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A VARIATIONAL PRINCIPLE AND ITS APPLICATION
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Abstract: Assume that A is a bounded selfadjoint operator in a Hilbert space
H. Then, the variational principle

max
v

|(Au, v)|2

(Av, v)
= (Au, u) (*)

holds if and only if A ≥ 0, that is, if (Av, v) ≥ 0 for all v ∈ H. We define the
left-hand side in (*) to be zero if (Av, v) = 0. As an application of this principle
it is proved that

C = max
σ∈L2(S)

|
∫

S
σ(t)dt|2

∫

S

∫

S

σ(t)σ(s)dsdt
4π|s−t|

, (**)

where L2(S) is the L2-space of real-valued functions on the connected surface
S of a bounded domain D ∈ R

3, and C is the electrical capacitance of a perfect
conductor D.

The classical Gauss’ principle for electrical capacitance is an immediate
consequence of (*).
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1. Introduction

In many applications a physical quantity of interest can be expressed as a
quadratic form. For example, consider electrical charge distributed on the sur-
face of a perfect conductor with density σ(t). If the conductor is charged to a
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potential u = 1, then the equation for σ(t) is

Aσ :=

∫

S

σ(t)dt

4πrst
= 1, s ∈ S, rst := |s− t|, (1)

where dt is the element of the surface area, S is the surface of the conductor
D, and D ∈ R

3 is a bounded domain with a connected smooth boundary S.

The total charge on S is Q =

∫

S

σ(t)dt. The physical quantity of interest is

electrical capacitance C of the conductor D. Since Q = Cu and u = 1 (see
equation (1)), it follows that

C =

∫

S

σ(t)dt = (Aσ, σ),

where (f, g) :=

∫

S

fgdt is the inner product in the Hilbert space H = L2(S),

and the overbar stands for complex conjugate.
Let us introduce a general theory. Let A = A⋆ be a linear selfadjoint

bounded operator in a Hilbert space H. Consider an equation Au = f .
We are interested in a quantity (Au, u) and want to find a variational prin-

ciple that allows one to calculate and estimate this quantity. Let us write A ≥ 0
if and only if (Av, v) ≥ 0 for all v, and say in this case that A is non-negative.
If (Av, v) > 0 for all v 6= 0, we write A > 0 and say that A is positive.

The following variational principle is our main abstract result.

Theorem 1.1. Let A = A⋆ be a linear bounded selfadjoint operator.
Formula

(Au, u) = max
v∈H

|(Av, u)|2

(Av, v)
(2)

holds if and only if A ≥ 0.

Remark 1. We define the right-hand side in (2) to be zero if (Av, v) = 0.

Theorem 1 can be proved also for unbounded selfadjoint operators A. In
this case maximization is taken over v ∈ D(A), where D(A) is the domain of
A, a linear dense subset of H.

In Section 2, Theorem 1.1 is proved. Let us illustrate this theorem by an
example.

Example 1. Let A be defined in (1). In Section 2, we prove the following
lemma.

Lemma 1.2. The operator A in equation (1) is positive in H = L2(S).
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From Theorem 1.1, Lemma 1.2, and equation (1) it follows that the electrical
capacitance C can be calculated by the following variational principle:

C = max
v∈L2(S)

|
∫

S
v(t)dt|2

∫

S

∫

S

v(t)v(s)dsdt
4πrst

. (3)

This variational principle for electrical capacitance is an application of the
abstract variational principle formulated in Theorem 1.

Formula (3) can be rewritten as

C−1 = min
v∈L2(S)

∫

S

∫

S

v(t)v(s)dsdt
4πrst

|
∫

S
v(t)dt|2

. (4)

In particular, setting v = 1 in (3), one gets

C ≥
4π|S|2

J
, J :=

∫

S

∫

S

dsdt

rst
, (5)

where |S| is the surface area of S.

In [3] the following approximate formula for the capacitance is derived:

C(0) =
4π|S|2

J
.

This formula is zero-th approximation of an iterative process for finding σ(t),
the equilibrium charge distribution on the surface S of a perfect conductor
charged to the potential u = 1.

Formula (4) yields a well-known Gauss’ principle (see [2]), which says that

if the total charge Q =

∫

S

v(t)dt is distributed on the surface S of a perfect

conductor with a density v(t) and u(s) is the corresponding distribution of the
potential on S, then the minimal value of the functional

Q−2

∫

S

∫

S

v(t)v(s)dsdt

4πrst
= min (6)

is equal to C−1, where C is the electrical capacitance of the conductor, and this
minimal value is attained at v(t) = σ(t), where σ(t) solves equation (1).
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2. Proofs

Proof of Theorem 1.1. The sufficiency of the condition A ≥ 0 for the
validity of (2) is clear: if A = A∗ ≥ 0, then the quadratic form [u, u] := (Au, u)
is non-negative and the standard argument yields the Cauchy inequality

|(Au, v)|2 ≤ (Au, u)(Av, v). (7)

The equality sign in (7) is attained if and only if u and v are linearly dependent.
Dividing (7) by (Av, v), one obtains (2), and the maximum in (2) is attained if
v = λu, λ =const.

Let us prove the necessity of the condition A ≥ 0 for (2) to hold. Let us
assume that there exist z and w such that (Az, z) > 0 and (Aw,w) < 0, and
prove that then (2) cannot hold.

Note that if (Av, v) ≤ 0 for all v, then (2) cannot hold. Indeed, if (Av, v) ≤ 0
for all v, then (2) implies |(Bu, v)|2 ≥ (Bu, u)(Bv, v), where B = −A ≥ 0. This
is a contradiction to the Cauchy inequality. This contradiction proves that
(Av, v) ≤ 0 for all v cannot hold if (2) holds.

Let us continue the proof of necessity. Take v = λz + w, where λ is an
arbitrary real number. Then, (2) yields

|(Au, λz + w)|2

q(λ)
≤ (Au, u), (8)

where

q(λ) := aλ2 + 2bλ+ c, a := (Az, z) > 0, c = (Aw,w) < 0, (9)

and b := Re(Az,w). The polynomial q(λ) has two real roots λ1 < 0 and λ2 > 0,
q−1(λ) → +∞ if λ → λ1 − 0 or if λ → λ2 + 0. The quadratic polynomial

p(λ) := |(Au, λz+w)|2 has also two roots, and by (2), the ratio p(λ)
q(λ) is bounded

when λ → λ1 − 0 and λ → λ2 + 0. Therefore, one concludes that p(λ) has the
same roots as q(λ), that is, λ1 and λ2 are roots of p(λ).

Since λ1λ2 < 0 and

p(λ) = |(Au, z)|2λ2 + 2λRe(Au, z)(Au,w) + |(Au,w)|2,

it follows that
|(Au,w)|2

|(Au, z)|2
< 0. (10)

This is a contradiction which proves that there are no elements z and w such
that (Az, z) > 0 and (Aw,w) < 0.
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Theorem 1.1 is proved.

Proof of Lemma 1.2. It is known that

F (
1

|x|
) :=

∫

R3

e−iζ·x

|x|
dx =

4π

|ζ|2
> 0, (11)

where the Fourier transform F is understood in the sense of distributions (see,
e.g., [1]). Therefore,

(Aσ, σ) =

∫

S

∫

S

σ(t)σ(s)

4π|s − t|
dsdt =

∫

R3

|Fσ(ζ)|2

|ζ|2
dζ ≥ 0, (12)

which proves Lemma 1.2.
In (12), Fσ(ζ) is the Fourier transform of the distribution σ(t) with support

on the surface S. There are many results about the rate of decay of the Fourier
transform of a function (measure) supported on a surface. For example, if the
Gaussian curvature of the surface S is strictly positive, then (see [4])

Fσ(ζ) :=

∫

S

σ(t)e−iζ·tdt = O

(

1

|ζ|

)

, |ζ| → ∞, ζ ∈ R
3, (13)

provided that σ(t) is sufficiently smooth.
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