THE EFFECT OF LEAF HUST ON THE COMPONENTS OF YIELD AND OTHER CHARACTERISTICS OF HARD RED WINTER WHEAT

by

CHARLES FREDERICK SING

B.S., Iowa State University, 1960

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agronomy

KANSAS STATE UNIVERSITY Manhattan, Kansas

LD 2668																				1
T4 1962 557 6.2	T	ABJ	LE	OF	P (001	TE	ent	52											
Document INTRODUCTION			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 1	
REVIEW OF LITERATURE																•		•	. 3	
MATERIALS AND METHODS	3		•		•	ł			•	•			•	•	•		•	•	. 8	,
EXPERIMENTAL RESULTS		•	•	•	•				•			•	•	•	•		•	•	17	
1960 Results					•		•	•		•			•	•	•	•		•	17	
1961 Results Combined Experim	ent	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26	
DISCUSSION AND CONCLU	JSIC	NS		•	•					•	•		•		•	•		•	29	,
SUMMARY	• •		•	•	•		•		•				•	•	•	•	•		33	5
ACKNOWLEDGMENT	• •		•		•		•		•		•		•	•			•		34	
LITERATURE CITED	• •	•	•				•				•	•			•				35	;
APPENDIX							•		•	•									37	,

INTRODUCTION

Leaf rust of wheat, <u>Fuccinia recondita</u> Rob. ex Desm., is considered to cause substantial reductions in grain yield in certain years. Pady <u>et al.</u>, (1955) estimated that the annual reduction of wheat production in Kansas in the period of 1938 through 1952 inclusive was more than 5,413,000 bushels. It has been established that leaf rust can cause major damage under certain environmental circumstances.

The development of varieties of hard red winter wheat resistant to the prevalent physiologic races of leaf rust has been a major objective of the wheat breeding programs in the hard red winter wheat area of the great plains. Wheat varieties resistant to leaf rust are considered as an added increase in dollars or bushel production over the standard susceptible varieties. However, satisfactory experimental field methods capable of evaluating the effect of leaf rust on wheat have not been adequately tested. The problem involves the estimation of severity of the disease and translation to an accurate loss figure. Some plant diseases are spectacular but inflict relatively little economic damage, others subtly destroy a significant portion of the crop. The loss from a disease which may be disregarded, economically, varies with diseases. Therefore, the apparent importance of a problem may be far from its true relative importance. Problems appear to be important when they are well publicized or when they frequently come to the attention of the researcher or administrator.

Accurate loss information is essential for the proper

evaluation of a disease control measure. The question arises as to whether the leaf rust problem is serious enough to justify expensive attempts to produce resistant varieties at the expense of other important work. Leaf rust damage has been estimated on the basis of limited knowledge of the leaf rust-wheat relationship. These estimates have been subjective and contingent upon the experience of the estimator. Chester (1946) stated that distorted conclusions of leaf rust damage have been drawn due to a lack of a method of measuring leaf rust damage.

A sound experimental procedure conducted under natural field conditions, using procedures which will give an estimate with a high level of confidence, is needed to properly evaluate the effects of the leaf rust pathogen. Such a method must be capable of accurately detecting yield differences among strains of wheat differing in their ability to resist the pathogen.

This study was a continuation of work begun by Bieber (1960). The object of the study was to estimate damage produced by the leaf rust organism, <u>Fuccinia recondita</u> Rob. ex. Desm., using resistant and susceptible sister lines of hard red winter wheat. An effort was made to determine what, if any, effect resistant wheats have in increasing yield under environmental conditions typical of Kansas. Prior to the study by Bieber (1960), no published research had been conducted in America using nearly isogenic lines differing in rust response as a method of evaluation. As in Bieber's work, an objective was to continue evaluation of this method.

Apart from a purely scientific interest, a method to obtain

an accurate determination of the damage caused by leaf rust offers the only reliable guide in a rational policy of control. This study attempts to evaluate a method and use that method to estimate the effects of leaf rust on hard red winter wheat strains varying in resistance.

REVIEW OF LITERATURE

In a preliminary study, Bieber (1960) presented a comprehensive review of the literature pertaining to the studies of the effect of leaf rust on the yield of hard red winter wheat. The objective of this review was to supplement and briefly summarize Bieber's presentation.

Carleton (1899) stated that orange leaf rust, as a rule, does very little damage even when it is abundant. He concluded that only occasionally under certain conditions and in certain localities did considerable damage arise if the rust occurred much in advance of harvest. During 1917, Melchers (1917) observed abundant leaf rust on the wheat crop in Kansas. Careful observation indicated that no other factors could be responsible for the poor quality and low yields. Melchers estimated that one field was reduced 58 percent.

Wood and Mance (1938) reported that in areas where leaf rust is most important it occurs every year to a greater or leaser extent with the result that its effect on yield is apt to be overlooked except in epidemic outbreaks. They noted that in contrast to the suddenness of outbreaks of stem rust, leaf rust is likely to appear early and develop steadily throughout the season. This

contrast with stem rust was considered responsible for minimizing leaf rust damage estimates.

Chester (1950) stated that prior to 1926 losses from wheat leaf rust were generally regarded as negligible or even beneficial to wheat.

The work of several researchers in the period, 1926 through 1936, determined that leaf rust can cause damage to the wheat plant. In greenhouse experiments, Mains (1930), Johnston and Miller (1934), and Johnston (1931) found that lowered yields were due primarily to fewer kernels per spike when infection was early, a pre-blossom damage, and reduced kernel weight when later infection occurred, a post-blossom damage. The physiological effects on the wheat plant were considered to be an increase in transpirational water loss and premature death of leaves which are essential in the production of carbohydrate.

In a greenhouse study to determine the effect of two temperatures associated with leaf rust infections, Waldron (1936) found that plumpness of the kernel was retained at the expense of size. Almost no shriveling of the grain was observed. He concluded that if the plant becomes infected early in the stages of its life, injury is due mainly to the formation of fewer and smaller kernels. Waldron found that if leaf rust is delayed until after the flowering stage the damage is largely confined to reduced kernel size. Waldron also found that the yield of selections susceptible to flecking was reduced 16 percent from the check grown in the absence of leaf rust.

In a field experiment, Caldwell <u>et al.</u>, (1934) compared seven varieties varying in reaction from extremely susceptible to highly

resistant. In most varieties yield reductions were proportional to rust aeverity. However, the variety Fulhard was not reduced in yield even though it was severely rusted. The authors stated that severe infections were reached soon after flowering and that three-fourths of the grain loss was due to a reduction in number of kernels per spike and the remainder due to a reduction in weight per kernel. Even under maximum leaf rust infection, no shriveling of the grain occurred.

In field studies, Samborski and Peterson (1960) found that leaf rust initiated at an early stage of development reduced yield, 1000-kernel weight, and bushel weight of one susceptible and three resistant varieties of wheat. The yield loss of the susceptible was 58 percent when compared to the rust free check, Yield loss on the resistant varieties ranged from 12 to 28 percent. Losses on resistant varieties were attributed to flecking of the leaves. Density of inoculum and amount of necrosis were directly related to the amount of loss on the resistant, but not immune, varieties. The extent of damage to the resistant varieties depended on the type of resistance involved since the amount of necrosis resulting from each infection determined the rate of leaf destruction. Their results pointed out that yield tests with resistant varieties will be influenced by the proximity of susceptible plants that can provide a heavy source of inoculum. Therefore, the great advantage of the resistant variety may be nullified in a yield comparison.

Suneson (1954) used isogenic lines of the variety Baart differing in resistance to stem rust to evaluate damage under

epidemic conditions. He stated that the effect of stem rust on the yield of wheat was confounded by genetic, pathologic, and environmental factors. He concluded that stem rust may be less damaging than is commonly thought and a high type of resistance may not be necessary for practical purposes. In his studies, the yield of susceptible Baart was reduced 25-47 percent, whereas, the yield of a moderately resistant line was reduced 6-20 percent. Sumeson suggested that a near immune reaction to the disease may not be necessary in a commercial wheat as a moderately resistant variety grown on large acreages has been sufficient to check epidemics in California.

The results of the preliminary investigation of the effects of leaf rust and stem rust of wheat under field conditions are reported by Bieber (1960). Yield, test weight, and 500-kernel weight differences between resistant and susceptible pairs were statistically evaluated using t-tests for single row data and analysis of variance for replicated plot data. In the study an attempt was made to evaluate the effect of stem rust and leaf rust using sister lines of a Pawnee-type wheat. Results indicated that test weight and kernel weight were significantly affected by leaf rust reaction. Yield data were inconclusive but indicated that an effect upon yield could be detected by this method. Bieber concluded that it appears that sister lines of wheat are adaptable to the evaluation of leaf rust and stem rust damage; however, further study will be needed before comparisons can be made between this and other methods of disease damage evaluation.

The environment during the development of the wheat crop is

a major factor in determining the amount of damage. Johnston (1938) summarized the conditions leading to the heavy leaf rust losses incurred in 1938. He found that heavy infections were late in their development in 1937 when a loss of 0.4 percent was reported but were very early in 1938 when a loss of 12 percent was reported.

Chester (1946) described the environmental conditions associated with heavy infection. He suggested that abundant rainfall, heavy dews, and early warm weather accompanied by early spore showers favor damaging leaf rust infections.

Chester (1944 and 1950) made a thorough search of the available literature for methods of measuring and calculating plant disease losses. He explored all aspects of obtaining and utilizing estimates, analyzed the standards on which estimates were based, and pointed out errors of concept and practice. He defined plant disease loss appraisal as an important field in its own right in opposition to the usual notion of loss estimates as subordinate to other phases of plant disease research. Chester (1950) stated that no one method of evaluation is entirely free of error. Chester (1944) stated that an ideal method of appraisal must compare yields, under rust attack, of host strains that are genetically similar, but differ in rust susceptibility and be conducted on a scale that permits statistical analysis.

In regard to plant disease forecasting, Miller (1958) stated that there is a need for a more complete understanding of the relation between the disease and the environment. For the same

disease, criteria that are successful in disease evaluation in one area may not be useful in another with a different climatic environment.

The use of sulphur for the prevention of leaf rust infection is widely accepted. Forsyth and Peterson (1958) stated that economical control of stem rust and leaf rust of wheat can be obtained with the best protective type of fungicides if the weather conditions do not become adverse during the application program. No fungicide was successful in their study in 1953 due to frequent showers. In a study using sulphur as a preventive fungicide. Greaney (1934a) found that in the absence of rust and other leaf and stem diseases. the dusting of wheat varieties with sulphur during the growing period had no appreciable effect on yield. However, in a similar study. Greaney (1934b) found that the stem rust schedule of sulphur dusting also controlled wheat scab, black chaff, "smudge", and minor leaf diseases. Scab was reduced from an infection of 80 percent to 13 percent in one test. He concluded that the total effect of sulphur dusting on incidental diseases, in addition to rust, should be included in the economical evaluation of this control method.

MATERIALS AND METHODS

The resistant and susceptible lines employed in this study were selected from the progeny of a Sinvalocho-Pawnee² x Mediterranean-Hope-Pawnee⁵ cross (X 52V) made in 1952. Table 1, page 9, presents the history of each selection used in the study. Each line was entered in order of its 1959 selection number. The same

Table 1. Entry and selection numbers in the leaf rust study for the years 1957 through 1961.

.

	: 1957	: 1958	: 1959	1 1960		1961	15			
Family	: Entry No.	: Entry No.	: Entry No.	: Selection : & Entry : No. Po	: Zntry	No. Fo	Sel. No.	: Rust	Res	Rust Response Leaf : Stem Rust : Rust
10297	11580	353 354	902 902	59901 59902	47	474 473	59901 59902	50 65		Name of the second seco
10313	11747 11748	371 372	911 912	59912 59912	46	467	59911 59912	02 05		SR
10294	11548	R2614 R2617	925 926	59925 59925	4	472	59925 59926	63 GS		00 85
10295	11554	R2620 R2627	928 928	59928 59928	44	470	59927 59928	25 02		۲. ۲
10298	11592	R2658 R2658	936 936	59935 59936	46	463	59935 59936	65 93		
10310	11711 11712	K2777 R2778	959 960	59959 59960	40	465	59959 59960	12 03		夏夏
10315	11758	R2804 R2809	965 966	59965 59966	40	461	59965 59966	05 02		

order was followed in reporting the data gathered in this study. Records prior to 1957 were lost in a 1957 fire which destroyed the small grain breeding offices.

Each family originated from the progeny of an F_2 plant that was heterozygous for leaf rust response. In this study a family was represented by a resistant and a susceptible line which formed a pair nearly isogenic but differing in response to leaf rust.

Leaf rust resistant F2 plants were harvested in 1954 and the progeny from each was grown in a three foot row at the North Agronomy Farm in 1955. The F3 rows which were segregating for leaf rust reaction were harvested. The non-segregating rows were discarded. Each segregating row harvested was the progeny of a heterozygous F2 plant. Seed from each of these segregating F3 rows was replanted in 1956 as a three foot row. In 1956, random spike selections were harvested from the FA rows which were clearly segregating for response to leaf rust. Each spike selection was grown as a three foot row in 1957. These F5 row numbers are included in table 1. At harvest, non-segregating resistant and susceptible lines were selected and harvested. Segregating lines were discarded. There were 323 resistant and susceptible lines. representing 29 families, selected. In 1958, the 323 lines were grown at the Ashland Agronomy Farm as eight foot single rows. The Fe lines grown at Ashland are presented in table 1 with an "R2" code preceding the 1958 entry number used at the North Agronomy Farm. There was sufficient seed of 40 of the 323 lines to plant two. eight foot, rows of each at the North Agronomy Farm. From this

material grown in 1958, pairs consisting of a resistant and a susceptible line were selected to be grown as paired, eight foot, single rows in 1959. Two pairs used in this study were selected from the two row plots and five pairs were selected from the single rows at Ashland. Pairs were selected on the basis of the 1958 rust readings. The resistant member of each pair represented the highest level of leaf rust resistance present in the family and the susceptible member the lowest. Selection numbers were assigned to the paired lines grown in 1959. Sufficient seed was harvested from the Fy paired single rows to plant replicated comparisons in 1960. Seven pairs were selected from the material grown in 1959. Each pair consisted of a resistant and a susceptible line homogeneous for leaf rust response. The seven pairs represented six F2 families. Two pairs originated from family 10313. Each of the members of a pair was similar in its response to stem rust except for family 10294. Selection 59925 was susceptible and selection 59926 was resistant to stem rust.

This study was planned to determine the effects of three treatments on the yield components and other characteristics of sister lines of wheat differing in response to leaf rust. The three treatments were application of dusting sulphur, artificial leaf rust infection, and natural leaf rust infection. Each treatment was to be grown as a thrice replicated experiment in 1960 and 1961. The experiment to compare the performance of the resistant and susceptible lines, using a sulphur treatment to prevent leaf rust infection, was planted at the North Agronomy Farm.

The second experiment consisted of artificially inoculating leaf rust susceptible spreader rows planted in the study to insure a source of leaf rust inoculum. It was also planted at the North Agronomy Farm. The third experiment to study the effects of natural infection was planted at the Hutchinson Experimental Field.

Each experiment was planted in the same manner in 1960 and 1961. The sulphur experiment was grown as replications I-III, the artificial infection experiment was grown as replications IV-VI, and the natural infection experiment was grown as replications VII-IX. Each of the experiments, consisting of three replications of the seven leaf rust pairs, was planted in a splitplot design. Each pair formed a main plot. The two levels of resistance formed the subplots. Each subplot consisted of four rows, 11.6 feet long, spaced twelve inches apart. The seeding rate was 63 pounds per acre at Manhattan and 75 pounds per acre at Hutchinson. The subplots were arranged end to end. The pairs were randomized within each replication and the resistant and susceptible line assigned at random within each main plot. This was done by assigning a number to each of the 14 selections and placement of the second member of the pair with the randomly selected first member.

The spreader rows in the artificial infection experiment were planted in the alleys perpendicular to the rows in the study. Each subplot was bounded at both ends by a spreader row.

The natural infection experiment was planted at Hutchinson

October 20, 1959. The sulphur and artificial infection experiments were planted at the North Agronomy Farm October 14 and October 22, 1959, respectively. In the fall of 1960, the Hutchinson experiment was planted October 6 and the two Manhattan experiments October 11.

Winter damage ratings were recorded April 18, 1960, for the two experiments grown at Manhattan. A scale of 0-10 was used. A zero rating indicated no living plants and a ten rating represented the stand and vigor expected under normal conditions.

The 1960 experiments were not conducted as planned, because each of the three plantings was subjected to natural leaf rust infection. In 1961 each experiment was conducted as planned. Twenty applications of commercial dusting sulphur were applied to the sulphur experiment at approximately sixty pounds per acre. The first dusting was applied April 25 to plants in the pre-boot stage. Dust was applied after each rain to insure constant protection. Dusting continued until harvest. Spores of a composite of physiologic races of leaf rust were inoculated by needle into spreader rows in the artificial infection experiment on April 14, April 22, and May 2.

Leaf rust readings were taken on all three experiments in 1960 and on the two Menhattan experiments in 1961. Fercent leaf rust infection was estimated using the modified Cobb scale, Peterson <u>et al.</u>, (1948). Stem rust response was recorded on all three experiments in 1960 and on the natural infection at Hutchinson and artificial infection at Manhattan in 1961. No stem rust percentage readings were recorded.

Date of half bloom and height at maturity notes were recorded for each of the three experiments in 1961.

The two experiments at Manhattan were harvested and threshed July 5, 1960 and July 10, 1961. The Hutchinson experiment was hervested and threshed June 30, 1960 and July 1, 1961. Mineteen and two-tenths square feet were harvested from the center two rows of each subplot.

Plans were made to appraise four components of yield; yield, test weight, 500-kernel weight, and kernels per spike, Yields, relative test weights, and 500-kernel weights were recorded on each of the three experiments 1960 and 1961. Kernels per spike were recorded on each experiment in 1961. The yield of each subplot was recorded in grams. The yield in grams per subplot may be converted to pounds per acre by multiplying the subplot yield in grams by a factor of five. Relative test weights were determined by weighing a standard sample of grain in a flat bottomed brass cylinder. The inside dimensions of the cylinder were 2.3 cm in diameter and 7.1 cm in height. Relative test weights and 500kernel weights were recorded to .Ol accuracy. The number of kernels per spike measurement was obtained by averaging the number of kernels from three spikes which were randomly selected from the center two rows of each subplot. Spikes were selected, boxed, and threshed individually in the laboratory.

Each yield component measured from each of the experiments was analyzed singly using an analysis of variance (Snedecor, 1956). It was assumed at the outset of the study that all observations

would be independent, random, and normally distributed. The appropriate mathematical model for each experiment is described by the formula:

 $Y_{11k} = U + R_1 + F_1 + d_{11} + S_k + (FS)_{1k} + E_{11k}$

where Y_{ijk} is the performance of an individual subplot, U is the grand mean of all subplots, R_i is the added variability beyond α_{ij} due to replication, F_j is the added variability beyond α_{ij} due to family differences, α_{ij} is error a, the random experimental error associated with the main plots, S_k is the fixed added effects beyond the interaction of families x resistance which is due to resistance, (FS)_{jk} is the effect of the interaction between families and resistance, and E_{ijk} is error b, the random experimental error associated with the subplots. Each family formed a main plot and each line a subplot. The assumption that replications and families were random effects and resistance was a fixed effect was made at the outset of the study. The appropriate analysis of variance for each component of yield took the following form:

Source	d.f.	Expected Mean Square
Main Plots: Replications Families Error a	(r-1) (f=1) (r-1)(f=1)	$\sigma_{E}^{2} + S\sigma_{X}^{2} + SF\sigma_{R}^{2}$ $\sigma_{E}^{2} + S\sigma_{X}^{2} + RS\sigma_{E}^{2}$ $\sigma_{E}^{2} + S\sigma_{X}^{2}$
Subplots: Resistance Family x Resistance Error b	(s-1) (f-1)(s-1) f(r-1)(s-1)	$\sigma_{E}^{z} + R\sigma_{PS}^{2} + RF\sigma_{S}^{2}$ $\sigma_{E}^{z} + R\sigma_{PS}^{2}$ σ_{E}^{z}

where r = the number of replications, f = the number of families, and s = the levels of resistance. The main plot analysis was that of randomized blocks with the seven families replicated in three replications. The subplot analysis was the two levels of resistance randomized in each of the twenty-one main plots. The object of the analysis of variance was to detect any significant fixed added effect of the leaf rust on the yield, test weight, 500kernel weight, and kernels per spike in each of the three experiments. The appropriate error mean square for testing whether resistance significantly affected performance was the interaction (FS) mean square. The random effects of replications and families were appropriately tested using error a as the denominator in the F ratio. Error b was used to test the interaction (FS) for significance.

An analysis of variance combining the 1960 and 1961 data for similar experiments was conducted. The general method used is described by Federer (1955). Before the combined analysis of variance was conducted, a test was performed to determine whether or not the error variances for the experiments being combined could be considered homogeneous. Snedecor's test in which F is calculated as the quotient of the larger variance divided by the smaller was used.

In this study one asterisk (*) denotes an F value which is <u>significant</u> at the 5 percent level of rejection, two asterisks (**) denote a <u>highly significant</u> difference at the 1 percent level, and three asterisks (***) denote a <u>very highly significant</u> difference at the .5 percent level of rejection.

Missing plot data were computed using the technique described by Snedecor (1956).

EXPERIMENTAL RESULTS

The data collected in this study are presented in tabular form in an appendix. The 1960 results are included in tables 1 through 12 and the 1961 results are included in tables 15 through 28. The data for each component of yield are assembled by experiment and presented in a standard form. Tables 3 through 11 include the yields, relative test weights, and the 500-kernel weights recorded for each subplot in the three experiments conducted in 1960. Table 12 includes the complete analysis of variance on each of the three factors for each of the three experiments grown in 1960. Tables 16 through 27 present the raw data for yield, relative test weight, 500-kernel weight, and kernels per spike recorded for each subplot in the three experiments grown in 1961. Table 28 presents the complete analysis of variance on each of the four factors for each of the three experiments grown in 1961.

Table 29 in the appendix presents the analysis of variance of the combined data from replications IV-VI grown at Manhattan in 1960 and 1961. Table 30 presents the analysis of variance on the combined data from replications VII-IX grown at Hutchinson in 1960 and 1961.

The results of the 1960 and 1961 experiments are discussed separately.

1960 Results

The two experiments conducted at Manhattan were damaged by frost early in November of 1959. Table 1 in the appendix summarizes

the winter damage readings taken April 18, 1960. All plots were damaged. Thin and irregular stands persisted until early May. Replications IV-VI were planted eight days later than replications I-III. The readings indicate the later planting was not damaged as severely as the earlier planting. The mean of the resistant lines and the mean of the susceptible lines in each experiment were similar. Selections 50925 and 50926 were damaged most severely in both experiments.

The mean leaf rust and stem rust reading for the three replications in each experiment are included for each selection in table 2 of the appendix. Leaf rust infection was late in developing in each of the three experiments. Natural leaf rust infections were initiated at about the flowering stage. On May 30, 1960 at Manhattan, a very light leaf rust infection was noted. Stem rust was developing notably faster and spreading uniformly throughout the wheat nurseries. Infections of stem rust were heaviest in the area where replications I-III were grown due to the close proximity of inoculum from the spreader rows in the botany stem rust evaluation nursery. The leaf rust and stem rust readings were taken at Manhattan on June 15. An extremely heavy stem rust infection in replications I-III made it necessary to record only the response type of the selections. By June 20 the stem rust had reached epidemic form in replications I-III and was killing the plants. At Hutchinson the natural leaf rust infection was light and scattered as late as May 24. It was estimated that the heaviest infection on that date was 5-10 percent. The leaf rust and stem rust readings recorded in table 2 of the appendix were

taken June 13.

In view of the heavy stem rust infection in the Manhattan experiments, it was suspected that the differing stem rust response of the two selections representing family 10294 may have provided a bias toward greater differences due to resistance because the member which was susceptible to leaf rust was also susceptible to stem rust. An analysis of variance was conducted for each of the components in each of the three experiments with the data from family 10294 removed. Comparison of the F values with those obtained from analysis of the entire data resulted in leaving the data from family 10294 in the 1960 comparisons.

The 1960 raw data for yield, relative test weight, and 500kernel weight are presented in tables 5 through 11 in the appendix. The complete analysis of variance for each component is included in table 12 of the appendix. The relative test weight and 500kernel weight were missing for selection 59936 in replication IV and had to be calculated using the missing plot technique prescribed by Snedecor (1956). The same procedure was used to compute the relative test weight for selection 59926 in replication IV. Discussion of F values for each component for each experiment would involve undue repetition and confusion. The levels of significance associated with the F value computed for each source of variation for each component are presented in a condensed form in table 2, page 20.

Replications were a significant source of variation in only two instances. A highly significant difference among replication means was observed in the yield analysis of replications IV-VI

Source	: Manha		: Hutchinson
	: Rep I-III	: Rep IV-VI	: Rep VII-IX
	YIELD		
Main Plots:			
Replications	n.s.	**	n.s.
Families	49	49-49-49	n.s.
Subplots:			
Resistance	#34	*	49
Family x Resistance	n.s.	**	n.s.
	RELATIVE TEST	WEIGHT	
Main Plots:			
Replications	n.s.	n.s.	n.s.
Families	n.s.	n.s.	11.8.
Subplots:			
Resistance	41-01-01	n.s.	n.s.
Family x Resistance	n.s.	2.8.	*
	500-KERNEL WE	IGHT	
Main Plots:			
Replications	49-03-09	n.s.	n.s.
Families	48-49-49	合合金	***
Subplots:			
Resistance	你你你	会会	***
Family x Resistance	49-49-49	n.s.	4949

Table 2.	Levels of significance for yield, relative test weight,	
	and 500-kernel weight for sources of variance studied	
	in three experiments in 1960.	

and in the 500-kernel weight analysis of replications I-III. Family differences were a significant source of yield variation in replication I-III and very highly significant source in replications IV-VI. Significant differences occurred among family means for 500-kernel weight in each of the three experiments. The results indicate that significant differences in performance among pairs may exist. The mean yield of the resistant lines was significantly greater than the mean yield of susceptible lines in each of the three experiments. Highly significant differences in 500-kernel weight due to the additive effect of resistance were also recorded for each of the three experiments. It is noted that relative test weight means were unaffected by the additive effect of resistance in replications IV-VI and VII-IX. However, a very highly significant F value was associated with resistance in replications I-III.

The highly significant F value for the family x resistance interaction effect on yield for replications IV-VI is due mainly to a reversal of the yield performance of selections 59959 and 59960. The significant interaction effect on relative test weight in the Hutchinson experiment was caused by several susceptible selections outperforming the resistant member of the pair.

Replications, families, resistance, and the family x resistance interaction each gave very highly significant F values in the analysis of 500-kernel weight data from replications I-III.

Conclusions from significances obtained in the analysis of yield component data for 1960 indicate that there was a difference in the mean performance of the resistant and susceptible lines for yield and kernel weight, a difference in the mean performance of the seven families for yield and kernel weight, and an indication that a family x resistance interaction may exist under certain conditions. Significant reductions in test weight were not detected except in the presence of heavy stem rust.

1961 Results

The mean date of half-bloom for each selection is presented for each of the two Manhattan experiments in table 13 of the appendix. The grand means for resistant and for susceptible lines in each experiment were identical. The data indicate that the resistant and susceptible lines were similar in their date of halfbloom.

The height data given in table 14 of the appendix indicates that the means of the resistant and susceptible lines were similar. Examination of the data reveals a three-inch difference in mean height between the resistant and susceptible members of two pairs in the artificial infection experiment. In both pairs, 59925-59926 and 50935-59936, the resistant member was taller.

Leaf rust readings from the two Manhattan experiments are presented in table 15 of the appendix. Leaf rust failed to become established in the sulphur experiment. The plants in the sulphur experiment remained vigorous and free of measurable disease damage until harvest. Gool May weather delayed the development of leaf rust inoculum on the spreader rows in the artificial infection experiment. On May 18 the first infection pustules were noted in the experiment. At that time, reinfection pustules were noted at primary infection sites of the spreader plants. Warm, humid weather prevailed from June 1 through harvest. The leaf rust readings included in table 15 were recorded June 10. The infection increased rapidly thereafter until flag leaves of all susceptible lines in the artificial infection experiment were near 100 percent infected

before they became dry. On June 15 the leaf rust infection at Hutchinson had not developed so that readings could be taken. Hot dry winds the last days of June dried the leaves making it impossible to detect the extent of the infection.

The stem rust response of each selection is included in table 15. Stem rust infections were light in the artificial infection and natural infection experiments. Stem rust did not develop in the sulphur experiment.

A very heavy, but variable, infection of speckled leaf blotch, <u>Septoria tritici</u> Rob. ex Desm., was noted in the experiments at Manhattan. Percent of the flag leaf dead on June 11 was estimated at 0-10 percent in the sulphur experiment and 40-60 percent in the artificial infection experiment. No readings were taken on the subplots because the infection was not uniform.

The 1961 subplot data and means for yield, relative test weight, 500-kernel weight, and kernels per spike are presented in table 16 through 27 in the appendix. Table 3, page 24, includes the level of significance of each F value computed for the sources of variance studied in each experiment. For the complete analysis of each experiment see table 28 of the appendix.

The object of the sulphur treatment experiment was to detect yield differences between resistant and eusceptible lines that may be due to genetic effects other than leaf rust response. Sulphur dusting controlled the leaf rust. The difference between the mean performance of the resistant and the susceptible lines was not significant for each of the components of yield studied. These results indicated that differences in mean performance of

	Manh	att		2	Hutchinson
	Sulphur	8	Artificial	1	Natural
Source	Rep I-III	2	Infection	8	Infection
	1	8	Rep IV-VI	1	Rep VII-IX
	YIELD				
ain Plots:					
Replications	2.5.		n.s.		49-65
Families	449		n.s.		n.s.
Subplots:					
Resistance	11.8.		备势		B.S.
Family x Resistance	n.s.		n.s.		n.s.
	RELATIVE TEST	WE	EIGHT		
Main Plots:					
Replications	n.s.		n.s.		N.S.
Families	0-0-0		49		n.s.
Subplots:					
Resistance	n.s.		n.s.		*
Family x Resistance	n.s.		n.s.		n.s.
	500-KERNEL	EI	3HT		
Main Plots:					
Replications	n.s.		n.s.		
Families	0.04		n.s.		n.s.
Subplots:					
Realstance	n.s.		49-49		n.s.
Family x Resistance	特尔特		n.s.		n.s.
	KERNELS PER	SP	ike		
Main Plota:					
Replications	n.s.		n.s.		n.s.
Families	n.s.		49		n.s.
Subplots:					
Resistance	23.5.		B.8.		n.s.
Family x Resistance	D.E.		DeSe		n.s.
LEGITTÀ Y MASTECSUCA	23 8 m 8				

Table 5. Levels of significance for yield, relative test weight, 500-kernel weight, and kernels per spike for sources of variance studied in three experiments in 1961.

resistant and susceptible lines under leaf rust attack should be a direct result of the disease. The significances associated with the F values computed for families indicates that there were genetic differences in the performance potential of each family for yield, relative test weight, and 500-kernel weight. A very highly significant family x resistance interaction for 500-kernel weight indicated that the resistant and susceptible lines did not compare the same in each family in the absence of leaf rust. A higher kernel weight average for the susceptible line 59901 than the resistant member of the pair, 59902, contributed to this interaction.

The results of the two experiments under leaf rust attack were influenced by the light infection which occurred at Hutchinson and the heavy, but late, infection at Manhattan. Highly significant F values for the resistance source of variation were obtained for yield and relative test weight evaluation of the artificial infection experiment. Families accounted for a significant source of variation in relative test weights and kernels per spike in the same experiment. The lack of significant F values from the Hutchinson data indicates even less damage by the disease. A significant resistance effect did occur for relative test weight at Hutchinson but means in table 25 of the appendix reveal that the susceptible lines outperformed the resistant lines.

A summary of the 1961 results will indicate that lines used in this study differed in performance among families but were similar in performance within families in the absence of leaf rust, the infection at Hutchinson was too light to detect a resistance effect on any of the four components, and under a

somewhat heavier artificial infection at Manhattan, leaf rust reduced yield and 500-kernel weight. Significant differences in mean kernels per spike were not detected in 1961.

Combined Experiments

Summarised analysis of the 1960 and 1961 date for yield, relative test weight, and 500-kernel weight taken from replication IV-VI grown at Manhattan in 1960 and 1961 are included in table 29 of the appendix. Data from replications VII-IX grown at Hutchinson in 1960 and 1961 are summarized in table 30 of the appendix for the same three components of yield.

Frior to the analysis of the combined data, homogeneity of variance for each component was checked. F values computed for error a and error b indicated that heterogeneity of variance between years occurred for several of the components measured. The test weights taken at Manhattan were nonhomogeneous for both main plot and subplot values taken in 1960 and 1961. A check of error a and error b associated with the Hutchinson comparisons indicated a significant heterogeneity of variances occurred for error a in the yield analysis. No other significant F values were detected.

Results of a combined analysis, when it is known the error mean square is made up of heterogeneous experimental errors, must be interpreted with caution. Nonhomogeneous experimental error reduces the efficiency of the F value to detect true differences which may exist among means. Conclusions drawn from F values computed from data which are known to differ in experimental error will result in conservative decisions. A summary of the levels of significance associated with F values obtained from the combined data is presented in table 4.

Table 4. Levels of significance for yield, relative test weight, and 500-kernel weight for sources of variance studied using combined data from similar experiments in 1960 and 1961.

Source	1	Nanhattan Rep IV-VI	1	Hutchinson Rep VII-IX
5002.00				
		YIELD		
Main Plots:				
Years		49-49-49		444
Replications		n.s.		***
Families		49-49-49		4949-49
Subplots:				
Resistance		49-49-		4-4-44
Resistance x Year		n.s.		*
Family x Resistance		n.s.		n.s.
RE	LAT	IVE TEST WEIGH	T	
Main Plots:				
Years		n.s.		9-18-86
Replications		n.s.		n.s.
Families		n.s.		n.s.
Subplots:				
Resistance		n.s.		n.s.
Resistance x Year		n.s.		***
Family x Resistance		n.s.		*
5	600-	KERNEL WEIGHT		
Main Plota:				
Years		n.s.		49-19-19
Replications		n.s.		n.s.
Families		n.s.		499.99
Subplots:				
Resistance		49-49-49		4049
Resistance x Year		n.s.		444-95
Family x Resistance		n.s.		****

F values computed for years were very highly significant for each of the three components at Mutchinson and for yield at Manhattan. Years were an insignificant source of variation in test weights and kernel weights at Manhattan. Differences in mean performance between years are expected. The results indicate that environmental conditions at Mutchinson varied greatly enough to affect all three components whereas only yield was affected at Manhattan. The very highly significant families source of variation in yield for both combined experiments, and 500-kernel weight at the Hutchinson experiments indicate possible genetic differences among families.

Yield and 500-kernel weight differences between the resistant and susceptible lines were highly significant in both combined experiments. Relative test weight differences between the resistant and susceptible lines were nonsignificant at both locations. The significant resistance x year interaction at Eutohinson for all three components is a reflection of the differing behavior of the resistant and susceptible lines under different environmental circumstances. The resistance x family interaction was nonsignificant for all components at Manhattan and significant for relative test weight and 500-kernel weight at Eutohinson.

A summary of the combined analysis of two experiments grown in 1960 and 1961 indicated that leaf rust influenced yield and 500-kernel weight, families differed in performance ability for all components, and an unknown source of variation confounded with years resulted in heterogeneous experimental error in cartain measurements.

DISCUSSION AND CONCLUSIONS

Many methods in the past have been utilized to evaluate the effect of a disease on a crop. Chester (1944 and 1950). Since the intensity of the disease and the corresponding loss are influenced by the ecological relationships of the host, fungus, and the environment, it is logical that a reliable measure of actual loss must be made under field conditions. Genetic, pathologic, and environmental factors are confounded in a manner which is extremely difficult to evaluate. Yields are often inconsistent with disease damage estimates due to the interaction of many factors both genetic and environmental which are not apparent. Isogenic lines of wheat differing in response to leaf rust, grown under field conditions. are theoretically a promising method to detect the effects of leaf rust on the yield components. The chief objection to comparisons of resistant and susceptible segregates from a hybridization is that there is a possibility of linkage and correlation of a nature that leaf rust response and some factor of yield importance do not segregate independently. Results of the sulphur experiment at Manhatten in 1961 show that lines used in this study were similar within families but differed among families for the four components of yield measured. The nonsignificance of F values for resistant lines within families indicated that differences which may be observed between the mean performance of resistant and susceptible lines under leaf rust attack are a valid measure of the disease damage. Additional evidence is provided by date of halfbloom and height data to support the similarity between resistant

and susceptible lines. Examination of winter damage data recorded in 1960 shows that lines within families may differ somewhat for that characteristic. A disadvantage of the use of the sulphur treatment is that it also controls other diseases which may be associated with the experiments under leaf rust infection. The 1961 results showed that sulphur dusting controlled septoria. These findings are in agreement with Greaney (1934b) in that the true performance of lines under natural environmental conditions in the absence of one disease cannot be measured using sulphur.

The 1960 component of yield results at Manhattan were confounded by frost damage which thinned stands. Conclusions on the effect of leaf rust in replications I-III are complicated by the heavy stem rust infection.

The leaf rust infections in 1960 and 1961 were late in becoming established. In both years infections became established when plants were in the heading stage or later. Under these circumstances results do not reflect the true differences which may exist between resistant and susceptible lines grown in the presence of rust infections initiated in the early stages of plant development. Conclusions drawn from results obtained in this study must be made with precise reference to the character of the leaf rust infection.

Two experiments in 1960 indicate that leaf rust affected yield and 500-kernel weight but not test weight. The experiment under artificial infection in 1961 showed a leaf rust effect on yield and 500-kernel weight but no effect on relative test weight and kernels per spike. Late infections of 100 percent on the flag

leaf in the artificial infection experiment make it apparent that the stage of development of the plant when it is infected determines the ultimate damage rather than the maximum infection just prior to drying of the leaves. These results are in agreement with Mains (1930), Johnston and Miller (1934), and Johnston (1931). They found that post-blossom damage is reflected as a reduction in kernel weight rather than test weight or kernels per head.

The results at Hutchinson in 1961 are an indication of the very light leaf rust infection at that location. The significant effect of leaf rust on test weight is difficult to explain because the susceptible lines outperformed the resistant lines. Leaf rust infections may have become established late and had the effect of pruning the plants under hot, dry, windy conditions. This effect may have been to the disadvantage of resistant plants with larger areas of transpiring leaf surface remaining.

The fact that reductions in test weights were not detected may indicate the physiologic effect of leaf rust on the development of the kernel. Results under light leaf rust infection show that plumpness of kernel was maintained while kernel weight was reduced. Similar findings have been reported by Caldwell (1934) and Waldron (1936) under heavier leaf rust infections.

Significant family x resistance interactions indicate that resistant and susceptible lines may not represent the same level of resistance to damage from one family to another. The visual response to the disease may be a poor criteria for classification of lines selected in a study of this type. The ability of certain genotypes to tolerate leaf rust may be a confounding factor which

needs greater consideration in future studies. The studies of Caldwell <u>et al.</u>, (1934) pointed out that the variety Fulhard was not reduced in yield even though it was severely rusted. Samborski and Feterson (1960) obtained 12-28 percent reduction in yield of resistant but not immune selections when they were grown in close proximity to heavily infected susceptible plants. Yield comparisons in studies comparing resistant and susceptible lines may be affected by this factor.

It is important to note that a study of this nature involves only one of the possible types of genetic resistance and one maturity classification. This approach to disease damage evaluation will be of greatest value only if the selections utilized in the study are representative of the wheat grown commercially in the area being evaluated.

The limited results of two years of replicated study indicate that the method of using resistant and susceptible segregates from a cross can detect leaf rust effect on yield under circumstances of late and light infection. Further evaluation of this method to include a greater representation of natural environmental conditions will be required to evaluate the accuracy of this approach to estimation of leaf rust damage. It is entirely feasible that in the future, rather than present day subjective estimates, a series of test plantings throughout an area will provide a better estimate of losses.

SUMMARY

A comparison of lines of hard red winter wheat, which were genetically similar but differing in leaf rust response, for yield components was made in 1960 and 1961 at Manhattan and Hutchinson.

Comparisons under sulphur treatment in 1961 showed that lines used in this study were similar within families but differed among families.

Leaf rust occurred late each season. Significant differences in yield and 500-kernel weight due to the additive effect of leaf rust were detected under natural infections in 1960 and artificial infection in 1961. Reductions in yield were due to reduction in kernel weight when damage was inflicted by the disease after the flowering stage of development.

Comparison of resistant and susceptible lines as a method of damage estimation will require further study to include natural environmental conditions which favor heavier leaf rust infections.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to Dr. E. G. Heyne for the planning of the experiment, his supervision and assistance during the study, and for his guidance in the preparation of this thesis. Appreciation is also expressed to Dr. Stanley Wearden, Mr. C. O. Johnston, and Mr. L. E. Browder for technical assistance and advice throughout this study.

LITERATURE CITED

Bieber, J. L.

- A field study of the effects of leaf rust and stem rust on sister lines of a hard red winter wheat. Unpublished M.S. Thesis, Kansas State University Library. 1960.
- Caldwell, R. M., J. R. Kraybill, J. T. Sullivan, and L. E. Compton. Effect of leaf rust (<u>Puccinia triticina</u>) on yield, physical characters, and composition of winter wheats. Jour. Agr. Res. 48:1049-1071. 1954.
- Carlston, M. A. Coreal rusts of the United States: A physiclogical investigation. USDA Veg. Physicl. and Path. Bul. 16. 1899.
- Chester, K. Starr. Nethods of appraising intensity and destructiveness of cereal rusts with particular reference to Russian work of wheat leaf rust. Flant Disease Rptr. Suppl. 146:99-121. 1944.

The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. Chronics Botanica Company, Waltham, Mass. 1946.

Plant disease losses: Their appraisal and interpretation. Plant Disease Rptr. Suppl. 193:190-362. 1950.

- Federer, W. T. Experimental Design. The MacMillan Company. New York. 1955.
- Forsyth, F. R. and B. Peterson. Control of stem and leaf rust of wheat with fungicides. Can. J. Flant Sci. SSi175-180. 1958.
- Greaney, F. J. The prevention of cereal rusts by the use of fungicidal dusts. Canada Dept. Agr. Bull. 171. 1934a.

Field experiments on the prevention of cereal rusts by sulphur dusting (1930-1932). Sci. Agr. 14:456-511. 1934b.

Johnston, C. O.

Effect of leaf rust infection on yield of certain varieties of wheat. Jour. Amer. Soc. Agron. 23:1-12. 1931.

Resistance of winter wheat to leaf rust. Kansas Exp. Sta. Bienn. Rep. 1936-1938:103-104. 1938. Johnston, C. C., and E. C. Miller Relation of leaf rust infection to yield, growth, and water economy of two varieties of wheat. Jour. Agr. Res. 49:955-981. 1934. Mains, E. B. Effects of leaf rust (Puccinia triticina Eriks.) on yield of wheat. Jour. Agr. Res. 40:417-446. 1930. Melchers, L. F. Puccinia triticina Eriks, leaf rust of winter wheat causes damage in Kansas. Phytopathology 7:224. 1917. Miller, Paul R. Plant disease forcasting. Chapter L (50) Plant Pathology, Problems, and Progress 1908-1958. Univ. of Wisc. Press, Madison. 1958. Pady, S. M., C. O. Johnston, W. C. Haskett, W. H. Sill, Jr., E. D. Hansing, J. Fellows, C. T. Rogerson, and J. C. Frazier. Diseases of wheat. Kansas Agr. Exp. Sta. Bull. 368. 1955. Peterson, R. F., A. B. Campbell, and A. E. Hannah. A diagramatic scale for estimating rust intensity on leaves and stems of cereals. Can. Jour. Res. (C) 26:496-500. October, 1958. Samborski, D. J. and B. Peterson Effect of leaf rust on the yield of resistant wheats. Canadian Jour. of Plant Science 40:620-622. 1960. Snedecor, G. W. Statistical methods. 5th Ed. Iowa State College Press, Ames, Iowa. 1956. Suneson, C. A. Effect of stem rust on the yield of wheat. Agron. Jour. 46(3):112. 1954. Waldron, L. R. The effect of leaf rust accompanied by heat upon yield, kernel weight, bushel weight, and protein content of hard red spring wheat. Jour. Agr. Res. 53:399-414. 1936. Wood, J. I. and N. W. Nance. Diseases of plants in the United States in 1937. Leaf rust (Puccinia rubigo-vera triticia). Plant Disease Rptr. Suppl. 110:184-188. 1938.

APPENDIX

Winter damage recorded on a scale of 0-10 taken April 18, 1960 on resistant and susceptible selections grown in two experiments at Manhattan in 1960.* Table 1.

8 1

Selection No.	No.		Rep I-III	III	•• ••	Rep IV-VI	IV-VI	: Mean	an
* • 8	Ø	00 00	н н Н	Ø			ß	* *	02
20663	59901		6.0	5.6		6.6	6.6	6.3	6.1
59912	59911		7.3	6.0		8.6	0*4	8.0	6.5
59926	59925		4.6	4.3		5.6	5.6	5.1	5.0
59927	59928		7.6	7.6		0*6	8.6	8.4	8.1
59935	59936		6.3	5.3		6.6	6.0	6.4	5.6
59959	59960		6.0	0.7		0*4	8.0	6.5	7.5
59965	59966		6.0	6.6		7.3	8.6	6.6	7.6
	Mean		6.3	6.0		7.2	7.2	6.8	6.6

* R . Resistant lines, S . Susceptible lines

		Leaf Rust			Stem Rust Response	onse
Selection	. Average	percent .	. Mesponse	HAD I-TI	Manhattan	Rep VIT-IX
• 00	IV-VI den :	XI-IIA del :		dout	4	
29901	04	44	2	MR	MR	MR
59902	T	T	R	8	MR	MR
59911	73	04	20	SR	50	SR
59912	H	T	R	SR	03	SR
59925	Lala	73	02	0	63	02
59926	H	H	R	H	R	M
59927	F	08	R	MR	MAR	MR
59928	80	73	ŝ	NH.	MR	MR
59935	L	F	R	R	MR	MIR
59936	73	67	23	MR	MR	WE
59959	L	E	R	MR	MER	MR
59960	73	67	03	MR	MR	MR
59965	H	H	R	MAR	MR	MIR
59966	80	73	5	NH.	MR	MR

Table 2. Mean leaf rust percent and response and stem rust response readings

39

* R . Resistant lines, S . Susceptible lines.

Yields in grams of replicated resistant and susceptible selections grown under matural leaf rust infection at Manhattan in 1960, replications furth.** Table 3.

R S I S I S I S I S I I S I S I S I I S I S I S I I I S I S	Selection 10.	on no-	Rep	I	 Rep	TIQ		 Rep III	III		Mean	c
59901 378 162 775 158 356 257 562.5 59911 457 166 284 227 554 196 565.0 59912 457 166 284 227 554 196 565.0 59926 254 120 194 104 251 90 235.0 59926 416 134 104 251 90 235.0 59936 416 155 3222 144 356 240 364.0 59936 159 299 243 313 294.0 364.0 59936 346 159 294 501 522 234.0 59936 546 504 501 522 234.0 544.0	R	5	 1.1		 1 1		02	R	02	R	••	S
59911 457 166 284 227 554 196 565.0 59255 254 120 194 104 251 90 253.0 59926 359 264 415 260 427 502 599.6 59936 416 155 322 144 356 24.0 369.6 59936 416 155 322 144 356 24.0 364.6 59936 416 159 299 234 414 313 294.0 59966 346 159 294 301 322 234.6 59966 346 152 304 301 322 234.6	9902	59901	378	162	373	Ч	58	 336	257	362	63	192.3
59925 254 120 194 104 251 90 255.0 59926 359 254 415 260 427 502 399.6 59936 416 155 322 144 356 24.0 364.6 59936 416 155 322 144 356 24.0 364.6 59936 416 159 399 24.2 414 313 294.0 59936 346 159 299 294 364.6 364.6 59966 546 152 304 301 322 234.0	3912	11663	457	166	284	C/3	27	 354	196	365	0.	196.3
59926 359 254 415 260 427 502 599.6 599.6 59936 416 155 322 144 356 240 364.6 59936 416 155 322 144 356 240 364.6 59960 169 159 299 242 414 313 294.0 59966 346 152 504 301 322 234.0 105 59966 346 152 504 301 322 234.0 105	9926	59925	 254	120	194	Ч	04	 251	06	233	0.	104.6
59936 416 155 322 144 356 240 364.6 59960 169 159 299 242 414 315 294.0 59966 346 152 304 301 322 234.0 59966 346 152 304 301 322 221 324.0	9927	59928	 359	254	413	<i>cv</i>	093	427	302	399	.0	272.0
59960 169 159 299 242 414 313 294.0 59966 346 152 304 301 322 221 <u>324.0</u> Maan 334.6	9935	59936	416	155	322	A	44	356	240	364	.0	179.6
59966 346 152 304 301 322 221 324.0	9959	59960	 169	159	599	CB.	42	414	313	294	0.	238.0
334.6	9965	59966	 346	152	304	6,3	105	322	221	324	0.	224.6
									Mean		.6	201.5

* R . Resistant lines, S . Susceptible lines.

an-
sus- at M
ction
infe
rust
leaf
repli tural . *
of
under ons I-
1n own
reights gitons gi
test v select n 1960,
 Relative test weights in grams of replicated resistant and sus- ceptible selections grown under matural leaf rust infection at Man- hattan in 1960, replications I-III. *
4.
Table

Selection No.	. on no.	••	Rop	R I	Rep	: II	Rep	Rep III :	Me	le a.n
R	2		R	2	R :	50	R	•• ••	R	••
20665	29901		24.10	22.38	24.16	22.66	24.24	22.67	24.17	22.57
59912	11663		23.86	22.91	23.91	22.71	23.87	22.63	23.88	22.75
59926	59925		23.79	20.48	23.77	21.64	24.50	21.68	24.02	21.27
729927	59928		24.12	23.82	23.75	23.68	24.01	24.07	23.96	23.86
59935	59936		24.71	22.09	24.46	23.06	24.60	24.15	24.59	23.10
59959	59960	-	23.96	23.13	23.98	23.43	24.20	23.37	24.05	23.31
59965	59966		28.78	23.02	23.15	24.30	23.91	23.46	25.28	23.59
								Mean	24.28	22.92

* R . Resistant lines, S . Susceptible lines

The 500-isornel weights in grams of replicated resistant and susceptible selections grown under natural leaf rust infection at Mainatura in 1960, replications 1-111.** Table 5.

Selection No.	. No.	acH :	TO	Kep :	IT C	Rep II	TII 3	Me	ean
ж 8	02	* H	03		••• 62	R	50	R	50
59902	10663	13,94	11.20	14.58	11.72	14.51	12,15	14.34	11.68
59912	11663	14.84	11.73	14.94	12.53	15.77	12.12	15.18	12.06
59926	59925	13.55	10.78	14.17	9.57	15.08	06°6	14.26	10.08
59927	59928	14.64	15.48	14.99	12.93	15.21	13.83	14.95	13.41
59935	59936	16.00	12.61	16.10	12,54	16.32	13.51	16.14	12.89
59959	29960	14.79	13.09	14.64	12,88	15.47	13.52	14.97	13.16
59965	59966	15.49	12.44	15.42	13.28	16.28	13.29	15.73	13.00
							Man	15.08	12.33

= Susceptible lines. R = Resistant lines, S 300

Table 6. Yields in grams of replicated resistant and susceptible selections grown under natural leaf rust infection at Manhattan in 1960, replications IV-VI.*	Mean
ble in	
suscept1 Manhattar	D VI
at l	Re
resistant infection	V : Rep VI : Mean
cated	Rep
of repli ural leaf -VI.*	lection No. : Rop IV :
nat: nat	TV
in grander ation	Rop
Vields in grams of rel grown under natural le replications IV-VI.*	91
9	No.
Table	lection

Selection	on No.		Rop	TV	 Rep	V C	••	Rep	Rep VI		Mean	un
R s	1 1	°. R	••	2	 R	02		R	••	**	R	202
59902	10669	485	10	484	474	432		416	429	6	458.3	448.3
59912	11663	482	-	416	445	339		421	319	6	449.3	358.0
59926	59925	420	0	401	360	275		279	232	03	353.0	302.6
59927	59928	519		453	547	445		483	350	0	516.3	416.0
59935	59936	524	ell	338	493	414		438	345	LQ.	485.0	365.6
59959	59960	537	~	489	374	455		366	491	ri -	425.6	478.3
59965	59966	544	~	401	583	439		539	442	03	566.3	427.3
									Me	Mean	464.8	399.4

* R = Resistant lines, S = Susceptible lines

Relative test weights in grams of replicated resistant and susceptible selections grown under matural leaf rust infection at Manhattan in 1960, replications $\rm IV-VI_{\bullet^*}$ Table 7.

111

**	•	Ran IV	IV 2	Reu	* A	Rep VI	* IN	Mie Sn	n
	200	R °	02	R 3	50	R	2	R	S
2831S 23	10665	25.29	25,03	25.47	25.06	25.03	25.11	25.26	25.07
	11663	24.96	24.59	25,07	24.45	29.29	24.52	26.44	24.52
59926 59	59925	25.9944	24.28	24.84	23.30	25.13	23.33	25.32	23.64
5927 59	59928	25,28	25.10	25.03	25.19	24.85	24.63	25.05	24.97
59935 59	59936	25,36	24,8644 24.79	24.79	24.88	25.23	24.15	25.13	24-63
59959 55	59960	24.76	24,98	24.76	25.01	25.14	24.94	24.89	24.98
59965 55	59966	25,28	25,65	25.13	25.19	25.08	25.50	25.16	25.45
							Mean	25.32	24.75

* R - Resistant lines, S - Susceptible lines.

The 500-kernel weights in grams of replicated resistant and susceptible selections grown under maturel leaf rust infection at Manhatten in 1960, replications IV-12.* Table 8.

...

\$ \$. R	A dau	Hel	Rep VI :	Meen	U
59901 14.76 59911 14.80 59925 14.75 59928 15.45 59936 14.25 59956 14.25		02	R	50	R :	S
59911 14.80 5 59925 14.73 5 59928 15.41 5 59356 15.25 5 59950 14.49	7 15.38	14.60	14.53	13.92	14.89	14.50
59925 14.75 59928 15.61 59936 16.25 59960 14.49	6 14.87	13.35	15.40	15.58	15.02	13.56
59928 15.61 5 59936 16.25 59960 14.49	11.52	15.48	15.08	11.65	13.78	13.18
59956 16.25 59960 14.49	10 T2.05	14.39	15.02	14.40	15.23	14.40
14.49	12.0844 15.81	14.43	15.62	14.07	15.89	13.53
	30 14.45	14.49	14.94	13.91	24.63	14.53
59965 59966 15•31 14•59	14.82	14.16	15.59	14.00	15.24	14.25
				Muan	14.95	13.91

* R = Resistant lines, S = Susceptible lines. ** Data computed using missing plot technique.

Yields in grams of replicated resistant and susceptible selections grown under maintal leaf rust infection at Mutohinson in 1960, replications VII-IX.** Table 9.

N 1 1

•1	V	50 F	R . S .
403	505	370 505	
445	484	375 484	
340	345	246 345	
443	420	380 430	
379	428	306 433	
389	426	276 426	
465	425	377 425	

* R = Resistant lines, S = Susceptible lines

Relative test weights in grams of replicated resistant and susceptible selections grown under natural leaf rust infection at Hutchinson in 1960, replications VII-IX.* Table 10.

11 1 1

1	02	24.92	24.20	23.81	2.4.73	24.63	24.61	25.15	24.58
Mean	R	25.06	25.22	24.98	24.53	25.03	24.85	24.74	24.92
							-		
Rep IX	••	24.61	24.25	24.34	24.68	24.46	24.40	24,98	Mean
Rep	R	25.02	25.48	24.92	24.38	24.47	24.97	25.26	
	2.0	10	~	10	wit	-	10	60	
TITA	ω.	25.53	24.67	23.°76	25.14	25 °01	24 = 35	25 .28	
Rep	50 50	25°10	25 °19	24.61	24.072	24°92	24.82	24.046	
TIV	63	24,61	25.68	23 . 33	24.36	84,42	25.08	25,18	
Ran	R s	25 .05	25.00	25.42	24.49	25.39	24.77	24.50	
00	1	H	-1	5	00	20	0	90	
n No.	50	29901	59911	59925	59928	59936	59960	59966	
Selection No.	R	59902	59912	59926	59927	59935	59959	59965	

* R = Resistant lines, S = Susceptible lines.

The 500-isrnel weights in grams of replicated relatant and susceptible elections grown under natural leaf rust infection at futering on in 1960, replications VII-IX.* Table 11.

H : S : 59902 59901 12 59912 59911 14 59926 59925 12 59927 59928 12		TTA GOU	eH :	Hep VIII	. Re	Rep IX		usey
59901 59911 59925 59928	K s	0	. R	•	. R	••	R	••
59925 59928 50928	13.76	14.00	13.56	12.55	13.71	12.79	13,68	13,11
59925 59928 50074	14.17	11.86	15.92	13.04	15.36	12.67	15.15	12.52
59928	13.22	10.99	13.26	10.62	13.55	11.68	13.34	11.10
ROOTE	13.19	12.17	13.10	12.91	13.81	12.47	13.37	12.52
00000	14.90	12.97	14.66	13.62	14.30	12.66	14.62	13.08
59959 59960 13	13.78	13.15	13.90	12.11	14.51	12.79	14.06	12.68
59965 59966 12	13.54	13.13	13.81	13.40	14.32	12.98	13.89	13.17
						Mean	14.02	12.60

* R - Resistant lines, S - Susceptible lines.

Source of variation	: d.f.	••	Se :	Ma	(H) 88	••	S1g
	Manhattan		Yield Evaluation,	Rep I-III.			
Main Plots: Replications Families Error a	n o n	11, 88, 44,	11,791.05 88,465.91 44,886.95	5,895,52 14,744.32 3,740,58	1.58 3.94	(1) st	* *
Subplots: Resistance Family x Resistance Error b	18 14	187, 18, 38,	187,533,93 18,683,93 38,577,54	187,333,93 3,113,87 2,738,38	60.16 1.14	10 4 ⁴	***
	Manhattan	Test	Weight Evaluation,	lon, Rep I-III.	•]		
Main Plots: Replications Families Error a	12 0 2		.32 11.47 8.24	.16 1.91 .69	.23 2.78	10 00	n.s. n.s.
Subplots: Resistance Family x Resistance Error b	14 C		19.33 6.21 14.72	19.33 1.04 1.05	18,66	90	***
Mer	Manhattan 500-kernel	0-kernel	Weight Evaluation.	uation, Rep I-III.	·III.		
Main Flots: Replications Families Error a	18.0 %		2.84 25.69	1.42 4.82 .058	24.5 73.8	10.00	***

: : Source of variation : d.f. :	Subplots: 1 Resistance Family x Resistance Error b 14	Manhattan Yield	Main Flots: Replications 8 Families 6 Error a 12	Subplots: 1 Resistance 5 Family x Resistance 6 Error b 14	Manhattan Test	Main Flots: Replications 6 Families 6 Error a 12	Subplots: 1 Reststance 5 Family x Resistance 5 Error b 12	Manhattan 500-kernel	Main Plots: 2 Replications 2 Families 6
Sa 	79.62 7.23 2.60	feld Evaluation, Rep.	34,085.76 107,541.34 24,157.24	44,884.03 41,181.80 16,569.67	Weight Evaluation,	5.80 7.39	3.44 6.91 6.68	We1ght	-07 7.87
Ms s	79.62 1.20	1. Rep IV-VI.	17,042.88 17,923.56 2,013.10	44,884.03 6,863.63 1,183.65	tion, Rep IV-VI.	• • • • • • • • • • • • • • • • • • •	3.44 1.15 .56	Evaluation, Rep IV-VI.	•035 1.31
(Re	66.35 6.32		8.47 8.90	6.54 5.80		.40 1.02	2.99 2.05		.29
s Sig	***		**	* *		n.s. n.s.	n.s. n.s.		10.8°

~	
ontinued	
.2. (ct	
Table 1	

Source of variation	: defe :	S8 3	Ma s	F S	Sig
Subplots: Resistance Family x Resistance Error B	1901	11.50 4.72 19.24	11.50 .79 1.48	14.56	** 10.83
	Hutchinson Yield	Yield Evaluation, Rep	Rep VII-IX.		
Main Flots: Replications Families Error a	500	31,149,15 58,331,95 8,139,19	15,574,58 9,721,99 6,782,66	2.30 1.43	П.8. П.8.
Subplots: Resistance Family z Resistance Error b	L 6 L 6	21,760.38 11,343.29 17,916.33	21,760.38 1,890.56 1,279.74	11.51 1.48	л.8.
H	Hutchinson Te	Test Weight Evaluation, Rep VII-IX.	on. Rep VII-IX.		
Mein Plots: Replications Families Error a	808 1	.18 1.44 1.44	.09 .24 .115	.79 2.07	n.s. n.s.
Subplots: Resistance Family x Resistance Error b	1 8 4 4 6 1	1,21 3,08 2,04	1.21 .51 .15	2.34 3.52	ц•в• #

Comme of maniation				Ga	. Ma		8	•	54 cr
Hute	obinso	n 500	-kernel	Weight Ev	aluation.	Hutchinson 500-kernel Weight Eveluation, Rep VII-IX.			
Replications Families		0 00		11.72		1.95	5.27		· · · · · · · · · · · · · · · · · · ·
Error a		12		4.45		•37			
Subplots: Resistance		-		21-10		21.10	22.69		***
Family x Resistance	00	0		5.56		.93	6.64		**
Error b		14		1.98		•14			

Selection No.	on No.	••	Sulphur	- Rep I-III	III-I	: Natural	: Natural Infection-Rep IV-VI	V-VI
R 3	20		R		20	s R	••	
59902	29901		27		28	27	27	
59912	59911		28		26	28	26	
59926	59925		26		28	27	27	
59927	59928		28		89	28	88	
59935	59936		26		25	26	26	
59959	29960		26		27	26	26	
59965	59966		27		28	27	27	
		Mean	27		27	27	27	

Nean date of half-bloom in May of resistant and susceptible rines grown in two replicated experiments at Manhattan in 1961, rines grown in two replications $T_{\rm eff}$ Table 13.

* R . Resistant lines, S . Susceptible lines.

grown *********	961. **
lines	and a
Mean height in inches of resistant and susceptible lines grown	in two replicated experimence at manageur, surplue and artitute infection, and under natural infection at Hutchinson in 1961.*
sistant a	l infecti
ser lo se	r natural
in inche	and under
in height	ection,
	1nf
Table 14.	

					r	Manhattan			Hutc	Hutchinson
Select	Selection No.		Sulphur Ren I-TT	phur I-TTT	** **	Artificial Infection Rep IV-VI	Infection VI		Rep	Natural Infection Rep VII-IX
R 3	2	-	R	*		R s	62	••	R	••
59902	59901		39	40	0	40	39		39	38
59912	20011		39	38	-	39	38		37	37
59926	59925		38	37	2	40	37		38	38
59927	59928		37	36	60	38	37		37	36
59935	59936		38	37	~	39	36		38	37
59959	59960		37	37	2	37	37		36	37
59965	59966		38	39	0	38	59		38	38
	Magn		38	377	5	39	38		38	37

* R . Resistant lines, S . Susceptible lines.

		90	Pel	reen	at La	Jac	Percent Leaf Rust		••		Stem Rust Response	ast R	esponse		
Selection No.	No.	.		r	Manhattan	atte	an			Ma	Manhattan	••	Hute	Hutchinson	
		00	Su	Sulphur	IL		Artittolal	Lela1		Art	Artificial		Nati	Natural	
		-	Rep I-III	H	H		Infection Rep IV-VI	ction IV-VI	** **	Inf	Infection Rep IV-VI		Rep	Infection Rep VII-IX	
R s	02	·	H	••	202		R	02	**	R	••	40	R	••	
59902	59901		744		E		E4	53	37	25	8		æ	R	~
59912	11663		E4		E4		E	41	40	60	03		03	63	-0
59926	59925		H		H		E.	41	47	R	5/2		R	03	-
59927	59928		E4		H		H	ŝ	53	H	R		2	R	~
59935	59936		64		E4		EH	Ca Ca	24	R	R		25	4	~
59959	29960		EH		H		E4	ŝ	50	R	R		H	1 kig	25
59965	59966		EH		E		E	9	63	R	R		R	Pile	05

* R - Resistant lines, S - Susceptible lines.

Yields in grams of replicated resistant and susceptible selections grown under sulphur treatment at Manhattan in 1961, replications Table 16.

: Mean	с R с	5 690.3 720.6	2 757.3 763.0	5 737.3 702.3	£ 804.0 727.0	867.0 705.6	3 720.3 695.0	1773.3 761.3	735 6 795 0
Rep III	R * 0	690 705	717 722	758 745	806 764	737 672	742 688	782 754	Maan
00						-			
Rep II	**	723	184	723	649	3 714	681	163	
••	8 R	690	742	756	856	638	706	764	
IO	••	734	780	629	738	731	716	767	
: Rep	s R	691	813	698	750	626	713	774	
n No.	2	59901	59911	59925	59928	59936	59960	59966	
Selection No.	R s	20869	59912	59926	59927	59935	59959	59965	

* R - Resistant lines, S - Susceptible lines.

Relative test weights in grams of replicated resistant and susceptible selections grown under submur treatment at Mainfatten in 1961, replications i-ill.* Table 17.

R : S : N : S i S i S i S i S i S i S i S i S i S i S S R i S S S R i S	Selection No.	No.	: Rep	I d	: Rer	Rep II	: Rep	III 0	3 M	liean
59901 24.76 25.12 25.08 24.48 25.49 25.40 25.10 59911 25.66 25.79 25.53 25.65 25.49 25.41 25.49 25.49 59911 25.66 25.79 25.53 25.59 25.41 25.49 25.49 25.49 59925 25.54 25.49 25.29 25.49 25.41 25.49 25.41 59926 25.54 25.49 25.49 25.41 25.49 25.41 25.49 25.44 59956 25.56 25.49 25.47 25.49 25.44 25.46	R	S S	8 R	••	s R	••	8 R	00 00	: R	••
59011 25.66 25.77 25.53 25.49 25.49 25.41 25.64 25.49 59925 25.82 25.82 25.83 25.82 25.82 25.81 25.81 59926 25.54 25.49 25.49 25.41 25.81 25.81 59926 25.54 25.49 25.49 25.41 25.89 25.84 25.81 59926 25.55 25.49 25.82 25.47 25.64 25.89 55.89 59956 25.15 25.49 25.82 25.81 25.64 25.64 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.46 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	59902	29901	24.76	25.12	25.08	24.48	25.4			24.80
59925 25.82 25.82 25.83 25.83 25.84 25.81 25.81 59928 25.54 25.40 25.40 25.81 25.81 25.83 59928 25.55 25.43 25.81 25.83 25.84 25.83 59936 25.56 25.13 25.88 25.83 25.47 25.64 59960 25.47 25.83 25.82 25.83 25.46 25.64 59960 25.48 25.69 25.43 25.83 25.46 25.55 59966 25.84 25.44 25.65 25.45 25.35 2 59966 25.84 25.44 25.65 25.45 25.35 2 59966 25.84 25.45 25.35 2 25.35 2	59912	11663	25.66	25.79	25.39	25.59	25.4		25.49	25.67
59928 25.64 25.49 25.40 25.40 25.40 25.41 25.29 59936 25.56 25.13 25.88 25.83 25.47 25.64 25.64 59960 25.778 25.50 25.88 25.69 25.564 25.64 25.664 59960 25.78 25.40 25.669 25.564 25.46 25.654 25.664 25.664 25.664 25.664 25.664 25.664 25.664 25.666 25.566 25.666 25.566 25.666 25.566 25.566 25.566 25.556 25.466 25.556 <td< td=""><td>59926</td><td>59925</td><td>25.22</td><td>25.28</td><td>25.29</td><td>25.24</td><td>25.1</td><td></td><td></td><td>25.29</td></td<>	59926	59925	25.22	25.28	25.29	25.24	25.1			25.29
59956 25,56 25,13 25,68 25,58 25,47 25,49 25,64 59960 25,78 25,50 25,58 25,82 25,82 25,48 25,48 59966 25,24 25,44 25,69 25,56 25,35 25,48 25,48 59966 25,24 25,44 25,69 25,36 25,35 10000	59927	59928	25.54	25.49	25.40	25.20	24.9			25.37
59966 25.78 25.50 25.59 25.68 25.38 25.48 25.48 59966 25.24 25.50 25.44 25.69 25.35 25.35 180an 25.35	59935	59936	25.56	25,13	25.88	25.23	25.4			25.38
59966 25.24 25.30 25.44 25.69 25.36 25.74 <u>25.35</u> 1 Mean 25.36	59959	59960	25.78	25.50	25.39	25.82	25.2		25.48	25.73
25.36	59965	59966	25.24	25.30	25.44	25.69	25.3		25.35	25.58
								Mean	25.36	25.40

* R . Resistant lines, S . Susceptible lines.

The SOO-rearnel weights in grams of replicated resistant and succeptible selections grown under sulphur treatment at Mainhaitean in 1901, replications 1-111.** Table 18.

Select	Selection No.	: Ro	Rep I	: Rep	Rep II	: Rep	III	2	lean
R	••	s R	••	s R	**	s R	••	* 8	**
59902	10663	14.31	14.68	14.64	15.00	14.72	15,05	14.56	14.91
59912	29911	16.25	15.72	16.56	15.68	17.03	14+87	16.61	15.42
29926	59925	15,92	15.32	15.48	15,35	15.24	15.43	15.55	15.37
26669	59928	16.56	16.03	16.36	15,83	16.23	16.37	16.38	16.08
59935	59936	15.14	15,57	15.48	15.42	15.33	15.15	15.32	15.38
63669	29960	15.61	15,50	15.26	15.40	15.42	15.82	15.43	15.57
59965	59966	16,13	15.04	16.04	15,11	16.10	14.90	16.09	15.02
							Mean	15.70	15.39

Resistant lines, S - Susceptible lines. 1 4 K

The mean number of kernels per spike of three randomly selected spikes from replicated resistant and susceptible selections grown under sulphur treatment at Manhattan in 1961, replications I-III.** Table 19.

Select	Selection No.	: Re	Rep I		Rep II	II		Rep	III			Me	lean	
R	02	84 **	8 3		**	02	0.0	н		20		R		20
59902	10665	17,00	17°75	-	16.25	21.°00		20.25	17.	7.50	e.	17.83	-	18.75
59912	29911	17.00	22,25	-	17°75	16.25		14.25	15.	15.25	-	L6.33	in	17.92
59926	59925	17.00	21,75		19,25	21,00		15,25	20	20.25	-	17,17	08	21.00
59927	59928	17.00	18,75		17.00	16.25		16,25	20	20.00	-	16.75	2	18.33
59935	59936	18.50	15,50		17.75	17.75		17.00	15	15.75	-	17.75	Ч	6.33
59959	59960	18.00	17,25	04	80.50	17.25		15.75	16	16.75	-	18,08	Ч	17.08
59965	59966	18,00	16.25		16,75	18°75		17.00	13	13.25	-	16,92	-	17.75
									Me	lean	-	17.26	-	18.17

S . Susceptible lines. * R = Resistant lines.

Miglds in grams of replicated resistant and susceptible selections grown under artificial infection at Manhattan in 1991, replications IV-012.* Table 20.

Selection No.	No.	••	Re	Rep IV		Rep	N		Rel	Rep VI	60	Mean	n
••	s	•1	R	••		R	0.0	02	R	••		R	03
59902	10663		282	529	63	630	539	0	587	555	ß	603.0	541.0
59912	29311		590	558	64	643	594	4	553	559	0	595.3	570.3
59926	59925		585	547	56	561	514	4	559	551	r.	568.3	537.3
59927	59928		674	525	67	649	607	2	664	617	4	672.3	583.0
59935	59936		553	500	56	561	539	0	628	587	4	580.6	542.0
59959	59960		619	523	60	603	544	4	553	591	e	591.6	552.6
59965	59966		284	539	65	650	611	н	667	702	50	628.0	617.3
										Me	Mean	605.6	563.4

* R . Resistant lines, S . Susceptible lines.

Relative test weight in grams of replicated resistant and susceptible selections grown under artificial infection at Manhattan in 1961, Table 21.

s S s R s S s R s S S	Selection No.	. on no.	: Re	Rep IV	: Re	Rep V	: Re	Kep VI		Mean	n
59901 25,03 25,46 25,15 24,94 25,16 25,27 59911 25,51 25,70 25,56 25,40 24,86 24,55 59925 24,72 25,03 25,10 24,44 24,96 24,47 59928 25,46 25,46 25,46 25,46 25,56 24,47 59928 25,46 25,46 25,46 24,46 24,49 24,47 59928 25,46 25,46 25,46 25,46 25,61 25,63 59936 25,51 25,54 25,46 25,46 25,53 25,51 59966 25,57 26,56 25,51 25,51 25,26 25,51 59966 25,57 24,76 25,53 25,21 25,25 25,21 25,25	R s	ø	* R	00) 01)	: R	••	s R	**	00 00	R	02
59911 25.51 25.470 25.56 25.46 24.96 24.55 59925 24.772 25.03 25.10 24.44 24.96 24.47 59926 25.461 25.45 25.24 25.10 24.46 25.53 59926 25.461 25.45 25.24 25.19 25.06 25.30 59926 25.461 25.46 25.46 25.46 25.54 25.30 25.53 59960 25.53 25.51 25.56 25.50 25.56	2060	29901	25.03	25.46	25.15	24.94	25.	9	25,27	25,11	25.22
59925 24.772 25.03 25.10 24.44 24.95 24.47 59928 25.46 25.45 25.24 25.19 25.05 25.53 59936 25.61 25.45 25.46 24.97 25.23 59960 25.53 25.46 25.46 25.66 25.54 59966 25.57 25.46 25.46 25.26 25.26 59966 25.57 24.76 25.58 25.51 25.56	59912	29911	25.31	25.70	25,36	25.40	24.6	36	24.53	25, 18	25.21
59928 25.46 25.45 25.45 25.25 25.56 25.50 59936 25.61 25.56 25.45 24.66 24.97 25.82 59960 25.57 25.51 25.84 25.63 25.51 25.61 25.61 59966 25.57 24.76 25.59 25.21 25.51 25.21 25.21	59926	59925	24.72	25.03	25.10	24.44	24.5	90	24.47	24,93	24.65
25.61 25.56 25.46 24.66 24.97 25.22 25.53 25.51 25.64 25.09 25.54 25.86 25.557 24.76 25.59 25.21 25.23 25.15	29927	59928	25.46	25.45	25.24	25.19	25.(90	25.30	25.25	25,31
59960 25.59 25.51 25.94 25.09 25.34 25.26 59966 25.57 24.76 25.59 25.21 25.23 25.15 Mean	9935	59936	25.61	25,58	25.46	24.86	24.	70	25.22	25.35	25.22
59966 25.57 24.76 25.59 25.21 25.23 25.15Mean	9959	59960	25.39	25.51	25.84	25.09	25.	54	25.26	25.52	25.29
	9965	59966	25.57	24.76	25.59	25.21	25.5	33	25,15	25.46	25.04
									Mean	25.26	25.13

* R = Resistant lines, S = Susceptible lines.

The 500-kernel weight in grams of replicated resistant and susceptible selections grown under artificial infection at Manhattan in 1961, replications IV-VI.** Table 22.

 2 3 2 R 59901 15.2 59911 14.5 59925 12.6 59928 14.7 59936 14.3 59966 14.7 59966 14.7 	Selection No.	on No.	1 NeD	AT Q	s Re	Rep V :	hep	TA IA	Meen	n
59901 15.21 15.40 15.40 15.40 15.40 15.40 15.40 15.50 59911 14.50 15.75 15.73 15.23 14.60 14.67 59925 12.66 15.12 14.87 15.86 15.53 14.67 59926 12.66 15.12 14.86 15.86 15.86 15.57 59926 14.79 15.80 14.86 15.86 15.86 15.57 59926 14.79 15.80 14.46 14.66 14.95 15.57 59960 14.46 15.99 15.90 11.59 15.90 14.76 59966 14.74 12.17 14.57 12.90 15.92 14.79 59966 14.74 12.17 14.57 15.93 15.92 14.76	R s	22	s R	••	8 R	••	R	••	R	••
59911 14.60 15.76 15.73 13.23 14.60 12.18 14.97 59925 12.66 15.12 14.65 15.12 14.67 15.67 59926 14.79 15.80 14.65 15.26 15.47 15.67 59926 14.79 15.80 14.65 15.61 15.61 15.67 59926 14.79 15.80 14.65 15.69 15.61 14.95 59956 14.56 15.59 15.99 15.64 14.65 14.07 59966 14.16 15.99 12.695 12.695 15.63 14.07 59966 14.74 12.17 14.657 12.84 15.05 14.76	59902	29901	15.21	13.96	13.02	12.97	13.68	13.53	13.30	13.49
59925 12.66 15.12 14.55 14.79 15.80 14.55 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.80 14.65 15.67 15.67 59956 14.56 15.59 15.99 11.54 15.59 15.96 14.05 14.65 59966 14.76 15.99 14.45 12.89 15.96 14.07 14.05 59966 14.74 12.17 14.857 12.804 15.05 15.405 14.76 59966 14.74 12.17 14.857 12.804 15.05 14.76	21669	11663	14.59	13.76	15.73	13,23	14.60		14.97	13.06
59928 14.49 15.80 14.95 13.49 15.40 14.95 59936 14.56 15.59 13.99 11.54 14.69 14.35 59950 14.16 15.99 13.45 14.45 14.45 59960 14.16 15.99 14.45 12.96 14.07 14.55 59966 14.74 12.17 14.45 12.84 15.05 15.06 14.07 59966 14.74 12.17 14.45 12.84 15.03 15.52 14.78	59926	59925	12.66	13.12	14.83	12.26	13.21		13.57	12.48
59936 14.56 15.59 11.54 14.69 14.05 14.55 59960 14.16 15.99 14.45 12.95 15.69 14.07 59966 14.74 12.17 14.45 12.84 15.05 15.06 14.78 59966 14.74 12.17 14.57 12.84 15.03 15.52 14.78	59927	59928	14.79	13,80	14.95	13.58	15.04	13.71	14.93	13.70
59960 14.16 15.99 14.45 12.95 12.59 15.06 14.07 59966 14.74 12.17 14.57 12.94 15.03 13.52 14.78 59966 14.74 12.17 14.57 12.94 15.03 13.52 14.78	59935	59936	14.36	13.59	13.99	11.54	14.69		14.35	12.99
59966 14.74 12.17 14.57 12.84 15.03 13.52 14.78 Mean 14.28	59959	59960	14.16	13.99	14.45	12,95	13.59		14.07	13.33
14.28	59965	59966	14.74	12.17	14.57	12.84	15,03		14.78	12.78
								Meen	14.28	13,12

* R = Resistant lines, S = Susceptible lines

The mean number of kernels per spike of three rendomly selected spikes from replicated resistions into succeptuble schetions grown under artificial infection at Manhathan in 1961, replications IV-VI.4 Table 25.

R i S i S i S i S i S i S i S i S i S i S S i S S i S S i S	Selection No.	.on no.	: Re	Rep IV	rep :	N N S	den	* IA	lieen	E
59901 16.00 19.25 13.75 16.75 19.76 19.50 16.50 59911 18,00 18.26 11.50 23.00 17.00 19.75 15.50 59915 20.75 18.26 11.50 23.20 17.00 19.76 15.50 59925 20.75 13.25 14.75 23.25 19.00 17.00 18.17 59926 17.26 13.26 13.76 13.76 13.26	H S	2	s R	02	: R	•• 6/2 ••	R	••	R	Ø
18.00 18.25 11.50 23.00 17.00 19.75 15.50 20.75 18.25 14.75 23.25 19.00 17.00 18.17 17.25 17.25 18.50 17.50 21.05 14.75 23.25 17.25 17.55 23.25 19.00 14.25 18.92 18.25 17.50 21.00 14.25 18.92 18.25 17.50 21.00 14.25 18.92 17.25 15.50 17.00 16.00 16.17 16.00 14.25 19.50 15.50 16.17	59902	59901	16.00	19.25	13.75	16.75	19.75	18.50	16.50	18.17
59925 20, 75 19, 25 14, 75 23, 25 19, 00 17, 00 18, 17 59928 17, 25 17, 25 13, 50 17, 50 21, 00 14, 25 18, 92 59936 18, 25 15, 00 15, 75 16, 60 15, 76 17, 75 17, 25 59960 17, 25 15, 50 15, 50 15, 50 15, 50 15, 50 16, 00 16, 17 59966 16, 00 14, 25 19, 50 15, 50 15, 50 15, 50 15, 50 15, 50 15, 50 59966 16, 00 14, 25 19, 50 15, 50 18, 25 16, 17	59912	59911	18.00	18,25	11.50	23.00	17.00		15.50	20.33
59928 17,25 17,25 18,50 17,50 21,00 14,25 18,92 59936 18,25 16,00 15,75 16,50 17,75 17,75 17,25 59960 17,25 15,50 15,55 16,00 15,56 15,50 15,56 15,50 59966 16,00 14,25 19,50 15,50 15,50 15,50 15,50 15,50 59966 16,00 14,25 19,50 15,50 15,50 15,50 17,57	59926	59925	20.75	18,25	14.75	23.25	19.00	17.00	18,17	19.50
59956 18.25 16.00 15.75 16.50 17.25 17.25 59960 17.25 15.50 15.25 17.00 16.00 15.50 15.17 59966 16.00 14.25 18.50 15.50 13.50 15.50 16.17 59966 16.00 14.25 18.50 13.50 18.26 17.51	73987	59928	17,25	17,25	18.50	17.50	21.00	14.25	18,92	16.33
59960 17.25 16.50 15.25 17.00 16.00 16.17 59966 16.00 14.25 18.50 13.50 18.25 17.57	59935	59936	18.25	16.00	15.75	16.50	17.75		17.25	16.75
59966 16.00 14.25 18.50 13.50 18.25 15.50 17.57 Mean 17.15	59959	59960	17.25	15,50	15.25	17,00	16.00	16.50	16.17	16.33
17.15	59965	59966	16.00	14.25	18.50	13.50	18.25	15.50	17.57	14.42
								Mean	17.15	17.40

* R . Resistant lines, S . Susceptible lines.

Yields in grams of replicated resistant and ausceptible selections grown under matural infection at Hutchinson in 1961, replications VII-LX.** Table 24.

Selection No.	No.		Rep	Rep VII	 Rep	Rep VIII	00	Rep	XI O		-	Mean	
R s	20		R	••	 R	60	**	R		5	: R	••	20
59902	20901	6.3	594	445	488	498	8	564		573	548.6	10	505.3
59912	11663	2.3	536	538	533	522	63	272	-	633	548.3	10	581.0
59926	59925	4.	464	516	504	607	44	625		513	531.0	0	545.3
59927	59928	d.	451	537	565	555	Q	649		592	555.0	0	561.3
59935	59936	4	471	515	499	483	10	651		600	540.3	21	532.6
59959	59960	4.	490	680	425	499	6	563		580	492.6	9	586.3
59965	59966		617	636	604	21	518	689		607	636.6	9	587.0
										Mean	550.3	63	557.0

* R = Resistant lines, S = Susceptible lines.

Relative test weight in grams of replicated resistent and susceptible selections grown under matural infection at Hutchinson in 1961, replications $VII^+ - MX_*$. Table 25.

Selection	on No.	: Rep	Rep VII	: Rep	VIII S	Rep	IX	2 M	Meen
R s	2	. К	••	8 R	•• 2	R	••	: R	••
59902	59901	25.22	25.67	25.67	25.59	25.30	25.47	25.40	25,58
59912	11663	25.52	25.79	25.88	25.46	25.20	25.51	25.53	25.59
59926	59925	25.08	25.17	25.65	26.41	25.36	25.62	25.36	25.73
59927	59928	25.53	25.48	25.59	25.79	25.67	25.32	25.60	25.86
59935	59936	25.99	25.46	25,83	25.98	25.56	25.86	25.79	25.77
59959	59960	25.66	25.88	25.67	25.74	25.66	25.61	25.66	25.74
59965	59966	25.39	25.99	25.49	26.14	25.66	26.10	25.51	26.08
							Mean	25.55	25.76

* R . Resistant lines, S .. Susceptible lines.

The 500-kernel weight in grams of replicated resistant and susceptible saled for grown under matural infection at Hutchinson in 1961, repli-cations VII-11X.* Table 26.

i S R i S i R i S R i S R i S R i S S R i S S R i S S R i S S S S R i S S S R i S S S S R i S S S R i S S S S R i S S S R i S	Selec	Selection No.		Kep VII	TIA	ten :	LITA O	**	Rep	Kep IX		0 M	ean	
15.68 14.46 13.97 14.99 15.66 15.66 15.66 15.86 1 14.80 14.50 14.46 14.46 14.95 15.46 14.64 1 14.49 14.10 14.46 14.45 14.95 15.46 14.64 1 14.49 14.10 14.89 15.54 14.91 14.51 14.51 1 14.55 14.10 14.89 15.54 14.91 14.51 1 1 14.55 14.89 15.54 14.91 14.95 14.56 1 1 15.14 15.48 14.96 15.58 14.56 1 1 1 14.54 15.49 15.56 14.57 15.61 14.64 1 1 14.64 15.50 14.61 15.77 15.61 14.64 1 14.64 14.64 15.70 15.61 15.46 14.44 1 1 14.44	R	••	••	R	202	* R	••	00	R	••		R	00	
59911 14.80 14.50 14.40 14.45 14.64 14.64 59925 14.45 14.10 14.89 13.54 14.15 12.80 14.51 59926 14.55 14.89 13.54 14.91 14.56 14.51 59926 14.55 14.89 14.54 14.91 14.56 14.56 59936 15.14 15.18 14.59 14.56 14.56 59960 14.16 15.18 14.59 14.57 14.56 59966 14.94 15.48 14.53 14.57 14.56 59966 14.84 15.48 15.61 14.64 59966 14.84 15.61 14.64	3902	29901	13	.83	14.46	13.9		66.3	13,80	13.68		5.86	14	14.38
59925 14.40 14.40 14.49 13.554 14.15 12.90 14.51 1 59928 14.55 14.29 14.72 14.354 14.91 14.56 14.66 1 59926 15.14 15.14 15.18 14.49 14.96 15.62 14.65 1 59960 14.16 15.18 14.59 14.491 15.82 14.57 1 1 59960 14.16 15.18 14.59 14.51 15.61 14.57 1 <td< td=""><td>3186</td><td>11669</td><td>14</td><td>.20</td><td>14.30</td><td>14.7</td><td></td><td>•48</td><td>14.95</td><td>13.46</td><td></td><td>4.64</td><td>14</td><td>14.08</td></td<>	3186	11669	14	.20	14.30	14.7		•48	14.95	13.46		4.64	14	14.08
59928 14.55 14.69 14.72 14.91 14.56 14.66 59956 15.14 15.18 14.99 14.96 15.52 14.98 14.65 59960 14.16 15.18 14.59 14.89 14.81 15.62 14.87 59966 14.94 15.86 14.89 14.81 15.61 14.64 59966 14.84 15.86 15.50 14.81 15.61 14.64	9266	59925	14	.49	14.10	14.8		5.54	14.15	12.80		14.51	13.	13.48
59956 15.14 15.12 14.98 14.96 13.52 14.98 14.52 59960 14.16 15.18 14.59 14.59 14.27 15.62 14.87 59966 14.94 15.86 15.50 14.61 15.73 14.64	73987	59928	14	•35	14.29	14.7		1.34	14.91	14.36		4.66	14	14.33
59960 14.16 13.18 14.39 14.39 14.27 13.82 14.27 59966 14.84 13.86 15.50 14.61 13.77 13.61 14.64 14.64 14.64 14.64 14.64 14.64	9355	59936	15	.14	15.12	14.8		1.96	13.52	14.98		14.52	15	15.02
59966 14.84 13.86 15.30 14.81 13.77 13.61 14.64 Nean 14.44	6966	59960	14	.16	13,18	14.3		•39	14.27	13.82		14.27	13	13.80
14.44	9965	59966	14	.84	13,86	15.3		1.81	13.77	13.61	1	14.64	14	14.09
										Mean		14.44	14	14.17

* R . Resistant lines, S . Susceptible lines.

The mean number of kernels per spike of three randomly selected spikes from replicated resistant and susceptible selections grown under matural infection at Hutchinson in 1961, replications vrr_r. Table 27.

0.1

	u	Ø	17.00	17.42	16.08	15.17	15,33	16.25	17.33	16.37
1	lieen	R	15.92	18.08	17.00	17.92	16.83	16.00	15.50	16.75
	: XJ	\$	17.25	20.50	14.50	14.00	15.75	17.50	16.75	Mean
	XI dell	R s	14.25	16.00	19.50	16.75	17.75	17.75	16.50	
	: IIIA	22	16.75	16.00	16.75	15.75	17.00	15.00	14.50	
	Rep	R	17.50	21.25	16.00	20.75	19,50	14.50	13.50	
	* IIV	50	17.00	15.75	17.00	15.75	13,25	16.25	20.75	
AIL-IX.*	: Rep VII	s R s	16.00	17.00	15.50	16.25	13.25	15.75	16.50	
TIA	on No.	Ø	59901	29911	59925	59928	59936	29960	59966	
	Selection No.	R 3	59902	59912	59926	59927	59935	59959	59965	

* R . Resistant lines, S . Susceptible lines

Main Plots: Replatations Replatations	ihattan Su	\$ 28	s Ma		* S18
.n Plots: Meplications		Manhattan Sulphur, Yield Evaluation,	Evaluation, Rep.	I-III.	
Pomi lias	08	448	224	•16	n.s.
	9	40,034	6,672	4.66	**
Error a	12	17,157	1,430		
Subplots: Post stone	-	1.194	1.194	.50	n.s.
Dout a book at once	4 65	TAR AL	2.398	1.78	n.s.
Error b Actsulue	14	18,815	1,344		
Main Flots: Replications Families Error a	00 00 00 1	.0086 1.9329	5 • 0043 • 5222 • 0418	5 • 10 8 7.71	• 99 • * • 10 • 10
Subplots:	1	-0161		1 .21	n.s.
Family x Resistance Error b	14 0 1	.4560			n.8.
Manhatta	n Sulphur,	500-kernel	Manhattan Sulphur, 500-kernel Weight Evaluation, Rep	n, Rep I-III.	
Main Flots: Replications Families	00 00 0 F	0.00 8.40	0.00 1.40	0.0	10.80°
Error a Subplota:	97	1.03	1.03	1.94	n.s.
Family x Resistance	140	3.17	.53		***

	_	
1	2	
	e d	
	ued	
	Я	
	4	
	42	
	я	
	001	
	0	
	-	
	28.	
	ω	
	¢4	
	0	
	10	
	ble	
	able	

Source of Variation		d.5.	19	20		Ma		в	 316	1
Manhattan Sulphur,	In Sul	phur,	Kernels	ls per	Spike	Spike Evaluation.		Rep I-III		
Main Plots:				Can m		0380 2		00 1	5	
Meplications		2 4		10.1064 DE		3.1994		1.06	n.ss.	
B LOLIN	-	100		36.1875	10	3.0156				
Subplote: Resistance				8.5952	03	8.5952		1.86	n.8.	
Family x Resistance		0		27.7798	8	4.6300	-	1.39	n.s.	
	R	14		46.6875	2	3.3348	~			
	Mer	hatte	Menhetten Yield Evaluation.	d Eval	uation	. Rep IV-VI.	.1			
Main Plots:										
Replications		03	8,864	64		4,432		2.26	n.s.	
Families		9	31,0	24		5,171		2.64	n.a.	
Error a	-	50	23,4	98		1,958				
Subplots:		-	18.7	23		18.733		18.49	赤水	
Remilw v Resistance		4 60	0.0	78		1.013		1.23	n.s.	
Error b	-	14	11,534	34		824				
-	Manhattan	ttan 1	Test Weight	1 ght B	valuat	Evaluation, Rep IV-VI.	-VI.			
Main Flots: Renifestions		01		.5175	Q	.2588	-	3.87	n.s.	
Families		9		1.3822	63	.2304		3.45	*	
Error a		12		.8013	ιý.	• 0668	Ω,			
Subprote: Resistance		m		.1598	8	.1598	8	2.66	D.S.	
Family x Resistance		94		.3600	0 6	.0500	0 4			
n JOJJa		4								

-
d
0
2
24
13
5
00
00
-
•
28.
•
•
•

Source of Variation		d.f. :	8 9 9			Ma	-	E4	-	Sig	
Manh	atta	n 500-ka	Manhattan 500-kernel Weight		valuat	Evaluation, Rep IV-VI.	I de	-VI.			
Weden Distant											
Renifestions		01	•	.1146		.0573	73	.11		n.s.	
Families		0	.9	6.1749		1.0292	92	1.96		n.s.	
Error a		12		6.3025		.5252	20				
Subplots: Resistance		1	14.	14.1985		14.1985	35	11.71		**	
Family x Resistance		0	4.	4.9796		.8299	66	2.27		n.s.	
Error b		14	2	5.1081		.3649	49				
Manh	atta	Manhattan Kernels	ls per S	pike	Evalua	per Spike Evaluation, Rep IV-VI.	I de	-N-V.			
Main Plots:											
Replications		02	5.	5.5923		2.7962	62	1.70		n.8.	
Families		0	34.	34.3066		5.7178	18	3.47		*	
Error a		12	19.	19.7827		1.6486	86				
Subplots:				RERO		6562	65	.59		n.s.	
Down'] Dociatoroo		-1 64		66.6875		11.1145	45	1.53		n.s.	
Error b		14	101.	101.5000		7.2500	00				
	Hut	chinson	Hutchinson Yield Evaluation, Rep VII-IX.	valua	tion.	Rep VII	-IX				
Main Plots:		(007 07		10	- 100		A0 8		444	
Replications Femilies		2 60	29.828		4	4.971		1.66		n.s.	
Error a		12	36,004		50	.000					
Subplots: Restatence			460			460		.13		n.s.	
Rowilt v Resistance		1 00	21.274		50	546		1.19		n.s.	
Error b		14	41,729		01	2,981					

2
σ
0
2
2
sel.
22
C
6
con
~
-
-
-
•
8.
28. (
28.
le

DOTABLIEA TO SOLLOS	: d.f.		Sa		MG **	R.	••	Sig
E	Hutchinson Test	Test	Weight H	Weight Evaluation, Rep VII-IX.	Rep VII-	.IX.		
West Distant								
In flowtions	0		•3445	10	.1722	2.02		n.s.
Families.	0		.5513	10	.0919	1.08		n.s.
Error a	12		1.0238	m	• 0853			
Subplots: Registance	1		.4736	10	.4736	7.52		*
Family x Resistance	0		-37777	7	.0630	1.24		n.s.
Error b	14		.7121	T	•0509			
Hute	hinson 50	0-kern	el Weig	Hutchinson 500-kernel Weight Evaluation, Rep VII-IX.	on, Rep 1	.XI-II		
Main Plots:								1
Replications	63		2.496	01	1.2481	6.12		\$
Families	9		2.7638	0	.4606	2.29		n.s.
Error a	12		2.4164	4	.2014			
Subplots:			7927	4	7927	1.59		n.s.
Faul 1 w Real atoma	1 4		2.9913	- KC	.4985	2.80		n.s.
Error b	14		2.4921	-H	·1780			
Hute	Hutchinson Kernels	rnels	per Spike		Evaluation, Rep VII-IX.	.XI-II/		
Main Plots: Renifections	0		3.6458	8	1.8229	.31		n.s.
Familias	1 40		11.1845	2	1.8641	.32		n.s.
Error a.	12		70.0209	6	5.8351			
Subplots:	-		1.5238	0	1.5238	.41		n.s.
Femily y Resistance	4 40		22.0179	00	3.6696	66.		n.s.
			R1 7002	ę,	RO3. F			

Source of Variation	: d.f. :	50 20 20	Ms :	F	. Sig
		<u>Yield</u>			
Main Plots:				-	
Years	I	487,314.16	487,314.16	137.99	卒卒奉
Replications	02	5,265,20	2,632,60	-74 -	n.s.
Families	9	110.900.36	18.483.39	5.23	非非幸幸
Error a	32	113,003.78	3,531.36		
Subplots:					
Resistance	Ч	60,804.79	60,804.79	17.51	幸幸
Year x Resistance	H	2.811.83	2,811.83	1.75	n.8.
Family x Resistance	9	20,837.85	3,472.97	2.16	n.s.
Error b	34	54,526.53	1,603.72		
		Test Weight			
Main Plots:				1	
Years	Ч	•54	•54	1.69	n.s.
Replications	03	.45	.22	•69	n.s.
Families	9	3.80	.63	1.97	n.s.
Error a	32	10.24	•32		
Restatore	1	2.53	2.53	4.52	n-s-
Year y Resistance	-	1.07	1.07	2.97	n.s.
Family x Resistance	0	3.36	.56	1.56	n.s.
Wmmm h	204	17.64	36		

-
p
0
3
8
-
**
con
ö
\sim
-
~
) .
.8.
29. (
-
-
-
-
Table 29. (

Source of Variation : d.f. :	: d.f	••	58	MS *	F S	Sig
			500-kernel Weight			
Main Plots:						
Years	H		11.24	11.24	•33	n.s.
Replications	03		•03	.015	•04	n.8.
Families	9		11.62	1.94	•00	n.s.
Error a	32		10.87	•34		
Subplots:						
Resistance	-		25.64	25.64	21.19	非 六本
Year x Resistance	-		.06	•06	•04	n.s.
Family x Resistance	9		7.28	1.21	•70	D.8.
Error b	半年のの	*	56.76	1.72		

* Two missing plots in 1960. ** One missing plot in 1960.

tchinson	1eaf	
H	181	
the	natu	
from	der	
ta B	un	
da	LIWC	
bed	8r	
combir	"XI-II	1961.
uo	A	d
variance	lications	n 1960 an
50	de	1 0
The analysis of variance on combined data from the Hutchinson	oriments, 1	t infection
The	expe	T BITT
50.		
Table		

	. del.	38	••	1.8		918	
		Y1eld	ett				
Main Flots:							
Years	-	455.407		455,407	198,00	赤亭亭	
Replications	01	54.426		27,213	11.83	幸幸幸	
Families	9	63,832		10,638	4.62	卒卒卒	
Error a	32	73,600		2,300			
Subplots:	•						
Resistance	1	7,946		7,946	50°T2	中中中	
Year x Resistance	T	14,274		14,274	4.41	*	
Family x Resistance	9	2,214		369	.11	n.s.	
Error b	34	110,049		3,236			
		Test Weight	Ight				
Main Plots:							
Tears	۲	17.43	N	17.43	170.59	本本本	
Replications	02	.5.	-	.255	2.50	n.8.	
Families	9	1.17	2	.195	1.91	n.s.	
Error a	32	3.2	2	°105			
Subplots:					1		
Resistance	-	.086	86	.086	.24	n.s.	
Year x Resistance	-	1.59	0	1.59	13.25	***	
Family x Resistance	9	2.13	10	.35	2.95	*	
-	34	4.09	0	.12			

Source of Variation : d.f.	: d.f.	: Ss :	Ma s	G4	Sig
		500-kernel Weight	It		
Main Plots:					
Years	Ч	20°94	20,94	52.88	卓率市
Replications	03	1.04	.52	1.31	n.s.
Families	9	10.41	1.73	4.36	李卒卒
Error a	32	12.66	e40		
Subplots:				-	
Restance	-	15.03	15.03	14.45	**
Year z Resistance	-	6.86	6.86	34.30	***
Family x Resistance	9	6.27	1.04	5.20	半卒水
Error b	34	6.77	.20		

Tahla 20 (continued)

THE EFFECT OF LEAF RUST ON THE COMPONENTS OF YIELD AND OTHER CHARACTERISTICS OF HARD RED WINTER WHEAT

by

CHARLES FREDERICK SING

B.S., Iowa State University, 1960

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agronomy

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

Leaf rust of wheat, <u>Puccinia recondita</u> Rob. ex Desm., is considered to cause substantial reductions in grain yield in certain years. A sound experimental procedure conducted under natural field conditions is needed to properly evaluate the effects of the leaf rust pathogen. This study attempts to evaluate a method and use that method to estimate the effects of leaf rust on herd red winter wheat strains varying in resistance.

An attempt was made to estimate the effect of the leaf rust organism on four components of yield using resistant and susceptible sister lines which originated from a single hybridization. A resistant and a susceptible line selected from the segregating progeny of an F_2 plant formed a family of sister lines which were nearly isogenic but differing in rust response.

Three experiments, each consisting of three replicates of the seven families planted in a split-plot design, were conducted in 1960 and 1961. An experiment under sulphur treatment and an experiment under artificial infection were planned for Manhattan. An experiment under natural leaf rust was planned for Hutchinson.

An analysis of variance to determine significant effects of the family, replication, resistance, and family x resistance sources of variability was conducted for each component for each experiment. The main plot analysis was that of randomized blocks with seven families replicated in three replications. The subplot analysis was the two levels of resistance randomized in each of the twenty-one main plots. The major object of the analysis of variance was to detect any significant fixed added effect of leaf rust on yield, test weight, 500-kernel weight, and kernels per spike in each of the three experiments. An analysis of variance combining 1960 and 1961 data for similar experiments was conducted.

Leaf rust infections in 1960 and 1961 became established when plants were in the flowering stage or later.

The three experiments grown in 1960 were subjected to natural leaf rust infection. The 1961 experiments were conducted as planned. Under sulphur treatment the lines used in this study differed in performance among families but were similar in performance within families. In two experiments under natural leaf rust in 1960 and one experiment under artificial infection in 1961, leaf rust reduced yield and 500-kernel weight. Significant reductions in test weight and kernels per spike due to leaf rust were not detected. The combined analysis of two experiments grown in 1960 and 1961 also indicated that leaf rust influenced yield and kernel weight but not test weight.

The limited results of two years of replicated study indicate that the method of using resistant and susceptible segregates from a cross can detect leaf rust effect on yield under circumstances of late but heavy infection. Further evaluation of this method to include a greater representation of environmental conditions will be required to fully evaluate the accuracy of this approach to estimation of leaf rust damage.