CHARLES FREDERICX SING B.S., Iowa State University, 1960

A THESIS
submitted in partial fulfillment of the
requirements for the degreo

MASTER OF SCIBHCR

Dopartment of Agronoug

KARSAS STATE UNIV EHSITX
Manhattan, Kansas

296211
2448T4
1962S57 TABLE OF CONTENIS
C. 2DocumentINTRODUCIION1
REVIEW OF LITERATURE 3
MATERIALS AND METHODS 8
EXPERIMENTAL RESULTS 17
1960 Results. 17
1961 Results. 22
Combined Experiments 26 26
dISCUSSION AND CONCLUSIONS 29
SUMMARY. 33
ACKNOWLEDGMENT 34
LITERATURE CITED 35
APPENDIX 37

INTRODUCTIOM

Leaf rust of whoat, Puccinia recondita Rob. ex Deame, is considered to cause substantial reduotions in grain yield in cortain years. Pady et A3., (1955) estimated that the annual reduction of wheat production in Kansea in the period of 1938 through 1952 incluaive was more then $5,418,000$ bushols. It has been establlahed that leaf rust can cause major damage under cortain environmental eireumstances.

The development of varleties of bard red winter wheat resistent to the prevalent phyaiologic races of leaf zust has been a major objective of the whoet breeding programs in the hard red winter wheat area of the great plains. Wheat varieties resistant to lear rust are considered as an aded increase in dollars or bushel production over the standard auaceptible varieties. However, satiafactory experimental field methoda cepable of evaluating the effect of leaf rust on wheat have not been adequately tested. The problem involves the estimation of severity of the disoase and translation to an accurate loss figure. Some plant diseases are apoctacular but inflict reletively little economic damage, others subtly destroy a significant portion of the crop. The loss from a disease which may be disregarded, economically, varles with diseases. Therefore, the apparent importance of a problem may be far from its true relative importance. Froblems appear to be Important when they are well publicized or when they frequently come to the attention of the researcher or adminiatrator.

Accurate lose information 18 essontial for the proper
evaluation of a disease control measure. The question arises es to whether the leaf rust problem 1s serlous enough to fuetify expensive attompts to produce resistant varietiea at the expenee of other importent mork. Lear rust damage has boen estimatod on the basis of limited knowledge of the loaf rust-wheat relationahip. These estimates have been aubjoctive and contingent upon the experience of the eatimator. Chester (1946) stated that distorted conclusions of leaf rust damage have been drawn due to a lack of a method of measuring lens rust damage.

A sound experimental procedure conducted under natural fleld conditions, using procodures which will give an estimate with a high level of confidence, is needed to properly evaluate the effecta of the loaf ruat pethogen. Such a mothod must be capable of accurately detecting jield differences among atrains of whent differing In their ability to reaist the pathogen.

This atudy was a continuation of work begun by Bieber (1960). The object of the atudy was to estimato damage produced by the leaf must organism, Puccinia rocondita Rob. ex. Desm., using realstant and suscoptible sister lines of hard red winter whoat. An effort was made to determine what, if any, effect resistant wheats have in increasing yield under environmental conditions typical of Kansas. Prior to the stualy by Bieber (1960), no pub11shed research had been conducted in Americe using neariy 1sogenic lines differing in rust response as mothod of evaluation. As in Bioberis worls, an objective was to continue evaluation of this method.

Apart from a purely scientific Intereat, a mothod to obtein
an accurate cotermination of the caraco caused by loaf zuat offers the only reliable guide in a rational policy of control. This study attompte to evaluate amethod and use that method to eatimate the erfects of leaf zust on hapd rod winter wheat atrains varying in resistance.

REVIEM OF LITSRATURB

In a proliminary study, Bieber (1960) presented a comprehenalve reviow of the ilterature yartalning to the atudies of the effect of loaf rust on the yiold of hasd red winter wheat. The objective of thia reviow was to supploment and briefly sumarize Blober's presentation.

Carleton (2899) stated that orange loaf ruat, as a rule, does very little danage even when it is ebundant. He concluded that only occasionally under certain conditions and in certain loesllties did considerable damago arise if the rust occurred mueh in advance of harvest. During 1217, Molohors (1917) observod abundant loaf rust on the wheat crop in Kansas. Careful observation Indicated that no other factors could be reaponsible for the poor quality and low jields. Molchers astimated that one fleld wes reduced 38 percent.

Food and Hance (2938) reported that in areas where leaf rust Is most laportant it occurs evary your to a groetor or leaser axtent with the result that its erfeet on Field is apt to be overlooked axcept in epldomic outbroaks. They noted that in contrast to the suddonnose of outbreaks of atem rust, leaf rust is likely to appear early and develop steadily throughout the season. This
contrast with atem rust was considered responsible for minimizing loaf rust damage estizates.

Chester (1950) stated that prior to 1926 losses from whoat leaf rust were generally regardod as nogligiblo or even boneficial to wheat.

The work of several resespchers in the period, 1926 through 1936, determined that leaf rust can cause damage to the whoat plant. In greenhouee experiments, Mains (1930), Johnston and uiller (1934), and Johnaton (1931) found that lowered yiolds were due primerily to fewer kernels por spike when infection was oarly, a pre-blossom damage, and reduced kernel woight when later infection occurred, a post-blossom damage. The physiological offects on the whest plant wore considersd to be an increace in transpirational water loss and promature death of loavss which ars essential in the production of carbohydrate.

In a greenhouse atudy to detormine the effect of two temperatures associated with leaf rust infections, Waldron (1936) found that plumpness of the kernel was retained at the expense of size. Almost no shriveling of the grain was observed. He concluded that if the plant becomes infected oarly in the stages of its life, injury is due mainly to the formation of fewer and amaller kernels. Waldron found that if leaf rust is dolayed until after the flowering stage the damage is largely confined to reduced kernol size. Waldron also found that the yield of selections susceptible to flecking was reduced 15 percont from the chook grown in the absence of leaf rust.

In a field experiment, Caldwell ot al., (1934) compared seven varieties varying in reaction from oxtremely suaceptible to highly
resistent. In most varietios yield reductions were proportional to rust severity. ${ }^{\text {fowever, the variety Fulhard was not reduced }}$ in jield even though it was severely rusted. The authors stated that severe infections were reached soon after flowering and that three-fourthe of the grain loss was due to a reduction in number of kernels per spike and the remainder due to a reduction in weight per kernel. Even under maximum leaf rust infection, no shriveling of the grain occurred.

In field studies, Samborski and Poterson (1960) found that leaf rust initiated at an early atage of development raduced yield, 1000 -kernel weight, and bushol weleht of one susceptible and three resistant varieties of wheat. The yield loss of the susceptible wes 58 percent when compared to the rust free check. Yield loss on the resistant varieties renged from 12 to 28 percent. Losses on resistant varieties were attributed to flecking of the leaves. Density of inoculum and amount of necrosis were directly related to the amount of loss on the resistant, but not insume, varieties. The extent of damege to the resistant varieties depended on the type of resistance involved since the amount of necrosis resulting from each infection determined the rate of leaf destruction. Their resulta pointed out that jield tests with resistent varieties will be influenced by the proximity of susceptible plants thet can provide a heavy source of inoculum. Therefore, the great advantage of the resistant variety may be nullified in a jield comparison.

Suneson (1954) used isogenic lines of the variety Baart differing in resistance to stem rust to evaluate damage under
opidemic conditions. Hie statod that the offect of atom rust on the field of wheat was confounded by genetic, pathologic, and environmental factors. He concluded thet stem rust may be less damaging than is commonly thought and a high type of resistance may not be necessary for practical purposes. In his studies, the yield of susceptible Baart was reduced $25-47$ percent, whereas, the jield of a moderately realstant 11 ne was reduced $6-20$ percent. Suneson suggested that a near lamune reaction to the disease may not be nocessary in a commercial whoat as a moderately reaistant variety grown on large acreages has been aufficiont to check opldemice in Callfornia.

The resulte of the preliminary investigation of the offects of leaf rust and stom rust of wheat under field conditions are reported by Bleber (1960). Xield, test welght, and 500-kernel weight differences between resistant and ausceptible pairs were statiatically evaluated ualng t-teats for single row data and analyais of variance for replicated plot data. In the atudy an attempt was made to evaluate the effect of atem rust and loaf ruat using alster 21 nes of a Pawnee-type wheat. Results indicated that test weight and kernel weight were significantly affected by leaf rust reaction. Yiold data were inconclusive but indicated that an offect upon yield could bo detected by this mathod. Bleber concluded that it appears that sister lines of wheat are adaptable to the evaluation of leaf rust and stem rust damage; however, further study will be needed before comparisons can be made between this and other methods of disease damage evaluation. The environment during the development of the wheat erop is
a major factor in dotermining the amount of damage. Johnston (2938) summerised the conditions leading to the heavy leaf pust loses incurred in 1938. He found that heavy infections were Late in their developmont in 1937 when a $208 s$ of 0.4 percent was reported but were very early in 1938 when a 1088 of 12 pereent was roported.

Chester (2946) described the environmental conditions associated with heavy infection. He suggested that abundent rainfall, heavy dews, and early warm weather accompanied by early apore showers favor damaging leaf rust infoctions.

Chester (1944 and 1950) made a thorough search of tho avallable ilterature for methods of measuring and calculating plant diseage losseg. He explored all espects of, obtaining and utiliging estimetes, anelysed the standerds on which estimetes were besed, and pointed out errors of concept and practice. He defined plant disease lose eppraisal as an important field in its own right in opposition to the usual notion of lose estimates as subordinate to other pheses of plant disease resoarch. Chester (1950) stated that no one method of evaluation is ontirely free of error. Chester (1944) stated that an 1deal method of appraisal must compare $\mathrm{J}^{2} \mathrm{ld} \mathrm{s}$, under rust attack, of host strains thet are geneticelly similar, but differ in ruat suaceptibility and be conducted on a scale that paruste statiatical analysis.

In regerd to plant disease forecesting, Miller (1958) atated that there is a need for a more comyleto understanding of the reletion between the disease end the environment. For the same
disease, criteria that are auccessful in disease evaluation in one area may not be useful in another with a different climatic environment.

The use of sulphur for the prevention of leaf rust infection 1s widely aceepted. Forsyth and Poterson (1058) stated that economseal control of stem rust and leaf rust of wheat can be obtained with the best protective type of fungicides if the weather conditions ©o not beome adverae during the application progrem. No fungicide was auccessful in their study in 1953 due to frequent showers. In a study using sulphur as a preventive fungleide, Greanoy (1934a) found that in the absence of rust and other leaf and stem diseases, the dusting of wheat varieties with aulphus during the growing period had no appreciable effect on Jield. However, in a similar study, Greaney (1938 b) found that the stem rust schedule of aulphur dusting also controlled wheat scab, black chaff, "smudge", and minor leaf diseases. Scab was reduced from an infection of 80 percent to 15 percent in one test. He concluded that the total effect of sulphur dusting on incidental disesses, in addition to rust, should be included in the eoonomical evaluation of this control method.

MATERIALS AND METHODS

The reaistant and susooptible ilnes omployed in this study were selacted from the progeny of a sinvelocho-Pawnee ${ }^{2} \times$ Moditer-ranean-Hope-Pawnee ${ }^{5}$ cross (X 52 V) made in 1952. Table 1, page 9 , presents the history of each selection used in the study. Bach IIne was ontered in ordor of ite 1959 selection number. The same
Table 1．Entry and selection numbers in the leaf rust study for the years 1957 through 1961.

Family	$\frac{1957}{\text { Entry }}$	：	1958	$:$	1959	1	1960	\％ 1961			：	
		8	Entry ${ }^{\text {No．}}$	3	Entry ${ }^{\text {IVO．}}$	？	Seloction	8	8 ztry	S01．	Rust R	Response
	F_{5}	：	F_{6}	：	F_{7}	：	\％Entry	：	10．	110.	Leai	：Stexa
	：	：		：		：	Wo．， F_{8}	$:$			Rust	Rust
10297	11580		353		901		59901		474	59901	s	MR
	11581		354		902		59902		473	59902	R	MR
10313	11747		371		911		59911		468	59911	s	SR
	11748		372		912		59912		467	59912	R	SR
10294	11548		R2614		925		59925		472	59925	s	s
	11551		R2617		926		59926		471	59926	R	R
10295	11554		R2620		927		59927		470	59927	R	MR
	11561		R2627		928		59928		469	59928	3	
10298	11592		$R 2658$		935		59935		463	59935		MR
	11597		R2663		936		59936		464	59936	s	M
10310	11711		R2777		959		59959		466			石
	11718		R2778		960		59960		465	59960	s	退
10315	11738		R2804		965		59965		461	59965	R	退
	11743		82809		966		59966		462	59966	s	MR

order was followed in reporting the data gathered in this study. Records prior to 1957 were lost in a 1957 fire which destroyed the small grain breeding offices.

Each family originated from the progeny of an F_{2} plant that was heterozygous for leaf rust response. In this study a family was represented by a resistant and a susceptible line which formed a pair nearly isogenic but differing in response to leaf rust.

Leaf rust resistant F_{2} plants were harvested in 1954 and the progeny from each was grown in a three foot row at the North Agronomy Farm in 1955. The F_{3} rows which were segregating for leaf rust reaction were harvested. The non-segregating rows were discarded. Each segregating row harvested was the progeny of a heterozygous F_{2} plant. Seed from each of these segregating F_{3} rows was replanted in 1956 as a three foot row. In 1956, random spike selections were harvested from the F_{4} rows which were clearly segregating for response to leaf rust. Each spike selection was grown as a three foot row in 1957. These F_{5} row numbers are included in table 1. At harvest, non-segregating resistant and susceptible lines were selected and harvested. Segregating lines were discarded. There were 323 resistant and susceptible lines, representing 29 families, selected. In 1958, the 323 lines were grown at the Ashland Agronomy Farm as eight foot single rowa. The F_{6} lines grown at Ashland are presented in table 1 with an "R2" code preceding the 1958 entry number used at the North Agronomy Farm. There was sufficient seed of 40 of the 323 lines to plant two, eight foot, rows of each at the North Agronomy Farm. From this
material grown in 1958, pairs consicting of a reaistant and a susceptible line were selected to be grown ae paired, elght foot, eingle rows in 2959. Two pairs used in this study were selected from the two row plota and five pairs were selected from the aingle rows at Ashland. Pairs were selected on the basis of the 1958 rust readings. The resistant momber of each pair represented the highest level of leaf rust resiatanee present in the family and the suaceptible momber the lowest. Solection numbers were asaigned to the palred lines grown in 1959. Sufficient seed was harvested from the Fr peired single rows to plant repliated comparisons in 1960. Seven peirs were selected from the materiel grown in 1959. Each pair consisted of a resistant and a ausceptible line homogen--ous for leaf rust response. The seven pairs represented six F_{2} families. Two pairs originated from family 10313. Each of tho members of a pair was aimilar in its reaponse to atom rust except for Pamily 10294. Selection 59925 was susceptible and selection 59926 was resistant to stom rust.

This study was planned to deterulne the effects of three treatments on the yield components and other characteriaties of alster innes of wheat differing in response to leaf rust. The three treatments were application of dusting aulphur, artificial leaf ruat infection, and netural loaf rust infection. Sach treatmont was to be grown as a thrice replicated experiment in 1960 and 1961. The experiment to compare the performance of the resistant and susceptible lines, using a sulphur treatment to prevent leaf rust infoction, was planted at the North Agronomy Famme.

The second experiment consisted of artificially inoculating leaf rust susceptible spreader rows planted in the atudy to insure a source of leaf rust inoculum. It was also planted at the North Agronomy Farm. The third experiment to etudy the effects of natural infection was planted at the Hutchinson Experimental Field.

Each experiment was planted in the same manner in 1960 and 1961. The sulphur experiment was grown as replications I-III, the artificial infection experiment was grown as replications IV-VI, and the natural infection experiment was grown as replieations VII-IX. Each of the experimenta, consisting of three replications of the seven leaf sust pairs, was planted in a splitplot design. Sach pair formed a main plot. The two levels of resistance formed the subplots. Sach subplot consisted of four rows, 12.6 feet long, spaced tweive inches apart. The seeding rate was 83 pounds per acre at Janhattan and 75 pounds por acre at Hutchinson. The subplots were arranged ond to end. The pairs were randomized within each replication and the resistant and susceptible 11 ne asaignod at random within each main plot. This was done by essigning number to each of the 14 selections and placement of the second member of the pair with the randomly selected f1rat member.

The spreader rows in the artificial infection experiment were planted in the alleys perpendicular to the rows in the study. Each subplot was bounded at both onde by a apreader row. The natural infection experiment was planted at Hutehinson

October 20, 1959. The sulphur and artificiel infection experiments were planted at the North Agronomy Farm October 14 and October 22, 1969, respectively. In the fall of 1980, the \#utchinson experiment was planted October 6 and the two Manhettan experimente Oetober 11.

WInter damage ratinga were recorded April 18, 1960, for the two experiments grown at Manhatten. A scele of $0-10$ wes used. A sero rating indicated no ilving planta and a ten rating represented the stand and vigor expected under normal conditions.

The 1960 experiments were not conducted as planned, because each of the three plantings wes subjected to natural leaf ruat infection. In 1961 each experiment was conducted as planned. Twenty applications of commercial dusting sulphur were applied to the sulphus experiment at approximately aixty pounds per acre. The first dusting was applied April 25 to plants in the pre-boot stage. Dust was applied after each rain to insure constant protection. Dusting continued until harvest. Spores of a compoaite of physiologic races of leaf rust were inoculated by needie into spreader rows in the artificial infection experiment on April 14, April 22, and May 2.

Loaf rust readings were taken on all three exporiments in 1980 and on the two Menhattan experiments in 1961. Porcent leaf rust infection wes estimeted using the modified Cobb scale, Poterson ot ale, (1948). Stem rust response was recorded on all three experiments in 1960 and on the natural infection at llutchInson and artificial infection at Manhettan in 1981. Ho stem sust percentege readinga were recorded.

Date of half bloom and height at maturity notes were recorded for each of the three experimente in 1961.

The two experiments at Manhattan were harvested and threshed July 5, 1960 and July 10, 1961. The Hutchinson experiment was harvested and threshed June 30, 1960 and July 1, 1961. Mineteen and two-tenthe square feet were harvested from the conter two rows of each subplot.

Plans were made to appreise four componente of yield; jield, test weight, 500-kernel weight, end kernels per spike. Yielda, relative test weights, and $500-k e r n e l$ weights were recorded on each of the three experiments 1960 and 1961. Kernels per spike were recorded on each experiment in 1961. The jield of each subplot was recorded in grains. The yield in grame per subplot may be converted to pounde per acre by multiplying the aubplot yiela In grams by a factor of five. Relative teat woights were determined by weighing a standerd samplo of grain in a flat bottomed brass cylinder. The inside dimonaiona of the cylinder were 2.3 cm in diameter and 7.1 cm in height. Relative test weighta and 500 kernel welghts wore recorded to . 01 accuracy. The number of kernels per spike mossuremont was obtainod by averaging the number of kernels from three spikes which were randomly selected from the center two rows of each subylot. Spikes were selected, boxed, and threshed individually in the laboratory.

Each yield component measured from each of the experiments was analyzed singly using an amalysis of variance (snedecor, 1956). It was assumed at the outset of the study that all observations
would be indopendent, random, and normaliy distributed. The appropriete mothematical model for eech experiment is deseribed vy the formula:

$$
v_{1 j k}=0+\mathbb{R}_{1}+\mathbb{F}_{g}+\alpha_{1 j}+s_{k}+(F 3)_{j k}+B_{1 j k}
$$

where $X_{1 j 2}$ is the performance of en individual subplot, U is the grand moan of all subplots, R_{1} is the added variability bojond $\alpha_{1 j}$ due to replication, F_{g} is tho added variability boyond $\alpha_{1 j}$ due to fanily alferences, $\alpha_{1 \mathrm{j}}$ is error a, the random experimentel orror associated with the main plots, S_{k} is the ilxed added effects beyond the interaction of familea x realstance which is due to resistance, (FS $)_{j k}$ is the effect of the interaction between Sailliea and resiatance, and $B_{1 j k}$ is orror b, the rancom experimantal orror assoolated with the subplota. Each family formod a main plot and each line a subplot. The assumption that replications and farilles were random effects and resistance was a fixed offect was made at the outset of the study. The appropriate analysis of variance for each component of yield took the following form:

Source	d.P.	Expected Moan
Mein Plots:		
Replications	($\mathrm{r}-1$)	$\sigma_{E}^{2}+S \sigma_{\alpha}^{2}+S F \delta_{R}^{2}$
Fanilios	(f-1)	$\sigma_{E}^{2}+S \sigma_{\alpha}^{2}+R S \sigma_{f}^{2}$
Earor a	$(\mathrm{s}-1)(\mathrm{s}-1)$	$\sigma_{E}^{2}+S \sigma_{\alpha}^{2}$
Subplots:		
Resistance	(s-1)	$\sigma_{\mathrm{E}}^{2}+R \sigma_{R S}^{2}+R \mathrm{~F}^{2}$
Family x Resistance	$(8-1)(8-1)$	$\sigma_{\frac{1}{2}}^{2}+R \sigma_{\text {ss }}^{2}$
Error b	$f(r-1)(8-1)$	σ_{E}^{2}

Where $r=$ the number of replications, $\mathcal{S}=$ the number of families, and $s=$ the levels of resistance. The main plot analysio was that of randomesed blocks with the seven fanilies replicated in three
replications. The mubplot malysia was the two levels of resistance rancomized in each of the twonty-one main plots. The object of the analysis of variance was to detect any significant fixed ndded effect of the leaf rust on the Jield, test woight, 500 kernel weight, and kernels per spiko in oach of the three oxperiments. The appropriate error mean square for teating whether resistance significantly affoctod performance was the interaction (FS) moan aquare. The randon effocta of replications and families were appropriately tested using error a so the donominator in the Pratio. Error of was used to test the interaction (F8) for 18nifieance.

An analysis of variance combining the 1960 and 2961 data for similas oxperimonts was conducted. The goneral method used is described by Federer (1955). Before the combined analysis of variance was conducted, test was performed to deternine whether or not the error variances for the experiments being combined could bo considered homogeneous. Snedecor's test in which pis calculated as the quotiont of the larger variance divided by the smaller wes usod.

In this study one asterisk (每) denotes an F value which is significant at the 5 peroent level of rejection, two asterisk (w) denote a hiehlr simnificant difference at the 1 peroent level, and three asterisks (wnw) denote vory highly sleniflcant difference at the . 5 percent level of rejection.

Missing plot deta were computed using the technique described by Snedecor (1956).

EXPERIIGSNLAL RESULTS

The date collected in this study are presented in tabular form in en eppendix. the 1960 results are included in tebles 1 through 12 and the 1961 results are included in tables 13 through 28. The data for each component of ylold are aasembled by oxperiment and presented in a stendard form. Tables 3 through 11 include the jlelds, relative test weights, and the $500-k e r n e l$ welghts recorded for each subplot in the three experiments conducted in 1960. Table 12 includes the complete analysis of variance on each of the three factors for each of the three experiments grown in 1960. Tables 16 through 27 present the raw date for yield, relative test weight, 500 kernel weight, and kernels per spike recorded for each subpiot in the three experimonts grown in 1961. Table 28 presents the complete analysis of variance on each of the four factora for esch of the three experiments grown in 1961.

Table 29 in the appendix presents the analysis of variance of the combined date from replications IV-VI grown at Henhettan In 1960 and 1961. Table 30 presents the analysis of variance on the combined data from roplications VII-IX grown at Hutchinson in 1960 and 1961.

The results of the 1960 and 1961 experiments are discusaed separately.

1960 Reaults

The two exporimante conductod at Manhattan were damged by frost early in November of 1959. Table i in the appondix summarizes
the winter damage roadngs taken April 18, 1960. All plota were damaged. Thin and irregular stands persisted until early May. Replications IV-VI were planted eleht deys later than replications I-III. The readings indicate the later planting was not damaged as soverely as the eariler planting. The mean of the resistant lines and the mean of the susceptible lines in each experiment were similar. Selections 59925 and 59926 wre damaged most severely 1 n both experiments.

The moan loaf rust and stom rust reading for the three repe ilcations in each experiment are included for each selection in table 2 of the appendix. Leal rust infection was late in developing in each of the three experiments. Matural leaf rust infections were initiated at about the 8 lowering stage. On May 30, 1960 at Menhattan, \& very 11 ght leaf rust infection was noted. Stem ruat was doveloping notably faster and spreading uniformly throughout the wheat nurseries. Infoctions of atem rust were heaviest in the area where replications I-III were grown due to the close proximity of inoculum from the apreader rows in the botany stom rust evaluation nursery. The leas sust and stom rust readings were taken et Manhattan on June 25. An extremely heavy stom rust inSection in replications I-III made it neceseary to record only the response type of the selections. By June 20 the stem rust had reached epidemic form in replicetions I-III and was kliling the plants. At llutohinson the natural loaf rust infection was licht and scattored as late as May 24. It was estimated that the heaviest infection on that date was $5-10$ percent. The leaf rust and stem rust readings recorded in table 2 of the appendix wore
taken June 23.
In view of the heavy atom ruat infection in the lienhattan experimente, it was suspected that the differing stem rust responso of tho two selections representing fanlly 20294 may have providod a bise toward grenter difforences due to realatance bocause the momber which was suscoptible to loaf ruet was also suscoptible to stem rust. An analysis of variance was conaucted for ench of the components in each of the thres experimenta with the data from Samily 10294 removed. Comparison of the \mathbb{F} values with those obtained from analysis of the ontire data resulted in leaving the data from family 10294 in the 1960 comparisona.

The 1960 raw data for yield, relative teat welght, and 500kornol weight are presented in tables 3 through il in the appendix. The complete analysis of variance for each component is included in table 12 of the appendix. The relative test weight and 500kernel weight ware misaing for selection 50936 in replication IV and had to be oslculsted using the msasing plot technique preseribed by Snedecor (2956). The same procedure was ueed to compute the relative test weight for selection 59925 in replication IV. Dise cusaion of F values for each component for each experiment would involve undue repetition and confusion. The lovels of significance associated with the P value computod for each source of variation for oach component are presented in a condonsed rorm in table 2 , page 20.

Replications wore a agniricant souree of variation in only two instances. A highly Afenificant difforence among roplication meane was obsorved in the yield analyels of replications IV-VI

Table 2．Levels of aignificance for yield，relative test weight， and 500－kernel woight for sourees of variance atudied in three experiments in 2960.

Source	Tanhattan			！	$\begin{aligned} & \text { liutchinson } \\ & \text { Rep VII-IX } \end{aligned}$
	Rep 1－112	f	rop IV－VI	：	

YIELD
Main Plota：
Roplications
Pumilisa
n． 8 。
4

$$
\begin{aligned}
& \mathrm{n} . \mathrm{s}_{8} \\
& \mathrm{n}, \mathrm{~s}_{8}
\end{aligned}
$$

Subplota：
Resistance
Pamily π Realstance

n•晖。

RELATIVS TEST WEICEIT
Main Plota：
Replications
Faniliea
n．
n．
n．
n．s．
n．8．
Tanla
subplots：
Resistance
Family x Kealatance

ก．8．
n．
成•夆。
n． 3 ．
榢

500－KBRNEL WELOHI
Main Plots：
Replications
Familes

（4）

> n. 8.
> 细相勝
n． 8 。 ＊

Subplots：

Resistance	田解	4＊	＊＊＊
Family x Reaistance	（0W＊	n．a．	鲑

Family x Reasatance
and in the 500 －kernel weight analyais of replications I－III． Family aifferences wore a significant source of jield verietion in replication I－III and very highly aignificant source in repli－ cations IV－VI．Significant differences occurred among family means for 500 －kernel weight in erch of the three experiments． The results indicate that 1 ignificant differences in performance emong pairs may exist．

The mean yiold of the resiatant lines was significantly greater than the mean yield of suscoptible lines in each of the three experiments. Highly significent differences in 500-kernel weight due to the additive effect of resistance were also recorded for each of the three experimente. It ia noted thet relative teat weight means were unaffected by the additive offect of resistance in roplications IV-VI and VII-IX. Howevar, a very highly algnificant F value was essociated with realatance in replications I-III.

The highly significant F valuo for the family x resistance interaction effect on yield for replications IV-VI is due mainly to a reversel of the yield performance of selections 59959 and 59960. The aignificant interaction effect on rolative tost weight in the Hutchinson experiment was caused by several susceptible selections outperforming the resistant member of the pair.

Replications, families, resistance, and the ramily x reaistance interaotion esch gave very highly significant F values in the analysis of $500-k e r n e l$ weight data from replications I-III. Conclusions from significances obtained in the analysis of yield component data for 1960 indicate that there was a difforence in the moan performance of the resimtent and susceptible lines for yield and kernel weight, a difforence in the moan performance of the seven families for yield and kernel weight, and an indication that a family x resistance interaction may exist under cortain conditions. Significant reductions in test weight were not detected except in the presence of hoavy stom rust.

The mean date of half-bloom for each selection is presented for each of the two Yenhettan experiments in table 13 of the appendix. The grand means for resistant and for suecoptible inea In each experiment were identical. The data indicate that the resistant and ausceptible lines wore similer in thoir date of haifbloom.

The height data given in table 14 of the appondix indicates that the means of the resistant and susceptible lines wore similar. Examination of the data reveals a three-inch difforence in man height between the resistant and suscoptible members of two pairs In the artificial infection experiment. In both pairs, E992559926 end 50935-59936, the reasatant momber wes taller.

Loaf rust readings from the two Manhatian experiments are presented in table 15 of the appendix. Leaf ruat failed to become establishod in the sulphur experiment. The planta in the sulphur experiment romained vigorous and free of measurable diserse damage until harvest. Cool May woather delayed the dovelopmont of leaf guet inoculum on the spreader rows in the artificial infection experiment. On May 18 the first infection pustules were noted in the experiment. At that tine, reinfection pustules were noted at primary infection aites of the spreader planta. Warm, humid weathar prevailed from June 1 through harvest. The leaf rust readings included in table 15 were recorded June 10. The infection increased rapidly thereafter until fleg ieaves of all suscoptible ilnes in the artificiel infection experiment were near 100 percent infected
before they became dry. On June 25 the leaf rust infection at Iutchinson had not developed so that readings could be taken. Hot dry winds the last days of June dried the leaves making it impossible to detect the extent of the infection.

The stem rust response of each selection is included in table 15. Stem rust infections were ilght in the artificial infection and netural infection experiments. Stom rust did not develop in the sulphur experiment.

A very hoavy, but variable, infection of spockled leaf bloteh, Soptoria tritici Rob. ex Desm., was noted in the experimonts at Manhattan. Percent of the flag leaf dead on June 11 was estimated at $0-10$ percent in the sulphur experiment and $40-60$ percent in the artificial infection experiment. No readinge were taken on the subplote because the infection was not uniform.

The 1961 subplot data and means for yiold, relative test weight, 500 -kernel weight, and kernels per apike are presented in table 16 through 27 in the eppendix. Table 3, page 24, includes the level of aignificance of each F value computed for the sources of variance atudied in each experiment. For the complete analysis of each experiment see table 28 of the appendix.

The object of the sulphur treatment experiment was to detect yield differences between resistant and ausceptible lines that may be due to genetic effects other than leaf rust response. Sulphus dusting controlled the leaf rust. The dipforence between the moan performance of the resistant and the susceptible lines was not algnificant for each of the components of yleld studied. These results indicated that differences in mean performance of

Table 3. Levels of aignificance for zield, relative test welght, 500-kernel weight, and leernels per spike for sources of verience studied in three experiments in 1961.

resistant and susceptible 11 nes under loef rust attack should be a direet result of the disease. The aigniflcances associated with the F values computed for families indicates that there were genetic differences in the performance potential of each family for yield, reletive test welght, and 500 -kernel weight. A very highly algnificant family x resistance interaction for $500-k e r n e l$ welght indicated that the resistent and suscoptible lines did not compare the same in oach family in the absence of leaf rust. A highor kernel welght average for the suaceptible line 59901 than the resistant momber of the pair, 59902, contributed to this interaction. The results of the two experiments under leaf rust attack were influenced by the light infection which occursed at llutchineon and the heavy, but late, infection at Manhattan. Highly significant F values for the resistance source of veriation were obtained for yield and relative test weight evaluation of the artificial infection experiment. Families accounted for a significant sousce of variation in relative test weighte and kernels por apike in the same experiment. The lack of signiflcant falues from the Hutchinson data indicates even less damage by the disease. A signifleant resistance effect did oocus for relative test welght at Hutchinson but moans in table 25 of the appendix reveal that the susceptible lines outperformed the resiatent linea.

A sumasy of the 1961 resulte will indicate that lines used In this study differed in performance anong familles but were similar in performance within familiea in the absonce of leaf rust, the infection at Hutchinson was too light to detect a resistance effect on any of the four componenta, and under a
somewhat heavier artificial infection at Manhattan, loef sust reduced yield and 500 -isernel weight. Significant differences in mean kernels per spike wore not detected in 1961.

Combined Experiments

Sumarised analyals of the 2960 and 1961 data for yield, relative test welght, and 500 -kernel woight taken from replication IV-VI grown at Manhatten in 1960 and 1981 are included in table 29 of the appondix. Data from roplications VII-IX grown at Hutchinson in 1960 and 1961 are sumarized in table 30 of the appendix for the same three components of yleld.

Prior to the enalyais of the combined date, homogeneity of variance for each component was ohocked. P values computed for error a and error bindiosted that hoterogeneity of variance betreen years occurred for several of the eomponents measured. The test welghts taken at Manhattan were nonhomogeneous for both main plot and subplot values taken in 1960 and 1961. A chock of error a and orror b associated with the Hutchinson comparisons indicated a algnificant heterogenelty of variances occurred for error a in the yield analysis. No other signiflcant F values wore detected.

Results of a combined analyaia, when it is known the error moan square is made up of heterogeneous experimental errors, must be interpreted with caution. Nonhomogeneous experimontal error reduces the efflelency of the F value to detect true difforences which may exist among meana. Conclusions drawn from \mathcal{F} values computed from date which are know to diffor in experimentel orror will result in conservative decisions.

A sumany of the levels of algnificance asaociated with F values obtained from the combined data is presented in table a． Table 4．Lavels of significance for jield，relative test woight， and 500 －kernel weight for sources of variance studied using combined data from almilas experimente in 2960 and 1961.

Source	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Manhattan } \\ & \text { Rop IV-VI } \end{aligned}$	1	$\begin{aligned} & \text { Hutchinson } \\ & \text { Rap VII-IX } \end{aligned}$
SIELD				
Main Plotes				
Years		\％403		W\％
Replicetions		n．e．		\％\％\％
Fanlies		\＃\＃\＃		＊＊＊
Subplote：				
Resistance		解		管为
Resistance x Year		n．8．		\％
Family x Resistance		n． $0^{\text {c }}$		n．3．
RELATIVE R3ST WEIGET				
Mein Plots：				
Years		2．8．		WHW第
Peplications		13.3 ．		nos．
Fandiles		23.8 ．		2．8．
Subplots 2 （				
Resistance		n．${ }^{\text {a }}$		n． 5 ．
Resistance x Year		nos．		＊W\％
Family x Resistance		n．s．		＊

500－KERREL WEIOET
Main Plots：
Yeara
Replicetions
Familles
Subplots：
Resistance
Resistance z Yoar
Family x Resistance

n．8．	僻教
n．8．	n．${ }^{8}$ 。
n．8．	6rwn

F velues computed for years were very highly aignificant for each of the three components at llutchinson and for yield at Manhattan. Yoars were an insignificant source of variation in teat weights and kernel weights at Manhattan. Difforences in moan performance betwoon years are expected. The results indicate that onviponmental conditions at Futchinson varied greatly enough to affect all three components wherees only yield was affected at Manhattan. The very highly significant families source of verietion in yield for both combined experiments, and $500-k e r n e l$ weight at the Hutchinson experiments indicate possible genetic differences anong famsilles.

Yield and 500-kernel welght difforences between the resistant and ausceptible lines were highly aignificant in both combined experiments. Relative test weight differences between the resistant and susceptible lines were nonsignificant at both locations. The aignificant resistence x year interaction at Futchinson for all three components is a reflection of the differing bohevior of the resistant and susceptible lines under different environmental circumstances. The resistance x family interaction was nonsigniricent for all componente at Manhatian and aignifieant for relative test welght and 500 wiernel weight at Hutchinson.

A sumary of the combined analysis of two experiments grown In 1960 and 1961 indicated that leaf rust influenced jieid and 500-kernel welght, families differed in performance ability for all components, and an unknown aource of variation confounded with years resulted in heterogeneous experimental error in cortain measurements.

dIscussion and conclusions

Many methods in the past have been utilized to evaluate the effect of a diseese on a crop, Chester (1944 and 1950). Since the intensity of the disease and the corresponding loss are influenced by the ecological relationshipe of the host, fungus, and the environment, it is logieal that a reliable measure of ectual loas muat be made under field conditions. Genetic, pathologic, and onvironmental factore are confounded in a manner which is extromely difficult to evaluete. Yields are often inconistent with disease damage estimates due to the interaction of many factors both genetic and environmental which are not apparent. Isogenic lines of whent difforing in response to leaf pust, grown under field conditions, are theoretically a promising mothod to detect the effecte of leaf rust on the yield components. The chiof objection to comparisons of resistant and susceptible segregates from a hybridization is that thore is a possibility of ilnkage and correlation of a nature that leaf rust response and some factor of yield importance do not segregate independently. Results of the sulphur experiment at Manhetten in 1961 show that lines used in this study were similar within femilies but differed among familes for the four components of yield measured. The nonsignificance of P values for resistant innes within families indicated that differences which may be observed betweon the mean performance of resistant and susceptible lines under leaf rust attack are a valld measure of the aisease damage. Additionel evidence is provided by date of halfbloom and height data to support the similarity between resistant
and susceptible lines. Examination of winter domage data recorded In 1860 shows that iines within fanilies mey diffor somewhat for that characteristio. A disadvantage of the use of the sulphur treatment is that it also controls other ciseases which may be essociated $=1$ th the experiments under leas rust infection. The 1861 resulta ehowed that sulphur dusting controlled septoria. These findinga are in agreoment with Greaney (103ib) in that the true porformance of 11 nea under natural environmental conditions In the absence of one disease cannot be masured using sulphure.

The 1960 component of jleld reaults at Manhattan were confounded by frost damage which thinned stands. Conclusions on the effeot of leaf rust in replications I-III are complicated by the heavy stem rust infection.

The leaf rust infections in 1960 and 1961 were late in becoming eatablished. In both yeara infections became eatablished when plants were in the heading atage or later. Under these cirevantances results do not reflect the true differences which may exist betwoen resiatant and susceptible lines grown in the presence of rust infections initiated in the early atages of plent development. Concluaions drawn from results obtained in this atudy must be made with precise reference to the character of the leaf gust infection.

Two experimenta in 2960 indicate that leaf rust affected Jield and $500-k e r n e l$ weight but rot test weight. The experiment under artificial infection in 1981 showed a leaf rust offect on Yield and 500-karnel weight but no offect on relative test walght and kernels per apike. Lete infectiona of 200 parcent on the flag
leaf in the artificial infection exporiment make 10 apparent that the atage of development of the plant when it is infected determines the uitimate damage rather than the maximum infoction just prior to drying of the leaves. These reaulte are in agreoment with Maine (1930), Johnston and M12er (2934), and Johnston (1931). They found that post-blossom damage is replected as a reduction in kernel weight rather than test woight or kernels per hoad. The resulta at Hutchinson in 2961 are an indication of the very light leaf rust infection at that location. The algnifieant effect of leas rust on teat weight is difficult to explain because the auscoptible innes outporformed the resistant lines. Loas rust infections may have become establiahed late and had the effect of pruning the plants under hot, dry, windy conditions. This effect mey have seon to the disadvantage of resistant plants with larger arees of transpiring loaf aurface remalning.

The fact that reductions in test weighta wore not detected may indieate the physiologic efrect of loaf ruat on the development of the kernel. Results under light leaf rust infection show that plumpness of kernel was maintained while kornel weight was reduced. Similar findings have been reported by Caldwell (1934) and Waldron (1936) under heevier loas rust infections.

Significant family x resistance interactions indicate that resistant and suaceptible lines may not represent the same lovel of resistance to danage from one femily to another. The visual response to the diserse may be a poor criteria for classification of innes selected in a study of this type. The ability of certain ganotypes to tolerate leaf ruat may be a confounding factor which
needs greater consideration in future studies. The studies of Caldwell ot al., (1934) pointed out that the variety Fulhard wes not reduced in yiold oven though it was seversly rustod. Samborski and Potorson (1060) obtained 28-28 porcent reduction in yiold of resistant but not imane selections when they were grown in close proximity to heavily infocted auscoptible plants. Xield comparisons in studies coaparing resistant and susceptible lines may be affected by this factor.

It is important to note that a study of this nature involves only one of the possible types of genetlc resistance and one matuilty classifiontion. This approsch to disease damage ovalustion will be of greatest value only if the solections utilised in the atudy aro representative of the whoat grown commorcially in the area being evaluated.

The ilmited resulta of two years of replicated study indicate that the mothod of using resistant and susceptible segregates from a cross can detect leaf rust effect on yield under circumstances of 2ate and 11 ght infoction. Further ovaluation of this method to include a greater representation of natural envirommental conditions will be required to evaluate the accuracy of this approsch to estimation of loaf rust damage. It is ontirely foasible that In the future, rather than present day subjective estimates, a series of test plantinge throughout an area will provico a bettor estimato of losses.

SUITARAR

A comparison of lines of hard red winter wheat, which were genetically similar but differing in leaf ruit response, for yield components was made in 1960 and 1961 at Manhattan and Futchinson.

Comparisons under sulphur treatment in 1961 showed that linea used in this gtudy were bimilar within familiea but differed among fanilias.

Leaf rust occurred lato ach aeason. Significant differences In yield and 500-kernel weight duo to the additive effect of leaf rust were detected under natural infections in 1960 and artificial infection in 1961. Reductions in Jield were due to reduction in kernel woight when damage was inflicted by the disease after the flowering stage of development.

Comparison of resistant and susceptible linss as a mothod of damage estimation will require further tudy to include natural envirommental conditions which favor heavior leaf rust infections.

ACKMOWLSDOMENT

The author wishes to express his sincere gratitude to Dre E. C. Heyne for the planning of the experiment, his supervision and asaiatance during the study, and for his guidance in the preparation of this thosis. Approciation is also expressed to Dr. Stanley Woarden, Mr. C. O. Johnston, and Mr. L. B. Browder for toohnieal assistance and advice throughout ths atudy.

LITERATURE CITED

Bieber, J. L.
A field study of the effects of leaf rust and stem rust on sister lines of a hard red winter wheat. Unpublished M.S. Thesis, Kansas State University Library 1960.

Caldwell, R. M., J. R. Kraybill, J. T. Sullivan, and L. E. Compton. Effect of loaf rust (Puccinia triticina) on yield, physical characters, and composition of winter wheats. Jour. Agr. Res. 48:1049-1071. 1934.

Carleton, M. A.
Cereal rusta of the United States: A physiological investigation. USDA Veg. Physiol. and Path. Bul. 16. 1892.

Chester, K. Starr.
Methods of appraising intensity and destructiveness of coreal rusts with particular reforence to Russian work of wheat leaf rust. Plant Disease Rptr. Suppl. 146:99-121. 1944.

The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. Cnronica Botanica Company, Waltham, Mass. 1946.

Plant disease losses: Their appraisal and interpretation. Plant Disease Rptr. Suppl. 193:190-362. 1950.

Fedorer, W. T.
Experimental Design. The Maclillan Company. New York. 1955.
Forsyth, F. R. and B. Peterson.
Control of atem and leaf rust of wheat with fungicides. Can. J. Plant Sci. 38:173-180. 1958.

Greaney, F. J.
The prevention of cereal rusta by the use of fungicidal dusts. Canada Dept. Agr. Bull. 171. 1934a.

Field experiments on the prevention of cereal rusts by sulphur dusting (1930-1932). Sci. Agr. 14:456-511. 1934b.

Johnston, C. O.
Effect of leaf rust infection on field of certain varieties of wheat. Jour. Amer. Soc. Agron. 23:1-12. 1931.

Resistance of winter wheat to leaf rust. Kansas Exp. Sta. Bienn. Rep. 1936-1938:103-104. 1938.

Johnston, C. O., and E.C. Miller
Relation of leaf rust infection to yield, growth, and water economy of two varieties of wheat. Jour. Agr. Res. 49:955981. 1934.

Mains, $\mathrm{F} \cdot \mathrm{B}$.
Effects of leaf rust (Puccinia triticina Eriks.) on jield of wheat. Jour. Agr. Res. 40:417-446. 1930.

Melohers, L. F.
Puccinia triticina Eriks, leaf rust of winter wheat causes damage in Kansas. Phytopathology 7:224. 1917.

Miller, Paul R.
Plant disease forcasting. Chapter L (50) Plant Pathology, Problems, and Progress 1908-1958. Univ. of Wisc. Press, Madison. 1958.

Pady, S. M., C. O. Johnston, W. C. Haskett, W. H. Sill, Jre, E. D. Hansing, J. Fellows, C. T. Rogerson, and J. C. Frazier. Diseases of wheat. Kansas Agr. Exp. Sta. Bull. 368. 1955.

Peterson, R. F., A. B. Campbell, and A. E. Hennah. A diagramatic scale for estimating rust intensity on leaves and stems of cereals. Can. Jour. Res. (C) 26:496-500. October, 1958.

Samborski, D. J. and B. Peters on Effect of leaf rust on the jield of resistant wheats. Canadian Jour. of Plant Seience 40:620-622. 1960.

Snedecor, G. W.
Statistical methods. 5th Ed. Iowa State College Press, Ames, Iowa. 1956.

Suneson, C. A. Effect of stem rust on the jield of wheat. Agron. Jour. 46(3):112. 1954.

Waldron, L. R. The effect of leaf rust accompanied by heat upon jield, kernel weight, bushel weight, and protein content of hard red spring wheat. Jour. Agr. Res. 53:399-414. 1936.

Wood, J. I. and N. W. Nance.
Diseases of plants in the United States in 1937. Leaf rust (Puccinia rubigo-vera triticia). Plant Disease Rptr. Suppl. 110:184-188. 1938.

APPENDIX

Table 1. Winter damage recorded on a scale of $0-10$ taken April 18, 1960 on

Selection No.			\%	Rop I-III			\%$\mathbf{2}$$\mathbf{8}$8	Rep IV-VI			:	Mean		
	:				8				8				:	
R	2	S		R	:	3		R	:	5		R	t	S
59902		59901		6.0		5.3		6.6		6.6		6.3		6.1
59912		59911		7.3		6.0		8.6		7.0		8.0		6.5
59926		59925		4.6		4.3		5.6		5.6		5.1		5.0
59927		59928		7.6		7.6		9.0		8.6		8.4		8.1
59935		59936		6.3		5.3		6.6		6.0		6.4		5.6
59959		59960		6.0		7.0		7.0		8.0		6.5		7.5
59965		59966		6.0		6.6		7.3		8.6		6.6		7.6
		Mean		6.3		6.0		7.2		7.2		6.8		6.6

[^0]Table 2. Mean leaf rust percent and response and stem rust response readings taken on resistant and susceptible selections grown in three experiments in 1960.*
Leaf Rust

Selection
No.

大H OH NE NON HE HE HM

[^1]Table 3. Yields in grams of replicated resistant and susceptible selections grown under natural leaf rust infection at Janhattan in 1960,
replications I-III.

*R = Resistant lines, $S=$ Susceptible lines.

* $\mathrm{R}=$ Resistant lines, $S=$ Susceptible lines
Table 5. The 500 -kernel weights in grams of replicated resistant and

色 $=$ Resistant lines, $S=$ Susceptible lines.
Table 6. Yields in grams of replicated resistant and susceptible selections grown under natural leaf rust infection at Manhattan in 1960, replications IV-VI."

Selection		$\frac{\mathrm{NO}_{6}}{\mathrm{~S}}$	Rop IV			Rep V			Kop VI			Mean			
		\underline{R}	1	S	R	:	S	R	:	S :	R	:	S		
59902			59901	485		484	474		432	416		429	458.3		448.3
59912		59911	482		416	445		338	421		319	449.3		358.0	
59926		59925	420		401	360		275	279		232	353.0		302.6	
59927		59928	519		453	547		445	483		350	516.3		416.0	
59935		59936	524		338	493		4.14	438		345	485.0		365.6	
59959		59960	537		489	374		455	366		491	425.6		478.3	
59965		59966	577		401	583		439	539		442	566.3		427.3	
											Mean	464.8		399.4	

W R a Resistant Iines, $\mathrm{S}=$ Susceptible Ines
Table 7. Relative test weights in grams of replicated resistant and

[^2]Table 8. The 500-kernel weights in grams of replicated resistant and

solection io.			lep IV			Hop			Rop VI			Mean		
R	8	S	R	\%	S	K	:	8	R	!	S	R	:	S
59902		59901	14.76		14.37	15.38		14.60	14.53		13.92	14.89		14.30
59912		59911	14.80		13.36	14.87		13.35	15.40		13.58	15.02		13.56
59926		59925	14.73		12.42	11.52		15.48	15.08		11.65	13.78		13.18
59927		59928	15.61		14.40	15.05		14.39	15.02		12.40	25.23		14.40
59935		59936	16.25		12.08*	25.81		12.43	15.62		14.07	25.89		13.53
59959		59960	14.49		14.60	14.45		12. 49	14.94		15.91	24.63		14.33
59965		59966	15.31		14.59	24.82		14.16	15.59		14.00	25.24		14.25
											Wan	24.95		13.91

[^3]Table 9. Yields in grams of replicated resistant and susceptible selections

* $R=$ Resistant 11nes, $S=$ Susceptible Ines
Table 10. Relative test weights in grems of replicated resistant and susceptible selections grown under netural leaf rust infection at Hutchinson in 2960, replications VII-IX.*

[^4]Table 11. The 500-kernel weights in grams of replicated resistant and

Selection		No.	:	R	Rop VII		:	Rep VIII			:	Rep IX			:		Mean	
1	\%				2	S		R	8	S	\%	R	.	S	8	R	8	S
59902		59901		13.76		14.00		13.56		12.55		13.71		12.79		13.68		13.11
59912		59911		24.17		11.86		15.92		13.04		15.38		12.67		15.15		12.52
59926		59925		13.22		10.99		13.26		10.62		13.55		11.68		13.34		11.10
59927		59928		13.19		12.17		13.10		12.91		13.81		12.47		13.37		12.52
59935		59936		24.90		12.97		14.66		13.62		14.30		12.66		14.62		13.08
59959		59960		13.78		13.15		13.90		12.11		14.51		12.79		14.06		12.68
59965		59966		13.54		13.13		13.81		13.40		14.32		12.98		13.89		13.17
														Mean		14.02		12.60

* $\mathrm{R}=$ Resistant lines, S . Susceptible IInes.
Table 12. The analysis of variance of each yield component for two experiments

Table 12. (continued)

Table 12. (continued)

Table 12. (continued)

Table 13. Mean date of hall-bloom in May of reaistant and susceptible
rable 13. Jean date of hall-bloom in 1961,
replications I-III and IV-VI.*

* $R=$ Resistant innes, $S=$ Susceptible innes.
Table 14.

Selection No.			!	Manhattan							$:$ Hutchinson : Natural Infection : Rep VII-IX				
			Sulphur		:	Arelicial Infection Rep IV-VI									
R	:	S		!	R	:	S	8	R	\%	5	2	R	\%	S
59902		59901		39		40		40		39		39		38	
59912		59911		39		38		39		38		37		37	
59926		59925		38		37		40		37		38		38	
59927		59928		37		36		38		37		37		36	
59935		59936		38		37		39		36		38		37	
59959		59960		37		37		37		37		36		37	
59965		59966		38		39		38		39		38		38	
		Mean		38		37		39		38		38		37	

[^5]Table 15.
Mean leaf rust percent for the two Manhattan experiments, sulphur
and experiment infection experiment at
3 Porcent Leaf Rust

Selection No.			2	Porcent Leaf Rust							: Stem Rust Response								
			8								Manhattan			2	Hutchinson				
				2	$\begin{aligned} & \text { Sulphur } \\ & \text { Rep I-III } \end{aligned}$			8	Artillcial Infection Rep IV-VI			!	ArEITICIaI Infection Rep IV-VI			!	$\begin{aligned} & \text { Natural } \\ & \text { Infection } \\ & \text { Rep VII-IX } \end{aligned}$		
							8												
R	t	S	R		8	S	8	R	:	S	8	R	:	S	8	K	:	S	
59902		59901		TH\%		T		T		37		R		R		R		R	
59912		59911		T		T		T		40		S		S		S		S	
59926		59925		T		T		T		47		R		S		R		S	
59927		59928		T		T		T		53		R		R		R		R	
59935		59936		T		T		T		37		R		R		R		R	
59959		59960		T		T		T		50		R		R		K		R	
59965		59966		T		T		T		63		R		R		R		R	

[^6]Table 16. Yields in grams of replicated resistant and susceptible selections I-III**

 $\begin{array}{ll}723 & 690 \\ 787 & 717 \\ 723 & 758 \\ 679 & 806 \\ 714 & 737 \\ 681 & 742 \\ 763 & 782\end{array}$ 690
742
756
856
638
706
764
734
780
639
738 731
716
767 705
722
745
764
672
688
754
Mean
$735.6 \quad 725.0$
at Manhattan in 1961, roplications

690	723	690	705	690.3	720.6
742	787	717	722	757.3	763.0
756	723	758	745	737.3	702.3
856	679	806	764	804.0	727.0
638	714	737	672	667.0	705.6
706	681	742	688	720.3	695.0
764	763	782	754	773.3	761.3

* R - Resistant Iines, S - Susceptible Iines.
Table 17. Relative test weights in grams of replicated resistant and susceptible selections grown under sulphur treatment at Manhattan in 1961, replications I-III**

Seloction Mo.			$\frac{1}{2}$	Rep I			:	Rep II			:	Rop III			8	Mosn		
R	:	S		R	:	8		R	:	S		R	8	S		R	\%	5
59902		59901		24.76		25.12		25.08		24.48		25.45		24.80		25.10		24.80
59912		59911		25.66		25.79		25.39		25.59		25.41		25.64		25.49		25.67
59926		59925		25.22		25.28		25.29		25.24		25.12		25.34		25.21		25.29
59927		59928		25.54		25.49		25.40		25.20		24.92		25.41		25.29		25.37
59935		59936		25.56		25.13		25.88		25.23		25.47		25.79		25.64		25.38
59959		59960		25.78		25.50		25.39		25.82		25.28		25.88		35.48		25.73
59965		59966		25.24		25.30		25.44		25.69		25.36		25.74		25.35		25.58
														Meaŋ		25.36		25.40

[^7]Table 18. The 500-kernel woights in grams of replicated resistant and

Seloction No.			2	Rop I			:	Rep II			:	Rep III			:	Fean		
R	2	S		R	1	S		R	:	S		R	2	S		R	,	S
59902		59901		14.31		14.68		14.64		15.00		14.72		15.05		14.56		14.91
59912		59911		16.25		15.72		16.56		15.68		17.03		14.87		16.61		15.42
59926		59925		15.92		15.32		15.48		15.35		15.24		15.43		15.55		15.37
59927		59928		16.56		16.03		16.36		15.83		16.23		16.37		16.38		16.08
59935		59936		15.14		15.57		15.48		15.42		15.33		15.15		15.32		15.38
59959		59960		15.61		15.50		15.26		15.40		15.42		15.82		15.43		15.57
59965		59966		16.13		15.04		16.04		15.11		16.10		14.90		16.09		15.02
														Mean		15.70		15.39

* R - Resistant lines, S - Susceptible lines.
Table 19. The mean number of kernels per spike of three randomly selected

Selection		$\frac{\mathrm{NO}}{\mathrm{~S}}$:	Rep I			:	Rep II			$\frac{8}{8}$	Rop III			: Dean		
		R		1	S	R		:	5	R		:	8	2 R	18		
59902			59901		17.00		17.75		16.25		22.00		20.25		17.50	17.83	18.75
59912		59911		17.00		22.25		17.75		16.25		14.25		15.25	16.33	17.92	
59926		59925		17.00		21.75		19.25		21.00		15.25		20.25	17.17	21.00	
59927		59928		17.00		18.75		17.00		16.25		16.25		20.00	16.75	18.33	
59935		59936		18.50		15,50		17.75		17.75		17.00		15.75	17.75	16.33	
59959		59960		18.00		17,25		20.50		17.25		15.75		16.75	18.08	17.08	
59965		59966		18,00		16.25		15,75		18.75		17.00		18.25	16.92	17.75	
														Mean	17.26	18.17	

* $R=$ Resistant lines, S. Susceptible lines.
Table 20. Yiolds in grams of replicated resistant and susceptible

Solection No.			:	Rep IV			8	Rop V			:	Rep VI			:	Mean		
R	\%	S		R	\%	3		R	:	S	-	R	:	S	:	R	:	S
59902		59901		592		529		630		539		587		555		603.0		541.0
59912		59311		590		558		643		594		553		559		595.3		570.3
59926		59925		585		547		561		514		559		551		568.3		537.3
59927		59928		674		525		679		607		664		617		672.3		583.0
59935		59936		553		500		561		539		628		587		580.6		542.0
59959		59960		619		523		603		544		553		591		591.6		552.6
59965		59966		567		539		650		611		667		702		628.0		617.3
														Mean		605.6		563.4

* R - Resistant lines, S. Susceptible Innes.
Table 2l. Relative test weight in grams of replicated resistant and susceptible seleotions grown under artificial infection at Manhattan in 1961, replications IV-VI.*

Selection		$\frac{\mathrm{NO}}{\mathrm{~S}}$	\%	Rep IV			2	Rep V			:	Kep VI			2 Mean			
II	!			R	8	S	2	R	\%	S		R	:	S	1	R	:	8
59902		59901		25.03		25.46		25.15		24.94		25.16		25.27		25.11		25.22
59912		59911		25.31		25.70		25.36		25.40		24.86		34.53		25.18		25.21
59926		59925		24.72		25.03		25.10		24.44		24.96		24.47		24.93		24.65
59927		59928		25.46		25.45		25.24		25.19		25.06		25.30		25.25		25.31
59935		59936		25.61		25.58		25.46		24.86		24.97		25.22		25.35		25.22
59959		59960		25.39		25.51		25.84		25.09		25.34		25.26		35.52		25.29
59965		59966		25.57		24.76		25.59		25.21		25.23		25.15		25.46		25.04
														Mean		25.26		25.13

[^8]Table 22. The 500-kernel weight in grams of replicated resistant and susceptible solections grown under artificial infection at Manhattan in 1961, replications IV-VI.*

[^9]Table 23. cationa IV-VI.*

Selection NO .			2	Rep IV			:	Kep V			$!$	Kep VI		I	lean		
H	2	5		R	P	S		R	:	S		R	:	$8:$	R	:	S
59902		59901		16.00		19.25		13.75		16.75		19.75		18.50	16.50		18.17
59912		59911		18.00		18.25		11.50		23.00		17.00		19.75	15.50		20.33
59926		59925		20.75		18.25		14.75		23.25		19.00		17.00	18.17		19.50
59927		59928		17.25		17.25		18.50		17.50		21.00		14.25	18.92		16.33
59935		59936		18.25		16.00		15.75		16.50		17.75		17.75	17.25		16.75
59959		59960		17.25		15.50		15.25		17.00		16.00		16.50	16.17		16.33
59965		59966		16.00		14.25		18.50		13.50		18.25		15.50	17.57		14.42
														Mean	17.15		17.40

[^10]Table 24. Yields in grams of replicated rosistant and susceptible selections grown under natural infection at Hutchinson in 1961, replications VII-IK.*

Selection No.			\%	Rep VII			:	Rep VIII			8	Rep IX		:	Mean		
R	:	S		R	1	S		K	:	3		R	2	S	R	$:$	S
59902		59901		594		445		488		498		564		573	548.6		505.3
59912		59911		536		588		538		522		571		633	548.3		581.0
59926		59925		464		516		504		607		625		513	531.0		545.3
59927		59928		451		537		565		555		649		592	555.0		561.3
59935		59936		471		515		499		483		651		600	540.3		532.6
59959		59960		490		680		425		499		563		580	492.6		586.3
59965		59966		617		636		604		518		689		607	636.6		587.0
														Mean	550.3		557.0

[^11]Table 25. Relative test weight in grans of replicated resistant and susceptible
selections grown under natural infection at Hutchinson in 1961, replications VII-IX.*

Selection NO.			:	Rep VII			:	Rep VIII			:	Rep IX			$: 1$		Mean	
R	3	S		R	:	S		R	:	S		R	,	S	:	R	!	S
59902		59901		25.22		25.67		25.67		25.59		25.30		25.47		25.40		25.58
59912		59911		25.52		25.79		25.88		25.46		25.20		25.51		25.53		25.59
59926		59925		25.08		25.17		25.65		26.41		25.36		25.62		25.36		25.73
59927		59928		25.53		25.48		25.59		25.79		25.67		25.32		25.60		25.86
59935		59936		25.99		25.46		25.83		25.98		25.56		25.86		25.79		25.77
59959		59960		25.66		25.88		25.67		25.74		25.66		25.61		25.66		25.74
59965		59966		25.39		25.99		25.49		26.14		25.66		26.10		25.51		26.08
														Mean		25.55		25.76

[^12]Table 26. The 500-kernel weight in grams of replicated resistant and suaceptible elections grown under natural infection at Hutchinson in 1961, replications VII-1X.

Selection 10.			8	Rep VII			:	Rep VIII			:	Rep IX			$:$		Vean	
R	!	S	8	R S S				R S				R	:	S	2	R		S
59902		59901		13.82		14.46		13.97		14.99		13.80		13.68		13.86		14.38
59912		59911		14.20		14.30		14.77		14.48		14.95		13.46		14.64		14.08
59926		59925		14.49		14.10		14.89		13.54		14.15		12.80		14.51		13.48
59927		59928		14.35		14.29		14.72		14.34		14.91		14.36		14.66		14.33
59935		59936		15.14		15.12		14.89		14.96		13.52		14.98		14.52		15.02
59959		59960		14.16		13.18		14.39		14.39		14.27		13.82		14.27		13.80
59965		59966		14.84		13.86		15.30		14.81		13.77		13.61		14.64		14.09
														Mean		14.44		14.17

[^13]Table 27. The mean number of kernels per spike of three randomly selected spikes from replicated resistant and susceptible selections
grown under natural infection at Hutchinson in 1961, replications VII-IX.*

* $R=$ Resistant lines, $S=$ Susceptible lines
Table 28. The analysis of variance of each yield component for two experiments Grown at Hutchinson, replications VII-IX, in 1961.
Souree of Variation $:$ d.f. Si Sg : Fs :
Manhattan Sulphux, Yield Evaluation, Rep I-III。

Mein Plots:					
Replicationa	2	448	224	.16	n.s.
Families	6	40,034	6,672	4.66	
	12	17,157	1,430		
Subplots:					
Resistance	1	1,194	1,194	.50	n.s.
Family x Resistance	6	14,387	2,398	1.78	n. 3 .
Error b	14	18,815	1,344		
Manhatran Sulphur, Tesi Weight Evaluation, Rep I-III.					
Main Plots: 0.0043 n.s.					
Replications	2	. 0086	.0043	- 717	
Families	6	1.9329	-3222	7.71	
Error a	12	-5022	. 0418		
Subplots: ${ }^{\text {a }}$					
Resistance	1	. 0161	.0161	1.21	n.s.
Family x Resistance	6	. 4560	. 06769	1.09	
Error b	14	-9792	.0698		
Manhattan Sulphur, 500-kernel Weight Evaluation, Rep I-III.					
Main Plots: 0.0 n.s.					
Replications	2	0.00	1.40	33.3	$\text { 相 } 18$
Families	6	8.40	1.40	33.3	
Error a	12	- 50	. 042		
Subplots: 1 , 1.94 .					
Resistance	6	3.17	. .53	5.76	H6\%
Family ${ }_{\text {Error }}$ (Resistance	14	1.29	. 092		

Table 28. (continued)

Manhattan Sulphur, Kernels per Spike Evaluation, Rep I-III				
Main Plots:				
Replications	2	7.7500	3.8750	1.28
Families	6	19.1964	3.1994	1.06
Error a	12	36.1875	3.0156	
Subplota: 18.86				
Resistance	1	8.5952	8.5952	1.86
Family x Resistance	6	27.7798	4.6300	1.39
Error o	14	46.6875	3.3348	
Manhattan Yiold Evaluation, Rep IV-VI.				
Main Plots: 206				
Replications	2	8,864		
Families	6	31,024		2.64
Error a	12	23,498		
Subplots: 180				
Resistance	1	18,733		18.49
Family x Resistance	6	$6,078$		1.23
Error b	14	11,534		
Manhattan Test Weight Evaluation, Rep IV-VI.				
Main Plots: 3				
Replications	2	. 5175	- 2588	3.87
Families	6	1.3822	. 2304	3.45
Error a	12	. 8013	. 0668	
Subplots: 26.6				
Resistance	1	$.1598$.1598	2.66
Family x Resistance	6	. 3600	. 0600	. 80
Error b	14	1.0549	. 0754	

Table 28．（continued）
$=$
Source or Varlation ：d．f．：Ss
Manhattan 500－kernel Weight Evaluation，Rep IV－VI．

索官 官 安 $\begin{array}{ll}0 & 0 \\ 0 & \ddots \\ 0 & -1 \\ 0 & -1\end{array}$

24,204
4,971
3,000
460
3,546
2,981

Manhattan Kernels per Spike Evaluation，Rep IV－VI．

Family x Resistance Error b

Main Plots：
Replications
Families
Error a
Subplots：
Resistance
Family x Resistance Error b

Main Plots：
Replications
Families
Error a
Subplots：
Table 28. (continued)

Table 29.
The analysis of variance on combined data from the Manhattan
 in 1960 and artificial infection in 1961.

Source of Variation

Y1eld
$487,314.16$
$5,265.20$
$110,900.36$
$113,003.78$
$60,804.79$
$60,804.79$
$2,811.83$
$3,472.97$
$1,603.72$
 .54
.45
3.80
10.24
2.53
1.07
3.36
11.64
Test Weight
$\begin{array}{ll}095 & 0 \\ 0.60 \\ i & \text { जेべ }\end{array}$

Source of Variation	8	d.f.	3	Ss	8	Ms	1	F	:	S1g
Y1eld										
Main Plots:										
Years		1		487,314.16		487,314.16		137.99		\#H\%
Replications		2		5,265.20		2,632.60		.74		n.s.
Femilies		6		110,900.36		18,483.39		5.23		\#**
Error a		32		113,003.78		3,531.36				
Subplots:										
Resistance		1		60,804.79		60,804.79		17.51		**
Year x Resistance		1		2,811.83		2,811.83		1.75		n.s.
Family x Resistance		6		20,837.85		3,472.97		2.16		n.s.
Error b		34		$54,526.53$		1,603.72				
Test Weight										
Main Plots:										
Years		1		. 54		. 54		1.69		n.s.
Replications		2		. 45		. 22		-69		n.s.
Families		6		3.80		. 63		1.97		n.s.
Error a		32		10.24		-32				
Subplots: 20.53 (5 ,										
Resistance		1		2.53		2.53		4.52		n.s.
Year x Resistance		1		1.07		1.07		2.97		n.s.
Family x Resistance		6		3.36		. 56		1.56		n.s.
Error b		32*		11.64		.36				

Table 29.
(continued)
Source of Variation $:$ d.f. : Ss

[^14]Table 30.
The analysis of variance on combined data from the Hutchinson experiments, replications VII-IX, grown under natural leaf rust infoction in 1960 and 1961.

Source or Variation i d.I. i Ss in in
 $38 \quad 2 \quad 28$ ह है

 Main Plots:Years
Replications
Families
Error a
Subplots:
Resistance
Year x Resistance
Family x Resistance
Error b

Main Plots:
Years
Families
Subplots:
Resistance
Year x Resistance
Family x Resistance
Error b
Table 30. (continued)

CHARLES FREDERICK SING
 B.S., Iowa State University, 1960

AN ABSTRACT OF A THESIS
submitted in partial fulfiliment of the
requirements for the degree

MASTER OF SCIENCE

Department of Agronomy

KANSAS STATE UNIVERSITY
Manhattan, Kansas

ABSTRACT

Leaf rust of wheat, Puccinia recondita Rob. ex Desm., is considered to cause substantial reductions in grain jield in certain years. A sound experimental procedure conducted under natural field conditiona is needed to properly evaluate the effects of the leaf rust pathogen. This study attempts to evaluate a method and use that method to estimate the effects of leaf rust on hard red winter wheat strains varying in resistance.

An attempt was made to estimate the effect of the leal rust organism on four components of yield using resistant and susceptible sister lines which originated from a single hybridization. A resistant and a susceptible line selected from the segregating progeny of an F 2 plant formed a famly of sister lines which were nearly isogenic but differing in rust response.

Three experiments, each consisting of three replicates of the seven families planted in a split-plot design, were conducted in 1960 and 1961, An experiment under sulphur treatment and an experiment under artificial infection were planned for Manhattan. An experiment under natural leaf rust was planned for Hutchinson.

An analysia of variance to determine significant effects of the family, replication, resistance, and family x resistance sources of variability was conducted for each component for each experiment. The main plot analysis was that of randomized blocks with seven families replicated in three roplications. The subplot analysis was the two levels of resistance randomized in each of the twenty-one main plots. The major object of the analyais
of variance was to detect any significant fixed added effect of leaf rust on yield, test weight, 500-kernel weight, and kernels per spike in each of the threo experiments. An analysis of variance combining 1960 and 1961 data for similar experiments was conducted.

Leaf rust infections in 1960 and 1961 became established when plants were in the flowering stage or later.

The three experiments grown in 1960 were subjected to natural leaf rust infection. The 1961 experiments were conducted as planned. Under sulphur treatment the ines used in this study differed in performance among families but were similar in performance within families. In two experinents under naturel leaf rust in 1960 and one experinent under artificial infection in 1961, leaf rust reduced yield and 500-kernel weight. Significant reductions in test weight and kernels per spike due to leaf rust were not detected. The combined analysis of two experiments grown in 1960 and 1961 also indicated that leaf rust influencod jield and kernel weight but not test weight.

The limited results of two years of replicated study indicate that the method of using resistant and susceptible segregates from a cross cen detoct leaf rust effect on yiold under circumstances of late but heavy infection. Further evaluation of this method to include a greater representation of environmental conditions will be required to fully evaluate the accuracy of this approach to estimation of leaf rust damage.

[^0]: W R. Resistant lines, S. Susceptible lines

[^1]: * $R=$ Resistant lines, S. Susceptible lines.

[^2]: * R - Resistant lines, S - Susceptible lines,
 ** Data computed using missing plot technique.

[^3]: \# $\mathrm{R}=$ Resistant lines, S. Susceptible lines.
 ** Data computed usiug missing plot fechnique.

[^4]: *R $=$ Resistant innes, $S=$ Susceptible Innes.

[^5]: 费 $\mathrm{R}=$ Resistant lines, S . Susceptible lines.

[^6]: \# R - Resistant Lines, S - Susceptible lines.
 whace

[^7]: * $=$ Resistant lines, $S=$ Susceptible innos.

[^8]: * $R=$ Resistant innes, $S=$ Suscoptible Innos.

[^9]: * $R=$ Resistant lines, S. Susceptible lines

[^10]: * $R=$ Resistant lines, $S=$ Susceptible lines.

[^11]: * $R=$ Resistant lines, $S=$ Susceptible ilnos.

[^12]: * R = Resistant lines, S.- Susceptible lines.

[^13]: * $R=$ Resistant lines, S. Susceptible lines.

[^14]: * Two missing plots in 1960.
 *H One missing plot in 1960.

