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Abstract 

Heat and drought stress are two of the most significant abiotic stresses limiting wheat production 

in the Great Plains and worldwide.  Introgression of novel tolerance genes from wild relatives is 

a strategy which presents promise. This study examined both heat and drought tolerance from the 

tetraploid species Aegilops geniculata (Ug
U

g
M

g
M

g
). Additional screening for heat tolerance was 

conducted with the US genome species Aegilops peregrina (Hack) and Aegilops kotschyi 

(Boiss). A comprehensive screening system for drought tolerance was also constructed to 

evaluate wheat and its wild relatives.  

Previous reports suggested that Ae. geniculata accession TA2899 was moderately tolerant to heat 

stress. It had also previously been used to develop a full set of wheat-Ae. geniculata chromosome 

addition lines in a Chinese Spring background. To identify the chromosome(s) carrying the heat 

tolerance, all addition lines, as well as wheat check genotypes, were screened for post-anthesis 

heat tolerance in two growth chamber experiments. No chromosome addition lines were 

significantly different (p<0.05) from Chinese Spring, and none were found to have superior 

performance to the positive check cultivars.  

Forty-five accessions of Ae. peregrina and its close relative, Ae. kotschyi were screened in a 

post-anthesis heat experiment.  A follow-up experiment compared the genotypes in a split-plot 

temperature treatment with heat and optimal growth chambers. Many accessions were similar to 

the control genotypes for grain fill duration, and some exceeded the wheat controls for relative 

chlorophyll index values on Day 12 and Day 16. TA1889 and TA1904, both Ae. peregrina 

accessions originating from Israel, had a higher grain fill duration across experiments than the 

best wheat control, and warrant further investigation.  

Previous reports suggested drought tolerance in Ae. geniculata. After preliminary screenings, six 

genotypes were selected for advanced screening and compared with three wheat cultivars. The 

advanced greenhouse screening system was conducted in 152cm tall PVC growth tubes. The 

experiment measured multiple plant responses, and had a datalogging system automatically 

collecting water content and matric potential of the growth media. Multiple accessions warranted 

further investigation, and showed potentially different modes of drought tolerance, with varying 

levels of stomatal resistance, biomass, and osmotic adjustment.  
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Heat and drought stress are two of the most significant abiotic stresses limiting wheat production 

in the Great Plains and worldwide.  Introgression of novel tolerance genes from wild relatives is 

a strategy which presents promise. This study examined both heat and drought tolerance from the 

tetraploid species Aegilops geniculata (Ug
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). Additional screening for heat tolerance was 

conducted with the US genome species Aegilops peregrina (Hack) and Aegilops kotschyi 

(Boiss). A comprehensive screening system for drought tolerance was also constructed to 

evaluate wheat and its wild relatives.  

Previous reports suggested that Ae. geniculata accession TA2899 was moderately tolerant to heat 

stress. It had also previously been used to develop a full set of wheat-Ae. geniculata chromosome 

addition lines in a Chinese Spring background. To identify the chromosome(s) carrying the heat 

tolerance, all addition lines, as well as wheat check genotypes, were screened for post-anthesis 

heat tolerance in two growth chamber experiments. No chromosome addition lines were 

significantly different (p<0.05) from Chinese Spring, and none were found to have superior 

performance to the positive check cultivars.  

All accessions of Ae. peregrina and its close relative, Ae. kotschyi were screened in a post-

anthesis heat experiment.  A follow-up experiment compared the genotypes in a split-plot 

temperature treatment with heat and optimal growth chambers. Many accessions were similar to 

the control genotypes for grain fill duration, and some exceeded the wheat controls for relative 

chlorophyll index values on Day 12 and Day 16. TA1889 and TA1904, both Ae. peregrina 

accessions originating from Israel, had a higher grain fill duration across experiments than the 

best wheat control, and warrant further investigation.  

Previous reports suggested drought tolerance in Ae. geniculata. After preliminary screenings, six 

genotypes were selected for advanced screening and compared with three wheat cultivars. The 

advanced greenhouse screening system was conducted in 152cm tall PVC growth tubes. The 

experiment measured multiple plant responses, and had a datalogging system automatically 

collecting water content and matric potential of the growth media. Multiple accessions warranted 

further investigation, and showed potentially different modes of drought tolerance, with varying 

levels of stomatal resistance, biomass, and osmotic adjustment.  
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Chapter 1 - Evaluating Heat Tolerance of a Complete Set of Wheat-

Aegilops geniculata Chromosome Addition Lines Using 

Chromosome Mapping 

Introduction 

Wheat (Triticum aestivum L.) is an important crop in the Great Plains of the United States. 

Approximately 15% of the hard red winter wheat produced in the U.S. is grown in Kansas and, 

together with Texas, Oklahoma, Nebraska, and Colorado, makes up the largest contiguous area 

of low rainfall winter wheat cultivated in the world (Tack et al., 2015). This geographic area 

experiences many temperature variations, which can affect the yield of wheat in a given cropping 

season. Two main contributors to yield loss are freezing temperatures in the fall and high 

temperatures (heat) during the spring growth period (Tack et al., 2015). Many growth stages 

during the life of the wheat plant are susceptible to temperature extremes, but temperature 

extremes surrounding anthesis and the grain-fill period are known to have a profound impact 

(Farooq et al., 2011; Pradhan et al., 2012a; Barkley et al., 2013; Prasad and Djanaguiraman, 

2014). Optimal temperatures for grain-fill were summarized in a review by Farooq et al. (2011) 

who reported that the optimal temperature is 21.3°C ±1.27°C, which represents 12 studies on the 

subject. Heat stress is common in Kansas and the southern Great Plains. The prevalence of 

extremes and temperature variability is expected to worsen in the future (Barkley et al., 2013). 

The Intergovernmental Panel on Climate Change suggest an average temperature increase of 

0.85 °C annually during the period from 1880 to 2012, with greater annual increases since 1950 

(Pachauri et al., 2014).  Post-anthesis heat shock occurs when temperatures exceeding 32°C 
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occur during the late reproductive phases and during the grain-fill period (Wardlaw and Wrigley, 

1994).  

Heat stress decreases the grain yield of wheat by several factors. A primary response of 

heat stress is early leaf senescence (Blum, 1988; Al-Khatib and Paulsen, 1990; Yang et al., 

2002). Heat stress also inhibits leaf photosynthesis primarily as a result of thylakoid membrane 

damage (Al-Khatib and Paulsen 1984; Ristic et al., 2007) and the electron transport mechanisms 

in Photosystem II (Prasad et al., 2008a). The effect of heat stress is the acceleration of 

development and growth at all stages (Shpiler and Blum, 1986; Farooq et al., 2011). The yield 

component most affected by post-anthesis heat stress is kernel size, as all other yield components 

have been determined by this point (Yang et al., 2002). Post-anthesis heat stress decreases kernel 

size as a result of decreasing grain-fill duration, even though heat increases the grain filling rate 

(Prasad et al., 2006). The increased rate of grain fill does not usually compensate for the decrease 

in grain filling time (Shpiler and Blum, 1990; Prasad et al., 2008b). Heat stress may also cause or 

exacerbate moisture stress, as evapotranspiration increases with high temperature.   

Many studies have attempted to quantify the effect of heat stress on yield loss, both 

experimentally and empirically, by using historical data. Stone and Nicholas (1994) reported a 

yield loss of up to 23% on an individual kernel level after a post-anthesis heat shock of only a 

few days. Streck et al. (2005) reported a grain weight loss of 1.5 mg for every 1°C increase 

above 20°C. As Yang et al. (2002) point out, a better estimate of heat tolerance in controlled 

environments when comparing genetic stocks is leaf senescence, because yield can be obscured 

by other genetic differences.  Broader estimates of the effect of heat stress and increasing mean 

temperature are more common, and historical weather data is more easily utilized to make 

generalizations and projections based on past trends with reported grain yield.  In a study 
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comparing wheat variety trials with historical weather data over 26 years, Barkley et al. (2013) 

reported a grain yield decrease of 21% for every 1°C increase in projected mean temperature. 

The same study reported that elevated spring temperatures had one of the most pronounced 

impacts on yield.  In simulations reported by Tack et al. (2015), the upper threshold for the 

spring growth period was reported as 34°C, with each additional degree day resulting in a 7.6% 

decrease in grain yield. 

In addition to grain yield loss, the decrease in kernel size may also decrease grain volume 

weight, leading to dockage of cash price paid to producers. Elevated temperatures can also have 

a negative impact on end-use quality of wheat (Blumenthal et al., 1993, Blumenthal et al., 1995, 

Stone and Nicholas, 1994) in the form of the weakening of dough properties.  

Genetic improvement is the critical mechanism for coping with heat stress, because 

cultivar selection is one of the best ways in which a producer can adapt to heat stress. 

Improvement of heat tolerance per se can be difficult, because associated traits with heat 

tolerance are likely quantitative. Additionally, genetic progress for heat tolerance can be difficult 

to identify because of the base level of tolerance, which exists for wheat cultivars which have 

been bred in stressful environments like the Great Plains (Paulsen, 1994). It was recently 

suggested that newer varieties grown in the Great Plains carry less tolerance to heat stress, and 

that there appears to be a tradeoff between yield potential and heat tolerance (Tack et al., 2015). 

The two primary mechanisms by which plants cope with heat stress are tolerance and avoidance 

(Levitt, 1980). An important avoidance mechanism is early maturing varieties. This has been 

noted as important to avoiding terminal and continual stress, which is common in South Asia 

(Mondal et al., 2013), Australia, and globally (Bogard et al., 2014). It has long been recognized 

as important for evading late season heat shock and late season drought stress in the Great Plains 
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(Reitz and Salmon, 1959). Additional avoidance mechanisms, which may be employed are based 

on maximizing light interception by establishing adequate ground cover and leaf stay-green to 

offset the effects of decreased leaf size (Cossani and Reynolds, 2012) although these strategies 

are more effective for terminal stress conditions. 

Before specific mechanisms can be studied and elucidated, genetic sources of heat 

tolerance must be identified. Aegilops species have been used to introduce novel sources of 

resistance to biotic as well as abiotic stresses. Specifically, Aegilops geniculata (Roth, syn 

Aegilops ovata) shows great promise for use in wheat improvement, as multiple disease 

resistance genes have been identified from the species (Gill et al., 1985; Kurapathy et al., 2007; 

Liu et al., 2011), and it has shown promise for abiotic stresses such as heat and drought tolerance 

(Zahaviera et al., 2001, Pradhan et al., 2012a). The species is an annual, self-pollinating, 

allotetraploid (2n=4x=28) with a genome designation U
g
U

g
M

g
M

g
. It represents a wide range of 

adaptation, with most accessions originating from the Mediterranean area. In a study of 

reproductive heat stress from the Aegilops genus, Pradhan et al. (2012a) identified two 

moderately tolerant accessions of Ae. geniculata. This included TA2899, an accession 

originating from Israel and held by the Wheat Genetics Resource Center at Kansas State 

University (WGRC). Previous and unrelated work by Friebe et al. (1999) yielded a full set of 

chromosome addition lines using TA2899 and Chinese Spring wheat. The availability of a full 

set of chromosome addition lines should facilitate the identification of the chromosome(s) 

possessing the reported heat tolerance by Pradhan et al. (2012a).  Introgression of the trait from 

the addition line would be simpler because direct crosses with wheat would be possible. The 

objective of this study was to identify the chromosome(s) which contributed to heat tolerance in 

TA2899 by comparing the high temperature and optimal temperature response of the full set of 
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14 wheat-Ae. geniculata chromosome addition lines and Chinese Spring. Known heat tolerant 

and susceptible wheat cultivars were included as controls to quantify the levels of heat tolerance.   

Materials and Methods 

Chromosome addition lines were obtained from the Wheat Genetics Resource Center at 

Kansas State University. Fourteen chromosome addition lines (Table 1-1), Chinese Spring, two 

heat tolerant checks, Ventnor (Yang et al., 2002) and Jefimija (Ristic et al., 2007), and two heat 

sensitive checks, Jagger and U1275 (Talukder et al., 2015) were germinated on germination 

paper which was wetted with a solution containing 5g liter
-1

 terraclor (Quintozene) wettable 

powder fungicide. U1275 is a germplasm line developed by the USDA Hard Winter Wheat 

Genetics unit, which is a TAM 107 backcross derivative with the Lr39 gene from Aegilops 

tauschii Coss. Two-to-three days after germination, the seminal roots of each seedling were 

removed and fixed in ice water overnight. Roots were fixed in a solution of 3 parts ethanol (99% 

v/v) to 1 part glacial acetic acid. After one week, roots were acetocarmine (1% carmine, 45% 

acetic acid) stained and the root tip caps were extracted and squashed. The addition line for 

chromosome 5U
g
 was maintained as a monosomic addition. All other addition lines were 

maintained as disomic addition lines. Chromosome counts were completed to identify at least 4 

plants of monsomic addition line (TA7666). Roots of disomic addition lines were kept in the 

acetic acid-ethanol solution for future analysis. The disomic addition lines are meiotically stable 

with an approximately 90% transmission rate (Bernd Friebe, personal communication). 

Chromosome counts were not completed on disomic addition lines. After a 24 h recovery period 

at 4°C, the seedlings were transplanted into Sungro Professional Growing Mix (Sungro 

Horticulture, Agawam, MA). Plants were vernalized at 4.4°C for three weeks to ensure any 

vernalization requirement was met and to allow time for chromosome counts of the monosomic 
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addition line. Seedlings were transplanted into 15.24 cm diameter, 2.45 L round pots (Nursery 

Supplies Inc, Orange, CA) with two plants per pot. Plants received a 16 h photoperiod with 

controlled 21°C daytime temperatures and 15.5°C nighttime temperatures. Light intensity in the 

greenhouse from artificial lights was around 400 μM m
-2

 s
-1

, plus ambient light. Plants were well 

watered to avoid any low-moisture stress. At jointing (Feekes 6) (Large, 1954), plants were 

tethered to bamboo stakes to avoid lodging. Pots were treated with Marathon systemic granular 

insecticide (1% imadicloprid, OHB) at rate of 1.4 g per pot to prevent insect damage. Plants were 

randomized as pairs of two pots per genotype in the greenhouse, and completely randomized in 

growth chambers. All measurements were based on the phenology of the primary tiller, which 

was tagged at spike emergence. Two pots of each genotype were grown adjacently in the 

greenhouse until 10 days after anthesis (Feekes 10), which was noted by anther extrusion. At that 

point, the pair was split, and pots were transferred to a temperature treatment chamber with one 

entering a high temperature chamber (35°day/30°night, 15 h photoperiod) and one entering an 

optimal temperature chamber (25°day/20°night, 15 h photoperiod).
. 
For experiment 1, Conviron 

E15 growth chambers with CMP 3244 controls were used. A square wave control with the 

thermoperiod matching the photoperiod was used.  For experiment 2, newer chambers were 

acquired and Conviron PGR15 chambers with CMP 6050 controllers were used. A sinusoidal 

control with matching thermoperiod and photoperiod were used. For both experiments, the 

maximum temperature was maintained for 4 hours during the temperature treatment. Because the 

chamber was the experimental unit and no further true replication was possible with only two 

chambers, each genotype was repeated for 2 observational units, which were then averaged for a 

single value from each experiment for the analysis. Following a 16 day temperature treatment, 

pots were returned to their places in the greenhouse. Physiological readings were initiated on the 
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fourth day of temperature treatment, and taken every other day thereafter until tiller death, which 

was noted by complete flag leaf senescence or physiological maturity (yellow uppermost 

peduncle), whichever came first. Physiological measurements consisted of chlorophyll index, as 

measured by SPAD (Konica-Minolta SPAD 502 Plus; Spectrum Technologies, Aurora, IL), 

which measures leaf greenness and is correlated to chlorophyll content (Markwell et al., 1995) 

and photochemical efficiency of Photosystem II (PS II) ,measured by Fv/Fm variable 

fluorescence (Optisciences OS-30P+ handheld Fluorometer) which measures active photosystem 

II receptors and is correlated to photosynthetic leaf health and heat stress (Maxwell and Johnson, 

2000; Ristic et al., 2007). Chlorophyll index readings were taken as an average of 3 points on the 

flag leaf of the main tiller (near culm, mid-sheath, near the tip), on the adaxial surface of the leaf. 

Fv/Fm readings were obtained with the handheld fluorometer on the adaxial surface of the same 

main tiller flag leaf as near to the culm as possible after a 30 minute dark adaptation. Grain-fill 

duration was derived as the total number of days from anthesis to tiller death. To compare the 

genotypic effect of heat tolerance, contrasts were calculated as the difference between least 

square (ls) means of the optimal minus the heat treatment. Spikelet number and seeds per spike 

were recorded at maturity. Seed weight per spike was obtained after 5 days of drying at 37°. 

Average individual seed weight was derived from seeds per spike and seed weight per spike. 

SAS 9.3 (SAS Institute, 2013) was used for statistical analysis. The Glimmix procedure 

was used for an analysis of variance. Experiment (n=2), entry (n=19), temperature treatment 

(n=2), and their two-way interactions were all analyzed as fixed effects. Tukey’s HSD was used 

for multiple comparisons. Dunnett’s adjustment for multiple comparisons of means was used 

with the genotype Chinese Spring as the control, because it was the base genome for the addition 

lines in the study. A multiple regressions change point analysis of chlorophyll index and 
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photochemical efficiency of PS II for genotypes by experiment was completed using Proc Reg in 

SAS (SAS, 2016) to detect the day during physiological measurements where the slope of the 

response curve changed to become negative (Schwarz, 2015).  

Results of the experiment called into question whether the accession tested by Pradhan et 

al. (2012a) was the same accession used by Friebe et al. (1999) to develop the addition lines. As 

a result, the seed requested from the WGRC for this study, seeds of the original spikes donated to 

the WGRC, as well as seed from each subsequent growout were grown for analysis. DNA 

extraction was performed on bulked leaf tissue from 2 plants using the BioSprint 96 DNA Plant 

Kit (Qiagen) with the BioSprint 96 Workstation (Qiagen). Genotyping-by-sequencing was used 

to identify single nucleotide polymorphisms (SNPs) in the extracted DNA following the methods 

of Poland et al. (2012). Markers with more than 70% missing data were discarded. The 

remaining SNPs were numerically coded as 1 for homozygotes of the most frequent allele, 0 for 

heterozygotes and –1 for homozygotes of the less frequent allele. Correlations between 

genotypes were compared for all available growouts. (Table 1-6). 

Results 

An analysis of variance of all genotypes for the three primary response variables of grain-fill 

duration, seeds per spike, and average seed weight is presented in Table 1-2. For grain-fill 

duration the factors experiment, genotype, and temperature treatment were all found to 

significantly differ. Analysis of variance for the same three response variables with only Chinese 

Spring and the addition lines is presented in Table 1-7.  Excluding the wheat control genotypes 

was done to independently explore whether an addition line(s) significantly varied from Chinese 

Spring and to measure interactions between sources of variability while excluding the 
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inconsistent performance of wheat controls like U1275 and Ventnor (Figure 2). In this analysis 

of only the addition lines, temperature was the only significant source of variability. 

Because grain-fill duration under heat stress is an indicator of tolerance it is of primary 

importance. Least square means (lsmeans) for genotypes by temperature treatment for the three 

primary response variables are presented in Table 1-3. The range of the chromosome addition 

lines in the heat treatment for grain-fill duration was from 12 to 24 days, with Chinese Spring 

averaging 21.25 days. Despite this apparent variability, lsmeans were compared in a pairwise 

Tukey-Kramer means separation, and no addition line was found to differ from Chinese Spring 

(Table 1-4) despite eight lines having an lsmean for grain fill duration, which was nominally 

higher than Chinese Spring. Only Ventnor (heat tolerant check) in the optimal temperature and 

the heat treatment lines TA7656, TA7664, TA7665, and U1275 were found to be different from 

each other. All addition lines were statistically similar to each other, and to Chinese Spring 

(Table 1-4, Table 1-7). In comparing the average difference between temperature treatments for 

each genotype (Table 1-3), there were six addition lines, which showed a small difference for 

grain fill duration between heat and optimal temperature, none were found to be statistically 

significant. A Dunnett multiple comparison test with Chinese Spring as a control group is 

presented in Table 1-5, which shows that no chromosome addition lines varied from Chinese 

Spring. For the response variable seeds per spike, genotype, experiment, and the interaction of 

experiment and genotype were found to differ (p<0.05) (Table 1-2). For the response variable 

average seed weight, genotype, temperature, and the interaction of temperature and genotype 

were found to significantly differ (p<0.05).  

The significant genotype by experiment interaction for all genotypes was also detected in 

the change point analysis (Figure 2). The values presented as the change point were calculated by 
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averaging the change point day of chlorophyll index and photochemical efficiency of PS II for 

genotype by experiment. The wheat controls were inconsistent between experiment 1 and 2 for 

both measurements. The comparison between the wheat and addition lines suggests that there 

was no superior source of heat tolerance in the addition lines, as Jefimija consistently had a 

higher change point date, and Ventnor in experiment 2 was superior to the addition lines for both 

physiological measures. No addition line had a consistently greater change point day than 

Chinese Spring. 

Discussion 

To identify a chromosome significantly contributing to heat tolerance, two conditions must be 

met. First, the chromosome addition line must be significantly different from Chinese Spring. 

Otherwise, the alien chromatin is having no detectable effect beyond the hexaploid wheat 

background plus any experimental error. A significant variance between Chinese Spring and an 

addition line could indicate a positive or negative effect on heat tolerance. Secondly, if an 

addition line is found to differ from Chinese Spring, then its heat tolerance can be assessed with 

response variables like grain fill duration. If the mean response for an addition line is superior to 

Chinese Spring, then a small difference between temperature treatments for a given genotype 

could indicate heat tolerance.  This result would suggest that the heat stress treatment did not 

significantly alter the optimal temperature response variables of grain fill duration, seeds per 

spike, and average seed weight. The represented Aegilops geniculata chromosome in the addition 

line could then be investigated as a potential source of heat tolerance. 

The positive control cultivars Ventnor and Jefimija were previously reported as 

possessing heat tolerance (Ristic et al., 2007; Talukder et al., 2015; Narayanan et al., 2016 a and 

b). Because these sources of tolerance are present in hexaploid wheat, any novel sources of 
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tolerance from the tertiary gene pool would need to be clearly superior in order to warrant the 

work required for gene introgression into an adapted background. Even though the average grain 

fill duration of Ventnor and Jefimija were superior, they were statistically similar to most of the 

addition lines (Table 1-3).  The heat susceptible check U1275 (Talukder et al., 2015) did fall into 

the lowest means group. The insignificant differences between the positive heat controls and the 

Chinese Spring derivatives did not necessarily indicate that the positive controls did not perform 

as previously reported. Alternatively, it was noted that Chinese Spring may contain higher than 

expected level of heat tolerance, supported by the performance of the addition lines as well as 

Chinese Spring having a longer grain fill duration than U1275 (Table 1-3).  

For the grain fill duration analysis of variance of only addition lines, temperature was the 

only significant difference (Table 1-7), providing evidence of the lack of heat tolerance conferred 

by the Ae. geniculata chromatin.   

Genotypes were found to significantly differ for seeds per spike and average seed weight. 

Despite the lack of statistically significant differences between addition lines, there appear to be 

slight differences in plant responses under stress. However, there are a number of morphological 

and physiological differences between addition lines, which could be contributing to variability 

in grain fill and seed weight. Genotypic differences between seed number was also expected 

because of the documented differences in spike type (Friebe et al., 1999). Additionally, in 

examining pairwise comparisons between genotypes for seeds per spike and average seed 

weight, no addition lines performed better than Chinese Spring for heat tolerance, as all 

significant variability was a negative effect in the addition line (data not shown).  

Variance differences for average seeds per spike between experiments should not have 

been affected by differences between growth chambers. However, a significant difference was 
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detected (Table 1-2, Table 1-7). It is likely conditions before temperature treatment while in the 

greenhouse affected number of seeds per spike. The first experiment was completed in the late 

spring of 2013, while the second experiment was completed in late fall of the same year. Slight 

seasonal variability in the greenhouse conditions may well have affected the number of seeds per 

spike. Because of significant differences for seed number, it could be expected that a significant 

difference for seed weight would be found due to compensation between yield components 

(McNeal et al., 1978). No addition lines were found to perform better than Chinese Spring for 

either seeds per spike or average seed weight, despite differences (Table 1-7), indicating a 

negative effect in the addition lines.  

In examining Dunnett’s multiple comparison for grain fill duration in Table 1-4, one 

interesting observation was the average effect of the addition lines compared with Chinese 

Spring. Because the only difference between the addition lines and Chinese Spring is each single 

alien chromosome, the estimates in Table 1-5 can be viewed as the effect of the Ae. geniculata 

chromosome on Chinese Spring. The sum of these differences between the addition lines and 

Chinese Spring equate to -1.25 days in the heat treatment, indicating an overall neutral or slightly 

negative effect of Ae. geniculata chromatin on Chinese Spring. However, in the optimal 

treatment the sum was 11.25 days, meaning the addition lines on average were 0.8 days greater 

than Chinese Spring for grain fill duration. If the Ae. geniculata accession does not possess 

exceptional heat tolerance but does increase the vigor of the Chinese Spring addition lines under 

optimal temperatures, any small effects would be more difficult to detect because of the positive 

contribution to grain fill.  

The physiological data for all genotypes was collected to better understand significant 

trends over time in heat tolerant addition lines. The photochemical efficiency of PS II and 
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chlorophyll index are quantitative measures of plant health, and are highly correlated to 

photosynthetic efficiency and heat stress responses (Ristic et al., 2007). Change point values for 

both measurements by experiment were analyzed. A correlation between parameters in 

experiment 1 was r=0.69, and r=0.82 for experiment 2. This supports the conclusion by Ristic et 

al. (2007) that the two measures are highly correlated measures of plant health.  

Each genotypes chlorophyll index and fluorescence on treatment day 4, 8, 12 and 16 are 

shown as a percentage of their day 0 value in Figure 1.  For the change point analysis, the 

presence of negative and slightly positive effects of the Ae. geniculata chromatin was also 

detected. The inconsistency of the wheat control genotypes is also easily visualized in Figure 2. 

There were no addition lines which had superior performance in heat stress. TA7657 showed a 

crossover interaction between experiments (Figure 2). This addition line has a very open floret 

structure, making anther extrusion a difficult indicator of anthesis. Treatment initiation was 

adjusted in experiment 2 to account for this factor, which may have contributed to the interaction 

between experiments.  If differences in grain fill duration had been detected, a heat tolerant 

genotype might have either a high value for change point day, or a less negative slope for the 

period after the change point.  

The lack of differences between Chinese Spring and the addition lines could be because 

any genetic variation for heat tolerance is quantitative and, therefore, not expressed in individual 

chromosomes added to the Chinese Spring background. If only one genome contains a tolerance 

gene, then genes which are present in TA2899 may also be having a lesser effect in the wheat 

genetic background because of dosage effects relating to only one homolog being present in each 

addition line.  
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Another possibility is that heat tolerance was not expressed in the addition lines is that 

TA2899 was not heat tolerant as reported previously (Pradhan et al., 2012a). During the 

screening of the entire collection of Aegilops geniculata for heat tolerance, the accession tested 

as TA2899 from the WGRC was first observed to have an abnormal spike architecture. Personal 

communication on Aegilops morphology with local experts and van Slageren (1994) suggested 

that the accession might have been Aegilops peregrina, another allotetraploid with a U
p
U

p
S

p
S

p
 

genome designation.  

In the analysis of all available sources of TA2899, four entries (TA2899d, e, f &h) were 

significantly less correlated to the original TA2899 (a &b), and the seed source for the 

production of the addition lines (TA 2899c) in the work by Friebe et al. (1999) (Table 1-6). The 

four entries in question were highly related to each other, and interestingly, more highly 

correlated with Chinese Spring (r=0.2) than the original sources of TA2899 (r=0.06). This may 

also support the presence of an S genome, which is closely related to the B genome of wheat 

(Salse et al., 2008).  

The marker data were consistent with the morphological data, which confirmed four 

growout sources (TA2899d, e, f &h) were different from Ae. geniculata based on heading date 

and spike morphology. Among them were the seed source for the current work on Ae. geniculata 

and the seed requested for the study by Pradhan et al. (2012a), which is TA2899d in Table 1-6. 

As further confirmation, genomic in situ hybridization was performed with total M and U 

genome DNA as probes primers to confirm that these plants were in fact not Ae. geniculata. The 

present speculation is that accession actually was Aegilops peregrina. The original source of 

TA2899 (2899a in Table 1-6) was also screened for heat tolerance using the same program 
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settings as the current study in a Conviron E15 growth chamber. It appeared to have very poor 

tolerance to heat stress (data not shown).  

In conclusion, no source of heat tolerance was identified in the chromosome addition 

lines with TA2899. This was most likely due to identification of heat tolerance in a different 

genotype TA2899 by Pradhan et al. (2012a), which is not the source of Aegilops geniculata used 

to produce the chromosome addition lines by Friebe et al., (1999). This illustrates a great 

challenge when maintaining a germplasm collection and working with wild relatives. The 

tolerance source identified by Pradhan et al. (2012a) is currently being investigated to validate its 

potential use in wheat improvement. The method of screening chromosome addition lines 

remains a valid tool to quickly identify desirable alleles from wild relatives of wheat. Regardless 

of prior reports of heat tolerance from TA 2899, experiments such as this should be done with 

valuable genetic resources like chromosome addition lines. Additionally, the documented use of 

Ae. geniculata in wheat improvement (Gill et al., 1985; Kurapathy et al., 2007) and prior work 

suggesting superior abiotic stress tolerance (Zaharieva et al., 2001; Pradhan et al., 2012a, 

Pradhan et al., 2012b) supported the investigation of the addition lines. Though the conclusions 

of this work do not support further investigation of heat tolerance from this source, the 

experiments results are relevant to prevent other researchers from following the same logical 

path. 
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Table 1-1 Description and Details of Genotypes Used in the Heat Tolerance Study in 

Controlled Environments 

Entry Type 
Ae. geniculata 

Chromosome 
Entry Type 

Ae. geniculata 

Chromosome 

TA 7655 DA† 1Mg TA 7662 DA 1Ug 

TA 7656 DA 2Mg TA 7663 DA 2Ug 

TA 7657 DA 3Mg TA 7664 DA 3Ug 

TA 7658 DA 4Mg TA 7665 DA 4Ug 

TA 7659 DA 5Mg TA 7666 MA‡ 5Ug 

TA 7660 DA 6Mg TA 7667 DA 6Ug 

TA 7661 DA 7Mg TA 7688 DA 7Ug 

Ventnor Heat Tolerant Check Jagger Heat Susceptible Check 

Jefimija Heat Tolerant Check U1275 Heat Susceptible Check 

Chinese 

Spring 

Addition 

Recipient 

Check    

† Disomic Addition Line 

‡ Monosomic Addition Line 
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Table 1-2 F-values from Analysis of Variance for Grain-fill Duration, Seeds per Spike, and 

Average Seed Weight for all Genotypes 

 

* p<.05  

** p<.01 

*** p<.001 

  

Source 
Degrees of 

Freedom 
Grain Fill Duration Seeds/Spike Average Seed Weight 

Experiment 1 5.4* 5.76* 3.3 

Genotype 18 2.48* 19.17*** 13.01*** 

Experiment * Genotype 18 0.53 3.39** 2.99** 

Temperature Treatment 1 72.49*** 0.08 215.26*** 

Genotype*Temperature Treatment 18 0.55 1.25 1.53 

Experiment * Temperature Treatment 1 0.51 0.04 1.94 
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Table 1-3 Least Square Means of Grain-Fill Duration, Seeds per Spike, and Average Seed 

Weight for all Genotypes, by Temperature Treatment 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

*= p<0.05 using contrast for temperature treatment 

Table 1-4 Tukey-Kramer Grouping for Grain-Fill Duration of Genotype by Temperature 

Treatment Least Square Means (alpha=0.05) 

 

Grain Fill 

Duration Seeds per Spike 

Average Seed 

Weight 

 

Heat  Optimal Heat  Optimal Heat  Optimal 

 35°/30° 25°/20° 35°/30° 25°/20° 35°/30° 25°/20° 

Jefimija 26.5 36.8 27.8 30.3 0.0296 0.0401 

TA 7666 24.0 31.5 32.0 31.5 0.0134* 0.0293* 

TA 7658 23.0 33.0 20.5 26.0 0.0187* 0.0282* 

TA 7661 23.0 32.8 9.0 14.5 0.0207 0.0288 

TA 7662 23.0 30.5 24.5 22.0 0.0213 0.0269 

Ventnor 23.0 40.0 21.0 21.3 0.0264 0.0380 

TA 7657 22.8 29.0 32.0 36.8 0.0204 0.0243 

TA 7659 22.3 29.0 27.5 17.8 0.0224* 0.0324* 

Jagger 22.3 34.5 32.0 28.5 0.0276 0.0371 

TA 7688 22.0 28.3 31.5 33.5 0.0186 0.0228 

TA 7655 21.8 31.8 14.3 12.0 0.0197 0.0297 

Chinese Spring  21.3 27.8 30.0 34.3 0.0231 0.0289 

TA 7667 20.8 27.0 7.3 11.3 0.0217 0.0294 

TA 7660 20.5 25.5 45.0 38.5 0.0138* 0.0259* 

TA 7663 20.3 26.5 29.5 23.5 0.0179 0.0250 

U1275 20.0 34.5 21.0 19.0 0.0255* 0.0396* 

TA 7656 19.5 27.5 19.8 23.5 0.0163 0.0215 

TA 7665 19.0 23.3 18.3 14.5 0.0226 0.0340 

TA 7664 12.0 21.5 33.3 32.5 0.0169 0.0242 

        

 

       

Genotype 
Temperature 

Treatment
†
 

Estimate 

(days) 
Letter

‡
 

Ventnor O 40   A   

Jefimija O 36.8 B A   

U1275 O 34.5 B A   

Jagger O 34.5 B A   

7658 O 33 B A   

7661 O 32.8 B A   

7655 O 31.8 B A C 

7666 O 31.5 B A C 

7662 O 30.5 B A C 
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† H= Heat Treatment, O=Optimal Treatment 

‡ LS-means with the same letter are not significantly different (α=.05) 

  

7657 O 29 B A C 

7659 O 29 B A C 

7688 O 28.3 B A C 

Chinese Spring O 27.8 B A C 

7656 O 27.5 B A C 

7667 O 27 B A C 

7663 O 26.5 B A C 

Jefimija H 26.5 B A C 

7660 O 25.5 B A C 
7666 H 24 B A C 

7665 O 23.3 B A C 

Ventnor H 23 B A C 

7662 H 23 B A C 

7661 H 23 B A C 

7658 H 23 B A C 

7657 H 22.8 B A C 

7659 H 22.3 B A C 

Jagger H 22.3 B A C 

7688 H 22 B A C 

7655 H 21.8 B A C 

7664 O 21.5 B A C 

Chinese Spring H 21.3 B A C 

7667 H 20.8 B A C 

7660 H 20.5 B A C 

7663 H 20.3 B A C 

U1275 H 20 B   C 

7656 H 19.5 B   C 

7665 H 19 B   C 

7664 H 12     C 
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Table 1-5 Differences of Least Square Means for Grain-Fill Duration with Dunnett's 

Adjustment for Multiple Comparisons, Chinese Spring Control 

Heat Treatment Optimal Treatment 

35°/30° 25°/20° 

Genotype Difference
†
 

Adj. 

P
‡
 

Genotype Difference 
Adj. 

P 

7655 0.50 1.00 7655 4.25 0.96 

7656 -1.50 0.89 7656 0.00 1.00 

7657 1.50 0.89 7657 1.25 1.00 

7658 2.00 0.79 7658 5.50 0.87 

7659 1.25 0.94 7659 1.50 1.00 

7660 -0.50 1.00 7660 -2.00 1.00 

7661 2.00 0.79 7661 5.25 0.90 

7662 1.75 0.84 7662 2.75 1.00 

7663 -0.75 0.99 7663 -1.00 1 

7664 -9.25 0.23 7664 -6.00 0.81 

7665 -2.25 0.74 7665 -4.25 0.98 

7666 3.00 0.61 7666 4.00 0.99 

7667 0.00 1.00 7667 -0.75 1.00 

7688 1.00 0.97 7688 0.75 1.00 

Jagger 1.25 0.94 Jagger 7.00 0.65 

Jefimija 5.50 0.37 Jefimija 9.25 0.33 

U1275 -1.00 0.97 U1275 7.00 0.65 

Ventnor 2.00 0.79 Ventnor 12.50 0.09 

 

 

† Taken as difference between lsmeans of each genotype minus 

Chinese Spring  

‡ Adjusted p value  
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Table 1-6 Whole Genome Correlations (r) Determined by SNPs for TA 2899 Growouts, Chinese Spring, and Unrelated Ae. 

geniculata Control 

Genotype Description TA 
10437 

TA 
2899a 

TA 
2899b 

TA 
2899c 

TA 
2899d 

TA 
2899e 

TA 
2899f 

TA 
2899g 

TA 
2899h 

TA 
2899i 

TA 
2899j 

TA 
2899k 

TA 
2899l 

TA 
2899m 

TA 
2899n 

TA 
2899o 

TA 10437 Unrelated Ae. geniculata  1.00                               

TA 2899a Original Donation 0.92 1.00                             

TA 2899b Original Donation 0.93 0.98 1.00                           

TA 2899c Addition Line Donor 0.91 0.97 0.98 1.00                         

TA 2899d Growout 1-2 0.69 0.68 0.68 0.67 1.00                       

TA 2899e Growout 2-1† 0.68 0.68 0.68 0.67 0.98 1.00                     

TA 2899f Growout 3-2 0.69 0.68 0.68 0.68 0.98 0.98 1.00                   

TA 2899g Growout 4-1 0.89 0.95 0.95 0.94 0.66 0.66 0.66 1.00                 

TA 2899h Growout 6-3 0.69 0.68 0.68 0.67 0.98 0.98 0.98 0.65 1.00               

TA 2899i Growout 7-2 0.93 0.98 0.99 0.97 0.68 0.68 0.68 0.95 0.68 1.00             

TA 2899j Growout 8-2 0.92 0.98 0.98 0.97 0.67 0.67 0.68 0.95 0.67 0.98 1.00           

TA 2899k Growout 11-2 0.92 0.98 0.99 0.97 0.68 0.67 0.68 0.95 0.67 0.98 0.98 1.00         

TA 2899l Growout 13-2 0.92 0.98 0.99 0.97 0.68 0.68 0.68 0.95 0.68 0.99 0.98 0.98 1.00       

TA 2899m Growout 14-1 0.93 0.98 0.99 0.98 0.68 0.68 0.69 0.95 0.68 0.99 0.98 0.99 0.99 1.00     

TA 2899n Growout 15-1 0.93 0.98 0.99 0.97 0.68 0.68 0.69 0.95 0.68 0.99 0.98 0.98 0.99 0.99 1.00   

TA 2899o Growout 15-2 0.92 0.98 0.99 0.97 0.67 0.67 0.67 0.95 0.67 0.98 0.98 0.98 0.98 0.99 0.99 1.00 

Chinese Spring  Chinese Spring wheat  0.08 0.06 0.06 0.06 0.20 0.20 0.20 0.06 0.20 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

                  
† Seed source for study by Pradhan et al., 2012.  
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Table 1-7 F-values from Analysis of Variance for Grain-Fill Duration, Seeds per Spike, and 

Average Seed Weight for Addition Lines and Chinese Spring only 

 Grain Fill 

Duration 
Seeds/Spike 

Average Seed 

Weight 

Experiment 3.09 5.98* 0.72 

Genotype 1.86 25.72*** 8.81*** 

Experiment* Genotype 0.5 4.04** 2.28 

Temperature Treatment 42.50*** 0.02 281.97*** 

Genotype*Temperature Treatment 0.18 1.69 2.93* 

Experiment * Temperature Treatment 0.06 1.46 0.02 

 

* p<.05  

** p<.01 

*** p<.001 
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Figure 1-1 Chlorophyll Index (SPAD) (left) and Photochemical Efficiency of Photosystem II (Fv/Fm) 

(right) of all Genotypes as a Percentage of Day Zero over Temperature Treatment Period for Experiment 

1 (top) and Experiment 2 (bottom) 
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Figure 1-2 Change Point Day of Heat Treatment Genotypes for Two Experiments from 

Multiple Regression Analysis 
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Chapter 2 - Heat Tolerance Screening of the US genome species 

Aegilops kotschyi (Boiss), and Aegilops peregrina (k in J. Fraser) 

Maire & Weiller). 

Introduction  

Wheat (Triticum aestivum, L.) is cultivated worldwide, and many areas are subject to 

temperature extremes which limit production (Asseng et al., 2015; Tack et al., 2015). Globally, 

weather extremes threaten cereal production, with high temperature extremes primarily affecting 

grain yield (Lesk et al., 2016). In a global analysis of yields over the past 50 years, heat stress 

decreased yield by an average 9% in years that it occurred (Lesk et al., 2016).  Average global 

temperature and variability is expected to continue to increase (Solomon, 2007; Barkley et al., 

2013). As wheat yields continue to be affected by these trends, genetic improvement for high 

temperature tolerance must be addressed, particularly in the Great Plains (Barkley et al., 2013; 

Asseng et al., 2015; Tack et al., 2015).  

A recent study from Australia reported annual change of flowering date for wheat 

cultivars in production of -0.074 days yr-1 for the period from 1957-2010 (Zheng et al., 2016). 

Climate modeling data used by the authors suggest that the magnitude of change could increase 

in the next 30 years, and some liberal estimates suggested that the average life cycle of the crop 

could decrease by up to two weeks in that same time period (Zheng et al., 2016).     

High temperatures during the grain fill period are known to have a profound impact on 

yield, with the optimal temperature being 21.3°C ±1.27°C  (Farooq et al., 2012). Temperatures 

can exceed 34°C during grain fill in Kansas and the Great Plains, which shortens the grain fill 



32 

period (Al-Khatib and Paulsen, 1984). In addition to prematurely ending photosynthesis from 

early leaf senescence, starch synthesis is altered at high temperatures (Keeling et al., 1993; 

Jenner, 1994). These factors primarily decrease kernel weight (Yang et al., 2002). Modeling for 

high temperature stress during grain fill is predicted to result in profound yield losses in Europe, 

resulting in greater losses than drought stress (Semenov and Shewry, 2011).  

Reynolds (2009) points out that, from a physiological perspective, the three primary 

physiological components of yield are light interception, radiation use efficiency, and 

partitioning of assimilates. Cossani and Reynolds (2012) examined adaptive traits under those 

three categories which support a plant during heat stress. Stay-green, canopy temperature 

depression, thermo-stability, leaf glaucousness, assimilate remobilization, and maintenance of 

high temperature starch synthesis are a few examples mentioned which are employed in wheat 

breeding (Cossani and Reynolds, 2012). Ultimately, green leaf area, functioning photosynthesis, 

and accumulation of biomass being assimilated into grain are what is needed of wheat plants in 

grain fill stress. But, interactions of these traits and over-reliance on one may compromise 

another. For example, as Fokar et al. (1998) point out, breeding for so-called “stay green” types 

may eliminate genotypes which can complete grain fill with reserves which are remobilized from 

the stem (Blum, 1998). Genotypes which possess this trait have a propensity for accelerated leaf 

senescence under stress (Blum, 1994; Fokar et al., 1998). Selection under stress for genotypes 

which possess adaptive mechanisms allowing them to produce biomass for grain yield is the 

ideal breeding approach. 

 Because of a number of confounding stresses found in natural environments, it may be 

preferable to conduct screening for high temperature stress in controlled environments such as 

growth chambers and greenhouses. However, few growth chamber experiments have focused on 
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post-anthesis heat shock in wheat (Gibson and Paulsen, 1999). As those authors point out, many 

growth chamber experiments to that point had utilized overly-controlled methods, such as 

removal of all secondary tillers, and sowing at artificially low plant populations. Since then, most 

growth chamber screenings have focused on anthesis stage heat stress (Ristic et al., 2007; 

Pradhan et al., 2012; Narayanan et al., 2016a and b) with few studies of wheat or Aegilops grain-

fill stress (Talukder et al., 2015). Because the genetic basis of heat tolerance is poorly understood 

(Cossani and Reynolds, 2012), screening genotypes under stress and examining known 

avoidance and tolerance traits is needed. Chlorophyll content under stress, which can be 

estimated with SPAD (Ristic et al., 2007) is highly correlated to plant health and leaf senescence. 

It is an effective screening approach because yield and yield components are not particularly 

relevant in controlled environments, or when working with unadapted germplasm like wild 

relatives (Yang et al., 2002).  

Breeding for superior heat tolerance is the best method for improvement, because variety 

selection is the only management decision on the farm level that can affect performance under 

heat stress. Wild relatives of wheat present opportunities for genetic improvement, and examples 

of alien introgression for cultivar improvement were summarized by Friebe et al. (1996), and 

have been increasingly successful as molecular marker tools have aided in introducing small 

compensating pieces of alien chromatin (Qi et al., 2007). Aegilops species have been used 

extensively for introgression of novel traits into cultivated wheat for many years (Badaeva et al., 

2004). Among the species in this genus, the US genome species of Aegilops peregrina (Hack in 

J. Fraser) Maire and Weiller) and Aegilops kotschyi (Boiss) have been investigated for various 

traits but there are few examples of genes which were identified in these species and made it into 

commercial wheat cultivars. The earliest references were studies on the dormancy controlled by 
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gibberellins in the hull [Wurzburger and Koller (1976), Wurzburger and Leshem (1969), 

Wurzburger et.al (1974, 1976).] It is reported that the caryopses contain low alpha amylase 

activity. Each spikelet normally contains two seeds, a small and a large, with germination 

inhibited in the small caryopsis and normal in the larger.  

Both Ae. peregrina and Ae. kotschyi have been used in studies examining meiotic pairing 

with wheat. A report of variation in the Ph1 gene was described by Ozkan and Feldman (2001) 

in crosses with peregrina and Chinese Spring substitution lines, among other alien backgrounds. 

Crosses with rye (Secale cerale, L.) and Ae. kotschyi were investigated by Kwiatek et al (2012) 

in order to develop bridging hybrids to introduce novel traits into triticale (x Triticosecale). A 

method to induce pairing with wild relatives was described by Sheikh et al. (2016) using wheat 

lines monosomic for 5B was tested with both Ae. kotschyi and Ae. peregrina.  

A few examples of genetic improvement of end use quality using the US genome species 

have been documented as well. A novel high molecular weight glutenin gene from kotschyi was 

described by Ma et al. (2013). Prior introgression of alien genes to increase baking quality was 

described by Hsam and Zeller (2001). Improvement of nutritional quality was targeted by Tiwari 

et al. (2010) by increasing grain iron and zinc content from Ae. kotschyi.  

US-genome species have been utilized for biotic and abiotic stress tolerance as well. In a 

seedling stage screening by Emon et al. (2012), tolerance to high Boron concentration was 

discovered in both Ae. peregrina and Ae. kotschyi. Two examples of genes which have been 

successfully introduced into hexaploid wheat are reported by Marais et al. (2005, 2008). They 

report introgression of leaf rust (Puccinia triticina Erickss) resistance gene Lr54 and stripe rust 

(Puccinia striiformis var striiformis Westend) resistance gene Yr37 from an Israeli accession of 

Ae. kotschyi to chromosome 2D of wheat (Marais et al., 2005). Another novel leaf rust resistance 
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gene, Lr59, was introduced from Ae. peregrina (Marais et al., 2008) with a greatly shortened 

segment of alien chromatin (Pirseyedi et al., 2015). One prior study aimed at abiotic stress 

tolerance was reported by Liu et al. (2015). They screened a number of chromosome addition 

lines from wild relatives of wheat and found that two Ae. peregrina chromosome addition lines 

contained the highest levels of drought tolerance in their study.  

Prior heat screening of Aegilops species have focused on Aegilops geniculata (Roth) 

(Zaharieva et al., 2001) in addition to Ae. longisima (Schweinf. & Muschl.), Ae. searsii (Feldman 

& Kislev ex Hammer), Ae. speltoides (Tausch), and Ae. caudata (L.) (Pradhan et al., 2012). Heat 

tolerance was observed to vary widely both between and within species by both authors.  

In the study by Pradhan et al. (2012), moderately high heat tolerance was reported in 

TA2899, which was reported in their work as an accession of Ae. geniculata (U
g
U

g
M

g
M

g
, 

2n=4x=28). It was later discovered to be a US genome species, likely Ae. peregrina (Chapter 1). 

To avoid confusing the reports in this study with the accession TA2899 which is Ae. geniculata, 

the likely Ae. peregrina accession is referred to as “TA2899” in this report. For this reason, and 

because there was no prior report of a collection of Ae. peregrina or Ae. kotschyi being screened 

for high temperature tolerance, these species were examined as potential sources of novel heat 

tolerance. Therefore, the objectives of this study were to screen the available collection of Ae. 

kotschyi and Ae. peregrina for post-anthesis heat tolerance in controlled environments for 

potential novel sources of tolerance into common wheat.   
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Materials and Methods 

 

The entire available collection of the US-genome species Ae. peregrina and Ae. kotschyi 

were obtained from the Wheat Genetics Resource Center at Kansas State University. The 

accession numbers and origin, if available, are presented in Table 2-1. Wheat controls with 

known response to heat stress were included in the study. Two heat tolerant checks, Ventnor 

(Yang et al., 2002) and Jefimija (Ristic et al., 2007), and two heat sensitive checks, Jagger and 

U1275 (Talukder et al., 2015) were used. U1275 is a germplasm line developed by the USDA 

Hard Winter Wheat Genetics unit, which is a TAM 107 backcross derivative with the Lr39 gene 

from Ae. tauschii (Coss). Seedlings were vernalized at 4.4°C for six weeks then transplanted into 

9.5 cm wide, 24 cm tall, 1.65 L volume treepots (Stuewe and Sons, Corvallis, OR) with one plant 

per pot. The soil mix is used for all greenhouse experiments and was a combination of native soil 

(silty clay loam) with equal parts perlite and peat with added gypsum and carbon. Urea (46-0-0), 

and Osmocote Plus (15-9-12) were added to the soil mix and no further fertilization was 

required. Final nutrient concentrations were approximately 353 ppm NO
3-

, 146 ppm P, 490 ppm 

K. The pH at the time of testing was approximately 7.3. Plants received a 16 hour photoperiod 

with controlled 21°C daytime temperatures and 15.5°C nighttime temperatures in the 

greenhouse. Light intensity in the greenhouse from artificial lights was approximately 400 μM 

m
-2

 s
-1

, plus ambient light. Plants were well watered to avoid confounding low-moisture stress. 

At jointing (Feekes 6) (Large, 1954), plants were tethered to bamboo stakes to avoid lodging. 

Pots were treated with Marathon systemic granular insecticide (1% imadicloprid, OHB) at a rate 

of 1.4 g per pot to prevent insect damage. Plants were completely randomized in the greenhouse 

and in their respective temperature treatment growth chambers. All measurements were based on 

the phenology of the primary tiller, which was tagged at spike emergence. Post-anthesis 
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temperature treatment was initiated 10 days after anthesis, which was noted by anther extrusion. 

Experiment 1 was completed in fall 2014, and experiment 2 was completed in Fall 2015.  For 

experiment 1, all entries received a high temperature stress treatment. For experiment 2, a paired 

treatment approach was used with half of the available pots of each genotype entering a high 

temperature chamber. The high temperature treatment in both experiments had a maximum 

daytime temperature of 35°C and a 30°C nighttime temperature with a 15 hour photoperiod. The 

program was modeled after a typical hot day during grain-fill in Kansas. The light and 

temperature were sinusoidal and gradually increased to the daily maximum, which lasted for four 

hours. The average daily daytime temperature in the heat treatment was 32.3°C.  In experiment 

2, the optimal temperature chamber had a maximum daytime temperature of 25°C, a nighttime 

temperature of 20°C, and average daytime temperature of 22.2°C with a 15 hr. photoperiod. If 

only one pot of a genotype was available, it was screened in the heat temperature treatment.  

Conviron PGR15 chambers with CMP 6050 controllers were used for both experiments. Because 

the chamber was the experimental unit and no further true replication was possible with only two 

chambers, each genotype was repeated for 2 to 4 observational units (Table 2-1), which were 

averaged from each treatment for the analysis. Following a 16 day temperature treatment, pots 

were returned to the greenhouse. SPAD readings were initiated on the fourth day of temperature 

treatment, and taken every fourth day until tiller death, which was noted by complete flag leaf 

senescence or physiological maturity (yellow uppermost peduncle), whichever came first. 

Chlorophyll index, measured by SPAD (Konica-Minolta SPAD 502 Plus), measures leaf 

greenness and is correlated to chlorophyll content (Markwell et al., 1995). SPAD readings were 

taken as an average of 3 points on the flag leaf of the main tiller (near culm, mid-sheath, near the 

tip), on the adaxial surface of the leaf. Grain-fill duration was derived as the total number of days 
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from anthesis to tiller death. To compare the genotypic effect of heat tolerance, contrasts were 

calculated as the difference between least square (ls) means of the optimal minus the heat 

treatment. SAS 9.4 (SAS Institute, 2016) was used for statistical analysis. The Glimmix 

procedure was used for an analysis of variance. For experiment 1, genotype (n=45) was a fixed 

effect. For experiment 2, genotype (n=45), temperature treatment (n=2), and the two-way 

interactions were all analyzed as fixed effects. Tukey’s HSD was used for multiple comparisons. 

Dunnett’s adjustment for multiple comparisons of means was used with the genotype Ventnor as 

the control, because it showed a consistent performance across experiments. All heat temperature 

observations were also analyzed across experiments, with genotype (n=50) and experiment (n=2) 

as fixed effects. Comparison of least square means from the heat treatment observations across 

experiments was used to assess stability.  

Results  

Analysis of variance of grain fill duration for experiment 1, 2, and the heat temperature treatment 

across experiments is presented in Table 2-2. In both experiments, genotypes were found to 

differ for grain-fill duration. As expected, temperature treatments were significantly different in 

experiment 2. There were no interactions found to be significant, indicating reasonable stability 

across temperature treatments, and experiments. Genotypes varied for grain fill duration but not 

for Chlorophyll Index (Table 2-6). Genotype least square (ls) means by treatment and experiment 

are presented in Table 2-3. Average days of grain-fill by genotype is reported, with days from 

spike emergence to senescence ranging from 15 to 29 days in experiment 1, and from 14 to 25.5 

days in experiment 2. Because the temperature treatment began 10 days after spike emergence, 

these values of grain fill duration indicate that only 4 observations (TA1981, TA1984, TA2677, 

TA2681; Table 2-3) in experiment 1 survived the entire 16 day temperature treatment period, 
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while the highest average response in experiment 2 was 15.5 days of high temperature stress 

(TA1904), Table 2-4) Unfortunately, none of the 4 genotypes which had high average responses 

in experiment 1 germinated for testing in experiment 2.  

Genotypes were significantly different for the analysis across experiments (Table 2-2), 

however, in Tukey pairwise comparisons, most genotypes were paired together (Table 2-5). In 

evaluating performance across experiments, there were several accessions that had a nominal 

value greater than the wheat checks, and were reasonably stable. If greater replication or a true 

susceptible check were used, greater separation between genotypes may have been observed.  

Top genotypes were selected based on performance across experiments, small differences 

in pairwise comparisons between temperature treatments in experiment 2, performance relative 

to the wheat controls, small differences in Chlorophyll Index across temperature treatments, and 

high relative SPAD values. These top genotypes are presented in Table 2-4. Contrasts between 

temperature treatments were analyzed for genotypes with high average days to senescence for 

grain fill duration and Chlorophyll Index. Genotypes were not found to differ overall for day 12 

and 16 SPAD measurements, but contrasts between temperature treatments for genotype by 

temperature treatment revealed the few genotypes which did differ (p<0.05), and can be seen in 

Table 2-4. A small or nonexistent variance between plant responses would indicate possible heat 

tolerance. Day 12 and 16 values for heat and optimal treatment of SPAD were averaged by 

genotype and the values in the heat treatment are presented in Table 2-4 as a relative percentage 

of the average SPAD from the corresponding optimal treatment of that genotype. For example, a 

genotype which has a relative SPAD value of 100% would have identical SPAD readings in both 

temperature treatments, but a relative SPAD of 50% would indicate an average heat treatment 

observation half that of the optimal temperature treatment.  
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A Dunnett multiple comparisons means adjustment was calculated from experiment 2 

using Ventnor as the control genotype. Ventnor was previously reported to be heat tolerant, and 

had a more stable performance across genotypes than Jefimija (Table 2-3). Six genotypes 

differed (p<0.05) from Ventnor in experiment 1, but all were more negative than the Ventnor 

control (data not shown). No genotypes varied significantly from Ventnor in experiment 2, 

indicating that heat tolerance from Ae. kotschyi and Ae. peregrina was either equal to or less than 

Ventnor. High standard errors prevented significant adjusted p values in experiment 2, even with 

genotypes that had higher days to senescence than Ventnor (e.g. TA1901, TA1904).   

Discussion 

Biomass data or kernel weight data would have been informative to help separate 

genotypes under stress. However, significant germination and seedling vigor problems were 

experienced during both experiments. This led to unbalanced data between experiments as well 

as variability in mature plant size, which would have confounded analysis of biomass. 

Variability in Ae. kotschyi could be explained by the early work of Wurzburger et al. (1969, 

1976). They discuss the dormancy issues of one half of Ae. kotschyi seeds per spikelet. For future 

work with this species, separation of the large and small caryopses during hand-threshing may 

avoid this complication. These challenges highlight the difficulty of working with wild relatives. 

In controlled environments, there are few procedures that can identify heat tolerance with 

agronomically meaningful measurements, and leaf health is the most useful when working with 

wild species (Yang et al., 2002). Because these species have very narrow leaf blades, variable 

fluorescence data collection is rarely possible, and SPAD readings can be difficult to obtain as 

well.  
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Variation in the wheat controls, both heat tolerant and heat susceptible, also made 

detection of heat tolerance difficult. The heat susceptible genotype U1275 (Talukder et al., 2015) 

had a fairly long grain fill duration in both experiments (Table 2-3) and was statistically similar 

to the heat tolerant checks Ventnor and Jefimija (Table 2-5). Additionally, Jefimija had a 

substantially poorer performance in the second experiment. Jagger was fairly consistent between 

experiments for grain-fill duration (Table 2-4). A lack of a true susceptible genotype makes 

mean separation between wild accessions more difficult, and may be because germplasm 

originating from the Great Plains must contain some heat tolerance (Paulsen, 1994). In 

evaluating these species, it appears that there are some entries which are equal to the level of 

tolerance that is currently in common wheat (Table 2-4). Four accessions of Ae. peregrina from 

Israel showed a higher average relative SPAD percentage than all of the wheat checks, and had 

grain fill duration values across experiments, exceeding the heat tolerant checks (Table 2-4), 

even though they were grouped similarly in a means separation (Table 2-5). TA2275 had 

statistically similar grain fill duration between the heat and optimal treatment in experiment 2, 

and had similar SPAD values under heat stress at Day 12 and Day 16. It was also very consistent 

between experiment 1 and 2 for grain fill, lasting 21 and 21.7 days respectively. It was noted for 

its robust nature, high tiller count, and large leaf area (personal observation). TA1904 had 

dissimilar grain fill duration between heat and optimal treatment in experiment 2, which was 

likely caused by its high optimal treatment grain-fill of 36 days (Table 2-3). Its 12 day relative 

SPAD percentage was 53.3%, and its 16 day relative SPAD percentage was still 28.9%. It had 

the highest consistent average grain fill in heat between experiment 1 and 2 of 24.3 days 25.5 

days, respectively. It was also noted for its leaf architecture and size, robust tiller production, and 

spike size (personal observation). In experiment 2, it lasted 2.5 days longer than Ventnor, which 
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was still statistically insignificant because of a high standard error (data not shown). TA1904 

was the only genotype which was statistically superior to any other accessions (Table 2-5).  

TA2275, TA1904, TA1901, and TA1889 were noted for their apparent visual heat 

tolerance, which was noted by a slow rather than abrupt leaf senescence. Interestingly, both 

TA2275, and TA1901 are Ae. peregrina accessions from Israel, and that these accessions 

consistently performed better than the  Ae. kotschyi accessions that also originated from Israel 

(Table 2-1, 2-3). TA1904 has an unknown origin, but came from the collection of renowned 

wheat geneticist Ernie Sears at the University of Missouri (personal communication with Jon 

Raupp, Wheat Genetics Resource Center).  

There were additional genotypes which showed apparent stability between temperature 

treatments, and across experiments. TA1896, and “TA2899” had stable grain-fill durations 

across both experiments, while TA1986 and TA1903 actually had higher grain-fill durations in 

the heat treatment of experiment 2. These could be worthy of further examination for stable heat 

tolerance.  

Because of extreme phenotypic variability in accessions of wild relatives, visual 

observations can be important for identifying genotypes which do not appear to possess negative 

traits that would add to linkage drag in gene introgression with wheat. TA10551 had a high mean 

grain fill duration across experiments, and had similar (p<0.05) grain fill duration across 

temperature treatments in experiment 2. By examining data alone, it would appear as the top 

gene introgression candidate among Ae. kotschyi accessions. However, personal observations 

recorded during both experiments showed that this accession has an unusually small spike (<20 

mm) which was largely infertile, possibly prolonging plant life under stress due to a very low 
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photosynthetic sink. In terms of agronomic improvement, it appears to offer very little compared 

with many Ae. peregrina accessions, which have very robust plant types and spikes.  

This work followed Pradhan et al. (2012), which suggested that TA2899 was moderately 

tolerant to heat stress, as determined by a heat susceptibility index experiment performed across 

several Aegilops species. Several accessions had higher mean grain fill durations and relative 

SPAD values (Table 2-4), indicating that superior sources of tolerance are present in these tested 

U-S genome species.  

Further replicated work targeting the physiological mechanism of heat tolerance may 

help reveal whether they differ from Ventnor and Jefimija, and if they would be agronomically 

desirable. Without a relative grain production measurement between putative heat tolerant 

genotypes, the possibility remains that photosynthetic products are not being used for 

accumulation of grain yield. Because these species evolved in the wild without selection for 

grain production, their mechanism for survival may be exclusive of grain production.  

There are many potential errors that can occur when screening wild relatives for heat 

stress. False positives can occur by errors in early tagging of tillers at anthesis, resulting in early 

imposition of stress treatment. Errors in assessing leaf senescence or tiller death can also affect 

grain-fill estimates. Without sound physiological measurements, estimation of leaf senescence 

alone may overestimate the ability of the plant to photosynthesize despite apparently green 

tissue.   

There are also several potential sources of false negatives in similar studies. Reliance on 

leaf senescence may prohibit detection of genotypes which assimilate grain from stem 

carbohydrates (Blum et al., 1994). Leaf senescence can approximate plant death, but 
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translocation of carbohydrates from stem tissues could also contribute to grain yield. This can be 

difficult to quantify unless yield is measured after defoliation (Blum et al., 1998).    

The temperature used in this study was modeled after similar studies by Pradhan et al. 

(2012) and Ristic et al. (2007). The high nighttime temperature may make separation of 

genotypes difficult, as the heat stress may be severe. In plastic pots in a growth chamber, the 

roots of entries in a heat treatment may also be artificially heated, resulting in a greater 

accumulation of stress (Heckathorn et al., 2013). A small variance between temperature 

treatments is used as an indication of heat tolerance, so a potential false negative may result from 

a genotype which has an exceptionally high grain fill in the optimal temperature treatment. If a 

genotype does not have a genetically limited grain fill period, it may express an opportunistic 

grain fill period which is extended due to favorable conditions in the optimal temperature 

treatment. The ability to perform under both stressful and favorable conditions would be 

preferred for genetic improvement, so care must be taken to avoid this type of false negative. It is 

for this reason that emphasis in the current study was placed on plant-type observations as well 

as high days to senescence under heat stress. Ideally, a high relative SPAD value would indicate 

that the heat treatment observation is performing at similar levels as its optimal treatment 

counterpart, with less reliance on the overall grain fill period.  

Based on a review of the literature, these species have been underutilized for abiotic 

stress tolerance in cultivated wheat. Increased replicates and an additional experiment with 

paired temperature treatment data may help to increase statistical power to detect differences 

between accessions. Wheat-alien amphiploids of the consistently performing Ae. peregrina 

accessions should be made to investigate potential heat tolerance and other abiotic stress transfer. 

Because of their genomic diversity, it is possible that wheat could be also be improved for other 
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traits by recombination between them. The evidence is not compelling to believe that there is a 

clearly superior source of heat tolerance present in these species, but detection of a significantly 

different tolerance appears to have been made difficult by unbalanced data sets from dormancy 

and germination problems, high standard error, and lack of available physiological data on many 

accessions. The lack of a true susceptible genotype in the current study also makes paring down 

the collection for replicated study a difficult task as well. These species largely originate in the 

Middle East (Table 2-1) in areas which regularly experience high temperature stress (Bita and 

Gerats, 2013; Ortiz et al., 2008). Their close relation to the B genome of wheat (Salse et al., 

2008) may help facilitate genetic improvement which is agronomically competitive.   
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Table 2-1  A list of all Genotypes Screened in the Heat Tolerance Study, with their Species, 

Origin, and Total Number of Heat Treatment Observations for Experiment 1 and 2. 

 

 

 

 

      Heat Obs.       Heat Obs.  

Genotype Origin  species 
Exp. 

1  

Exp. 

2 
Genotype Origin  species 

Exp. 

1 

Exp. 

2 

TA1885 Israel Ae. peregrina  1 3 TA1982 Egypt Ae. kotschyi  1 3 

TA1886 Syria Ae. peregrina  2 3 TA1983 Egypt Ae. kotschyi  2 1 

TA1887 Israel Ae. peregrina  2 1 TA1984 Egypt Ae. kotschyi  1 0 

TA1888 Israel Ae. peregrina  1 0 TA1985 Israel Ae. kotschyi  1 1 

TA1889 Israel Ae. peregrina  1 2 TA1986 Israel Ae. kotschyi  2 3 

TA1890 Israel Ae. peregrina  2 3 TA2173 Israel Ae. peregrina  2 1 

TA1891 Israel Ae. peregrina  0 3 TA2205 Israel Ae. kotschyi  1 2 

TA1892 Canada Ae. peregrina  2 1 TA2206 Azerbaijan Ae. kotschyi  1 1 

TA1893 Turkey Ae. peregrina  2 2 TA2207 Uzbekistan Ae. kotschyi  2 1 

TA1894 Jordan Ae. peregrina  2 1 TA2274 Jordan Ae. peregrina  2 2 

TA1895 Jordan Ae. peregrina  3 3 TA2275 Israel Ae. peregrina  1 3 

TA1896 U.K.  Ae. peregrina  1 2 TA2665 Jordan Ae. kotschyi  1 3 

TA1897 Turkey Ae. peregrina  2 1 TA2667 Jordan Ae. kotschyi  2 0 

TA1898 Lebanon Ae. peregrina  2 2 TA2681 Jordan Ae. peregrina  1 0 

TA1901 Israel Ae. peregrina  1 2 TA2682 Syria Ae. peregrina  2 1 

TA1902 Palestine Ae. peregrina  1 3 TA2698 Israel Ae. peregrina  1 2 

TA1903 Palestine Ae. peregrina  2 1 TA10550 Israel Ae. kotschyi  0 1 

TA1904 Unknown Ae. peregrina  3 2 TA10551 Israel Ae. kotschyi  2 2 

TA1918 Turkey Ae. peregrina  2 3 TA10855 Cyprus Ae. peregrina  1 3 

TA1919 Israel Ae. peregrina  2 2 “TA2899” Unknown Ae. peregrina  2 3 

TA1920 Turkey Ae. peregrina  0 2 Jagger U.S.A.  T. aestivum 2 4 

TA1974 Canada Ae. kotschyi  1 2 Jefimija Serbia T. aestivum 2 2 

TA1978 Israel Ae. kotschyi  0 1 U1275 U.S.A.  T. aestivum 2 3 

TA1980 Israel Ae. kotschyi  2 1 Ventnor Australia  T. aestivum 3 2 

TA1981 Egypt Ae. kotschyi  1 0      
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Table 2-2 Analysis of Variance F-values and degrees of freedom for Grain-Fill Duration 

from Experiment 1, Experiment 2, and the Heat Treatment Observations Across 

Experiments. 

Experiment Effect 

Numerator 

Degrees of 

Freedom 

(DF) 

Den 

DF 

Grain Fill 

Duration 

1 Genotype 44 32 2.71** 

2 Treatment 1 79 142.76*** 

Genotype 44 79 1.65* 

Treatment*Genotype 35 79 1.51 

Heat Across 

Experiments 

Experiment 1 78 11.05** 

Genotype 39 78 2.02** 

Genotype*Experiment 39 78 1.28 

 

* p< 0.05; ** p<0.01, *** p<0.001 
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Table 2-3 Least Square Means (lsmeans) of all Heat Treatment Observations for Grain-fill 

Duration (GFD) in Experiment (Exp.) 1, and Paired Heat and Optimal Treatment 

Observations in Experiment 2. 

  

Exp. 1 Experiment 2 

  

Exp. 1 Experiment 2 

Genotype species GFD 
GFD 

H 

GFD 

O 
Genotype species GFD 

GFD 

H 

GFD 

O  

TA10551 Ae. kotschyi 25.0 20.5 27.7 TA1980 Ae. kotschyi 18.0 19.0 . 
 

TA10855 Ae. peregrina 24.0 19.0 22.0 TA1981 Ae. kotschyi 18.0 . . 
 

TA1885 Ae. peregrina 16.0 22.7 29.5 TA1982 Ae. kotschyi 18.0 18.7 22.0 
 

TA1886 Ae. peregrina 19.5 15.7 27.0 TA1983 Ae. kotschyi 16.5 14.0 29.0 
 

TA1887 Ae. peregrina 17.5 18.0 24.5 TA1984 Ae. kotschyi 17.0 . . 
 

TA1888 Ae. peregrina 15.0 . . TA1985 Ae. kotschyi 17.0 19.0 41.0 
 

TA1889 Ae. peregrina 26.0 22.5 28.5 TA1986 Ae. kotschyi 21.0 22.3 20.5 
 

TA1890 Ae. peregrina 21.5 20.0 30.7 TA2173 Ae. peregrina 22.5 19.0 36.0 
 

TA1892 Ae. peregrina 24.5 22.0 . TA2205 Ae. kotschyi 29.0 16.0 34.0 
 

TA1893 Ae. peregrina 23.0 21.0 28.0 TA2206 Ae. kotschyi 16.0 15.0 . 
 

TA1894 Ae. peregrina 17.0 20.0 . TA2207 Ae. kotschyi 16.0 18.0 . 
 

TA1895 Ae. peregrina 22.7 19.0 33.0 TA2274 Ae. peregrina 22.5 17.5 26.0 
 

TA1896 Ae. peregrina 22.0 22.0 23.0 TA2275 Ae. peregrina 21.0 21.7 27.5 
 

TA1897 Ae. peregrina 25.0 14.0 26.0 TA2665 Ae. kotschyi 24.0 17.0 27.7 
 

TA1898 Ae. peregrina 24.0 18.0 27.0 TA2667 Ae. kotschyi 17.0 . . 
 

TA1901 Ae. peregrina 19.0 23.5 29.0 TA2681 Ae. peregrina 17.0 . . 
 

TA1902 Ae. peregrina 25.0 22.7 31.0 TA2682 Ae. peregrina 18.5 19.0 . 
 

TA1903 Ae. peregrina 17.0 18.0 14.0 TA2698 Ae. peregrina 22.0 21.5 30.0 
 

TA1904 Ae. peregrina 24.3 25.5 36.0 “TA2899” - 21.0 20.0 22.0 
 

TA1918 Ae. peregrina 18.0 19.3 . Jagger T. aestivum 19.0 19.0 33.0 
 

TA1919 Ae. peregrina 22.5 18.0 25.0 Jefimija T. aestivum 25.0 18.5 24.5 
 

TA1974 Ae. kotschyi 19.0 18.5 30.5 U1275 T. aestivum 22.0 20.3 27.0 
 

TA1974 Ae. kotschyi 19.0 18.5 30.5 Ventnor T. aestivum 25.7 23.0 40.0 
 

CV       18.4 16.5 22.3  
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Table 2-4 Heat Stress Grain-fill Duration (GFD), Temperature Treatment Contrasts, and 

Relative SPAD from Experiment 1, 2, and across Experiments for Superior and Control 

Genotypes. 

Entry Origin Species 
GFD 

1 

GFD 

2 

Combined 

GFD 

Exp. 2 

Temp 

Contrast 

12d 

SPAD 

Pairwise 

12d 

Relative 

SPAD 

16d 

SPAD 

Pairwise 

16d 

Relative 

SPAD 

TA1904 Unknown Ae. peregrina 24.3 25.5 24.9 ≠ = 53.3% ≠ 28.9% 

TA1889 Israel Ae. peregrina 26.0 22.5 24.3 = = 36.0% = 0 

TA1902 Palestine Ae. peregrina 25 22.7 23.8 ≠ ≠ 9.1% ≠ 0 

TA10551 Israel Ae. kotschyi 25 20.5 22.8 = ≠ 11.9% = 0 

TA1893 Turkey Ae. peregrina 23.0 21.0 22.0 = ≠ 0.0% = 0 

TA1896 U.K.  Ae. kotschyi 22 22.0 22.0 = = 0.0% = 0 

TA2698 Israel Ae. peregrina 22.0 21.5 21.8 = ≠ 0.0% ≠ 0 

TA2275 Israel Ae. peregrina 21.0 21.7 21.3 = = 47.2% = 0 

TA1901 Israel Ae. peregrina 19.0 23.5 21.3 = = 61.0% ≠ 0 

Ventnor Australia T. aestivum 25.7 23.0 24.3 ≠ ≠ 41.4% ≠ 0 

Jefimija Serbia T. aestivum 25.0 18.5 21.8 = ≠ 0.0% ≠ 0 

U1275 U.S.A. T. aestivum 22.0 20.3 21.2 = ≠ 8.6% = 0 

“TA2899” Unknown Unknown 21.0 20.0 20.5 = = 20.5% = 0 

Jagger U.S.A. T. aestivum 19.0 19.0 19.0 ≠ ≠ 20.3% ≠ 0 

 

≠ Statistically dissimilar in contrast or Tukey pairwise comparison for genotype by temperature treatments 

= Statistically similar in contrast or Tukey pairwise comparison for genotype by temperature treatments 
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Table 2-5 Tukey-Kramer Means Separation for least square Mean of Grain-fill Duration 

for Heat Observations across Experiments 

Genotype Days  Letter
†
 Genotype Days Letter 

1904 24.9 A 2899 20.5 BA 

Ventnor 24.3 BA 2665 20.5 BA 

1889 24.3 BA 1919 20.3 BA 

1902 23.8 BA 2274 20.0 BA 

1892 23.3 BA 1897 19.5 BA 

10551 22.8 BA 1885 19.3 BA 

2205 22.5 BA Jagger 19.0 BA 

1893 22.0 BA 1974 18.8 BA 

1896 22.0 BA 2682 18.8 BA 

Jefimija 21.8 BA 1918 18.7 BA 

2698 21.8 BA 1980 18.5 BA 

1986 21.7 BA 1894 18.5 BA 

10855 21.5 BA 1982 18.3 BA 

2275 21.3 BA 1985 18.0 BA 

1901 21.3 BA 1887 17.8 BA 

U1275 21.2 BA 1886 17.6 BA 

1898 21.0 BA 1903 17.5 BA 

1895 20.8 BA 2207 17.0 BA 

1890 20.8 BA 2206 15.5 B 

2173 20.8 BA 1983 15.3 B 

 

† Genotypes with same letter are not statistically different (p>0.05)  
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Table 2-6 Analysis of Variance F-values for Chlorophyll Index (SPAD) of Experiment 2 for 

Days 8, 12, and 16. 

 8d 

SPAD 

Pr>F 12d 

SPAD 

Pr>F 16d 

SPAD 

Pr>F 

Treatment 78.13 <.0001 108.03 <.0001 99.1 <.0001 

Genotype 1.02 0.4644 1.29 0.1584 1.23 0.2122 

Treatment*Genotype 0.93 0.5893 1.06 0.4107 1.38 0.1224 
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Chapter 3 - Developing a Comprehensive Greenhouse Drought 

Screening System for Wheat and its Wild Relatives 

Introduction 

Drought tolerance is defined by Turner (1979) as the ability of a plant to survive moisture stress 

and reproduce satisfactorily. Crop plants should also maintain yield to be considered drought 

tolerant. While droughts may vary in severity, severe droughts are often beyond the scale of 

agronomic solutions (Blum, 2011). The requirement of harvestable yield proposed by Turner 

(1979) in the context of advanced production systems excludes catastrophic droughts which 

Blum (2011) better describes as political and economic problems. Yield is often limited by 

drought stress in the southern Great Plains of the United States of America (Musick et. al, 1994). 

In a recent modeling study by Tack et al. (2014), they reported that drought scenarios had the 

historical effect of a 22% yield reduction, while warming temperatures had an average 11% 

reduction. The reproductive and grain-fill periods are the most limiting periods for drought in 

wheat (Pradhan et al., 2012).  

 The effects of drought stress are numerous, but the primary effect on grain yield is a 

decrease in photosynthesis. This occurs due to an increase in leaf senescence (Yang et al., 2003), 

which is primarily triggered by stress induced leaf chlorosis (Yang 2001; Gregersen and Holm, 

2007). The effect of leaf senescence on the flag leaf has a large effect on yield production, 

because the flag leaf is responsible for 30-50% of yield assimilation (Sylvester-Bradley et al., 

1990). Accelerated leaf senescence results in a reduction of the grain fill duration (Plaut, 2004). 

Photosynthesis is also largely inhibited by a tolerance mechanism in response to stress. Stomatal 

closure, in an attempt to decrease evaporative water loss, results in a decrease in transpiration 

and thus decreased photosynthesis (Cornic, 2000). This survival mechanism helps plants survive 
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periods of severe stress, but may be mutually exclusive of improvement for genetic yield 

potential because it results in decreased transpiration, and thus, grain-fill.  

 Plants cope with drought stress in a variety of ways. Escape is a strategy often used for 

drought tolerance, especially in areas where terminal stress late in the growing season is a 

problem (Blum, 1988; Blum et al., 1989). Wheat plants may also rely on reserve carbohydrates 

from other plant organs, such as the stem or awns, to be translocated to grain production when 

faced with stress (Blum et al., 1983). An increase in Abscisic acid (ABA) hormone signaling 

often occurs in drought stress, and has been shown to affect many plant responses. It has been 

shown to promote root growth and water extraction (Chimenti et al., 2006). ABA also acts as an 

“early warning signal” (Blum, 2011) and is released in response to drying around upper roots, 

signaling leaf retardation and stomatal closure. Blum (2011) points out that these effects may be 

conflicting with sustained photosynthesis under stress that is required to protect yield. Therefore, 

in crop improvement, high ABA sensitivity should be approached with caution. Because it can 

restrict water losses through evaporation and transpiration, some level of ABA signaling is still 

likely beneficial but over-sensitivity may result in premature shutdown of photosynthesis.  

Water use efficiency is a metric which is often used by agronomists to describe the 

biomass accumulated as a proportion of evapotranspiration. It has been described as a selection 

tool by some (Fischer, 1981; Condon et al., 2004). A pitfall that Blum (2009) points out, is that 

WUE is merely a ratio, and that it should not be used to evaluate breeding materials for cultivar 

development because high WUE doesn’t necessarily lead to increased yield. Alternatively, he 

argues that genotypes which are continually selected for low transpiration will be negatively 

associated with yield improvement, because high, but efficient transpiration is needed for grain 

production. As long as no genetic improvement in photosynthetic efficiency is expected, 
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selection for lower yielding materials would result from consistent WUE selection. This is 

because lower or conservative biomass can result in a high water use efficiency, which is why he 

advocates the term effective use of water (EUW) coupled with biomass selection.  

Osmotic adjustment is the process by which plants accumulate solutes in leaf tissue at 

low leaf water potentials to maintain turgor and cellular hydration (Blum, 2011). Higher levels of 

osmotic adjustment has been associated with deeper root growth as well (Morgan and Condon, 

1986). Osmotic adjustment takes time to develop, and therefore is not an effective avoidance 

strategy in quick drought situations. It has been estimated that it may take at least 14 days in 

wheat, but less than 28 days required by most rice cultivars (Babu et al., 1999).  

 Genotypes having deep root systems to access water at depths are desired for drought 

tolerance. Rooting depth can increase drought tolerance (Xue et al., 2003; Wasson et al., 2012). 

Screening for root depth is difficult, because there are no reliable in situ screening methods 

available in the field (Farooq et al., 2012) despite there being important genotypic variation for 

this trait (Richards, 2006). It has been postulated that if a genotype possesses the ability to mine 

for water at progressive depths as stress develops, that it may not need to be capable of osmotic 

adjustment (Blum et al., 1999). In controlled environments, root analysis is sometimes possible. 

Rooting architecture is often studied with computer software capable of calculating the root 

length, area, and volume. This analysis can be very time consuming, and a simple estimation of 

rooting volume has shown to be highly correlated to the software analysis, at a much lower cost 

(Pang et al., 2011).  

 Selecting for drought tolerant genotypes in a breeding program is difficult because of the 

low heritability often caused by genotype by environment interaction (Farooq et al., 2012). 

Genotypes must be screened in drought environments, but genetic yield potential must also be 
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identified in less stressful environments. For this reason, effective physiological screening should 

accompany yield testing in breeding programs to identify potential drought tolerant genotypes.  

Several approaches have been suggested to identify physiological traits highly correlated 

to drought tolerance. Low canopy temperature is associated with yield in drought stress (Blum et 

al., 1989; Pradhan et al, 2014). Leaf water potential (Kirkham et al., 1969; Kirkham, 1983; 

O’Toole and Cruz, 1980; Pask et al., 2012) and relative water content (Barrs and Weatherley, 

1962) are often monitored under drought stress in controlled environment studies, in order to 

evaluate stress in a quantitative and repeatable manner (Kirkham, 2005). Drought dependent 

Harvest Index (Richards et al., 2002) and whole plant biomass under stress (Xue et al., 2014) are 

two methods for evaluating plant production under stress. Stem dry weight mass at harvest was 

recently suggested as a method for screening for genotypes that may translocate carbohydrate 

stem reserves for grain-fill (Xue et al., 2014). Field testing of grain yield with leaf desiccant such 

as magnesium chlorate is also used to simulate grain-filling from stem reserves (Blum, 2009).  

In experimental situations, osmotic adjustment may be estimated between well-watered 

plants that never receive stress and drought stressed plants (Blum, 1989). It has been emphasized 

that the osmotic potential of the genotypes involved must be measured at similar relative water 

contents (Babu et al., 1989; Zhang et al., 1999; Blum, 2009). A high correlation with two 

previously proposed methods (Morgan’s regression and Ludlow’s full turgor adjustment) of 

assessing osmotic adjustment was shown by Zhang et al. (1999). Their rehydration method with 

two treatments of plants was very similar to more time-consuming methods, and consumed less 

plant matter (Zhang et al., 1999). Their rehydration method is also preferred for post-anthesis 

drought stress because it involves rehydrating the excised leaves, rather than re-watering of the 

experimental plants. Rehydration of leaf matter allows evaluation of leaves at similar water 
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content, provides enough sap to be able to read on a vapor pressure osmometer, and was 

experimentally shown to avoid dilution of solute content after a less than 12 hour rehydration 

(Babu et al., 1989).  

 Wild relatives of wheat have been suggested as a source of abiotic stress tolerance, in 

addition to disease resistance genes (Friebe et al., 1996). Aegilops geniculta (Roth) has been 

suggested as a source of drought tolerance from the tertiary gene pool of wheat (Monneveux et 

al., 2000; Zaharieva et al., 2001; Pradhan et al., 2012). The species has a broad range of 

adaptation, and has a center of origin near the cool desserts near the Mediterranean Sea. This and 

other Aegilops species are best studied in controlled environments because of adaptation, 

lodging, and spike shattering at maturity.  

 The objective of this study was to develop a screening system for wheat and its wild 

relatives in a controlled greenhouse environment. Because of the number of confounding stresses 

which may affect plant performance, drought stress must be completely isolated to identify 

genotypes for further investigation. The mechanism of tolerance can be simultaneously 

investigated by screening for physiological mechanisms of drought such as rooting traits, 

stomatal resistance, and osmotic adjustment. An advanced screening system with the ability to 

monitor above and below ground conditions could be used to investigate potential sources of 

drought tolerance from Aegilops geniculata. For genetic wheat improvement, the level of 

tolerance should be compared with the response of known wheat genotypes.  
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Materials and methods  

Preliminary Screening 

In spring 2014, a preliminary screening was performed on 145 entries (Table 1) from the 

Wheat Genetics Resource Center (WGRC) and USDA-ARS National Small Grains Collection 

(Aberdeen, ID) in two replications. Water was completely withheld 10 days post head 

emergence, and days to senescence was measured. Eighty eight Ae. geniculata accessions were 

selected based on phenotype and grain fill duration from screening 1 and screened with two 

wheat checks (TAM 111 and TAM 112) with three replicates in a second screening in fall 2014. 

Both putative tolerant and a few susceptible genotypes were retained, based on phenotype and 

grain fill duration. Days to senescence, biomass, and visual observations on phenotype were 

recorded for the second preliminary screening. For both preliminary experiments, seedlings were 

vernalized at approximately 4.4°C for six weeks then transplanted into 6-inch diameter, 0.65-

gallon round pots (Nursery Supplies Inc, Orange, CA) with two plants per pot. Each pot 

contained the same amount of soil at a uniform moisture content. Plants received a 16 h 

photoperiod with 21°C daytime temperatures and 15.5°C nighttime temperatures. Ambient light 

was supplemented with artificial light in the greenhouse. Artificial light intensity was about 400 

μM m
-2

 s
-1

. At jointing (Feekes 6), plants were tethered to bamboo stakes to avoid lodging. Pots 

were treated with Marathon systemic granular insecticide (1% imadicloprid, OHB) at a rate of 

1.4 g per pot to prevent insect damage. A randomized complete block experimental design was 

used in the greenhouse with bench as the blocking factor.   

Linear regression (data not shown) was used to select genotypes with high biomass and 

grain fill duration for the advanced drought screening. Five genotypes with diverse phenotypes, 

high biomass, and high grain fill duration were screened in the advanced screening with three 
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wheat controls (Table 3). A putative susceptible genotype of Ae geniculata (TA 10021) was 

included based on its previous poor performance. TAM 111 is a high yielding cultivar adapted to 

the High Plains with a record of high yield potential in moderate drought conditions, as well as 

high input environments (Battenfield et al., 2013). TAM 112 is a High Plains wheat cultivar 

which appears to be drought tolerant under more severe drought conditions, with a slightly lower 

yield potential in optimal environments (Pradhan et al., 2014). Santa Fe was grown on limited 

acreage and developed a reputation for being susceptible to drought (Watson, 2015).  

Advanced screening experimental design 

Seeds were planted in Profile Greens Grade (Profile Products, Buffalo Grove, IL) and 

kept in a warm greenhouse for three weeks before vernalization. Seedlings were vernalized at 

approximately 4.4°C for six weeks. They were watered at least once per week in vernalization, 

and fertilized after three weeks with the same nutrient solution used for the experiment.  

Following vernalization, the seedlings were transplanted into growth tubes containing 

Profile Greens Grade growth media (Figure 1). Plants received a 12 h photoperiod for the first 

four weeks after transplanting, increasing to 14 h after two weeks, and 16 h six weeks after 

transplanting. Plants received 21°C daytime temperatures and 15.5°C nighttime temperatures. 

Ambient greenhouse light was supplemented with growth lights. The light intensity in the 

greenhouse from artificial lights (Sunblaze T5 4’x8 with Spectralux 6500K lamps) was around 

775 μM m
-2

 s
-1

. 

The advanced screening was a split block treatment design, with moisture treatment 

(well-watered, drought) as the main block factor and genotype as the sub-block factor. 

Genotypes were replicated twice in each moisture treatment. Each drought treatment tube was 

paired with a well-watered treatment tube based on heading date, for the purposes of 
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physiological comparisons across treatments. Each tube had five plants. Drought stress was 

imposed 10 days after anthesis, marked by spike emergence of 60% of the plants in a tube. 

Senescence was noted by 60% of plants with a flag leaf being no longer photosynthetically 

active and when a SPAD or stomatal resistance measurement was no longer possible.  

Growth tubes 

The experimental unit for the advanced screening was a 60-inch long section of Schedule 

40 polyvinylchloride (PVC) pipe (6-inch o.d.). Each pipe was cut twice longitudinally for all but 

3-inches on two sides, resulting in two halves for insertion into the coupler base (Figure 2). A 

third cut, perpendicular to the first two, was made at the base to free one half of the pipe, 

resulting in a 4-foot, 9-inch-long half which could be removed at the conclusion of the 

experiment for in situ root analysis. The other half of the pipe had the intact 6-icnch o.d. base 

which was 3-inches tall. The kerf of the two longitudinal cuts was filled with 3/8-inch-thick 

closed-cell foam weather stripping (WJ Dennis, Elgin, IL) to seal the tube. The kerf of the 

perpendicular cut was filled with 1/2-inch-thick weather stripping. . Before tubes were filled with 

growth media, they were closed with three 6-7” hose clamps, spaced evenly along the length of 

the tube.  

The base of the tube, which was uncut longitudinally, was placed inside a 6” PVC 

coupling which had a 6” round landscaping drain grate placed inside of it (Figure 2). A piece of 

size 60 stainless steel mesh was placed on top of the grate to retain the growth media yet still 

allow for free drainage. Size 60 mesh has openings which are 0.01 mm smaller than the smallest 

particle size of the growth media. Two arch-shaped holes were cut in the base of the PVC 

coupler drain using 1-1/2-inchhole saw in a drill press to allow drainage to escape the base. The 
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holes were drilled by clamping two couplers together end to end, and drilling one hole with the 

pilot bit of the hole saw inserted between the two couplers.  

Holes were pre-drilled with a 37/64” drill bit and tapped with a 3/8” NPT tap at the 

sensor positions along the tubes (Figure 3). A 3/8” cable gland (Mencom Corporation) with 

strain relief was placed in each tapped hole. Sensors were oriented with the narrow edge in the 

“up” position, to minimize resistance to water flow, as seen in Figure 2.  

Profile Greens Grade (Profile Products LLC, Buffalo Grove, IL) is a baked porous 

ceramic aggregate made of calcined ilite clay (Adams et al., 2014). It is used as a field 

amendment on golf courses, and has also been used extensively as an experimental growth 

media. It was studied by Steinberg et al. (2005) as a potential plant growth media for use on the 

international space station. Macropores drain at relatively high levels of VWC (Steinberg et al., 

2005), making it well suited for a drought screening experiment. Even when packed to its 

maximum bulk density (0.68 g cm
-3

), this media has an unusually high porosity and drains well. 

It also has a very low hydraulic conductivity at relatively high volumetric water content levels, 

lending it well to drought experiments.  It drains rapidly, making management of water and 

nutrient delivery very forgiving of accidental over watering. Due to the essentially non-existent 

cation exchange capacity of the media, the experiment must be treated as a hydroponic 

experiment, with nutrient solution being delivered during each irrigation. 

 Growth media was packed into the tubes using four “lifts”, each 15-inches in height and 

packed to a target bulk density of b = 0.68 g cm
3

. The elevation for the top of each of these lifts 

was marked on the inner surface of the tubes. The mass M of media required for each lift was 

determined with the expression )1( gb  VM , where V is the volume of media in each lift and 

g is the gravimetric water content of the media. Samples collected immediately prior to packing 
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were used to determine that the air-dry media had a water content of g = 0.02 g g
1

. After 

adding the mass M of media for a given lift, the exterior surface of the growth tube was tapped 

repeatedly until the media settled to the target elevation for that lift. Packing the tubes in four 

lifts helped ensure uniformity in bulk density with depth, but the primary control on uniformity 

resulted from the fact that the target bulk density was set equal to the maximum bulk density 

(i.e., 0.68 g cm
3

) for this media (Steinberg et al., 2005).  

Osmocote Plus 3-4 (15-9-12) (Scotts, Marysville, OH) was included in the top 14-inches 

of the tube at a 7.1 g dm
-3

 rate to supplement plant nutrient needs. Tubes were completely 

saturated with water immediately after being filled with the growth media.  

Sensors 

 Three different sensors were used to monitor soil water levels during the 

experiment. The EC-5 (Decagon Devices, Pullman, WA) is a low-cost, rugged volumetric water 

content sensor. It has the smallest volume of influence of similar analog moisture content sensors 

from Decagon Devices, making it well suited for placement inside of the tubes without 

interference from the walls. The EC-5 sensors were spaced 12-inches apart at four depths inside 

each growth tube, beginning 12-inches from the growth media surface near the top of the tube 

(Figure 4). For the drought treatment tubes (n=18), MPS-6 matric potential sensors (Decagon 

Devices, Pullman, WA) were placed 3-inches below the EC-5 sensors at the top three depths 

(Figure 4).  These are SDI-12 sensors which measure soil temperature and matric potential (Ψm). 

They have a published effective range of 10 MPa <  Ψm < 9 kPa. To maintain adequate contact 

with the surrounding growth media, the MPS-6 sensors were dipped in a 200-mesh silica flour 

(Soil Moisture Equipment, Santa Barbara, CA) slurry at the recommendation of the sensor 

manufacturer. The slurry was made by mixing silica flour with water until it was viscous enough 
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to adhere to the ceramic disc of the MPS-6 sensor. For the well-watered tubes, a corresponding 

Ψm measurement was made at the same position in the tubes (Figure 4) with a mini column 

tensiometer (Soil Measurement Systems, Huntington Beach, CA). The tensiometers were custom 

ordered with a 16-cm-long barrel. Measurements are made automatically with a 26PC pressure 

transducer (Honeywell), which is included from SMS. The pressure transducer has an effective 

range to 5 psi, making it well suited for measurements in the well-watered treatment.  

Calibration of the EC-5 sensors was necessary for the growth media used in this 

experiment. A calibration column was designed and constructed specifically for this task. 

Twenty pieces of 6-inch o.d. PVC pipe were cut to a length of 3-inches. A cable gland was 

installed in the center of 10 of these sections, using the procedure described above. The sections 

were assembled as shown in Figure 5 and held together with general purpose duct tape (Duck 

Brand). Each section was packed to a target bulk density of 0.68 g cm
-3

 using the same procedure 

employed for packing the growth tubes. An EC-5 reading was taken with the air dry Profile, 

having a known gravimetric water content, immediately after packing. The column was watered 

until water freely drained from the bottom, ensuring that it was nearly saturated. An EC-5 

reading in millivolts was taken immediately after saturation. The column was then allowed to 

drain naturally for several days in the greenhouse under ambient conditions. Readings from the 

EC-5 sensors were recorded every three hours during the drainage event. Once differentiation in 

sensor readings was observed, the column was sectioned (Figure 6), and wet mass of the media 

was determined for each of the 10 sections containing an EC-5 sensor. The media from these 

sections was oven dried at 105°C for 72 hours and then weighed to determine dry mass. The 

gravimetric water content values calculated with the wet- and dry-mass data were converted to 

volumetric water contents by using the expression wbgv / , where v is the volumetric 
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water content (cm
3
 cm

3
) and w is the density of water, taken to be 1.0 g cm

3
. EC-5 readings in 

mv/V were regressed onto volumetric water content values (expressed on a percentage basis, i.e., 

v  100) to obtain a calibration curve for the growth media (Figure 7).  

Calibration of the tensiometer pressure transducers was checked with a tensimeter (Soil 

Measurement Systems, Huntington Beach, CA) to verify accuracy. A range of five suction 

values were drawn with a 10cc syringe and 1/8” tygon tubing connected to the tensimeter (Figure 

8). Tensimeter values and pressure transducer readings were compared with linear regression to 

obtain an r
2 

of 0.998 (data not shown), confirming that the pressure transducers had similar 

measurements for the range of matric potential expected in the experiment 

Data collection 

Data were collected with two CR1000 dataloggers (Figure 9; Campbell Scientific, Logan, 

UT). To configure the total number of sensors, seven AM16-32B multiplexers (Figure 10; 

Campbell Scientific, Logan, UT) were used. The multiplexers were run in “4x16” mode, 

allowing a total of 48 EC-5 sensors, or 16 tensiometers per multiplexer. Because the MPS-6 

sensors are digitally addressable SDI-12, they were all wired with a 6” DIN rail (Figure 11; 

Campbell Scientific, Logan, UT). Wiring diagrams for the EC-5 and tensiometer multiplexers 

are shown in Figure 12.  The system received 120 volt power from the greenhouse where it is 

housed, and a PS150 (Campbell Scientific, Logan, UT) 12 volt power supply was used to power 

the dataloggers.  

A cabinet was designed and specially constructed to house the data acquisition system 

(Figure 13). The enclosure was sealed from dust and moisture, and included a 118 cfm, 12v 

exhaust fan (Jameco Electronics, Belmont, CA) to prevent humidity damage to electronic 

components. To allow tubes and the data acquisition system to be physically separated during 
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root characterization and extraction and in between experiments, Deutsch connectors (LADD, 

Kettering, OH) were installed on sensor wires (Figure 14). These were inserted into permanently 

mounted plugs on the sides of the data acquisition cabinet. The plugs and hardware are 

waterproof and maintain excellent connections. This allows the multiplexers and dataloggers to 

remain fully connected when not in use, preventing error and damage to equipment by 

disconnecting and reconnecting wires. A full set of parts used to install plugs on sensors is found 

on the parts list (Appendix 1). 

Irrigation system 

An automatic irrigation scheduling system utilizing the soil moisture sensors was 

designed to increase repeatability and consistency of the experimental protocol. The system uses 

the datalogger programming to assess water content from selected sensor readings at a specified 

time, and then initiate irrigation when the water content reading falls below a specified value. 

This decreases the need to manually monitor and apply water, which may need to be done 

several times a day during periods of rapid water uptake.  

Each tube was controlled by a ¼” 12v solenoid valve (Electronic Solenoid Valves, 

Holbrook, NY). The valves were controlled by three SDMCD16AC relays (Figure 9; Campbell 

Scientific, Logan, UT). Each channel on the SDMCD16AC relay has a toggle switch allowing 

the program settings to be turned off or manually overridden. The relays were controlled by one 

CR1000 datalogger. The relays were powered with two 10amp, 12v DC power supplies (Jameco 

Electronics, Belmont, CA).  

One irrigation manifold supplied irrigation to each moisture treatment. The manifold was 

constructed of 1-1/4-inch o.d. PVC pipe, with the solenoid valve threaded into a 1/8-inch-1/8-

inch union which was threaded into the manifold via a 1/8-27 NPT hole (Figure 15). Each 



71 

manifold had a 1-1/4”-1-1/4” coupling glued into each end, with a 1-1/4”-3/4” bushing glued 

into it. One end then had a ¾-inch hose bib threaded into the bushing to drain the system. The 

opposite end had a ¾” MNPT-5/8” garden hose adapter threaded into the bushing to connect the 

water supply.  

The solenoid valves had a push-to-connect 1/8-inch-1/4-inch adapter joining it with the 

¼-inch blank microtubing (Rainbird, Azusa, CA). The irrigation tubing was terminated with a 1 

gallon per hour, pressure compensating dripper emitter (Rainbird, Azusa, CA). The irrigation 

supply tube for each tube was secured through a 17/64-inch hole at the top of each growth tube 

(Figure 16). The dripper sat on the surface of the growth media. A parts list for the irrigation 

system is found in Appendix 1.  

Nutrient solution was manually applied to the first experiment until the grain-fill drought 

stress was imposed in the drought treatment growth tubes. Afterward, water applied to either 

moisture treatment did not contain nutrient solution. This method resulted in lower fertility levels 

than desired. Therefore, nutrient solution was supplied with each irrigation through the automatic 

system in the second experiment. A 13 gallon Nalgene carboy, with spigot (United States Plastic 

Corp, Lima, OH) was connected to the irrigation manifolds via 5/8-inch garden hose. A 1.4 

gallons per minute pump (Shurflo, Costa Mesa, CA) was controlled by the SDMCD16AC relay 

and transferred nutrient solution to irrigation manifold.  

Peters 5-11-26 professional hydroponic nutrient solution (Hummert International, Earth 

City, MO) was mixed according to label instructions and supplemented with educational grade 

calcium nitrate (Fisher Scientific, Waltham, MA). Final nutrient concentrations in the liquid 

nutrient solution are found in (Table 4). These supplied concentrations were used in conjunction 

with the Osmocote Plus in the growth tubes to meet plant needs.  The 5-11-26 solution was 
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completely dissolved at a 10x concentration in a 4000ml flask, then the calcium nitrate was 

added. The stock concentration was added to the carboy and brought to volume with reverse 

osmosis water supplied in the greenhouse.  

Data collection programming  

The Loggernet software package (Campbell Scientific, Logan, UT) was used for 

datalogger programming. The Shortcut program was initially used to construct basic commands 

for sensor query. The scan interval for data collection was set at every 6 hours. One CR1000 

measured 6 multiplexers of soil moisture sensors, and the SDI 12 buss of MPS-6 sensors. The 

second CR1000 controlled the seventh multiplexer, and the three SDMCD16AC relays. The 

desired watering time determines the scan interval for the second CR1000, as it must be divisible 

by the scan interval. For the first experiment, a five minute scan interval was used, as there was 

no watering time less than five minutes. The plants required more water during the second 

experiment, and a one minute scan interval was used, allowing for more flexible watering times. 

The program used during the imposition of drought stress for CR1000 (1) is included as 

Appendix 2. The program used during the drought treatment for CR1000 (2) is included as 

Appendix 3.  

Moisture treatment 

The automatic watering program on CR1000(2) checked the readings from the top-depth 

EC-5 sensor in each tube, which were recorded on CR1000(1) and initiated irrigation at 8:00 

a.m. if volumetric water content was found to be lower than the imposed thresholds. Until the 

drought stress was imposed, every tube was well-watered. During the first experiment, the well-

watered irrigation threshold was 35% VWC at the top EC-5 sensor. Tubes with readings below 

this threshold received five minutes of irrigation, resulting in 189ml of supplied water. The 
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second experiment had greater plant development, and the threshold was set at VWC of 38%. 

This allowed the once-daily irrigation to maintain a well-watered condition throughout the day. . 

Because the growth media drains quickly and plants rapidly used water during the grain-fill 

period, more robust plants resulting from greater fertility management required a lower irrigation 

threshold or longer irrigation time to maintain a well-watered condition in experiment 2. When 

stress was imposed to the drought treatment tubes 10 days after head emergence, the growth 

tubes were irrigated at very low levels (1-2 minutes) when matric potential, determined by the 

MPS-6 sensor, was lower than -500kPa. The goal was to avoid imposing a sudden stress.. This 

allowed the plants to adjust to the stress, and for drought tolerance mechanisms to develop. 

Because osmotic adjustment is known to take around 14 days (Babu et al., 1999), the period of 

controlled stress allowed this to take place. During experiment 1, the objective was to maintain 

tubes at a soil matric potential (Ψm) greater than or equal to -500kPa at the top MPS-6 sensor. 

Each day during the 10 day moderation period, small volumes of water (37-112ml) were 

manually supplied once daily via the irrigation system to tubes with Ψm less than -500kPa. 

During the second experiment, the moderation period was maintained automatically with each 

tube <-500kPa receiving 75mL of nutrient solution at 8:00 a.m., 3:00 p.m., and 9:00 p.m. After 

ten days of controlled drought stress, no further water was added and each tube was allowed to 

develop drought stress naturally. The well-watered treatment tubes were consistently maintained 

with an irrigation threshold of 38% VWC, as discussed above, twice daily (8:00 a.m. and 9:00 

p.m.) until physiological maturity. 

Plant measurements 

Plant measurements were initiated ten days after spike emergence, on moisture treatment 

day 0. Chlorophyll Index was measured with a Konica-Minolta SPAD 502+ Leaf Meter 
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(Spectrum Technologies, Aurora, IL). Measurements were recorded as an average of three to five 

sampled flag leaves per growth tube, which were measured at three points along the length of the 

leaf blade. Stomatal resistance was measured with an SC-1 leaf porometer (Decagon Devices, 

Pullman, WA) by sampling the base of 2-3 flag leaves per tube. All measurements were 

conducted on the adaxial surface of the leaf. Drought treatment tubes were measured again every 

two days until flag leaf senescence, and well-watered treatment tubes were measured every four 

days until the corresponding tube in the drought treatment had senesced.  

Leaf water potential was measured with a Model 1000 pressure chamber (PMS 

Instrument, Albany, OR). Measurements were taken when each tube exhibited visible signs of 

drought stress. The onset of lower leaf stress in the drought treatment was marked by wilting, 

chlorosis, or senescence of the lower canopy, (Figure 17). Measurements were taken mid-

morning in the drought treatment tube and the corresponding tube in the well-watered treatment. 

Three upper leaves were sampled at both stress points, and the two which were most visibly 

different were read simultaneously with the pressure chamber. For the lower canopy stress 

reading, F-1 leaves were used, and for the flag leaf stress reading, flag leaves were sampled. Two 

diverse leaves were read to conserve nitrogen gas by sampling the range of variability in an entry 

at once. Leaf water potential was noted by visible extrusion of water from the xylem under 

magnification. Leaves were rehydrated in distilled water for 4 hours at 4°C after leaf water 

potential readings. After rehydration they were blotted dry and frozen at -80°C until osmolality 

measurements could be taken. Osmolality was measured to estimate osmotic potential. Sap was 

extruded from thawed tissue using a glass rod inside a 1.5 ml test tube. Individual leaves were 

read when possible, to obtain 2-3 readings per tube. Readings were taken with a Model 5600 

Vapro vapor pressure osmometer (Elitech, Logan, UT). Osmolality readings in mmol kg
-1

 from 
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the vapor pressure osmometer were converted to Atm for estimation of osmotic potential (Ψs) 

following the formula provided by Kirkham (2005) on page 306. Osmotic adjustment was taken 

as the difference between osmotic potential of the paired optimal and drought stressed entry, and 

averaged by genotype.  

Grain fill duration was derived as the difference between flag leaf senescence and head 

emergence dates. At physiological maturity, the entire aboveground biomass was harvested from 

each tube and oven dried at 35°C for 48h. Plant height in experiment 1 was taken as an average 

of 5 primary tillers after drying as the length (cm) from the growth media surface to the base of 

the spike. Plant height in experiment 2 was measured as the same distance but before harvesting 

biomass. Biomass was taken immediately after removal from the drier. Number of spikes were 

counted and the spikes were retained after obtaining the biomass.  

Rooting characteristics were observed by opening each tube after laying it on its side 

(Figure 18) and carefully brushing away growth media until the deepest root was identified. The 

tubes were placed in a wooden cradle designed to prevent the weight of the tube from resting on 

the sensors. Distance from the growth media surface to the deepest root was taken as rooting 

depth. Roots were extracted from the Profile material by placing the belowground biomass on a 

No. 12 single triangle seed cleaning sieve (Seedburo, Des Plaines, IL) and shaking until the 

Profile dropped through the screen. Remaining Profile was brushed away with a small paintbrush 

and roots were placed in a paper bag to be oven dried at 35°C for 72h Mass was recorded 

immediately after drying. For root volume analysis, the root mass was submerged in distilled 

water, gently agitated to remove remaining Profile particles stuck to the roots and then re-dried. 

Root volume by water displacement was measured with a homemade displacement vessel based 

on Archimedes’ principle (Figure 19).  
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Data Analysis 

Data are still being collected from experiment 2. A comprehensive analysis will be 

completed for data across experiments at a later date. For experiment 1, data were analyzed with 

SAS version 9.4 (SAS Institute, Cary, NC). In an analysis of variance, moisture treatment (n=2) 

and genotype (n=9) were treated as fixed effects. Residual degrees of freedom and experimental 

error with no further random terms were used as the denominator effects for the F-tests. Linear 

regression was completed for biomass using all genotype by moisture treatment observations. 

Significant terms were identified using backward selection with p<0.05 followed by the MaxR 

selection in Proc Reg to build the regression models.  Data were analyzed for all genotypes in the 

experiment, as well as the Ae. geniculata only. Comparison of moisture treatment by genotype 

effects were completed with simple contrasts, as well as by the use of ratios of the drought versus 

the well-watered responses. These relative responses compare the mean of each drought 

treatment genotype with the companion tubes in the well-watered treatment. As mentioned 

above, these tubes were paired across treatments by similar spike emergence date. In doing so, 

comparisons could be made across treatments with more similar phenologies.  

Results 

A table of simple statistics for all response variables is presented as Table 3-5. The mean, 

standard deviation, as well as minimum and maximum for all traits are shown by moisture 

treatment. Mean grain fill duration was 30 days in the drought treatment compared with 35 days 

in the well-watered treatment. Biomass had a similar minimum in both treatments, but the 

maximum was four grams higher in the well-watered treatment. Root traits (volume, mass, 

depth) had very similar means in both moisture treatments. The mean stomatal resistance by day 

showed very little trend during the drought stress period in the well-watered treatment, while the 
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drought treatment mean steadily increased throughout the 16 day period. Water potential values 

of the soil and sampled leaves are shown at the two visual stress stages, lower leaf stress, and 

flag leaf stress. The soil water potential, as measured by the MPS-6 sensor at all three depths, 

varied greatly when plants senesced. At senescence, the range of Ψm at the most shallow sensor 

depth ranged from -815 kPa to -3943 kPa. The mean value of Ψm at plant senescence in the 

drought treatment was -2182 kPa.  

 The results of an analysis of variance for select traits for both the complete experiment, as 

well as for the Ae. geniculata only, are presented in Table 3-6. Because tiller number, growth 

type, adaptation, and selection influence differ so greatly between Ae. geniculata and wheat, 

excluding the wheat makes it easier to compare the accessions of Ae. geniculata to each other 

and determine if genotypic differences are present. Many traits showed differences between 

moisture treatments and genotypes. Overall, there was almost no interaction between genotype 

and moisture treatment.  

 A linear regression for biomass for all entries across moisture treatments in experiment 1 

is shown as Table 3-7. Ten factors were identified in a model explaining biomass, with an R
2 

of 

0.9812. Five variables were identified as having a positive effect on biomass (stomatal 

resistance, day 4; water applied; spike weight; plant height; and root mass). Five variables 

showed a negative effect on biomass (soil water potential at senescence; stomatal resistance, day 

0 and 16; chlorophyll index, Day 8; average osmotic potential at flag leaf stress).   

 Physiological responses of entries are summarized in Table 3-8. Osmotic adjustment 

(OA) was calculated as the difference of the mean osmotic potential at flag leaf stress of the 

drought treatment minus the companion well-watered treatment, by genotype. Two entries (289 

and TAM111) had a negative value for OA, while positive values ranged from 12kPa (entry 36) 
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to 552 kPa (entry 18). Relative values presented in the table are valuable in estimating the effect 

of the drought treatment. They were calculated as the ratio of drought treatment observation to 

well-watered observations, by genotype. Relative stomatal resistance ranged from 114.3% (entry 

311) to 291.6% (entry 289). A relative value of 100% would indicate identical stomatal 

resistance across treatments, whereas a high relative value indicates higher resistance in drought. 

All parameters in Table 3-8 were tested in analysis of variance with genotype as a fixed effect. 

No significant differences were detected (data not shown), likely due to the high standard 

deviation and power from low replication.  

Three entries had relative chlorophyll index values exceeding 100%, indicating a higher 

mean chlorophyll index at the final measurement in drought stress than in the well-watered 

treatment. Relative biomass ranged from 53% (entry 11) to 106.3% (entry 289). Two entries had 

a relative biomass exceeding 100% (entries 289, 307). Relative grain-fill duration ranged from 

76.3% (entry 11) to 103.3% (entry 289). The contrasting physiological responses of entry 18, 36 

and 311 are shown in Figure 20, along with Ψm at the three sensor depths at the time of plant 

senescence.  

Select trait means for genotype by treatment are presented in Table 3-9. These values are 

the simple means for genotype by treatment, and are not paired comparison of companion tubes, 

as calculated for the data presented in Table 3-8.  

Discussion 

There are many challenges associated with identifying drought tolerance, particularly with a wild 

relative such as Ae. geniculata. With paired moisture treatments, drought tolerance could be 

indicated by statistical similarity between moisture treatments. In that case, a genotype exhibited 

similar performance despite drought stress. Because genetic yield improvement must always be 
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improved simultaneously, a genotype which produces additional biomass under well-watered 

conditions would also be desirable. However, a genotype in that case may not be statistically 

similar under drought stress, but may still possess drought tolerance. Leaf health and 

physiological responses are therefore important and should be evaluated simultaneously with 

plant responses like grain-fill duration, biomass, grain mass, and rooting traits. The difficulty in 

breeding for drought tolerance is not likely because it is too genetically complex, but rather that 

it is difficult to identify, and the target drought situation is not universal (Blum, 2011). Difficulty 

to identify drought tolerance can be because of confounding experimental conditions, as well as 

the number of ways in which a plant can exhibit drought tolerance. Evaluating data from as 

many plant and soil responses as possible will likely lead to the clearest approach to selecting for 

drought tolerance.  

The preliminary experiments with Ae. geniculata identified putative drought tolerance, as 

well as susceptibility. Entry 289 was tested in the advanced screening because it showed a poor 

grain-fill duration under drought stress in the preliminary experiments (data not shown). Because 

the preliminary screenings only had a drought treatment, it was not possible to determine that 

entry 289 may simply have a shorter phenology than similar accessions, as suggested by relative 

grain-fill duration, and relative biomass in the advanced screening (Table 3-8). The accession did 

exhibit leaf stress under drought (Table 3-8), but had a very short days to senescence under both 

moisture treatments. Overall, the lack of a truly drought susceptible genotype made 

differentiation of the Ae. geniculata entries difficult.  

There were significant genotypic differences detected (Table 3-6). However, there was a 

lack of a genotype by moisture treatment interaction for all traits, except day 12 stomatal 

resistance in the combined analysis, which could have been caused by a few factors. First, it is 
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possible that the drought stress did not succeed in imposing differences between moisture 

treatments. This would result in similar grain-fill duration across moisture treatments resulting in 

only genotypic differences. This is less likely, by the number of significant differences for 

moisture treatment from the analysis of variance (Table 3-6). Secondly, it could indicate that 

every genotype tested exhibited similar levels of drought tolerance. Based on a Tukey means 

separation (data not shown) for nearly all responses, this seems to be the more likely explanation. 

Data in Table 3-8 show near uniformly high levels of relative chlorophyll index, grain-fill 

duration, and biomass. Lack of genotype by moisture treatment interactions seems to have been 

caused by similar drought tolerance for all genotypes. Based on the origin of the genotypes 

tested, and the lack of a true susceptible check, this seems like a plausible explanation.  

 Despite the similarity of genotypes tested across moisture treatments, some interesting 

trends between genotypes were detected. The linear regression for biomass in Table 3-7 showed 

predictable results, with a combination of positive and negative effectors on biomass. The 

variables with the largest effects in the analysis were spike weight, root mass, and average 

osmotic potential at flag leaf stress. Root mass did not differ by moisture treatment, and only 

showed significant differences in the combined analysis for genotype. These results were 

expected, since root mass and spike mass are components of biomass. Increased osmotic 

potential at flag leaf stress having a negative effect on biomass is likely because the elevated OP 

occurred in the lower yielding drought stress treatment. The significant negative effect of a high 

day 0 stomatal resistance may indicate that some genotypes in the study maintained higher 

stomatal resistance throughout grain-fill, resulting in decreased photosynthesis and biomass 

(Cornic, 2000). Because biomass was measured in grams, many factors in this analysis are 
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shown to have a very small effect, despite their significant contribution the overall model (Table 

3-7).  

The data in Table 3-8 highlight some of the most notable trends from experiment 1. The 

OA in the present study ranged from 12 kPa to 552 kPa (Table 3-8). These levels were consistent 

with prior reports of OA levels in Ae. geniculata (Mguis et al., 2012). OA has been a known 

strategy in wheat for some time (Morgan and Condon, 1986; Babu et al., 1999; Zhang et al., 

1999; Blum et al, 1999; Blum, 2011) and literature has suggested that OA is present in Ae. 

geniculata through screening with poly ethylene glycol (Reikka et al., 1998a; Reikka et al., 

1998b; Farooq 2001; Mguis et al., 2012) . OA is an important component of drought tolerance, 

and has not been shown to affect yield potential by compromising other plant processes (Blum, 

2005). The accompanying data on relative stomatal resistance, chlorophyll index, biomass, and 

grain-fill duration may help clarify potential varying strategies in the Ae. genciulata. It was 

reported by Mguis et al. (2013) that stomatal resistance in stress varied in Ae. geniculata, largely 

by geographic origin. Variation was seen in stomatal resistance (Table 3-5, Table 3-8), with 

measurements late in the moisture treatment period (Day 12, 16) being significantly different 

between moisture treatment, and Day 12 showing genotypic variation in the Ae. geniculata 

(Table 3-6). These measurements with the leaf porometer were difficult to obtain due to small 

leaf area (data not shown), and additional variation was observed between cloudy and sunny 

days (personal observation- data not shown). Leaf size of the Ae. geniculata also made 

measurements difficult with the porometer.   

The role of ABA signaling in drought stress suggests that there may be multiple tolerance 

strategies present in the tested germplasm. ABA signaling acts as an early warning signal (Blum, 

2011), and the plant often responds with restricted growth (Ali et al., 1999; Sreedhar et al., 
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2002), deeper rooting (Morgan and Condon, 1986; Munns and Sharp, 1993), reduced phenology 

(Ali et al., 1999), reduced stomatal conductance (Ali et al., 1999; Blum, 2011), accelerated leaf 

senescence (Munne-Bosch and Alegre, 2004), and osmotic adjustment (Ali et al., 1999). Thus, 

elevated levels of ABA may lead to increased stomatal resistance, decreased chlorophyll index 

(SPAD), and shorter grain-fill duration. The high OA, but lower relative chlorophyll index, and 

high relative stomatal resistance suggest that entry 18 may be overly sensitive to ABA signaling, 

leading to its lower relative biomass from a premature photosynthetic shutdown (Table 3-8). It 

may be exhibiting isohydric behavior, which would be expected due to origin in the 

Mediterranean (Blum, 2015).  Alternatively, entry 311 had the next highest OA (438 kPa), with 

the lowest relative stomatal resistance and highest relative chlorophyll index (Table 3-8). This 

genotype appears to adjust to the lower leaf water potential, and maintain higher levels of 

photosynthesis and biomass production. Its lower relative biomass and grain-fill duration were 

mainly a reflection of its high biomass and grain-fill duration in the well-watered treatment 

(Table 3-9), as well as one pair of companion tubes being very disproportionate (data not 

shown). Based on this data, it appears to be exhibiting anisohydric behavior, more compatible 

with a strong osmotic adjustment and continued growth and water use (Blum, 2015). This type of 

drought tolerance is more compatible with crop production, because available water is 

effectively used, and stomatal closure does not prevent photosynthesis (Blum, 2015). This 

opportunistic growth in well-watered conditions is also a more ideal response for crop plants. 

Entry 311 (TA10437) has been previously noted for its superior phenotype (personal 

observation) and is the source of the Lr57/Yr40 gene in wheat (Aghaee-Sarbarzeh et al., 2002; 

Kurapathy et al., 2007). Both entry 18 and entry 311 senesced at very low soil moisture levels 

(Figure 20).  



83 

Visual observations of response to drought are important, in addition to holistic 

evaluation of plant responses. Because smaller statured plants may exhibit higher drought 

tolerance (Blum et al., 1997), careful evaluation of germplasm sources which may be compatible 

with grain production in crop plants is important. Drought treatment conditions must also be 

tailored to specific environmental conditions, because available water in the soil profile and 

seasonal precipitation will dictate what type of stress response is most desirable (Blum, 2015). 

The advanced screening system is advantageous for further drought screening because of how it 

can be customized to screen for differing stress types by carefully manipulating available water.  

 In conclusion, there appear to be varying modes of tolerance to drought stress despite the 

statistical similarity between genotypes across moisture treatments. Further follow-up with the 

incorporation of data from experiment 2 to confirm these results will provide additional 

evidence. Further physiological characterization, such as measuring ABA, may provide 

additional evidence to support the emerging theories on the different responses. Hybridization of 

the most desirable genotypes with wheat may provide desirable diversity beyond drought 

tolerance, and the progeny of such a cross could be evaluated for response with this screening 

system to study the effect of the Ae. geniculata genes in a wheat background. This system also 

represents a great resource to study other wild relatives which may possess even greater levels of 

drought tolerance, such as Triticum turgidum subsp. dicoccoides (Reikka et al., 1998 a and b), 

Ae. cylindrica, and Ae. tauschii (Farooq, 2001). This system also allows for intensive screening 

of a limited number of wheat genotypes for drought stress while minimizing all other sources of 

variation.  
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Table 3-1 Genotypes and Their Sources Screened in the first Preliminary Aegilops 

geniculata Drought Screening Experiment 

 

† National Small Grains Collection, Aberdeen, ID 

  

KSU 

Id # 
Genotype Source KSU Id # Genotype Source 

KSU 

Id # 
Genotype Source 

1 CIae 43  NSGC† 32 PI374365 NSGC 76 PI542190 NSGC 

4 CIae 65  NSGC 33 PI374374 NSGC 77 PI551083 NSGC 

7 PI170195  NSGC 34 PI388754 NSGC 78 PI551084 NSGC 

8 PI170206  NSGC 35 PI388755 NSGC 79 PI551085 NSGC 

11 PI276978  NSGC 36 PI388756 NSGC 81 PI551087 NSGC 

13 PI289578  NSGC 37 PI483009 NSGC 82 PI551089 NSGC 

14 PI298899  NSGC 38 PI483022 NSGC 83 PI551090 NSGC 

15 PI330487 NSGC 50 PI487227 NSGC 84 PI551091 NSGC 

17 PI361880 NSGC 51 PI487228 NSGC 85 PI551092 NSGC 

18 PI361881 NSGC 53 PI487283 NSGC 89 PI551096 NSGC 

19 PI369574 NSGC 55 PI491426 NSGC 90 PI551098 NSGC 

20 PI369575 NSGC 56 PI491427 NSGC 91 PI551100 NSGC 

21 PI369576 NSGC 62 PI491433 NSGC 93 PI551102 NSGC 

22 PI369577 NSGC 64 PI524953 NSGC 95 PI551104 NSGC 

23 PI369578 NSGC 65 PI524954 NSGC 98 PI551107 NSGC 

24 PI369579 NSGC 67 PI524956 NSGC 101 PI551110 NSGC 

25 PI369580 NSGC 68 PI542180 NSGC 102 PI551111 NSGC 

26 PI374324 NSGC 70 PI542182 NSGC 103 PI551112 NSGC 

27 PI374337 NSGC 71 PI542185 NSGC 104 PI551113 NSGC 

28 PI374338 NSGC 72 PI542186 NSGC 108 PI551117 NSGC 

29 PI374339 NSGC 73 PI542187 NSGC 109 PI551118 NSGC 

31 PI374361 NSGC 75 PI542189 NSGC 111 PI554277 NSGC 

   Continued on next page    
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† National Small Grains Collection, Aberdeen, ID 

‡ Wheat Genetics Resource Center, Manhattan, KS   

KSU 

Id # 
Genotype Source 

KSU 

Id # 
Genotype Source 

KSU 

Id # 
Genotype Source 

112 PI554278 NSGC 159 PI573398 NSGC 253 TA2240 WGRC 

114 PI554280 NSGC 160 PI573399 NSGC 254 TA2241 WGRC 

115 PI554281 NSGC 162 PI573401 NSGC 262 TA2255 WGRC 

116 PI554284 NSGC 163 PI573402 NSGC 263 TA2256 WGRC 

122 PI564184 NSGC 165 PI573404 NSGC 266 TA2649 WGRC 

123 PI564185 NSGC 166 PI573405 NSGC 267 TA2650 WGRC 

124 PI564186 NSGC 171 PI573410 NSGC 268 TA2651 WGRC 

125 PI564187 NSGC 175 PI614626 NSGC 270 TA2653 WGRC 

127 PI564190 NSGC 180 TA1721 WGRC‡ 274 TA2899 WGRC 

128 PI564191 NSGC 183 TA1799 WGRC 276 TA10003 WGRC 

133 PI573372 NSGC 194 TA1811 WGRC 278 TA10005 WGRC 

134 PI573373 NSGC 196 TA1813 WGRC 279 TA10006 WGRC 

135 PI573374 NSGC 200 TA1817 WGRC 280 TA10008 WGRC 

137 PI573376 NSGC 202 TA1819 WGRC 281 TA10009 WGRC 

138 PI573377 NSGC 207 TA2041 WGRC 283 TA10012 WGRC 

139 PI573378 NSGC 211 TA2046 WGRC 285 TA10015 WGRC 

140 PI573379 NSGC 213 TA2048 WGRC 286 TA10018 WGRC 

141 PI573380 NSGC 215 TA2051 WGRC 288 TA10020 WGRC 

142 PI573381 NSGC 218 TA2058 WGRC 289 TA10021 WGRC 

146 PI573385 NSGC 232 TA2165 WGRC 290 TA10022 WGRC 

147 PI573386 NSGC 235 TA2185 WGRC 291 TA10023 WGRC 

148 PI573387 NSGC 236 TA2187 WGRC 292 TA10024 WGRC 

149 PI573388 NSGC 237 TA2188 WGRC 302 TA10036 WGRC 

152 PI573391 NSGC 239 TA2191 WGRC 303 TA10037 WGRC 

155 PI573394 NSGC 242 TA2221 WGRC 304 TA10038 WGRC 

156 PI573395 NSGC 243 TA2222 WGRC 307 TA10041 WGRC 

157 PI573396 NSGC 244 TA2223 WGRC 311 TA10437 WGRC 

158 PI573397 NSGC 251 TA2238 WGRC - TA2899 WGRC 
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Table 3-2 Genotypes and their Source Screened in the Second Preliminary Drought 

Experiment 

KSU 

ID 
Genotype Source 

KSU 

ID 
Genotype Source 

KSU 

ID 
Genotype Source 

1 CIae 43  NSGC† 101 PI551110 NSGC 239 TA2191 WGRC 

4 CIae 65  NSGC 102 PI551111 NSGC 242 TA2221 WGRC 

8 PI170206  NSGC 103 PI551112 NSGC 243 TA2222 WGRC 

11 PI276978  NSGC 104 PI551113 NSGC 244 TA2223 WGRC 

17 PI361880 NSGC 108 PI551117 NSGC 251 TA2238 WGRC 

18 PI361881 NSGC 115 PI554281 NSGC 262 TA2255 WGRC 

22 PI369577 NSGC 122 PI564184 NSGC 266 TA2649 WGRC 

23 PI369578 NSGC 123 PI564185 NSGC 267 TA2650 WGRC 

25 PI369580 NSGC 124 PI564186 NSGC 270 TA2653 WGRC 

26 PI374324 NSGC 127 PI564190 NSGC 274 TA2899 WGRC 

29 PI374339 NSGC 133 PI573372 NSGC 276 TA10003 WGRC 

34 PI388754 NSGC 134 PI573373 NSGC 278 TA10005 WGRC 

35 PI388755 NSGC 135 PI573374 NSGC 279 TA10006 WGRC 

36 PI388756 NSGC 141 PI573380 NSGC 280 TA10008 WGRC 

50 PI487227 NSGC 148 PI573387 NSGC 281 TA10009 WGRC 

53 PI487283 NSGC 149 PI573388 NSGC 283 TA10012 WGRC 

62 PI491433 NSGC 156 PI573395 NSGC 285 TA10015 WGRC 

65 PI524954 NSGC 158 PI573397 NSGC 286 TA10018 WGRC 

68 PI542180 NSGC 165 PI573404 NSGC 288 TA10020 WGRC 

70 PI542182 NSGC 180 TA1721 WGRC‡ 289 TA10021 WGRC 

72 PI542186 NSGC 194 TA1811 WGRC 290 TA10022 WGRC 

73 PI542187 NSGC 196 TA1813 WGRC 292 TA10024 WGRC 

75 PI542189 NSGC 200 TA1817 WGRC 302 TA10036 WGRC 

76 PI542190 NSGC 202 TA1819 WGRC 303 TA10037 WGRC 

78 PI551084 NSGC 207 TA2041 WGRC 304 TA10038 WGRC 

81 PI551087 NSGC 215 TA2051 WGRC 307 TA10041 WGRC 

90 PI551098 NSGC 232 TA2165 WGRC 311 TA10437 WGRC 

91 PI551100 NSGC 235 TA2185 WGRC - 2899 WGRC 

93 PI551102 NSGC 236 TA2187 WGRC - TAM111 Check 

98 PI551107 NSGC 237 TA2188 WGRC - TAM112 Check 

† National Small Grains Collection, Aberdeen, ID 

‡ Wheat Genetics Resource Center, Manhattan, KS   
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Table 3-3 Genotypes used in Advanced Drought Screening, with Source and Collection 

Information 

 

† National Small Grains Collection, Aberdeen, ID 

‡ Wheat Genetics Resource Center, Manhattan, KS  

Entry ID Genotype Source Species 
Nearest City to 

Collection Site 
Country of Origin 

11 PI 276978  NSGC† 
Aegilops 

geniculata 
Unknown Unknown 

18 PI 361881  NSGC 
Aegilops 

geniculata 
Cluj Romania 

36 PI 388756 NSGC 
Aegilops 

geniculata 
Moulay-Bouazza Morocco 

289 TA10021 WGRC‡ 
Aegilops 

geniculata 
Ezzhiliga (Rabat)  Morocco 

307 TA10041 WGRC 
Aegilops 

geniculata 
 Essaouira Morocco 

311 TA10437 WGRC 
Aegilops 

geniculata 
Unknown Republic of Kosovo 

TAM 111 
 

Check Triticum aestivum - 
United States of 

America 

TAM 112 
 

Check Triticum aestivum - 
United States of 

America 

Santa Fe 
 

Check Triticum aestivum - 
United States of 

America 



88 

Table 3-4 Final Nutrient Concentrations in Nutrient Solution Applied through Irrigation 

 

  
  ppm 

Nitrate N 150 

Phosphorous P 48 

Potassium K 216 

Calcium Ca 116 

Magnesium Mg 31 

Sulfate SO4 125 

Iron Fe 3 

Manganese Mn 0.5 

Zinc Sn 0.15 

Copper Cu 0.15 

Boron B 0.5 

Molybdenum Mo 0.1 
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Table 3-5 Simple Statistics for Ae. geniculata Entries in Drought Experiment 1 only, by 

Moisture Treatment 

 

  

  

Well-Watered Drought 

 

Unit 
Mean 

Std 

Dev 
Min Max Mean 

Std 

Dev 
Min Max 

Grain-Fill Duration Days 35 7 21 45 30 3 24 35 

Biomass 

g 

9 3 5 13 7 1 5 9 

Spike Weight 5 2 2 7 4 1 2 5 

Root Mass 6 2 4 9 5 1 4 7 

Plant Height 
cm 

42 13 25 56 34 9 20 46 

Root Depth 70 17 50 114 72 17 49 101 

Root Volume 
cm

3
 

6 2 3 10 6 2 2 9 

Water Applied 3812 1314 1577 5363 943 349 442 1451 

Stomatal Resistance, Day 0 

s m
1
 

768 255 491 1345 1002 283 593 1519 

Stomatal Resistance, Day 4 1019 328 518 1472 900 306 472 1366 

Stomatal Resistance, Day 8 940 307 533 1356 1237 849 562 3646 

Stomatal Resistance, Day 12 807 241 474 1158 1701 975 646 3503 

Stomatal Resistance, Day 16 1223 362 684 1905 1913 505 1021 2623 

Chlorophyll Index, Day 0 

 

46 4 40 51 46 3 41 50 

Chlorophyll Index , Day 4 

 

45 4 36 50 44 5 31 52 

Chlorophyll Index , Day 8 

 

44 5 35 50 43 5 36 50 

Chlorophyll Index , Day 12 

 

43 4 36 47 41 6 31 49 

Chlorophyll Index , Day 16 

 

43 5 32 48 39 7 22 44 

LWP
†
 at lower canopy stress 

kPa 

 

 

 

-1581 413 -2400 -1075 -2743 1610 -6000 -1500 

30.5 cm SWP
‡
; lower canopy stress -2 1 -4 -1 -883 511 -1794 -292 

LWP, flag leaf stress -1552 291 -2000 -1050 -2936 1381 -6000 -1200 

30.5 cm SWP; flag leaf stress -2 1 -4 -1 -2176 1208 -4836 -650 

61 cm SWP; flag leaf stress -3 1 -4 -2 -244 318 -899 -19 

91.5 cm SWP; flag leaf stress -3 1 -5 0 -11 5 -21 -8 

Osmotic Potential, Flag Leaf Stress 1892 197 1617 2197 2026 237 1745 2602 

30.5 cm SWP at senescence -8 17 -63 -1 -2182 955 -3943 -815 

61 cm SWP at senescence -7 10 -38 -2 -226 282 -795 -18 

91.5 cm SWP at senescence -3 1 -5 -1 -10 3 -19 -9 
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Table 3-6 Analysis of Variance p-value Significance Results for Select Response Variables 

in Experiment 1 for Ae. geniculata only, and Combined Analysis of all Entries for Fixed 

Effects of Moisture Treatment, Genotype, and their Interaction 

 

*p<0.05; **p<0.01; ***p<0.001  

 

Moisture 

Treatment 
Genotype 

Genotype* 

Treatment 

 

Ae. 

geniculata All 

Ae. 

geniculata All 

Ae. 

geniculata All 

Spike Weight NS NS NS NS NS NS 

Grain Fill Duration *** *** *** *** NS NS 

Biomass ** ** * ** NS NS 

Height *** NS *** ** NS NS 

Root Mass NS NS NS ** NS NS 

Root Depth NS NS NS NS NS NS 

Stomatal Resistance, Day 12 *** *** ** NS NS * 

Stomatal Resistance, Day 16 *** ** NS . NS NS 

Chlorophyll Index, Day 12 NS NS *** ** NS NS 

Chlorophyll Index, Day 16 NS NS * NS NS NS 

Soil Water Potential at Flag Leaf 

Senescence 
*** *** NS NS NS NS 

Leaf Water Potential at Flag Leaf 

Wilting 
* ** NS NS NS NS 

Osmotic Potential at Flag Leaf Wilting NS NS NS NS NS NS 
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Table 3-7 Significant Factors in a Linear Regression Model for Biomass of both Moisture 

Treatments, with all Entries in Experiment 1, Maximized for R
2
 

 

  

 
Est. S.E. Pr > F 

Variable 

Intercept 10.9823 2.14 0.0002 

Soil Water Potential at Senescence  -0.0007 0.00 0.0005 

Stomatal Resistance, Day 0 -0.0013 0.00 0.01 

Chlorophyll Index, Day 8 -0.1390 0.02 0.0001 

Stomatal Resistance, Day 16 -0.0010 0.00 0.0022 

Water Applied 0.0005 0.00 0.0006 

Spike Weight 0.9504 0.16 <.0001 

Plant Height 0.0320 0.01 0.0241 

Root Mass 0.4214 0.07 <.0001 

Osmotic Potential at Flag Leaf Stress  -0.2339 0.07 0.0076 

    R
2
 =0.9812 
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Table 3-8 Mean Physiological Responses of Genotypes in Experiment 1. Mean Osmotic 

Adjustment; Relative Final Stomatal Resistance, Chlorophyll Index, Biomass, and Grain-

Fill Duration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotype OA 

Rel. 

Stomatal 

Resistance 

Rel. 

Chlorophyll 

Index 

Rel. 

Biomass 

Rel. 

Grain 

Fill 

Duration 

 
(kPa) 

   
 

11 52 274.5% 96.5% 53.0% 76.3% 

18 552 250.4% 83.0% 61.1% 92.4% 

36 12 179.5% 100.0% 93.7% 78.6% 

289 -137 291.6% 60.3% 106.3% 103.3% 

307 213 184.5% 85.6% 105.2% 87.9% 

311 438 114.3% 118.6% 82.0% 77.0% 

TAM 111 -46 173.4% 68.1% 81.0% 92.2% 

TAM 112 211 135.6% 137.4% 100.7% 91.2% 

SantaFe 400 186.9% 88.4% 91.6% 93.6% 
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Table 3-9 Mean of Select Genotypic Responses, by Moisture Treatment for Experiment 1 

 

 

Moisture 

Treatment 
Genotype GFD Water Applied Biomass 

Spike 

Weight 
Height 

Root 

Depth 

Root 

Mass 

Root 

Volume 

Osmotic 

Potential (Flag 

Leaf Stress) 

  
Days cm

3
 g g cm cm g cm

3
 kPa 

Drought 11 29 883 6.2 3.5 37.3 68.0 6.9 4.3 1953.5 

Well-Watered 11 37.5 4732 12.55 5.7 56.0 75.0 7.1 6.2 2005.0 

Drought 18 30.5 946 7.1 3.9 40.4 67.0 5.1 7.8 2173.3 

Well-Watered 18 33 4416 11.45 6.3 48.5 82.0 7.4 10.0 1936.1 

Drought 36 31.5 662 7.9 4.9 35.5 75.0 5.7 7.3 1840.4 

Well-Watered 36 40.5 3785 8.7 4.8 34.5 61.0 6.0 7.0 1828.0 

Drought 289 24 678 6.15 3.6 20.5 62.8 4.7 5.1 1973.4 

Well-Watered 289 23.5 1735 5.85 2.7 25.5 64.5 5.0 6.2 2110.8 

Drought 307 34 1293 6.15 4.2 28.5 87.5 5.5 4.5 2100.2 

Well-Watered 307 39 3470 5.85 3.6 32.5 78.0 4.0 4.5 1887.1 

Drought 311 30 1167 8.35 4.4 42.8 71.0 4.4 4.5 2078.5 

Well-Watered 311 39 4732 10.35 5.2 53.5 61.0 4.1 4.7 1640.6 

Drought Santa Fe 29.5 726 6.05 3.5 50.0 51.0 6.1 6.1 2402.2 

Well-Watered Santa Fe 31.5 3312 6.7 4.0 51.7 65.8 4.7 8.3 2002.0 

Drought TAM 111 27 410 7.5 4.2 55.7 54.0 6.3 7.5 2173.5 

Well-Watered TAM 111 29.5 2997 9.2 5.0 65.8 89.0 5.0 6.7 2219.1 

Drought TAM 112 30.5 662 5.85 3.5 49.2 71.0 6.3 5.4 2545.3 

Well-Watered TAM 112 32.5 2366 5.95 3.7 47.3 52.0 3.8 6.8 2333.8 

CV 
Drought  

Well-Watered 

9.9 

17.3 

45.0           

34.1 

20.5 

31.1 

23.3    

28.3 

28.8 

28.3 

27.0 

26.6 

18.3  

31.4 

34.6  

32.6 

13.4           

15.5 
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Figure 3-1 The Entire Experimental Setup of the Drought Screening System 
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Figure 3-2 (clockwise) A View of the Split Tubes, Partially Filled with Sensors; Disassembled 1:10 Scale 

Model of Tube Showing Cuts in PVC pipe; Drain Components in Order of Assembly 
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Figure 3-3 The Drill Press Jig to Securely Drill Pilot Holes in One Half of the Tubes, for 

Sensor Placement. 

 

 

 

  



97 

Figure 3-4 Sensor Placement in two Types of Moisture Treatment Tubes in Advanced Drought Screening 
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Figure 3-5 The Assembled Calibration Tube, Immediately After Saturation 
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Figure 3-6 Sectioning the Calibration Tube for Wet Mass Measurement 

 

  



101 

 

 

Figure 3-7 EC-5 Calibration Curve Showing Regression of Volumetric Water Content (%) 

on Millivolts Volts-1 Sensor Output; R
2
=0.9954 
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Figure 3-8 The Tensimeter, Syringe, and Tygon Tubing Apparatus Used for Calibration of 

Pressure Transducers, Shown Connected to a Different Style of Mini-Tensiometer for 

Example 
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Figure 3-9 The two CR1000 Dataloggers (top shelf), with 10amp DC Power Supply Visible 

in rear, and SDMCD16AC Relays Powering Irrigation System (bottom shelf) 
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Figure 3-10 Seven AM1632B Multiplexers in Data Acquisition Cabinet 
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Figure 3-11 DIN Rail Terminal Assembly for Terminating 54 MPS-6 Matric Potential 

Sensors 
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Figure 3-12 Wiring Diagram Examples for CR1000 Dataloggers 

 



107 Figure 3-14  Deutsch 21 Pin Round Plug used for Sensors in Drought Treatment Tubes (left) and 12 pin 

Rectangle Plugs used for EC-5, and Tensiometers in Well-Watered Tubes, and Irrigation System (right). 

 

 

Figure 3-13 Data Acquisition Cabinet 
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Figure 3-15 Irrigation Manifold with 12v Solenoid Valves Supplying Each Tube 
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Figure 3-16 Hole Securing ¼” Irrigation Tubing in each Growth Tube 
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Figure 3-17 (clockwise) Lower Canopy of Well-watered Treatment; Leaf Stress of Lower Canopy of 

Drought Treatment; Comparison of Flag Leaf Stress Symptoms in Well-watered (right) versus Drought 

Stress (left); Wheat Flag Leaves Rolling during Drought Stress 
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Figure 3-18 Root System Evaluation at the Conclusion of 

Experiment 1. View of Tube with Intact Root System (top), 

Measurement of Rooting Depth (middle) and Sieve 

Separation of Root System and Growth Media (bottom) 
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Figure 3-19 Root Volume Displacement Vessel 
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Figure 3-20 Final Measurement Comparison of Chlorophyll Index, Stomatal Resistance and Dry Biomass by 

Moisture Treatment for Entries 18, 36, and 311 (left) in Experiment 1. Matric Potential at Three Depths at Plant 

Senescence for Entries 18, 36, and 311 (right) 
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Appendix A - Advanced Drought Screening System Parts List 

Tubes 

Solid core SCH-40 6” PVC pipe, Environmental Manufacturing, Manhattan, KS  

PCG 3/8-R Cable Gland, Mencom Corporation, Eagle Sensors and Controls, Lenexa, KS 

6” PVC Coupling-NDS Drainage Products, Model Number: M6P05  |  Menards® SKU: 6890418 

6” Round Drain Grate- NDS Drainage Products, Model M50 Menards® SKU: 6899325 

6-7” hose clamp- Breeze, Model Number: 63104MEB  |  Menards® SKU: 6790649 

Closed-Cell Vinyl Foam Tape Weatherstrip-WJ Dennis Model Number:  

(1/2”) 204  |  Menards® SKU: 567205 

(1/4”) Model Number: 201  |  Menards® SKU: 5672035 

Size 60 Type 304 stainless steel mesh, TWP Inc. Berkeley, CA Part # 060X060S0065W36T 

 

Irrigation System 

Flexzilla 50 foot 5/8” garden hose, Model Number: HFZG550YW Menards® SKU: 2741205 

13 gallon Nalgene polypropylene carboy with spigot, United States Plastic Corp, Item #73090 

Model 8005-233-236 1.4 GPM pump, Shurflo, Cypress CA  

Peters Professional 5-11-26 Hydroponic special fertilizer, Hummert International, Earth City,

 MO Catalog number 07-5570-1 

Calcium nitrate tetrahydrate, Educational Grade, Fisher Scientific, Waltham, MA. Catalog

 number S25226A 

Schedule 40 Solid Core Plain End Pipe-1-1/4"x5' Model 

Number: PVC071001000HCMenards® SKU: 6898533  

1-1/4"x1" Bushing PVC Schedule 40 Model Number: F02020D  |  Menards® SKU: 6897107 

1-1/4" Coupling PVC Schedule 40 Model Number: F00040D  |  Menards® SKU: 6891860 

3/4" male Hose x Male hose Model Number: 0122229  |  Menards® SKU: 6801973 

1-1/4"x 3/4" Bushing PVC Schedule 40 Model Number: F01270D Menards® SKU: 6897136 

3/4" Hose Bibb Male Model Number: 0960121  Menards® SKU: 6851686 

1/8” 12v DC plastic solenoid valve, Electric Solenoid Valves (Holbrook, NY) Part# RSC-212V 

1/4 IN OD (1/8 ID) x 1/4 IN MIP Plastic Quick-Connect Male Adapter Model

 Number: 17103005  Menards® SKU: 6806152 

1/8" MIP Lead Free Brass Pipe Hex Nipple Model Number: 0123926 Menards® SKU: 6805982 

 

Sensors 

MPS-6 Matric Potential Sensor, Decagon Devices, Pullman, WA 

EC-5 Volumetric Water Content Sensor, Decaon Devices, Pullman, WA 

200 mesh silica flour, Soil Moisture Equipment, Santa Barbara, CA Catalog# 0930W050 

Belmont, CA Part # 2218530 

Flow cell tensiometer 16cm long to porous cup (.6cm OD cup), with 3/8" NPT compression

 fitting, 3-way valve, pressure transducer (5psi), and 5 meter 4 conductor wire and plug,

 (Soil Measurement Systems, Huntington Beach, CA) Item # Cl-029B 

Deutsch Rectangle 12 wire EC-5 plug for optimal treatment, pin side. Part# DTM04-12PA-L012

 (LADD, Kettering, OH) 

Deutsch Rectangle 12 wire irrigation plug for optimal treatment, pin side. Part# DTM04-12PB

 L012 (LADD, Kettering, OH) 

https://www.fishersci.com/shop/products/calcium-nitrate-tetrahydrate-17/s25226a
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Deutsch Rectangle 12 wire EC-5 plug for optimal treatment, socket side. Part# DTM06-12SA

 (LADD, Kettering, OH) 

Deutsch Rectangle 12 wire irrigation plug for optimal treatment, socket. Part# DTM06

 12SB(LADD, Kettering, OH) 

Deutsch Pin Wedge Lock. Part# WM-12P.  (LADD, Kettering, OH) 

Deutsch Socket Wedge Lock. Part# WM-12S (LADD, Kettering, OH) 

Deutsch Round 21 wire Drought Tube Plug, Socket side. Part# HDP24-18-21SN (LADD,

 Kettering, OH) 

Deutsch Round 21 wire Drought Tube Plug, Pin side. Part# HDP26-18-21PN (LADD, Kettering,

 OH) 

Deutsch Solid size 20AWG nickel pins. Part# 0460-202-20141(LADD, Kettering, OH) 

Deutsch Solid size 20AWG nickel sockets. Part#  0462-201-20141(LADD, Kettering, OH) 

Deutsch Pin and socket connections made with Deutsch HDT-48-00 hand tool (LADD,

 Kettering, OH 

 

Infrastructure 

22 AWG, 4 Conductor, Communication Cable, Unshielded, Wire and Cable to Go, Highland

 Park, IL Catalog# COM-C4063A-500 

Profile Greens Grade, (Profile Products LLC, Buffalo Grove, IL) 

Osmocote Plus 15-9-12 3-4 month, Hummert International, Earth City, MO  

Sunblaze 4’x8 lamp T5 HO Grow Lights with Spectralux 6500K lamps, Hummert, Earth City,

 MO 

 

Data Collection System 

Single Output DIN Rail Power Supply 12 Volts 10 Amps 120 Watts, Jameco Electronics,  

AM1632B multiplexer, Campbell Scientific, Logan, UT 

CR1000 datalogger, Campbell Scientific, Logan, UT  

PS150 Power Supply, Campbell Scientific, Logan, UT  

118 cfm 12v DC Brushless fan, Jameco Electronics, Belmont, CA Part # 1952791  

5” DIN rail terminal kit, Part 25458, Campbell Scientific, Logan, UT 

 

Instrumentation  

Decagon SC-1 Leaf Porometer, Decagon Devices, Pullman WA 

Konica-Minolta SPAD 502 Plus Chlorophyll Meter, Spectrum Technologies, Aurora, IL 

Model 1000 Pressure Chamber, PMS Instrument Company, Albany, OR  
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Appendix B - CR1000 (1) Programming (EC-5; MPS-6; and 

Tensiometers 1-32) 

Dim LCount 

Dim LCount_2 

Dim LCount_3 

Dim LCount_4 

Dim LCount_5 

Dim LCount_6 

Dim LCount_7 

Dim LCount_8 

Dim LCount_9 

Dim LCount_10 

Dim LCount_11 

Dim LCount_12 

Dim LCount_13 

Dim LCount_14 

Dim LCount_15 

Dim LCount_16 

Dim LCount_17 

Dim LCount_18 

Dim LCount_19 

Dim LCount_20 

Dim LCount_21 

Dim LCount_22 

Dim LCount_23 

Dim LCount_24 

Dim LCount_25 

Dim LCount_26 

Dim LCount_27 

Dim LCount_28 

Dim LCount_29 

Dim LCount_30 

Dim LCount_31 

Dim LCount_32 

Dim LCount_33 

Dim LCount_34 

Dim LCount_35 

Dim LCount_36 

Dim LCount_37 

Dim LCount_38 

Dim LCount_39 

Dim LCount_40 
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Dim LCount_41 

Dim LCount_42 

Dim LCount_43 

Dim LCount_44 

Dim LCount_45 

Dim LCount_46 

Dim LCount_47 

Dim LCount_48 

Dim LCount_49 

Dim LCount_50 

Dim LCount_51 

Dim LCount_52 

Dim LCount_53 

Dim LCount_54 

Dim LCount_55 

Dim LCount_56 

Dim LCount_57 

Dim LCount_58 

Dim LCount_59 

Dim LCount_60 

Dim LCount_61 

Dim LCount_62 

Dim LCount_63 

Dim LCount_64 

Dim LCount_65 

Dim LCount_66 

Dim LCount_67 

Dim LCount_68 

Dim LCount_69 

Dim LCount_70 

Dim LCount_71 

Dim LCount_72 

Dim LCount_73 

Dim LCount_74 

Dim LCount_75 

Dim LCount_76 

Dim LCount_77 

Dim LCount_78 

Dim LCount_79 

Dim LCount_80 

Dim LCount_81 

Dim LCount_82 

Dim LCount_83 

Dim LCount_84 

Dim LCount_85 

Dim LCount_86 
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Dim LCount_87 

Dim LCount_88 

Dim LCount_89 

Dim LCount_90 

Dim LCount_91 

Dim LCount_92 

Dim LCount_93 

Dim LCount_94 

Dim LCount_95 

Dim LCount_96 

Dim LCount_97 

Dim LCount_98 

Dim LCount_99 

Dim LCount_100 

Dim LCount_101 

Dim LCount_102 

Dim LCount_103 

Dim LCount_104 

Dim LCount_105 

Dim LCount_106 

Dim LCount_107 

Dim LCount_108 

Dim LCount_109 

Dim LCount_110 

Dim LCount_111 

Dim LCount_112 

Dim LCount_113 

Dim LCount_114 

Dim LCount_115 

Dim LCount_116 

Dim LCount_117 

Dim LCount_118 

Dim LCount_119 

Dim LCount_120 

Dim LCount_121 

Dim LCount_122 

Dim LCount_123 

Dim LCount_124 

Dim LCount_125 

Dim LCount_126 

Dim LCount_127 

Dim LCount_128 

Dim LCount_129 

Dim LCount_130 

Dim LCount_131 

Dim LCount_132 
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Dim LCount_133 

Dim LCount_134 

Dim LCount_135 

Dim LCount_136 

Dim LCount_137 

Dim LCount_138 

Dim LCount_139 

Dim LCount_140 

Dim LCount_141 

Dim LCount_142 

Dim LCount_143 

Dim LCount_144 

Public BattV 

Public PTemp_C 

Public VW_1 'these variables are the millivolt output which have not been converted 

  to VWC yet 

Public VW_2 

Public VW_3 

Public VW_4 

Public VW_5 

Public VW_6 

Public VW_7 

Public VW_8 

Public VW_9 

Public VW_10 

Public VW_11 

Public VW_12 

Public VW_13 

Public VW_14 

Public VW_15 

Public VW_16 

Public VW_17 

Public VW_18 

Public VW_19 

Public VW_20 

Public VW_21 

Public VW_22 

Public VW_23 

Public VW_24 

Public VW_25 

Public VW_26 

Public VW_27 

Public VW_28 

Public VW_29 

Public VW_30 

Public VW_31 



128 

Public VW_32 

Public VW_33 

Public VW_34 

Public VW_35 

Public VW_36 

Public VW_37 

Public VW_38 

Public VW_39 

Public VW_40 

Public VW_41 

Public VW_42 

Public VW_43 

Public VW_44 

Public VW_45 

Public VW_46 

Public VW_47 

Public VW_48 

Public VW_49 

Public VW_50 

Public VW_51 

Public VW_52 

Public VW_53 

Public VW_54 

Public VW_55 

Public VW_56 

Public VW_57 

Public VW_58 

Public VW_59 

Public VW_60 

Public VW_61 

Public VW_62 

Public VW_63 

Public VW_64 

Public VW_65 

Public VW_66 

Public VW_67 

Public VW_68 

Public VW_69 

Public VW_70 

Public VW_71 

Public VW_72 

Public VW_73 

Public VW_74 

Public VW_75 

Public VW_76 

Public VW_77 
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Public VW_78 

Public VW_79 

Public VW_80 

Public VW_81 

Public VW_82 

Public VW_83 

Public VW_84 

Public VW_85 

Public VW_86 

Public VW_87 

Public VW_88 

Public VW_89 

Public VW_90 

Public VW_91 

Public VW_92 

Public VW_93 

Public VW_94 

Public VW_95 

Public VW_96 

Public VW_97 

Public VW_98 

Public VW_99 

Public VW_100 

Public VW_101 

Public VW_102 

Public VW_103 

Public VW_104 

Public VW_105 

Public VW_106 

Public VW_107 

Public VW_108 

Public VW_109 

Public VW_110 

Public VW_111 

Public VW_112 

Public VW_113 

Public VW_114 

Public VW_115 

Public VW_116 

Public VW_117 

Public VW_118 

Public VW_119 

Public VW_120 

Public VW_121 

Public VW_122 

Public VW_123 



130 

Public VW_124 

Public VW_125 

Public VW_126 

Public VW_127 

Public VW_128 

Public VW_129 

Public VW_130 

Public VW_131 

Public VW_132 

Public VW_133 

Public VW_134 

Public VW_135 

Public VW_136 

Public VW_137 

Public VW_138 

Public VW_139 

Public VW_140 

Public VW_141 

Public VW_142 

Public VW_143 

Public VW_144 

Public VWC_1 

Public VWC_2 

Public VWC_3 

Public VWC_4 

Public VWC_5 

Public VWC_6 

Public VWC_7 

Public VWC_8 

Public VWC_9 

Public VWC_10 

Public VWC_11 

Public VWC_12 

Public VWC_13 

Public VWC_14 

Public VWC_15 

Public VWC_16 

Public VWC_17 

Public VWC_18 

Public VWC_19 

Public VWC_20 

Public VWC_21 

Public VWC_22 

Public VWC_23 

Public VWC_24 

Public VWC_25 



131 

Public VWC_26 

Public VWC_27 

Public VWC_28 

Public VWC_29 

Public VWC_30 

Public VWC_31 

Public VWC_32 

Public VWC_33 

Public VWC_34 

Public VWC_35 

Public VWC_36 

Public VWC_37 

Public VWC_38 

Public VWC_39 

Public VWC_40 

Public VWC_41 

Public VWC_42 

Public VWC_43 

Public VWC_44 

Public VWC_45 

Public VWC_46 

Public VWC_47 

Public VWC_48 

Public VWC_49 

Public VWC_50 

Public VWC_51 

Public VWC_52 

Public VWC_53 

Public VWC_54 

Public VWC_55 

Public VWC_56 

Public VWC_57 

Public VWC_58 

Public VWC_59 

Public VWC_60 

Public VWC_61 

Public VWC_62 

Public VWC_63 

Public VWC_64 

Public VWC_65 

Public VWC_66 

Public VWC_67 

Public VWC_68 

Public VWC_69 

Public VWC_70 

Public VWC_71 
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Public VWC_72 

Public VWC_73 

Public VWC_74 

Public VWC_75 

Public VWC_76 

Public VWC_77 

Public VWC_78 

Public VWC_79 

Public VWC_80 

Public VWC_81 

Public VWC_82 

Public VWC_83 

Public VWC_84 

Public VWC_85 

Public VWC_86 

Public VWC_87 

Public VWC_88 

Public VWC_89 

Public VWC_90 

Public VWC_91 

Public VWC_92 

Public VWC_93 

Public VWC_94 

Public VWC_95 

Public VWC_96 

Public VWC_97 

Public VWC_98 

Public VWC_99 

Public VWC_100 

Public VWC_101 

Public VWC_102 

Public VWC_103 

Public VWC_104 

Public VWC_105 

Public VWC_106 

Public VWC_107 

Public VWC_108 

Public VWC_109 

Public VWC_110 

Public VWC_111 

Public VWC_112 

Public VWC_113 

Public VWC_114 

Public VWC_115 

Public VWC_116 

Public VWC_117 
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Public VWC_118 

Public VWC_119 

Public VWC_120 

Public VWC_121 

Public VWC_122 

Public VWC_123 

Public VWC_124 

Public VWC_125 

Public VWC_126 

Public VWC_127 

Public VWC_128 

Public VWC_129 

Public VWC_130 

Public VWC_131 

Public VWC_132 

Public VWC_133 

Public VWC_134 

Public VWC_135 

Public VWC_136 

Public VWC_137 

Public VWC_138 

Public VWC_139 

Public VWC_140 

Public VWC_141 

Public VWC_142 

Public VWC_143 

Public VWC_144 

'Tensiometer 1 and 2 Full Bridge measurements  

Public LCount145 

Public T_1(16) 'for simplicity, the tensiometer measurements are made as T (1-16) 

and T_2 (17-32) 

Public LCount146 

Public T_2(16) 

Public Mult(16)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

Public Offs(16)={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

Public Mult_2(16)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

Public Offs_2(16)={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

'Declare Tensiometer results with calibration equation  

Public T_kPa_1 

Public T_kPa_2 

Public T_kPa_3 

Public T_kPa_4 

Public T_kPa_5 

Public T_kPa_6 

Public T_kPa_7 

Public T_kPa_8 
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Public T_kPa_9 

Public T_kPa_10 

Public T_kPa_11 

Public T_kPa_12 

Public T_kPa_13 

Public T_kPa_14 

Public T_kPa_15 

Public T_kPa_16 

Public T_kPa_17 

Public T_kPa_18 

Public T_kPa_19 

Public T_kPa_20 

Public T_kPa_21 

Public T_kPa_22 

Public T_kPa_23 

Public T_kPa_24 

Public T_kPa_25 

Public T_kPa_26 

Public T_kPa_27 

Public T_kPa_28 

Public T_kPa_29 

Public T_kPa_30 

Public T_kPa_31 

Public T_kPa_32 

'Each of 54 SDI-12 measurements with the MPS-6 sensors is declared. The (2) after the 

sensor number means that there are two values returned, kPa and DegC 

Public SDI12_1(2) 

Public SDI12_2(2) 

Public SDI12_3(2) 

Public SDI12_4(2) 

Public SDI12_5(2) 

Public SDI12_6(2) 

Public SDI12_7(2) 

Public SDI12_8(2) 

Public SDI12_9(2) 

Public SDI12_10(2) 

Public SDI12_11(2) 

Public SDI12_12(2) 

Public SDI12_13(2) 

Public SDI12_14(2) 

Public SDI12_15(2) 

Public SDI12_16(2) 

Public SDI12_17(2) 

Public SDI12_18(2) 

Public SDI12_19(2) 

Public SDI12_20(2) 
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Public SDI12_21(2) 

Public SDI12_22(2) 

Public SDI12_23(2) 

Public SDI12_24(2) 

Public SDI12_25(2) 

Public SDI12_26(2) 

Public SDI12_27(2) 

Public SDI12_28(2) 

Public SDI12_29(2) 

Public SDI12_30(2) 

Public SDI12_31(2) 

Public SDI12_32(2) 

Public SDI12_33(2) 

Public SDI12_34(2) 

Public SDI12_35(2) 

Public SDI12_36(2) 

Public SDI12_37(2) 

Public SDI12_38(2) 

Public SDI12_39(2) 

Public SDI12_40(2) 

Public SDI12_41(2) 

Public SDI12_42(2) 

Public SDI12_43(2) 

Public SDI12_44(2) 

Public SDI12_45(2) 

Public SDI12_46(2) 

Public SDI12_47(2) 

Public SDI12_48(2) 

Public SDI12_49(2) 

Public SDI12_50(2) 

Public SDI12_51(2) 

Public SDI12_52(2) 

Public SDI12_53(2) 

Public SDI12_54(2) 

Dim LCount148  

'Name the two resultant values for the MPS-6 sensors as kPa (first result) and DegC 

(second result)-these must be in this order  

Alias SDI12_1(1)=M1_kPa 

Alias SDI12_1(2)=M1_DegC 

Alias SDI12_2(1)=M2_kPa 

Alias SDI12_2(2)=M2_DegC 

Alias SDI12_3(1)=M3_kPa 

Alias SDI12_3(2)=M3_DegC 

Alias SDI12_4(1)=M4_kPa 

Alias SDI12_4(2)=M4_DegC 

Alias SDI12_5(1)=M5_kPa 
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Alias SDI12_5(2)=M5_DegC 

Alias SDI12_6(1)=M6_kPa 

Alias SDI12_6(2)=M6_DegC 

Alias SDI12_7(1)=M7_kPa 

Alias SDI12_7(2)=M7_DegC 

Alias SDI12_8(1)=M8_kPa 

Alias SDI12_8(2)=M8_DegC 

Alias SDI12_9(1)=M9_kPa 

Alias SDI12_9(2)=M9_DegC 

Alias SDI12_10(1)=M10_kPa 

Alias SDI12_10(2)=M10_DegC 

Alias SDI12_11(1)=M11_kPa 

Alias SDI12_11(2)=M11_DegC 

Alias SDI12_12(1)=M12_kPa 

Alias SDI12_12(2)=M12_DegC 

Alias SDI12_13(1)=M13_kPa 

Alias SDI12_13(2)=M13_DegC 

Alias SDI12_14(1)=M14_kPa 

Alias SDI12_14(2)=M14_DegC 

Alias SDI12_15(1)=M15_kPa 

Alias SDI12_15(2)=M15_DegC 

Alias SDI12_16(1)=M16_kPa 

Alias SDI12_16(2)=M16_DegC 

Alias SDI12_17(1)=M17_kPa 

Alias SDI12_17(2)=M17_DegC 

Alias SDI12_18(1)=M18_kPa 

Alias SDI12_18(2)=M18_DegC 

Alias SDI12_19(1)=M19_kPa 

Alias SDI12_19(2)=M19_DegC 

Alias SDI12_20(1)=M20_kPa 

Alias SDI12_20(2)=M20_DegC 

Alias SDI12_21(1)=M21_kPa 

Alias SDI12_21(2)=M21_DegC 

Alias SDI12_22(1)=M22_kPa 

Alias SDI12_22(2)=M22_DegC 

Alias SDI12_23(1)=M23_kPa 

Alias SDI12_23(2)=M23_DegC 

Alias SDI12_24(1)=M24_kPa 

Alias SDI12_24(2)=M24_DegC 

Alias SDI12_25(1)=M25_kPa 

Alias SDI12_25(2)=M25_DegC 

Alias SDI12_26(1)=M26_kPa 

Alias SDI12_26(2)=M26_DegC 

Alias SDI12_27(1)=M27_kPa 

Alias SDI12_27(2)=M27_DegC 

Alias SDI12_28(1)=M28_kPa 
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Alias SDI12_28(2)=M28_DegC 

Alias SDI12_29(1)=M29_kPa 

Alias SDI12_29(2)=M29_DegC 

Alias SDI12_30(1)=M30_kPa 

Alias SDI12_30(2)=M30_DegC 

Alias SDI12_31(1)=M31_kPa 

Alias SDI12_31(2)=M31_DegC 

Alias SDI12_32(1)=M32_kPa 

Alias SDI12_32(2)=M32_DegC 

Alias SDI12_33(1)=M33_kPa 

Alias SDI12_33(2)=M33_DegC 

Alias SDI12_34(1)=M34_kPa 

Alias SDI12_34(2)=M34_DegC 

Alias SDI12_35(1)=M35_kPa 

Alias SDI12_35(2)=M35_DegC 

Alias SDI12_36(1)=M36_kPa 

Alias SDI12_36(2)=M36_DegC 

Alias SDI12_37(1)=M37_kPa 

Alias SDI12_37(2)=M37_DegC 

Alias SDI12_38(1)=M38_kPa 

Alias SDI12_38(2)=M38_DegC 

Alias SDI12_39(1)=M39_kPa 

Alias SDI12_39(2)=M39_DegC 

Alias SDI12_40(1)=M40_kPa 

Alias SDI12_40(2)=M40_DegC 

Alias SDI12_41(1)=M41_kPa 

Alias SDI12_41(2)=M41_DegC 

Alias SDI12_42(1)=M42_kPa 

Alias SDI12_42(2)=M42_DegC 

Alias SDI12_43(1)=M43_kPa 

Alias SDI12_43(2)=M43_DegC 

Alias SDI12_44(1)=M44_kPa 

Alias SDI12_44(2)=M44_DegC 

Alias SDI12_45(1)=M45_kPa 

Alias SDI12_45(2)=M45_DegC 

Alias SDI12_46(1)=M46_kPa 

Alias SDI12_46(2)=M46_DegC 

Alias SDI12_47(1)=M47_kPa 

Alias SDI12_47(2)=M47_DegC 

Alias SDI12_48(1)=M48_kPa 

Alias SDI12_48(2)=M48_DegC 

Alias SDI12_49(1)=M49_kPa 

Alias SDI12_49(2)=M49_DegC 

Alias SDI12_50(1)=M50_kPa 

Alias SDI12_50(2)=M50_DegC 

Alias SDI12_51(1)=M51_kPa 
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Alias SDI12_51(2)=M51_DegC 

Alias SDI12_52(1)=M52_kPa 

Alias SDI12_52(2)=M52_DegC 

Alias SDI12_53(1)=M53_kPa 

Alias SDI12_53(2)=M53_DegC 

Alias SDI12_54(1)=M54_kPa 

Alias SDI12_54(2)=M54_DegC 

Units BattV=Volts 

Units PTemp_C=Deg C 

Units T_1=mV/V 'unit value declaration for the two tensiometer multiplexers- mv/V 

is converted to kPa by the calibration equation after the measurement section  

Units T_2=mV/V 

DataTable(Tens,True,-1) 

DataInterval(0,180,min,10) 'Second number shows interval of storing data to the 

DataTable named in the line above  
Sample(1,T_kPa_1,FP2) 'first report the kPa output after the calibration equation- 

then record the raw mv/V output below 

Sample(1,T_kPa_2,FP2) 

Sample(1,T_kPa_3,FP2) 

Sample(1,T_kPa_4,FP2) 

Sample(1,T_kPa_5,FP2) 

Sample(1,T_kPa_6,FP2) 

Sample(1,T_kPa_7,FP2) 

Sample(1,T_kPa_8,FP2) 

Sample(1,T_kPa_9,FP2) 

Sample(1,T_kPa_10,FP2) 

Sample(1,T_kPa_11,FP2) 

Sample(1,T_kPa_12,FP2) 

Sample(1,T_kPa_13,FP2) 

Sample(1,T_kPa_14,FP2) 

Sample(1,T_kPa_15,FP2) 

Sample(1,T_kPa_16,FP2) 

Sample(1,T_kPa_17,FP2) 

Sample(1,T_kPa_18,FP2) 

Sample(1,T_kPa_19,FP2) 

Sample(1,T_kPa_20,FP2) 

Sample(1,T_kPa_21,FP2) 

Sample(1,T_kPa_22,FP2) 

Sample(1,T_kPa_23,FP2) 

Sample(1,T_kPa_24,FP2) 

Sample(1,T_kPa_25,FP2) 

Sample(1,T_kPa_26,FP2) 

Sample(1,T_kPa_27,FP2) 

Sample(1,T_kPa_28,FP2) 

Sample(1,T_kPa_29,FP2) 

Sample(1,T_kPa_30,FP2) 
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Sample(1,T_kPa_31,FP2) 

Sample(1,T_kPa_32,FP2) 

Sample(1,T_1(1),FP2) 

Sample(1,T_1(2),FP2) 

Sample(1,T_1(3),FP2) 

Sample(1,T_1(4),FP2) 

Sample(1,T_1(5),FP2) 

Sample(1,T_1(6),FP2) 

Sample(1,T_1(7),FP2) 

Sample(1,T_1(8),FP2) 

Sample(1,T_1(9),FP2) 

Sample(1,T_1(10),FP2) 

Sample(1,T_1(11),FP2) 

Sample(1,T_1(12),FP2) 

Sample(1,T_1(13),FP2) 

Sample(1,T_1(14),FP2) 

Sample(1,T_1(15),FP2) 

Sample(1,T_1(16),FP2) 

Sample(1,T_2(1),FP2) 

Sample(1,T_2(2),FP2) 

Sample(1,T_2(3),FP2) 

Sample(1,T_2(4),FP2) 

Sample(1,T_2(5),FP2) 

Sample(1,T_2(6),FP2) 

Sample(1,T_2(7),FP2) 

Sample(1,T_2(8),FP2) 

Sample(1,T_2(9),FP2) 

Sample(1,T_2(10),FP2) 

Sample(1,T_2(11),FP2) 

Sample(1,T_2(12),FP2) 

Sample(1,T_2(13),FP2) 

Sample(1,T_2(14),FP2) 

Sample(1,T_2(15),FP2) 

Sample(1,T_2(16),FP2) 

End Table  

DataTable(VWC,True,-1) 

DataInterval(0,180,min,10) 

Sample (1,VWC_1,FP2)  

'Converted VWC is stored first (1-144), then VW as raw value (mv) for future use 

Sample(1,VWC_2,FP2) 

Sample(1,VWC_3,FP2) 

Sample(1,VWC_4,FP2) 

Sample(1,VWC_5,FP2) 

Sample(1,VWC_6,FP2) 

Sample(1,VWC_7,FP2) 

Sample(1,VWC_8,FP2) 
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Sample(1,VWC_9,FP2) 

Sample(1,VWC_10,FP2) 

Sample(1,VWC_11,FP2) 

Sample(1,VWC_12,FP2) 

Sample(1,VWC_13,FP2) 

Sample(1,VWC_14,FP2) 

Sample(1,VWC_15,FP2) 

Sample(1,VWC_16,FP2) 

Sample(1,VWC_17,FP2) 

Sample(1,VWC_18,FP2) 

Sample(1,VWC_19,FP2) 

Sample(1,VWC_20,FP2) 

Sample(1,VWC_21,FP2) 

Sample(1,VWC_22,FP2) 

Sample(1,VWC_23,FP2) 

Sample(1,VWC_24,FP2) 

Sample(1,VWC_25,FP2) 

Sample(1,VWC_26,FP2) 

Sample(1,VWC_27,FP2) 

Sample(1,VWC_28,FP2) 

Sample(1,VWC_29,FP2) 

Sample(1,VWC_30,FP2) 

Sample(1,VWC_31,FP2) 

Sample(1,VWC_32,FP2) 

Sample(1,VWC_33,FP2) 

Sample(1,VWC_34,FP2) 

Sample(1,VWC_35,FP2) 

Sample(1,VWC_36,FP2) 

Sample(1,VWC_37,FP2) 

Sample(1,VWC_38,FP2) 

Sample(1,VWC_39,FP2) 

Sample(1,VWC_40,FP2) 

Sample(1,VWC_41,FP2) 

Sample(1,VWC_42,FP2) 

Sample(1,VWC_43,FP2) 

Sample(1,VWC_44,FP2) 

Sample(1,VWC_45,FP2) 

Sample(1,VWC_46,FP2) 

Sample(1,VWC_47,FP2) 

Sample(1,VWC_48,FP2) 

Sample(1,VWC_49,FP2) 

Sample(1,VWC_50,FP2) 

Sample(1,VWC_51,FP2) 

Sample(1,VWC_52,FP2) 

Sample(1,VWC_53,FP2) 

Sample(1,VWC_54,FP2) 
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Sample(1,VWC_55,FP2) 

Sample(1,VWC_56,FP2) 

Sample(1,VWC_57,FP2) 

Sample(1,VWC_58,FP2) 

Sample(1,VWC_59,FP2) 

Sample(1,VWC_60,FP2) 

Sample(1,VWC_61,FP2) 

Sample(1,VWC_62,FP2) 

Sample(1,VWC_63,FP2) 

Sample(1,VWC_64,FP2) 

Sample(1,VWC_65,FP2) 

Sample(1,VWC_66,FP2) 

Sample(1,VWC_67,FP2) 

Sample(1,VWC_68,FP2) 

Sample(1,VWC_69,FP2) 

Sample(1,VWC_70,FP2) 

Sample(1,VWC_71,FP2) 

Sample(1,VWC_72,FP2) 

Sample(1,VWC_73,FP2) 

Sample(1,VWC_74,FP2) 

Sample(1,VWC_75,FP2) 

Sample(1,VWC_76,FP2) 

Sample(1,VWC_77,FP2) 

Sample(1,VWC_78,FP2) 

Sample(1,VWC_79,FP2) 

Sample(1,VWC_80,FP2) 

Sample(1,VWC_81,FP2) 

Sample(1,VWC_82,FP2) 

Sample(1,VWC_83,FP2) 

Sample(1,VWC_84,FP2) 

Sample(1,VWC_85,FP2) 

Sample(1,VWC_86,FP2) 

Sample(1,VWC_87,FP2) 

Sample(1,VWC_88,FP2) 

Sample(1,VWC_89,FP2) 

Sample(1,VWC_90,FP2) 

Sample(1,VWC_91,FP2) 

Sample(1,VWC_92,FP2) 

Sample(1,VWC_93,FP2) 

Sample(1,VWC_94,FP2) 

Sample(1,VWC_95,FP2) 

Sample(1,VWC_96,FP2) 

Sample(1,VWC_97,FP2) 

Sample(1,VWC_98,FP2) 

Sample(1,VWC_99,FP2) 

Sample(1,VWC_100,FP2) 
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Sample(1,VWC_101,FP2) 

Sample(1,VWC_102,FP2) 

Sample(1,VWC_103,FP2) 

Sample(1,VWC_104,FP2) 

Sample(1,VWC_105,FP2) 

Sample(1,VWC_106,FP2) 

Sample(1,VWC_107,FP2) 

Sample(1,VWC_108,FP2) 

Sample(1,VWC_109,FP2) 

Sample(1,VWC_110,FP2) 

Sample(1,VWC_111,FP2) 

Sample(1,VWC_112,FP2) 

Sample(1,VWC_113,FP2) 

Sample(1,VWC_114,FP2) 

Sample(1,VWC_115,FP2) 

Sample(1,VWC_116,FP2) 

Sample(1,VWC_117,FP2) 

Sample(1,VWC_118,FP2) 

Sample(1,VWC_119,FP2) 

Sample(1,VWC_120,FP2) 

Sample(1,VWC_121,FP2) 

Sample(1,VWC_122,FP2) 

Sample(1,VWC_123,FP2) 

Sample(1,VWC_124,FP2) 

Sample(1,VWC_125,FP2) 

Sample(1,VWC_126,FP2) 

Sample(1,VWC_127,FP2) 

Sample(1,VWC_128,FP2) 

Sample(1,VWC_129,FP2) 

Sample(1,VWC_130,FP2) 

Sample(1,VWC_131,FP2) 

Sample(1,VWC_132,FP2) 

Sample(1,VWC_133,FP2) 

Sample(1,VWC_134,FP2) 

Sample(1,VWC_135,FP2) 

Sample(1,VWC_136,FP2) 

Sample(1,VWC_137,FP2) 

Sample(1,VWC_138,FP2) 

Sample(1,VWC_139,FP2) 

Sample(1,VWC_140,FP2) 

Sample(1,VWC_141,FP2) 

Sample(1,VWC_142,FP2) 

Sample(1,VWC_143,FP2) 

Sample(1,VWC_144,FP2) 

Sample (1, VW_1, FP2)  

Sample(1,VW_2,FP2) 
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Sample(1,VW_3,FP2) 

Sample(1,VW_4,FP2) 

Sample(1,VW_5,FP2) 

Sample(1,VW_6,FP2) 

Sample(1,VW_7,FP2) 

Sample(1,VW_8,FP2) 

Sample(1,VW_9,FP2) 

Sample(1,VW_10,FP2) 

Sample(1,VW_11,FP2) 

Sample(1,VW_12,FP2) 

Sample(1,VW_13,FP2) 

Sample(1,VW_14,FP2) 

Sample(1,VW_15,FP2) 

Sample(1,VW_16,FP2) 

Sample(1,VW_17,FP2) 

Sample(1,VW_18,FP2) 

Sample(1,VW_19,FP2) 

Sample(1,VW_20,FP2) 

Sample(1,VW_21,FP2) 

Sample(1,VW_22,FP2) 

Sample(1,VW_23,FP2) 

Sample(1,VW_24,FP2) 

Sample(1,VW_25,FP2) 

Sample(1,VW_26,FP2) 

Sample(1,VW_27,FP2) 

Sample(1,VW_28,FP2) 

Sample(1,VW_29,FP2) 

Sample(1,VW_30,FP2) 

Sample(1,VW_31,FP2) 

Sample(1,VW_32,FP2) 

Sample(1,VW_33,FP2) 

Sample(1,VW_34,FP2) 

Sample(1,VW_35,FP2) 

Sample(1,VW_36,FP2) 

Sample(1,VW_37,FP2) 

Sample(1,VW_38,FP2) 

Sample(1,VW_39,FP2) 

Sample(1,VW_40,FP2) 

Sample(1,VW_41,FP2) 

Sample(1,VW_42,FP2) 

Sample(1,VW_43,FP2) 

Sample(1,VW_44,FP2) 

Sample(1,VW_45,FP2) 

Sample(1,VW_46,FP2) 

Sample(1,VW_47,FP2) 

Sample(1,VW_48,FP2) 
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Sample(1,VW_49,FP2) 

Sample(1,VW_50,FP2) 

Sample(1,VW_51,FP2) 

Sample(1,VW_52,FP2) 

Sample(1,VW_53,FP2) 

Sample(1,VW_54,FP2) 

Sample(1,VW_55,FP2) 

Sample(1,VW_56,FP2) 

Sample(1,VW_57,FP2) 

Sample(1,VW_58,FP2) 

Sample(1,VW_59,FP2) 

Sample(1,VW_60,FP2) 

Sample(1,VW_61,FP2) 

Sample(1,VW_62,FP2) 

Sample(1,VW_63,FP2) 

Sample(1,VW_64,FP2) 

Sample(1,VW_65,FP2) 

Sample(1,VW_66,FP2) 

Sample(1,VW_67,FP2) 

Sample(1,VW_68,FP2) 

Sample(1,VW_69,FP2) 

Sample(1,VW_70,FP2) 

Sample(1,VW_71,FP2) 

Sample(1,VW_72,FP2) 

Sample(1,VW_73,FP2) 

Sample(1,VW_74,FP2) 

Sample(1,VW_75,FP2) 

Sample(1,VW_76,FP2) 

Sample(1,VW_77,FP2) 

Sample(1,VW_78,FP2) 

Sample(1,VW_79,FP2) 

Sample(1,VW_80,FP2) 

Sample(1,VW_81,FP2) 

Sample(1,VW_82,FP2) 

Sample(1,VW_83,FP2) 

Sample(1,VW_84,FP2) 

Sample(1,VW_85,FP2) 

Sample(1,VW_86,FP2) 

Sample(1,VW_87,FP2) 

Sample(1,VW_88,FP2) 

Sample(1,VW_89,FP2) 

Sample(1,VW_90,FP2) 

Sample(1,VW_91,FP2) 

Sample(1,VW_92,FP2) 

Sample(1,VW_93,FP2) 

Sample(1,VW_94,FP2) 
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Sample(1,VW_95,FP2) 

Sample(1,VW_96,FP2) 

Sample(1,VW_97,FP2) 

Sample(1,VW_98,FP2) 

Sample(1,VW_99,FP2) 

Sample(1,VW_100,FP2) 

Sample(1,VW_101,FP2) 

Sample(1,VW_102,FP2) 

Sample(1,VW_103,FP2) 

Sample(1,VW_104,FP2) 

Sample(1,VW_105,FP2) 

Sample(1,VW_106,FP2) 

Sample(1,VW_107,FP2) 

Sample(1,VW_108,FP2) 

Sample(1,VW_109,FP2) 

Sample(1,VW_110,FP2) 

Sample(1,VW_111,FP2) 

Sample(1,VW_112,FP2) 

Sample(1,VW_113,FP2) 

Sample(1,VW_114,FP2) 

Sample(1,VW_115,FP2) 

Sample(1,VW_116,FP2) 

Sample(1,VW_117,FP2) 

Sample(1,VW_118,FP2) 

Sample(1,VW_119,FP2) 

Sample(1,VW_120,FP2) 

Sample(1,VW_121,FP2) 

Sample(1,VW_122,FP2) 

Sample(1,VW_123,FP2) 

Sample(1,VW_124,FP2) 

Sample(1,VW_125,FP2) 

Sample(1,VW_126,FP2) 

Sample(1,VW_127,FP2) 

Sample(1,VW_128,FP2) 

Sample(1,VW_129,FP2) 

Sample(1,VW_130,FP2) 

Sample(1,VW_131,FP2) 

Sample(1,VW_132,FP2) 

Sample(1,VW_133,FP2) 

Sample(1,VW_134,FP2) 

Sample(1,VW_135,FP2) 

Sample(1,VW_136,FP2) 

Sample(1,VW_137,FP2) 

Sample(1,VW_138,FP2) 

Sample(1,VW_139,FP2) 

Sample(1,VW_140,FP2) 
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Sample(1,VW_141,FP2) 

Sample(1,VW_142,FP2) 

Sample(1,VW_143,FP2) 

Sample(1,VW_144,FP2) 

EndTable 

DataTable(MPS,True,-1) 

  DataInterval (0, 180, min, 10) 

 Sample(1,M1_kPa,FP2) 

Sample(1,M1_DegC,FP2) 

'by including kPa and DegC in the variable names the data will not have to be parsed into 

values and units later  

Sample(1,M2_kPa,FP2) 

Sample(1,M2_DegC,FP2) 

Sample(1,M3_kPa,FP2) 

Sample(1,M3_DegC,FP2) 

Sample(1,M4_kPa,FP2) 

Sample(1,M4_DegC,FP2) 

Sample(1,M5_kPa,FP2) 

Sample(1,M5_DegC,FP2) 

Sample(1,M6_kPa,FP2) 

Sample(1,M6_DegC,FP2) 

Sample(1,M7_kPa,FP2) 

Sample(1,M7_DegC,FP2) 

Sample(1,M8_kPa,FP2) 

Sample(1,M8_DegC,FP2) 

Sample(1,M9_kPa,FP2) 

Sample(1,M9_DegC,FP2) 

Sample(1,M10_kPa,FP2) 

Sample(1,M10_DegC,FP2) 

Sample(1,M11_kPa,FP2) 

Sample(1,M11_DegC,FP2) 

Sample(1,M12_kPa,FP2) 

Sample(1,M12_DegC,FP2) 

Sample(1,M13_kPa,FP2) 

Sample(1,M13_DegC,FP2) 

Sample(1,M14_kPa,FP2) 

Sample(1,M14_DegC,FP2) 

Sample(1,M15_kPa,FP2) 

Sample(1,M15_DegC,FP2) 

Sample(1,M16_kPa,FP2) 

Sample(1,M16_DegC,FP2) 

Sample(1,M17_kPa,FP2) 

Sample(1,M17_DegC,FP2) 

Sample(1,M18_kPa,FP2) 

Sample(1,M18_DegC,FP2) 

Sample(1,M19_kPa,FP2) 
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Sample(1,M19_DegC,FP2) 

Sample(1,M20_kPa,FP2) 

Sample(1,M20_DegC,FP2) 

Sample(1,M21_kPa,FP2) 

Sample(1,M21_DegC,FP2) 

Sample(1,M22_kPa,FP2) 

Sample(1,M22_DegC,FP2) 

Sample(1,M23_kPa,FP2) 

Sample(1,M23_DegC,FP2) 

Sample(1,M24_kPa,FP2) 

Sample(1,M24_DegC,FP2) 

Sample(1,M25_kPa,FP2) 

Sample(1,M25_DegC,FP2) 

Sample(1,M26_kPa,FP2) 

Sample(1,M26_DegC,FP2) 

Sample(1,M27_kPa,FP2) 

Sample(1,M27_DegC,FP2) 

Sample(1,M28_kPa,FP2) 

Sample(1,M28_DegC,FP2) 

Sample(1,M29_kPa,FP2) 

Sample(1,M29_DegC,FP2) 

Sample(1,M30_kPa,FP2) 

Sample(1,M30_DegC,FP2) 

Sample(1,M31_kPa,FP2) 

Sample(1,M31_DegC,FP2) 

Sample(1,M32_kPa,FP2) 

Sample(1,M32_DegC,FP2) 

Sample(1,M33_kPa,FP2) 

Sample(1,M33_DegC,FP2) 

Sample(1,M34_kPa,FP2) 

Sample(1,M34_DegC,FP2) 

Sample(1,M35_kPa,FP2) 

Sample(1,M35_DegC,FP2) 

Sample(1,M36_kPa,FP2) 

Sample(1,M36_DegC,FP2) 

Sample(1,M37_kPa,FP2) 

Sample(1,M37_DegC,FP2) 

Sample(1,M38_kPa,FP2) 

Sample(1,M38_DegC,FP2) 

Sample(1,M39_kPa,FP2) 

Sample(1,M39_DegC,FP2) 

Sample(1,M40_kPa,FP2) 

Sample(1,M40_DegC,FP2) 

Sample(1,M41_kPa,FP2) 

Sample(1,M41_DegC,FP2) 

Sample(1,M42_kPa,FP2) 
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Sample(1,M42_DegC,FP2) 

Sample(1,M43_kPa,FP2) 

Sample(1,M43_DegC,FP2) 

Sample(1,M44_kPa,FP2) 

Sample(1,M44_DegC,FP2) 

Sample(1,M45_kPa,FP2) 

Sample(1,M45_DegC,FP2) 

Sample(1,M46_kPa,FP2) 

Sample(1,M46_DegC,FP2) 

Sample(1,M47_kPa,FP2) 

Sample(1,M47_DegC,FP2) 

Sample(1,M48_kPa,FP2) 

Sample(1,M48_DegC,FP2) 

Sample(1,M49_kPa,FP2) 

Sample(1,M49_DegC,FP2) 

Sample(1,M50_kPa,FP2) 

Sample(1,M50_DegC,FP2) 

Sample(1,M51_kPa,FP2) 

Sample(1,M51_DegC,FP2) 

Sample(1,M52_kPa,FP2) 

Sample(1,M52_DegC,FP2) 

Sample(1,M53_kPa,FP2) 

Sample(1,M53_DegC,FP2) 

Sample(1,M54_kPa,FP2) 

Sample(1,M54_DegC,FP2) 

End Table 

DataTable(Table2,True,-1) 

 DataInterval(0,1440,Min,10) 

 Minimum(1,BattV,FP2,False,False) 

EndTable 

 

BeginProg 

Scan(180,min,1,0) ‘First number changed to modify scan interval 

  Battery(BattV) 

  PanelTemp(PTemp_C,_60Hz) 

'Turn AM1632B Multiplexer which is hooked into Com Port 2, Differential Channel 2 on 

  PortSet(2,1) 

  Delay(0,150,mSec) 

  LCount145=1 

  SubScan(0,uSec,16) 

 PulsePort(1,10000) 'the first number is the Com Port which has the CLK wire 

'Full Bridge measurements of Tensiometers connected to Differential Channel 1 and VX1  

BrFull(T_1(LCount145),1,mv25,1,1,1,2500,True,True,0,_60Hz,Mult(LCount145),Offs(LCount1

45))  

LCount145=LCount145+1 

  NextSubScan 
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'Turn Com Port 2 off  

  PortSet(2,0) 

  Delay(0,150,mSec) 

  PortSet(4,1) 

  Delay(0,150,mSec) 

  LCount146=1 

  SubScan(0,uSec,16) 

  PulsePort(1,10000) 

BrFull(T_2(LCount146),1,mv25,2,1,1,2500,True,True,0,_60Hz,Mult_2(LCount146),Offs_2(LC

ount146)) 

 LCount146=LCount146+1 

  NextSubScan 

  PortSet(4,0) 

  Delay(0,150,mSec)  

'Convert raw values of T(1-16) and T_2(17-32) to kPa   

T_kPa_1 = (T_1(1)*79.35+56.02)/10 

T_kPa_2 = (T_1(2)*79.35+56.02)/10 

T_kPa_3 = (T_1(3)*79.35+56.02)/10 

T_kPa_4 = (T_1(4)*79.35+56.02)/10 

T_kPa_5 = (T_1(5)*79.35+56.02)/10 

T_kPa_6 = (T_1(6)*79.35+56.02)/10 

T_kPa_7 = (T_1(7)*79.35+56.02)/10 

T_kPa_8 = (T_1(8)*79.35+56.02)/10 

T_kPa_9 = (T_1(9)*79.35+56.02)/10 

T_kPa_10 = (T_1(10)*79.35+56.02)/10 

T_kPa_11 = (T_1(11)*79.35+56.02)/10 

T_kPa_12 = (T_1(12)*79.35+56.02)/10 

T_kPa_13 = (T_1(13)*79.35+56.02)/10 

T_kPa_14 = (T_1(14)*79.35+56.02)/10 

T_kPa_15 = (T_1(15)*79.35+56.02)/10 

T_kPa_16 = (T_1(16)*79.35+56.02)/10 

T_kPa_17 = (T_2(1)*79.35+56.02)/10 

T_kPa_18 = (T_2(2)*79.35+56.02)/10 

T_kPa_19 = (T_2(3)*79.35+56.02)/10 

T_kPa_20 = (T_2(4)*79.35+56.02)/10 

T_kPa_21 = (T_2(5)*79.35+56.02)/10 

T_kPa_22 = (T_2(6)*79.35+56.02)/10 

T_kPa_23 = (T_2(7)*79.35+56.02)/10 

T_kPa_24 = (T_2(8)*79.35+56.02)/10 

T_kPa_25 = (T_2(9)*79.35+56.02)/10 

T_kPa_26 = (T_2(10)*79.35+56.02)/10 

T_kPa_27 = (T_2(11)*79.35+56.02)/10 

T_kPa_28 = (T_2(12)*79.35+56.02)/10 

T_kPa_29 = (T_2(13)*79.35+56.02)/10 

T_kPa_30 = (T_2(14)*79.35+56.02)/10 

T_kPa_31 = (T_2(15)*79.35+56.02)/10 
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T_kPa_32 = (T_2(16)*79.35+56.02)/10 

 

CallTable Tens    

 'EC-5 Measurements 

'Turn AM1632B hooked into Com7 and Single Ended Channels 10-12 on 

  PortSet(7,1) 

  Delay(0,150,mSec) 

  'Pulse CLK- in Com 1 

  PulsePort(1,10000) 

'ECHO Probe EC-5 measurement VW_49 on the AM16/32 Multiplexer 

  BrHalf(VW_49,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

'specifying the multiplier of 2500 and the offset of 0 gives the raw mv output  

  BrHalf(VW_50,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_51,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

'Switch to next AM16/32 Multiplexer channel 

  PulsePort(1,10000) 

  BrHalf(VW_52,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_53,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_54,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_55,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_56,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_57,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_58,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_59,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_60,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_61,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_62,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_63,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_64,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_65,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_66,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_67,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_68,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_69,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_70,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_71,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_72,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_73,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_74,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 
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  BrHalf(VW_75,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_76,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_77,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_78,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_79,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_80,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_81,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_82,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_83,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_84,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_85,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_86,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_87,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_88,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_89,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_90,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_91,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_92,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_93,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_94,1,mV2500,10,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_95,1,mV2500,11,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_96,1,mV2500,12,1,1,2500,False,10000,_60Hz,2500,0) 

  'Turn off Com 7 

  PortSet(7,0) 

  Delay(0,150,mSec) 

'Turn AM16/32 Multiplexer On in Com 8 and single ended channels 13-15 

  PortSet(8,1) 

  Delay(0,150,mSec) 

  PulsePort(1,10000) 

  BrHalf(VW_97,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_98,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_99,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_100,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_101,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_102,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_103,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_104,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 
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  BrHalf(VW_105,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_106,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_107,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_108,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_109,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_110,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_111,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_112,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_113,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_114,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_115,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_116,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_117,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_118,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_119,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_120,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_121,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_122,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_123,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_124,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_125,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_126,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_127,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_128,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_129,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_130,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_131,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_132,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_133,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_134,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_135,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_136,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_137,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_138,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 
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  BrHalf(VW_139,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_140,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_141,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_142,1,mV2500,13,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_143,1,mV2500,14,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_144,1,mV2500,15,1,1,2500,False,10000,_60Hz,2500,0) 

 'Turn Com 8 off 

  PortSet(8,0) 

  Delay(0,150,mSec) 

 'Turn AM1632B wired into Com Port 6 and Single Ended Channels 7-9 

  PortSet(6,1) 

  Delay(0,150,mSec) 

  PulsePort(1,10000) 

  BrHalf(VW_1,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_2,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_3,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_4,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_5,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_6,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_7,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_8,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_9,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_10,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_11,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_12,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_13,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_14,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_15,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_16,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_17,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_18,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_19,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_20,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_21,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_22,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_23,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_24,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 
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  BrHalf(VW_25,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_26,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_27,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_28,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_29,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_30,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_31,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_32,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_33,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_34,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_35,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_36,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_37,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_38,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_39,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_40,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_41,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_42,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_43,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_44,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_45,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

  PulsePort(1,10000) 

  BrHalf(VW_46,1,mV2500,7,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_47,1,mV2500,8,1,1,2500,False,10000,_60Hz,2500,0) 

  BrHalf(VW_48,1,mV2500,9,1,1,2500,False,10000,_60Hz,2500,0) 

 'Turn AM16/32 Multiplexer Off 

  PortSet(6,0) 

  Delay(0,150,mSec) 

'convert raw millivolt VW output into VWC with the calibration equation 

 developed 

VWC_1=VW_1*.0016-.473 

VWC_2=VW_2*.0016-.473 

VWC_3=VW_3*.0016-.473 

VWC_4=VW_4*.0016-.473 

VWC_5=VW_5*.0016-.473 

VWC_6=VW_6*.0016-.473 

VWC_7=VW_7*.0016-.473 

VWC_8=VW_8*.0016-.473 

VWC_9=VW_9*.0016-.473 

VWC_10=VW_10*.0016-.473 
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VWC_11=VW_11*.0016-.473 

VWC_12=VW_12*.0016-.473 

VWC_13=VW_13*.0016-.473 

VWC_14=VW_14*.0016-.473 

VWC_15=VW_15*.0016-.473 

VWC_16=VW_16*.0016-.473 

VWC_17=VW_17*.0016-.473 

VWC_18=VW_18*.0016-.473 

VWC_19=VW_19*.0016-.473 

VWC_20=VW_20*.0016-.473 

VWC_21=VW_21*.0016-.473 

VWC_22=VW_22*.0016-.473 

VWC_23=VW_23*.0016-.473 

VWC_24=VW_24*.0016-.473 

VWC_25=VW_25*.0016-.473 

VWC_26=VW_26*.0016-.473 

VWC_27=VW_27*.0016-.473 

VWC_28=VW_28*.0016-.473 

VWC_29=VW_29*.0016-.473 

VWC_30=VW_30*.0016-.473 

VWC_31=VW_31*.0016-.473 

VWC_32=VW_32*.0016-.473 

VWC_33=VW_33*.0016-.473 

VWC_34=VW_34*.0016-.473 

VWC_35=VW_35*.0016-.473 

VWC_36=VW_36*.0016-.473 

VWC_37=VW_37*.0016-.473 

VWC_38=VW_38*.0016-.473 

VWC_39=VW_39*.0016-.473 

VWC_40=VW_40*.0016-.473 

VWC_41=VW_41*.0016-.473 

VWC_42=VW_42*.0016-.473 

VWC_43=VW_43*.0016-.473 

VWC_44=VW_44*.0016-.473 

VWC_45=VW_45*.0016-.473 

VWC_46=VW_46*.0016-.473 

VWC_47=VW_47*.0016-.473 

VWC_48=VW_48*.0016-.473 

VWC_49=VW_49*.0016-.473 

VWC_50=VW_50*.0016-.473 

VWC_51=VW_51*.0016-.473 

VWC_52=VW_52*.0016-.473 

VWC_53=VW_53*.0016-.473 

VWC_54=VW_54*.0016-.473 

VWC_55=VW_55*.0016-.473 

VWC_56=VW_56*.0016-.473 
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VWC_57=VW_57*.0016-.473 

VWC_58=VW_58*.0016-.473 

VWC_59=VW_59*.0016-.473 

VWC_60=VW_60*.0016-.473 

VWC_61=VW_61*.0016-.473 

VWC_62=VW_62*.0016-.473 

VWC_63=VW_63*.0016-.473 

VWC_64=VW_64*.0016-.473 

VWC_65=VW_65*.0016-.473 

VWC_66=VW_66*.0016-.473 

VWC_67=VW_67*.0016-.473 

VWC_68=VW_68*.0016-.473 

VWC_69=VW_69*.0016-.473 

VWC_70=VW_70*.0016-.473 

VWC_71=VW_71*.0016-.473 

VWC_72=VW_72*.0016-.473 

VWC_73=VW_73*.0016-.473 

VWC_74=VW_74*.0016-.473 

VWC_75=VW_75*.0016-.473 

VWC_76=VW_76*.0016-.473 

VWC_77=VW_77*.0016-.473 

VWC_78=VW_78*.0016-.473 

VWC_79=VW_79*.0016-.473 

VWC_80=VW_80*.0016-.473 

VWC_81=VW_81*.0016-.473 

VWC_82=VW_82*.0016-.473 

VWC_83=VW_83*.0016-.473 

VWC_84=VW_84*.0016-.473 

VWC_85=VW_85*.0016-.473 

VWC_86=VW_86*.0016-.473 

VWC_87=VW_87*.0016-.473 

VWC_88=VW_88*.0016-.473 

VWC_89=VW_89*.0016-.473 

VWC_90=VW_90*.0016-.473 

VWC_91=VW_91*.0016-.473 

VWC_92=VW_92*.0016-.473 

VWC_93=VW_93*.0016-.473 

VWC_94=VW_94*.0016-.473 

VWC_95=VW_95*.0016-.473 

VWC_96=VW_96*.0016-.473 

VWC_97=VW_97*.0016-.473 

VWC_98=VW_98*.0016-.473 

VWC_99=VW_99*.0016-.473 

VWC_100=VW_100*.0016-.473 

VWC_101=VW_101*.0016-.473 

VWC_102=VW_102*.0016-.473 
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VWC_103=VW_103*.0016-.473 

VWC_104=VW_104*.0016-.473 

VWC_105=VW_105*.0016-.473 

VWC_106=VW_106*.0016-.473 

VWC_107=VW_107*.0016-.473 

VWC_108=VW_108*.0016-.473 

VWC_109=VW_109*.0016-.473 

VWC_110=VW_110*.0016-.473 

VWC_111=VW_111*.0016-.473 

VWC_112=VW_112*.0016-.473 

VWC_113=VW_113*.0016-.473 

VWC_114=VW_114*.0016-.473 

VWC_115=VW_115*.0016-.473 

VWC_116=VW_116*.0016-.473 

VWC_117=VW_117*.0016-.473 

VWC_118=VW_118*.0016-.473 

VWC_119=VW_119*.0016-.473 

VWC_120=VW_120*.0016-.473 

VWC_121=VW_121*.0016-.473 

VWC_122=VW_122*.0016-.473 

VWC_123=VW_123*.0016-.473 

VWC_124=VW_124*.0016-.473 

VWC_125=VW_125*.0016-.473 

VWC_126=VW_126*.0016-.473 

VWC_127=VW_127*.0016-.473 

VWC_128=VW_128*.0016-.473 

VWC_129=VW_129*.0016-.473 

VWC_130=VW_130*.0016-.473 

VWC_131=VW_131*.0016-.473 

VWC_132=VW_132*.0016-.473 

VWC_133=VW_133*.0016-.473 

VWC_134=VW_134*.0016-.473 

VWC_135=VW_135*.0016-.473 

VWC_136=VW_136*.0016-.473 

VWC_137=VW_137*.0016-.473 

VWC_138=VW_138*.0016-.473 

VWC_139=VW_139*.0016-.473 

VWC_140=VW_140*.0016-.473 

VWC_141=VW_141*.0016-.473 

VWC_142=VW_142*.0016-.473 

VWC_143=VW_143*.0016-.473 

VWC_144=VW_144*.0016-.473 

  CallTable VWC 

   

  'SDI12 measurements of MPS-6 sensors in Com Port 3 

Move(SDI12_1(),2,NaN,1) 
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  SDI12Recorder(SDI12_1(),3,"a","M!",1,0) 

  Move(SDI12_2(),2,NaN,1) 

  SDI12Recorder(SDI12_2(),3,"b","M!",1,0) 

  Move(SDI12_3(),2,NaN,1) 

  SDI12Recorder(SDI12_3(),3,"c","M!",1,0) 

  Move(SDI12_4(),2,NaN,1) 

  SDI12Recorder(SDI12_4(),3,"d","M!",1,0) 

  Move(SDI12_5(),2,NaN,1) 

  SDI12Recorder(SDI12_5(),3,"e","M!",1,0) 

  Move(SDI12_6(),2,NaN,1) 

  SDI12Recorder(SDI12_6(),3,"f","M!",1,0) 

      Move(SDI12_7(),2,NaN,1) 

  SDI12Recorder(SDI12_7(),3,"g","M!",1,0) 

  Move(SDI12_8(),2,NaN,1) 

  SDI12Recorder(SDI12_8(),3,"h","M!",1,0) 

  Move(SDI12_9(),2,NaN,1) 

  SDI12Recorder(SDI12_9(),3,"i","M!",1,0) 

  Move(SDI12_10(),2,NaN,1) 

  SDI12Recorder(SDI12_10(),3,"j","M!",1,0) 

  Move(SDI12_11(),2,NaN,1) 

  SDI12Recorder(SDI12_11(),3,"k","M!",1,0) 

  Move(SDI12_12(),2,NaN,1) 

  SDI12Recorder(SDI12_12(),3,"l","M!",1,0) 

      Move(SDI12_13(),2,NaN,1) 

  SDI12Recorder(SDI12_13(),3,"m","M!",1,0) 

  Move(SDI12_14(),2,NaN,1) 

  SDI12Recorder(SDI12_14(),3,"n","M!",1,0) 

  Move(SDI12_15(),2,NaN,1) 

  SDI12Recorder(SDI12_15(),3,"o","M!",1,0) 

  Move(SDI12_16(),2,NaN,1) 

  SDI12Recorder(SDI12_16(),3,"p","M!",1,0) 

  Move(SDI12_17(),2,NaN,1) 

  SDI12Recorder(SDI12_17(),3,"q","M!",1,0) 

  Move(SDI12_18(),2,NaN,1) 

  SDI12Recorder(SDI12_18(),3,"r","M!",1,0) 

      Move(SDI12_19(),2,NaN,1) 

  SDI12Recorder(SDI12_19(),3,"s","M!",1,0) 

  Move(SDI12_20(),2,NaN,1) 

  SDI12Recorder(SDI12_20(),3,"t","M!",1,0) 

  Move(SDI12_21(),2,NaN,1) 

  SDI12Recorder(SDI12_21(),3,"u","M!",1,0) 

  Move(SDI12_22(),2,NaN,1) 

  SDI12Recorder(SDI12_22(),3,"v","M!",1,0) 

  Move(SDI12_23(),2,NaN,1) 

  SDI12Recorder(SDI12_23(),3,"w","M!",1,0) 

  Move(SDI12_24(),2,NaN,1) 
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  SDI12Recorder(SDI12_24(),3,"x","M!",1,0) 

      Move(SDI12_25(),2,NaN,1) 

  SDI12Recorder(SDI12_25(),3,"y","M!",1,0) 

  Move(SDI12_26(),2,NaN,1) 

  SDI12Recorder(SDI12_26(),3,"z","M!",1,0) 

  Move(SDI12_27(),2,NaN,1) 

  SDI12Recorder(SDI12_27(),3,"A","M!",1,0) 

    'continue measuring MPS-6 sensors on Com Port 5 

  Move(SDI12_28(),2,NaN,1) 

  SDI12Recorder(SDI12_28(),5,"B","M!",1,0) 

  Move(SDI12_29(),2,NaN,1) 

  SDI12Recorder(SDI12_29(),5,"C","M!",1,0) 

  Move(SDI12_30(),2,NaN,1) 

  SDI12Recorder(SDI12_30(),5,"D","M!",1,0) 

      Move(SDI12_31(),2,NaN,1) 

  SDI12Recorder(SDI12_31(),5,"E","M!",1,0) 

  Move(SDI12_32(),2,NaN,1) 

  SDI12Recorder(SDI12_32(),5,"F","M!",1,0) 

  Move(SDI12_33(),2,NaN,1) 

  SDI12Recorder(SDI12_33(),5,"G","M!",1,0) 

  Move(SDI12_34(),2,NaN,1) 

  SDI12Recorder(SDI12_34(),5,"H","M!",1,0) 

  Move(SDI12_35(),2,NaN,1) 

  SDI12Recorder(SDI12_35(),5,"I","M!",1,0) 

  Move(SDI12_36(),2,NaN,1) 

  SDI12Recorder(SDI12_36(),5,"J","M!",1,0) 

      Move(SDI12_37(),2,NaN,1) 

  SDI12Recorder(SDI12_37(),5, "K" ,"M!",1,0 

  Move(SDI12_38(),2,NaN,1) 

  SDI12Recorder(SDI12_38(),5,"L","M!",1,0) 

  Move(SDI12_39(),2,NaN,1) 

  SDI12Recorder(SDI12_39(),5,"M","M!",1,0) 

  Move(SDI12_40(),2,NaN,1) 

  SDI12Recorder(SDI12_40(),5,"N","M!",1,0) 

  Move(SDI12_41(),2,NaN,1) 

  SDI12Recorder(SDI12_41(),5,"O","M!",1,0) 

  Move(SDI12_42(),2,NaN,1) 

  SDI12Recorder(SDI12_42(),5,"P","M!",1,0) 

      Move(SDI12_43(),2,NaN,1) 

  SDI12Recorder(SDI12_43(),5,"Q","M!",1,0) 

  Move(SDI12_44(),2,NaN,1) 

  SDI12Recorder(SDI12_44(),5,"R","M!",1,0) 

  Move(SDI12_45(),2,NaN,1) 

  SDI12Recorder(SDI12_45(),5,"S","M!",1,0) 

  Move(SDI12_46(),2,NaN,1) 

  SDI12Recorder(SDI12_46(),5,"T","M!",1,0) 
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  Move(SDI12_47(),2,NaN,1) 

  SDI12Recorder(SDI12_47(),5,"U","M!",1,0) 

  Move(SDI12_48(),2,NaN,1) 

  SDI12Recorder(SDI12_48(),5,"V","M!",1,0) 

    Move(SDI12_49(),2,NaN,1) 

  SDI12Recorder(SDI12_49(),5,"W","M!",1,0) 

  Move(SDI12_50(),2,NaN,1) 

  SDI12Recorder(SDI12_50(),5,"X","M!",1,0) 

  Move(SDI12_51(),2,NaN,1) 

  SDI12Recorder(SDI12_51(),5,"Y","M!",1,0) 

  Move(SDI12_52(),2,NaN,1) 

  SDI12Recorder(SDI12_52(),5,"Z","M!",1,0) 

  Move(SDI12_53(),2,NaN,1) 

  SDI12Recorder(SDI12_53(),5,"1","M!",1,0) 

  Move(SDI12_54(),2,NaN,1) 

  SDI12Recorder(SDI12_54(),5,"2","M!",1,0) 

   

CallTable MPS 

CallTable Table2 

NextScan 

EndProg 
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Appendix C - CR1000 (2) Programming (Tensiometers 33-54 and 

Automatic Irrigation System) 

 

'Declare Variables and Units 

Public VWC_1 

Public VWC_5 

Public VWC_9 

Public VWC_13 

Public VWC_17 

Public VWC_21 

Public VWC_25 

Public VWC_29 

Public VWC_33 

Public VWC_37 

Public VWC_41 

Public VWC_45 

Public VWC_49 

Public VWC_53 

Public VWC_57 

Public VWC_61 

Public VWC_65 

Public VWC_69 

Public VWC_73 

Public VWC_77 

Public VWC_81 

Public VWC_85 

Public VWC_89 

Public VWC_93 

Public VWC_97 

Public VWC_101 

Public VWC_105 

Public VWC_109 

Public VWC_113 

Public VWC_117 

Public VWC_121 

Public VWC_125 

Public VWC_129 

Public VWC_133 

Public VWC_137 

Public VWC_141 

Public MPS1  
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Public MPS3 

Public MPS5 

Public MPS7 

Public MPS9 

Public MPS11 

Public MPS13 

Public MPS15 

Public MPS17 

Public MPS19   

Public MPS21 

Public MPS23 

Public MPS25 

Public MPS27 

Public MPS29 

Public MPS31 

Public MPS33 

Public MPS35 

Public BattV 

Public PTemp_C 

Public LCount 

Public LCount2 

Public FullBR_3(16 

Public FullBR(6) 

Public Mult(6)={1,1,1,1,1,1} 

Public Offs(6)={0,0,0,0,0,0} 

Public Mult_3(16)={1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

Public Offs_3(16)={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

Public ResultCode 

Public ValveCtrl(48) 

Units BattV=Volts 

Units PTemp_C=Deg C 

Units FullBR=mV/V 

Units FullBR_3=mV/V 

Public T_kPa_33 

Public T_kPa_34 

Public T_kPa_35 

Public T_kPa_36 

Public T_kPa_37 

Public T_kPa_38 

Public T_kPa_39 

Public T_kPa_40 

Public T_kPa_41 

Public T_kPa_42 

Public T_kPa_43 

Public T_kPa_44 

Public T_kPa_45 



163 

Public T_kPa_46 

Public T_kPa_47 

Public T_kPa_48 

Public T_kPa_49 

Public T_kPa_50 

Public T_kPa_51 

Public T_kPa_52 

Public T_kPa_53 

Public T_kPa_54 

 

'Define Data Tables 

DataTable(Tens2,True,-1) 

 DataInterval(0,360,min, 10) 

  

Sample(1,T_kPa_33,FP2) 

Sample(1,T_kPa_34,FP2) 

Sample(1,T_kPa_35,FP2) 

Sample(1,T_kPa_36,FP2) 

Sample(1,T_kPa_37,FP2) 

Sample(1,T_kPa_38,FP2) 

Sample(1,T_kPa_39,FP2) 

Sample(1,T_kPa_40,FP2) 

Sample(1,T_kPa_41,FP2) 

Sample(1,T_kPa_42,FP2) 

Sample(1,T_kPa_43,FP2) 

Sample(1,T_kPa_44,FP2) 

Sample(1,T_kPa_45,FP2) 

Sample(1,T_kPa_46,FP2) 

Sample(1,T_kPa_47,FP2) 

Sample(1,T_kPa_48,FP2) 

Sample(1,T_kPa_49,FP2) 

Sample(1,T_kPa_50,FP2) 

Sample(1,T_kPa_51,FP2) 

Sample(1,T_kPa_52,FP2) 

Sample(1,T_kPa_53,FP2) 

Sample(1,T_kPa_54,FP2) 

   

  Sample(1,FullBR_3(1),FP2) 

 Sample(1,FullBR_3(2),FP2) 

 Sample(1,FullBR_3(3),FP2) 

 Sample(1,FullBR_3(4),FP2) 

 Sample(1,FullBR_3(5),FP2) 

 Sample(1,FullBR_3(6),FP2) 

 Sample(1,FullBR_3(7),FP2) 

 Sample(1,FullBR_3(8),FP2) 

 Sample(1,FullBR_3(9),FP2) 
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 Sample(1,FullBR_3(10),FP2) 

 Sample(1,FullBR_3(11),FP2) 

 Sample(1,FullBR_3(12),FP2) 

 Sample(1,FullBR_3(13),FP2) 

 Sample(1,FullBR_3(14),FP2) 

 Sample(1,FullBR_3(15),FP2) 

 Sample(1,FullBR_3(16),FP2) 

 Sample(1,FullBR(1),FP2) 

 Sample(1,FullBR(2),FP2) 

 Sample(1,FullBR(3),FP2) 

 Sample(1,FullBR(4),FP2) 

 Sample(1,FullBR(5),FP2) 

 Sample(1,FullBR(6),FP2) 

 

EndTable 

 

DataTable(Table2,True,-1) 

 DataInterval(0,1440,Min,10) 

 Minimum(1,BattV,FP2,False,False) 

EndTable 

 

DataTable (WateringRecord, True, -1) 

  DataInterval (0,60, Min, 10) 'change back to 480 for an 8 hour scan interval which will 

record the watering status at 8am  

  Sample (48, ValveCtrl(), FP2) 'change first number for number of repetitions  

EndTable 

 

'Main Program 

BeginProg 

 'Main Scan 

 Scan(1,min,1,0)'change scan to five minutes for a program that waters for five 

minutes to ensure proper start and stop  

  'Default Datalogger Battery Voltage measurement 'BattV' 

  Battery(BattV) 

  'Default Wiring Panel Temperature measurement 'PTemp_C' 

  PanelTemp(PTemp_C,_60Hz) 

  'Turn AM16/32 Multiplexer On 

  PortSet(8,1) 

  Delay(0,150,mSec) 

  LCount=1 

  SubScan(0,uSec,6) 

   'Switch to next AM16/32 Multiplexer channel 

   PulsePort(4,10000) 

   'Generic Full Bridge measurements 'FullBR()' on the AM16/32 

Multiplexer 
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 BrFull(FullBR(LCount),1,mv25,2,1,1,2500,True,True,0,_60Hz,Mult(LCount),Offs(LCou

nt)) 

   LCount=LCount+1 

  NextSubScan 

  'Turn AM16/32 Multiplexer Off 

  PortSet(8,0) 

  Delay(0,150,mSec) 

   

PortSet(7,1) 

  Delay(0,150,mSec) 

  LCount2=1 

  SubScan(0,uSec,16) 

   'Switch to next AM16/32 Multiplexer channel 

   PulsePort(4,10000) 

   'Generic Full Bridge measurements 'FullBR_3()' on the AM16/32 

Multiplexer 

  

 BrFull(FullBR_3(LCount2),1,mv25,1,1,1,2500,True,True,0,_60Hz,Mult_3(LCount2),Off

s_3(LCount2)) 

   LCount2=LCount2+1 

  NextSubScan 

  'Turn AM16/32 Multiplexer Off 

  PortSet(7,0) 

  Delay(0,150,mSec) 

'The GetVariables commands will collect EC-5 and MPS data from the specified sensors, 

to be used in making the automatic irrigation decisions 

 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_1",VWC_1,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_5",VWC_5,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_9",VWC_9,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_13",VWC_13,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_17",VWC_17,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_21",VWC_21,1)  

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_25",VWC_25,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_29",VWC_29,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_33",VWC_33,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_37",VWC_37,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_41",VWC_41,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_45",VWC_45,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_49",VWC_49,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_53",VWC_53,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_57",VWC_57,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_61",VWC_61,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_65",VWC_65,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_69",VWC_69,1) 
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GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_73",VWC_73,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_77",VWC_77,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_81",VWC_81,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_85",VWC_85,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_89",VWC_89,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_93",VWC_93,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_97",VWC_97,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_101",VWC_101,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_105",VWC_105,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_109",VWC_109,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_113",VWC_113,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_117",VWC_117,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_121",VWC_121,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_125",VWC_125,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_129",VWC_129,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_133",VWC_133,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_137",VWC_137,1) 

GetVariables (ResultCode,Com3,0,1,0000,5,"VWC","VWC_141",VWC_141,1) 

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M1_kPa", MPS1,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M4_kPa", MPS3,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M7_kPa", MPS5,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M10_kPa", MPS7,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M13_kPa", MPS9,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M16_kPa", MPS11,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M19_kPa", MPS13,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M22_kPa", MPS15,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M25_kPa", MPS17,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M28_kPa", MPS19,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M31_kPa", MPS21,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M34_kPa", MPS23,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M37_kPa", MPS25,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M40_kPa", MPS27,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M43_kPa", MPS29,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M46_kPa", MPS31,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M49_kPa", MPS33,1)  

GetVariables (ResultCode,Com3,0,1,0000,5, "MPS","M52_kPa", MPS35,1)  

 

 

If IfTime (479, 1440, Min) Then ValveCtrl(48)=1 'turn on fertilizer tank pump 1 minutes 

before watering scheduled 

'If IfTime(480, 1440,Min)AND VWC_1<0.38 AND VWC_1>0.1 Then ValveCtrl(1)=1 

'If IfTime(480,1440,Min) AND VWC_9<0.38 AND VWC_9>0.1 Then ValveCtrl(2)=1  

'If IfTime(480,1440,Min) AND VWC_17<0.38 AND VWC_17>0.1 Then ValveCtrl(3)=1  

'If IfTime(480,1440,Min) AND VWC_25<0.38 AND VWC_25>0.1 Then ValveCtrl(4)=1 

'If IfTime(480,1440,Min) AND VWC_33<0.38 AND VWC_33>0.1 Then ValveCtrl(5)=1  

'If IfTime(480,1440,Min) AND VWC_41<0.38 AND VWC_41>0.1 Then ValveCtrl(6)=1  
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'If IfTime(480,1440,Min) AND VWC_49<0.38 AND VWC_49>0.1 Then ValveCtrl(7)=1  

'If IfTime(480,1440,Min) AND VWC_57<0.38 AND VWC_57>0.1 Then ValveCtrl(8)=1 

'If IfTime(480,1440,Min) AND VWC_65<0.38 AND VWC_65>0.1 Then ValveCtrl(9)=1  

'If IfTime(480,1440,Min) AND VWC_73<0.38 AND VWC_73>0.1 Then ValveCtrl(10)=1 

'If IfTime(480,1440,Min) AND VWC_81<0.38 AND VWC_81>0.1 Then ValveCtrl(11)=1 

'If IfTime(480,1440,Min) AND VWC_89<0.38 AND VWC_89>0.1 Then ValveCtrl(12)=1 

'If IfTime(480,1440,Min) AND VWC_97<0.38 AND VWC_97>0.1 Then ValveCtrl(13)=1 

'If IfTime(480,1440,Min) AND VWC_105<0.38 AND VWC_105>0.1 Then ValveCtrl(14)=1 

'If IfTime(480,1440,Min) AND VWC_113<0.38 AND VWC_113>0.1 Then ValveCtrl(15)=1 

'If IfTime(480,1440,Min) AND VWC_121<0.38 AND VWC_121>0.1 Then ValveCtrl(16)=1 

'If IfTime(480,1440,Min) AND VWC_129<0.38 AND VWC_129>0.1 Then ValveCtrl(17)=1 

'If IfTime(480,1440,Min) AND VWC_137<0.38 AND VWC_137>0.1 Then ValveCtrl(18)=1 

 

If IfTime (480, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1 

If IfTime (480, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1 

If IfTime (480, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1 

If IfTime (480, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1 

If IfTime (480, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1 

If IfTime (480, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1 

If IfTime (480, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1 

If IfTime (480, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1 

If IfTime (480, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1 

If IfTime (480, 1440, Min) AND MPS19 <-500 AND MPS19<-10 Then ValveCtrl(10)=1 

If IfTime (480, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1 

If IfTime (480, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1 

If IfTime (480, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1 

If IfTime (480, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1 

If IfTime (480, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1 

If IfTime (480, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1 

If IfTime (480, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1 

If IfTime (480, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1 

 

'If IfTime (483, 1440, Min) AND MPS1<-750 AND MPS1<-10 Then ValveCtrl(1)=1 

'If IfTime (483, 1440, Min) AND MPS3<-750 AND MPS3<-10 Then ValveCtrl(2)=1 

'If IfTime (483, 1440, Min) AND MPS5 <-750 AND MPS5<-10 Then ValveCtrl(3)=1 

'If IfTime (483, 1440, Min) AND MPS7<-750 AND MPS7<-10 Then ValveCtrl(4)=1 

'If IfTime (483, 1440, Min) AND MPS9<-750 AND MPS9<-10 Then ValveCtrl(5)=1 

'If IfTime (483, 1440, Min) AND MPS11<-750 AND MPS11<-10 Then ValveCtrl(6)=1 

'If IfTime (483, 1440, Min) AND MPS13<-750 AND MPS13<-10 Then ValveCtrl(7)=1 

'If IfTime (483, 1440, Min) AND MPS15 <-750 AND MPS15<-10 Then ValveCtrl(8)=1 

'If IfTime (483, 1440, Min) AND MPS17 <-750 AND MPS17<-10 Then ValveCtrl(9)=1 

'If IfTime (483, 1440, Min) AND MPS19 <-750 AND MPS19<-10 Then ValveCtrl(10)=1 

'If IfTime (483, 1440, Min) AND MPS21 <-750 AND MPS21<-10 Then ValveCtrl(11)=1 

'If IfTime (483, 1440, Min) AND MPS23 <-750 AND MPS23<-10 Then ValveCtrl(12)=1 

'If IfTime (483, 1440, Min) AND MPS25 <-750 AND MPS25<-10 Then ValveCtrl(13)=1 

'If IfTime (483, 1440, Min) AND MPS27 <-750 AND MPS27<-10 Then ValveCtrl(14)=1 
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'If IfTime (483, 1440, Min) AND MPS29 <-750 AND MPS29<-10 Then ValveCtrl(15)=1 

'If IfTime (483, 1440, Min) AND MPS31 <-750 AND MPS31<-10 Then ValveCtrl(16)=1 

'If IfTime (483, 1440, Min) AND MPS33 <-750 AND MPS33<-10 Then ValveCtrl(17)=1 

'If IfTime (483, 1440, Min) AND MPS35 <-750 AND MPS35<-10 Then ValveCtrl(18)=1 

 

If IfTime (1259, 1440, Min) Then ValveCtrl(48)=1 

If IfTime (1260, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1 

If IfTime (1260, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1 

If IfTime (1260, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1 

If IfTime (1260, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1 

If IfTime (1260, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1 

If IfTime (1260, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1 

If IfTime (1260, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1 

If IfTime (1260, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1 

If IfTime (1260, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1 

If IfTime (1260, 1440, Min) AND MPS19<-500 AND MPS19<-10 Then ValveCtrl(10)=1 

If IfTime (1260, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1 

If IfTime (1260, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1 

If IfTime (1260, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1 

If IfTime (1260, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1 

If IfTime (1260, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1 

If IfTime (1260, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1 

If IfTime (1260, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1 

If IfTime (1260, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1 

 

If IfTime(1260,1440,Min) AND VWC_5<0.38 AND VWC_5>0.1 Then ValveCtrl(19)=1 

If IfTime(1260,1440,Min) AND VWC_13<0.38 AND VWC_13>0.1 Then ValveCtrl(20)=1 

If IfTime(1260,1440,Min) AND VWC_21<0.38 AND VWC_21>0.1 Then ValveCtrl(21)=1  

If IfTime(1260,1440,Min) AND VWC_29<0.38 AND VWC_29>0.1 Then ValveCtrl(22)=1 

If IfTime(1260,1440,Min) AND VWC_37<0.38 AND VWC_37>0.1 Then ValveCtrl(23)=1 

If IfTime(1260,1440,Min) AND VWC_45<0.38 AND VWC_45>0.1 Then ValveCtrl(24)=1 

If IfTime(1260,1440,Min) AND VWC_53<0.38 AND VWC_53>0.1 Then ValveCtrl(25)=1 

If IfTime(1260,1440,Min) AND VWC_61<0.38 AND VWC_61>0.1 Then ValveCtrl(26)=1 

If IfTime(1260,1440,Min) AND VWC_69<0.38 AND VWC_69>0.1 Then ValveCtrl(27)=1 

If IfTime(1260,1440,Min) AND VWC_77<0.38 AND VWC_77>0.1 Then ValveCtrl(28)=1 

If IfTime(1260,1440,Min) AND VWC_85<0.38 AND VWC_85>0.1 Then ValveCtrl(29)=1 

If IfTime(1260,1440,Min) AND VWC_93<0.38 AND VWC_93>0.1 Then ValveCtrl(30)=1 

If IfTime(1260,1440,Min) AND VWC_101<0.38 AND VWC_101>0.1 Then ValveCtrl(31)=1 

If IfTime(1260,1440,Min) AND VWC_109<0.38 AND VWC_109>0.1 Then ValveCtrl(32)=1 

If IfTime(1260,1440,Min) AND VWC_117<0.38 AND VWC_117>0.1 Then ValveCtrl(33)=1 

If IfTime(1260,1440,Min) AND VWC_125<0.38 AND VWC_125>0.1 Then ValveCtrl(34)=1 

If IfTime(1260,1440,Min) AND VWC_133<0.38 AND VWC_133>0.1 Then ValveCtrl(35)=1 

If IfTime(1260,1440,Min) AND VWC_141<0.38 AND VWC_141>0.1 Then ValveCtrl(36)=1 

 

If IfTime (899, 1440, Min) Then ValveCtrl(48)=1 

If IfTime (900, 1440, Min) AND MPS1<-500 AND MPS1<-10 Then ValveCtrl(1)=1 
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If IfTime (900, 1440, Min) AND MPS3<-500 AND MPS3<-10 Then ValveCtrl(2)=1 

If IfTime (900, 1440, Min) AND MPS5 <-500 AND MPS5<-10 Then ValveCtrl(3)=1 

If IfTime (900, 1440, Min) AND MPS7<-500 AND MPS7<-10 Then ValveCtrl(4)=1 

If IfTime (900, 1440, Min) AND MPS9<-500 AND MPS9<-10 Then ValveCtrl(5)=1 

If IfTime (900, 1440, Min) AND MPS11<-500 AND MPS11<-10 Then ValveCtrl(6)=1 

If IfTime (900, 1440, Min) AND MPS13<-500 AND MPS13<-10 Then ValveCtrl(7)=1 

If IfTime (900, 1440, Min) AND MPS15 <-500 AND MPS15<-10 Then ValveCtrl(8)=1 

If IfTime (900, 1440, Min) AND MPS17 <-500 AND MPS17<-10 Then ValveCtrl(9)=1 

If IfTime (900, 1440, Min) AND MPS19<-500 AND MPS19<-10 Then ValveCtrl(10)=1 

If IfTime (900, 1440, Min) AND MPS21 <-500 AND MPS21<-10 Then ValveCtrl(11)=1 

If IfTime (900, 1440, Min) AND MPS23 <-500 AND MPS23<-10 Then ValveCtrl(12)=1 

If IfTime (900, 1440, Min) AND MPS25 <-500 AND MPS25<-10 Then ValveCtrl(13)=1 

If IfTime (900, 1440, Min) AND MPS27 <-500 AND MPS27<-10 Then ValveCtrl(14)=1 

If IfTime (900, 1440, Min) AND MPS29 <-500 AND MPS29<-10 Then ValveCtrl(15)=1 

If IfTime (900, 1440, Min) AND MPS31 <-500 AND MPS31<-10 Then ValveCtrl(16)=1 

If IfTime (900, 1440, Min) AND MPS33 <-500 AND MPS33<-10 Then ValveCtrl(17)=1 

If IfTime (900, 1440, Min) AND MPS35 <-500 AND MPS35<-10 Then ValveCtrl(18)=1 

 

If IfTime (482,1440,Min) Then ValveCtrl(1)=0 

If IfTime (482,1440,Min) Then ValveCtrl(2)=0 

If IfTime (482,1440,Min) Then ValveCtrl(3)=0 

If IfTime (482,1440,Min) Then ValveCtrl(4)=0 

If IfTime (482,1440,Min) Then ValveCtrl(5)=0 

If IfTime (482,1440,Min) Then ValveCtrl(6)=0 

If IfTime (482,1440,Min) Then ValveCtrl(7)=0 

If IfTime (482,1440,Min) Then ValveCtrl(8)=0 

If IfTime (482,1440,Min) Then ValveCtrl(9)=0 

If IfTime (482,1440,Min) Then ValveCtrl(10)=0 

If IfTime (482,1440,Min) Then ValveCtrl(11)=0 

If IfTime (482,1440,Min) Then ValveCtrl(12)=0 

If IfTime (482,1440,Min) Then ValveCtrl(13)=0 

If IfTime (482,1440,Min) Then ValveCtrl(14)=0 

If IfTime (482,1440,Min) Then ValveCtrl(15)=0 

If IfTime (482,1440,Min) Then ValveCtrl(16)=0 

If IfTime (482,1440,Min) Then ValveCtrl(17)=0 

If IfTime (482,1440,Min) Then ValveCtrl(18)=0 

 

If IfTime (484,1440,Min) Then ValveCtrl(1)=0 

If IfTime (484,1440,Min) Then ValveCtrl(2)=0 

If IfTime (484,1440,Min) Then ValveCtrl(3)=0 

If IfTime (484,1440,Min) Then ValveCtrl(4)=0 

If IfTime (484,1440,Min) Then ValveCtrl(5)=0 

If IfTime (484,1440,Min) Then ValveCtrl(6)=0 

If IfTime (484,1440,Min) Then ValveCtrl(7)=0 

If IfTime (484,1440,Min) Then ValveCtrl(8)=0 

If IfTime (484,1440,Min) Then ValveCtrl(9)=0 
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If IfTime (484,1440,Min) Then ValveCtrl(10)=0 

If IfTime (484,1440,Min) Then ValveCtrl(11)=0 

If IfTime (484,1440,Min) Then ValveCtrl(12)=0 

If IfTime (484,1440,Min) Then ValveCtrl(13)=0 

If IfTime (484,1440,Min) Then ValveCtrl(14)=0 

If IfTime (484,1440,Min) Then ValveCtrl(15)=0 

If IfTime (484,1440,Min) Then ValveCtrl(16)=0 

If IfTime (484,1440,Min) Then ValveCtrl(17)=0 

If IfTime (484,1440,Min) Then ValveCtrl(18)=0 

 

If IfTime (1265,1440, Min) Then ValveCtrl(19)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(20)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(21)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(22)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(23)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(24)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(25)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(26)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(27)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(28)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(29)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(30)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(31)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(32)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(33)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(34)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(35)=0 

If IfTime (1265,1440, Min) Then ValveCtrl(36)=0 

 

If IfTime (1265,1440, Min) Then ValveCtrl(48)=0 

If IfTime (1262,1440, Min) Then ValveCtrl(1)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(2)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(3)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(4)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(5)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(6)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(7)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(8)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(9)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(10)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(11)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(12)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(13)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(14)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(15)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(16)=0 
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If IfTime (1262,1440,Min) Then ValveCtrl(17)=0 

If IfTime (1262,1440,Min) Then ValveCtrl(18)=0 

 

If IfTime (902,1440, Min) Then ValveCtrl(48)=0 

If IfTime (902,1440, Min) Then ValveCtrl(1)=0 

If IfTime (902,1440,Min) Then ValveCtrl(2)=0 

If IfTime (902,1440,Min) Then ValveCtrl(3)=0 

If IfTime (902,1440,Min) Then ValveCtrl(4)=0 

If IfTime (902,1440,Min) Then ValveCtrl(5)=0 

If IfTime (902,1440,Min) Then ValveCtrl(6)=0 

If IfTime (902,1440,Min) Then ValveCtrl(7)=0 

If IfTime (902,1440,Min) Then ValveCtrl(8)=0 

If IfTime (902,1440,Min) Then ValveCtrl(9)=0 

If IfTime (902,1440,Min) Then ValveCtrl(10)=0 

If IfTime (902,1440,Min) Then ValveCtrl(11)=0 

If IfTime (902,1440,Min) Then ValveCtrl(12)=0 

If IfTime (902,1440,Min) Then ValveCtrl(13)=0 

If IfTime (902,1440,Min) Then ValveCtrl(14)=0 

If IfTime (902,1440,Min) Then ValveCtrl(15)=0 

If IfTime (902,1440,Min) Then ValveCtrl(16)=0 

If IfTime (902,1440,Min) Then ValveCtrl(17)=0 

If IfTime (902,1440,Min) Then ValveCtrl(18)=0 

 

 

'Watered Tubes- These lines should never be changed' 

If IfTime(480,1440,Min) AND VWC_5<0.38 AND VWC_5>0.1 Then ValveCtrl(19)=1 

If IfTime(480,1440,Min) AND VWC_13<0.38 AND VWC_13>0.1 Then ValveCtrl(20)=1 

If IfTime(480,1440,Min) AND VWC_21<0.38 AND VWC_21>0.1 Then ValveCtrl(21)=1  

If IfTime(480,1440,Min) AND VWC_29<0.38 AND VWC_29>0.1 Then ValveCtrl(22)=1 

If IfTime(480,1440,Min) AND VWC_37<0.38 AND VWC_37>0.1 Then ValveCtrl(23)=1 

If IfTime(480,1440,Min) AND VWC_45<0.38 AND VWC_45>0.1 Then ValveCtrl(24)=1 

If IfTime(480,1440,Min) AND VWC_53<0.38 AND VWC_53>0.1 Then ValveCtrl(25)=1 

If IfTime(480,1440,Min) AND VWC_61<0.38 AND VWC_61>0.1 Then ValveCtrl(26)=1 

If IfTime(480,1440,Min) AND VWC_69<0.38 AND VWC_69>0.1 Then ValveCtrl(27)=1 

If IfTime(480,1440,Min) AND VWC_77<0.38 AND VWC_77>0.1 Then ValveCtrl(28)=1 

If IfTime(480,1440,Min) AND VWC_85<0.38 AND VWC_85>0.1 Then ValveCtrl(29)=1 

If IfTime(480,1440,Min) AND VWC_93<0.38 AND VWC_93>0.1 Then ValveCtrl(30)=1 

If IfTime(480,1440,Min) AND VWC_101<0.38 AND VWC_101>0.1 Then ValveCtrl(31)=1 

If IfTime(480,1440,Min) AND VWC_109<0.38 AND VWC_109>0.1 Then ValveCtrl(32)=1 

If IfTime(480,1440,Min) AND VWC_117<0.38 AND VWC_117>0.1 Then ValveCtrl(33)=1 

If IfTime(480,1440,Min) AND VWC_125<0.38 AND VWC_125>0.1 Then ValveCtrl(34)=1 

If IfTime(480,1440,Min) AND VWC_133<0.38 AND VWC_133>0.1 Then ValveCtrl(35)=1 

If IfTime(480,1440,Min) AND VWC_141<0.38 AND VWC_141>0.1 Then ValveCtrl(36)=1 

 

If IfTime (485,1440, Min) Then ValveCtrl(1)=0 

If IfTime (485,1440,Min) Then ValveCtrl(2)=0 
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If IfTime (485,1440,Min) Then ValveCtrl(3)=0 

If IfTime (485,1440,Min) Then ValveCtrl(4)=0 

If IfTime (485,1440,Min) Then ValveCtrl(5)=0 

If IfTime (485,1440,Min) Then ValveCtrl(6)=0 

If IfTime (485,1440,Min) Then ValveCtrl(7)=0 

If IfTime (485,1440,Min) Then ValveCtrl(8)=0 

If IfTime (485,1440,Min) Then ValveCtrl(9)=0 

If IfTime (485,1440,Min) Then ValveCtrl(10)=0 

If IfTime (485,1440,Min) Then ValveCtrl(11)=0 

If IfTime (485,1440,Min) Then ValveCtrl(12)=0 

If IfTime (485,1440,Min) Then ValveCtrl(13)=0 

If IfTime (485,1440,Min) Then ValveCtrl(14)=0 

If IfTime (485,1440,Min) Then ValveCtrl(15)=0 

If IfTime (485,1440,Min) Then ValveCtrl(16)=0 

If IfTime (485,1440,Min) Then ValveCtrl(17)=0 

If IfTime (485,1440,Min) Then ValveCtrl(18)=0 

If IfTime (488,1440,Min) Then ValveCtrl(19)=0 

If IfTime (488,1440,Min) Then ValveCtrl(20)=0 

If IfTime (488,1440,Min) Then ValveCtrl(21)=0 

If IfTime (488,1440,Min) Then ValveCtrl(22)=0 

If IfTime (488,1440,Min) Then ValveCtrl(23)=0 

If IfTime (488,1440,Min) Then ValveCtrl(24)=0 

If IfTime (488,1440,Min) Then ValveCtrl(25)=0 

If IfTime (488,1440,Min) Then ValveCtrl(26)=0 

If IfTime (488,1440,Min) Then ValveCtrl(27)=0 

If IfTime (488,1440,Min) Then ValveCtrl(28)=0 

If IfTime (488,1440,Min) Then ValveCtrl(29)=0 

If IfTime (488,1440,Min) Then ValveCtrl(30)=0 

If IfTime (488,1440,Min) Then ValveCtrl(31)=0 

If IfTime (488,1440,Min) Then ValveCtrl(32)=0 

If IfTime (488,1440,Min) Then ValveCtrl(33)=0 

If IfTime (488,1440,Min) Then ValveCtrl(34)=0 

If IfTime (488,1440,Min) Then ValveCtrl(35)=0 

If IfTime (488,1440,Min) Then ValveCtrl(36)=0 

If IfTime (488,1440,Min) Then ValveCtrl(48)=0 'turn fertilizer tank pump off 

 

SDMCD16AC   (ValveCtrl(), 3,0)  

 

T_kPa_33=(FullBR_3(1)*79.35+56.02)/10 

T_kPa_34=(FullBR_3(2)*79.35+56.02)/10 

T_kPa_35=(FullBR_3(3)*79.35+56.02)/10 

T_kPa_36=(FullBR_3(4)*79.35+56.02)/10 

T_kPa_37=(FullBR_3(5)*79.35+56.02)/10 

T_kPa_38=(FullBR_3(6)*79.35+56.02)/10 

T_kPa_39=(FullBR_3(7)*79.35+56.02)/10 

T_kPa_40=(FullBR_3(8)*79.35+56.02)/10 
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T_kPa_41=(FullBR_3(9)*79.35+56.02)/10 

T_kPa_42=(FullBR_3(10)*79.35+56.02)/10 

T_kPa_43=(FullBR_3(11)*79.35+56.02)/10 

T_kPa_44=(FullBR_3(12)*79.35+56.02)/10 

T_kPa_45=(FullBR_3(13)*79.35+56.02)/10 

T_kPa_46=(FullBR_3(14)*79.35+56.02)/10 

T_kPa_47=(FullBr_3(15)*79.35+56.02)/10 

T_kPa_48=(FullBR_3(16)*79.35+56.02)/10 

T_kPa_49=(FullBR(1)*79.35+56.02)/10 

T_kPa_50=(FullBR(2)*79.35+56.02)/10 

T_kPa_51=(FullBR(3)*79.35+56.02)/10 

T_kPa_52=(FullBR(4)*79.35+56.02)/10 

T_kPa_53=(FullBR(5)*79.35+56.02)/10 

T_kPa_54=(FullBR(6)*79.35+56.02)/10 

 

  'Call Data Tables and Store Data 

  CallTable Tens2 

  CallTable Table2 

  CallTable WateringRecord  

 NextScan 


