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SMALL ZEROS OF QUADRATIC FORMS MOD P 2

TODD COCHRANE AND ALI H. HAKAMI

(Communicated by Matthew A. Papanikolas)

Abstract. Let Q(x) be a quadratic form over Z in n variables, p be an odd
prime and ‖x‖ = maxi |xi|. A solution of the congruence Q(x) ≡ 0 (mod p2)
is said to be nontrivial if p � xi for some i. We prove that if this congruence has
a nontrivial solution, then it has a nontrivial solution with ‖x‖ ≤ p. We also
give estimates on the number of small nontrivial solutions of the congruence
and show that there exists a set of n linearly independent nontrivial solutions
of size ‖x‖ ≤ (2n+1+1)p, provided that n ≥ 4 is even and Q(x) is nonsingular
(mod p).

1. Introduction

Let Q = Q(x) = Q(x1, x2, . . . , xn) =
∑

1≤i≤j≤n aijxixj be a quadratic form with
integer coefficients aij , m be a positive integer, and for any integer n-tuple x, let
‖x‖ = max |xi|. It is of interest to obtain small nonzero solutions of the congruence

(1) Q(x) ≡ 0 (mod m).

If Q(x) = x2
1 + x2

2 + · · · + x2
n, then plainly any nonzero solution of (1) must have

‖x‖ ≥ 1√
n
m1/2, and thus the goal in general is to obtain solutions with ‖x‖ � m1/2.

Schinzel, Schlickewei and Schmidt [16] proved that (1) has a nonzero solution with

(2) ‖x‖ ≤
{
m

1
2+

1
2n−2 , n ≥ 2, even,

m
1
2+

1
2n , n ≥ 1, odd.

This was sharpened by Heath-Brown [15] to

(3) ‖x‖ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
13
21+ε, n = 4, 5,

m
15
26+ε, n = 6, 7,

m
6
11+ε, n = 8, 9,

m
8
15+ε, n = 10, 11,

m
1
2+

3
n2 +ε, n ≥ 12, even,

m
1
2+

3
(n−1)2

+ε
, n ≥ 13, odd.

It is also known [10] that for n ≥ 3 there exists a constant cQ depending on Q such

that for any m there is a nonzero solution of (1) with ‖x‖ < cQm
1/2.

Open problem 1. For n ≥ 4 does there always exist a nonzero solution of (1)
with ‖x‖ ≤ m1/2?
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The constant 1 in front of the m1/2 (in the open problem) is sharp. Indeed, if
m = p2 with p a prime and λ is a quadratic nonresidue (mod p), then any nonzero
solution of the congruence

(4) x2
1 − λx2

2 + px2
3 − λpx2

4 ≡ 0 (mod p2)

must have p|(x1, x2, x3, x4), that is, ‖x‖ ≥ √
m.

For prime moduli m = p it was established in a sequence of papers by Heath-
Brown [14] and the first author [6], [7], [9] that the upper bound, ‖x‖ � p1/2, holds
for n ≥ 4. The best constant available is due to the second author [12, Theorem 1.3]
who obtained the existence of a nonzero solution of (1) with

‖x‖ < min{p2/3, 219p1/2},
for any Q(x) in n ≥ 4 variables. Wang [17], [18], [19] generalized this work to
arbitrary finite fields. For m = pq a product of two distinct primes, the optimal
bound, ‖x‖ � m1/2 for n ≥ 4, was obtained by the first author [8], [11], building
upon the work of Heath-Brown [15].

If n = 3 the upper bound m2/3 in (2) is best possible as noted by Heath-Brown
[14]. To be precise, with m = p a prime, b = [p1/3] and Q(x) = (x2−bx1)

2−λ(x3−
b2x1)

2, where λ is a quadratic nonresidue (mod p), any nonzero solution of (1) has

‖x‖ ≥ b3/(b+ 1) > b(b− 1) > m2/3 − 3m1/3

(see [5, p. 17]). This quadratic form of course is degenerate. There remains

Open problem 2. For n = 3, and m = p a prime, what is the smallest nonzero
solution of (1) for any nondegenerate Q(x) (mod p)?

Our interest in this paper is the case m = p2 with p a prime. We seek small
(‖x‖ � p) nontrivial solutions of the congruence

(5) Q(x) ≡ 0 (mod p2).

This congruence has trivial small nonzero solutions such as (p, 0, . . . , 0), and such
solutions were allowable for the upper bounds in (2) and (3). Indeed, in the proofs
of both (2) and (3), one writes m = ab2 with a square-free, obtains a small solution
(mod a) and then multiplies it by b to obtain a small solution (mod m). By
nontrivial we shall mean a solution x, with p � xi for some i. For any such solution,
if gcd(x1, . . . , xn) > 1, then one can divide out this common factor to obtain a
primitive solution of (5) of smaller size yet. By primitive we mean as usual a point
with gcd(x1, . . . , xn) = 1. Thus the existence of a small nontrivial solution of (5)
is equivalent to the existence of a small primitive solution of (5).

As the example in (4) shows, when n ≤ 4 there may not be any nontrivial
solution of (5). We characterize all such forms in Lemma 3. When such a solution
does exist, we find that there exists a nontrivial solution x with ‖x‖ ≤ √

m.

Theorem 1. Let Q(x) be any quadratic form over Z in n ≥ 1 variables and p be an
odd prime. If the congruence (5) has a nontrivial solution, then it has a nontrivial
solution with ‖x‖ ≤ p.

The theorem does not generalize to higher prime powers without some further
restrictions. For instance, the congruence

pk−1x2
1 + x1x2 + pk−1x2

2 = (x1 + pk−1x2)(x2 + pk−1x1) ≡ 0 (mod pk)
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has primitive solutions ±(pk−1,−1),±(−1, pk−1), and these are the smallest prim-
itive solutions. Thus the minimal primitive solution is of size m(k−1)/k. This ex-
ample also shows that the upper bound in Theorem 1 is sharp (at least for n = 2).
Theorem 1 improves on and generalizes a result of the second author, [13, Theo-
rem 1], stating that for nonsingular Q (mod p) in n ≥ 4 variables, with n even,
there exists a primitive solution of (5) with ‖x‖ ≤ max{32p, 218}.

The proof of Theorem 1 is geometric, using the equivalence of quadratic forms,
the construction of a lattice of solutions of (5), and the box principle, whereas
the proof in [13] uses exponential sums. The method of exponential sums has the
advantage that it allows us to give estimates on the number of small primitive
solutions. We use this method to obtain the following lower bound.

Theorem 2. Let Q(x) be a quadratic form over Z in n ≥ 4 variables with n even,
and let p be an odd prime. If Q(x) is nonsingular (mod p), then the number N of
nontrivial solutions of (5) with ‖x‖ < b, where b is an odd multiple of p, b < p2/2,

satisfies N > (.99) b
n

p2 − 10npn−2.

In particular the theorem yields a nontrivial solution of (5) with ‖x‖ < 11p. The
theorem is stated in greater generality in Theorem 3, where we allow the box to
have edges of different lengths. The proof here offers a number of simplifications
and refinements of the method used in [13].

Theorem 2 implies the existence of a set of n linearly independent solutions of
small size.

Corollary 1. Under the hypotheses of Theorem 2, congruence (5) has a set of
n primitive integer solutions x1, . . . ,xn, linearly independent over R, such that
‖xi‖ ≤ (2n+1 + 1)p, 1 ≤ i ≤ n.

Remarks. 1. In order to simplify the proofs we have stated the lower bounds in
Theorems 2 and 3 for boxes having edges of lengths that are multiples of p. In
[12] and [13], weaker bounds of this type are given for boxes with sides of arbitrary
lengths.

2. Our attempts to use the geometric method for congruences (mod p3) (or
higher powers) have not been successful in obtaining primitive solutions of size√
m.
3. The method of exponential sums can be applied to any power of p and any n.

In [12, Corollary 3.2] the second author obtained primitive solutions (mod p3) with
optimal bound ‖x‖ < 34 p3/2 for any nonsingular quadratic form with n ≥ 6 even,
p sufficiently large and Δ = −1, where Δ is as defined in (9). Weaker bounds are
obtained for the case Δ = 1. For a general prime power m = pk and nonsingular

form (mod pk) in n ≥ 4 variables (n even), a primitive solution of size ‖x‖ � m
1
2+

1
n

was obtained in [12, Theorem 4.1].

4. An upper bound on the value N in Theorem 2 of the type N � bn

p2 + pn−1

can also be obtained by the methods here, but it is not optimal (one would like
pn−1 replaced by pn−2) due to our inability to obtain an optimal bound on the sum∑

p2|Q(y) a(y) occurring in (11).

5. For a general modulus the problem of obtaining a small primitive solution
remains unexplored. The correct answer will depend on the rank of the quadratic
form modulo each of the prime divisors of m. For instance, the smallest primitive
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solution of the congruence

p(x2
1 + x2

2) + 3p(x2
3 + x2

4) + 9(x2
5 − λx2

6) ≡ 0 (mod 9p),

with p > 3 a prime and λ a quadratic nonresidue (mod p) has size ‖x‖ = p.

Open problem 3. If n ≥ 4 and Q(x) is nonsingular (mod p) for each prime divisor
p of m, does (1) have a primitive solution of size O(m1/2)?

Notation. Throughout the paper we let Zp denote the ring of p-adic integers and
Z/(pk) denote the ring of integers (mod pk).

2. Review of quadratic forms

We start by reviewing some facts about quadratic forms. Let pk be an odd prime
power and Q = Q(x) be a quadratic form with integer coefficients. Since p is odd
and our concern is with congruences (mod pk), we can bypass the subtleties that
arise with p = 2. In particular, we may assume that Q has a matrix representation
Q(x) = xAQx

t, where AQ is a symmetric matrix with integer entries. (Any 1
2 that

initially appears in the matrix may be replaced with a multiplicative inverse of 2
(mod pk).) Q is said to be nonsingular or nondegenerate (mod p) if p � det(AQ).
We will say that two forms Q1 and Q2 are equivalent (mod pk), and write Q1 ∼
Q2 (mod pk) if there is a nonsingular linear transformation T (mod pk) such that
Q1(x) ≡ Q2(T (x)) (mod pk), that is, if there is an integer matrix P with p � det(P )
and AQ1

≡ PAQ2
P t (mod pk). Similarly, we say that Q1 and Q2 are equivalent

over the p-adic integers Zp if there exists an invertible matrix P over Zp such that
AQ1

= PAQ2
P t. Clearly, if Q1 and Q2 are equivalent over Zp, then they are

equivalent (mod pk) for any k. Conversely, we deduce from Hensel’s lemma the
following.

Lemma 1. If p is an odd prime and Q1, Q2 are quadratic forms over Z that are
nonsingular (mod p) and equivalent (mod p), then they are equivalent over the
p-adic integers.

Proof. We will just do the first step of the Hensel lifting, the general case being
analogous. Suppose that Q1 and Q2 are equivalent nonsingular quadratic forms
(mod p), with corresponding matrices AQ1

, AQ2
. Say AQ1

≡ PAQ2
P t (mod p) for

some integer matrix P , with P nonsingular (mod p). Replace P with P+pT , where
T is a matrix of variables (to be solved for), and consider solving the congruence

AQ1
≡ (P + pT )AQ2

(P + pT )t (mod p2).

Letting M = 1
p (AQ1

− PAQ2
P t), a matrix with integer entries, the preceding con-

gruence may be written as

M ≡ TAQ2
P t + PAQ2

T t (mod p).

Since M is symmetric, it suffices to solve the congruence M ≡ 2TAQ2
P t (mod p),

which is solvable since AQ2
and P are nonsingular (mod p). Thus Q1 and Q2 are

equivalent (mod p2). �

Lemma 2. Let p be an odd prime and Q(x) be a quadratic form over Z, nonsingular
(mod p), and having a nontrivial zero (mod p). Then Q ∼ x1x2+a3x

2
3+ · · ·+anx

2
n

over the p-adic integers, for some ai ∈ Z, p � ai, 3 ≤ i ≤ n (Q ∼ x1x2 for n = 2).
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Proof. By Lemma 1, it suffices to show that Q is equivalent to the desired form
(mod p), but this is well known for quadratic forms over fields. �

Next we characterize all quadratic forms having no nontrivial zero (mod p2). Let
Q(x) be a quadratic form in n variables over Z, and let p be an odd prime. Then
over the p-adic integers, Q is equivalent to a diagonal form (see, e.g., Cassels [4,
Chapter 8]),

(6) Q ∼
n1∑
i=1

aix
2
i + p

n1+n2∑
i=n1+1

aix
2
i := Q1 + pQ2 (mod p2),

say, for some ai ∈ Z, not divisible by p, 1 ≤ i ≤ n1 + n2. The values n1 and n2 are
uniquely determined. Q is degenerate (mod p) if n1 < n and degenerate (mod p2)
if n1 + n2 < n. If n1 ≥ 3, then Q1 has a nontrivial zero (mod p) and hence, by
Hensel’s Lemma, a nontrivial zero (mod p2). If n2 ≥ 3, then Q2 has a nontrivial
zero (mod p). In either case, Q has a nontrivial zero (mod p2). If Q1 ∼ a1x

2
1+a2x

2
2

or Q2 ∼ a1x
2
1+a2x

2
2 with (−a1a2

p ) = 1, then again Q has a nontrivial zero (mod p2).

Finally, if Q is degenerate (mod p2), then it certainly has a nontrivial zero (mod p2).
Thus we have

Lemma 3. If Q = Q(x) is a quadratic form in n variables over Z having no
nontrivial zero (mod p2), then n ≤ 4 and Q is equivalent to one of the following
types (mod p2). Here, a1, a2, a3, a4 denote integers not divisible by p.

i) n = 1 and Q is not identically zero (mod p2).
ii) n = 2 and Q ∼ a1x

2
1 + a2x

2
2 or pa21 + pa22 (mod p2) with (−a1a2

p ) = −1 or

Q ∼ a1x
2
1 + pa2x

2
2 (mod p2).

iii) n = 3 and Q ∼ a1x
2
1 + p(a2x

2
2 + a3x

2
3) (mod p2) with (−a2a3

p ) = −1 or

Q ∼ a1x
2
1 + a2x

2
2 + pa3x

2
3 with (−a1a2

p ) = −1.

iv) n = 4 and Q ∼ a1x
2
1+a2x

2
2+pa3x

2
3+pa4x

2
4 (mod p2), where both (−a1a2

p ) =

−1 and (−a3a4

p ) = −1.

3. Proof of Theorem 1

The main tool in our proof is the following elementary result on the existence
of small solutions to a system of linear congruences, the proof of which involves
nothing more than the pigeon-hole principle, or what is commonly called the box
principle. A proof and a discussion of its history and its many applications may be
found in the work of Brauer and Reynolds [2].

Lemma 4. Let L1(x), . . . , Lk(x) be linear forms over Z in n variables and m be any
positive integer. Then the system of congruences Li(x) ≡ 0 (mod m), 1 ≤ i ≤ k,
has a nonzero solution x with ‖x‖ ≤ mk/n.

Let Q(x) be a quadratic form having a nontrivial zero (mod p2). If Q(x) is
degenerate (mod p2), then Q ∼ a1x

2
1 + · · · + arx

2
r (mod p2) for some r < n and

ai ∈ Z, 1 ≤ i ≤ r, that is,

Q(x) ≡ a1L1(x)
2 + · · ·+ arLr(x)

2 (mod p2),

for some linear forms Li(x) over Z, 1 ≤ i ≤ r. By Lemma 4, the system Li(x) ≡ 0
(mod p), 1 ≤ i ≤ r, has a nonzero solution with ‖x‖ ≤ pr/n. Clearly, this is a
nontrivial zero of Q (mod p2) with ‖x‖ < p.
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Suppose now that Q is nondegenerate (mod p2) and that it is equivalent (mod p2)
to a diagonal form of the type Q1 + pQ2 (in the notation of (6)), where Q1, Q2 are
nonsingular (mod p) quadratic forms in n1, n2 distinct variables with n1 + n2 = n.
Let x be a nontrivial zero of Q1+pQ2 (mod p2). Then either p � xi for some i ≤ n1,
in which case Q1 has a nontrivial zero (mod p), or p|xi for 1 ≤ i ≤ n1, in which case
Q2 has a nontrivial zero (mod p). Thus, by Lemma 2, either Q1 or Q2 is equivalent
(mod p2) to a form of the type x1x2 +Q3 and thus so is Q, that is,

Q(x) ≡ L1(x)L2(x) + a3L3(x)
2 + a4L4(x)

2 + · · ·+ anLn(x)
2 (mod p2),

for some linear forms Li over Z, 1 ≤ i ≤ n. In particular, any solution of the linear
system L1(x) ≡ 0 (mod p2), Li(x) ≡ 0 (mod p), 3 ≤ i ≤ n satisfies Q(x) ≡ 0
(mod p2). Theorem 1 now follows from the following lemma.

Lemma 5. Let p be a prime and L1(x), Li(x), 3 ≤ i ≤ n, be linear forms in
x = (x1, x2, . . . , xn) over Z with n ≥ 2. Then the system of congruences

L1(x) ≡ 0 (mod p2),(7)

Li(x) ≡ 0 (mod p), 3 ≤ i ≤ n,

has a primitive solution with ‖x‖ ≤ p. (If n = 2, the system is just L1(x) ≡ 0
(mod p2).)

Proof. Let L1(x) = c1x1 + c2x2 + · · · + cnxn. We claim that by the box principle
the system (7) has a nonzero solution x with

(8) |xi| < p, 1 ≤ i ≤ n− 1, |xn| ≤ p.

Indeed, letting the xi run through the values 0 ≤ xi ≤ p − 1, 1 ≤ i ≤ n − 1,
0 ≤ xn ≤ p, there are pn−1(p + 1) > pn choices for x, and so at least two of the
(n − 1)-tuples (L1(x), L3(x), . . . , Ln(x)) ∈ Z/(p2) × Z/(p) × · · · × Z/(p) must be
equal, say for x 
= y. The desired solution is then x− y.

Let x be a nonzero solution of (7) satisfying (8). If p � xi for some i we are
done (that is, x is a primitive solution with ‖x‖ ≤ p). If p|xi for all i, then xi = 0,
1 ≤ i ≤ n−1 (since |xi| < p) and xn = ±p (so that x 
= 0). But then the congruence
L1(x) ≡ 0 (mod p2) implies that p|cn. In a similar manner, for 1 ≤ i ≤ n − 1
we obtain a small primitive solution unless p|ci. Thus we are left with the case
where p divides all of the coefficients of L1. In this case put L′

1(x) := 1
pL1(x), a

linear form with integer coefficients. Then system (7) is equivalent to the system
L′
1(x) ≡ Li(x) ≡ 0 (mod p), 3 ≤ i ≤ n. But by Lemma 4 the latter system has a

nonzero solution x with ‖x‖ < p(n−1)/n. �

4. The method of exponential sums

The proof of Theorem 2 follows closely the method of the second author [13],
and so we shall omit some of the details here and focus on the essential refinements
of [13]. We abbreviate complete sums over (Z/(p2))n and (Z/(p))n in the manner

∑
x

=
∑

x (p2)

=

p2∑
x1=1

· · ·
p2∑

xn=1

,
∑
x (p)

=

p∑
x1=1

· · ·
p∑

xn=1

.

It is also convenient to write p|y to mean p|yi for 1 ≤ i ≤ n.
Let Q(x) = xAQx

t be a quadratic form in n variables with AQ a symmetric
matrix over Z and p an odd prime. For the purpose of this paper we shall assume
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that Q is nonsingular (mod p) and that n is even, although the method applies as
well to any Q. Set

(9) Δ = Δp(Q) =

(
(−1)n/2 detAQ

p

)
,

where ( .
p ) denotes the Legendre symbol. It is well known that Q ∼ x1x2 + x2x4 +

· · ·+xn−1xn (mod p) if and only if Δp(Q) = 1, and thus it is plain that the value of
Δp(Q) plays an important role in the distribution of the zeros of Q. Let V = Vp2(Q)
be the set of zeros of Q contained in (Z/(p2))n and V ∗ the set of points in V that
are nonzero (mod p). We call V ∗ the set of primitive zeros of Q (mod p2). These
points correspond to the nontrivial solutions of (5).

For y ∈ Zn, set

φ(V,y) =

⎧⎨
⎩

∑
x∈V

ep2(x · y) for y 
≡ 0 (mod p2),

|V | − p2(n−1) for y ≡ 0 (mod p2),

where ep2(·) = e
2πi·
p2 and x · y =

∑n
i=1 xiyi, viewing Z/(p2) as a Z-module. Also,

let Q∗ denote the quadratic form associated with A−1
Q , a matrix with integer en-

tries that is a multiplicative inverse of AQ (mod p2). Using standard formulae for
quadratic Gauss sums one obtains ([12, Lemma 2.3]),

Lemma 6. Suppose n is even, Q is nonsingular (mod p) and Δ = Δp(Q). For
y ∈ Zn, put y′ = 1

py in case p|y. Then for any y,

φ(V,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pn − pn−1 if p � y and p2|Q∗(y),

−pn−1 if p � y and p‖Q∗(y),

0 if p � y and p � Q∗(y),

−Δp3n/2−2 + pn−1(p− 1) if p|y and p � Q∗(y′),

Δ(p− 1)p3n/2−2 + pn−1(p− 1) if p|y and p |Q∗(y′).

When y = 0, Lemma 6 gives the cardinality of V ,

|V | = p2n−2 +Δ(p− 1)p
3n
2 −2 + pn−1(p− 1).

5. Fundamental identity

Let α(x) be a complex-valued function defined on (Z/(p2))n with Fourier expan-
sion

(10) α(x) =
∑
y

a(y)ep2(y · x),

where

a(y) = p−2n
∑
x

α(x)ep2(−x · y).

(Again, unless indicated otherwise, the sums throughout this section are complete
sums over Z/(p2).) In particular, a(0) = p−2n

∑
x α(x). By [12, Lemma 2.4], we

have
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Proposition 1 (Fundamental identity). Let n ≥ 2 be even, Q be a nonsingular
quadratic form (mod p) in n variables, and V ∗ be the set of primitive zeros of Q
(mod p2). Then for any α(x) we have∑

x∈V ∗

α(x) = p−2
∑
x

α(x) + pn
∑

p2|Q∗(y)

a(y)− pn−1
∑

p|Q∗(y)

a(y)

−
(
Δp

3n
2 −2 + pn

) ∑
y′ (p)

a(py′) + Δp
3n
2 −1

∑
y′ (p)

p|Q∗(y′)

a(py′).

The identity simplifies if α is chosen so that its Fourier coefficients vanish when-
ever p|y, y 
= 0. For any such α, using a(0) = p−2n

∑
x α(x), we have

(11)
∑
x∈V ∗

α(x) = p−2δp
∑
x

α(x) + pn
∑

p2|Q∗(y)

a(y)− pn−1
∑

p|Q∗(y)

a(y),

where

(12) δp =
(
1 + Δp−n/2(p− 1)− p−n+2

)
,

a positive value (close to 1) unless n = 2 and Δ = −1, the case where V ∗ is empty.
This observation allows us to greatly simply the proofs in [12] and [13].

6. Proof of Theorem 2

Let B be a box of points centered about the origin,

(13) B = {x : |xi| < mi/2, 1 ≤ i ≤ n} ⊆ (Z/(p2))n,

with the mi multiples of p, mi ≤ p2, 1 ≤ i ≤ n. For convenience, we often insist
further that the mi be odd so that we have |B| =

∏n
i=1 mi. The characteristic

function χB for B has Fourier expansion χB(x) =
∑

y aB(y)ep2(y · x), with

(14) aB(y) = p−2n
n∏

i=1

sin(πmiyi/p
2)

sin(πyi/p2)
,

where the term in the product is understood to be mi when yi = 0. By imposing
the constraint that p|mi for all i, we see that aB(y) = 0 if p|y, unless y = 0.

Let α = χB ∗ χB. Then α is supported on B + B, and its Fourier coefficients
a(y) = p2na2B(y) also satisfy a(y) = 0 if p|y, y 
= 0. Since

∑
x α(x) = |B|2 and∑

x∈V∗

α(x) ≤ |B||V ∗ ∩ (B + B)|,

we obtain from (11),

Lemma 7. Let n ≥ 2 be even, Q be nonsingular (mod p) and V ∗ be the set of
primitive zeros of Q (mod p2). For any box B of type (13) with the mi all multiples
of p we have

(15) |V ∗ ∩ (B + B)| ≥ δp|B|
p2

− pn−1

|B|
∑

p|Q∗(y)

a(y).

We are left with estimating
∑

p|Q∗(y) a(y).
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Lemma 8. Let n ≥ 2 be even and Q be nonsingular (mod p). For any box B of
type (13) with 7p ≤ mi < p2, mi odd, 1 ≤ i ≤ n,

∑
p|Q∗(y)

a(y) ≤

⎧⎨
⎩
11n |B|

p + 3n |B|2

p
3
2
n+1

if Δ = −1,

11n |B|
p + 3n |B|2

p
3
2
n

if Δ = 1,

where the a(y) are the Fourier coefficients of α = χB ∗ χB. If B is a cube, then the
11 can be replaced by 10.

Proof. Write y = u + pv with u,v running through complete residue systems
(mod p), |ui| < p/2, |vi| < p/2, so that by (14),

∑
p|Q∗(y)

a(y) = p−2n
∑

p|Q∗(u)

n∏
i=1

∑
|vi|<p/2

sin2(πmi(ui + pvi)/p
2)

sin2(π(ui + pvi)/p2)
.

Using | sin(πx)| > 2|x| for |x| < 1/2, we have∑
|vi|<p/2

sin2(πmi(ui + pvi)/p
2)

sin2(π(ui + pvi)/p2)
=

sin2(πmiui/p
2)

sin2(πui/p2)

+
∑

0<|vi|<p/2

sin2(πmi(ui + pvi)/p
2)

sin2(π(ui + pvi)/p2)

≤ min

{
m2

i ,
p4

4u2
i

}
+

p4

4

∞∑
vi=1

1

(ui + pvi)2

+
1

(ui − pvi)2

≤ min

{
m2

i ,
p4

4u2
i

}
+ p2

(
π2

4
− 1

)
,

the latter inequality following from the fact that the infinite series is maximized at
ui = p/2 (since for any fixed v ≥ 1, the function f(u) = (u+ pv)−2 + (u− pv)−2 is
even and monotone increasing on [0, p/2]). Using π2/4− 1 < 3/2, we conclude

(16)
∑

p|Q∗(y)

a(y) < p−2n
∑

p|Q∗(u)

n∏
i=1

min

(
m2

i +
3

2
p2,

p4

4u2
i

+
3

2
p2
)
.

To complete the proof, one partitions the set of u into dyadic boxes and uses an
upper bound [9] on the number of zeros of Q∗ in a box; see [12] or [13]. �

Theorem 2 is a special case of the following theorem.

Theorem 3. Let n ≥ 4 be even, Q be nonsingular (mod p) and V ∗ be the set
of primitive zeros of Q (mod p2). For any box B of type (13) with mi odd, p|mi,
7p ≤ mi ≤ p2, 1 ≤ i ≤ n, we have

(17) |V ∗ ∩ (B + B)| ≥ δ′p
|B|
p2

− 11npn−2,

where

δ′p =

⎧⎨
⎩
1− (p−1)

p
n
2

− 1
pn−2 − 3n

p
n
2
, if Δ = −1,

1 + (p−1)

p
n
2

− 1
pn−2 − 3n

p
n
2

−1 , if Δ = 1.
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For any cube B symmetric about the origin, with edges of length λp, λ ≤ p/2, λ
odd, we have

(18) |V ∗ ∩ (B + B)| ≥ (.99)
|B|
p2

− 10npn−2.

One can compare the results of [13, Theorem 3, Theorem 5], where it is shown

that for |B| ≥ 24n+3pn and mi ≥ p, 1 ≤ i ≤ n, |V ∩ (B + B)| > |B|
4p2 .

Proof. By Lemma 7 and Lemma 8 we have for Δ = −1,

(19) |V ∗ ∩ (B + B)| ≥ δp|B|
p2

− pn−1

|B|

(
11n

|B|
p

+ 3n
|B|2

p
3
2n+1

)
,

and the result follows. A similar argument holds for Δ = 1. The result for cubes is
just a calculation. �

7. Proof of Corollary 1

For any n-tuple a of integers with p � a, let H(a) denote the hyperplane

H(a) := {x ∈ (Z/(p2))n :
n∑

i=1

aixi ≡ 0 (mod p2)}.

Corollary 1 is an easy consequence of

Corollary 2. Let Q be a nonsingular quadratic form (mod p) in an even number
of variables n ≥ 4. Then for any hyperplane H(a) with p � a, there is a primitive
solution of the congruence Q(x) ≡ 0 (mod p2), not on the hyperplane, with ‖x‖ <
(2n+1 + 1)p.

Proof. Let B be a box of type (13) with mi = λp, 1 ≤ i ≤ n, λ odd. Say p � an
and that H(a) is given by the congruence xn ≡ a′1x1 + · · · + a′n−1xn−1 (mod p2),
so that the number of points in V ∩H(a)∩ (B+B) is at most the number of integer
solutions of the congruence

Qa(x1, . . . , xn−1) := Q(x1, . . . , xn−1, a
′
1x1 + · · ·+ a′n−1xn−1) ≡ 0 (mod p2),

with |xi| < λp, 1 ≤ i ≤ n−1. This number is certainly no more than the number of
integer solutions of the congruence Qa(x1, . . . , xn−1) ≡ 0 (mod p), with |xi| < λp,
which is at most (2λ)n−1|Vp|, where Vp is the full set of zeros of Qa (mod p). Since
Q is nonsingular (mod p), Qa is of rank n−1 or n−2. In the former case |Vp| = pn−2,
and in the latter case, |Vp| = pn−2 ± (p− 1)p

n
2 −1 ; see, e.g., [1, Section 1.3]. Thus

|V ∩H(a) ∩ (B + B)| ≤ (2λ)n−1
(
pn−2 + p

n
2

)
≤ 2nλn−1pn−2.

On the other hand, by (18), for any odd λ < p/2,

|V ∗ ∩ (B + B)| > ((.99)λn − 10n) pn−2.

If λ ≥ 2n+1, then 2nλn−1 < (.99)λn−10n for n ≥ 4. Taking λ = 2n+1+1 (to make
it odd) completes the proof. (Note, if 2n+1 + 1 > p/2, the result is trivial since V ∗

always contains a point not on H(a).) �
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Proof of Corollary 1. The proof is by contradiction. Suppose that there does not
exist a set of n linearly independent (over R) primitive integer solutions of Q(x) ≡ 0
(mod p2) with ‖x‖ < (2n+1+1)p. Then all such solutions of this congruence must lie
on a hyperplane, and moreover the hyperplane can be defined by an equation of the
type

∑n
i=1 aixi = 0, with ai ∈ Z, 1 ≤ i ≤ n, and gcd(a1, . . . , an) = 1. In particular,

their residues (mod p2) all belong to H(a), contradicting Corollary 2. �
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