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UAbstractU 

  
 The Morrowan middle Bloyd sandstone of northwest Arkansas records a fluvial to 

estuarine transition in a drowned incised valley system.  Lower portions of outcrops contain 

fluvially deposited, planar-tabular cross-stratified sandstone with a uni-directional southwest 

paleoflow.  Intervals with dune scale, intricately interwoven trough cross-stratification with 

northeastern paleoflow is attributed to strong tidal and wave influence in the outer estuary.  

Upwards the middle Bloyd changes into a muddy mid-estuarine interval with heterolithic 

bedding and a bi-directional northeast-southwest paleoflow.  Overlying this interval a marine 

sand about one meter in thickness can be found containing bryozoan and crinoid fossils.  

Overlying the middle Bloyd, the marine Dye Shale member of the Bloyd Formation marks 

the transition to a dominantly marine setting. 
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UIntroduction 

 
 Ancient fluvial systems have been extensively studied in the past, namely with the 

use of facies models.  Without the use of modern analogs however, the complexity and scope 

of the paleo depositional setting may not be fully understood.  The Lower Pennsylvanian 

middle Bloyd Sandstone, in northern Arkansas has been one of these misunderstood units.  

Historically the Morrowan and Atokan sandstones of northwest Arkansas and eastern 

Oklahoma have been miscorrelated stratigraphically due to their generally similar 

appearance.  The Morrowan-Atokan boundary was not clearly delineated and the various 

sandstones of the Morrow and Atoka were not differentiated.  Subsequently extensive 

detailed mapping was completed in the early 1970’s (Zachry and Haley 1975).  In addition to 

the Atoka-Morrow boundary confusion there has also been misinterpretation of the origin of 

sand units within the Morrow.    This confusion still exists today although current mapping is 

attempting to resolve this problem (Zachry, 2006; McFarland, Personal Communication). 

  Previous published works (Zachry, 1979a, 1979b Crowder, 1982 Berry, 1978 Glenn, 

1973) have documented evidence for bedload dominated fluvial depositional settings.  

Nonetheless, comparisons to modern analogs suggest evidence is abundant for more 

complicated fluvial or fluvio-estuarine systems. The exception to these older works is one 

which describes fluvial-tidal influence near the end of a large fluvial system (Antia, 2006).  

The middle Bloyd sandstone exhibits high angle ( > 15° ) cross bedding which locally 

contains sets of thick-thin bedding pairs.  In the previously mentioned studies, important 

physical sedimentary features appear to have been overlooked.  These thick-thin pairs have 

been observed in other Pennsylvanian rocks, as well as modern and ancient analogs in fluvio-

estuarine environments (Archer and Feldman, 1995; Archer et. al, 1994; Lanier et. al, 1993; 
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Greb and Archer, 1998; Archer, 2004; Archer et. al, 1996; Nio and Yang, 1991; Lanier and 

Tessier, 1998).  Quartz-pebble conglomerates are also seen in the middle Bloyd and may 

provide evidence of incised valleys fills as deposited during rising sea level.  The 

conglomerates may have formed in similar incised valley settings as other lower 

Pennsylvanian conglomerates in Kansas, Illinois, the central Appalachian basin, and the 

Denver basin (Archer and Greb, 1995).  The presence of similar sedimentary features and 

paleo-flow directions in northwest Arkansas and the Illinois basins suggest there was 

crossbasinal sediment transport.  

 

UScope and Objectives of Investigation 

The objectives of this investigation are to study the middle Bloyd sandstone of 

northwest Arkansas.  This study consists primarily of two parts.  The first objective was to 

observe the character (facies, paleoflow direction, and composition of the sandstone)  of the 

middle Bloyd sandstone in fifteen outcrops across the study area (Fig. 1) and to describe any 

changes in character from the north-south and east-west directions.  These possible changes 

in character will allow for a better understanding of the paleodepositional system and allow 

for creation of a depositional model based on relevant modern analogs.  The second objective 

of this investigation was the search for evidence of incised valley fills and tidal influence.  

This included looking at the physical and biogenic sedimentary features of the outcrops in 

detail.  The outcrops span a strait line distance north-south of approximately 69km, and an 

east-west span of 85km (Fig. 1). 
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   Figure 1 Study area with outcrops highlighted in yellow.     
   Abbreviations for outcrop locations can be found in Appendix Table 1.   
   The Boston Mountains are shown in orange (upper) and green (lower). 
                 
 

UPrevious Works- The Pennsylvanian of North America  

 The presence of Morrowan conglomeratic sandstones across the interior of the North 

American craton suggests extrabasinal clastic sediment transport during the Pennsylvanian.  

Potter and Siever (1956), Potter and Glass (1958), Potter and Pryor (1961), have shown 

nearly identical petrology and sedimentary features in the Eastern Interior (Illinois), 

Appalachian, Michigan, and Mid-Continent (Forest City) basins.  Physical sedimentary 

features in these basins, namely large-scale cross-beddingding, also indicated a dominant 

south-southwest paleoflow direction.  It is generally accepted that these basins were not yet 
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differentiated in the interior craton during the tectonically stable early Pennsylvanian; 

however this changed following Morrowan time due to tectonic influences (uplift) and 

erosion which led to the separation of once interconnected basins (Potter and Siever, 1956; 

Potter and Glass, 1958; Potter and Pryor, 1961; Snyder, 1968; Sutherland and Manger, 1979; 

Manger and Sutherland, 1992; Sutherland, 1988; Thomas, 1977, 1984; Glick, 1975; Archer 

and Greb, 1995).   

 During Morrowan and throughout Pennsylvanian time, there were numerous high 

magnitude fluctuations in sea level.  These fluctuations have most often been attributed to 

glacio-eustatic causes due to glaciations of Gondwana (Webb, 1994; Schoff, 1975; Archer, 

1998; Archer and Greb, 1995).  Fluctuations in sea level have been estimated from 45 to 190 

meters, but the estimates may be high (Archer and Greb, 1995). Work in similar 

Pennsylvanian-age settings in Kansas have shown actual ranges of 30-40 meters (Archer and 

Feldman, 1995; Archer et. al, 1994; Archer et. al, 1996)  These eustatic cycles have not been 

completely recognized in other basins, but work in the Hugoton Embayment has shown 

seven eustatic cycles during Morrowan time. (Archer et. al, 1994 Archer and Greb, 1995) 

(Fig. 2). 
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        Figure 2 Seven eustatic cycles recognized in Morrowan rocks from the Hugoton Embayment, Kansas 
        (Archer and Greb, 1995 p. 621). 

 
 
The Morrowan was also a time of low global sea levels with tropical to sub-tropical 

climates along the paleoequator.  Most of Eastern North America was located near the 

paleoequator (Archer and Greb, 1995). This is in contrast to Mississippian time which was 

generally a time of higher seas and arid climate (Archer and Greb, 1995; Archer, 1998; 

Schoff, 1975; Webb, 1994; Kvale et. al 1994). Archer and Greb (1995) further expanded 

ideas of Morrowan depositional systems by developing a paleogeographic reconstruction 

displaying interconnected basins making up an Amazon-scale drainage basin across the 

eastern North American craton (Fig. 3). 
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Figure 3  Paleogeographic reconstruction of a Lowstand Morrowan sea illustrating maximum and minimum 
sizes of drainage basins.  OB Ouachita Basin, EIB Eastern Interior Basin (Illinois Basin), CAB Central 
Appalachian Basin, MB Michigan Basin, ARM Ancestral Rocky Mountains, CKU Central Kansas Uplift, MPr 
Maritime Provinces of Canada, Ar middle Bloyd sandstone of Arkansas (Archer and Greb, 1995 p. 616). 
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Archer and Greb (1995) noted that the Morrowan sands across the North American 

craton were commonly deposited as an incised valley fill, resting unconformably upon 

Chesterian and Early Morrowan strata.  The paleovalleys are variable in size, and range from 

15-120 meters deep and 0.5 to 30 km wide.  In addition to incised valley fills, sheet-form 

sandstone belts, which were not restricted to a paleovalley, are also present.  The Morrowan 

sandstones typically contained an abundance of quartz pebble conglomerates near the base of 

the sandstone, as well as being cross-bedded throughout with a dominant south-southwest 

paleoflow direction.  The Morrowan sandstones across the craton were found to be 

compositionally dominated by coarse-grained orthoquartzites.  Estuarine or fluvio-estuarine 

facies may locally overlie these sandstones and indicate a eustatic fluctuation in sea level.  

During most of Morrowan time, northwest Arkansas was situated along a lowstand 

sea near the terminus of a large scale fluvial system.  Enormous amounts of sediments mostly 

derived from the uplift of the Early Appalachians, was transported into the Illinois basin.  

These sediments were subsequently transported south through Arkansas and into the 

Ouachita Basin (Houseknecht and Kacena, 1983; Glick, 1975; Sutherland, 1988; Thomas, 

1977, 1984; Archer and Greb, 1995).  Glick (1975) estimated that nearly 200 cubic km of 

sediments had been deposited in northern Arkansas between early Morrowan to middle 

Desmoinesian time, with an estimated 305 m on the cratonic shelf, and up to 9,144 m of 

sediments in the Ouachita Basin.  Today these thick deposits are recognized in the subsurface 

as turbidites in the Arkoma Basin.   

 During Atokan through Desmoinesian (and potentially later) time the Ozark Uplift 

(and Ozark Dome) and east-west trending Ouachita Mountains were actively uplifting.  The 

uplift of the Ouachita Mountains cut off the flow of clastic sediments from the northeast into 
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Arkansas for the remainder of Morrowan time (Sutherland, 1988 Glick, 1975).  Post Morrow 

deposition into the Ouachita basin came from the northwest, east, west and south directions 

due to the uplifts in the region.  Small amounts of uplifted sediments were also carried down 

off the eroding uplifts from the north and northeast (Thomas, 1984; Sutherland, 1988). 

 

UMorrowan Stratigraphy of Northwest Arkansas 

Morrowan rocks outcrop extensively in northwest Arkansas.  The Morrowan Bloyd 

Formation containing the middle Bloyd sandstone (an informally named member) is the unit 

of interest for this study.  The middle Bloyd sandstone outcrop belt is generally oriented in an 

east-west direction primarily across the Boston Mountains.  The northern boundary is created 

by a regional truncation due to modern erosion north of the Boston Mountains (Fig. 4 and 5).  
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  Figure 4  Geologic Provinces of Arkansas and surrounding states 

(Modified from Hudson et. al, 2001). 
 

A southern boundary is created by the Mulberry and Cass Fault Zones where normal faulting 

dropped the formation into the subsurface Arkoma Basin (Houseknecht and Kacena, 1983; 

Zachry, 1979a; Glick, 1975).  The middle Bloyd sandstone extends to the east from the 

Oklahoma border, but the eastern boundary has not yet been clearly differentiated.  To south 

and east other sandstones appear where the middle Bloyd sandstone starts to thin; 

differentiating these sandstones is difficult complicated by faulting and pinching out of 

sandstones at the same time (McFarland, Personal Communication).   
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Figure 5  Middle Bloyd sandstone outcrop belt outlined in red (Modified from Haley et. al 1993). 
   

The Morrowan rocks in northwest Arkansas rests upon Chesterian strata (Fig. 6).  

Morrow-Atoka time records a shelf to basin transition from north to south where units 

thicken and change facies.   Dominant facies of this time period contain sandstone, shale, 

siltstone and limestone which have recorded rapid marine transgressions and regressions 

(Sutherland and Manger, 1979; Sutherland, 1988).   
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The Bloyd Formation (of primary 

interest in this study) contains five 

recognized members: the Brentwood 

Limestone, Woolsey Shale, middle Bloyd 

sandstone, Dye Shale, and Kessler 

Limestone (Fig. 6).  Throughout the 

study area the Woolsey Shale has been 

replaced with the middle Bloyd 

sandstone (Zachry, 1979).  All the 

members of the Bloyd Formation have 

been formally named with exception of 

the middle Bloyd sandstone; however the 

name is generally accepted and has been 

used by the Arkansas Geologic        

Commission and United States Geologic 

Survey in their publications and maps. 

        

 

The lower member of the Bloyd Formation is the 10-16 m thick Brentwood 

Limestone Member which conformably overlies the Hale Formation.  The member consists 

of two to four limestones with thick units of dark gray to black fissile shale in between.  The 

limestones may be composed of bioclastic grainstone and packstone which are often less than 

2 m in thickness (Zachry 1979a, 1979b).  The limestones within the Brentwood Limestone 

Figure 6  Stratigraphy of the study area in Northwest 
Arkansas.  The middle Bloyd sandstone replaces the 
Woolsey Shale in this stratigraphic column and across 
the study area (Modified from Zachry, unpublished). 
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Member as observed in outcrops in this study were gray in color with abundant brachiopod 

shells, tabulate corals, and many small fossil fragments.  In the southern portion of the study 

area bioclastic grainstones were also seen in the Brentwood Limestone member outcrops.   

Locally the Brentwood member may also contain thin calcareous sandstones, commonly 

showing high angle cross-stratification (Zachry, 1979b; Personal Communication). 

 The next overlying member is the Woolsey. This conformable terrestrial member 

consists of 3-13 m of siltstone, shale, and interbedded shale and siltstone which may vary 

greatly in thickness from one outcrop to another.  Terrestrial plant remains are commonly 

found within the shale.  The top of the Woolsey contains the Baldwin Coal, a thin sub-

bituminous coal ranging in thickness from 2.5-20 cm.  The Woolsey becomes increasingly 

sandy and thins eastward, where it is in a facies relationship with the middle Bloyd sandstone 

(Zachry 1979a, 1979b).   

The middle Bloyd sandstone is 3-46 m in thickness.  This unit unconformably 

overlies and locally incises into the Brentwood Limestone Member. Compositionally the 

middle Bloyd sandstone is a quartzarenite containing very small amounts of schist particles, 

polycrystalline quartz, and milky white quartz pebbles thought to be of metamorphic origin 

(Zachry, 1979a, 1979b; Berry, 1978).  Features of the middle Bloyd sandstone include: high 

angle, trough, and overturned cross-stratification, quartz pebble conglomerates, ripple sets, 

mud draped ripples, and erosional channels (Zachry 1979a, 1979b). Tabular cross-bed sets 

can range in thickness from 0.1- 2 m.  The contact of the middle Bloyd sandstone and 

underlying shales and limestones of the Brentwood Member typically consists of quartz 

pebble conglomerates and/or clay pebbles.  Locally at the contact large cobble to boulder size 

load casts can be found.  Zachry (1979b) has also reported that an interval of marine 
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sandstone ranging from 0.6-1.8 m in thickness has been found in the uppermost parts of some 

middle Bloyd outcrops. 

Unconformably overlying the middle Bloyd sandstone is the marine deposited Dye 

Shale which ranges from 18-33.5 m in thickness (Henbest, 1962).   At the base, the Dye 

Shale typically contains a sandstone with clay pebbles and conglomerates up to 1.5 m thick.  

This lower part of the Dye Shale is typically referred to as the “caprock.”  The remaining 

portion of the Dye Shale above the “caprock” consists of dark gray to black shale containing 

some locally scattered calcite rich concretions (McFarland 2004).  

The Kessler Limestone is the topmost member of the Bloyd Formation, conformably 

overlying the Dye Shale. It is typically 3-8 m in thickness (Zachry 1979a).  Compositionally 

the Kessler Limestone Member is made up of bioclastic and oolitic limestone.  This 

limestone contains clay pebbles, thin calcium cemented sandstones, and thin shales.   These 

facies are thought to have been deposited as short-term marine transgressions took place.  

East of central Madison County, the Kessler Limestone Member is believed to be absent 

(Zachry, 1979b).  Erosional unconformities exist at the base of the Atoka Formation, Dye 

Shale Member, and middle Bloyd sandstone (McFarland, 2004).  The relationship among the 

facies of the Bloyd Formation in a regional cross-section can be seen in Figure 7.   

It is also important to note that previous studies considered the Trace Creek Shale 

Member of the Atokan Formation to be a part of the Bloyd Formation prior to 1978.  

Sutherland et. al (1978) redefined the Morrowan-Atokan boundary based on biostratigraphy.  

They found that there was a significant unconformity between the Morrow and Atoka 

boundary.  
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 Figure 7  Regional cross-section illustrating relationship among members of the Bloyd Formation 
 (Modified from Zachry, 1979a). 
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UMethods 

The fifteen outcrops in this investigation were selected based on their suitability of 

study due to lack of vegetative cover and land classification.  Most of the outcrops studied 

were on public lands in the Ozark and St. Francis National Forests, with other outcrops on 

highway right of ways and in recreation areas.  Due to the widespread forest cover in the 

area, many outcrops have a thick covering of mosses, lichens and other vegetation making 

study very difficult.  For this reason fifteen of the best outcrops in the study area were 

selected for detailed analysis. 

Outcrops locations (Fig. 1) were located using 7.5 minute geologic map quadrangles 

and utilizing some of the previous locations studied in the 1978 Berry, 1982 Crowder, and 

2006 Antia theses.  Additional outcrops were pointed out in the field by Doy Zachry of the 

University of Arkansas.  The remainder of the outcrops were found using a transparent 

overlay of digital 7.5 minute geologic map quadrangles in Google Earth.  This allowed for 

the map to be made semi-transparent so that prominent rock outcrops could be seen through 

the map.  Often the best outcrops could be seen with Google Earth’s high resolution imagery.  

Fortunately, detailed geologic maps existed for about one half of the study area.  Sixteen 

quadrangles were mapped by the Arkansas Geologic Commission and three by the United 

States Geologic Survey.  Access to outcrops that were not on highway right of ways or very 

close to the paved highways required access by four wheel drive or hiking.   

To observe possible changes in character of the outcrops, samples were collected for 

making thin sections to analyze the petrology of the middle Bloyd and boundaries of physical 

sedimentary features.  At least one rock sample was taken from each outcrop for study.  Most 

of these samples were collected with a rock hammer with only a few cut with a Stihl gas 
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powered concrete saw.  Cut samples were sent to Texas Petrographic for the making of thin 

sections.  The thin sections (17) were studied under a Nikon E600 petrographic microscope 

and photographed with a Nikon E5000 digital camera.    

Quartz pebbles, which are commonly found in the middle Bloyd sandstone, were also 

measured in the field when found in sufficient quantity.  A measurement of 30 randomly 

selected pebbles was taken at each outcrop where accessible and in a sufficient quantity.  The 

in situ pebbles were measured on the two longest axes with a millimeter scale from the 

outcrop face itself.  These measurements were used to examine any possible trends in pebble 

size across the study area.    

Strike and dip measurements of the physical sedimentary features were also taken 

using a Brunton compass when acceptable measurement locations could be found.  

Declination was set to four degrees east for northwest Arkansas.  These measurements were 

used for recording paleo-flow direction.  Most outcrops had vertical faces making it difficult 

to find a place to record a strike and dip measurement, or the extreme weathered surface 

made the measurements impossible to take.  Often the general direction could be identified, 

but not measured precisely.  For this reason paleoflow directions in this study are not 

reported precisely.   

.   

 

 

 
 
 



 

17 

UStratigraphic Sections 

 Stratigraphic sections for the middle Bloyd start at the base of the middle Bloyd or 

the lowermost exposure where the contact between the middle Bloyd and Brentwood may be 

covered.  Additional thicknesses of shale/siltstone covered slopes may exist above the 

outcrop tops, but were so poorly exposed they were not suitable for study.  Additional 

covered intervals also are present within some outcrops. 

 Typical middle Bloyd outcrops are tan to brown to gray in color and lie on either the 

Brentwood Formation limestone, shale, or siltstone.  In the western portion of the study area 

the middle Bloyd lies on the Brentwood Limestone.  Further south and east the middle Bloyd 

lies on shale and then a siltstone deeper in the Brentwood Limestone member.  Immediately 

above the contact a clast supported quartz pebble or clay pebble conglomerate is often 

present.  Large load casts and a zone of soft sediment deformation commonly overlie the 

contact.   

 The lower portions of the outcrops generally are clean sands (though may contain 

clay pebbles) and contain intensely cross-stratified sandstone with quartz pebbles and thin 

beds of matrix supported conglomerate.  Moving upward in the outcrops, the shale content 

increases where interbedded intervals of sandstone and shale can be found.  Accompanying 

this transition the paleoflow in cross-stratified sandstone shows strong bi-directionality not 

present in the lower portions of outcrops.  Throughout the outcrops honey-comb weathering 

and liesegang cementation are common.  
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           Figure 8  Stratigraphic Section Legend 
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          Figure 9  Gaither Mountain stratigraphic column. 
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Figure 11  Standing on shale slope. Contact at shoulder level.  Note thick prominent tabular cross-beds dipping 
SW.  Nearly entire outcrop shown in picture is cross-bedded, though portions are difficult to see.  Pictured 
interval approximately 16 m in thickness. 
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Figure 12  Top of well exposed middle Bloyd at north end of outcrop. Poorly exposed, mostly covered middle 
Bloyd is seen above this bench on a steep slope.  Note blocky weathering pattern on cross-beds.  Pictured 
interval approximately 6 m in thickness. 
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  Figure 14  Close up of thick thin pairs on high angle cross-beds at Gaither Mountain.  Photo taken from     
  same interval pictured  in Figures 12 and 13.  Scale in cm.   
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Figure 15  Black fissile shale of the Brentwood Limestone member just below the middle Bloyd          
contact.  Shale has brown to orange concretions and concretionary beds.  A calcarenite lens within the   
shale can be seen in the northern portion of the outcrop. 
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Figure 16  Roadside Park stratigraphic column. 



 

27 

 Fi
gu

re
 1

7 
 E

xa
m

pl
e 

of
 h

on
ey

 c
om

b 
w

ea
th

er
in

g 
co

m
m

on
ly

 se
en

 in
 th

e 
m

id
dl

e 
B

lo
yd

.  
Th

is
 is

 th
e 

be
st

 e
xa

m
pl

e 
of

 a
ny

 o
ut

cr
op

 se
en

 in
 th

is
 st

ud
y.

  
Lo

ok
in

g 
up

 a
t u

nd
er

si
de

 o
f l

ed
ge

.  
D

ec
im

et
er

 sc
al

e.
 



 

28 

 
 
 

Fi
gu

re
 1

8 
 V

ie
w

 o
f u

nd
er

si
de

 o
f e

ro
si

on
al

 o
ve

rh
an

g.
  P

al
eo

flo
w

 is
 to

 th
e 

w
es

t. 
 C

lo
se

 u
p 

of
 ri

pp
le

 sl
ab

s c
an

 b
e 

se
en

 in
  F

ig
ur

e 
19

. 



 

29 

 
 
 
 
 

 
Figure 19  Close up of ripples in wall identical to ripples overhead shown in Figure 18.   
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Figure 22  Trace fossil of terrestrial plant (similar to modern “horse tails”) just above contact. 
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Figure 23  Quartz pebble conglomerate at Bloyd/Brentwood contact.  Scale in cm. 
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         Figure 24  Sherman Mountain stratigraphic section. 



 

35 

 
Figure 25  Tabular cross-bedding locally containing low angle cross-bed sets with thick thin pairs.  Cross-beds 
dip to the SW.  Horizontal sandstone seen at top of 2 m rod (lower left) has abundant quartz pebbles.  This is 
directly overlain by trough cross-beds containing quartz pebble conglomerate and horizontal layers of 
conglomerate.  Pictured interval approximately 6 m in thickness. 
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        Figure 29  Boxley stratigraphic section. 
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Figure 31  Coalified wood found in lower portion of outcrop just above Bloyd/Brentwood contact.   
The coalified wood can be found in a clean white sandstone which may be stained from abundant pyrite  
present along with the coal 
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Figure 32  Voids produced by weathered out clay chips from float block near Bloyd/Brentwood contact. 
 



 

43 

 
 

Figure 33  Low Gap stratigraphic section. 
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Figure 35  Full view of interval with interbedded sandstone and shale.  Figure 34 shows the upper portion of 
this picture.  Pictured interval approximately 2 m in thickness. 
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                Figure 39  Cannon Creek stratigraphic column. 
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Figure 44  Boxley South stratigraphic column 
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Figure 45  Underside of rippled slab from shaley zone with with burrows at about 9 m.  Note large burrows on 
edge of slab and smaller burrows throughout the slab. 
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Figure 48  Clay pebbles in float block found near base of middle Bloyd.  Clay pebbles/cobbles can be found 
intact up to 12 cm in size. 
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     Figure 50  Witter stratigraphic column. 
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     Figure 53  Alum Cove stratigraphic column. 
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     Figure 56  Parker Ridge stratigraphic column. 
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Figure 57  Northerly dipping trough cross-bed sets seen at about 1 m and directly above scale.  Scale in lower 
left is 2 m.  Entire outcrop is approximately 20 m in thickness. 
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Figure 58  Best exposed trough cross-bed sets.  Dip is in a N- NE direction.  Small amounts of truncation may 
be seen. 
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Figure 60  Dark gray siltstone underlying 1 m thick horizontally bedded sandstone with scattered quartz 
pebbles.  Alternating beds of sandstone and shale (shown in Figure 59) overlie the 1 m thick sandstone. 
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Figure 61 Pedistal Rocks stratigraphic column. 
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           Figure 65  Sugar Creek stratigraphic section 
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        Figure 68  Buzzard’s Roost stratigraphic section 
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Figure 69  Southwest outcrop showing bi-directional cross-bed sets alternating between NE and SW dips.  
Cross-bed sets also appear to contain some thick thin pairs.  Cross-bed sets at 1 m and 1.65 m show NE dips.  
Remaining cross-bed sets show SW dips. 
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Figure 70  Cross-bed sets with numerous reactivation surfaces seen in small cave at central outcrop.  Cross-bed 
sets in the outcrop range in thickness from 5 cm to 2 m.  Average cross-bed sets measure from 0.4  to 1 m   
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Figure 71  Continuous 2 m thick cross-bed set at central outcrop.  These continuous cross-bed sets were the 
thickest observed in the study area of the middle Bloyd.  Pictured interval approximately 2.5 m above base of 
the outcrop.  Thick-thin pairs may be present but weathered surface and lichens make for a difficult 
determination. 
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     Figure 74  Meadows Knob stratigraphic column 
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Figure 75  Top of Meadows Knob stratigraphic section.  Section is exposed on a very steep slope covered with 
vegetation and loose rock.  Overall the section is a poorly exposed due extensive weathering, lichen growth, and 
vegetative cover (Photo from Antia, 2006). 
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Figure 77  Long Pool stratigraphic column 



 

88 

 Figure 
78  Trough cross-beds dipping in a northerly direction.  Most sets appear to dip to the northeast.  
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Figure 80  Rippled sandstone from about 2 m above contact SW of main outcrop.  Feeding trackways can be 
seen on surface. 
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UThin Sections and Photomicrographs 

 

 Through study of 17 thin sections, the middle Bloyd sandstone was found to be a 

quartz cemented quartzarenite based on the Folk (1974) classification.  Quartz made up 96 to 

98 percent of the sandstone grains in the thin sections.   Most quartz grains were 

monocrystalline quartz with the occasional presence of polycrystalline quartz noted in about 

half of the samples.  Often only a few polycrystalline grains could typically be found in a 

standard 1.5 x 3 inch thin section.  Muscovite mica was commonly seen and made up 0.5 to 2 

percent of the thin sections.  Additionally clay was found to make up 0.5 to 1.5 percent of the 

thin sections.  The clay was typically found on bedding planes and often associated with finer 

grained sandstones (Fig. 83, and 84).  The presence of a few metamorphic rock fragments 

and biotite were noted in only thin sections from Gaither Mountain and Parker Ridge (Fig. 

85). The fractured appearance of the quartz in many of the photomicrographs was due to the 

cutting process in the making of the thin sections.   
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Figure 83  Graded bedding with alternating coarse/fine layers.   Finer beds contain an abundance of clay.  The 
middle finer layer in microscope view is overlain and underlain by a clean coarser sand.  This graded bedding 
may have been deposited in a similar manner as the thick then pairs discussed earlier in this report.  Thin 
section is 1.5 x 3 inches in size.  Microscope view is 10x PPL.  Sample collected from about 2 meters above 
convolute bedded zone in central portion of Buzzard’s Roost Outcrop.   
 
 
.   
 

 
 
Figure 84  1.5 x 3 inch thin section showing abundant clay on boundaries in rippled interval collected from SW 
outcrop at Long Pool about 2.5 meters above the middle Bloyd/Brentwood contact.  
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Figure 85  Microscope view at 20x XPL.  Note biotite, muscovite and metamorphic rock fragment.  Sample 
from 20cm above middle Bloyd/Brentwood contact in Parker Ridge Outcrop 
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Quartz Pebble Survey 

 
 When sufficiently common, quartz pebbles were measured from the outcrop face to 

determine if any size trends could be identified.  Measurements were all in millimeters and 

consisted of a long and short axis measurement as the pebbles could not been seen in three 

dimensions (Table 1 and 2).  Most pebbles appeared spherical or elliptical.  Because pebbles 

could not be measured in three dimensions, cross sectional area of the pebbles was calculated 

as a way to compare size.  As most pebbles were elliptical in shape the formula for an ellipse 

was used to calculate the cross sectional area (r1 x r2 x π).  The radius (or half of each axis) 

is represented by r1 and r2.   

 From the measurements collected at each outcrop the average pebble size was 

calculated in order to compare pebble size among outcrops.  Graphs were created with  the 

cross sectional area of the average pebble at each outcrop on the Y axis and latitude and 

longitude on the X axis.   

 Trends shown by these graphs are unclear, but a westward coarsening can be seen in 

Figure 86 where pebble cross sectional area vs. longitude is graphed.  In Figure 87 the Pebble 

cross sectional area (square mm) vs. latitude shows a very scattered pattern with no obvious 

trend.  However, trends seen in the graphs may not show true trends.  The measurements 

taken on the pebbles from the outcrop face may or may not have been the actual long and 

short axis measurements.  The wide spacing of outcrops across the western part of the study 

area also may not represent trends that may be present if other outcrops were examined.  

Additionally a much larger number of outcrops would need to be studied to clearly identify 

any pebble size trends.   
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Buzzard's Roost  Parker Ridge  Sherman Mountain 
long axis short axis  long axis short axis  long axis short axis 

3.5 2  8.5 5  4 2
8.5 2.5  9.5 4.5  5 3
2.5 2.5  6 3  15 7.5

3 2  8.5 3  7 3
4.5 2.5  17.5 7.5  6 3.5

4 2  6 2  12 10
2.5 2.5  6.5 4.5  6 3
8.5 5  8 5  7.5 4
5.5 1.5  11 4.5  11 2

4 3  9 3.5  4 1.5
4.5 3  10 5  9 5

5 3  8 5  7.5 6
6 2  9.5 2  3.5 3
5 5  8 5.5  9.5 2.5
3 2.5  9 3  5 2.5

2.5 1.5  6 2.5  7.5 4.5
3 1.5  7.5 4.5  5.5 3.5

4.5 2  5 2  3 1.5
3 2  7 3  9 3

6.5 1.5  6 3  6.5 2.5
9 3.5     4 2

2.5 2     5.5 2
7.5 5     2 2
5.5 3     5 3
7.5 4.5     4.5 2.5

3 2     4.5 3
7.5 2     5.5 3

3 1.5     6.5 2.5
2.5 2     3 2

      
Average Pebble Size  Average Pebble Size  Average Pebble Size 

4.7 2.6  8.4 3.9  6.4 3.3
            
  Table 1.  Pebble measurements (in mm) for Buzzard’s Roost, Parker Ridge and Sherman    
  Mountain Outcrops. 
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Gaither Mountain  Roadside Park  Cannon Creek 
long axis short axis  long axis short axis  long axis short axis 

9 4.5  12.5 5  19.5 11 
7.5 5  12.5 4.5  14.5 8 

12.5 5  7.5 5  12 5 
7.5 3  9 3.5  8 5 
11 2.5  11 7.5  12 5.5 

5 4  7.5 5  14.5 6.5 
7.5 3.5  7.5 7.5  8.5 4 
5.5 2  9 7.5  8.5 3.5 
2.5 2.5  6 3  8.5 4.5 

5 3  11 4.5  13 5 
10 3.5  5 5.5  18 5 

3 2  11 4  9.5 4.5 
5 3  9.5 5  8.5 7.5 

5.5 2.5  9.5 4  8 5.5 
3.5 2.5  6 3  12 7.5 

4 1.5  7.5 2  11 6 
4 2.5  10 10  11 6.5 

3.5 2  7.5 5  11.5 9 
4 2.5  10 5  11 5.5 

7.5 3  7.5 4.5  8 5 
4 3.5  10 3  7.5 7.5 

7.5 2.5  11.5 5.5  6.5 5 
5 5  10 3.5  11 4.5 
8 3.5  8 2.5  9.5 8 
6 5.5  9.5 7  11 6.5 

4.5 2  9 3  11 7 
7.5 2  6 4.5  11.5 3.5 
5.5 3  7.5 6.5  13.5 5.5 

5 3.5  7.5 5  8 5.5 
        
Average  Pebble Size  Average Pebble Size  Average Pebble Size 

6.0 3.1  8.8 4.9  10.8 5.9 
 
   Table 2.  Pebble Measurements (in mm) for the Gaither Mountain, Roadside Park,        
    and Cannon Creek outcrops. 
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Pebble Cross Sectional Area vs Longitude

0

10

20

30

40

50

60

410000 420000 430000 440000 450000 460000 470000 480000 490000 500000

Longitude (UTM NAD27 CONUS)

P
eb

bl
e 

C
ro

ss
 S

ec
tio

na
l A

re
a 

(s
qu

ar
e 

m
m

)

BR
PRR
SM
GM
RP
CC

 
 Figure 84  Pebble cross sectional area (square mm) vs. longitude.  An increase in size to the west can be     
 observed.  Outcrop locations can be seen in Figure 1.  
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 Figure 85  Pebble cross sectional area (square mm) vs. latitude.  Outcrop locations can be seen in Figure 1. 
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Facies and Depositional Settings of the middle Bloyd 

 The middle Bloyd can be divided into three general facies across the study area.  

These facies consist of intervals of: horizontal bedding (HB), planar-tabular cross-bedding 

(PTCB), and trough cross-bedding (TCB).  These three facies clearly vary in their 

characteristics across the study area especially in a north-south direction.   

 

Horizontally Bedded Facies and Depositional Settings 

 The HB facies across the study area generally consists of wavy bedded sandstone and 

shale, ripple bedded sandstone with thin mud drapes, sandstone that appears to be thick 

bedded lacking physical sedimentary structures, and lenticular bedded shale and siltstone.  

The interbedded shale and sandstone is found only in the central part of the study area.  

Ripple bedded sequences lacking mud drapes were found in the northern and central parts.  

Mud drapes were found in only the Pedestal Rocks, Low Gap, and Witter outcrops in the 

central part of the study area.   

 Shale within the wavy bedded interval commonly displayed orange and blue-gray  

pinstripe bedding where there was a clean exposure (Fig. 34).  Wavy bedding and Pinstripe 

bedded shales have been found to be characteristic of, but not solely restricted to, tidally 

influenced environments (Fig. 91) (Archer and Feldman 1995).  A tidal environment would 

explain the cyclical natures of the bedding and consistencies in thicknesses between the shale 

and sandstone beds. 

 Wavy and pinstripe bedded sequences of rippled sandstone and shale were found at 

the Boxley South, Low Gap, Meadows Knob, and Parker Ridge outcrops.  The thickness 

varied between outcrops but was between 1.5 and 5 meters.  From top to bottom the 
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sandstones and shale maintained a cyclical nature in both thicknesses and lithofacies.  

Typical thicknesses were 1-4 cm for the shales and rippled sandstones.  These deposits have 

been found to exist in tidal channels (possibly exhibited by the lateral pinchout at the Boxley 

South outcrop) in the upper parts of Pennsylvanian incised valley fills, and in the middle 

portions of estuaries, represented by mudflats and bars (Archer et. al, 1994; Archer and 

Feldman, 1995).  Bioturbation was found to be non-existent except for the Boxley South 

outcrop (Fig. 45).  This lack of bioturbation, common in early Pennsylvanian and modern 

estuarine environments, has been explained by fluctuating salinity, high rates of deposition, 

or a combination of the two (Archer and Feldman, 1995; Archer, in press).  Additionally the 

presence of coalified wood and pyrite at the base of the Boxley South outcrop suggests an 

oxygen deficiency at the sediment-water interface. 

  The ripple-topped sands in the 

wavy bedded interval exhibited either a 

northward or southward paleoflow, but 

on many ripple sets it was difficult to 

determine a paleoflow.   Bi-

directionality could also be observed, 

but the degree to which it exists is not 

clear as some rippled intervals did not 

display a clear paleoflow direction.   It 

would seem reasonable that the ripple 
Figure 86  Formation of tidal rhythmites on planar-
tabular cross-beds.  Formation of horizontal rhythmites 
occurs in the same manner (Modified from Reading and 
Collinson, 1987 p. 165). 
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topped sands were deposited in low water depths.  The shales (mud) would then be deposited 

during stillstands after high tides had arrived creating deeper waters and a very low velocity 

flow.  This stillstand would allow finer particles to fall out of suspension.   

 Horizontally bedded sand/shale thick-thin pairs were formed in a similar manner and 

setting to the wavy bedded intervals.  Horizontally bedded thick-thin pairs were found only at 

the Buzzards Roost outcrop; however thick thin pairs were found in other outcrops in the 

PTCB facies.  The mechanism for horizontal and inclined bedded thick thin pairs and mud 

draped ripples are the same.  The first stage of formation called the  dominant current stage is 

a time of sand migration leading to deposition of a sandy foreset (Fig. 88).  Following this 

stage a stillstand (slack water) stage where currents are very low and result in mud falling out 

of suspension depositing a muddy (clay) drape.  This may also be influenced by saline waters 

moving inland from tides causing clays to flocculate and fall out of suspension rapidly 

(Reading and Collinson, 1987).  The third stage, the subordinate stage, is weaker than the 

dominant stage.  However, it may or may not be strong enough to deposit sand on top of the 

previous mud drape.  Following the subordinate stage a second stillstand (slack water) stage 

may or may not occur depositing another mud drape (Nio and Yang, 1991; Reading and 

Collinson, 1987).  

 All four stages of rhythmite formation would form a four-element rhythmite in ideal 

conditions (Fig. 89). Often all four stages are not strong enough and lead to formation of 

other types of rhythmites.  Two and three-element rhythmites are also possible.  The three-

element rhythmites will form when the subordinate flow is not followed by a stillstand.  The 

two-element rhythmites occur when the subordinate flow is very weak and is also not 

followed by a stillstand.  These two-element rhythmites are common in the Pennsylvanian 
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and indicate that there was little to no deposition during the subordinate flow.  This would 

indicate inequality (in terms of velocity and/or vertical range) between the high and low tides 

(Archer 1998).  

 
Figure 87  Multi-element rhythmites.  F= Flood (High tide), E= Ebb (low tide) (Archer, 1998). 
 
 
 A complete tidal cycle will be made up of 29 rhythmite pairs, due to 29 days in a tidal 

cycle (Reading and Collinson, 1987).  The deposits may be inclined (cross-bedded) or 

horizontal.  Spring tides are the highest of all tides and are 20% higher than normal.  Neap 

tides are 20% lower than normal and occur when the sun and moon are at right angles 

relative to the earth.  For this reason a complete tidal cycle will show thinner (neap) 

rhythmites transitioning to thicker (spring) rhythmites, and then into another interval of thin 

(neap) rhythmites (Fig. 90) (Reading and Collinson, 1987). 

  

 

 

 

 
 

Figure 88  Typical appearance of a 29 day tidal cycle with rhythmites thickening at the spring bundles 
(Modified from Prothero, 1987). 
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 The middle Bloyd shows a nearly complete tidal cycle in horizontal beds at the 

Buzzard’s Roost outcrop (Fig. 72).  These thick thin pairs do not show a mud layer but show 

what appears to be replacement by iron cements.  This was seen in the Pennsylvanian Abbot 

Sandstone in the Illinois Basin as well (Kvale and Archer, 1991).  A similar feature was 

observed at the Pedestal Rocks and Witter Outcrops where mud drapes appeared to be 

replaced by iron cements or smaller sand grains were better cemented resulting in differential 

weathering.  

  The mud draped ripples (Fig. 37, 52, 63, and 64) likely formed in settings similar to 

the interbedded sandstone and shales.  When the stillstands did not occur, either due to 

greater fluvial discharge not allowing tidal influences to extend further inland or in areas not 

influenced by tides, the mud drapes were not deposited and left behind a vertical sequence of 

ripple-bedded sandstone seen in many outcrops.  Many of the ripple bedded sandstones were 

likely deposited in environments with little to no tidal influence.  This was commonly 

observed in the northern parts of the study area where very thin ripple beds were located in 

close proximity to PTCB facies.  These ripples could have been deposited anywhere in the 

channel including on top of bars submerged in shallow water.   

  Mud drapes could also have been destroyed as the tide went out leaving behind 

evidence as flaser bedding (Fig. 91).  The latter seems unlikely as the sandstones and shales 

seem to maintain regular and consistent thicknesses with rippled sands that do not have 

scoured or flattened ripple tops.  Flaser bedding might also be shown if mud drapes were 

partially removed.  However, rip up clay clasts were commonly found through the middle 

Bloyd.  This was seen especially when cutting slabs or billets for thin sections. 
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        Figure 89  Comparison of bedding types characteristic of, but not solely restricted to, 
                tidally influenced environments (Modified from Archer and Feldman 1995). 
 
 Horizontally deposited sandstone apparently lacking any type of cross-stratification 

was also seen in the study area.  This structureless sandstone was seen at the Boxley, Boxley 

South, and the Parker Ridge outcrops.  Additionally the Gaither Mountain and Sherman 

Mountain outcrops had an interval of slightly inclined beds lacking cross-stratification which 

appeared to have some curved channel boundaries filled with a structureless sand.  

Commonly an abundance of small wood pieces, more than any other outcrops in the study 

area, were found in these sands.  The Boxley outcrop even had an interval at the base which 

was marked by coalified wood (Fig. 31).  

  The horizontal beds likely formed at the upper flow regime (Fig. 92) where 

sedimentation occurred rapidly burying wood fragments and filling in small channels.  A 

similar facies was described by Plink-Bjorklund (2005) in an Eocene estuarine system.  

Scattered yet abunadant quartz pebbles were also found in this interval, most notably at 
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Parker Ridge.  The abundant scattered quartz pebbles would also suggest upper flow regimes 

where high flow can move the larger quartz pebbles and scatter them from a concentrated 

area such as a sand/quartz pebble bar.  

 The Low Gap outcrop also contained a horizontally bedded interval of shale and 

siltstone with lenticular bedding (Fig. 38).  This outcrop, which was in the upper part of the 

middle Bloyd, exposes an interval that was not commonly seen in the study area.  The upper 

portions of many outcrops in the study area consisted of shale to siltstone covered slopes 

with scattered blocks of middle Bloyd sandstone.  This suggests that the upper portions of 

many of the outcrops contained sequences of shales and siltstone, which do not keep a 

vertical face unlike the thick sandstone of the middle Bloyd.  The lenticular bedded siltstone 

and shale would indicate that deposition likely occurred in a mid-estuarine mud flat similar to 

other Pennsylvanian settings (Archer and Feldman, 1995; Lanier et al., 1993). 

 

Planar-tabular Cross-bedded Facies and Their Depositional Settings 

 The PTCB facies of the middle Bloyd is dominant in the Buzzard’s Roost, Cannon 

Creek, Gaither Mountain, Roadside Park, and Sherman Mountain outcrops.  The Boxley 

South, Long Pool, and Pedestal Rocks outcrops also contain intervals of planar-tabular cross-

bedding but it is not the dominant facies.  PTCB facies has been observed in many modern 

river systems (Miall 1972, 1992).  This common facies is generally attributed to the 

formation of different types of bars.  To a geologist studying outcrop faces, identifying the 

type of bar or identifying the size of a bar would be difficult if not impossible under most 

circumstances. 
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 Modern analogs have shown that point bars, mid-channel bars and side bars are some 

of the most common types of bars found in the fluvial system (Miall 1972, 1992; Coleman, 

1969).    It would be reasonable to expect these bars throughout much of the fluvial system in 

the study area. In this investigation the cross-beds were observed to be continuous throughout 

the outcrops until running into covered slopes where they were no longer visible.  For this 

reason a size range for potential bars could not be determined. Sand waves and ripples have 

been attributed to bars forming in the lower flow regime for the PTCB facies (Fig. 92).  It is 

also important to point out that PTCB can be found from the mid-channel (thalweg) up to the 

margin of a fluvial channel (Sambrook-Smith et.al, 2005). Coleman (1969) found that this 

facies was often preserved due to high bed loads burying the bars in a rapidly aggrading 

fluvial system.  Studies of modern analogs have shown these bars may migrate rapidly during 

times of high flow.  At times of low flow the bars were left much higher than the water 

surface leading to formation of a braided channel pattern with low sinuosity (Miall 1972, 

1992; Coleman, 1969).  

 Cross-bed sets across the study area typically range from 0.4 to 1 m in thickness and 

have a dominant paleoflow to the south-southwest.  At the Buzzard’s Roost outcrop planar-

tabular sets could be found as thin as 4-10 cm (Fig. 70), and as thick as 2 m (Fig. 71), the 

thickest observed in the study area.  The thinner cross-bed sets contained numerous 

reactivation surfaces (more than any other outcrop in this study) and could likely be mid-

channel deposits which would often be scoured and reworked due to the channel aggrading 

and degrading at different times.  These thin sets were slightly variable in paleoflow but 

displayed a dominant dip direction to the southwest.  This variation may be due to a braided 

channel pattern. 
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 It was observed that across the 

study area the PTCB facies locally 

contained thick-thin pairs.  These pairs 

are strong indicators of tidal influences 

which can extend inland for hundreds of 

kilometers (Archer and Feldman, 1995; 

Lanier, Feldman and Archer, 1993; 

Archer, 2004; Kvale and Archer, 1991; 

Archer et. al, 1996).  The thick-thin 

layers consist of a thicker sandy layer 

and a thinner mud drape layer.  One of 

the best documented occurrences of 

       these features was seen in the 

Pennsylvanian Abbott Sandstone in the Illinois Basin.  Entire 29 day tidal cycles are 

preserved in this unit (Kvale and Archer, 1991).   

  In the middle Bloyd the high-angle cross stratification lacks mud drapes (or appears 

to).  Differential weathering and parting surfaces often make these features stand out, 

otherwise they might have been overlooked. It is possible however that muds may be 

preserved in the thick thin pairs, but have been weathered deeply back into the outcrop face.  

Extensive rock removal would need to be done to confirm whether clay is present.  Very 

large clay chips were found in the middle Bloyd near the contact as previously mentioned, 

but small clay chips (0.5 cm or smaller) were also found tens of meters or more above the 

Figure 90  Bedforms in a unidirectional flow 
regime (Modified from Prothero 1990).  
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contacts.  Often these small clay chips were found in abundance when cutting or removing 

samples for use in making thin sections.  Upon cutting rocks up in the lab an even greater 

abundance of these small clay chips were found in samples from most of the outcrops.  This 

may suggest that clay drapes were ripped up by tidal or fluvial action and destroyed in 

transport with some buried within the sand and preserved. 

 The upper portions of the middle Bloyd outcrops also contained PTCB facies with 

thin bi-directional cross-beds which locally may contain thick-thin pairs.  The best example 

of this was found at the Buzzard’s Roost outcrop (Fig. 69).  Again mud drapes appear absent 

but the reactivation surfaces are weathered far into the surface so it is difficult to tell for sure.  

The bi-directional sets have clear northeast-southwest shifts in paleoflow.  This bi-directional 

nature of PTCB in upper portions of outcrops has been reported in similar early 

Pennsylvanian settings in central North America.  These were interpreted to be indicative of 

shallow water estuarine depositional settings where fluvial and tidal flow would vary causing 

changes in flow direction (Archer and Greb, 1995). 

 Also included in the PTCB facies are overturned (deformed) cross-beds.  These are 

best seen at Buzzard’s Roost, Cannon Creek and Gaither Mountain.  Overturned cross-

bedding has been seen in modern analogs to have been caused by planar-tabular cross-beds 

being influenced by drag.  Drag is said to be induced by strong sediment-laden currents 

which will overturn the foresets (Coleman, 1969).  Also included in the PTCB facies is 

convolute bedding.  This was seen in several outcrops often near the base where cross-beds 

were deformed through liquefaction and locally flame like structures could be seen (Fig. 73). 
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Trough Cross-Bedded Facies and Depositional Settings 

 Trough cross-bedding was found in outcrops in the southern portion of the study area.  

The TCB facies were dominant in the Parker Ridge, Alum Cove, and Sugar Creek outcrops.  

The Long Pool and Meadows Knob outcrops also had a large portion of TCB facies.  Both 

small scale and large scale cross-beds occur in the study area.  The small scale trough cross-

beds sets are less than 35 cm thick with the large scale sets being greater than 35 cm thick.  

The scale was chosen to differentiate between the size of the trough cross-beds at Long Pool 

(large scale) and the trough cross-beds in the other outcrops (small scale). 

 Trough cross-beds can form in both fluvial and marine environments.  To form the 

trough cross-beds there must be a scoured surface in the downstream direction.  Due to the 

scoured out area, deposition will lead to curved (trough shaped) beds.  If no scours were 

present deposition would result in planar-tabular cross-bedding.  The Long Pool outcrop 

exhibits both intricately interwoven and truncated trough cross-bed sets up to 70 cm in 

height.  This, along with a change in paleoflow to a northward direction, suggests that a tidal 

influence may have formed these dune (formerly termed megaripple) scale features at the 

boundary between the upper and lower flow regime (Fig. 92).  Wave influence would also be 

a possibility as it has been attributed to cause interwoven dune scale trough cross-bedding 

(Reading and Collinson, 1978).  The other small scale northward dipping trough cross-beds 

may also have been influenced by tides but to a smaller degree as they would be further 

upstream.   
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Incised Valley Fill in the Middle Bloyd 

 Accommodation space for the middle Bloyd was necessary for deposition to occur.  

Incised valley systems common in the Pennsylvanian (Archer and Greb, 1995; Archer and 

Feldman, 1995) would allow for this accommodation space.   Clast (and to a small degree 

matrix) supported quartz pebble conglomerate at the contact between the middle Bloyd and 

the Brentwood is nearly identical to those in many of the Early Pennsylvanian incised valley 

fills in the Midcontinental U.S. (Archer and Greb, 1995).  The facies of the middle Bloyd 

also closely mirror these incised valley fills.  

 The middle Bloyd lies on either the Brentwood Limestone or the Brentwood 

Shale/Siltstone across the study area.  The western portion of the study area lies on the 

fossiliferous Brentwood Limestone and typically shows local incision (erosional step-downs) 

on the order of one meter (Cannon Creek, Fig. 40).  Tabulate corals and crinoid parts can be 

found in the middle Bloyd about two meters above the contact.  These fossils were derived 

from the underlying Brentwood Limestone.  Moving eastward, regional incision cuts deeper 

into the Brentwood Limestone and Brentwood Shale.  At the Boxley South outcrop a steeply 

sloped locally incising channel over two meters in depth can be seen (Fig. 49).  It is expected 

that further incision is present as this channel bottom cannot be seen.  Many of the outcrops 

in the study area were seen to have between 2 and 3.5° of dip at the contact suggesting the 

paleovalley may be deep yet broad.   

 Eastward from the base of the Cannon Creek outcrop to the base of the Boxley 

outcrop there is just over 12 meters of incision (Zachry, 1979).  This distance covers only the 

western one half of the study area.  It would be expected that incision increases further south 

and east due to outcrops resting on intervals of siltstone in those directions.  The Gaither 
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Mountain, Boxley, Buzzard’s Roost, and Meadows Knob outcrops are all over 30 meters in 

thickness when counting poorly exposed intervals above the outcrops containing middle 

Bloyd blocks.  The thickest outcrops observed in the study area are the Meadows Knob and 

Buzzard’s Roost outcrops which are approximately 35 meters in thickness.  However the 

Buzzards Roost outcrop may be considerably thicker as the contact was not observed.  

Decompacting the incised valley fill would also increase this thickness.  When estimating the 

thickness, 30 percent or so can be added to the thickness of the shale intervals (Archer and 

Feldman, 1995).  A reasonable depositional thickness would put the Meadows knob outcrop 

at around 38 meters in total thickness.  This range fits into the 20-70 meter range of other 

Pennsylvanian incised valley fills. 

 

Depositional Model of the Middle Bloyd 

 Modern and ancient analogs in fluvio-estuarine settings have been extensively studied 

leading to a commonly accepted tripartite facies depositional model (Allen, 1991; Archer, 

2004; Archer and Feldman, 1995; Archer et. al, 1994; Plink-Bjorklund, 2005; Archer et al., 

1996; Lanier et al., 1993).  The typical tripartite model consists of an outer estuarine zone 

dominated by sandy deposition, an inner estuarine zone dominated by muddy deposition, and 

an upper estuarine zone with sandy deposition (Fig. 93).   
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Figure 91  Tripartite estuarine model.  Modified from Archer and Feldman (1995) Figure 5 p. 122 
 
The estuarine facies model is typically funnel shaped and reflects the shape of the drowned 

incised valley system it fills.  As marine transgressions or regressions occur, these zones may 

shift position and be preserved in the rock record.  These changes in base level are especially 

useful for paleogeographic reconstructions (Archer and Feldman, 1995). 

 The outer estuarine zone is dominated by wave action and strong tidal currents which 

do not allow for muddy sediments to fall out of suspension.  For this reason the outer 

estuarine zone consists of clean sands devoid of mud.  These sand bodies are represented in 

the middle Bloyd as northward dipping trough cross-beds that increase in scale southward 

(seaward) where intricately interwoven dune scale trough cross-beds up to 70 cm in height 

can be found.  This records a strong wave and tidal influence as previously mentioned in this 

report. 

 In the upper parts of the middle Bloyd horizontally interbedded sandstones and shale 

exhibiting wavy, lenticular, and pinstripe bedding typical of middle estuarine deposits where 

marine and fluvial influences merge. This merging creates a current velocity stillstand where 

rapid deposition of fine muddy sediments can fall out of suspension.  These sediments 
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generally lack bioturbation likely indicating rapid deposition and/or salt/freshwater 

fluctuations that organisms do not tolerate well.   Biogenic sedimentary structures seen as 

trackways on rippled surfaces in the middle Bloyd, though rare, also indicate inner estuarine 

zones (Archer, 2004)  This inner estuarine interval is also represented in the middle Bloyd by 

strong bi-directional paleoflow in cross-bedded sandstone which has possible preserved 

rhythmites.  Mud draped ripples found in the middle Bloyd are also common in mid estuarine 

zones (Archer and Feldman, 1995). 

 The upper estuarine zone is dominated by sandy fluvial depositional settings.  In the 

middle Bloyd this is represented by intensely cross-stratified (planar-tabular) sandstone with 

abundant quartz pebbles.  Paleoflow in this fluvial upper estuarine zone is strongly uni-

directional to the southwest.  Locally, rhythmites on the cross-stratified sets record strong 

tidal influences moving far inland.  This influence extending far inland is likely due to 

amplification from the funnel shaped estuary (Archer, 2004; Kvale and Mastalerz, 1998). 

 The transition from sandy fluvial deposition at the base of the middle Bloyd to muddy 

inner estuarine deposition with bi-directional paleoflow higher in the outcrops, suggests the 

middle Bloyd records a marine transgression and a flooding estuarine system.  Marine 

sandstone found in the upper meter of the middle Bloyd containing bryozoan and crinoid 

fossils also suggests the transition to marine settings.  The shift from the terrestrial middle 

Bloyd to the marine Dye Shale is also evidence of a marine transgression.  A model of this 

process can be seen in Figure 95.  Following the early highstand stage the incised valley 

system would be overtopped where the marine Dye would then be deposited.  
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An ideal depositional model of the middle Bloyd during an early transgression is 

shown in Figure 94.  This model contains an estuarine funnel which allows tidal influence to 

extended far inland, amplified by the funnel shape.  Sand and quartz pebble  

bars are also represented in the upper and mid-estuarine zones, and would be common due to 

the widespread cross-bedding.  Mudflats with heterolithic bedding are represented at the 

margins (and would be present 

below water in the middle 

estuary) as has been noted in 

modern analogs (Allen, 1991; 

Archer, 2004). Additionally 

swamp like areas are also 

represented.  These areas 

overtime became thin coal beds 

which can be found in some 

middle Bloyd outcrops (Berrry, 

1978; Crowder, 1982).   

 

 

Figure 92  Ideal paleogeographic model of the middle Bloyd sandstone 
(Modified from Archer et al., 1994). 
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Figure 93  Early to late transgression in an incised valley 
fill (Modified from Plink-Bjorklund, 2005). 



 

117 

 

Conclusions 

 The middle Bloyd sandstone exhibits strong evidence for a fluvial to estuarine 

transition within an incised valley fill similar to many Early Pennsylvanian systems in the 

U.S. Midcontinent.  Fluvial deposition is marked by intensely cross-stratified sandstone with 

a dominant southwest paleoflow. Locally the cross-stratification preserves tidal rhythmites as 

thick-thin pairs, indicating tidal influences extended far inland. A transition from fluvial to 

estuarine deposition is seen in several respects.  Sequences of interbedded sandstone and 

shale/siltstone that are wavy, lenticular and pinstripe bedded, attributed to mid-estuarine 

deposition, were found in the upper parts of outcrops.  Commonly the sandstone beds that 

overlie and underlie these estuarine deposits have recorded tidal influence marked by bi-

directional northeast-southwest paleoflow typical of fluvio-estuarine deposition.  One 

outcrop (Long Pool) preserved intricately interwoven dune scale trough cross-stratification 

with northerly paleoflows.  The strong northerly paleoflow and intricately interwoven trough 

cross-stratification is a good indicator of wave and tide influence seen in outer estuaries.  

 Following the fluvio-estuarine deposition, sea level continued to rise.  Horizontally 

deposited marine sandstones reported in the uppermost meter of several outcrops (Cannon 

Creek, Meadows Knob, and Boxley) contain bryozoan and crinoid parts.  Gradationally 

overlying the middle Bloyd is the marine deposited Dye Shale.  This member of the Bloyd 

Formation marks the return to marine deposition.  The middle Bloyd-Dye Shale interval 

marks a transition from terrestrial to marine deposition and records one of many 

transgressional periods in the Pennsylvanian.  
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 A tripartite estuary model appears to fit the middle Bloyd well.  A fluvial dominated 

facies locally containing rhythmites and mud draped ripples represents a sandy upper 

estuarine setting.  The middle estuarine interval is represented by interbedded sandstone and 

shale/siltstone with wavy, lenticular and pinstripe bedding typical of tidal flats and bars.  The 

outer estuary is represented by the trough cross-stratified sandstone with northerly paleoflow.   
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Appendix 
 

Informal Outcrop Name UTM Coordinates NAD 27 CONUS Quadrangle 
Cannon Creek (CC) 15 S 415359 3973867 Durham 
Roadside Park (RP) 15 S 439431 3987632 Huntsville 

Boxley (B) 15 S 462068 3983430 Boxley 
Boxley South (BS) 15 S 465354 3975917 Boxley 

Gaither Mountain (GM) 15 S 481359 4003202 Gaither 
Long Pool (LP) 15 S 486213 3933782 Treat 

Sugar Creek (SC) 15 S 479116 3948391 Fort Douglas 
Parker Ridge (PR) 15 S 475740 3953496 Rosetta 
Alum Cove (AC) 15 S 478693 3968390 Deer 

Sherman Mountain (SM) 15 S 479977 3986410 Jasper 
Witter (W) 15 S 438593 3975857 Witter 

Low Gap (LG) 15 S 471223 3983370 Ponca 
Pedestal Rocks (PRX) 15 S 498053 3951592 Sand Gap 
Meadows Knob (MK) 15 S 480133 3942777 Fort Douglas 

 
Buzzard’s Roost (BR) 

15 S 487942 3943136 
15 S 487784 3942917 
15 S 488041 3943292 

 
Fort Douglas 

      Outcrop Locations recorded near outcrops with a Garmin Rino 130 GPS. 
  

 
 


