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ABSTRACT

Let m be a positive integer, p be an odd prime, and Z ., =Z/(p")

be the ring of integers modulo p™. Let

Q(x) = Q(z,,2y,...,x,) = Z 0,77 ,

1<i<j<n

be a quadratic form with integer coefficients. Suppose that n is even
and det A, # 0 (mod p). Set A = ((—1)"/* det 4, / p), where (-/p) is the
Legendre symbol and |Ix|l = max|Z;|. Let V be the set of solutions the
congruence

Q=0 (modp"), #)
contained in Z" and let .~ be any box of points in Z" of the type

.///:{XEZ” a, <z <a +m, 1§z’§n},

where a;,m, € Z,1 <m, < p™.

In this dissertation we use the method of exponential sums to
investigate how large the cardinality of the box .2 must be in order
to guarantee that there exists a solution x of (#) in .~ . In particular
we will focus on cubes (all m, equal) centered at the origin in order
to obtain primitive solutions with |Ix|| small. For m =2 and n > 4 we
obtain a primitive solution with |x|| < max {25p,218}. For m =3,
n>6, and A =+1, we get x| < max{22/"’p<3/2)+<3/">,2<2”'I+4>/("‘2)}.
Finally for any m > 2, n > m, and any nonsingular quadratic form
we obtain x]l < max{6"/" pmli/2+A/m] g2nD/-2)32/n-2)Y

Others results are obtained for boxes .» with sides of arbitrary

lengths.
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ABSTRACT

Let m be a positive integer, p be an odd prime, and Z , =Z/(p")
be the ring of integers modulo p™. Let

Q(x) = Q(z,,2y,...,2,) = Z a7, ,

1<i<j<n
be a quadratic form with integer coefficients. Suppose that n is even
and det 4, # 0 (mod p). Set A = ((—1)"/*det A, / p), where (-/p) is the
Legendre symbol and |ix|l = max|Z;|. Let V be the set of solutions the
congruence
QX)=0 (modp"), #)
contained in Z" and let .7 be any box of points in Z" of the type
.///:{XEZ” a, <z, <a +m, 1§z’§n},

where a,m, € Z,1 <m, < p".

In this dissertation we use the method of exponential sums to
investigate how large the cardinality of the box .2 must be in order
to guarantee that there exists a solution x of (#) in .~ . In particular
we will focus on cubes (all m, equal) centered at the origin in order
to obtain primitive solutions with |Ix|| small. For m =2 and n > 4 we
obtain a primitive solution with |x|| < max {25p,218}. For m =3,
n>6, and A =+1, we get x| < maX{22/”;0(3/2)*(3/”),2(2”4)/(”*2)}.
Finally for any m >2, n >m, and any nonsingular quadratic form
we obtain x|l < max{6!/" p"l1/2+/m] g2ntD/(n-2)32/(n-2)y

Others results are obtained for boxes .~ with sides of arbitrary

lengths.
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Introduction and Definitions

The main purpose of this thesis is to find small primitive solutions of
a quadratic congruence modulo p™, m > 2. The historical background
of this subject is given in §0.2 below, but first we give the definition
of a small primitive solution of quadratic form modulo a positive

integer M .

§0.1. Definition of "small primitive solution" of

a quadratic form modulo M.
Let

Q(x) = Q(z,,y,...,2,) = Z a1

1<i<j<n

be a quadratic form over Z and M be a positive integer. Consider
the congruence

R(x)=0 (modM). (0.1)

By the norm of a point x we mean |x||= miax|l°i| and by "small

solution" we mean a nonzero integral solution x of (0.1) such that
Ix|l < M° for some positive constant § <1. The constant § may
depend on n, but not on M. Our interest is in finding a primitive
solution of (0.1), a solution x with ged(z,,...,z,,M) =1, that is, for

any prime divisor p of M, p 1 z, for some i.

Ezample: Let Q(x) = 27 + -+ 2. Then it is clear that any nonzero
solution x of (0.1) must satisfy, max|?,| > L M'*. Thus 6§ =1/2 is
1



the best possible exponent for a small solution.

Our interest is in primitive solutions to rule out trivial small

solutions such as (p,p,...,p) with M = p*.

§0.2. Historical background.

Let Q(x)= Q(z,,...,z,) be a quadratic form over Z and M be any
positive integer. As we mentioned we are looking for nontrivial
solutions of (0.1) with [Ix|l < M° for some § >1/2.

Schinzel, Schlickewi and Schmidt (1971, [17]) proved that (0.1)
has a nonzero solution with [x| < MY/P*/20=D fo5r n > 3. Thus for
any >0 we get a nonzero solution of (0.1) with [xI < M"/**
provided n is sufficiently large. We note that the solution obtained
by their method is not necessarily a primitive solution. Indeed, when
M = p* they use the trivial solution (p,0,0,...,0).

Now let M = p, with p an odd prime, and consider finding small
solutions to the quadratic congruence

Rx)=0 (modp). (0.2)

Heath-Brown (1985, [15]) obtained a nonzero solution of (0.2)

with IIxll < p'/*logp for n>4. (That is x| < Cp'/?logp for some

constant C'). His result was an improvement on the result of [17] in
this case. Wang Yuan (1988, [18]) generalized Heath-Brown’s work to
all finite fields.

Cochrane (1990, [8]) improved this to Ixll < max{2'p'/2 2%10°}.
That is x| < ./p. In many special cases, it is known that there
exists a nonzero solution of (0.2) with [Ix| < p'/?, for instance, when

A (Q)=0 or 1 (1987, [4]). Here A (Q) is defined as following

(12 detQ/p) if ptdetQ,

A5,(Q) = if p| det Q,



where (-/ p) denotes the Legendre symbol and det@ is the determinant
of the matrix representing Q: see section 1.6. We also get [x|| < p'/?
when @ is of the form Q,(z,,z,)+ Q,(z;,z,) (1989, Cochrane [5]), and
when @ is any quadratic form with n > 4log, p +3 (1989, Cochrane
[5]). Wang Yuan (1989, [19]) once more has generalized Cochrane’s
work, to arbitrary finite fields.

If M = pq, a product of two distinct primes, we are seeking a
solution of the congruence,

Q(x)=0 (mod pg).

We find:

Heath-Brown (1991, [16]): IxlI < M'/***, for n >4 and ¢ > 0.

Cochrane (1995, [10]): Ixl < M"?, for n > 4. Again this result
sharpened the result of Heath-Brown.

§0.3. Thesis organization and statement of

results.

The outline of this thesis is as follows. In Chapter 1 we study briefly
the distribution of solutions to quadratic forms over Z, and give the
basic tools that we need for our work. In addition, we concentrate on
the key ideas of the technique of Cochrane for finding a small solution
of (0.2), which amounts to finding integral solutions contained in a
small box centered about the origin. We give a small improvement of

the constant in his estimate.

Theorem 0.1: [Theorem 1.3, p 12] For any quadratic form Q(x) with
n >4 and any prime p, there exists a primitive solution x of (0.2)

with %l < min{p*/? 2 p'/?}.

At the end of this chapter we give a quick look at exponential

sums and the diagonalization of a quadratic form over Z . .

3



In Chapter 2 we generalize (mod p) methods for obtaining a small
primitive solution of the congruence
Qx)=0 (modp?). (0.3)
We show:

Theorem 0.2 [Theorem 2.1, p 24] For any odd prime p and nonsingular
quadratic form Q(x) with n >4, there exists a primitive solution of
(0.3) with
max {2°p, 2%} for A =41,
IxIl <
max{2°p,2°} for A=-1.

Note that this bound is best possible (order (p*)'/*) up to a constant.

In Chapter 3, we study the congruence
Qx)=0 (modp*). (0.4)
We prove:

Theorem 0.3 [Theorem 3.5, p 86] For any quadratic form Q(x) with
n >4 and any odd prime p, there exists a primitive solution of (0.4)
with

max {27 p*/? 2%} for A =41,

IxIl <
max {22/np(3/2)+(3/n),2(2n+4)/(n72)} fO’f’ A=—-1.

When A =1, we have a best possible type bound.

Finally, in Chapter 4, we address the question of finding small

solutions of
Q(x)=0 (modp"), (0.5)

for arbitrary prime powers p™. We establish:

Theorem 0.4 [Theorem 4.1, p 88] For any quadratic form Q(x) with

n >4 and any odd prime p, there exists a primitive solution of (0.5)
with 1%l < max (6" pm1/2+1/m] g2/ (=232 /(n-2)Y



Chapter 1

Preliminaries

In this research we shall follow closely the method of Cochrane [8] for
finding small zeros of quadratic forms modulo p. Thus we shall give a
summary of the key ideas of that method. In the following sections
we shall establish analogous results but for modulo p™, m >2. Also
we will give a small improvement of his result for mod p (see Theorem

1.3 in this chapter).

§1.1 A brief study of quadratic forms over the
finite field Z .

The aim of this section is to review the most important concepts that
will be needed in our work, on the distribution of zeros of a quadratic
form over Z  the finite field in p elements, where p is a prime. For

more details the reader is referred to [2], [26], [27].

1.1.1. Overview.
Let
Q(X) = Q(wlaxza"'axn) = Z a;T,x; ,

1<i<j<n
be a quadratic form with integer coefficients in n-variables, V =V (Q)
the algebraic subset of Z; defined by the equation @(x) =0. Our interest

isin the problem of finding points in V' with the variables restricted to

5



a box of the type
= {x SV/%

OL,,;§:1:,,;<0L,,;+m,,;,1§i§n}7

where a,m, € Z, and 0<m, <p for 1<i<n. (Here we have
identified Z 6 with the set of integers {0, 1, ..., p ~1}).
If V isthe set of zeros of a "nonsingular" Quadratic form @Q(x) (see

§1.5), then one can show that
7 n mn
VN~ :—|p|—|—0(p 2 (log p)™), (1.1)

for any box .~ where the brackets || are used to denote the

cardinality of the set inside the brackets (see [1]). It is apparent from
(1.1) that [V N.»

is nonempty provided
|///| > p(”’//2)+1(10g p)nm ]

For any x,y in Z;, we let x-y denote the ordinary dot product,

x-y=22. 2y Foranyz € Z ,let e (z) = e’™/? We use the abbrevi-

p)

ation > = > _,. for complete sums. The key ingredient in obtaining

the identity in (1.1) is a uniform upper bound on the function

Ze(x y) for y=0,

o(V,y)=1{" 1.2
Voy) = V|—p" " for y=0. (1-2)

1.1.2. Method of proof.

In order to show that .7V is nonempty we can proceed as follows.

Let a(x) be a real valued function on Z; such that a(x) <0 for all x

not in .. If we can show that > _, a(x) > 0 then it will follow that

xeV
. NV is nonempty. Now «(x) has a finite Fourier expansion
a(x) =) a(y)e,(y-x),
y

where

a(y) = Z x)e,(—y - X)
for all y € Z . Thus



D_o(x) =) ) aly)e

xeV xeV y

= 529 Y v

xeV

OIVI+ > ay)> e, (y-x).

y=0 xeV

Since a(0) = p™" > «a(x), we obtain

doax) =p VD ax) + ) aly)e(V,y), (1.3)

xeV X y=0

where ¢(V,y) is defined by (1.2). A variation of (1.3) that is sometimes

more useful is

Z =p Ea(x +E Yo(V,y), (1.4)

xeV

which is obtained from (1.3) by noticing that [V|= ¢(V,0)+ p" ',

whence

> a(x) = a(0)[p(V,0)+ p" ']+ > aly)o(V,y)

xeV y=0

= p""a(0) + Z a(y)o(V.y)

Equation (1.3) and (1.4) express the "incomplete" sum > __, a(x) as

a fraction of the "complete" sum > «(x) plus an error term. In

n—1

general || ~ p" " so that the fractions in the two equations are about

the same. In fact, if V is defined by a "nonsingular" quadratic form
Q(x) then [V|= p"" + O(p""?). (That is |¢(V,0)| < p"/?).

To show that > __, a(x) is positive, it suffices to show that the
error term is smaller in absolute value than the (positive) main term
on the right-hand side of (1.3) or (1.4). One tries to make an optimal
choice of «(x) in order to minimize the error term. Special cases of
(1.3) and (1.4) have appeared a number of times in the literature for
different types of algebraic sets V'; Chalk [22], Tietdvainen [24], and
Myerson [23]. The first case treated was to let «(x) be the
characteristic function xy(x) of a subset S of Z’ , whence (1.4) gives

rise to formulas of the type



VN S| =p S|+ Error. (1.5)
Equation (1.1) is obtained in this manner. Particular attention has
been given to the case where S = .7, a box of points in Z . Another
popular choice for « is let it be a convolution of two characteristic

function, a = x4 * x, for S,T CZ). We recall that if a(x), B(x) are

complex valued functions defined on Z then the convolution of

a(x), O(x), written a x((x), is defined by
axfx)=) a@px-—u)= ) a)p(v),

u u+v=x

for x€Z). If we take a(x)= Xy * x,(x) then it is clear from the
definition that «(x) is the number of ways of expressing x as a sum

s+t with s€S and t€T. Moreover (S+7)V is nonempty if
and only if >°__, a(x) > 0.

1.1.3. Basic properties of finite Fourier series.

We make use of a number of basic properties of finite Fourier series,

which are listed below. They are based on the orthogonality relationship,
pt ity =0,

> ey =1,

= it y=0,
and can be routinely checked. Meanwhile by viewing Z  as a Z-

module, the Gauss sum

S(Qy)=> ¢ (Qx) +y-x),

x€Z,
is well defined whether we take y € Z" or y € Z). Let a(x), 8(x) be

complex valued function on Z with Fourier expansions

a(x) =Y a(y)e,(x-y), Bx)= Zb e,(x-y).

y

Then
axB(x) =Y pa(y)b(y)e,(x-y). (1.6)

af(x) = a(x)8(x) = Y _(a*b)(y)e,(x-y) (1.7)

y



(@) = (S al0) (2 60)- (1.8)
< (S (Shs). (19
Z|a |:p ;|a(x)|2. (1.10)

The last identity is Parseval’s equality.

§1.2. A summary of Cochrane’s technique.

In this section we give a summary of the strategy that Cochrane follows
to find a small solution of a quadratic form modulo p (for more details

see [5], 6], (8]).

Let Q(x) = Q(z,,...,z,) be a quadratic form with integer coefficients
and p be an odd prime. Set |x| = max|Z;|. Let V =V (Q) be the set
of zeros of ) contained in Z). When n is even we let

((—1)"/2detQ/p) if pf{det@,

A pu—
Q) 0 if p | det Q,

where (-/ p) is the Legendre symbol.
We outline the key ideas of Cochrane’s technique for obtaining

small solutions of
R(x)=0 (modp), (1.11)

in the case when n is even.

1.2.1. Determination of ¢(V,y) modulo p.

Using identities for the Gauss sum S = >_7_ e (az® + bz), one obtains

Lemma 1.1. [see e.g.[5], Lemma 1| When n even and A = +1,
Alp=1p"*" if Q(y)=0,
—Ap"* if Q@ (y)=0,

where @ is the quadratic form associated with the inverse of the

¢(V7 Y) -

matrix for () mod p.



1.2.2. Fundamental identity.
Recall, in (1.4) we saw the identity

> ax)=p Za(x +> aly)o(V,y).

xeV y=0

Inserting the value ¢(V,y) in Lemma 1.1 yields (see e.g. [5]),

Lemma 1.2. [The fundamental identity] Suppose n is even. For any

a(x) on Z, and any quadratic form Q(x)with A, (Q) =
Za(x D Z — Aa(0)p"*" + Ap"/? Z a(y).

xeV Q" (y)=0

g
main term error terms

1.2.3. Small solutions of the quadratic congruence
Q(x) = 0 (mod p).
Let our set .~ be a box of points of the type
7 ={x€l" :aq, <z, <a,+m,1<i<n},
and view this box as a subset of Z and let x , be its characteristic
function with Fourier expansion x  (x)=2,a (y)e,(x-y). Then for
any y € Z,,

0 9= 9 TTe, (o + 50— 5 Ju) alrmas [1),

1=1

where the term in the product is taken to be m, if y, = 0. We apply
the fundamental identity with «(x) = Xg * Xg the convolution of X,

and Xz, where B,B, are boxes such that B + B, C.~. Now we have
two cases:
1) A=1. In this case we let .~ be centered at origin and take

B =B, =% .~. Then the coefficients a(y) are positive reals, so the

fundamental identity gives us

Za(x) > %Za(x) —a(0)p"/?!

xeV X
_Bf
p

10

—|Bp" "



We see that 3, a(z) > 0, provided |B| > p"/?, that is | 2| > 2" p"/?.

Since « is supported on .~ we have .27 NV = ¢.
2) A= —1. In this case we need to estimate >, _,a(y), but we
don’t insist on .~ being centered at the origin.

A key tool for estimating the error term >, _,a(y) is a good

upper bound on [V (. ~|, the number of solutions of (1.11) with

x € . . First [8] establishes,

Lemma 1.3. [[8], Lemma 1] Let S be a closed star-shaped region about
the origin in R" with llzll < p/2 for all x € S. [A region of points S
in R"is said to be star- shaped about the origin if for any point P in
S the line segment joining Pand the origin is contained in S|. For
0<y<1let vS={yx|xeS}. Let V CZ" be the set of zeros mod p

of any form in n wvariables over Z.Then

g

Then using the fundamental identity and lemma 1.3 one obtains

Lemma 1.4. [[8], Lemma 2| Suppose that n >4 is even, A (Q) = —1
and V =V (Q). Let . be a box of points of the type

s ={yez|WI<B.1<i<n],

or some nonneqgative integers B, < 2,1<1<n.Lett bea given posi-
Y g i <P g
tiveinteger. If B, < 27" °"'p for1 <i<n,or| »|> 2*”2*2”*’5”;0”/2 then
| 7 ﬂ V| < 2n2+(3+t)n+1 M + lpn/?—l ‘
, < 5
A second appeal to the fundamental identity yields

Theorem 1.1. [[8], Theorem 2] Suppose that n > 4 is even, p > 2""*°10°"
and that A (Q) =—1. If
m;, > 210" for 1<i<n, and |7|> gint+int2 (g pn/2

11



then . contains a nonzero solution of (1.11).

The next theorem follows from Theorem 1.1 upon setting all but 4

variables equal tozero and letting .~ bea cube centered about the origin.

Theorem 1.2. [[8], Theorem 1] For any quadratic form Q(x) with n > 4
and any prime p, there exists a nonzero solution x of (1.12) with

Ixll < max {2'° p'/2, 2210°}, (1.12)

§1.3. A small improvement of Cochrane’s estimate.

By a little work, the bound (1.12) in last section can be improved to

the following.

Theorem 1.3. For any quadratic form Q(x) with n >4 and any prime
p, there exists a nonzero solution x of (1.11) with

Il < min {p*/? 2 p'/2}. (1.13)
Proof. By setting variables equal to zero, we may assume n =4.
The bound in [17] gives for n > 2, a nonzero solution x of (1.11) with

pt/ A if n odd,

Il < 1/2+41/2(n—1
p/+/( )

(1.14)

if n even.
When n =4 (1.14) gives
Il < p*/?. (1.15)
We combine this upper bound with the bound of Theorem 1.2. The
two upper bounds are graphed in figure 1.1 below. Observe that
/2 — 922100 s pl/2 = 231()
— p=2010"%2=6.4 x 10"3. (1.16)
On the other hand, comparing (1.15) and (1.12), we have that
P23 =219p1/2 0y pl/6 — 919
— p=2190=2x10%, (1.17)
and
P13 = 222100 «—= p=2%23/21003/2 = 23310° = 8.59 x 10'%. (1.18)
12



So collecting (1.16), (1.17), (1.18), one deduces that if p <2, we
use |xll < p*/* and if p>2"" we use |xlI<2”p'? (see figure 1.1).
Thus (1.13) follows.O

185 :
Size = 27 P
0f 15 e
222 . 10% — y = p*’®
i i f - D
6 12 33 o 114
2% .10'7 2 '" - 10° 2" _
I
6.4 =103 2. 6=1018 2w 1034
Figure 1.1

§1.4. Exponential sums modulo p™.

In order to proceed from congruences (mod p) to congruences (mod
p™), we need to generalize results for exponential sums. Let L. =
Z/(p™). Again we have the basic orthogonality relationship that for
any y € Z,
p™ ity =0,
We also will use the following lemma many times. Let G(p™)

denote the multiplicative group of units modulo p™.

Lemma 1.5. Let N\, a € Z. For any odd prime p and any positive

integer m,
pm . pm—l ’Lf pm |(1/,
YooepQa)=1 0" if p" e
AEG(p™) . -
0 if p" Tt

Proof. The sum 2, ;. €,(Aa) my be written as follows:

13



pm
Z 6])m (Aaz) — Z 6])711 ()\(Z) - Z 6])711 ()\(Z) .
A=1

AeG(p™) PIA
Now, it is well known that

" 0 if p"¢ta,
)\z_:lepm ()\0,) = pm if pm la. (120)

So for the second sum if we set A = p\’, we have (using (1.20))

m—1 m—1 . m—1

e L (1.20) 0 it p 1 a,
> en(ha) =) e.(pNa) = Zepmfl (Na) = {p -

N=1 N=1

m—1 lf p |a )

pA
Therefore,
0 if p"'ta
S e (a)=10—p"" it p"la
AEG(p™) " — pm—l it p"la.

This completes the proof of Lemma 1.5.00

Let f be a polynomial with integer coefficients and let

S0 = Y6, (@),

where p™ is a prime power with m > 2. For any polynomial f over Z
we define

L= U(f) = ord, (X)),
where f' = f/(X) denotes the derivative of f(X). Also we define the
set of critical points associated with the sum S(f,p™) to be the set

A= A(f,p) ={ay,...,ap},

of zeros of the congruence

p'f(r)=0 (modp), (1.21)
where ¢t = ord (f'). For any a € A let v = v, denote the multiplicity

of a as a zero of the congruence (1.21).

Theorem 1.4. [[11], Theorem 2.1]: Let p be an odd prime and f be a
non-constant polynomial defined over Z. If m >t+2 then for any

integer a we have:

14



(i) If a & A then S (f,p")=0.
(ii) If « is a critical point of multiplicity v then
S.(fip™)| S wp!/trhptmiT ), (1.22)
(iii) If « is a critical point of multiplicity one then
e (fla”))p™*"? if m—t is even,

Xo (A, ) e (f(@)Gp"™ V2 if m—t is odd,

S.(f,p") =

where o s the unique lifting of o to a solution of the congruence
p ' f(z) = 0 (mod p!™ ") and A =2p'f"(a*)(mod p). In partic-
ular, we have equality in (1.22). Here G, is the classical Gauss sum,

P Jp  if p=1(mod4),
G, = Zep(a:2) =1 .
pa iJp if p =3 (mod4),

and x, s the quadratic character modp .

The proof of Theorem 1.4 is given in [11].

§1.5. Basic results on quadratic forms modulo p™.

In this section we shall discuss as background for our work some of
the general properties of quadratic forms over the ring Z . = Z/(p"),

with p an odd prime and m a positive integer.

1.5.1. Notations and Definitions.

Recall that a quadratic form Q(x) over Z is a polynomial of the type
Q(X) - Q(xDxQ?‘”’xn) = Z AyZiX s

1<i<j<n
with a, €Z, 1<i<j<n. We associate with Q(x) a symmetric
nxn matrix A= A, given by

1 1 1 ]
Ay 20 203 2 Gy,
1 1 1
20y Gyy 50y 2 Ay,
1 1 1
AQ =|303 303 A 2 ag,,
1 1 1 v
2 a’nl 2 a’n? 2 a’n3 a’nn

15



That is

. L
ya,; for i <j,

A=la;],.. a, = ya, for i > j,
a, for i=j.
Observe that
Q(x) = x'Ax
where
xl
T, t
x=|: | =[x, =, .. z,.
T

Here x' denotes the transpose of the matrix x. On the other hand note
that if the matrix A is diagonal (An nxn matrix A is diagonal if
a; = 0 whenever i = j ), then the corresponding quadratic form @ has

the diagonal representation

Qx) =x'Ax = a, 20+ +a, 1,

i.e., the quadratic form will contain no "cross product" terms. In the
same way we call @ a diagonal quadratic form (mod p™) for any
prime power p™ if () contain no "cross product" terms when read
(mod p™). The determinant of @, abbreviated det(@, is defined to be
the determinant of the matrix A,. We say that Q(x) is nonsingular
over 7Z if det@ = 0. Similarly for any odd prime power p” we say
(Q(x) is nonsingular mod p™ if p t det@ .

Again let p™ be an odd prime power. Let Q(x) and Q(x) be two
quadratic forms over Z with associated matrices AQ,AQ respectively.
We now view the entries of these matrices as elements of Z/(p™),
and regard 1/2 as the multiplicative inverse of 2 (modp™).
(Alternatively we can replace % with *"*4 and regard 4, as having
integer entries). We say that Q(x) is equivalent to Q(x) (mod p™),

written Q(x) ~ Q(x) (mod p™), if there is an invertible n x n matrix T

over Z/(p™), such that Q(x) = Q(Tx) (mod p™), that is

16



A, =T'A,T  (mod p™).
It is clear that " ~ " is an equivalence relation. Note that

detQ = detQ-(detT)* (modp™).

Example: Let p" be any odd prime power and Q(x) = z} + z,z, + .
Then

where

That is

14
Qx) =z +zz, + 1. =z, $2]{; X
—| 2
xt — X
49
By making the simple observation that
Q(X) :xf + T, %,y + .’,U22 = .’,U12 + (pm 4 1)33'1372 4+ £U22 (modpm),
—_—

even

we can write
Qx)=x'A'x  (modp™),

with

, |1
A=l | | €M@,

Note that since p is odd, the entries of A" are all integers. Thus we
may assume that A, € M, ,(Z) when working with congruences

modulo odd primes.

1.5.2. Diagonalization of quadratic forms modulo p™.

In this subsection we prove

Theorem 1.5. For any odd prime power p™, and quadratic form Q(x)

over Z, Q(x)is equivalent to a diagonal quadratic form (modulo p™).

17



1.5.2. Diagonalization of quadratic forms modulo p™.

In this subsection we prove

Theorem 1.5. For any odd prime power p™, and quadratic form Q(x)
over Z, Q(x)is equivalent to a diagonal quadratic form (modulo p™).

Proof. The theorem is well known and a proof can be found for
example in [25]. We shall only deal with the case of nonsingular

@ (mod p), the type of form we deal with in this thesis. We proceed

by induction on m. When m =1, it is well known (see [29]) that @

can be diagonalized over the finite field F,. Say
T'A,T =D (modp),
for some T.D € M

nxn

(Z) with T nomnsingular (mod p) and D a diag-
onal matrix. Lets lift this to a solution (mod p®). Let
U=T+pX,
where X =[] is a matrix of variables. We wish to solve
U'AU=D (modp?).

This is equivalent to

(T + pX) A, (T + pX) = D (mod p°)

— T'AT+T'ApX + pX'A,T = D (mod p*)

T'A,T — D
= AQ—+TtAQX+XtAQTEO(m0dp)
p Y
D-T'AT
= Y+YtE—AQ(modp),

B

where Y = T"A,X and B = (D —T'A,T)/ p . Note that B is asymmetric

matrix with integer entries. Let

B2
b?l %bQQ O
Y=|by by by (mod p?).

nl




Then Y +Y' = B. Thus we are left with solving the congruence
T'A,X=Y (modp).
Since T' and A, are nonsingular (mod p), this equation has a unique
solution X = A, (T")™'Y(mod p).
In the same manner one can lift a solution (modp™), to

™) for any m. Indeed, proceeding as above, suppose that

T'AT =D (modp™),

(mod p

forsome T, D € M

nxn

(Z) with T nonsingular (mod p) and D a diagonal
matrix. Let

U=T+p"X,
where X is a matrix of variables and solve

U'AU=D (modp™).
This is equivalent to
(T + p"X) A(T + p"X) = D (mod p™)
& TAT+T'Ap"X + p"X'AT = D (mod p"*")

T'AT — D
= T—FTt{}X—I—XtATEO(mOdp)
- t
= Y—i—YtED—];AT(modp),
p

B

where Y =T'AX and B=(D—-T'AT)/p"™ is a symmetric matrix

with integer entries. Let

BN
6.31 632 %?33 . (mOd pm) .

ﬁnl 6712 6713 %/Bnn

Then Y +Y' = B (We note that the choice of Y is not unique). Hence

h<
Il

we are left with solving the congruence
T'AX =Y (modp).

As T and A are nonsingular (mod p), this equation has a unique solution

19



X = A N(T")"'Y(mod p™). This completes the induction step. O

Examples: 1. Let

A
——

1 &
Qa,y) =z y]{g i:||:y} =z +pay+y.
2
Note that Q(z,y) is already a diagonal form when read (modp). We
proceed to diagonalize Q(x,y) (mod p?).

Check :

10
U=T+pX = 01

gy _[VFLEL 0] [
“lo1lz1f|21|T|o1]l01

Thus Q(x) ~ 2 + 4 (mod p°).

2. Let

A
——

Qz,y) =[z y]{l a [ﬂ =z’ + pry = 2*(mod p).

v
2

What happens if A singular?
20



Here A is not invertible, so we cannot directly follow the method
given in our proof. Let us try to solve
T'AX =Y (modp).
First, we see that T = I, since A is already diagonal (modp) . Let
Y "+ Then

1% 1 pp22+1 9
A[OH— o | et

and the latter matrix has integer entries.

L, D=4 _1|[10 1 pt 0 -z
2 e

If we proceed as in the proof we would let

0 O ,
Y= pu 0 (mod p).
2

U] [0 0
2 X 2 .
pEL 0 ~ o] (med)

This is equivalent to

10 3311 x12
00 xm 5622 71 (mod p)
‘r'Cll le 0 0
— 0 0|=|=o0 (mod p),

which give us a contradiction (0 = %) and hence there is no solution of

Now solve

this system.

Next, let us try the choice

0 o )
Y = _P g (mod p~).

Then

t 0 @ 0_p22+1_04 2
Y+YV = p+1 a0 + 0 = B(mod p°).



Solve

or, equivalently

10|z, x,
00 [%1 9322}

Let a = -%. Then obviously

l.ll le O 5
{0 ()j|E|:O 6} (mod p),

so that

Hence, it follows one can make the change of variable

z— o+ plry, y—y

to diagonlize the quadratic form Q(z,y)(mod p°). Indeed,

p—1 p—1

2 + pry ~ (244 py)2+29(l’+10 = py) Y

= (p — 1)pzy + 2* + pry(mod p*)
= 2’ (mod p*).

Our proof of Theorem 1.5 actually yields the stronger result.

Corollary 1.1. If p is an odd prime, Q(x) is a quadratic form over Z,
nonsingular (mod p) and equivalent to diagonal form "  ax’ (mod p),
then Q(x) is equivalent to the same diagonal form Y. ax’ (mod p™)

for any m.

Note: This fails for nonsingular forms. Indeed 2* + py* ~ z* (mod p),

but z° + py® £ 2° (mod p*).

22



Chapter 2

Small Zeros of Quadratic

Forms Modulo p’

§2.1 Introduction.

Let Q(x) = Q(z),7,,...,%,) = X 1<i< j<, 02,7, be a quadratic form with
integer coefficients and p be an odd prime. Set |x|| = max|Z;|. Let

V. =V_.(Q) be the set of zeros of @ contained in Z?,. When n is
even we let
((—1)”/2detAQ/p ) if pftdetA,,

0 if p |det 4y,

where (s/p) denotes the Legendre-Jacobi symbol and A, is the nxn

A, Q)=

defining matrix for Q(x). For y € L, set

Ye,(x-y) for y=0,
¢(V, y) — Ixev P
V|—p*"" for y=0,

27iz [ p?

where ePQ(a:):e . Our goal in this chapter is to generalize

(mod p ) methods for obtaining a small primitive solution of
Qx)=0 (modp?). (2.1)
Recall by primitive we mean p 1 z, for some ¢. By small we mean
Ixll < C(p*)°, for some 6 >0 and constant C. Ideally, we would like

IxIl < p. Note, one has trivial nonzero small solutions of (2.1) such as
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(p,0,0,...,0), but these solutions are not primitive. Our strategy is to

first calculate the Gauss sum

S =58(f,p°) = zpjepg (Aaz® + 2y), (2.2)

and then use this sum to calculate the function ¢(V,y). After that we
use this calculation to find a fundamental identity analogous to Lemma
1.3. Finally we proceed to bound the error terms in the fundamental

identity.

We can state our main result in this chapter; see Corollary 2.2

and Corollary 2.5.

Theorem 2.1. For any odd prime p and nonsingular quadratic form Q(x)

with n >4, n even, there exists a primitive solution of (2.1) with

max {2°p, 2%} for A =41, (2.3)
IxIl <
max{2°p,2°} for A=-1. (2.4)

§2.2. Determination of ¢(V,y) modulo p’.

2.2.1. Calculating the sum S(f,p*).
We need to use Theorem 1.4 of Chapter 1 with m = 2. The following

fundamental lemma holds.

Lemma 2.1. Let p be an odd prime, \a,y € Z with pta and S be
as in (2.2). Then

e .(—4ary®)p if ptA
S =1px(\Na)G, e, (—aNay”) if p|A and ply,
0 if pIX and p ty,

where x is Legendre Symbol , N =X p™', v/ =yp ', and X\, N, @ are
inverses mod p°.

Proof. Assume that p 1 a. We consider two cases:
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Case (i): p t A\. The critical point congruence is
p'f'(2) =0 (modp),
or, equivalently
p ' (2Xaz + y) = 0 (mod p), (2.5)
where ¢ = ord (f’). Then clearly
p' ||(2a)\, y) = t=0,
because p t 2a\. Thus by applying (Theorem 1.4, part (iii)) we have
m—t= 2—-0=2 (even). So turning back to (2.5), we now have
2 ax = —y (mod p),
and hence
a =1 =—2a\y (modp).
Thus
§ =8, =e¢;(fla)p*"* =e,(Aaa™ +ya')p,

where o is the unique lifting of a to a solution of (2.5)

mod p®*/? = mod p. We take o = —2a Xy (mod p*) where 2,@,\ are
inverses mod p°. Then
fla) = Xaa” +ya" = Aa(2a)\)y’ + (—1)y2ary (mod p*)
=  A2@Ny-2aNy (mod p?*)
= Xady® —2a\y’ (mod p?*)
= —da\y’ (mod p*),

and so S, = ep2(—ZEX ¥ )p.

Case (ii): p||\, then again the critical point congruence is as in (2.5).
Now if

1) ply = t=1,
since p'[| (2a\,y), p| (\,y),and p { 2a. Thus by setting \' = Ap~', and

y' = yp~ ', we have

p2

p2
S = Zep2 (Aaz® 4 zy) = Zepz (pNaz® + pzy')
=1

=1
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» /
=py e,(Naz® +2y) = px(Va)G, e <4A’2>

=1
So S =px(\Na)G,e, (—aNay").

2) pty = t=0,
because p'| (2a)\,y), and p { (2a,y). Returning, once more, to (2.5),
we now have

2 ax = —y(mod p),
or, equivalently
= —y (mod p),

a contradiction. Thus there is no critical point, so S = 0. Lemma 2.1

is completely proved. [

2.2.2. Evaluating ¢(V,y) for the case of a diagonal quadratic

form.

Assume that Q(x) = >_", a,x’, with p{a,, 1<i<n. Then it follows

i=1 i)

from the orthogonality property of exponential sums that

St = 3 S, 00m))e )

xeV x€Z"
P

= p’QZ Zq; (AQ(x) +x-y)
=p Ze (x-y)+p 7> > e .(0Qx) +x-y).

A=0 x
Sl S2

J

Now, if y =0, then we have
V= pZ(nil) +5, = S5 =[V- pZ(nil) = ¢(V,0).
If y = 0. Then, by (1.19) of Chapter 1, since some y, = 0,

S, =p Ze (x-y)=p HZ@ (zy,) =

1=1 3=

Also,
S, =) > e.(0Q(x)+x-y)

A=0 x
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=p Y > e (Mol +ae) +-+azl) + oy + oy, ++,,)

A=0 x

S\
Thus we now have S, = ¢(V,y) for all y. Henceforth we shall use
o(V,y) to mean S, and vice versa. But first we need to treat the

inside sum S, separately.

2.2.3. The sum S, .

We rewrite S, as follows:

S)\ = ZGPQ ([)\&13712 + xlyl] + e + [)\a’nxz + ynan

= Zep2 (Aa,z; + ylzl)---zepg (Aa,z} +y,1,)

2
p

= ﬁZePQ Az’ + z,9,)- (2.6)

i=1 z,=1

v
Gauss sum

By ply we shall mean that p|y; for all ¢ and vice versa. As a

consequence of Lemma 2.1 we have the following Lemma.

Lemma 2.2. Let n be even and let S, be as in (2.6). Assume
p1a,a,,....a . Then if p> 1\,

0 if pI\, and pty, for some i,

s =1p'e,(~AQ) AR

p?’"/QAep (I)\' Q*(y')) if pl\, and p|yi for all 1,
where A = ((—1)"/2) X (a,---a,) and x = X,-
Proof. We will divide the proof into two cases according to whether
p divides A or not.
Case (i): p t A. Then, by Lemma 2.1, for any y,

S, = e (—4ary)p-e.(—day))p e (—4a A\ y))p

= pey(—daly +—da\y, +-+—4da Ny,

= pnepz (_ZXQ* (Y)> 5
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where @Q"(y) is the quadratic form associated with inverse of the

matrix for @) mod p.

Case (ii): p|\. Then we have the following two subcases:

1) p ty, for some i. Then certainly, in view of Lemma 2.1,5, = 0.

2) ply; for all i. Then again by Lemma 2.1,

S)\ =D X (>\/a’1) Gpep(_ZEIA/yllz) P X ()\a/,”/) Gp ep(_za_nxly’rlbz)

= p" G x(Na, - Na,)e, (AN Q (4 +y +--+47))

L

= o (1) Xy +-a,) e, (AN Q'(v))

n is even

— p"*Ae, (4N Q'(v)),

and this completes the proof of Lemma 2.2. [J

2.2.4. Formula for ¢(V,y) for diagonal forms.

Lemma 2.3. When n is even and A = 0, Then

p"—p"! if p ty. for some i and p’ ‘Q*(y),
—p"! if p 1y, for some i and pHQ*(y),
0 if p 1y, for some i and p 1Q (y),

—ApPIE 4 p" N p—=1)  if pl¥ for all i and p Q" (Y),

A(p—1)p(3"/2)—2+p"—1(p_1) zf p|yL fOT’ all 7 and p‘Q*(y/)a

where y' = yp .

Proof. We have two cases:

Case (i): p 1 y, for some ¢. Then we first use Lemma 2.2, so obviously

if p|\, we have S, =0 and

o(V,y)=p2) S+ p?> S=p7"> 5,

pIA 2P A
A=0

=p’p" ) e (—4AQ(y))
A
= ;0"’"2; e, (A\Q'(y)),

28



since —4\ runs through G(p™) as X does. Next, we apply Lemma 1.5
of Chapter 1 to the last sum, to get

p’—p if p*Q(y), [p"—p"" if P|Q(y),
o(V,y)=p"*{ —p if p|Q), ={-p" it QM)
0 if ptQ(y). 0 if ptQ(y)

Case (ii): p|y, for all i, (thatis, p*|y’ Vi implies that p’

Q'(y)). Then
again by Lemma 2.2,

p" if ptA
p3n/2A e, <_ZX/Q*(yl)> if D |>\,

where A = p)\'. Thus we now have

o(V,y)=p>> S, +p72> 5,

pIA piA
A=0

—1
= A S e (CINQ () + L
A=1

ptA

S, =

-1 if Q'(y')# 0 (modp)
— p3n/2—2A . . ) pn—l(p — ]_)
p—1 if @ (y') =0 (modp)
It follows that
—Ap3n/272 _|_ pnfl(p . 1) lf p ,‘, Q*(yl),
¢(V’ Y) = 3n/2-2 n—1 . S
Alp—1)p +p"(p—1) if  plQ(y).

Combining cases (i) and (ii), Lemma 2.3 follows. O

2.2.5. Determination of ¢(V,y) for a general quadratic form.
In the last section we calculated ¢(V,y) for the case of diagonal

quadratic forms. Suppose now that ((x) is any quadratic form. Let

Vp2 be the set of solution of the quadratic congruence Q(x)=0
(mod p*). Let x = T(u) where T is a transformation that diagonalizes
@, so that Q(T'(u)) = @,(u), a diagonal quadratic form. Let szl be
the set of solution of the quadratic congruence @,(u) = 0(mod p*). Set
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T'(y) = v. We first show that oV ..y) = ¢(Vp’2,v). Note that, since
T is a nonsingular transformation modp, y = 0(mod p) is equivalent
to v=0(mod p). If y =0 (mod p), then
OV .,y) =V V!,
For y # 0 (mod p), we have
SV .y)= D e.(x-y)

erpg
= Y, euxy)
Q(x)=0(mod p*)

= >, e(T(w)-y)

Q(T (u))=0(mod p? )

= >, e.(uT(y)

@, (0)=0(mod p2)

=Y e (u-T'(y))

uel’;
e

=o(V.,T'(y))
= (V. v).
Say Q(x) = x'A,x, where A, is the associated matrix for ¢. Then

Q(w) = Q(T(w) = (T(w)) 4, (T(w)) =u'T'A,Tu.
Ay

2(n—1
_ pl

o pQ(n_l) = d)(vp/zav)'

And
Q') =Q (T'(y) = (Ty) [T'A, (T T (y) = y'4,'y = Q' (y).
Thus by our result for diagonal forms we have for the original

quadratic form that

( Pt — p! if p 1 y, for some ¢ and P’ ‘Q*(Y)a

—p! if p 1 y, for some i and pHQ*(y),

o(V,y)=1 0 if p 1 5. for some i and p 1Q (y),
AP 4N p—1)  if ply, for all i and p 1Q'(y)),

Alp —D)pP /2 4p"(p—1) if ply, foralliand p|Q*(y').

(2.7)
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§2.3. Small solutions of the quadratic congruence

Q(x) =0 (mod p*).

We start this section by finding

2.3.1. The fundamental identity.

Let a(x) be a complex valued function defined on Z', with Fourier
expansion o(x) = X, a(y)e.(x-y), where a(y) = p >a(x)e(—xy).
Then

Do) =2 > a(y)e

= —§/ ; 2; o
= a(O |V|—X:Za(y D> e(y-x).

Since a(0) = p " >, a(x), we obtai:O -
;a(x) =p |v|§xja(x) + ;a(y) SV

where ¢(V,y) as we defined. Also by noticing that || = ¢(V,0) + p*" ",
we obtain that

Yoax)=p D ax)+ > a(y)e(V,y), (2.8)

xeV
because

> a(x) = a(0)[p(V,0)+ p*" ]+ > aly)o(V.,y)

xeV y=0

2n 2 _|_ Ea(y (V y
Now we can prove:

Lemma 2.4. [The fundamental identity| For any complexvalued a(x) on Z,

dax)=p E x)+ p" Za(y Y aly)

xeV ; Pl (y Q" (v)

y
_Ap(?m/?)— Z (py)+Ap(371/2 Z a(py/)’

y'(mod p) p|@*(y")
y’(mod p)

(2.9)
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where y = py’ .

This lemma is special case of the general Lemma 4.4 of Chapter 4.

Proof. We shall use the abbreviation Zp ,, to mean >
>

pty, for some i and

g tomean X5 o Inserting (2.7) in (2.8), and simplifying, we get

dYax) =p ) ax)+ > aly) ¢(V.y)

xeV y(modpz)
=p D ax)+ Y, (p—pNay)— D play)
x s P’lQ" (y) Pty ple" ()
T

+ >0 (~Ap® 4 (p—1))aly)

plvi. p1Q" (¥')

T,

+ > (A —1p™ I 4 p"(p —1))aly).

Pl p |Q° (¥)

Y

T4
Next, denote

T=T+T,+1T,+T,.

Then after some manipulation, 17" reduces to

T=(p"—p"") > aly)—Ap™P7) aly)

PR (y) plyi

(2.10)

—p" D aly) + AP YT aly).
Pty p|Q" (y) Pl p|Q*(y)

Now, we note that in (2.10) the sum

—p" > a(Y):—p’”( Yooay) - D) a(.v))- (2.11)
1y, pl|Q (v)

Pty p|Q°(y) Pty P°1Q° (y)

On the other hand, we observe that in (2.11) the sum

Pty a(.v):p’”( > a(Y)—Za(Y)>, (2.12)

ptys, p°1Q" (y) Q" (y) Pl
and the sum

—p" Y aly) = —p"l( > G(Y)—Za(}’)>- (2.13)

Pty PIQ*(y) p|Q"(y) PlYi
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So, by using (2.12) and (2.13), the sum (2.11) becomes
- Y, ay) = ) aly)—p" Y aly). (2.14)
iy @ (v) Pl (y) pl"(v)
Consequently, by using (2.14), (2.10) becomes

p

T=p" > aly)—p"" > aly)—Ap™"7) a(py’)

P’lo*(y) Pl (y) ' =1 )
+p" Y aly)—p" Tt Y aly) AP alpy')
Pl () Pl (y) y/=1
) p|Q* (v)
— pn a(y) _Ap(gn/2)722a(py/)
P’ (y) y =1
—p" > aly) + ApPPT N a(py).

Q" () Q" (v")

Hence, it follows that

Yoax) =p ) ax)+p" > ay)—p" > aly)

xeV , P’Q" (y) p|Q* (y)
— Ap®P7 Y "a(py”) + ApP Tt N a(py),
y! =1 plYi, p|Q" (v")

which is the assertion of Lemma 2.4. [J

2.3.2. Upper bounds on

2 NV,|.
Let .~ be the box of points in Z" given by
.///:{XGZn a¢§x1‘<az+mz”1§i§n}v (2.15)

where m, =¢p+7, 0<r <p and ¢, € Z. Thus the number of
points in .~ (cardinality of .7 ) is | 2| =[I_, m,. Our interst in this
section is determining the number of solutions of

Rx)=0 (modp), (2.16)
with = € .. First we treat the case where all m;, < p. In this case we
can view the box . in (2.15) as a subset of Z) andlet x , beits charact-
eristic function with Fourier expansion x ,(x) = 2., a _(y)e, (x-y). Then

for any y € Z'

n

o |sin7rmiy¢/p|
a,z'(Y)|_p H| sinmy, / p |’
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and so (by work of [12]),

o< TSy | <ltons +1) <(ontzn).

n

y

Lemma 2.5. Let .~ be a box of type (2.15) centered at the origin with
all m; <p, and V, =V, (Q) denote to the set of solutions of (2.16) in
Z,. If A, =+1, then

a) | #NV,|< 17| ”/2<i210g(12p)> : (2.18)
p T
o n M n/2

b) |// pl = P + p . (2.19)

Proof. Since A, =1, the fundamental identity (modulop) is

Sa® = p 'Y ax) —aOp "+ Y aly),  (2.20)

x€V, b Q" (y)=0

by Lemma 1.2 of Chapter 1. Letting a(x) = x ,(x) =2, a (y)e,(x ),
n (2.20), we have

ZX | n/2

er y

)|7

and so (using 2.17),
Z . 4 n
<y Liosop)

completing the proof of part (a). For part (b) set o = x , *x , the

convolution of y , with itself, i.e.;

=Y (Wx (x—w= > x (0)x. (v)

u-+v=x

:Eza_”( L(u- yZa (x —u))
—Eza (2 xze
=p"> d’(y)e

so that the Fourier coefficients a(y) of a(x) are p"a’ (y). Since .~ is
centered at the origin the Fourier coefficients a ,(y) are all real. Thus the

coefficients a(y) of x , % x , are all positive. By using Parseval’s identity,
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((1.10), Chapter 1),
> |ay)| = (y) = ZX =14. (2.21)
y
Also Next by (2.20), we observe that

D_ax) <p 'y a®) +p" ") aly)

xeV, X

= p Y00 X)) (x) + 92 aly)

X

Then, using the identity ((1.9), Chapter 1) and (2.21), the above is

Sax) <p [(Zx @)- (. )]+ p72) )
x€V, v
= pi |’///| 7 n/2|.///|
512
Z%Jr p"*4, (2.22)
On the other hand, for any x € .7, we claim that
a(x)=x, *x (x) =27~ (2.23)
To see this, we shall argue as follows. Let I =[—M,M] be an interval

symmetric about 0. We need first to prove that for z € I,

1 1

To this end we have to count the number of points (u,v) € I x I such
that v +v=x. We have two cases. If —M <z <0, then the number
of points is 2M + z + 1, specifically t = v+ (x —u), - M <u <z + M.
Thus plainly the total number of the points is greater than or equal to

2M—M+1=M+12%|]|.
If 0<z< M, then we have 2M — z +1 points, specifically z = u +
(x—wu), z—M <u<M, and thus once again the total number of
the points is greater than or equal to

2M—M+1:M—i—12%|]|.
The two cases imply (2.24). Thus it follows immediately that for
rel x...xI =7,
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[i

=271,

N | =

a(e) =] [, #x, 9

by

IV

2.24

1
+

—

which is (2.23). Now we return to complete proving the lemma. From
(2.23) it follows that

Y ax)> Y 27 s=27" 4

x€V, xEVpﬂ. 2

2NV, (2.25)

Thus, putting (2.22) and (2.25) together and simplifying we conclude
that

2NV, < 2”(% + p”/2>.

The lemma is thereby proved. [

Lemma 2.5 is stated for boxes centered at the origin. In the next
Lemma we will drop this hypothesis and prove the lemma for

arbitrary boxes. We will get the same result.

Lemma 2.6. Let .v be any boz of type (2.15) with all m, < p, and
V, =V (Q) denote to the set of solutions of (2.16) in Z. If A, = +1,
then

L2 NV, < 2”("%'+ p”/2>. (2.26)
Proof. Again as A, = +1, the fundamental identity (modulop) is

Sax) =p 'Y ax)—a(0)p"* " +p" ; a(y).  (2.27)
x€V, x Q" (y)=0

Let a(x) = x , x x  where .»' = .2 —c. The value ¢ is chosen such

that .~'is "nearly" centered at the origin:

_ m, —1
¢, =a, + 5 }
Then
>oax) =141l =14F, (2.28)

X

a0)=> "> 1<, (2.29)

we. 2 ve. 2’
u+v=0
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a(y) = p"a_(y)a_.(y).
Thus, using the Cauchy-Schwartz inequality (see e.g. [28]) and
Parseval’s identity, (1.10) of Chapter 1, we obtain

Slay) = p"Y |o. 3)a (y)
< (Yhof) (5
<r(EYvw) (X))

=" " =12 (2.30)
Thus by the fundamental identity (2.27) and (2.28), (2.29), and (2.30), if
A =41,

/2

a ,,»(Y’)|2>1

Yoax) <p D ax)+p""? D Jaly)|

xeV, y
Q (y)=0
<p Y ax) + ") laly)
x y
o 2
<L), (2.31)

3

Now we claim that

Yax)= D 27 s=2"]/

x€V, x€V,N.»

v,N.

. (2.32)

To see (2.32), we are going to argue as follows. Let
I ={a,a +1,..., a, +m, —1}.
Then if m, is odd,¢, = a, + 25—, and hence

1121—04 :{_ml—]_ N mi—]_}‘
2 2 Y Y 2

Thus for any z € I,

m,+1_ m,
DN

wel vel’
u+v==x

If m, is even, so that ¢, = a, + 5 — 1, then

I __ _ _ _mj ﬂ
I'=1 ci—{ 2+1,...,2}.
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Hence for any z € I,

POPBEELS

uel vel
U+v==x

So
a(x) =x, *x (x) 227"~
and the claim follows. Now we combine (2.31) and (2.32), we get

| | 2
< 277( + n/ 7
= R p

which completes the proof of Lemma 2.6. [

.///ﬂVp

Next we consider larger boxes where the m, may exceed p. We

define

N = H([%} +1>. (2.33)

Lemma 2.7. Let V,, =V ,(Q) be the set of integer solutions of the
congruence (2.16) and let A, =1. Then for any box .~ of type (2.15),

SNV, 4| < 2”’<%+N/, p"/2>. (2.34)

Proof. Partition .~ into N = N , smaller boxes B,,

=B UB,U---UB,,
where each B, has all of its edge lengths < p. Thus Lemma 2.6 can
be applied to each B;. We obtain

N
=>"| BNV, |
i=1

(Lemma 2.6
B,
p

e
< 2?(—1

=1
n N
= ?;
A /2)
()

D p
So the proof of Lemma 2.7 is complete. [

A ﬂ I/p,Z

+ pn/2>

4+ N2npn/2

Bi
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2.3.3. Bounds on the error terms in the fundamental identity

modulo p* when A = +1.
Let .~ beabox of pointsin Z" as in (2.15) centered about the origin with

all m, < p’, and view this box as a subset of Z',. Let x , beits chara-
cteristic function with Fourier expansion x  (x) = > a (y)e.(x-y). Let

a(x) =y +x. = X, aly)e,(x-y). Then for any y € 27,

n

2 2

Con oy SIS MY, /P
= | | = , 2.35
1) =p ie1 sin” Y, /pQ ( )

where the term in the product is taken to be m,; if y, = 0. In particular,
if we take || < p*/2 for all i,

a(y) < pQ”lj min {mf ,(p—2>2} :

2y,

Suppose .~ is centered about the origin. If A =+1, then we
apply the fundamental identity (2.9) to a(x) = x , * x , to get

doax) = p Y ax)—p" > aly) =" > alpy)

xeV X p‘Q*(y) y (mod p)
Main T * v S e
am lferm El E2
> Main Term — E, — E,, (2.36)

since our box .7 is centered about the origin, and so the Fourier coeffi-
cients a(y) are all positive. The main term in (2.36) is
B B | 2]
p Zza(x):p QZXY«// *X/(X): p2 )
and the others are error terms. We proceed to bound these error

terms. We shall, in this section and next, refer to any error term or to
the value which bounded that error term by E; or E,, i,j€
{1,2,3,4}. For the error term FE, we first observe
E=p~ » ay<p )y (237)
Q" (y)=0 (mod p) Q" (y)=0 (mod p)

Then it is clear now we only need to bound the sum >_ . )90, la(y)|.-

Let >°* be an abbreviation for >_ oW . Define p, by

=0(mod p),|9il<p” /2
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2571 for k, > 1,
7Zlo fork =o.

Using the fact that

yields

DR ED DT DR mn{pg}

Q' (y)= 0(mod p) =0 k=0 y = ;
lvil<p® /2 piP /m <|¥; \<2k ' /m;
o0 o0
<
1v; \<2’“ pz/m
_ L /'I
2 Z Z H 22k .
Y \<2k p2 /m;

For non-negative integers k,,k,,..., %, , let

2 %n 9

2
%’z{yeZ;QIIyAsz’“fﬁl ,199}.
Put
k2
m;
so that

ki+1 2 n 2k7;+2 2 n

i i=1 i i=1

Now, from the upper bound (2.34), we have
|

///ﬂv;)z n ;|+2nN p

where by utilizing (2.33),

h - 1 (5

2k >m, /4p

The last equality in (2.42) follows, since

k41 2
2+

p

40

k; m,
2 <4p =

+1<p = m<p

n n 2n
[l =TI ) <[22 - o ST

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



But the right -hand side of (2.42), is less than or equal to

n Qkﬂrl 1 n 2/@
I1 ( p+—+1>§2” I1 < p+1>.
=1 m; p =1 m;

1
24 >m, /4p 2k > m, [ 4p

It follows that

n k;
No<2 ] <2mp+1). (2.43)

i=1 i
ki >m; /4p

Apply the upper bound (2.41) to the inner sum Z; in (2.39). This

gives
2P S K 1
Z |a’(y)| S 2n ZZ 2 ﬂI/pZ H22k
Q*(y)z Q(modp) p k=0 k,=0 i=1
Wil<p® /2

<|///|2 = - n |/// n n/2 = 1

<2 +2'N " ) [ oo
P k=0 k=0 p i=1

< o0, +0,, (2.44)

2P Xy 1)\2'
o=l S ()
|_/// 00 00 no 1 on . p2n n ’
<GS 2 l) (5 1)

=0 k=0 \i=1
<gr. el (2.45)
p p
and by the inequality (2.43)
|/// 2 = = n n < 1
0y = o 222 N//’p /2 22_k7
P k=0 ko i=1
n|///|2 . 00 00 . n 2kp 1
§2 2n p/ZZZQ H m +1 H22k
p k=0  k,=0 i=1 i i=1
2k’2mi/4p
e 1 <2k P ) 1
R — 1)——
=4 | 27! /2H kz_:o 92k + ; L + 92k,
=L obic, 4 ki >m, /4p



3n/2 k=0 , i

p i=1 oki >m; [4p
4 p & 1

n 12 n | -

n/2 T k=0 ’
p i=1 oki>m, /4p
4" 2F 1|4 . (2p 8p°
< e H{g—l—mm(mi 7)) (2.46)

Thus by inequalities (2.37), (2.44), (2.45) and (2.46), we have

N L 17 R | ) <2p 8p2>
E <16"— +——70p ||——|—m1n — =
' P 3

p p3n/2 L m/]: m?
__odn, n-2| 4" |,///2 n é . <2_p 8_p?> (2.47)
o 2\_pE1_1 |//) + pn/2+l H 3 + min mi 9 mZZ
Now assume that
Then for m;, < p,
2
é+mhr1<2p,8<p))éirzp§4p, (2.49)
3 m,’ \m, 3" m, —m,
and for m;, > p,
4 . (2p (p >2> 4 10
3+mm<mi’8 m, s3t2=3. (2.50)

By (2.49) and (2.50), we can write

w4 (2p 8p2> Ldp {10 0 4y (10)”‘ 4" p'
Hﬁmm(mwm I 5= <g
1= 2 i i= tog=l+1 i=1 i i=1 7
(2.51)
and consequently (using (2.47) and (2.51))
4n |’///|2 4npl
El,? — n/2+1 l
p Hizl m;
0 VT
pn/271+1 . HéZI mj
— 24nplf(n/2)71 / m, m,
[Im 1
e H m,. (2.52)
=111
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Therefore by inequalities (2.47) and (2.52), we arrive at

El S 24npn72 | I+ 24n I—(n/2)— | /)| H m,
—_—
B, i=l+1
Elz

We next estimate the error term FE,, but to do that and also for

future reference, we first prove

Lemma 2.8. Let .~ be any box of type (2.15) and «a(x) = x , * x_ (X).
Suppose
m <m, <--<m<p<m,, <---<m (2.53)

n*

Then we have

> alpy) <27'p | H m,.

YEZ, i=l+1

Proof. We first observe,

Z EZ o —X- py)
> e (—x-)

p°
771 y; =1

=Z

ue. s ve.
u+v=0(mod p)

1 n m
<—]]m : +1>. 2.54
<y I 250

To obtain the last inequality in (2.54) we must count the number of

solutions of the congruence
u+v=0 (modp),
with uw,ve.». For each choice of v, there are at most

[I"_,([m, /p]+1) choices for u. So the total number of solutions is

less than or equal to
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[T ([ +
[ [ .
Using the hypothesis (2.53) then continuing from (2.54) we have

)
zp: Spnﬁmn i<n;i+1>

y;=1 1=l+1

BZ <2mi> 2"’|/|
P H AN [

i=[+1

<

The lemma is established. O

Now in view of Lemma 2.8, it is clear that the error term FE, has

the estimate

E, = pOn/a-2 Z a(py) < 2 p/D2| | H m,.

y(mod p) i=l+1

The following theorem summarizes the final outcome of our investi-

gation for the error terms in the case of A = +1.

Theorem 2.2. Suppose that n >4 is even, and that A (Q)= +1.

Then for any box .~ centered at the om'gz'n,

S alx) >

xeV

—|Error|,

where

n n

|E’f”f’0’f’| S 24npn72 | > + 24n plf(n/2)71 | ///| H mi + 2nflplf(n/2)72 | ///| H mi )
T \ =l i=1+1

’ E L

In Theorem 2.2 we have indicated below each term, the error term

bounded by the given value.

Next we compare each error term in Theorem 2.2 to the main

>/ p®. To make the left-hand side greater than 1/4 of the

term |
main term, we make each error term less than 1/4 of the main term.

For the error term F,,, we need

1,1
1l4F
4

>24n n2|//| |//|>24n+2 n)

11



and for the error term E,,

1| | 4 l 2)—
> gt y(n/271) ) m,
4 Z) zljll
l
H m, Z 24n+2 pl*(’ﬂ,/?)‘i’l
- : p
H N S 27471,72p(n/2)71

i=1

Finally for the error term F,,

; 2 n
1. /,2| > gl pl-/D-2) ) H m,
4 P i=l+1
= 1Az
i=l+1
]
I—I <: 21 n—2 n/2

Putting the pieces together, we deduce

Theorem 2.3. Suppose that n >4 is even, and that A (Q)= +1.

2| >2"p" and T ,(p/m,) <27 ?p"/ (where L.H.S =1
[=0), then

2 2 2
7 3|~ 1|
E :O‘(X) 2| /2| __| /2| :Z| /2| :

xeV p 4 p b
In particular
V(s +.2)> V’J-
4p

If
if

Recall that a solution of (2.1) is called primitive if some coordinate

is not divisible by p, i.e.; pt z, for some i. We write plx for im-

primitive points. In fact

Corollary 2.1. Under the hypotheses of Theorem 2.3, .2 + .~ contains

a primitive solution of (2.1).

Proof. We need to show that
Za(x) > Za(x)
xeV xeV

plx
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First by Lemma 2.8,

P n
Yoa(x) =" a) =p"Y alpy) <2"'p"" A [ m,
xeV plT;, y=1 i=l+1
plx 1<i<n
1 2" & 1 | 2)
:_z'% [T m S_z'%'
2 p =41 2 4p

The last inequality is guaranteed by our hypothesis (Theorem 2.3)

that
l

p —4n—2 (n/2)-1
<
| | - 2 P . (2.55)

i=1 i

More precisely, assume (2.55), then certainly
l (n/2)-1 l n—2

p p b b
Hm S She T ] < o

i=1 "1 i=1 My
2n+2 l
= pn—l—? S H mi
i=1
4 . 271 p2 :L n
= n—I| H m?ﬁ S m?ﬁ
p =141 i=1
n n 5
N 2 H " | ~|
n—I ) 2
=131 4p

xeV 4p

pIx
On the other hand, by Theorem 2.3, we have
|2

Zoz(x) > |'///2 .

We therefore get

xeV 4p xeV
pix pix

The proof of the Corollary is complete. [J
Now we complete the picture by proving the following special cases.

Corollary 2.2. Let A (Q) =1 andlet .~ be a cube centered at the origin
with all m, = B, B>2"®"p  and p >2®""0"  Then » 4 . »
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contains a primitive solution of (2.1).
Proof. Suppose that B >2"®/"p and p > 26"/ "2 Then [ =0

and the hypotheses of Corollary 2.1 are satisfied. [

Corollary 2.3. Let .~ be a rectangular box centered at the origin with
m, =--=m, = 1, m,, =--=m, > 2(4n+2)/(n—l)pN/(n—1),
for some 1 <(n/2)—2 and
p > i -2
Then .» + .7 contains primitive solution (2.1).
Proof. Suppose that the hypotheses of Corollary 2.3 hold. Then we
have that

I
H(i) < 274n72p(n/2)71 pl < 2747L72p(n/2)71 p> 94(2n+1)/(n—21-2)
m

1=1 )

Also,

2 2(47L+2)(n71)/(nfl)pn(nfl)/(nfl) _ 2(4n+2)pn.

%

So Corollary 2.1 applies. [J

2.3.4. Bounds on the error terms in the fundamental identity

modulo p* when A = —1.
In this subsection we focus our work on the case A = —1. Again we
consider the case of a box .~ symmetric about the origin. We start

by noticing that Lemma 2.6 could be rewritten in this case as follows:

Lemma 2.9. Let .~ be any box of type (2.15) with all m, < p, and
V., =V (Q) denote to the set of solutions of (2.16) in Z). If A = —1,
then

> nvp| < 2n+1<%+ pn/2>.

Proof. The proof is similar to the proof of Lemma 2.6. The fundamental

identity modulo p when A = —1 is given by

Yoax) =p Yy ax) +a0)p" T —p"? Y aly).  (2.56)

x€V, Q" (y)=0
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Let « be as given in the proof of Lemma 2.6. By (2.56),(2.28),(2.29)
and (2.30),

|2

2

> ax) <

+ " 4 P Jaly)
y

x€V, p
2
<L ey <1+1>
p p
p

But, in the proof of Lemma 2.6, we proved that
Za(x) > Z 27" ol =2"" ||~ ﬂVp|.

x€V, ev.N.»

Thus, it follows

d

|./// N Vp| < 2"*%% + p”“),
which is the assertion of the lemma. O

An immediate result from the preceding Lemma is

Lemma 2.10. Let V,, =V, ,(Q) be the set of integer solutions of the
congruence (2.16) and let A = —1. Then for any box .~ of type (2.15),

Z NV, |<2"+1<| AL, "“). (2.57)

where N | is given in (2.33).
Proof. We proceed just as in the proof of Lemma 2.7. Partition .~
into N = N , smaller boxes B,. This means
~ =B,UB,U---UB,,
where each B, has all of its edge lengths < p . Apply Lemma 2.9 to

each B,, we thus obtain

N
=>"|B.NV, |
=1
(Lemma 2.9)

1 N B.

S z 2n+1 <_7 + pn/2>
=1 p

2n+1 N

2B

1=1

48

277,pn/2




p

finishing the proof of the lemma. [

By the fundamental identity (2.9) applied to a(x) = x , * x , with
A = —1, and using the fact that a(y) > 0 for all y we have

dax) > p P ax) —p Y aly) —p® P Y alpy’).(2.58)

xev - x_ 2@ (y) plo"(v)
Main Term h A ’ y'(mod P)

E, N §

By

Next we are seeking to bound the error terms in (2.58). For the
error term F, we have already seen in the case A =41 how this
error term bounded. The same strategy will work in the case A = —1,
except we shall make use of the upper bound in (2.57) in Lemma 2.10
instead of the upper bound in (2.34) in Lemma 2.7. Indeed we find
that

Q" (y)= 0(mod p) P k=0 k=0 i1

wil<p? /2
< |/// - = 277+1 | | 277+1N n/2 L
- 2n Z Z p + p H 22k;

b =0 k=0 i=1

N R e | . <2p 8p2>
<2-16 » + psn/z Hg-l-l’ﬂll’l patios |

i=1 ? P

Thus, it follows that

_ 2-4" | 2F %14 . (2p 8p°
E <2M"tpn?| g4 21 ——l—mm(—, - (2.99
1 — — Z;Ll——i| | k pn/2+1 H 3 m. m2 ( )

(3 (3

By
Assume (as before) that

m <--<m<p<m, <--<m,.

Then for m, < p,

2
é+mm<2—p,8(l))géjﬂp <dp
3 m m 3 m. — m.

i i i i

and for m; > p,
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4 (2 (p)> 4,10
3+mm<m’8m. Syt2sz

By taking account of these two inequalities, we have

n 4 . (2p 8p° Ldp 4 10 Apt (10" 4!
Hngmm(m,m?) SH -H—— bt <

i i=1 m; i=l+1 3 N Hi:l m, 3 N Hi:l mi.
(2.60)
Using (2.59) and (2.60), we infer that
f <AL 2
7 p =M P AL m,
_ 24n+1plf(n/2)flﬁm7; ﬁ m, = 24n+1plf(n/2)*1 | 2| ﬁ m,.
i=1  i=l+1 i=l+1

To estimate the error term F,, we just need to apply Lemma 2.8.

It is easily seen that

E3 _ p(3n/2)—1 2 a(py) S 2n—lpl—(n/2)—1 |///| H mi‘ (261)

y(mod p) i=l+1

However let us derive a good estimate for E,, without using Lemma
2.8, hoping to get a better bound than the one in (2.61). Let y' runs
through the set {y' € Z : Q (y') = 0(mod p)}. Rewrite (2.35) to be for
any y € Z',, with vil<p /2,

a (Y) = ﬁai(yi)a

where

1 sin’ tmy, / p°
p* sin’my /pt
and the term in the product is taken to be m, if y, =0 (as before).

4 2 2
< %min{mf,p—z} = min {<m> p—Q} (2.62)
p 4y; p’/ 4y

Replace each y by py’. Then, with |yl’| < p/2, we have

< in (2 L
= p ) 4y12 .

7

a,(y,) =

Then plainly

a(y,)

la(py!)
Thus
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> Jaey)| < a(py.) ITE:

Yi =11
l<y <p

Nz

i=1|yi|<p/2
1
<H ) + >

i1 | [wil<p / 2m, p Wil>p ) 2m; 4y;
2

a,(py;)

2
L

(Using the fact:>_° | - = %4 and continuing),

<1+

Suppose that

Then obviously

Sleo] < TTsTT 3(%) = 1 (%)

Hence it follows

n 2
B, <3 p*/ 7 ] (%) . (2.63)

=51 P

A special case, when [ =0 in (2.63), we have
n n - |///)|2 n —[(n
B, <3'p™ T = 3ty L

Comparing these two estimates in (2.61) and (2.63), we conclude that
the estimate in (2.61) still is better.

Hence, we summarize in

Theorem 2.4. Suppose that n > 4 is even, and that A (Q) = —1. Then

for any box .~ centered at the origin,

2
%
Ea(x) > | p2| —|Error|,

xeV

where

n n
|Er7’0r| S 24n+1pn72 | ///| + 24n+1 plf(n/Q)fl | ///| H m, + on plf(n/Q)fl | ///| H m, .
T ) i=l+1 . il

E 5 By

o1




As before, in order to obtain a positive sum we seek conditions

such that each error term is less than % of the main term.

1 A n 71 n n
ELl: Z' p2| 24 +1 2| /)| — | /}| > 24 +3 )
1] | dn+1 / 2)— p in—3 2
El_g: - 2 n+ (n/2) | > m — < 2 n— (71/ )—1
/ 4 p2 /1/_—11—1 H m
1 z —n— n —
E, : Z| 2| > 9= /pz (n/2)— | o H m, H p 21 / 2p(,/2) 1
p =141 i=1

Thus we obtain,

Theorem 2.5. Suppose that n >4 is even, and that A (Q)=—1. If
L2 > 27" and TI_,(p/m,) <27 *p"/27" (with LHS=1 if
[ =0), then

N

N
(3

2 2
7 3|~
Za(x)2| 2| _Z| 2|

xeV p

3

In particular

|//

4 2

V(s +.2)>

As a consequence of Theorem 2.5, we have the following analogue

of Corollary 2.2 for primitive solutions.

Corollary 2.4. Under the hypotheses of Theorem 2.5, .2 + . contains
a primitive solution of (2.1).
Proof. Everything almost works the same as in Corollary 2.1. We

must prove that

Z a(x) > Z a(x).

xeV xeV
plx

First we have with the help of Lemma 2.8,

doax)= > o —pz a(py) <2"'p'"|

Hm

xeV plT;, i=l+1
pIx 1<i<n
1 2”| 4| 1 | »f
’ n -1 H S _l' 2 " (264)
i=[+1 p

52



Here the last inequality in (2.64) is true by our hypothesis (Theorem
2.5) that

!
p —4n—2 (n/2)-1
<
| | S 2 P (2.65)

i=1 i

Let us pause the proof for moment and verify that this hypothesis
gives us the last inequality. So we may assume (2.65). Then

n/2 !
Hm

1
H p S p = 2477+2 I—(n/2)
i=1 m, 1

| /\

dn+2
' 2n+

= 2477p1 (n/2)-2 m. S .
i=[+1

21
= 2npl n m7 S
2174[»1 4p

We resume our proof. Since we now have

and Theorem 2.5 yields

we thus obtain

| ~|
a(x) > —> a(x)>0,
2,00 = 2
ptx pix

which give us the desired conclusion.[]

We now turn our attention to the following special cases.

Corollary 2.5. Let .~ be a cube centered at the origin with all m, = B
B> 24+(3/”’>p and p > QEn+6)/(n=2) o d Ap = —1.Then .2 + . contains
a primitive solution of (2.1).

Proof. This follows as in the proof of the Corollary 2.2 of the preceding
section. Just by assuming that B > 273" p and p > 208"/ e
have then [ = 0 and the hypotheses of Corollary 2.4 are satisfied. [
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Corollary 2.6. Let .~ be a rectangular box centered at the origin with
my= = =1 m,, ==, > 20D D)
for some 1 <(n/2)—2and
p > 24Cr/-20)
Then .= + .2 contains a primitive solution (2.1).
Proof. Assume that the conditions of Corollary 2.6 hold. Then
m(p/m) <277,
is implied by
p > 21Cn /(20
Indeed, by hypothesis IT._,(p/m,) = p', and
pl <27 pt 2

if and only if
P > 22(477,—%2)/(77,—21)‘

We also have,

|! ///| Z 2(4n+2)(n71)/(nfl)pn(nfl)/(nfl) . 2(4n+2)pn )

Hence Corollary 2.4 applies. O

We conclude this chapter with

Proof of Theorem 2.1. This theorem follows immediately from
Corollary 2.2. (gives us (2.3)) and Corollary 2.5 (gives us (2.4)) upon
setting n =4 .0
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Chapter 3

Small Zeros of Quadratic

Forms Modulo p*

§3.1. Introduction.

Let Q(x) = Q(,,2y,...,2,) = 2o1<ic j<, 02,8, be a quadratic form with
integer coefficients and p be an odd prime. Set [x||= max|Z;|. Let

V,=V.(Q) be the set of zeros of ( contained in Z’;. When n is

p 3

even we let
((—1)"/2 det A, /p ) if pfdetA,,
0 if p |detAQ,

where («/ p) denotes the Legendre-Jacobi symbol and 4, is the nxn

A, Q)=

defining matrix for Q(x). For y € L', set

> € (x-y) for y=0,
¢(‘/p37y) — 1 xev
- D

3(n—-1)

for y=0.

v,
where ¢ ,(z) = ™/
p
We shall devote this chapter to generalize the method for (mod p®)
to (mod p’). Our goal is to find a primitive solution of the congruence
Qx)=0 (modp’), (3.1)
with x € .7, where .~ is any box with | | sufficiently large. In

particular we wish to obtain the existence of a nontrivial solution of
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(3.1) with |IxIl as small as possible. To this end we shall build lemmas,
theorems and corollaries analogous to those in Chapter 2.

In Chapter 4, we shall prove the following fundamental identity
(Theorem 4.2): For any complex valued function a(x) defined on Z’.
with finite Fourier expansion a(x)=2>_,a(y)e,.(x-y), where a(y)= p""x
> a(x)e,. (—x-y) we have

doax)=p" ), ax)

x€V,m x (mod p™)

m—1 _ "l ) ] p? )
+ ™y 25]»(;0] > alply)-p7 Y] G(P]Y/))
3=0 yi=1 y—1
pmfj‘Q*(y/) pm—j—l‘Q*(y/>

where 6j is defined:

1 if m—7 is even,
0, = A if m—j s odd.

Thus when m = 3, we have

Za(x):p’gza(x)+p3”/2 A( p a(y)—p"' i a(y'))

xeV g ‘yle :y{:I
v Pl () Pl (y)
pZ 2
+p"/ 2(291 Y alpy)—p" > a(m’))
yi=1 yi=1
P’Q*(y) Plo*(¥)
y4 y4
+Ap”<p‘2 >, a(pQY’)—p?’Za(ﬁY')) (3.2)
yi=1 yi=1
plQ* ()

The first term on the right-hand side is the main term, and the

remaining terms are the error terms. In order to estimate the error

terms we first need to obtain good upper bounds for |Vp2 N.»

§3.2. Estimating |V . 1.~

In this section we try to find and prove the analogue of Lemma 2.5,

Lemma 2.6 and Lemma 2.7 of Chapter 2, for an arbitrary box.
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Let
= {x cZ"

aigxi<ai+mi,1§i§n}_ (3.3)

where a,m, € Z,1 <m, < p°,1<i<n.Then %

= [I_, m,, the cardi-
nality of .. View the box .~ in (3.3) as a subset of Z', and let x
be it characteristic function with Fourier expansion
X, (x)=2ya (y)e.(xy).
Consider the congruence

Qx)=0 (modp*), (3.4)
where @Q(x) is a quadratic form. Later we need to develop a good
bound for the error term Zﬁ\@*(y) a(y) and to do this we need to

estimate |Vp2 N.~| first.

Lemma 3.1. Let p be an odd prime, V., =V, (@) be the set of zeros of
(3.4) in Z',, and .~ be a box as given in (3.3) centered at the origin

with all m, < p*. If A = =1, then

) A n
20V, gﬂn<|p2|+p ). (3.5)
where
2(n/2)+1
2"(1 + ), A=-—1

9 =

n

(3.6)
2'(L+20/9M), A = 1.

Proof. The idea of the proof is similar to the ideas used to prove

Lemma 2.5 of Chapter 2. We begin by writing the fundamental

identity (mod p*):

P 2

doax)=p?> ax) +p" > aly)—p"" ) aly)

XEsz y;i=1 y;=1
Pl (y) PlQ"(y) (3 7)
p p )
— ApB N "a(py) + ApPITE N alpy).
y =1 y;=1
! PlQ* (v)

Set v =x , * x, = X, a(y)e(x-y). ThentheFourier coefficients of a(x)

y
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are given by a(y) = p*a’ (y) and since .~ is centered at the origin,

these are positive real numbers. By Parseval’s identity we have

> la(y)| = p™ le [ =1~l. (3.8)

Thus, it follows from (3.8),

2

p" a(y) < p")_lay)| < p"l 41 (3.9)
y

y;=1
Pl (y)

Notice that the main term in (3.7) is

2
) 2
P ax)=p Zx * X, (%) = p' (3.10)
By Lemma 2.8 of Chapter 2, we have
Y4
p(3n/2)—22 a(pyl) S 2n—lpl—<n/?)—2 |’/// mi , (311)
yilzl i=l+1
and
p n
p& IS alpy') < PP Talpy') <27 I T my, (3.12)
V=1 y i=l+1

Q" (v")
where as defined in chapter 2, [ is defined by
m1§m2 §§m1<p Sml+1§...§m

n *

The case A (Q) = —1:
Now going back to (3.7), if A = —1, we have

S el <p Yl + o' 3 o) + 903 () (313)

xEVg y;=1 y =1
PR ()
Then by the equalities in (3.9), (3.10), and (3.11), we obtain
> ax) < |/)| +p'l~] |/|+2"’ c2) T m. (3.14)
XEVpQ Z:D . ; i=l+1
S

We next determine which of the terms ©,®, and ®in (3.14) is the

dominant term. We consider two cases:
Case (i): Suppose [ <4 —1. Then compare
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@ B 2nflplf(n/2)72 |’// 3 B 5/ o l
R B el e V L
%| /p ’ i=l+1 1= lm

! (n/2)-1
1
<2n71 I—(n/2) — 9" (2) -n/2 <2n<£> -n/2 <2(n/2)+1-_’
<2"'p 5)p <25 p < ;

/2277[

which implies that

2(”/2)+1 n 2(n/2 )+1
® or 2"p"B2| H m, <
p =141 D p

| 2f
2

® <

Case (ii): Suppose [ > 4. Then compare
® 2" "SI, m,

I — 9" l l (3n/2)— m,
® e 1T
— - n— n—l n/2—2— 2”/2
SQﬂpl (3n/2) 2p2(, 1) — " lp,/2 2—1 S -
p
which leads to
271/2 l o n 271,/2
@<= @ or 29 2L [[m <"l
p =141 p

So for any [, always we have

(n/2)+1 n/2
® < (2 O @),
p p

or,

. Cn/o) n 2(n/2)+1 |///|2 271,/2 .
2 lpl ( /2> 2|.7%)| H mi S( 5 + 5 p |///| .
i=1+1 p p p

Returning to (3.14), we now can write

Y ax) <O+ @+ 0

xeV o
! o(n/2)+1 on /2
<O+ @+ @ + @

p P
2(n/2)+1 on /2
= <1 + >® + <1 + )@
p P’

5 2
<o (1) (3.15)

where 9/ =1+ (2"/*" /p). On the other hand, we know

3 a(x) 2 ool s

x€V s
2

(3.16)

To ensure that the above inequality (3.16) is true see the proof of
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Lemma 2.5 of Chapter 2. Hence it follows by combining (3.15) and
(3.16) that

! ('p‘;' —I—p"). (3.17)
The case A (Q) = +1:
If A =+1, again by (3.7), we have

dYax)<p Z X) +p" Zla )|+ PP Y alpy)

XEVZ (modp)

< 2 |+2"” I me (318)

T 1=
(3.10),(3.9)&(3.12) W—’ - 3 -

We do a similar investigation (as before) to determine which of the
terms @, ©, and @ of the inequality (3.18) is the dominant term. In
case (i) we find @/® < 2"/**' | which means that @ < 2"/*"' ®. And
in case (ii) we find @/® < 2"/ / p, which gives us that @ <2"* /p @.

Hence for any [, we always have

@ < (2(n/2)+1 @ + 2;/2 ®>7

or,

2n—lpl—(n/2)—1 |%)

n 2 71/2

i=[+1

Now in looking at (3.18), one easily deduces
(n/2)+1 | ///|2 277/2 n
doax) <(1+2 )=+ \1+—)p"| »
erp2 p p
< (24 p10)
p’
where ¥/ =14 2"/2*1, Thus by (3.16),

n /)
|Z 197/1/ <|p2|+p)

x€eV s 2

Lastly letting 9 =2"9 if A=—1 and ¢, =9 if A=+1 we
get from (3.15) and (3.19) that for A = 41, one always has

v//)) n
19n<| 2| p).
b

This achieves the proof of the lemma. [
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For our purpose we have to drop the hypothesis "centered at the

origin" in Lemma 3.1.

Lemma 3.2. Let p be an odd prime, V. =V, (Q) be the set of zeros of
(3.4) in Z',, and . be any boz as given in (3.3) with all m; < p’. If
A =+1, then

| /| )
+p"). 3.19
<=2 (3.19)
where
v, =2"(14+6") . (3.20)

Proof of Lemma 3.2. We proceed as in the proof of Lemma 2.6.
The fundamental identity (mod p*) is

2 2

doax)=p?> ax) + p" Y aly)— " )] aly)

XGsz X y;=1 y;i=1
\ Pl (y) o Pl (¥) 1
p EVU P Evl (321)
— ApPEEY a(py”) + AP YT alpy').
v = 7‘,:1
= G L p\yQ*(y')
Eq

Let a(x) = x , * x » where .»' = .2 —c. The value ¢ is chosen such
that . ~'is "nearly" centered at the origin:

=

¢, =a, +

Then

:Zzlg|///|a

ue. 2 ve. 2’
u+v=0

a(y)=p"a_(y)a .(y).
Again, by using the Cauchy-Schwartz inequality and Parseval’s
identity, (1.10) of Chapter 1, we get

Shty) <11
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Then

B~ =P 2 00 2 ) IS ity (322
])Z‘Q:(y) plQ" (y) =t
where
Cpt =" PRy,
W= P|Q ().

Then continuing from (3.22),

B, — B < (p" —p" ™) _|a(y)| < (0" = p" )|~
y

Also,
P D
A (3n/2)-2 / (3n/2)-1 / »
B, — E,| = Ap Za(p y)+Ap Z alpy') < >0y a(py"),
g =1 y,,*=l/ ]
PlQ"(v) ' (3 23)
where
0( ) p(3n/2)—1 . p(3n/2)—2’ P Q*(Y),
y - n — *
pr, ptQ(y)
Then continuing from (3.23),
P
B, — B, < (07 = ") " |alpy)) (3.24)
yi=1

To complete the proof of Lemma 3.2, we need the following

Lemma,

Lemma 3.3.
6% Zf m; < p,

> a(py)| <

lyi|l<p /2 3

3

2
i

if m, > p.

M|

P
Proof. We begin by establishing the inequality
1|47 i om<p/2
> =< _ (3.25)
wl>p/2m, 4y7 1 if m, > p/2
We split the proof into two cases.
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Case (I): 1

Then

So

—<q
|v;|>p / 2m; 4@/1 p

Case (II): If 52~ <1, then by (2.62) of Chapter 2 (see page 50),
00 2 2
Iy rei=hsL
|v;|>p /2m; 4% 4 y=1 ) 12
By case I and case II, (3.25) follows.
We return to the proof of the lemma. Say a(y) =11}, a,(y;,). Then

by the Fourier coefficients a(y) = p™a ,(y)a ,(y),
1 sin’(mmy, / p°
av:(yv:) a /x,v:(yv:)a. //’,i(yvi) -3 ( / )

p® sin’(my, /p*)

:p2

and so

<p/2.

)

We consider four cases:

Case (i): If m, <% then

Y,

2
gmin{mg ’L?}’ for
p- 4y

7

2
m; 1
a;(py;)| < Z 2 Z 1
lyi|l<p /2 l<p/2m; D lyi|>p /2m; *Ji
2 2
: 4dm. . :
< (i+1)+ M DM T <6l
b m, p p p p

Case (ii): If m, > £ then
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2
m; 1
2 oyl >, =+ >, o=
lyil<p /2 lyil<p/2m; P lyi[>p/2m; *Yi
2 2
< ;<£+1>+1= SRS}
b m, b D

Case (iii): If £ < m, < p,then

> la(py,)

lyi|<p /2 p p2 S D

Case (iv): If m; > p,then

2

2
§2<m7?> r1<3

2

p

a,(py;)
yil<p/2 D

completing the proof of lemma 3.3. O

Continue the proof of Lemma 3.2. Suppose
m1§m2§m1§p<ml+1§---§mn.

By Lemma 3.3,
ai(pY)| = H ai(pyz
lyl<p/2 i=1 |y|<p/2 m;<p m;>p
<3l [T 2= ”21|/|H’”>f’ - (3.26)
p" sy P p" p"

Using (3.26), then continuing from (3.24)

|E2 . E3| S p(?m/Z)fZ(p . 1) . 3n21p172n |’///

n
[T m.

1=[+1

Thus for A = £1, the fundamental identity gives

Z a(x) <=

+|E — E|+|E, — E,|

xGV[Z
§| |+(p —p" )| /|+p(3n/2) 2( . n21 - 2n| 5 H m,
p i=l+1
2 n
- n n —(n/2)—
L 32y s T (3.27)
i?,_J ® . i=1+1
@ [

The task now is determining which of the terms ©, ®, and ®in

(3.27) is the dominant term. We consider two cases:
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Case (i): Suppose [ <4 —1. Then compare
9 3n21 I—(n/2)—

5= | 21T 141 My 1/ plf(n/2)+13n21 ﬁ m,
,,/“13 AN I//I 11
p n n n
= < 3n2lpt AT = 32!
i=1 m,
This leads to
0 <32 0.

Case (ii): Suppose [ > 4. Then compare
noyl I—(n
© 32 p "I, m

® = 1] =32 I
< g9l plBn/D-L20nl) _ gugly (/211 < %21
This gives that
020
p

So for any [, we always have

noyl
e < (3”2‘ @ + 3p2 ®).

Returning to (3.27), we now can write

Y ax)<0+2@+©

xeV o
. 3n2l
<0+ @+32 O+ ®
neoyl
:(1+3"21)®+<1+3p2>®

512
<7, (";J |), (3.28)

where 7/ =1+ 3"2". On the other hand, as in the proof of Lemma 2.6
we know that

ZQ(X)ZQ—n g

x€V o
P

N.~|.

(3.29)
Hence it follows by combining (3.28) and (3.29) that

s n 2
p p

where v, =2"(1+ 6"). Lemma 3.2 is proved. O

65



§3.3. Bounds on the error terms in the Fundam-

ental identity (mod p*). The case of A = +1.
Putting A = +1 in (3.2), we obtain

> ax)=p")y ax)

xeV g
» 3 2

P 2 P
+p" > aly) + ™ D> alpy) + 27 Y a(p’y)

yi=1 yi=1 y=1

Pl (v") Plo"(y) \ Q" (v")
Br . By , By
P P P
—pP N aly) = p 7 Y alpy') — 7P a(pty)
1/1/21 Z/i/zl yi=1
') \ Py 1 .
En ’ B B

(3.30)
Throughout the section and next, for convenience, Er, or ET,,
i,j € {1,2,3,4,5,6} will indicate an error term or a value bounding
that error term.
We apply the identity in (3.30) to the function a(z) = x , *x
where .~ is a box centered at the origin, given by
v ={xew|e <z <a+m,l<i<n} (3.31)

where ai,miEZ,lgmigpg,lgign.

For later reference, we construct a series of lemmas analagous to

those of Chapter 2.

Lemma 3.4. Let .~ be any box of type (3.3) and a(x) = x , * x (X).

Then we have

2
p

a(py) S
1

I

Yi=

Proof. First,

(—x- py)

)Z e.(—x-y)

y;=1

y =1 Y; 11 1

:;p%
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x=0 (mod p°)

Z >l (3.32)

uc. 7 ve.r
u+v=0 (mod p?)

Now we need to count the number of solutions of the congruence
u+v=0 (modp?),

with uw,v €.~ . In fact for each choice of v, there are at most

[T, ([m, /p*]+1) choices for u. So the total number of solutions is

less than or equal to [1', m.([m, / p°]+1). It follows from (3.32),

i 1). (3.33)

1)2 1 n 7nZ
2 alpy) < ¢ Hmj([pz

y;=1
We split the product in (3.33) to get

T (2

i]+1> H Hm<

m; <p m; >p

Then by the help of this inequality we obtain

ia(py ( 7+1> |';1:| 11 i

y;=1 m<p m>p 77%12132 p

proving the lemma. [J

Lemma 3.5. Let .2 be any box of type (3.3) and «a(x) = x , * x ,(x).
Then we have

S alpy) <

y;=1 n;>p

Proof. We proceed as in the proof of the preceding lemma. First we
observe that

zp:a(p y)

y;=1 Y; 17 —1

- Z 3n Z p(_x'Y)

y;=1

(—x- p’y)
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ue.z ve. s
u+v=0(mod p)

< pln qumﬂ) (3.34)

The last inequality in (3.34) is true by the same reason given in the

proof of the Lemma 3.4. Now we split the product in (3.34) to get

T ([5 )HH<>

m;<p m;>p

and thus deduce

finishing the proof. O

By the fundamental identity (3.30) and the fact that all a(y) are

positive we have

Z a(x) > p*3Za X

XGVpg
Main Term
3 2
_p(3n/2)71 i a(yl) _p2n72 i: a 5n/2 3N a 3 35)
yi =1 v =1 yi=1
e’ ) e v
E'7“4 l Evr5 Erg

Now let us estimate the error terms Er,, Er, and E7; in (3.35).

From Lemma 3.4 and Lemma 3.5, it is follows readily that

])

Er, <p™ Y a(py') < p"?| v

yi=1 m; >p

And

p
ET’G S p(5n/2)73za(p2yl) n/2 | 7

yi=1 m;>p
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Before embarking on the estimation of the error term FEr,, it is

useful to establish an analogue of Lemma 2.7 of Chapter 2.

Lemma 3.6. Let sz,Z =V, (Q) be the set of integer solutions of the

p’Z

congruence (3.5) and let A = %1. Then for any box .» of type (3.31),

2N VpQ’Z

< %(";' + N, p">, (3.36)

where we define

N = H({ZZ}H) (3.37)

1=1

Proof. Partition .~ into N = N , smaller boxes B,

-~ =B,UB,U---UB,,
where each B, has all of its edge lengths < p*. Then we can apply
Lemma 3.2 to each B,, to get

SNV,,=30|B.AY,
i=1
(Lemma 3.2) N B
< 3 %<—§ + p")
i=1 p
Y, o ,
=52 B+ Ny

i=1

The proof of Lemma 3.6 is complete. O

Keeping in mind the above lemma, we begin bounding the error

term ET,.

»’

Br,=p™ 0 Y a(y) <p@ S ey (3.38)

y =1 y' (mod p*) :
pQ‘Q* ") Q" (y")=0 (mod p?)

So we shall estimate the sum Zy,( a(y’ )| and for brevity

mod p?),Q* (y')=0 (mod p*)

we shall write > )=2_". Define p;, as in (2.38) of

mod p?),Q* (y)=0 (mod p?
Chapter 2.
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251 for k> 1,
=10 for k, = 0.

| Sln Tryz/p =1 2yz
Then
00 00 3
DRTUED SRS DD D | R S
y (mod p*) k=0 k,=0 y Yi
Q" (y)=0 (modp2) pvp3/m S\?/,\§2]‘ pd/m
00 00 3
<
N ;J kz-:o 2 H 4(2° 1p3 /m;)
[vi \<2‘ p/m
_|///|2§:,,,i Z* ﬁi (3.39)
B pdn =0 k=0 y i=1 2% ‘
' vil<2" p* / m,

For non-negative integers k,,k,,...,k, , let

2"%n
3

»%”:{yeZ”gllyAsTip ,1§i§n}-
p m

i

Set
k3
m, = 2[2 P ]-i— 1.
; m,
Then it follows that
n n 2k7;+1p3 > n 2ki+2p3
| = F< < : :
| Hmz_ﬂ( o +1 _H o (3.40)
By the inequality (3.36) in Lemma 3.6, we have the upper bound
//l
2N Vg <7, |;2 | +v,N . p", (3.41)

where by (3.37),

:ﬁQZﬂH): H ([ZQ{]H). (3.42)

ok >m; /4p

The equality in (3.42) is true by the following implication:
oki+2 3

p<p2

AP UL N
4p m,

3
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But the right -hand side of (3.42), is less than or equal to

n 2k +1 1 n 2kf
I ( ++ 1) <2 ] ( El).
ity m; p =1 m;
oki >m; /4p 2ki>m, /4p

So that

n k;
No<2 ] <2mp +1). (3.43)

Apply the upper bound (3. 40) to the inner sum Z* in (3.39), to obtain

> —Z Z\/’H‘C)ZH .
Q" (y)= 0(mod p* ) 2™
Wil<p® /2

<o, +0,, (3.44)

i=1
. 2|
= 2%y 11 (3.45)
D
and by the inequality (3.43)
|///2 0 0 . n 1
Oy = 3n Z “Z’)/nN/' HW
P k=0 ko i=1
n | 7 ? n = = - 2 p ]'
- 2 777 3n p Z Z H m + H 22k7
p =0 k-0 =l i i—1
oki>m, [4p
512 n = ]- <2k P ) 1
= 2nfyn |//37|1 pn ZO 22’% + ; mL + 1 22]€i
P =1 <m; /dp 2 >m, /4p

71



. q )
2 n
SNy DD
=1 | 2ki>m, [4p
Rt 2p2]
p2 H 3 m;
o 2l (4 2p>
S 2 fYn n _—l_
p2 Pl 3 mi
w2 ( 4p < 10)
<2, =
p2 m; <p mi 7)1;[]) 3
o N2l
< 8"y, 12 . (3.46)
p2 7,1;[,, m,
Thus by inequalities (3.38), (3.44), (3.45) and (3.46), we have
2
3n // " n =
p m; <p m?ﬁ
n n n |"///|2 p
=27y p™ 7 |+ 8"y, e [ [ (3.47)
Er41 p m;<p mij

Er
Summarizing our findings we obtain

Theorem 3.1. Assume that n >4 is even, and that A (Q)= +1.

Then for any .~ box centered at the origin,

2
A
ZO‘(X) > | p3| —|Errorl,

xeV
where
|E |<23n (377/2 |/| + H p
rror : Y /2>+1
ET4,1 . m; <p
E742
2m, 2m
-2 2)—
+p" |z (/273
m;>p? m;>p
Ev7[; E’V‘6

Here we have indicated below each term, the error term bounded by

the given value.

In what follows we compare each error term in Theorem 3.1 to the
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main term | 2" /p’. Of course we are seeking to make the left-hand
side positive, so we make each of these error term less than 1/5 of the

of the main term. For the error term Er,,, we need

1]
p’
For the error term FET,,,
1 |///|2 n |»///|2 p (n/2)-2 n p2
I3 p3 > 7,8 p(n/2)+1 qu)E — P > 97,8 nl:lp mi°(3'49)
For the error term FEr;, we require that
1 |"/// |2 n— - 2m7' n me
—==>p" s ] = 2 =5p ] 55 (3.50)
5 p m;>p? p mzp’
Finally, for the error term Er,
1|///;| 77/2 2m /| 2 5p77/2 H le . (3‘51)
5 p m;>p m; >p p

If the inequalities in (3.48), (3.49), (3.50) and (3.51) hold, then
there exist solutions for the congruence (3.1)
Qx)=0 (modp?),

in .~ + .. This is the content of the next theorem.

Theorem 3.2. Suppose that n > 6 is even, and that A (Q)= +1. If
(3.48), (3.49), (3.50) and (3.51) hold, then

S 1l I

xeV
In particular
|~
5p°

V(s +.2)>

The condition n >6 is placed in Theorem 3.2 because when
n =4 condition (3.49) always fails. The next corollary demonstrates

the existence of a primitive solution of the congruence (3.1).

Corollary 3.1. Make the hypotheses of Theorem 3.2, and assume that

n>6. Then .~ + .2 contains a primitive solution of (3.1).
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Proof. First, recall that a solution of (3.1) is called primitive if some
coordinate is not divisible by p. We shall write plx for imprimitive

points. Thus to prove this corollary we must prove

Z a(x) > Z a(x).

xeV xeV
plx

As in the proof of Lemma 3.5, we can write

Sa@< Y am= Y31 Sﬁmj([n;i]Jrl)SI///IH 2m,

xeV plzi, uE. s ve. s i= m;>p
plx 1<i<n u+v=0(mod p)

(3.52)
We claim that the latter quantity is less than | " /5p’ for n >6.
Indeed, by our hypothesis (3.51), which says
n 2m, 2m, A
| 2| > 5p /27,1;[,, ) — w];[] ) < 5|pn/z-
Since n > 6, the latter quantity is <| »|/5p’. On the other hand
Theorem 3.2 yields,

)2
Za(x) > —|'//L )

xeV 5p
We therefore obtain

> ax) > |5’/;L2 - a(x)>0,

xeV xeV
px plx

completing our proof. [J

§3.4. Special case that .~ is a cube, A = +1.

In connection with Theorem 3.2 we study the following special

case when the box .~ is a cube.

Corollary 3.2. Suppose n > 6 and p > 5>/ =02/ (yhere
is given in (3.6)). Let . be a cube centered at the origin with all
m, =B, B>25""y/"p**  Then . 4.2 contains a primitive
solution of (3.1).
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Proof. We may assume B:{2351/"”yi/"p3/2w (“11” denoting the

smallest integer greater than or equal to B). In particular, since

p > 52/(mln/ (=) 22/ we have p*/? < B < p*. We need to check

n

that the hypotheses of Theorem 3.2 are satisfied. Indeed,
(348) <= B">5-2"4p""? « B>57"24/"p"".

For the hypothesis,

2 3
(349) <= 57 (3277, p" > [+ ] Lr=111
m;<p tp<m;<p

<= n>6andp> 52/("*4)(32)271/(7174)72/(”,4).

n

Next, for the condition,

Qm' n+1

(3.50) <= B" > 5p""" HZ -~ <= B" > 5p""', since B < p’
<:m;>p3 S §Y/n /)
Lastly, for
(351) <= B >5p"* ] 2m; _ g 2;5” oy 4

m; >p
Thus the hypotheses of Theorem 3.2 are satisfied, and so Corollary
3.1 applies.

§3.5. Bounds on the error terms in the fundam

-ental identity (mod p*).The case of A = —1.

Letting A = —1 in (3.2), we obtain

> ax)=p") ax)

xeV .
o 2

b b p
_p3n/2 Z a(y/)+p2n—1 2 a(py!) _p5n/2—2 2 a(p?y!)

y =1 v/ =1 yi=1
r'la’(y) o Q" (v o p\Qt(y’)
En Eny P Er )
+ p(3n/2)—1 Z a(yl) o p2n—2 Z a(pyl) + p5n/2—32a(p2yl)‘ (353)
yi =1 y =1 yi=1
Py PlQ"(v) ]
E'VT’4 EVT5 B
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Letting a(y) = x , *x , as before, so that all the a(y) are positive

we see

Do ax)=p) alx)

Main Term
3 2

p p Y4
— ™" > aly) = p" P Y alp’y) - p™ ) alpy’).

gl =1 yi=1 y/ =1
q * * ! %
P’lQ" (v . Pl ) ) Q" (y)
Erl Ery Ery

(3.54)
Let us now bounded the error terms in (3.54). The error terms
Er, and Er, can be bounded easily by using Lemma 3.5 and Lemma

3.4. We obtain

Lemma 3.5

ET’3 < p(5n/2)—22p:a,(p2yl) ; p(5n/2)—2 |/j/| 2mz — 77/2 | 2 2m
y'=1 p ! m; >p p m;>p
pg LemnTla?ML | 2
_ /’ m
E’l% S p?n 2Za(p yl) S 2n 2 — pn 2| 7
yi=1 m >p2 p m; >p

To estimate the error term E7 we need to construct a lemma like
Lemma 3.1. We shall prove the Lemma for both the cases A = +1
and A = —1 although for this section we just need A = —

Lemma 3.7. Let p be an odd prime, Vp3 = Vpg(Q) be the set of zeros of
(3.4) in ZZ?,, and . be a box as given in (3.3) centered at the origin

with all m, < p°. Then

1, <|/§|+p3”/2‘1> if A=—
< p
|

7z NV,
.\~ +p3n/2> if A=+l
p

p

(3.55)

where

on/2)
2”(1+2"+ ),A:—,

2" (1+2" +2027), A= +1.
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Proof. Consider (3.2), the fundamental identity (mod p*). Put
a=x,*x, =2,a(y)e;(x-y). Then the Fourier coefficients of a(x)
are given by a(y) = p*"a’ (y) and by Parseval’s identity satisfy

> lay) = p” — S, =141 (3.57)

Consequently from (3.57), the error term Er, in (3.2) can be bounded
by

3

p3n/2—1 pz a(yl) < p3n/2—12|a(y1)| < p3n/2—1 |.%, .

; y

(3.58)

1)2\Q7*(Y)
Besides this we have that the main term in (3.2) is
Py ax) =p Zx/ X, (%) = |;)| (3.59)
Also we have by Lemma 3.4,

2

n— n-1 |-~ 2m n—
p* ™ Y alpy’) < p? )= =p 1|/|]_[ 2,(360)

p m; >p2 p m; >p

1/7:,:1
P’|Q* (v)

and by Lemma 3.5,

L 2 2m,
p(5n/2)—3za(p2yl) (577/2) 3| /| H m, — p(n/2)—3 | ///| H mz‘

y; =1 m;>p m;>p p

Now turn back to (3.53), if A =—1, we have

Do ax) <pT) alx)

xeV g X
P

p’ P’

D
+p(3n/2)fl Z a(yl)—i—pzn*l Z a(py/)—l—pm/zfgza(p?yl)

yi/zl yi/zl y{zl
PR (y) PR (y)
(3.62)

Then by inequalities in (3.59), (3.58), (3.60) and (3.61) we obtain

512
Za(x)§|;3| _|_ 3n/2— 1|/|+p |H L_|_ n/2— 3

XEVpg m; >p? m;>p

2m
p

(3.63)
But, as in the proof (2.23) in Lemma 2.5 of Chapter 2, we have
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V,N.»|.

p

> alx) 2 ol (3.64)

XGVP3

Thus we have

n |///| 3n/2)-1 n—1 Qmi n/2)—3 Qmi
<ot ™t T S T T )
p T m;>p° p m;>p p
— . YY J [ YY J
° 3} o

|Vp3 N.»

(3.65)
The task now is designation which of the terms @, @, ® and @in

(3.65) is the dominant term. We consider two cases:

Case (i): We define [ by
m1§m2S---§m1<p2§ml+1§---§m

n *

Then
I. Assume [ <% —1. Then compare
9 B pnfl I_Imizp2 % B 2nflpn+2 B 2nfl - 27171 < 27]
o #H?:l m, p2(n—l) Hmi<p2 m, pn—?l—? Hmi<p2 m, - 1.1 — )
which leads to
n 2 ) //‘
0<2"0® or p'! H TZZ < 2" |'/3| )
m>p2 p p
II. Assume [ > %. Then compare
n—1 2m,
© r Il .7+ 1 om. 1 1
o= [ < s [ 2w <) =27,
e p/ngz P’ p/zmgf p"?
which implies that
e S 277,/2 9 or pn—l H 27732 S 277,/2p(3n/2)—1‘
mi2p2

We get by (I) and (II) that
© < max (2'®,2'°@) <2'® +2'°@.

Case (ii): We define I’ by

my Smy S Smy <poSmy, S Sm

Then

III. Assume [’ <2 —1. Then compare
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9 _ (”/2> 3 Hm - p _ 2nfl'pn/2 _ 27171’ - 9" <£>l
o P% i=1 ml pnil 1_[mi<p mi p(n/Q)il Hm,<p mi B p"/2 2
n (n/2)-1 (n/2)+1 ’ '
2 2
<228 < ,
p"t A2 p
leads to
2(n/2)+1 ’ n9m. 2(77/2 )+1 5
o S (1) or pn/2—3 H m, S | /3 )
p m; >p p p D

IV. Assume [’ > 2. Then compare

(n/2)-3 2m;

(4] Hm >p p 1 me 1 2 1 2\n—1I'

6 - p(3w/2) 1] : :/ pn+2 mll_IZp P S pn+2 ”};Ip 2p S pn+2 (2p )
2n 2

1 .
spm 2p*)"/? = 7

implies that

2n/2 . Om. 277,/2 )
o< ® or pn/zfdn ng p® /A

2

p mi>p p p

Thus by (IIT) and (IV),

e < 2(n/2)+1 277/2

p p
Together, case (i) and case (ii) gives us

("/2>+1 277/2
9+e§<2”+ >o+<2"/?+ 2)9
p b
We conclude by making use of (3.65) to get

§2“(o+9+9+e)

2(n/2)+1 2n/2
<2" o+9+(2"+ P >o+(2"/2+ p2>9

n/2)+1 2”/2
2" )o]+9+<2"/2+ 2)9
p p

s

n/2)+1

="

n/2
)o+2"<1+2"/2+27>9

| AN

( 3n/2 )
_|_

oln/2)+
where 7 = 2" (1 2" + ) >
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We now examine the case A = +1. Appealing, once more, to
(3.2), we obtain
> ax) <p )y alx)
erp;; X
3n/2 P3 / 2n—1 P2 !/ 5n /22 . 2_1
+0" T aly)+ 9 D alpy)+ 0™ D alp®y)
y'=1 y'=1 y'=1
P)lQ°(y") Pl (y) plQ* (v
2
o 3n e 2m, n/—2 | # 2m,
§| 3| +p3,/2|/1| 2 1| n|H (5,/2)2|2n ; )
4 by (3.57) . m; >p . p m;>p )
by (3.59) by (3 60) by Lemma (3.5)
But, once again by (3.65), we obtain
V ﬂ Y n |///| 3n/2 n—1 Qmi (n/2)-2 2m2
|p3 =2 3 +L+p H 5 TP H :
\_p_g @) . m;>p° ] . m;>p p ]
o ) @
(3.66)

We do a similar investigation (as before) to determine which of the

quantities @, @, ® and @ of (3.66) is the dominant term. Indeed in case

(i) when [ <% —1, we have (as we saw earlier) © <2" @ and when
I<%,

n—1 2m;
9 p m>p° z 1 2m
@ - p3n/21 —= p(TL//2)+1 ”}1 p — _(n/2)+1 ml]p 2p
1 271/ 2
n/2 __
< S 2P =5
n/2
which means © < @O . We therefore obtain
2n/2 2n/2
©<mix(20.2 -0)<2re+’_o.
In case (ii) when I’ <2 —1, we have
@ _ (n/2)-2 Hm - p _ 2n—l/p(n/2)+1 _ 2n—l'
o Fnizl ' pn—l Hmi<p m, p(n/Q)—l -1 Hmi<p m

2n p v 2n p (n/2)-1 et
< p(n/?)—l (7) < p(n/?)—l (7 < (/2% )

which means @ <2"*"' @. When I’ < 2,
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/22
R e IEE |
< (2p")"* = 2”;2 :
which means @ < ;22 ®. Thus we get
o<r e+ o

Putting case (i) and case (ii) together, we obtain

2n/2 2n/2

0+ 2@ + @ + 2" @ + @.

We therefore deduce by (3.66)
V.N2|<2'(@®@+@+©+09)

271//2 271//2
32”o+®+(2”+2<”/2>+1)o+< + 2)@
p Y

2n/2 2n/2
:2”(1+2”+2<n/2>+1)0+2”<1+ o+ p2>®

8 n
ST’H <| 2|+p3 /2>
p

where 1’ = 2" (1 + 2" + 2""/2*),

Lastly let n, = 7" if A=—1 and n, = n” if A = +1 to conclude the
proof of Lemma 3.7. [

We now bound E7r, using the above Lemma. As we shall see this
method leads to a poor bound. We obtain an improved bound on

page 83. First, it is clear that

p }

Bry=p™? Y ay)<p™? Y fay). (3.67)

g =1 y' (mod p*) t
])3‘Q*(y’) Q" (y)=0 (mod p°)

so the task become to bound the sum |a(y | For

¥y (mod p*),Q* (¥')=0 (mod p*)

simplicity we write >_° instead of > . Using the fact

y(mod p*),Q* (y)=0 (mod p*)

that
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e ]2

and taking into consideration our definition for p, = 2% when &, >1

and p, =0 when k, = 0, we may write

S ) f? ﬁ? > IIH““{ 3’4;}

y (mod p*)
Q"(y)=0 (mod p*) v’ [ m, <\y <2 p? /m,
<% ¥ sy
\y\<2‘ v /m
iRy
= 3n z Z Z H22k : (368)
P k=0 k-0
Y \<2k pg/m

For non-negative integers k,,k,,...,k, , let

Y

3
ﬂﬂz{yezgnm§2“§,1§ign}
Set
k3
m!=2[2 p]+1,
, .

Then it follows that

n k; n
|| = Hm (2 . +1> <112 (3.69)
m, m

i i=1 i

Using (3.55) in Lemma 3.7, we obtain
<| ]j |y ponro- > (3.70)

Inserting the upper bound (3.70) applied to the inner sum Z; in
(3.68), we obtain the following'

z |a(y // 22k
Q*(y)z Q(modp ) k=0 k,=0
ly;|<p® /2
< L1 < }OO: L2 /21 1
=~ 3n z nn + 77,, H 22]%
D k=0 k=0 p iy
< ¢ 6, say. (3.71)

Then by the inequality (3.69),
82



N D 2 1
<4 3n+3|/|H ;Qk
w17
- 23 n p3 (3‘72)
Next for the sum g,:
n 1
P/ 11—[2%
k=0 k,=0 i=1
| /)| " 3 o0 o0 n 1
=2, =S5 [ e
P =0 k=0 i=1
512
<oy L2 (3.73)

n B
From (3.67), (3.71), (3.72), and (3.73) it follows that
Br <p™? Y laly)

Q(y)=0(mod p*)
< pin/2( 93n | | 92n % |2
<p M, s +27n, W

512

< 23n77 | ///|p(3/2n)73 + 22”77 |%

— n . ) n D

En —_—
ETLQ

Notice that the error term FEr, is too big, that is, larger than the
main term. This causes trouble. Thus we appeal instead to another
more elementary way of bounding Er; .

S ay) < e <141

Q(y)=0(mod p*)

We get the estimate
Er, < p™?| 4,
which settles the problem.

Summing up our investigation, we obtain
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Theorem 3.3. Assume that n >4 is even, and that A (Q)=—1.

Then for any .~ box centered at the origin,

2
&
ZQ(X) > | p3| —|Error|,

xeV

where

2m, o 2m

|ET’T’OT’| <p3n/2| //|_|_ pn/?
| A

En . m;>p ] m; > p

ETJ Ero
We emphasize here, below each term we have indicated which error
term it corresponds with.

Our next step is to make each of the error terms FEn, Er,, and

Er, in Theorem 3.3 less than 1/4 of the main term.
1]z

Er : P s < = I, = || >4pPHt (3.74)
2 12 2m,
E’f’ (n/2 m Z »/| — |.%/| > 4p(n/2)+1 H ﬂ (375)
m;>p p m;>p p
2 1 s 2m,
Er,: pls m <7 /| = >4 ] 2 (3.76)
m; > p p 771,7;2])2

Wemay summarize the estimates (3.74), (3.75) and (3.76), in the form

Theorem 3.4. Suppose that n >4 is even, and that A (Q)=—1. If
(3.74), (3.75) and (3.76), hold, then

|l 2F 3| »} 1|~
ZO‘(X)E 3 4 .3 :Z 3

xeV p

In particular

@
V(s +2)> p3|'

As a corollary we obtain the existence of a primitive solution of

the congruence in (3.1).

Corollary 3.4. Under the hypotheses of Theorem 3.4, .2 + .~ contains

a primitive solution of (3.1).
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Proof. This is proved in exactly the same way as corollary 3.1.

Indeed we have to prove

z a(x) > Z a(x).

xeV xeV
plx

First of all, by Lemma 3.5, one can write

by (337) 5, 2m, s
ZOJ(X) = z OC(X) v p2 za(pZY) <|~| H T < % (377)

xeV plZi, y;i=1 m;>p
pix 1<i<n

for all n > 4. Notice that the last inequality in (3.77) is possible in view

of our hypothesis (3.75), which says
2m, 2m, |/
>4p P — = e
m[[p p m[[p p4ptPn
But by Theorem 3.4,

|~

xeV 4p xeV
pix bl

finishing our proof. OJ

§3.6. Special case that .~ is cube .~ , A = —1.
Corollary 3.5. Suppose n >4, p>22/02  Let » be a cube
centered at the origin with all m, = B, B > 41 pB/2%@/m) - Thep
4 + .7 contains a primitive solution of (3.1).

Proof. We may assume B = [41/”p(3/2>+(3/”>w and that p > 2®"+4/=2)
Then trivially all the hypotheses of Corollary 3.4 are satisfied.
Actually, for the hypothesis

, , 2m, , 2"B"
3.75 B > 4 (n/2)+1 —'| (n/2)+1 m
(3.75) p Q =

p > 42/(71/—2)22n/(n—2) — 2(2”-‘1—4)/(”—2).
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Next for the condition (3.76), we designate two cases:
Case (i): If B > p*, we get
, , 2m, wi1 2" B"
Bn/ > 4pn/+1 H ,n;’z Bn > 4pn+1 =t
p

m; sz

= P> = p> 20

Case (ii): If B < p*, then (3.76) is
Bn > 4pn+1 H 2,’7;’7 Bn > 4pn+1

2
m;>p

B > 41/np1+(1/n).

n—1)

Finally, for
(3.74) <= B" > 4B/t s B 4N/ /046
Thus the hypotheses of Corollary 3.5 are satisfied and we obtain a

primitive solution in the cube .~ .0J

§3.7. The main result.

Finally, we are in position to see

Theorem 3.5. For any quadratic form Q(x) with n > 6 and any prime p,
there ezists a primitive solution of (3.1) with
max {27 p*/? 2%} for A=+1, (3.78)

<
X1l < maX{42/,,,/p(3/2)+(3/n)’2(2n+4)/(n—2)} for A =—1. (3.79)

Proof. Corollary 3.2 gives us (3.78) and Corollary 3.5 gives us
(3.79).00
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Chapter 4

Small Zeros of Quadratic

Forms Modulo p™

§4.1. Introduction.
Let Q(x) = Q(x,,2y,...,2,) = 21<ic j<, 02,2, be a quadratic form with
integer coefficients and p be an odd prime. Suppose that n is even
and det A, # 0 (mod p), where A, is nxn defining matrix for Q(x).
Set IIxll = max|z;| and let V., =V .(Q) denote the set of zeros of @ in
Z". . Let

p
((—1)”/2detAQ /D ) if pftdetA,,

0 if p |det Ay,

where (s/ p) denotes the Legendre-Jacobi symbol and let @*(x) be the

A, Q) =

inverse of the matrix representing Q(x),(modp™). For y € Z, set

de.(xy) for y=0,
¢(me : y) — ] xev
|VP"’ | -Pp

m(n—1)

for y=0.

where e . (z) = ™/*"
p

The purpose of this chapter is to obtain small primitive solutions
of the congruence,
Q(x)=0 (modp™) (4.1)

and more generally of obtaining primitive solution in a box .~ with | /|
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sufficiently large. As before we shall first calculate the Gauss sum

S =S(f,p") = iepm (Na2” +zy), (4.2)

r=1

and then we apply this sum to calculate the function ¢(V,y). Next we
employ the calculation of ¢(V,y) to obtain the fundamental identity.
The problem of finding small primitive solution of (4.1) will reduce to
a search for good bounds on the error terms of the fundamental identity.

The final result of this chapter is stated in the following theorem.

Theorem 4.1. For any quadratic form Q(x) with n even, n >4 and any

odd prime power p™,m > 2, there exists a primitive solution of (4.1)

with Il S maX{Gl/npm[(l/Q)-‘r(l/n)], 22(7L+1)/(n—?)g?/(n—?)} )

We begin our work to prove this theorem.

§4.2. Determination of ¢(V,y) modulo p™.

We start this section by

4.2.1. Calculating the sum S(f,p™).
The following lemma allows us to find the evaluation of ¢(V,y). A

special case of this lemma (when m = 2) was proved in Chapter 2.

Lemma 4.1: Let p be an odd prime with p{a and \,a € Z. Let the
sum S as in (4.2). Let j € {0,1,2,....m —1}. Then

Vepm,_,-(—ZEY gy )pt I if p’ |\, p’ |y and m — j is even,
S=1x(aX)e,., (—daNy”)G,p" 2 aif pTx,p’ |y and m — j is odd,
0 if p? |\, but p’ fy,

where x is the Legendre Symbol , N =X p™, ' =yp ™, and X\, N, @
are tnverses mod p™ .
Proof. We shall prove Lemma 4.1 in the same fashion as the proof

Lemma 2.1 of Chapter 2. We shall require applying Theorem 1.4 of
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Chapter 1. Assume that p { a. Then the critical point congruence is
p'f'(z) = 0 (mod p)
or equivalently,

p'(Aa2z +y) = 0 (mod p), (4.3)

where ¢ = ord (f’). Now we have to treat two cases:

Case (i): Assume that p’||\ and p’ly, with ;€ {0,1,2,...,m —1}.

Then ¢t = j because p’ ||(2a)\, y). Thus (4.3) is equivalent to

2&% T = —lj (mod p). (4.4)
p p
Put A’ =MX/p’ and 3’ =y/p’, then (4.4) becomes

20\ x = —y' (mod p)
or equivalently, there is a unique critical point a given by
a=z=-2a\y (modp).
Thus if m — j is even,
S=5,=eu (f(a"))p™? = €, (Aaa™ + ya ) pm /2,

where o is the unique lifting of « , to a solution of (4.3) mod p™/*"/?.

We can take o =—-2a)y (modp™) where @,\ are inverses
mod p”. Then
fla) = daa™ +ya" = pNaN Az — ply"N2a (mod p™)
= Py (da)N — 2a)) (mod p™)
= —4a\'y"p’ (mod p™)

and so S, = epmﬁ.(_Za—xlyn)p(mﬂ‘)m‘
If m — 7 is odd, then

A =2p'f"(a*)=2p72a)\ = 4a) (mod p).
Thus

S=5 = XQ(AQ)epm, (Aaa™® + ya*)Gpp(mel)/z

- X2(4CI,)\/) epmij (_Zaxlym)Gpp(m-w_l)/Q_
Case (ii): Suppose that p’[x but p’ {y, with j € {12,...,m —1}; say
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p"lly with k < j. Then we see that t = k. By (3.1), the critical point
congruence is
p' (2aAz) = —yp ™' (mod p),
or equivalently
= —yp" (mod p),
which has no solution. Consequently S = 0, and this completes the

proof of Lemma 4.1. O

4.2.2. Evaluating ¢(V,y) for the case of a diagonal quadratic

form.

Suppose that Q(x) = Y1 a.x’; with p ta, 1<i<n.We remark that

1=1 """
if y = 0, then by the orthogonality property of exponential sums,

e xy)= 3 p(z (A@(x))) 6 (x-y)

xeV XGZZW

=p "> ) e (AQx) +x-y)
=p " en(xy)+p "D > e n(AQx)+x-y).

A=0 x

5 Sy

J

Now, if y = 0, this implies that
|V| — pm(n—l) i 52 = SQ — |V| . pm(n—l) — ¢(V,0).
Next suppose that y = 0. Then, by (1.19) of Chapter 1, as some y, = 0,
n p"
S, = p_mzepm (x-y)= p_mnzepm (zy,) =0,
X =1z
while

SQ = :lfmz Zep"’ ()\Q(X) X Y)

A=0  x

— p%zzew (A(aﬂf + %%2 +oee anfﬁi) + Ty + Ty, + 2y, )

A=0  x

SV')\
(4.5)
Hence we have S, = ¢(V,y) for all y. From now on we shall use ¢(V,y)
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to mean S, and vice versa. We shall treat the inside sum S, in (4.5)

separately.

4.2.3. The sum S,
The sum S, in (4.5) may be rewritten

S, => en(Aaz! +zy ]+ + [Nzl +y,3,))

= Z ep’” ()\a'le —|— ylxl) e Z epm ()\a'nxi + ynxn) (4‘6)
= HZ@ (Na,z! + xyl)
i=1 T =1
Gauss sum

We have the following analogue of Lemma 2.2 of Chapter 2.

Lemma 4.2: Suppose n is even. Let S, as in (4.6). Let p’|\,
0<j<m-—1. Assume p{a,-a,-----a,. Then
§.p" % (—ANQ(y')) if p’|y, Jor all i,
S, = , (4.7)
0 if p’ 1y, for some i,
where X' = p\,y' = p~'y and
1 iof m—7 is even,
S5 = 4.8
! A if m— 7 is odd. (48)
with A = x ((=1)"?) x (a,-+a,), X =X,
Proof. First let us suppose that p’ ||\ and that p’|y; for all i. Put
N =p7\ and y/ = p’y.. Then by Lemma 4.1, if m — j is even,
S)\ — epmii(_Za/—1X/ yl/2)p(m+j)/2_ ( 40, )\/ ) (m+j7)/2

= e (DN g+ T e (DT )
= pmtine (((—Z) N @yl +ayl +- + er’f))
IXQ (Yt )——BNQ (9),

_ g (CIVQ'Y)),

where @Q"(y), as defined earlier, is the quadratic form associated with
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the inverse of the matrix for ¢ mod p™. If m — j is odd, then again by
Lemma 4.1,
S, =x(aN)e . (—daNy)G,p" 2
x(daNe .., (—da N'y*)G,pttinr
= G (e, AN, e, (D NQ G+ o7+ )

A

_ pn(m—w 1)/2 '7/2 (( 1)”/2) (al---anj epm—j(@ N Q*(y/))

n is even

_ pyl(”L+j)/2A€pm7,'<(—4) X/ Q*(y/))
Next suppose that p’ ||\ but p’ {y, for some i. Then it is easily seen
that (by Lemma 4.1) S, =0. Thus the proof of Lemma 4.2 is

complete. I

Following the same method as in subsection 2.2.5 of Chapter 2,
this Lemma can be generalized to an arbitrary nonsingular quadratic

form (mod p™) as follows.

Lemma 4.3: Let p be an odd prime, n be even and Q(x) any quadratic
form. Let p’ |\, 0< j<m—1. Assume det A, # 0(mod p), where A,
is the nxn defining matriz for Q(x). Then

6.p (m+in/2g - (—ZYQ*(y’)) if p’ |yi, for all 7,
S, = |
' 0 if p’ 1y, for some i,

where ' = p/X,y' = p~'y and as given in (4.8).

4.2.4. Formula for ¢(V,y).

We are now ready to prove

Lemma 4.4. Let n be an even positive integer. Then

m—1

¢(V7 y) — pmn/me Z 6jpjn/2wj(yl)’
=0
p”?/j foralli

where y' = ply, 6. as defined in (4.8) and
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pm—j o pm—j—l : pm—j Q*(y,),
wy)=1="" "),
0 T Q).

Proof. Recall from subsection 4.2.2 that ¢(V,y)=p ">, 5, =5,.
Fix y = (y,,---,9,). Put y/ = p’y ,\’ = p/A. Then according to Lemma
4.3,

p"—1 m—1

Si= 2 L e, (FANQ (W)
A=1 =0 A
p!|Yis for all i p?|A

m—1 ] p"! N
_ Z 6jp(m+1)n/? Z € i (—4)\/62*(}’/))
i—0 A=1
p7‘yi]7 for all 4 PN
m—1
_ E 6jp(m+j)n/2 wj(yl)’
j=0

pj‘?/iv for all 4
where we have used Lemma 1.5 of Chapter 1 applied to the second sum

in the second step above. Hence, it follows that
m—1 —1
¢(V, y) _ p—m E 5jp(m+j)n/2 Wj(y/) _ pmn/Q—m 5jpj"/2wj(yl).
=0
pj‘g/i]v for all i p’ly; foralli

3

.
o

This completes the proof of Lemma 4.4. [J

§4.3. Small solutions of the quadratic congruence
Q(x) =0 (mod p™).

In this section we derive the fundamental identity modp™ (the
general case). Then we use it to find small primitive solutions of the

quadratic congruence (4.1).

4.3.1. The fundamental identity.

Let V. be as we defined above. Let a(x) be a real function defined on
Z). with finite Fourier expansion a(x) = >_ a(y)e,.(x-y), where a(y)=
p " 2a(x)e,.(—x-y). Then by definition of ¢(V,y),
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> ax) =a)V |+ aly) ) e (y-x)

x€V m y=0 xEme

p = a(0)|V,n |+ > a(y)o(V,y)

y=0

= a(0)[p(V,0) + p" "]+ > a(y) (V. y)

y=0

= a(0)p"" " +> a(y)¢(V,y)
=p " a®)p"" Y+ a(y)o(V,y).

X

Thus by Lemma 4.4,

m—1

dax) =p "> ax)+p" "> aly) Z §,p" " *w,(y')

Xevpm
p7\y7; foralli

m—1
_ p_m &(X) + pmn/?—m Z 6jpjn/2 Z a(y) wj (yl) .
i=0

) y
p’|y; for all i

But by noticing that the inner sum >_ a(p’y’) w,(y') can be written

Yo ay)w,y)= D a@’y)w,y)

y y'(mod p™~7)
pily; for all i
= 2 Y =)= X0 alpy )
pm*y)\,Q*(y/) PmﬂjHQ*(Y')
= 2 )=t 30 alr'y),
Pm*y)\IQ*(y/) Pmﬁj\Q*(y/)

we obtain,

Theorem 4.2. [The fundamental identity] For any a(x) as given above

Sax=p" Y a®

XV m x (mod p™)
/zm_1 n /2 —j — ! —j-1 ~ !
+p" Y "2 p > alply) - YD alp’y))
=0 y=1 y=1
"R () PR ()

(4.9)
where 6, as we defined in (4.8): 6, =1 when m—j is even and
6, = A if m—j is odd.
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oqe . . p™ I j
4.3.2. Auxiliary lemma on estimating the sum Zyizl a( p y).
Let .# be a box centered at the origin defined by
v ={xez'|o <z <o +B,1<i<n}, (4.10)

where a, B, € Z and 1< B, <p", 1<i<mn. Then |~

=11, B,, the
cardinality of .7 . View the box .~ in (4.10) as a subset of Z’. and let
a(x) = x , * x , with Fourier expansion a(y) = >, a (y)e.(x-y). Thus
for any y € Z,.,

n

o) =]

i=1 | sin” Ty, [/ p"
where the term in the product is taken to be m, if y, = 0. In particular

a(y) < p_"mlljmin{Bf, <5ZL>2} (4.11)

|sin2 mBy, /p"

Y

Consider the congruence (4.1):
Rx)=0 (modp™),
where @(x) is a quadratic form. Our task in the next section is
bounding the error terms in the fundamental identity (4.9); see

Theorem 4.2. But to do this we need to develop a general lemma

similar to the Lemmas 2.8 (Chapter 2) and 3.4, 3.5 (Chapter 3).

Lemma 4.5. Let .~ be any box of type (4.10) and a(x) = x , * x (x).

Then we have

Proof. First,

Yy, =1 y z;=1
" 1
= —wax)) e, (—x-p'y)
r;=1 p Yi
o
=Y —ra®Y e, (x-y)
z;=1 y; =1



=p " ), alx
z;=1
x = 0 (mod p™7)

2,21

ue. s ve. s
u+v =0 (mod p™7)

< pﬂnHB (I —L j\+1) (4.12)

To verify the last inequality in (4.12) we count the number of

solutions of the congruence
u+v=0 (modp”),
with u,v €.~ . Actually for each choice of v, there are at most

" ([B;/p"’]+1) choices u. Thus the total number of solutions is

1=1

less than or equal to [1",([B,/p"’]+1). Hence it follows from (4.12),

+ 1) (4.13)

%)

])

Satm) < T18(2

y;=1

We may split the product in (4.13) such that

[a([-2]+1)= 11 2 17 2(2

B;<p™ B >p™”
Then by this equality we therefore have

= [l 2B
a(p’y) < =
yzl " 5 Q L™

Our proof is complete. O

4.3.3. Bounds on the error terms of the fundamental identity

(mod p™) for the case of cube . 7.
The error term in the fundamental identity is given by
m—1 T "
Error = p™/*) " p"/ 25j< p? > apY)-p ) a(ﬂY'))-
- p’”gf\zl*(yw p”*"?fl\:c;*m
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By Lemma 4.5 we get

m—1 " ]
|Brrorl < p™/> p" 2> " oly) a(p’y')|, (4.14)
Jj=0 y;=1
where
oy =7 P i PO,
—p g "R ()
Continuing from (4.14),
m—1
mn n 7 2Bz
|Error] < p /QZP(] 72 ]n| H mej
j=0 p B;>p™™! p
= 1 2B,
mn/2 5 i
= E—N “’“gﬂw i (4.15)
J= iZP

We now restrict our attention to the case where .~ is cube, that is,
B, =B, 1<i<n. Say p" <B< p"" for some j,e N, 1< j, <m.
Then

B>p"! = m—j<j, << j>m-—j,.

Continuing from (4.15), we get

m—1 n m—
2" | | oy
mn /2 , Z mn/? 5
|ETTOT| S D |///| E : (jn/2)+37, nm—nj | /| Z ]n/Q
j=m—jo P p

2" |///|2 & n/2)j—j mn /2 T ]_
=T S ey A

b j=m—j, p

271, > 2 ) 1 o
< 2L oy g 4 iz

mn /2

— 2n+1 |'///|2 p—m—(n/2)+1 4 2pmn/2 |///|

2n+1 | ///|2

mn /2 5
pm+(n/2)fl + 2 | 7

4.3.4. The main results.

Theorem 4.3. Suppose that m > 2, n >4, n even. Then for any cube

. centered at the origin,

S ax) >

xeV p

—|Error]| ,

where



2n+1 5 2 .
|Error| < % +2p" | |
p

Error?2
FErrorl

We compare Error1 and Error 2 in Theorem 4.3 to the main term

| 2[F / p™. In order to make the left-hand side positive, we make each

error term less than 1/3 of the main term. For the error term Error

1, we need
n+1 2
2 +(|.////;| < l | p(n/2)fl < 3.9ntl
m+(n/2)-1 :
p 3 p"
= p> AN 32/n2) (4.16)
For the error term Error 2,
1 4 2 mn
2p™/%| —|/m = || >3.2pm/Vt
< B> @/"pm/Hrmim, (4.17)

Collecting together the two criteria (4.16) and (4.17), we obtain

Theorem 4.4. Suppose that m >2, n >4, n even. Then for any cube
- centered at the origin, if (4.16), (4.17) hold, then

I
> .
D ofx) = 3 "

xeV

In particular

%
_Bp .

Vn(z+.2)=

It remains to prove under the hypothesis of Theorem 4.4, the
existence of primitive solutions of the congruence (4.1). Recall x is
called primitive if ged(z,,...,z,,p) =1. We shall write plx for im-

primitive points. Thus we have to prove

Zax >Z

xeV xeV
pIx

Corollary 4.1. Suppose m >2, n>m, n even p > 92(n+1)/(n-2)g2/(n-2)
and .7 is a cube with B > 6"/"p"/* "/ Then . + . contains a
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primitive solution of (4.1).
Proof. As in the proof of Lemma 4.5 with j =m —1, we have

Ea(x) = 2 a(x) < 221

xeV plT;, ue. 7 ve. s
plx 1<i<n u+v =0 (mod p)
<1]B ([Z] + 1)
=1 'p
p
B2n p n
7 (1 i F)
B2n
<——1+¢)",
<2 (i+e)

where ¢ < p {(/2Hm/WIF  However according to Theorem 4.4 we have,

i
>
E a(x) > T

xeV

Hence it follows that

ot =4~ a(

xeV xeV
ptx P
2 2n
= B "
> |3p,|n 7 (1+e)" >0,

by our hypotheses on the size of p. This completes the proof. [J

We close this chapter with

Proof of Theorem 4.1. It follows directly from Corollary 4.1.0
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