

tolerance in Arabidopsis (Rabbani et al. 2003). The investigation of dehydration induced genes 

in Arabidopsis has revealed that there exist ABA independent signal transduction pathways 

genes which do not require ABA for their expression under drought conditions. ABA 

independent genes have a conserved dehydration responsive element (DRE, with TACCGACAT 

consensus) in their promoters that is involved in gene regulation by interaction with an ABA 

independent signaling cascade (Knight and Knight, 2001). Some of the proteins involved in the 

stress adaptation are late embryogenesis abundant proteins (LEA). Accumulation of LEA proteins 

during embryogenesis correlates with increased levels of ABA and with acquisition of 

desiccation tolerance (Bartels et al., 2007).  

Through the microarray analysis the products of drought inducible genes identified can 

be divided into two groups. The first group includes chaperons, LEA proteins, Osmotin, anti 

freeze proteins, mRNA binding proteins, key enzymes for osmolyte biosynthesis, water channel 

proteins, sugar and proline transporters, detoxification enzymes, and various proteases. The 

second group is regulatory proteins, protein factors involved in signal transduction and stress 

responsive gene expression. There is different protein molecules involved in the signaling 

pathway for drought response. CDKs are a family of proteins each with a positive regulatory 

subunit termed a cyclin and the catalytic subunit CDK (den Boer and Murray, 2000). The 

decrease in cell division in response to water stress is characterized by lower CDK activity which 

is correlated to tyrosine phosphorylation.  

Protein phosphorylation is one of the major mechanisms for controlling cellular functions 

in response to external signals. (Wang et al. 1998) reported that ABA induces expression of an 

inhibitor of CDK. These mechanisms could be responsible for the ABA dependent cell cycle 

arrest during osmotic stress in plants. NtC7, a gene is that is responsive protein kinases (MAPK) 

are common signaling modules in eukaryotic cells, including plants. In Arabidopsis AtMEKK1 
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and AtMPK3 are activated by dehydration. AtMPK4 and AtMPK6 are post transcriptionally 

activated by osmotic stress. SNF1/AMP activated protein kinases are expressed in response to 

dehydration or ABA. salicylic acid, nitric oxide, phosphatidic acid, inositol 1,4,5-triphosphate 

are some of the stress signaling molecules identified (Bartels and Sunkar, 2005). 

 

Genetics of drought tolerance: QTL mapping studies 

Classical breeding approaches revealed that stress tolerance is governed by many genes that 

make the genetic selection of these traits through traditional breeding a difficult task. In 

sorghum, two types of drought responses is known. In pre-flowering drought tolerance and post-

flowering drought tolerance that is controlled by two different genetic mechanisms. Pre-

flowering in sorghum refers to the stage from panicle differentiation to flowering. Drought stress 

during this stage affects panicle size, number of grains in a panicle, and grain yield. Post-

flowering refers to the grain development stage (GS-3). Drought at this stage is characterized by 

rapid premature death which leads to charcoal rot, stalk lodging, and yield loss. (Sanchez et al. 

2002). There were several studies to map the QTLs for stay green in sorghum (Crasta et al. 1999; 

Harris et al. 2006; Haussmann et al. 2002; Kebede et al. 2001; Sanchez et al. 2002; Subudhi et al. 

2000; Tuinstra et al. 1997; Xu et al. 2000) 

In an earlier study 98 recombinant inbred lines from a cross of B35 (pre-flowering 

drought susceptible and post-flowering tolerant) and Tx7078 (pre-flowering tolerant and post-

flowering susceptible) was evaluated for post flowering drought tolerance in Kansas. This 

population was characterized under drought and non-drought conditions for the traits associated 

with post-flowering drought tolerance and related components of grain development.  They 

identified 13 QTLs associated with post-flowering drought tolerance. Two QTLs were identified 

with major effects on yield and stay green under post flowering drought. QTLs for stay green 

were identified in seven genomic regions; two QTLs were on linkage groups F and I, which were 

also associated with yield under post flowering drought tolerance.  Three other QTLs on linkage 

groups B and G were associated with stay green and together these QTLs explained 53% of the 

variability for the stay green trait. Genetic studies of stay green have generally indicated a 

complex pattern of inheritance, both dominant and recessive expression have been reported 

Tuinstra et al. (1996). 
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In another study, QTLs controlling premature leaf senescence and their association under 

post flowering drought tolerance were evaluated. A recombinant inbred population derived from 

a cross of B35 and Tx430 was the genetic material for the experiment. They developed a linkage 

map of sorghum using 142 restriction fragment length polymorphism (RFLP) markers. These 

populations along with parents were evaluated in four different environments for post-flowering 

drought tolerance and maturity. Using simple interval mapping they identified seven stay green 

QTLs and two maturity QTLs. Out of the seven QTLs, three major stay-green QTLs (SGA, 

SGD, and SGG) explained 42% of the phenotypic variability and four minor QTLs (SGB, SGI.1, 

SGI.2, and SGJ) explained an additional 25% of the variability of stay green ratings. Composite 

interval mapping with an additional analysis of the QTL by environment interaction confirmed 

the above results and the identified QTLs explained about 90% of the genetic variability for stay 

green. Six out of the seven stay green QTLs identified were independent of the QTLs influencing 

grain maturity (Crasta et al. 1999).  

Four stay-green QTLs, located on three linkage groups were identified that control the 

stay-green and chlorophyll content in sorghum by using a restriction fragment length 

polymorphism (RFLP) map. This study used a RIL population. The QTLs, Stg1 and Stg2 were 

on linkage group A, and the others, Stg3 and Stg4 were on linkage groups D and J, respectively. 

QTLs, Stg1 and Stg2, explaining 13–20% and 20–30% of the phenotypic variability, 

respectively, were consistently identified at different locations in two years. Three QTLs for 

chlorophyll content (Chl1, Chl2, and Chl3), explaining 25–30% of the phenotypic variability 

were also identified under post-flowering drought stress. All coincided with the three stay-green 

QTL regions (Stg1, Stg2, and Stg3) accounting for 46% of the phenotypic variation. The Stg1 

and Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins, and 

the stress hormone Abscissic acid (ABA). that the study concluded that the linkage group A is 

important for drought- and heat-stress tolerance and yield improvement in sorghum (Xu et al. 

2000). 

A recombinant inbred line (RILs) mapping population that was developed from a cross of 

B35 and Tx7000 was evaluated over two locations for two years to study the consistency of stay 

green QTLs in sorghum (Subudhi et al., 2001). They reconfirmed all the QTLs identified for stay 

green traits by Xu et al., (2000). The four stay green QTLs (Stg1, Stg2, Stg3, and Stg4) were 

consistent in different environments. They concluded that the QTL, Stg2 was the most important 
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QTL explaining maximum amount of phenotypic variation and targeting the Stg-2 region for 

gene discovery will help the researchers to identify the basics of stay green phenomenon in 

cereals (Subudhi et al., 2000). 

Another study focused on post flowering drought tolerance, pre-flowering drought 

tolerance, and lodging tolerance using a F7, recombinant inbred line (RIL) population derived 

from a cross between SC56 and Tx7000 (Kebede et al. 2001). Composite interval mapping 

detected nine QTLs located over seven linkage groups. This study showed that the three QTLs 

identified on linkage groups A, G, J were consistent in different environments. Comparative 

analysis showed that two stay green QTLs identified in sorghum corresponded to stay green 

QTLs identified in maize. Cross species comparative analysis of genomic regions for drought 

tolerance traits gave an indication that there may be some orthologous conserved regions for 

drought tolerance in rice, maize and sorghum which can be targeted for intensive investigation in 

future in improve drought tolerance in cereals (Kebede et al. 2001).  

Using recombinant inbred lines (RILs) and Near Inbred lines (NILs) developed from a 

cross of B35 and Tx7000, four genomic regions associated with the stay green trait in sorghum 

were identified. These four major stay-green QTLs were consistently identified in all field trials 

and accounted for 53.5% of the phenotypic variance (Sanchez et al. 2002). In another study, 

using NIL derived from BTx642 and RTx7000, alleles that contribute to the stay green trait were 

mapped to the four major QTLs, Stg1- Stg4 in sorghum (Harris et al. 2006).  
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Table 3.1 Studies that identified QTLs for drought tolerance in sorghum 

 

No Lines QTLs identified Article 

1. BTx642 × RTx7000 ( NIL) QTLs Stg1, Stg2, Stg3, and Stg4  Harris et al., 2006 

2. SC56 × Tx7000  (RIL) QTLs on A,G, and J  Kebede et al., 2001 

3. B35 × Tx7000 (NIL) Four major stay green QTL were 

identified. 

Sanchez et al., 2002 

3. B35 × Tx430  (RIL) Stg1 and Stg2 on A, Stg3 on D, 

Stg4 on J. 

Sanchez et al., 2002 

4. QL39 × QL41(RIL) Five stay green QTL identified Sanchez et al., 2000 

5. Tx7078 × B35 (RIL) 13 regions of the genome 

associated with post flowering 

drought tolerance were identified. 

Two QTL identified 

Tuinstra et al., 1997 

6. B35 × Tx7000 (RIL) Four QTLs were identified Subudhi et al.,(2000) 

7. IS9830 × E36-1 

and N13 × E36-1 

Three stay green QTLs identified 

in chromosomes A, E and G. 

Haussmann et al., 

(2002) 
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CHAPTER 4-QTL MAPPING OF YIELD POTENTIAL AND 

DROUGHT TOLERANCE IN SORGHUM 

 

Abstract 

Drought is the most important cause of yield reduction in crop plants. Sorghum is a crop well 

adapted to semi arid regions of USA and may harbor genes for drought tolerance. The objective 

of this experiment was to identify quantitative trait loci (QTLs) for yield potential and drought 

tolerance in sorghum. A population of 248 recombinant inbred lines (RILs) was developed from 

a cross between Tx436 (food grain type) and 00MN7645 (drought tolerant). Multi-location trials 

were conducted in 8 environments across Kansas to evaluate agronomic performance of the RILs 

under favorable and drought stress conditions. The 248 RILs and their parents were genotyped 

by genotyping-by-sequencing (GBS) and 8000 SNPs were identified. A subset of 800 SNPs was 

used for linkage map construction and QTL detection. Composite interval mapping identified a 

major QTL for grain yield in chromosome 8 and another QTL for flowering time in chromosome 

9 under favorable conditions. Three major QTLs were detected for grain yield under drought 

conditions in chromosome 1, 6, and 8. We identified two flowering time QTLs on chromosome 1 

under drought conditions. Six QTLs were identified for stay green: two on chromosome 4; one 

each on chromosome 5, 6, 7, and 10 under drought conditions.  
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Introduction 

Sorghum (Sorghum bicolor L. Moench) is one of the most drought tolerant crops in the world. It 

is a crop that contributes to food security in the hot and water limited parts of Africa. In the 

United States, it is mainly grown as a feed stock and for ethanol production. But most of the 

commercial sorghum grown in the United States is prone to drought stress. Drought is a major 

environmental factor limiting crop productivity (Bartels and Sunkar, 2005). Drought affects 

molecular, physiological, and morphological mechanisms of the plant, resulting in yield losses 

higher than all other causes combined (Farooq et al., 2009; Passioura, 2006). From physiological 

and agronomic perspectives, drought tolerance is a loosely defined trait related to water use 

efficiency; but when considered from the perspective of gene discovery, drought tolerance is a 

complex trait due to the possible number of genes involved, their interactions among each other, 

and interactions with the environmental conditions (Blum, 2011). Hence, identifying the genetic 

causes of drought tolerance is challenging through traditional breeding methodologies and 

quantitative trait loci (QTL) based approaches can contribute to better understanding of the crop 

performance under stress conditions (Collins et al., 2008). 

QTL mapping studies for drought tolerance in sorghum have identified four major stay 

green QTLs (Stg1-Stg4) using recombinant inbred lines (RILs) and near iso-genic lines (NILs) 

(Crasta et al., 1999; Jordan et al., 2012; Kebede et al., 2001; Mace and Jordan, 2011; Sanchez et 

al., 2002; Subudhi et al., 1999; Xu et al., 2000). Stay green is a physiological mechanism that is 

an incidence of delayed or inoperative foliar senescence in maize, sorghum, oats, rice, wheat, 

and other plant species (Thomas and Smart, 1993). Stay-green is a desirable character in 

sorghum for higher grain yield under water limiting conditions compared to non-stay green 

varieties (Jordan et al., 2012). Stay-green genotypes shows resistance to charcoal rot (Garud et 

al., 2002) and shoot lodging (Jordan et al., 2012). In sorghum, the expression of stay-green is a 

physiologically complex process depending upon the onset and duration of drought. Sorghum 

genotypes vary in their initiation and rate of senescence and field studies suggest that this trait is 

highly expressed under drought stress (vanOosterom et al., 1996).  

Most of the QTL mapping experiments for drought tolerance have used unimproved 

accessions (BT×642 (formerly known as B35), SC56, E36-1, and Tx7000) as parents for making 

mapping populations. In the present study a RIL population was developed from Tx436, a food 

quality grain sorghum line and 00MN7645 (R45), an improved pollinator line with stay green 
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and lodging resistance. The pedigree of 00MN7645 (SC35//B35/80060) is heavily based on 

SC35 and B35. But 80060, a parental line from from Department of Plant Industry, Queensland 

makes 00MN7645 a new type of stay green line. The objective of the present study was to 

identify genomic regions associated with grain yield and stay green in this RIL population of 

sorghum under favorable and drought stress conditions. 

 

Materials and Methods 

Genetic material 

A recombinant inbred line population (RIL) of sorghum containing 248 RILs was developed 

from a cross between Tx436 and 00MN7645 through single seed descent (SSD) method (Fig 

4.22). Tx436 is a widely used, 3-dwarf (dw1Dw2dw3dw4), non stay green, tan-plant (ppQQ), 

pollinator line used in U.S. hybrid seed production. The panicle is semi-open with erect branches 

at maturity. It is also resistant to anthracnose (Colletotrichum graminicola), fusarium head blight 

(Fusarium spp.), leaf blight (Exserohilium turticium), and downy mildew (Peronosclerospora 

sorghi) and tolerant to head smut (Sporisorium holci-sorghi). This pollinator line has necessary 

characteristics to produce food-quality grain hybrids with good yield potential and resistance to 

prevalent biotic stresses. 00MN7645 is a new type of stay green, drought tolerant, pollinator line 

with red caryopsis, and outstanding yield potential released in 2003. Hybrids produced using 

00MN7645 have higher yield and lodging resistance than many check hybrids. The RIL 

population was crossed to an A-line, ATx3042, a common tester used in sorghum hybrid 

breeding programs. The resulting population was called recombinant inbred line testcross 

(RILTC) population. In 2008 and 2009, 188 RILTCs were used for phenotyping under favorable 

conditions and in 2011, 248 RILTC were used for phenotyping under drought conditions. 

 

Phenotyping for grain yield and drought tolerance 

The RILTC populations were phenotyped for grain yield and drought tolerance in a randomized 

complete block design (RBD) with two replication under favorable and stressed environments: 

Ottawa (2008 and 2009), Manhattan (2008, 2009, and 2011), Hesston (2008 and 2009), and Hays 

(2011). One hundred and eighty eight RILTC along with the parents were phenotyped in 2008 

and 2009 across 6 environments. These six environments received >500 inches of rainfall in the 

crop growth period so they were considered as favorable environments. In 2011, 248 RILTC 
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along with the parents were phenotyped in 2 locations (Manhattan and Hays). In 2011, the 

rainfall was less than 300 inches and the two locations were considered as drought environments 

(Fig. 4.23 and Fig. 4.24).  

The phenotyping was done for grain yield, flowering time (days to 50% anthesis), and 

stay green measurements. Stay green measurements included relative chlorophyll content, leaf 

fluorescence (Fv/Fm), and green leaf area visual rating (GLAVS). Minolta SPAD-502 meter was 

used to measure relative chlorophyll content from 5 tagged plants in a row. These measurements 

were taken 10, 20, 30, and 40 days after flowering on the flag leaf of the plants in 2008 and 

2009. Measurements were taken at the middle of the flag leaf 1 cm from the edge of the leaf 

lamina. In 2011, chlorophyll content was measured on 2
nd

 and 4
th

 leaves, one at the base of the 

leaf, one at the middle of the leaf 1 cm from the edge, and one at the tip of the leaf. The average 

of these measurements was used for the analysis.  

Leaf fluorescence was measured using OPTI-Science OS 30p-chlorophyll fluorometer on 

the tagged plants. The plants were dark adapted for 20 minutes before the measurement using OS 

30p-chlorophyll Fluorometer. Fv/Fm indicates maximum quantum yield of photosystem II that is 

an indicator of tolerance to drought (Li et al., 2006). In addition, green leaf area was visually 

scored in 2011 on a scale of 1-5, where 1 = completely dead plant and 5 = completely green 

plant. This score was obtained based on number of green leaves on the plant, size of the leaf, and 

dry area in the leaf at maturity. These plots were harvested using combine harvester and grain 

moisture content was recorded for grain yield calculations. 

 

Genotyping, molecular markers, and map construction 

DNA extraction of the 248 RILs and their parents were done using a modified CTAB method 

(Murray and Thompson, 1980). Genotyping was done by genotyping by sequencing (GBS) that 

identified 8000 segregating SNPs between the parents Tx436 and 00MN7645 (Elshire et al., 

2011). GBS is an alternative to complex, expensive protocols for genotyping. It reduces the 

genome complexity by using restriction enzymes and is a low cost highly reproducible method 

that can reach genomic regions inaccessible to other sequence capture approaches.  

From the 8,000 markers SNPs were selected based on its distribution in the genome, 

missing value, and chi-square test for segregation distortion to make linkage maps (Fig.4.6). The 

resulting markers were at least 10kb apart based on the physical distance between the markers. 
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Eight hundred SNPs were used to construct linkage map using JoinMap® (Van Ooijen and 

Voorrips, 2001). Linkage map was constructed for each chromosome and physical distance was 

also considered to join the linkage groups together into a same chromosome (Fig.4.7). Within 

each linkage group, the best order of markers was determined according to the physical position 

of the markers and the genetic distances (cM) were calculated using the Kosambi (1944) 

function. A plot of physical position of the markers with genetic distance was reported (Fig.4.8). 

 

Statistical analysis 

The phenotypic data obtained from 2008 and 2009 were combined to do the analysis of variance 

using PROC GLM. Genotype and genotype x environment interaction were considered as 

random effects and other effects were fixed effects. Also heritability estimates of the traits were 

done using PROC MIXED in SAS 9.1. (SAS Institute Inc., 2012). Entry-mean based heritability 

(h
2
) was estimated for each trait using the formula: 

 

,  

 

where , , and  are estimated variance components for genotype, genotype by 

environment, and error, respectively; r is the number of replications; and l is the number of 

environments. The correlation coefficient between all traits was estimated. In 2011, the drought 

stress was drastically different for each location resulting in low heritability estimates so the two 

locations were analyzed separately to detect QTLs. 

 

QTL detection 

Composite interval mapping (CIM) was employed in QTL cartographer to detect QTLs in 

favorable and drought stressed environments. A stepwise regression model 6 was used to select 

cofactors for CIM. A 10 cM scan window was used for analysis and the LOD statistic was 

computed at a walk speed of 1 cM. QTLs were detected with an LOD threshold of 2.5 and 

percentage of variation explained (PVE) by the QTL is reported.  
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Results 

Agronomic performance of RILs and their parents in 2008 and 2009 

Analysis of variance showed that genotypes were significantly different for all the traits studied 

(Table 4.1). In 2008 and 2009, the heritability was highest for flowering time (h
2
 = 0.78) 

followed by grain yield (h
2
 = 0.65) and chlorophyll content (h

2
 = 0.30). Chlorophyll fluorescence 

(h
2
 = 0.22) had the lowest heritability estimates among the traits studied.  

 In 2008 and 2009, grain yield was positively correlated with chlorophyll content (r = 

0.16) and chlorophyll fluorescence (r = 0.18) negatively correlated with flowering time (r = -

0.40). Flowering time was positively correlated with chlorophyll content (r =0.12) and 

chlorophyll fluorescence (r = 0.19) (Table 4.3). 00MN7645 flowered earlier than Tx436 in all 

the locations (Fig. 4.1 A). The grain yield was higher for Tx436 than 00MN7645 (Fig. 4.1 B). 

Chlorophyll content readings were not different between the parents (Fig. 4.4).  

 

Agronomic performance of 248 RILs and their parents in 2011 

The RILs showed significant differences for grain yield, flowering time, chlorophyll content, and 

stay green visual ratings. However, a combined analysis of the data from two locations showed 

lower heritability estimates for all the traits (Table 4.2)  

High correlation between the stay green ratings and the SPAD meter readings were 

observed at Hays (r = 0.65) and Manhattan (r = 0.49) (Fig. 4.5). In Manhattan 2011, flowering 

time was positively correlated with SPAD (r = 0.16) and GLAVS (r = 0.10). Grain yield per 

plant and GLAVS was also positively correlated (r = 0.12). 

The parents of RILs performed differently for grain yield at Hays and Manhattan in 2011. 

Tx436 had higher yields in Hays compared to 00MN7645 (Fig. 4.3) and 00MN7645 had higher 

yield than Tx436 in Manhattan (Fig 4.2). Tx436 flowered late in both locations compared to 

00MN7645 (Fig. 4.2 and Fig. 4.3). Stay green ratings were lower for Tx436 at both locations 

and the differences between them were higher at Hays than Manhattan (Fig.4.4).  

 

Linkage map 

A total of 800 SNPs were used in the final map construction using JoinMap. The total length of 

the linkage groups was 2149.3cM; Ch1 (269.3cM), Ch2 (231.9cM), Ch3 (239.1cM), Ch4 

(217.0cM), Ch5 (185.7cM), Ch6 (233.3cM), Ch7 (224.8cM), Ch8 (191.8cM), Ch9 (247.6cM), 
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and Ch10 (108.8cM). The average interval between the loci was 2.68cM. The linkage groups 

were compared with the physical map of each chromosome (Fig. 4.9). The lower recombination 

rate of the centromere regions is shown with lower slope and chromosome arms had higher 

recombinations. 

 

QTLs identified under favorable conditions 

Grain yield and flowering time QTLs 

A major QTL was detected for grain yield on chromosome 8 with an LOD score of 4.5 and a 

phenotypic variation explained (PVE) value of 13.2 (Fig. 4.10). A major flowering time QTL 

was detected on chromosome 9 (Fig. 4.11) with an LOD of 5.0 and a PVE value of 12.8 

(Table4.4).  

 

QTLs identified under drought conditions 

Grain yield and flowering time QTLs 

Three major QTLs were identified for grain yield: chromosome 1 (LOD = 3.3), chromosome 6 

(LOD = 2.6), and chromosome 8 (LOD = 3.6). Their explained phenotypic variation was 5.4, 

5.4, and 7.2, respectively. QTL on chromosome 1 was located between 183.07cM and 203.07cM 

(Fig. 4.17). QTL on chromosome 6 was between 40.7cM and 58.3cM (Fig. 4.18) and QTL on 

chromosome 8 was between 103.0cM and 106cM (Fig.4.12).  

Two QTLs were detected on chromosome 1 for flowering time under drought conditions. 

A QTL was located between 35.4cM and 52.9cM with an LOD score of 3.0 and a PVE value of 

4.9 (Fig. 4.13). Another QTL was located on the same chromosome between 207.3cM and 

228.2cM with an LOD score of 3.1 and a PVE value of 5.4 (Fig. 4.19) (Table. 4.5).  

 

Stay green QTLs 

We identified six QTLs for stay green under drought conditions. A QTL was detected on 

chromosome 5, between 104.2cM and 122.4cM (LOD = 2.6, PVE = 4.3) for chlorophyll content 

from Manhattan 2011 data (Fig. 4.20). Another QTL was detected on chromosome 6 between 

19.6cM and 31.0cM (LOD = 3.0, PVE = 5.9) from the Manhattan 2011 data. For chlorophyll 

fluorescence three QTLs were identified, on chromosomes 4, 7, and 10. The QTL on 

chromosome 4 located between 103.2cM and 134.75cM explained 4.51 of the variation in 
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chlorophyll fluorescence (Fig.4.15). Another QTL on chromosome 7 (LOD = 4.0) between 

187.6cM and 204.2cM explained 9.44 of the variation in the trait (Fig. 4.21) and a QTL on 

chromosome 10 (LOD = 2.95) between 52.5cM and 68.0cM explained 4.9 of the variation in the 

trait (Fig. 4.16). A QTL was identified for visual rating on chromosome 4 between 103.2cM and 

134.75cM (LOD = 2.8) that explained 4.51 variation in the trait (Fig.4.14). 

 

Discussion 

Drought stress is specific to the crop, growth period of the crop, and environment conditions. In 

the present study grain yield and flowering time was studied under favorable and drought 

stressed conditions. These agronomic traits showed high heritability under favorable conditions 

but under drought conditions the heritability was lower in the RILTC population. The parents 

didn’t differ for stay green measurements under favorable conditions but under drought 

conditions stay green measurements showed differences (Fig. 4.4). Stay green was positively 

correlated with grain yield under favorable conditions indicating that stay green genotypes yield 

higher also under favorable conditions. The QTLs detected for grain yield didn’t coincide with 

stay green QTLs detected under drought conditions indicating possibility of different genetic 

mechanisms for grain yield and stay green. QTLs for grain yield were detected in chromosomes 

1, 6, and 8 under drought conditions. Under favorable conditions the QTL for grain yield was 

identified on chromosome 9. This indicates that different mechanisms determine grain yield 

under favorable and drought stress conditions. 

Earlier studies have reported QTLs for stay green in chromosomes 2, 3, 4, 6, 8, and 10 

(Crasta et al., 1999; Kebede et al., 2001; Sanchez et al., 2002; Subudhi et al., 2000; Subudhi et 

al., 1999; Xu et al., 2000). In our study, we detected. QTLs for stay green under drought stressed 

environments in chromosomes 4, 5, 6, 7, and 10. The QTLs detected on chromosome 4 for 

GLAVS (122.8cM - 129.3cM) and chlorophyll fluorescence (103.2cM - 134.75cM) overlapped. 

These QTLs overlapped with a QTL (112.0cM) detected on chromosome 4 for stay green from 

an earlier study (Sabadin et al., 2012). QTL detected for chlorophyll content on chromosome 5 

(104.2cM - 122.4cM) was near the QTL for stay green (98.3cM) from the earlier study and QTL 

for chlorophyll content overlapped with a QTL detected on chromosome 6 at 30cM (Sabadin et 

al., 2012). Transgressive segregation was present for stay green similar to earlier studies that 

mapped QTLs for drought tolerance in sorghum (Crasta et al., 1999; Kebede et al., 2001). 
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In our study, we detected QTLs for flowering time in chromosome 8 under favorable 

conditions and two QTLs on chromosome 1 under drought stress conditions. Flowering time and 

grain yield was negatively correlated under favorable conditions indicating that early flowering 

genotypes yielded higher. Several flowering genes have been identified in sorghum Ma1, Ma2, 

Ma3, Ma4, Ma5, and Ma6 (Childs et al., 1997). It is a key trait for adaptation of the plant to its 

environmental conditions. We identified two QTLs for flowering time on chromosome 1 

(35.4cM - 52.9cM and 207.3cM - 228.2cM) under drought conditions. Earlier studies using 

photoperiod sensitive and photoperiod insensitive lines of sorghum has identified several QTLs 

for flowering time (El Mannai et al., 2012). Our experimental material RILTC didn’t show 

drastic variation in flowering time because of the common genetic background created by 

crossing RILs with ATx3042 an early flowering line. 

 Most of the QTL mapping studies for drought tolerance used RILs or NILs for 

phenotyping. In our study, RILs in a hybrid background (RILTC) was phenotyped and RIL was 

genotyped. RILs are normally homozygous lines with some possible heterozygosity, but RILTC 

are RILs crossed to a commonly used A-line tester. In other words, the phenotyping was done on 

potential hybrids, and we found several lines that are higher yielding than the checks Pioneer 

84G62, Tx3042/Tx2737, and CS1114/R45. The idea of phenotyping RILTC instead of RILs was 

to reduce the confounding effects of flowering time on grain yield and stay green measurements. 

Traits that are governed by single genes or fewer genes have low genotyping by 

environment interaction and higher stability across environment and thus higher heritability (eg. 

flowering time and resistance to diseases). But complex traits that are governed by multiple 

genes and multiple QTLs interact between them and the environment. Hence, the expression of 

these traits varies across environments and show lower heritability estimates. The potential traits 

for selecting drought tolerance should be positively associated with grain yield and must have 

higher heritability estimates than the grain yield itself. These trait measurements should be 

nondestructive, rapid, accurate, and inexpensive (Tuberosa, 2012). Previous studies also reported 

lower heritability estimates for stay green traits using hand held instruments. These low 

heritability traits chlorophyll content and chlorophyll fluorescence are point measurements and 

doesn’t capture the dynamics of whole plant response to drought stress. To improve phenotyping 

accuracy and efficiency for drought tolerance, integrated platforms that have high-throughput 

phenotyping ability using near-infrared (NIR) spectroscopy on agricultural harvesters, canopy 
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spectral reflectance, infra red thermography, magnetic resonance imaging, position emission 

tomography, and nuclear magnetic resonance are needed (Mir et al., 2012). These precision 

phenotyping tools with advancements in genotyping through next generation sequencing 

technologies and genetic designs can increase the speed of gene discovery for drought tolerance 

in plants. 

Conclusions 

QTLs were detected for grain yield, flowering time, and stay green in this present study. QTLs 

for stay green were detected under drought conditions only, and they overlapped with some of 

the earlier identified QTLs for stay green. To dissect drought tolerance into gene level, large 

scale coordinated approaches that include integrated phenotyping platforms, high density 

genotyping, and genetic designs are needed.  
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Tables and Figures 
Table 4.1. Analysis of variance for grain yield, flowering time, chlorophyll content, and chlorophyll fluorescence from Hesston, 

Manhattan, and Ottawa in 2008 and 2009. 

 

  Mean squares 

Source of Variation 
df Grain yield Flowering time Chlorophyll content 

Chlorophyll 

fluorescence 

Environment 5 933.08 8423.00 3444.48 0.106059 

Replication (Environment) 6 20.39 75.14 456.47 0.030241 

Genotype 189 5.86*** 19.14*** 24.84** 0.002237** 

Genotype × Environment 942 1.52 3.71 17.62 0.001828 

Error 1043 1.34 3.27 17.52 0.001709 

 

***,Significant at α = 0.001; **,significant at α = 0.01, and *,significant at α = 0.05. 
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Table 4.2. Analysis of variance for grain yield, flowering time, chlorophyll content, stay green rating, and chlorophyll  fluorescence in 

the year 2011. 

  Mean squares 

Source of variation df Grain yield Flowering time Chlorophyll content 
Stay green 

rating 

Chlorophyll 

fluorescence 

Environment 1 194.69 42314.6 854.82 1.54 0.0279 

Rep(Environment) 2 54.85 29.41 5979.13 5.06 0.1259 

Genotype 244 1.64*** 16.03*** 193.26* 0.82* 0.0155 

Genotype × Environment 244 1.45* 11.40** 191.52* 0.73* 0.0158 

Error 473 1.38 6.12 154.21 0.59 0.0169 

***, Significant at α = 0.001: **, significant at α = 0.01; and *, significant at α = 0.05. 
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Table 4.3 Correlation between grain yield, flowering time, chlorophyll content, and chlorophyll fluorescence under favorable 

conditions across 188 recombinant inbred lines and their parents. 

 

Traits Grain yield  Flowering time  Chlorophyll content  Chlorophyll fluorescence  

Grain yield   -0.40***  0.16*  0.18*  

Flowering time   -  0.12*  0.19***  

Chlorophyll content      -  0.20**  

***,Significant at α = 0.001; **,significant at α = 0.01, and *,significant at α = 0.05. 
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Table 4.4. QTLs identified for grain yield and flowering time through composite interval mapping using 800 SNPs. One hundred and 

eighty eight RILs were phenotyped under favorable conditions in 2008 and 2009. 

 

Trait Chr 
Position 

(cM) 
Closest marker(s) LOD PVE 

Additive 

effect 

Contributing 

parent 

Grain yield 8 14.3 - 33.2 S8_5490811 - S8_9689857 4.5 13.2 0.012 00MN7645 

Flowering time 9 6.8 - 27.3 S9_561031 - S9_1547975 5.0 12.8 0.50 Tx436 

Chr = Chromosome, cM = centimorgan (kosambi), LOD = logarithm of odds, and PVE 
 
= phenotypic variance explained 
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Table 4.5. QTLs identified through composite interval mapping using 800 SNPs on 248 RILs under drought conditions in 2011.  

 

Trait Environment Chr Position (cM) Closest marker(s) LOD PVE 

Additive 

effect 

Contributing 

parent 

Grain yield 

Hays 8 103 - 106 S8_51181394 - S8_51372548 3.6 7.2 0.11 Tx436 

Manhattan 
1 183.7 - 203.7 S1_57773312 - S1_60383946 3.3 5.4 0.04 00MN7645 

6 40.7 - 58.3 S6_1980781 - S6_2631628 2.6 5.7 0.03 00MN7645 

Flowering time 
Hays  1 35.4 - 52.9 S1_1965838 - S1_4067572 3.0 4.9 0.68 00MN7645 

Manhattan 1 207.3 - 228.2 S1_61406226 - S1_65253574 3.1 5.4 0.56 Tx436 

Stay green 

Visual rating Hays 4 122.8 - 129.3 S4_62557400 - S4_62775392  2.7 4.7 0.15 00MN7645 

Chlorophyll 

content 

Hays 5 104.2 - 122.4 S5_10950864 - S5_19539291 2.6 4.3 1.68 Tx436 

Manhattan 6 19.6 - 31.0 S6_1279361 - S6_1486757 3.0 5.9 1.17 Tx436 

Chlorophyll 

fluorescence 

Hays 
4 103.2 - 134.75 S4_13602506 - S4_62725094 2.8 4.5 0.12 00MN7645 

10 52.5 - 68.0 S10_5960530 - S10_9250692 2.9 4.9 0.12 Tx436 

Manhattan 7 187.6 - 204.2 S7_58198679 - S7_62799938 4.0 9.4 0.04 Tx436 

Chr = Chromosome, cM = centimorgan (Kosambi), LOD = logarithm of odds, and PVE
 
= phenotypic variance explained
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Figure 4.1 Histogram of flowering time and grain yield of 188 RILs and their parents in 2008 

and 2009. (A) Flowering time and (B) Grain yield per plant. 
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Figure 4.2 Histogram of flowering time and grain yield of 248 RILs and their parents in 

Manhattan 2011. (A) Flowering time and (B) grain yield per plant. 
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Figure 4.3 Histogram of flowering time and grain yield of 248 RILs and their parents in Hays 

2011. (A) Flowering time and (B) grain yield per plant. 
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Figure 4.4 Histogram of stay green measurements (A) SPAD meter reading of 188 RILs and 

their parents in 2008 and 2009, (B) GLAVS of 248 RILS and their parents in Manhattan 2011, 

and (C) GLAVS of 248 RILS and their parents in Hays 2011. 

 

 

 



106 
 

Figure 4.5 Correlations between green leaf area visual scoring (GLAVS) and chlorophyll 

content (SPAD meter readings) of 248 RILs and their parents under drought conditions in 

2011(A) Manhattan (B) Hays . 
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Figure 4.6 SNP distributions across 10 chromosomes in sorghum. Black dots represent the 

sequenced part of chromosomes, blue dots represent segregating SNPs in the 248 RILs, and red 

dots represent the SNPs used for linkage map construction. 
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Figure 4.7 Linkage map constructed using 800 SNPs in sorghum: Linkage groups for 

chromosome 1 (C1) to chromosome 5 (C5). 
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Figure 4.8. Linkage map constructed using 800 SNPs in sorghum. Linkage groups for 

chromosome 6 (C6) to chromosome 10 (C10). 
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Figure 4.9. Comparison of physical positions and genetic distance of ten sorghum chromosomes. 

Centromere region in each chromosome has lower recombination rate and thus smaller increase 

in genetic distance than either end of the chromosome. 
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Figure 4.10 QTL identified for grain yield in chromosome 8 under favorable conditions using 

188 RILs in 2008-09. 
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Figure 4.11. QTL identified for flowering time in chromosome 9 under favorable conditions 

using 188 RILs in 2008-09. 
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Figure 4.12 QTL for grain yield in Chromosome 8 under drought conditions using 248 RILs in 

Hays, 2011 
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Figure 4.13 QTL identified for flowering time in chromosome 1 under drought conditions using 

248RILs in Hays, 2011 
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Figure 4.14 QTL for GLAVS in Chromosome 4 under drought conditions using 248 RILs in 

Hays, 2011. 
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Figure 4.15 QTL for chlorophyll fluorescence in Chromosome 4 under drought conditions using 

248 RILs in Hays, 2011. 
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Figure 4.16 QTL for chlorophyll fluorescence ratings in Chromosome 10 under drought 

condition using 248 RILs in Hays, 2011. 
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Figure 4.17 QTL for grain yield in chromosome 1 under drought conditions using 248 RILs in 

Manhattan, 2011. 
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Figure 4.18 QTL for grain yield in chromosome 6 under drought conditions using 248 RILs in 

Manhattan, 2011. 
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Figure 4.19 QTL for flowering time in chromosome 1 under drought conditions using 248 RILs 

in Manhattan, 2011. 
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Figure 4.20 QTL for chlorophyll content in chromosome 5 under drought conditions using 248 

RILs in Manhattan, 2011 
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Figure 4.21 QTL for chlorophyll fluorescence in chromosome 6 under drought conditions using 

248 RILs in Manhattan, 2011. 
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Figure 4.22 Parents of recombinant inbred lines used in the study: Tx436 and 00MN7645 
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Figure 4.23 Sorghum recombinant inbreds and their parents in the field in Hays, 2011 
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Figure 4.24 Tx436 and 00MN7645 in the hybrid background (RILTC) at maturity in Manhattan, 

2011. 

 

 

 

Tx436 00MN7645 
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