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Abstract: Assume that A is a bounded selfadjoint operator in a Hilbert space
H. Then, the variational principle

A 2
max I — (4w, *)
holds if and only if A > 0, that is, if (Av,v) > 0 for all v € H. We define the
left-hand side in (*) to be zero if (Av,v) = 0. As an application of this principle

it is proved that

| [go(t)dt]
©= aen%??s*) o(t)o(s)dsdt ’ (**)
s Js T anls—t]

where L?(S) is the L2-space of real-valued functions on the connected surface
S of a bounded domain D € R?, and C is the electrical capacitance of a perfect
conductor D.

The classical Gauss’ principle for electrical capacitance is an immediate
consequence of (*).
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1. Introduction

In many applications a physical quantity of interest can be expressed as a
quadratic form. For example, consider electrical charge distributed on the sur-
face of a perfect conductor with density o(t). If the conductor is charged to a
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potential u = 1, then the equation for o(t) is

t)dt

Aa:—/&—l, s€S, regi=|s—tl, (1)
S 47T7"5t

where dt is the element of the surface area, S is the surface of the conductor

D, and D € R? is a bounded domain with a connected smooth boundary S.

The total charge on S is Q@ = / o(t)dt. The physical quantity of interest is

electrical capacitance C' of the conductor D. Since @) = Cu and u = 1 (see
equation (1)), it follows that

= /S o(t)dt = (Ao, o),

where (f,g) := / fgdt is the inner product in the Hilbert space H = L?(9),

and the overbar s%ands for complex conjugate.

Let us introduce a general theory. Let A = A* be a linear selfadjoint
bounded operator in a Hilbert space H. Consider an equation Au = f.

We are interested in a quantity (Au,u) and want to find a variational prin-
ciple that allows one to calculate and estimate this quantity. Let us write A > 0
if and only if (Av,v) > 0 for all v, and say in this case that A is non-negative.
If (Av,v) > 0 for all v # 0, we write A > 0 and say that A is positive.

The following variational principle is our main abstract result.

Theorem 1.1. Let A = A* be a linear bounded selfadjoint operator.
Formula

v, U 2
() = mae [ Zell 2)

holds if and only if A > 0.

Remark 1. We define the right-hand side in (2) to be zero if (Av,v) = 0.

Theorem 1 can be proved also for unbounded selfadjoint operators A. In
this case maximization is taken over v € D(A), where D(A) is the domain of
A, a linear dense subset of H.

In Section 2, Theorem 1.1 is proved. Let us illustrate this theorem by an
example.

Example 1. Let A be defined in (1). In Section 2, we prove the following
lemma.

Lemma 1.2. The operator A in equation (1) is positive in H = L*(S).
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From Theorem 1.1, Lemma 1.2, and equation (1) it follows that the electrical
capacitance C can be calculated by the following variational principle:

O = max s PO (3)
) v(s)dsd
SIS [ [ U

This variational principle for electrical capacitance is an application of the
abstract variational principle formulated in Theorem 1.
Formula (3) can be rewritten as

v(t)v(s)dsdt v(s)dsdt
C—l o . fS fS 47r7‘st
= min . (4)
veL?(S) |fS dt|2

In particular, setting v = 1 in (3), one gets

4 2
 dmlSP?. J:_//dsdt7 5
J sJs Tst

where |S] is the surface area of S.

In [3] the following approximate formula for the capacitance is derived:

47|S|?

0) _
¢ J

This formula is zero-th approximation of an iterative process for finding o(t),
the equilibrium charge distribution on the surface S of a perfect conductor
charged to the potential u = 1.

Formula (4) yields a well-known Gauss’ principle (see [2]), which says that

if the total charge Q = / v(t)dt is distributed on the surface S of a perfect

S
conductor with a density v(¢) and u(s) is the corresponding distribution of the
potential on S, then the minimal value of the functional

o T

is equal to C~!, where C is the electrical capacitance of the conductor, and this
minimal value is attained at v(t) = o(t), where o(t) solves equation (1).
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2. Proofs

Proof of Theorem 1.1. The sufficiency of the condition A > 0 for the
validity of (2) is clear: if A = A* > 0, then the quadratic form [u,u] := (Au,u)
is non-negative and the standard argument yields the Cauchy inequality

|(Au, v)|* < (Au,u)(Av,v). (7)

The equality sign in (7) is attained if and only if v and v are linearly dependent.
Dividing (7) by (Awv,v), one obtains (2), and the maximum in (2) is attained if
v = Au, A =const.

Let us prove the necessity of the condition A > 0 for (2) to hold. Let us
assume that there exist z and w such that (Az,z) > 0 and (Aw,w) < 0, and
prove that then (2) cannot hold.

Note that if (Av,v) < 0 for all v, then (2) cannot hold. Indeed, if (Av,v) <0
for all v, then (2) implies |(Bu,v)|* > (Bu,u)(Bv,v), where B = —A > 0. This
is a contradiction to the Cauchy inequality. This contradiction proves that
(Av,v) <0 for all v cannot hold if (2) holds.

Let us continue the proof of necessity. Take v = Az + w, where A is an
arbitrary real number. Then, (2) yields

|(Au, Az + w)[?
< (Au,u), 8
L < () ®
where
qN\) == aX? + 20N+ ¢, a:=(Az2) >0, c=(Aw,w) <0, 9)

and b := Re(Az,w). The polynomial ¢(\) has two real roots A\ < 0 and A2 > 0,
g\ = +ooif A = Ay — 0 or if A = X3 + 0. The quadratic polynomial
p(A) := |(Au, Az +w)|? has also two roots, and by (2), the ratio % is bounded
when A — Ay — 0 and A — A2 + 0. Therefore, one concludes that p(A) has the
same roots as ¢(\), that is, A; and Ay are roots of p(A).

Since A\{Ag < 0 and
p(A\) = |(Au, z)\2A2 + 2ARe(Au, z)(Au, w) + \(Au,w)\Q,

it follows that
|(Au, w)|?
|(Au, 2)[?
This is a contradiction which proves that there are no elements z and w such
that (Az,z) > 0 and (Aw,w) < 0.

< 0. (10)
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Theorem 1.1 is proved. O
Proof of Lemma 1.2. 1t is known that
1 e~ 47
F(—):= / ——dr=—5 >0, (11)
2] r3 7| I¢[?

where the Fourier transform F' is understood in the sense of distributions (see,
e.g., [1]). Therefore,

[ [ o0r®, [ PP
(AJ’J)_/S/SZLW\S—Hd dt—/]RS i d¢ >0, (12)

which proves Lemma 1.2. O
In (12), Fo(() is the Fourier transform of the distribution o (¢) with support
on the surface S. There are many results about the rate of decay of the Fourier
transform of a function (measure) supported on a surface. For example, if the
Gaussian curvature of the surface S is strictly positive, then (see [4])

o) e | othreita — of L 3
Fo(() /S“)e dt O(m)’ >0 CER,  (13)

provided that o(t) is sufficiently smooth.
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