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CHAPTER 1 INTRODUCTION

INTRODUCTION

1.1: Description of the Project

This report descrikes a ten pass optimizing compiler
for the proyramming language Seguential Pascal (with
extensions). This version of the compiler was developed by
Gary G. Anderson in a =supported research activity through
the T[epartment of Computer Science and Kansas State
University. (This rescearch effort was funded in total by a

grant rfrom Perkin-Elmer LCata Systems.)

The PASCAL/S compiler documented herein is an extension
of the Sequential Pascal compiler, which was adapted from
the Ccncurrent FPascal Compiler developed by Hartmann.

[Hart75a]

The language Pascal was originally prorosed by Niklaus
Wirth and is described in detail in the following reports:
kirth, N., Systematic Prouramming, Frentice-Hall,

—_—— = —— —— . . S

1973.

Jensen, K. and Wirth, N., Pascal - User Manual and

——— ——— —— i ——— ——

Report, Lecture Nctes in Computer Science 18,

gpringer-verlay, 1974,

This report is written for an audience already somewhat

-1-



CHAPTFR 1 : INTRCDUCTION

familiar with the langnage Sequential Pascal and the
Hartmann SPASCAL conmpiler, Those readers sceeking a better
foundation in the lanjuage of Pascal are referred to the
follcwing sources:
Hankley W. and Rawlinson, J. Sequential Pascal
flides, Computer Science Departrent, Kansas State
University, 1977.
Erinch Hansen, P. Sequential Pascal
Informaticn Science, California Institute of

Technology, July,1975.

The PASCAL/S version of the Sequential Pascal Compiler
is currently running on an Interdata 8/32 at Kansas State
University. As with fprevious versicns, this compiler is
written is Sequential Pascal wmaking 1t easily portatle to
other machines., The <code generated is 1interpreted by a
virtual machine which is then simulated on the real machine,
in the current implementation at Kansas State. However, the
code generated by the compiler is designed to match the
instruction set of a prototype .machine currently being

develcped by Perkin-Elmer Data Systems.

The main focus of this report is tc document the
PASCAL/S Compiler. However, this report along with the

accompanying appendices may serve as a tutorial for those

oY



CHAPTEE 1 INTRODUCTION

learring Sequential Pascal for use with this compiler.

The remainder of this chapter includes an introduction
to the Sequential Pascal compiler implerented by Hartmann,
an introduction to the FASCAL/S compiler, and a descripton

of the remainder of the report.



CHAPIER 1 INTRKCDUCTION

1.2: JUSTIFICATION FOR PASCAL

The compiler for Brinch Hansen's Concurrent pascal
projrarring language [Brin75a] was developed by Hartmann in
his dissertation [Hart75a]. It delineates seven segquential
passes and provides the {oundation for the current work.
Hartmann's compiler for Sequential Pascal was adapted fronm

the ccncurrent ccempiler he documented,

Hartmann's Sequential Pascal cosmpiler was implemented
at Karsas State University in Octoker, 1976 on an Interdata
8/32. Simultaneously, the Navy Ccean Systems Center
(fcrmerly the Navy Undersea Center) [Ball 76a] was working
on its implementation for an Interdata 7/16. Following
these implcmentations several modificaticns were made to the
compiler ty cach group., While several of these changes are
reflected in the current version, it is primarily Hartmann's
cogpiler for Sequential Pascal which provided the
fundamental structure for developmcnt of the PASCAL/S

coepilecr.

Fascal, in particular Hartmann's corpilcr, was selected
for use at Kansas State in the development of the compiler
for EASCAL/S hardware for the following reascns:

Availability : A version cf Segunential Pascal

-l - -



CHAPTEEK 1 - INTRODUCTION

(SPASCAL) was available on thz2 Interdata 8,32 at Kansas

State for us2 Lty the research tean.

Acceptability: Pascal, as currently implemented runs
on a Fascal virtual machine which simulates a hardware stack
macnire, The idea of building a real machine close to the
simulated stack machine makes Pascal a natural, logical
choice for both the implementétion language and for a basic

compiler for the machine.

Ease of Modification: Since th2 compiler was itself
written in a high level language, 1t is rczlatively easy to
bootstrap up to a compiler for a ncw machine using this
compiler, The fact that Hartmann's version of the compiler
was writtem in Sequential Pascal and incorported many
features essential to the design of good software, means
that fewer person-hours would be required to incorporate the

desired changes,

Locumentation: Pascal . has been around fq; several
years since some of the early work Ly Wirth [Wirt71a].
However 1its recent [Fpopularity 1is triggered by current
publicity and many articles describing facets of the
language. Most helpful among the recent articles are Per
Brinch Hansen's Reports on Sequential [Brin75f] and

Concurrent [ Brin75c] Pascal and Alan Hartmann's Dissertation

-5-



CHAPTER 1 INTRODUCTION

[Hart75a]. These reports in conjunction with the source
code for Hartwann's compiler certainly provided adequate

documentation for baginning the project.



CHAPTER 1 INTRCDUCT ION

1.3: HMODELS AND COMPILER DESIGN TECHBIQUES

Fxamining a simplistic graphical model of a compiler
one2 could consider the components as a lexical box, a syntax
box ard a <code generatcr, all sharing common tables. This
naive model was extended by Gries [Grie71a]. Pictorially
{See‘figure 1.) his mcdel shows 1in detail the analysis of
the source program (scanning and syntax/serantic analysis)
and tken synthesis of the object code (preparation for code
generation and code generation). These simplistic models
have their merit as 1learning models; howvever it is not
always possible, nor desirable to implerent these mcdels in

real ccmpilers,

Hartmann descrited the compilation process as
consisting of 1lexical analysis, syntax analysis, semantic
analysis and code assembly. (See figure 2.) He used these
divisicns as a gquideline to the pass structure. Semantic
analysis was then refined furthsr into three functional
passes and code assembly was accomplished in the classic two
pass fashion of code generation., Hartmann's compiler was
modaled after the Gier Algol 68 compiler [Grie71a ], which is

the test known of the many-pass compilers,

rost of the techniques of compiler design wused by

Hartmann in the devclopment of his compiler are well Xnown.

- -
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CHAPTIEFR 1 INCRCGDUCTTON

For a many-pass compiler written in a high-level lanquage,
the Hartmann compiler has incorporated many features of good
software design., That is, the compiler is guite rodular as
each construct within the compiler design comprises a
separate pass. Eriefly, these constructs and the technigues
enmplcyed are described in the succeeding paragraphs, Figure
3 shows the data flow of the passes and the takbles which are
created and used in each of the passes. The tables and data
structures depicted in figure 3 will te described within the

discussion pertaining tc each of the passes.

The Lexical Analysis performed in fass 1 uses a finite
state automata to analyze the <characters of the source
langjuage one <character at a time. As such the characters
~are ccllected into groups which have a logical relationship
called tokens. These tokens are representative of numeric
constants, keywords (DC, IF, etc.) .,operator symbols (<K=,
+, ¥, etc.) or punctuation symbols (;, :, etc.). The output
is a stream of integers which «comprise the internal
representations of thesec tokens. Gries [Grie7l1a] stresses
reascrs fer treatiny the scanning or lexical analysis as a
separate pass. Enumerated, these reasons are:

1. A larger porticn of compile-time is spent in

scanning characters, Separaticn allcws us to

ccncentrate on reducing this time. ---

2. The syntax can Lke descriked Ly very simple

grammars, If we separate scanning from syntax

1ecognition, we <can develop <efficient parsing
techniques which are particularly well suited for

these grammars. =---

-10-
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CHAPT:IiR 1 INTRODUCTION

2. Since the scanner returns a symbol instead of
a character, the syntax analyzer actunally gets
ncre information about what to do at each step.

4. Development of high-level 1languages requires
attention to toth lexical and syntactic
rroperties., Separation of the two allows us to
investigate them indepandently.

S Cften one has two different hardware
representations for the same languagqge. e
Separation allows us to write one syntactic
analyzer and several scanners which are mcre
cimple and easier tc write) ---one for =<ach source
program representation and/or input device.

The Syntax analysis performed in pass 2 uses a top-down
recursive descent parser. There are two advantages for
using this aprrecach. The first 1is that the language's
syntax 1is structured so that the parser needs no
facktracking to recognize 1its input, since a set of
recursive procedures is .used to recognize the input.
Secondly, this method provides flexibility in its ability to
insert semantic constraints which will aid semantic
analysis. However, this method may require more work in
develcpment than some cther methods and protably is not the
most efficient parsing technique. The recursive prccedures
contritute to structured programming and are, 1in general,
fairly easy and efficient to write.' The basic function of
this pass is to insure that tokens from the input occur in

patterns consistent with those specified for the language's

syptax.

The semantic analysis performed in Fpasses 3, 4 and 5

-12-



CHAPTEER 1 INTRODUCTLON

uses rumerous data structures, The Scope aralysis or name
analysis done in pass 3 utilizes a name table, a modified
compile-time display and several other data structures which
are rpresented in more detail 1in the description of
Hartmann's cosmpiler, It 1is 1in this pass that unique

spelling indices are transformed into unique name indices.

The declaration analysis accomplished by pass 4 uses a
name table and sywbol table. The body amalysis performed in
pass £ also uses an operand stack with detailed entries.
The specific implementations of these data structures are
descrited in mcre detail in the introduction to Hartmann's
compiler (Chapter 1, section 5) and the imsplementation of

the PASCAL/S ccmfpiler (Chapter 2, section 2).

The code gemeration accouaplished in pass 6 and pass 7
is develcped in the classic two-pass design. The first of
these two passes does code selecticn. Essentially, this
pass defines the addresses of program labels, determines
stack requirements of routines, <constructs the constant
takle, and translates the input code into final code. This
pass creates four tables, (a routine 1label table, a Jjump
latel takle, a stack table, and a constants table) which are
saved in the heap and used in the pnext rass. Fe¢r more
detail on the wuses and implementation of these data

structures, refer to the description c¢f these passes 1in

-13-



CHAPTER 1 - INT RCDUCTION

Chapter 4.

The final pass makes use of those tables mentioned
above, replacing lakels fky addresses, irserting exact stack
lengtks and writing error messages. More information
relating to this pass is also provided in Chapter 4.

A Pascal proygram which 1is to be executed must be

compiled and then interpreted. (See figure 4.)

There are some real restrictions when running under the Solo
operating system developed by Brinch fHansen [Brin75g] with
respect tc 16-tit addresses. Thers is a size restriction on
programs which can be successfully ccepiled, because of
limited addressable memory. This in turn restricts the size
of the heap which 1limits the size cf the spelling table
especially in pass 3 where the name table is dynamically
allocated in the heap. With 16-bit addresses that portion
of the oferating system used by a sequential program (the
process and 1its monitors) and any sequential program are

limited tc a maximum of 64K bytes,

-14-
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FIGURE 4: COMPILATION & EXECUTION
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CHAPTIER 1 INTRCDUCTTION

1.8: Defipitionms

Terms whose definitions are essential to the
develcgment of wmany of +the notions within this paper are
enumerated here for benefit of the reader. Many cf these
definiticus are ©pertinent for the EASCAL/S version of the
compiler and the Fascal language only.
source language: Basically the compiler must accept

programs written in sequential pascal and translate

them into the functionally equivalent machine language.

target language

or

object lanquage: The final, expected ccde resulting from
ccmpilaticn.

compiler: Program which translates scurce language fprograms
into cbject language. Compilers are essential to the
execution process of a program written in a high-level
languaje.

multi-pass compiler: This compiler regquires several passes
cver the code to complete thz translation from source
language to targyet language. Thus, the translation is
perfcrmed in degrees, The first pass maps the source
code into the first intermadiate language, the second
into the second intermediate language, etc.

intermediate language: The language which is produced by
all passes in a  wmulti-pass conmpiler except the 1last

pass which yields the target code.

.



CHAPTER 1 - INTRCDUCI TON

source text: An instance of a source prcgram consisting of
a file of characters which are representative of a
Sequential Fascal progranm.

internediate ccde: The intermediate versions of the code
resulting from an instance of a scurce program which
ccnsists of a file of 1integers. Each integer is
representative of either an operator or an argument
{ocperand) of an operater.

final code: The code of the target program.

prograz: A seguential Pascal program consists of a prefix,
declarations and a tody.

prefix: 1The prefix consists of constant, type and routine
definitions which define the prograr's interface to the
cperating system [ Neal77a].

declarations: The declarations assign hames to constants,
types, variables and routines,

body: Body implies that portion of the progras which
actually contains tha2 statemerts to be executed Ly the
machine.

machire: The final code consists of instructions for an

SPASCAL/S machine, The machine 1is comprised of
program sgace and data space [Goet77al.

program space: ‘That portion of the machine which contains
the target code.

data space: That portion of the machine which contains the

rrogram's variables and temporaries (including dynamic

-17-



CHAPTEFR 1 INTRODUCTION

links).

driver: A control program which directs the flow of control
cf calls to rasses of the compiler.

parse tree: A diagram which exhikbits the syntactic

structure of an exgression.

Syntax graphs have Leen adopted feor wuse, by Brinch
Hansen and Hartmann in describing the languages (source,
interrediate, and target) of Pascal. Since they provide
such a convenient way of specifying the languagjes associated
with the ccmpilation process, they have been adopted in this
paper. Syntax graphs are directed grapghs with terminals and
/0L ncn-terminals as the nodes., Syntax graphs coapletely
define the syntactic specifications cf the languages; All
terminals or operators are shown in capital letters and they
may be followed Lty arguments (operands) in parentheses. &All

non-terminals are defined by other syntax graphs.

Eelow are examples of syntax graphs defining the source

languag~:

-



CHAPTER 1 INTRODUCTION

IDENITFIER LIST

D
——==> LEPTER -———==—==—=—————— >

|<--LETTER <-—-|
| <===DIGIT <---|

*Idertifier list' 1is a non-t=rminal defined by a sygtax
graph in which 'id' 1is another non-termiral defined by
ancther syntax graph, A conplete set of syntax graphs for
the FASCAL/S source code, intermediate ccde and final code

is included in Appendix B.

- 19~



CHAPTEER 1 - INTRODUCTION

1.5: INTRODUCTION TO HARTMANN'S COMPILER

As stated previously, Hartmann's conpiler includes one
pass each for lexical analysis and syntax analysis, three
passes fcr semantic analysis and two passes for code
genzration, These passes are identified as follows:

7. 1lexical analysis

2. syntax analysis

3., name analysis

4., declaration analysis

€. Lody analysis

6. code selection

7. code assembly

This multi-pass approach results in eight languages:
the scurce language, the six 1intermediate languages and the
target language. Hartmann's approcach was to define the
source first, the  target second, and thern to define the
intermediate languages 1in the reverse order, starting with

th2 last and ending with the first.

The syntax graphs of Wirth will be used to specify the
interrediate languages. {See Appendix C). Iin the
paragraphs that follow each of the passes will be described

briefly.

Lexical Amalysis converts the source text character by

-20-



CHAPTEER 1 INTRODUCTION
character into a seguence of integers reprasenting
operators, identifiers and constants. The integer

representation of a

indax.

unique identifier is a

unigue spelling

This conversion yields the first intecrmediate code.

Syntax 2nalysis parses the program thereby checking the

syntax of the first

interrediate code is

intercmediate

code., The resulting

syntactically correct. This

intermediate code is meaningful only to the extent that the

input code was correct,

in postfix notation-:

Syntax analysis also replaces

(operands

The intermediate code produced is

followed operators).

by

ambiguous op=2rators by unique

ones and eliminates redundant operators.

Bame

identifiers by

spelling 1indices while
Pascal allows the same
types, variatles or

applicaticn of the scope

Analysis resolves

creating

any ambiguity in the use of

unique name indices from the

enforcing the scecpe rules. Since

identifier to refer to different

constants in different blocks,

rules is essential.

Leclaration Amalysis enforces the semantic rules of all

declarations., Virtual

and variatles, apd types are

then distributed in

addresses are

line in the body of

assigned to routines

analyzed., This information is

the program. With

this informaticn in the body where required, a simple design

-21-



CHAPTEER 1 INTRODUCTION

can ke used for body analysis.

Fody Analysis , the final phase cf semantic processing,
does th2 semantic checking of the body parts of the program.
It checks the «ccmpatibility of operand types and their
operators, resolves amkiguity, generates addressing commands
for the machine, and distributes these commands in the body.

The output from this pass is almost ready for the machine.

Code Selectiam 1is the first of the classic two-pass
desigr used to perform code generation. Primarily it
defines the addresses of program labels, determines stack
requirements of routines, constructs the constants table and
translates the 1input code into final code. This pass
creates four talkles (routine label takle, a jump table, a
stack takle, and a constants table) which are saved in‘the
heap and wused in the next pass. *"Ccde selection perforas
simple encoding of types into opcodes to make simulation of

the virtual machine faster® according to Hartmann [Hart75a].

Code Assembly, the final pass, replaces program labels
by addrcsses =saved in the tables created in the previous
pass, stack lengths are inserted, and error messages are

listed.

-22-



CHAPTER 1 : INTRODUCTION

1«6z INTBODUCTICON TO THE PASCAL/S VERSION

The PASCAL/S compilers for Concurrent and Seguential
Pascal were developed for an architecture under design by
Perkir-Elrer Data Systeans, Fach of these compilers is
comprised of ten passes. The first five fpasses (lexical
analysis, syntax analysis, and thres semantic passes) are
guite similar to those of the Hartmann ccmpiler described in
the freceding =section., Extensions and modifications to
Hartmann's first five passes will Lte discussed in detail in
Chapter 2. Of the five remaining passes in the EASCAL/S
compiler, the next three (constant folding, exfpression
evaluaticn, and ad hoc optimization) are optimization passes
and the subsegquent two passes are for ccde generaticn {code

selection and code assembly).

211 of the optimizing passes are completely optional.
BPach cf the optirizaticn passes will te describted briefly in
the following paragraphs and they will be followed by a

discussion of the code generation passes. (See figure 5.)

Constant Folding is the first of the optimizing passes.
This rass does at compile time all the operations which are
static rather than leaving thenr to ke done at run-time.
with respect to cperators, arithmetic on constants is done,

some Eoolean expressions can also Fte eliminated at compile-

-23-
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time,

Expression Evaluation 1is another of the optimizing
passes, In this pass expressions are evalutated in an
effort to increase exzacution speed or to reduce stack size
by miniwmizing the number of temporary symtols on the stack.
Boolean expressions are evaluated with emphasis on
increasing execution speed and operand switching performed
with the emphasis on reduciny stack size. Operations on
Boolean, relational and arithmetic expressions are evaluated
for use with ‘'op immadiate' instructions. This pass

eliminates redundant operators.

Ad Hoc Optimization is the final optimizing pass. This
pass includes rather diverse optimization features which did
not fall into the categories of the previous optimizing
passes. Briefly, this pass does optimization on control
structuras, removes all branches to Lkranches, factors
arithretic exrressions, removes subscripting, performs
strength reduction [Grie71la], looks fcr identical operations

and flays all tranches to insure they can be reached.

Code Selection is the first of the ccde generation
passes. it is similar 1in task tc¢ Hartrann's G©pass 6.
However, it selects code for the stack machine instruction

set as opposed to Per Brinch Hansen's virtual Pascal

-25-



CHAPTER 1 INTRCDUCTION

machine., The instruction set is different from that of Per
Brinck Hansen and exhaustive, This pass also builds the
four tables created in Hartmann's pass 6 (routine label
takle, a Jump label table, a stack table and a constants
table) which are then wused 1in the next pass, Large

constants are collected.

Code Assembly, the final code generation fpass is
essentially the same in concept as Hartmann's pass 7. 1In
this pass proper displacements are inserted, large constants
are placed at the end of the generated code, program labels
are replaced with addresses and . error messages are also

written.
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1.7: SCENARIO OF DOCUMENT

The remainder of this document is structured in the
followiny way. The next chapter presents a discussion of
the 1language modifications and extensicns of Hartmann's
compiler: first, those modifications added at Kansas State
University are descriked; second, the additional
modifications fcr the PASCAL/S version are developed.
Ckapter 3 presents a discussion of optimization which
includes discussion of constant folding, Boolean and
arithmetic expression evaluation and cther optimization.
Chapter 4 is devoted tc code generation (code selection and
code assembly). The final chapter contains concluding

remarks.

In addition the following appendices are included for
benefit of the reader:

- Per Brinch Hansen's Seguential Pascal Report as
rcdified to include changes incorporated in the
EASCAL/S compiler.

- Syntax graphs for input to.all passes and the
final code for the FASCAL/S compiler.

- A User's Manual including a discussion of all

Frogran options.

An annotated Bibliography of Pascal and related
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resources as well as references frcm this paper is also

provided.
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2,1: FKansas State University version
2.1. 1z Changes made prior to PASCAL/S

¥ost of the modifications made to the Hartmann compiler
at KSU prior tc the development of the recent version, were
designed to facilitate using the Pascal socurce language and
represent cnly minor changes in pass 1 and pass 2.

The language modifications and extensicns added to the
KSU inplenentation of Hartmann's SFASCAL conmpiler prior to
the development of the PASCAL/S version are the folleowing:

1. 1The character set was extended to include all

lower case letters and these additional symbols:

{, Y} [« lJ, and o . The additicn of lower case

letters simply extends the readability of the

language and necessitated relatively easy

msodifications. The 'up arrow', p, , may be used in

addition to 2 to denote pointer type or pointer

comronent, The other special .characters added to

the character set are included in Pascal's special

symbols apd discussed in the next paraygraphs.

2. Several special symbols were also added. They

are (¥, *), {, }, [ and ]. These special symbcls

kave fixed meaning wunless they appear within

-



CHAPTER 2 LANGUAGE MODIFICATIONS AND EXTENSIONS

string constants cr comments,

3. Among these new symkbols are those used as new
delimiters for comments, In addition to the
dcuble gquote, ", used in Hartwann's version
[Hart75a], thne following symbel pairs (¥ and ¥)
and the braces, { and } may now be used. (See
syntax graphs in Appendix B.) Whichever symbol or
symbol pair that begins tha comment determines
which symbol or pair of symbols must end the
ccmment, The sypbel (s) ", ¥) or ]} may not be
included in the comment when it is the same as the
cne to delimit the end of the comment,

4, The square brackets, [ and ], which were added
to the special symbols may be used to replace (.
and .) respectively within array type definitions
cr array coaponents to denote subscripts and with
sets to denote the construction of sets and to

delimit sets.
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2.1.2: Changes Made for XREF

The cross reference (XREP) is a feature added to
Hartmann's SPASCAL compiler by Anderson [Heal76a)] at KSU.
Modifications to the «compiler to acccmmodate the XREF
feature include additions to pass 1 and the creaticn of a

new fpass.

The XREF pass is inserted between gpass 2 and pass 3 of
the Hartmann ccmgiler, (Shown in figure 5.) Thus the input
to the XREF pass is the same as the output from pass 2. The
execution of the XREF pass 1leaves the intermediate code
unchanged for input to pass 3. The XREF feature is optional
and must be specified in the program's options (See User's

Manual, Appendix C.)

Mcdifications to pass 1 include the addition of a
procedure called CUMPSPELLINGS and related other procedures.
pumpspellings primarily produces two tables called
"IDSPELLINGS'. One table contains only the unigue names
which are in sorted order ty their internal representations.
This internal representation is the identifier's spelling
index (spix). The other table is alphabetically ordered and
contains the spix in addition to the name. (See figure 6.)
The procedures supplemental to DUMPSPELLINGS include those

necessary to build and traverse the binary tree used in
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creating the alphabetical ordering of identifiers. The two
tables <created in pass 1, represent IDSPELLINGS and are

later accessed by the XREF pass.

The mrain cbjective of the cross reference pass (XiEF)
is to produce an alphatetical listing of all identifiers
used in the source. Each entry would include the type of
the identifier, the numkter of the 1line where it was

declared, and a list of 1line numbers where the identifier

In order to attain the useage line numbers, this pass
performs functions similar to scope analysis of pass 3.
Rather than replicating the update and display data
structures which are actually used in pass 3 and described
later in this chapter, all entries are saved on the stack
with the néwer, active entries nearer the top. (See figure

7.)

when a npew block 1is entered, the entries for the
previcus block are not popped and . lost as is logical in
scope analysis, but rather these entries are saved in a
list., To update the usage of a particular identifier, a
search is initiated via the display stack which maintains a
pointer to the ©bLeginning of each klock cuorrently on the

stack.

-
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Cnce the. Cross reference list is completed,
'IDSEELLINGS' is used to alphabetize the list for output.
The pcrticn of "IDSPELLINGS' which is numerically ordered by
spix is used to attain the name of the identifier. Since
all identifiars are truncated to twelve characters and the
spix itself represents the displacement intec the takle, the
name ray bLe accessed directly by taking twelve times the

spix and adding that to the beginning point cf the table.

The mcre ccmmon names, eg. INTEGER, ARRAY, etc., are
saved in core and not accessed in this manner, It would be
desiratle from the point of view of speed to have the entire
list in core; however space limitations interfere with this

possitility.

Cenceptually, there are four tables used in the XREF
pass.

- the stack of identifiers

- the display stack

- the output list

-~ ILCSPELLINGS (created in pass. 1)

The alphatetically crdered portiom of 'IDSPELLINGS' is
used to facilitate the alpha ordering cf the output list.
For each entry in the alpha listing the 'output' 1list is

searched until a corresponding name 1is found. Cnce found
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that entry is cutput in the XREF listing.
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2.2: The PASCAL/S Version
2.2.1: General Description of Changes

cpecific mcdifications and extensions made to the
Hartmann compiler for the FS version include the following:
1. Hartmann's coerpiler was extended to include
set constants which consist of finite  ©binary
strings. Thus, a set constant will consist of a
hinary string whose 1length may be either 32, 64,
or 128 bits and these must be completely
specified. For convenience a repetition factor
(See syntax graphs, Appendix B) may ke used to

faciltate ccmpletely specifying the binary string.

2. Set type has been implemented in a slightly
different way. When used, the type is analyzed
such that the most efficient set length among 32,
64, or 128 Fkits is selected. Strictly speaking,
it is the ceiling of the set length which is large

enough to encompass the type.

3. Another type, SREAL, has been added. SREAL
denotes a short real type. That is, a type which
identifies any of the subset of reals which can be

represented in 4 bytes rather than 8 Lytes.

- -
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4, Negative constants may now be used in
virtually all places in the program (eq. in FOR
statements, as subscripts, as limits on subranges)

where constants may ke used.

5. Type INTEGER has been modified, so. that the
use c¢f INTEGER as a type is now synonynous with
either short, standard, or long enumeration,
depending upon the option specified. The default
is 16 bits (2 bytes). A short INTEGER is defined
as a 16—-tit enumeration (-327€8..32767). A
standard INTEGER is a 32-bit enumeration
(-2147u483648,.214748364L7) . A lcng INTEGER is a

€4-bit enumeration (-2 exp (63)..2 exp (63) - 1).

6. A new facility of COERCION has teen added
which affects evaluation of arithmetic expressicns

and the values associated with parameters,

When evaluating arithmetic expressions all
variables' values are coerced . (expanded} to the
length of the longest value in the expression. 1In
addition, all integer constants are coarced to the
length of the longest value in the expression and
all real constants are coerced (truncated or

expanded) to the length of the longest variables'

- .
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value in the expression.

Coercicn is alsoc used in the evaluation of
parameters. When the formal parameter is of typ=2
VAR, then no coercion takes place. However, if
the formal parameter is of type constant then
actual parameters which are shorter are coerced to
the length of the formal parameter. If the formal
farameter 1is of type constant then actual
parameters which are shorter are coerced to the
length of the formal parameter. If the formal
parameter is of type short real constant then any
actual parameters which are 1long real are coerced

{truncated) to the length of the formal parameter.

7. ESCAPES from the language are now provided so
that micrc-code or assembler code can be executed.
ESCAPES allow for efficient execution of highly

used routines.

€. The internal representation of poimters was
changed from 16 bits to 32 bits, The internal
representation of characters and Booleans was also

changed from 16 bits to 8 bits,
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2.2.2: Specific Changes to Hartmann's First Five Passes.,

Specific changes to each of Hartmann's first five
passes are discussed 1in the section which follows by
examiring each o¢f these passes in order. Some of the
material in this section has Leen paraphrased fron

Hartrann's dissertation [Hart75a].

Eass 1: Lexical Analysis. Lexical analysis provides
the interface Ltetween the source prograr and the remaining
passes of the compiler. 1In this pass the lexical analyzer
or scanner reads the source languagc cne character at a time
and rrcduces sequences of characters often called tokens.
gach token or symbol represents one logical entity. This

conversicn yields the first intermediate code,

The 1lexical analysis phase can be represented by a
deterwinistic finite state automaton. This implies that
each syaktol type begins with a unique character or set of
characters (e.g. identifiers begin with 1letters, string

constants begin with guotation amarks, etc.,).

Erimarily this pass scans identifiers, special symbols,
and rumkters., The lexical analyzer must be capable of
recognizing the. extended character set. As documented by

Hartmann [Hart75a], "the scanning of an identifier consists

-l
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of collecting the identifer in a string variakle, searching
for it 1in a table of identifiers, and outputting the
corresponding intermediate code .M (See figqure 8.)
Identificers may be either reserved words or program defined
identifers. When the identifier 1is a reserved word, the
internediate code output is the operator corresponding to
it. For all other identifiers the intermediate code is an
ID oreratcr fcllowed by the spelling index (spix) of the
identifier. The spelling indices for unique identifiers are
assiqred sequentially beginning with the first number

following the index of the last standard spelling noun.

The spix cf an identifier is wused as an index into the
spelling table., Each entry in the spelling takle is an
index intc the hash table, (See figure 9.) This hash index
or hash key is created ty using the ordinal value of each
character of the identifier as it 1is read. This hash
function computes the product of the ordinal values of the
characters within an identifier modulo the table 1length.
Stored in the hash tatle are the identifier's spix, the
first ten characters of the identifier and a pointer to
additional pieces of the 1identifier 1if longer than ten
characters, The maximum length of an identifier is 80
characters. Reserved words are not found in the hash table

since they are identifiers whose indices are negative.

wil) =
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ID_PIECE

ID_PIECE

TYPE
PIECE = ARRAY[0..ID PIECE_LENGTH[ OF CHAR;
PIECE_PTR = @ ID_PIECE
ID-PIECE = RECORD
PART: PIECE;
NEXT: PIECE_PTR

END;

FIGURE 8 : IDENTIFIER ENTRY
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EXTERNAL
REPRESEN-
TION

HASH INDEX
|
Pl SEIK
SPELLING TABLE ID-PIECE
HESE MABER ID_PIECE
(TABLE OF IDENTIFIERS)
—>

FIGURE 9 : HASH TABLE
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Since it is predictable that different identifiers m;y
yield the same hash index, when this does occur, a cyclical
search is bequn, The search terminates when either an empty
entry in the table is encountered or the identifier, itself,

is found to be in the tatkle.

Given that Pascal requires fixed 1length arrays, the
identifier table 1is of a fixed 1length, Because it |is
anticipated that some hash indices will duplicate others,
the table is limited to a 98 percent fill ty the compiler to
prevert the resulting lcng searches. When the addition of a
new identifier exceeds +this limit, an insert error 1is
generated and lexical analysis is terminated. Thus only
that portion cf the intermediate code 1is transmitted to

succeeding passes.

The scanning of special symbols produces intermediate
code consisting of its constant representaticn. Specific to
the EASCAL/S nmodificaticns, the new special symbols which
delimit ccwmments, indicate array types or array components
and signify a pointer type or pointer component pust be
recogrized and transformed into the appropriate intermediate

code.

The scanning of numbers varies somewhat from that of

the Hartmann compiler. In the PASCAL/S vcrsion when the
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first digit is encountered, it is assuwed that the number to
be scarned is an integer, This assumption 1is made because
the potentially largyest integer is larger than the largest
real rumber in the PASCAL/S version. Therefore, the digits
ar2 collected into an array of integers. Integers are saved
as the shcrtest integer possible while all reals are saved

as the longest real.

Cnce either a decimal point or an 'E' is encountered,
the existence of a real number is confirmed. However, the
scanning process continues to collect both the fractional
part andsor the exponent part as arrays of integers. 1t
turns out that the fractional part 1is treated as a
continuation of the integer part and the exponent is

adjusted accordingly.

The intermediate code produced when an integer is
scanned is: the token (constant) for 'integer', followed by
the token for 'large constant', followed by the 1length in
bytes c¢cf the integer, followed by from 2 to the length in
bytes of the integers, which represent the value of the
integer (e.g. 2 yields 11 <integer> 59 <large constant> 2

<length> 0 2).

khen real constants are scanned the intermediate code

produced is similar to that of integers. First is the token
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for 'real' follcwed by the constant for ‘'large constant’,
followed by the length in bytes followed by from 4 to the
lengthk DIV 2 integers which represent the value of the real
(e.g. 1.2424 yields 9 <real> 59 <large constant> 8
<length> 16659 -7970 25 0). The 1length for reals is

always either 4 or 8 bytes.

khen set cconstants are scanned, the intermediate code
produced is similar to that for r=2als and integers. First
is the tcken for ‘'suk' followed by the constant for 'set
constant', follcwed by the length 1in bytes followed by
either 2, 4, or 8 bytes (depending upon the length) which
represent the value of the set (e.qg. [B*(32)'1] generates
15 <sub> 63 <set constant> 2 <length> -1 -1 47

<bus> ).

Eass 2: Syntax Analysis. Syntax analysis accepts as
input the first intermediate code, 1.e. the output of
lexical analysis. It is the function of this pass to check
that the tokens 1input occur in acceptable patterns as
defined by the syntactic specifications cf the language (see
syntax graphs, appendix B). The intermediate code which is
ontput from this pass is syntactically correct. If the
input 1is incecrrect theun the resulting code, although

syntactically correct, may not be especially meaningful.
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Cne cf the most ccmmon parsing techniques, recursive
descent, 1is used to pcrform the syntax analysis. This
technique uses a set of recursive routines to perform syntax
analysis., Each of the syntactic constructs in the language
rerresented by the syntax graphs (Sce Appendix B.) 1is

handled in a separate, possibly recursive, procedure.

Error recovery, which is also directed by the syntax
graphs 1is <covered in detail in Hartrann's dissertation

[Hart75a] and will not be discussed in this report,

Cther accomplishments of this pass include converting
the ccde from infix to postfix notation, replacing ambiguous
operators by unique ones and elisinating redundant
operatcrs. Specific to the PASCAL/S version, this pass
recognizes the escape construct and set constants. Escapes
are inplemented similar to prefix calls, The escape mode is
then handled in the recursive descent procedures. Set
constants are implemented similarly to other constants.
Perpetuated 1in this pass are allowances for negative
constants, different size sets, different size subranges and
short reals -- essentially all the genecral changes described

previcusly.

Fass 3: Name Analysis. Name analysis accomplishes

several chores., It transforms spelling indices 1into name

il s
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indices while enforcing the scope rules. Thus each name
index refers to a single specific entity (type, ccnstant,
varialtle, etc.) throughcut its existence. The scope rules
enforced 1in this pass place some constraints on the

recogriticn of identifiers. =

Before an identifier can be recognized it must have
been defined. In order to be defined it wmust have been
intrcduced which may be done through declaration or
gualification. If introduced through declaration, then a
specitfic type, constant, variable, or routine is associated
with the identifier. Cualification which cccurs when the
variatle pame 1is followed by a period or tky using a WITH
statement, associates a field with ﬁ particular record

variatle.

The scope rules germane to this versicn are korrowed
from those delineated by Hartmann [ Hart75a]j].

E An identifier 1is only known with a given

meaniny after its introduction (with that meaning)

and until the conpletion of the body, record, or

gqualification that introduced that identifier

(with that meaning).

2. No identifier may be given more than cne

reaning in a single block or record.

3. An identifier may be introduced with another
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meaning in another block, record, or
gualificaticn, Where this occurs, the new meaning
applies until the completion of the klock, record,
cr qualification. .
4, Within a routine, in addition tc¢ the above,

all identifiers introduced in that routine are

knowne.

Three tables are created in this pass to assist 1in

enforcing the scope rules.

The SPELLING TABLE translates the spix into a unique
nare index and enforces the scope rules by attaching the
nesting 1level index to it, The spelling table is gquite
large since it must contain space for the entries of all of

the fpcssible spixes from 0 to 700. (See figure 10.)

The UPDATE STACK is another of the tables used in this
pass. Primarily, the wupdate stack is used to save a
previcus entry in the spelling takle whenever the name is
encouTrtered within a new block Or.scope. Where a block
implies procedure, function, or with statement and the main
progras constitutes the first block. This technique was
borrowed from Naur [Naur63a] in Hartmann's iamplementation.
At the end of the scoge, any 'old' entries are popped from

the wupdate stack and returned to the spelling table.
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SPELLING TABLE

GENERAL
EXTERNAL
SPIX NAME ACCESS LEVEL INTEBNAL
PTR TTRIBUTEY INDEX .
—
R R i
: 1l
I- T TR pEER emmL AR A Mem. am g W _\_ 2
max :
spix
~——
DEF | NAME
LINE #| nDEX |PTRS TO TYPE INFO|USAGE
| —
Name Table
links back-
wards to
primitives...
completely
defining all
names within

the program.

FIGURE 10: SPELLING TABLE & NAME TABLE
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However, this requires that some record ke kept of where any

new scope's update stack kegins. (See figure 11.)

This resulted 1in the use of a construct similar to a
compile-time display, the third of the taltles created 1in
this pass. (See figqure 12,) Basically this table stores
the base 1indices of the bklock entries in the update stack
and thus contains information related to the nesting levels,
For each new level entered via declaration or a WITH

staterent, a new entry is pushed on the display table,

The update stack may be relatively small since it
needs to include only space for local variables or gualified
variaktles which have the same name as a previously defined
variatle., The information saved in the display provides for

faster access into the spelling table.

In the PASCAL/S version access to escapes 1is provided
from anywhere 1in the program. Escapes are implemented in

the EASCAL/S compiler as entries in the prefix.

There 1is another data structure essential to nane
analysis, the name taktle. It contains all infcrmation
associated with a name which 1is pertinent to name analysis.
(See figure 13.) For every name which is recognized

throughout the sgpelling table, there exists a pointer into

"
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NAME ACCESS
0 SPIX PTR ATTR LEVEL
|
b T o b o o ok v o e e —
|
|
Update

—

FROM PREVIQUS SPELLING
TABLE ENTRY

THIS TABLE IS RELATIVELY SMALL.
IT CONTAINS ONLY LOCAL VARIABLES
WHICH HAVE THE SAME NAME AS

SOMETHING OUTSIDE.

"FIGURE 11: UPDATE STACK
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the rame table, Information 1is stored about each néme
whether it 1is the name of a type, constant, variable,
parawmeter, or routine, <The name table is actually a linked
list which represents the access relationshipé of types,

varialles, parameters, and routines,

€ince constants are nameless, they have no name index.
Name analysis proéeeds to remove all «constant declarations
from the intermediate code, Thus, all constants except
string constants are represented in the name table by their
value, String ccnstants are represented in the name table
by their displacement 1in the program's large constant area

as in Bartmann's versicn.

It turns out that all types are rerresented by a nanme
index regardless of whether they were actually named by the
progyrammer. This facilitates the declaration analysis which
is tc be done 1in the next pass, since all types may now be

referred to by their names (name indices),

in summary, pass 3 name analysis is responsible for
assigring name indices to types, variables, parameters, and
routines and replacing constants ty their values (or

displacements in the case of string constants).

Any reference to a name now implies looking in the name
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LINE # TYPE
OF DEF SPIX INFO USAGE

~—

+ Always scanned from the'top-down unless
directed otherwise by displays

+ Built by analyzing DCL portions or
routines when DCL statements are trans-
lated

- Used to analyze statements within program

FIGURE ]13: SYMBOL TABLE
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table. The relationships between/among subrange types and
their range types, routines and their parameters, functions
and their result types, and the program and its intertface,
arrays and their index and elemant types, the with statement
temporaries and their record types, reccrd types and their
fieclds are all represented by links within the name table.
The information from the name table is then placed in line

in the output code as necessary.

Mame analysis also wutilizes an cperand stack which
stecres operands because they precede their operator., Each
entry on the operand stack is similar to an entry for a name

in the name takle with minor differences.

listed below are the outcomes associated with an
operard related to specific constructs:

Constants:

- when encountered in a declaraticn, are pushed

cn the op stack |

- when in constant definitions, are placed in the

rame table

- when constant laktels, are pushed on the operand

stack as case labels

- when factors, are immediately placed in the

internediate code and an empty entry is pushed on

the operand stack;
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Variables:

- when referenced in a body, imply that the
variable type is pushed on the operand stack,

- 1if ‘'subscripted', then the name of the array
element type replaces the name of the array type,
- 1if ‘'qualified', then the field type replaces
the record type;

Rcutines:

- when referenced in the Lbody, are placed on the
cperand stack, (The operand entry contains the
name of the routine and the name of its £first

[arareter.)

kames are declared in a declaraticn part. While the
declaraticn 1is still incomplete, the operand stack éntry
indicates a declaration. Associated with the declaration
are its spelling index and a pointer to its incomplete name
entry. This informaticn is used to update the various

tables at the completion of the declaratiocn.

The accomplishments of pass 3 are:

- all types, variakles, parameters, and routines
have unique name indices which are used by later
Fasses,

- all 1linkages between thesé entities have been

checked and now appear in the output code,
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= the name tatle represents the structural

relationships of language elements.

It turns out that the major ccmplexities of the
language are contained 1in the name table, Thus name
analysis has accomplished its primary task of analyzing
names related to scope and establishing correct
relationships. Once name analysis is dcne, the remaining
semantic passes can continue processing with some of the

major complexities already resolved.

Eass U4: Declaration Analysis. Ceclaration analysis,
the second of the semantic analysis passes, performs the

semantic «checking of the declaration pcrtions of the

pECYLaAk. As documented Lty Hartmann [Hart75a), this pass
"apalyzes types, assigns addresses to variables and
parameters, assigns program labels toc routines, and

distritutes this information in the body parts.™

Essential to the enforcement of the nurerous semantic
rules 1is the recording and Dbookkeeping of all type
information in the data structures of the pass, GQReguisite
to declaration analysis 1is a new symkel takle. The symbol
taktle c¢f this pass has noc pointers, since all the links were
analyzed and placed in-line in the previcus pass. Thus 1in

place of the links the input to this pass contains name
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indices, The name indices are translated through the name
table which contains only pointers to the symbol table.

(See figure 14,)

CTeclaration analysis proceeds in the following way:
When a name is declared, an entry is added to the symbol
table and the 1link inserted in the name takle. Any future
references to the name are handled indirectly thrcugh the

name table,

The name table must contain an entry for each name
index; hcwever the symbcl table entries are allocated
dynamically as the declarations are enccuntered. Thus, the
symbcl taktle uses only the space it regquires which implies
that smaller programs may be compiled using less memory

space than larger programs.,

2lso in this pass is an operand stack implemented as a
one-dirensional array. The operands, which are name indices
upon input, are translated into pointers to the symbol table
via the name talle. Stored in the operand stack are the

pointers (links) to the symbol table. (See figure 15.)

In this pass there are four variants associated with
the symbol table, The first variant contains varialtles and

parameters comkined (values). The seccnd variant is used
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NAME TABLE

SYMBOL TABLE

I P I

All possible entries | J

3 types of aggregates

FIGURE 14: NAME TABLE & SYMBOL TABLE
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(NAME INDEX) e

OPERAND
STACK
NAME
TABLE
—
LINE # TYPE :
OF DEF SPIX INFO USEAGE
\_

SYMBOL TABLE

FIGURE 15: OPERAND STACK
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for routines, The thivd variant is strictly for types
(templates). The fourth variant 1is undefined and remains

cmpty.

The symbol table entry for variables and parameters is
represented as a value variant which contains the following
informaticn about the value:

- the address mode,

- the address displacement, and

- the declaration context.

Since this information is required Ly later passes, it is

distrituted in the output.

The address mode and address displacesent conrbine to
indicate the virtual address, The mode encodes information
about the level of nesting and informaticn about the entry
routire, The modes available are:

0. large constant
1. FEprocess

2. program

3. process entry
4. class entry

S. monitor entry
6. process

7. class

8. monitor

9, standarzrd
10. undefined
11. string constant
12. escape entry

However, nct all of these are used in Sequential Pascal.
They are included for consistency with Concurrent Pascal.
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Those actually used 1in this pass are: large ccnstant,
prccedure entry for prefix calls, proyram, and procedure for
routines. Thus, the mode includes information which

estaklishes the appropriate base register.

The address displacement is the actual displacement of
a valuz  within the data area of a routine, record, or the
constants area. These displacements are determined during
this pass and assigned sequentially as the declarations of
fields, variables, and parameters are processed. The actual
displacements may Le either positive or negative, with or
withcut offset. The displacements are always related to a

particular routine or record. (See figure 16.)

FROCEDURE (F1: INTEGER; P2: BOOLEAN) ;
VAR V1i: BOOLEAN;
Vv2: CHAR;
R1: RECORD
E1: INTEGER;
E2: BOOLEAN

END;
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Low (=)

VARIABLES Core

ALLOCATED
IN ORDER"
ENCOUNTERED

trQoH
WEHRBWLHOQED

Pl

DATA SAVE
AREA

PARMS High

Core

(¥}

Example 1l: Access E2
in Rl

«First push address of E2 1
R1 (PUSH LOCAIL ADDE

D2) El 4
*Next access field within V2 1
record (FIELD 4) Al 1
«.This leaves the address Pt -
of E2 on top of the stack DATA SAVE .
AREA X

Hr Qo
WEKRNHQ D

Example 2: Access Pl P2 1

«Push address of Pl 7 Pl = 4

(PUSH LOCAL ADDR
-D(x+1)B)

x represents the fixed length
of the data save area--In
Sequential PASCAL the data
save area occupies the space
of 5 pointers + 1/2 word.

FIGURE 16: ADDRESS DISPLACEMENTS
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The declaration context identifies the context in which
the value was declared. The possible contexts include the
foilowing:

. functicn result

. variable

. Vvariable parameter

. universal variatle paramater
. constant parameter

. universal constant parameter
8. record field

10. expression

11. constant

12. save parameter

13. new_garm

14, tag_field

15, with_const

16. with_var

1
3
4
5
6
7

The ‘'constant' and ‘'expression' contexts shown above are

flags for pass 5 since they have no declarations.

The routine variant is used to represent routines in
the symbol table. Each entry contains the address of the
routire, the 1length of parameters within the routine, and
the length of local varitables. The mcdes oﬁ the routine
variant are the same as those for the value variant. No
displacement is given, for these remain unknown until code
assemkly, As a result, the routine label 1is used as the
second part of the address. Code assemktly then resolves

these lakels and generates final code.

The parameter length, which is used to [fop the

paraceters from the stack as each routine is exited, and the
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local variable 1length, which is wused to create (push)
stcrage area cn the stack as each routine is entered, are

recorded during routine declaration.

Thus, the syrbol table entry for routines contains the
following information:

- 'the routine mode

- the routine latel

- the parameter length

- the varialkle length

The template invariant contains all information associated
with types. The symbol takle entry for template invariants
include the follcwing:

- the name index

- the type length

-~ the active attritutes

- the type 'kind!

- information related to specific kinds

The name index is saved and passed along in the
intermediate code for use in type checking which is done in
body analysis. The length of the type is also saved for use

in assigning displacements.

The type kind represents a classification into kind for
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all types. The rpossible kinds are
0. integar
1. real
2. PBoolean
3. character
4, enumeration
5. set
6. string
7. non-list
8. pointer
9. 1list
10. generic
11. undefirned
12. routine
Primarily these are chosen to assist with type checking of

pass 5.

The accomplishments of this pass include placing the
symbol table entries created bty declaraticn analysis in-line
in the interaediatc code as needed. Thus, one eﬁtry from
the symbol table may appear many times in the code ontput,
since it is inserted wherever the 2ntry is referenced within
the program. Symbol talle entries aprear in the output
codes in cne of two formats, either the value or the routine
format., The type information (template variant)' uses the

value format.

There are no major modifications to pass 4 for the
PASCAL/S compiler. The ability to handle 1larger ccnstants
in-line has teen incorporated as well as symbol table
entries for all new types. Some new inforration which had
been saved until the analysis of type declarations is
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perfcined is new placed in line,

Fass 5: Body Analysis. Body analysis, the last phase
of semantic processing does the semantic checking of the
body rarts of the program. That 1is, this pass checks the
type compatibility of operands and operators, generates
ccemands for the machine and distributes these commands in
line. The code input to this pass consists of a series of
bodies since constant declarations were eliminated during
name analysis as constants were placed in-line, and type,
variatle, and routine declaration informaticn was placed in

line during declaration analysis.

The type checking done in this pass consists of
checking the compatibility of operands with each other and
checking the compatibility of operands with their operator.
For example, the NOT operator requires a Eoolean operand,
while the addition operator requires that its two cperands
be ccrpatiktle with each other and that they be arithmetic

operands.

The type checking docne iﬁ this pass may cause coercion
of operands, This notion is new in the PASCAL/S version.
Coercicn is used to force compatibility of operands as
ne=ded. Coercion within arithmetic expressions implies

that:
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1. all variables' values are coerced (expanded)
to the length of the longest value 1in the
expression, by creating intarmediate code which
causes conversion operations in the taryet code,
z, all integer constants are coerced (expanded)
to the 1length of the longest value in the
expression, and |
3. all real constants are coerced {truncated or
expanded) to be the 1length of the 1longest
variables' value in the expressicn.

Coercicn as applied to parameter passing implies that:
1. if the formal parameter is of type VAR, the no
ccercion takes place,

2. if the formal parameter 1is of type constant
then shorter actual parameters are coerced to the
length of the formal parameter,

3, if the fcrmal parameter 1is of type short real
(SREAL) constant, then long real actual parametars
are coerced (truncated) to the 1length of the

formal parameter.

The type checking rules of Sequential Pascal were
chosen to facilitate type checking and the 1learning of the
language. The rules Hartmann delineated [ Hart75a] have been
extenéed and modified as appropriate for the FASCAL/S

compiler. Thus, two types are compatikle if any of the
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following is true:
1. they are defined by the same type definition,
2. both are¢ subranges of a single tyge,
2, Lkoth are subranges with one of a longer type
than the other, in which <case cocrcicn forces the
cshorter one to the longer length,
4., they are string types of the sare length,
€. they are set types whose members are the sane
index type and are of the same lengyth,
€. cne type is a universal parameter type and the
other type is an - argument type of the same length,
7. cne type is an argument type and the other
type is its generic parameter tyre,
€. they are reals and one is a short real, which
again causes the shorter one to ke ccerced to the

lcnger length.

Cne additional note related to parameters for built-in
functicns is needed for clarity. Parameters for CHR and
CCNV may be of any integer typz (INT2, INT4, INI8B) and

parameters for TRUNC may ke any real (REAL or SREAL).

An operand stack is used in this pass to keep track of
the type information used in type checking. All operands in
Hartmann's versicn were 16-hit words. In the EASCAL/S

versicn operands are of variakle 1lengths, fcr example byte,
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long integer, shortsets, etc. Input tc this pass 1is the
type infcrmation as inserted in the <code by declaration
analysis. Thus, types are transmitted with three aryuments:
kind, name index, and length. These were conveniently
chosen to ‘'mesh with the compatibility rules in a simple
manner' [Hart751]. This is accomplished by using a small
set of primitive attribtutes to represent the necessary type

and ccntext information cf operands.

Fost all operators and operands are tagged with their
type in-line unless the type is implicit from the specific
operator, For example:

FUSHCONST b

TYPE |

VALUE 1

| > explicitly tagged with type
PUSHVAR |

TYPE |

MODE |

TISPL /

-71-



CHAPTFx 2 - LANGUAGE MODIFICATIONS AND EXTENSTIONS

EUSHACDR N
MODE |
LISPL |

> type implicit from operator
FIELL ]

DISPL /

Thus all type information is now retained in the
interrediate ccde either implicitly or explicitly. Entries
in the operand stack will have one of the following forms.

(See figure 17.)

The address information ('mode' and ‘'displacement!')
descrikes the virtual address of the operand. For routines
the 'cdisplacement' 1is actually a latel which is resolved
during ccde assesbly. Type information is identical to that
described in declaration analysis. Value information is the
sage as that discussed previously except for ‘state'
(address state) which is to be descrited later in this
secticn, Routine information is as was previously
discussed, All displacements created in this pass and pass

4 are now 32 bits lcng.

then the full range of operand types is possible, type
compatibility is checked by a function which compares the

type of the top operand on the stack to the type of the
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operard which is second on the stack. With most operators,
however, specific operand types are required and type

checking can usually be performed in line.

Type checkinj also makes use of the context and kind of
a value tc insure that assignmant targets and variable

arguments are assignable.

As mentioned previously, part of the value information
is an address state. The possible address states are:
direct,
indirect,
addressed, cr
expression.
“The fcllcwing definitions are Dborrowed from Hartmann
[Harti5a]:
The direct state indicates an cperand that is
directly addressatle. Its mode anpd displacement
are known, Unqualified variables and constant
raramenters are directly addressacle.
The indirect state indicates an operand whose
address is indirectly addressable, for example, a
variable parameter.
The addressed state indicates an operand
whose address is on the machine's stack (such as a

subscripted variatle), while the expression state

==
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indicates an operand whose value 1is on the

machine's stack.

In the end, the machine requires that the state of an
operard be either addressed or expressicn. In the FASCAL/S
versicn, all cperands are placed directly on the stack
except operands cf structured type (arrays or records), and
string constants. Arrays and reccrds are stored in the
ﬁariatle area {local or global) and their addresses are
pushed on the stack., String constants are stored in the
large constants area and their addresses similarly pushed on

the stack.
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OPTIMIZATION LN PASCAL/S
3.1: Iptroduction to Optimization in PASCAL/S

As stated previously the objective of this report is to
document a ten-pass optimizing compiler. Three of the ten
passes, 1in fact the three completely new passes, are
designated as optimizing passes. Abho and Ullman [Aho 77a]
give this descrirpticon cf ccde optimization:

"Code optimization is a optional phase designed to

icprcve the intermediate code so that the ultimate

ocbject program -runs faster and/cr takes less
space. Its output is another intermediate code
program that does the same job as the original,

tut rperhaps in a way that saves time and/or

space."

In this descripticn are several key points, Code
optimization done in the PASCAL/S comgpiler is completely
op{icnal. (See figure 18.,) To initiate optimization the
progranmer must specify which of the optirizing passes are

to e included as part of the programn's options. (See

Appendix C.)

Ccde optimization is the prOceés of rearranging and/or
changing operations in a program during compilation so that
a more efficient object program results, Code optimization
in no way affects the outcore of the program. (See figure

19.)
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FIRST
FIVE

PASSES

> CONSTANT
FOLDING

PASS6 |
EXPRESSION
P EVALUATION

PASS7 I

—Pp{ AD HOC

PASSS

FIGURE 18: DATA FLOW OF OPTIMIZATION
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OUTPUT FROM 8

OUTPUT FROM 7

OUTPUT FROM 6

OUTPUT
FROM 5

The code output from each of the opti-
mization passes is a superset of the
previous pass. Generally speaking, the
input to pass 9 is the output from 8 or
any of the subsets.

FIGURE 19.: OUTPUT CODE OF OPTIMIZATION
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The tasic r=zasons for including an optimization phasé
in the PASCAL/S compiler teing developed are the following:

1. reduce the code size,

2. increase execution speed, and

3. reinimize the number of temporary values on the

stack.

The advantages follow quite 1logically. Reduced code
size implies that larger proqrams can ke run on smaller
machires. Increased execution speed 1is always advantageous
where possible, Minimizing the number of témporary values
on the stack is perhaps the least okvious c¢f the goals. The
rup~-tinme storage area ccnsists of two parts, a heap and a
stack. The hecap and stack originate from cposite ends of
this area and grcw toward each other., Temporary values are
one c¢f the principal éntries ‘on the stack. Therefore
minimizing the number of temporaries decreases the size of
the stack, which in turn leaves wmore space for dynamic

allocaticn in the heap. (See figure 20.)

There exist two fast registers. which contain the top
twe elements from the stack, first—-in-stack (FIS) and
second-in-stack (SIS). The remainder of the stack is stored
in memory. Clearly, any operations which use only the top
two elements in the stack will execute significantly faster

than those which must access stack elements from memory.
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Low Core

HEAP

STACK T High Core

P6M

FIGURE 20: STACK & HEAP OF OPTIMIZATION
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Thas all the attention paid to stack depth is in essence to
concentrate on operations which access only the top two

elemerts.

As with the rest of the compiler, each of the thre=
optimizaticn passes is well structured and concentrates on a
specific aspect. These passes were described briefly in the
intrcducticn tc the PASCAL/S compiler imn Chapter 1. Once
agiin, pass 6 is designed to do constant folding, pass 7 is
designated expression evaluation, and pass 8 is an ad hoc
pass Jhich includes optimization misfits and eliminates

invariant code.
The remainder of this chapter will consist of

examinaing the code optimization of the EASCAL/S compiler by

lookirg at each pass in some detail.
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3.2: Constant Folding

OPTIMIZATION IN PASCAL/S

Ccnstant folding is the process of doing all operations

at compile time which are static.

be dcne at
relaticnal operators
constant,
operations of the source
optimization dcne in this
performed on constants.
Fass 6 acccmplishes

structures. These trees

routire level only and constitute

the procedure or routine.
otherwise possible.
operatcrs
new trees

trees are saved

encountered, optimization is initiated on

block., Once
the pcinters to
stack and a new
trees are

cince the

optimization is limited

compile time
when the operand

This eliminates

Trees
cf the intermediate code.
are tuilt and pointers

in an orerand stack.

the trees of that klock are

to within each

Thus constant folding can

with arithmetic, 1logical, or

values are known or

the need for executing these

program at run time. Thus, the

rass primarily involves operations

constant folding by using tree

are built at the procedure or
the complete structure of
This allows for optimization not
are built frcm the operands and
With each block entry,
to the nodes, branches, or
When a block exit is

the trees of that

completed, intermediate code is gencrated and

popped off the

Elock entered.

not built at the program level,

routine. One other
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potential disadvantage 1is that of limited mremory capacity,
which 1is often the case with minicomputers. The tree
repres2ntation of a long routine could exceed this limit.
However, lcng routines are not justifiable from the point of

view of good programming technigues.

Few changes are made to the form of the code processed
in this pass. Much of the code is transferred directly to
the cutput intermediate code just as it was 1input, and the
remainder may involve deletion or rearranging and changing

operations to produce more efficient ckject code.

The remainder of this section 1is comprised of the
specific technigues used in this pass and how and when they
arec arplied. The description of each includes +the type of
optimization, an example in the form of a sentence segment,
and rmenticn of 1its ccntributioan toward the goals of

optimization.

In the remainder of this. section, operands which begin
with 'C' indicate constants, e.g. C1, C2, etc,; operands
which tegin with 'BE' represent Boolean expressions, e.g.
BE1, EE2, etc,; and operands which begin with 'RE' represent

relaticonal expressions, e.g. RE1, RE2, etc.
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- ccnstant folding on binary arithmetic or relational

operators

Ccnsider the addition of two constants C1 and C2. The
code generated without optimization is as follows:
PUSHCONST (C1)
PUSHCONST (C2)

ATD

AN

Luring this pass this code would be replaced by the
single instruction:

PUSHCONST (c3) where €3 = C1 + C2

This means a reduction in code size, faster execution

and the savings at run time of a tempcrary on the stack.

- constant folding on unary operators

This aspect of constant folding applies to such
operators as unary mianus, abs, chr, and ord. In the

unoptirized versicn, the code generated would be:
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P USHCONST (ci)

OF
khen folding is dcne the resulting code is:

PUSHCONST (C2) where C2 = op(C1)
Again, code is e2limipnated and an increase in execution

speed is gained.

constant folding of Booleans

Ccnsider the follcwing examples:
a) FALSE AND <EOOLEAN EXPRESSION>

E)y 1TRUE OrR <BOOLEAN EXPRESSION>

In a) anytime the situation arises where a value of
FALSE is tc be 'ANDed' with a Boolean expression, there is
no need to evaluate the Boolean expression. The existence
of the FALSE imzlies that the result of the ‘'ANDing' will

always be false.

Similarly for k), anytime a TRUE is ‘ORed' with another
Boolean expressicn, the result is always true, regardless of
the value of the Boolean expression. Optimization cf these

expressicns would result in
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A) PUSHCONST (FALSE)
and
B) PUSHCONST (TRUE)

respectively.

With FALSE or <BE£> and TRUE and <BE>, the 'false or' and the

*t+rue and' are removed from the tree.

In this case there would be a reduction in code, an
increase 1in execution speed and a potential savings of

tempcraries on the stack.

- constant folding of sets

70 build a simple set such as [C1, C2, (C3], the

unoptimized code generated would be:
PUSHSET L] ( the null set is pushed

on the stack )

PUSHCONST (C1)
INCLUDE
PUSHCONST (C2)
INCLUDE
PUSHCONST (C3)
INCLUDE
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when all the values of the set elements are known at
compile time, it is possible to optimize the code so that
the resulting code is one instruction:

PUSHSET [Cl, C2; €3]

Clearly, code 1is eliminated which wculd contribute to
faster executicn, and the number of temporaries would also

be reduced.
- constant folding related to indices

In the wunogptimized version, the code generated for a
subscripted element A[C1], is the fcllcwing:
PUSHADDR . (A)
P USH {ch)

INCEX (min, max, element siza)

In this sequence the address of A, the beginning
address of the array, 1is pushed o¢n the stack. Wext the
index, C1, is pushed on the stack. The 'index' instruction
then looks at the FIS and checks to insure that it is within
the range specified by the min and the max, If it is within
the range, then the index (FIS) is multiplied by the length
of an element in the array. The result, the offset, is then
added to the starting point of the array (SIS) to arrive at

the address of the element.
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When the index 1is a constant, this may be done at
compile-time eliminating the need fcr doing it at run-time.
When folded during optimization the code generated is
merely:

PUSHADDR (B)

where B = (A + C1 * element size)

Amount of code decreases; execution speed increases; and the

number of stack entries decreases.

- constant folding related to fields within records

Consider the code generated for a record R with a field
E2 in the unoptiwmized version:
P USHADDR (R)

FIELD (offset of element E2)

The field within a record is always a constant. As
such it 1is possiktle to create the address at compile time
rather than at run-time, The code in the optimized version

would consist of the single instructicn:

PUSHADDR (R.E2)

where R.E2 = (R + offset of element E2)
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It is not the case that this optimization may be performed
with a field which is referenced within a BEGIN-END Lklock as
part cf a WITH statement qualification. In this particular
case the address of the teginning of the record does not
imwmediately prcceed the field, and therefore the starting

point is not easily accessible at compile tire.

The impact cf this rparticular optimization is to reduce
code generated and increase execution speed while decreasing

the stack size,
- adding and subtracting zero and multiplying amd dividing
by one

211 occurrences of adding or suktracting zero or
multiplying or dividing by one are eliminated since they
have aksolutley no effact.
- zero divide check and overflow

This pass also checks for zero divide and overflow in

apprcximately the same way as at run time. Such instances

are flagged and error messages are produced.
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- multiplication and division changed to shifts

The multiplication and division c¢perations are changed

to shifts, which result in faster exectuion.

- constant folding on real numbers

Constant folding for real numbers has nct been included
in this pass, This was not implemented primarily because of

space limitations and okjectives of the ccmpiler.

Generally, constant folding for real numbers would be
most helpful 1in the areas related to numerical analysis.
Since this conmpiler is designed primarily for use in writing
operating systems, there was not sufficient need to warrant

implementation of constant folding on reals.
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3.3: Expression Evaluation

Expression evaluation, the second of the optimizing
passes, focuses on evaluating expressions in such a way as
to increase execution speed or to reduce the stack size by
minimizing the number of temporariess on the stack. It turns
out that accomplishing these goals may actually in sowe
cases increase the code size, For expression evaluation,
once again trees are tuilt from the operands and operators
of the intermediate code and optimization is performed on

the trees of each block.

The remainder of this section 1is devoted to the
specific instances of optimization which are handled in this
pass. The description will be structured to include the
type c¢f optipization, one or more examples, and the

implications for optimization.

It is impcrtant tc remember that the optimization being
descrited by looking at sentences or sentence fragments
(that is, expressions) may actually be performed repeatedly
and at all 1levels in the trees which have teen constructed

and are teing analyzed,.

- Boolean expressiaon evaluation:
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a) Given the source code with two Boolean expression
conjoined with ‘'and' (e.g. BE1 AND BE2), then the input

code fcr this rass would be of the form
BE1 BE2 AND FALSEJUME(lLlx)

where 1blx is still a mnemonic lakel rather thén a
displacement, It is possible, given thié construct, to
increase execution speed in some cases by modifying the code
to be:

BE1 FALSEJUMP(lblx) BgE2 FALSEJUMP (1blx)

Since an 'AND' requires that both arguments ke true to yield
a true result, it is unnecessary to evaluate the entire

exrression if the first Boolean expressicn (BE1) is false.

Note the length of the code 1is increased by the length
of the false jump's argument (either 16, 24, or 32 bit
displacement), 1In all but very extreme cases, this would Le

16 bits.

t) Given the source code with tuwo Boolean Expressions
conjoined with YOR' (e.g. BE1 OR BE2), then the input to
this pass would be of the form:

BE1 BE2 OR FALSEJUMF (1Eklx)
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Similar tc the previous example, it is possible to increase
execution speed Lty modifying the code to Le:

BE1 1TRUEJUMP(lbly) BE2 FALSEJUMP(lblx) DEFLABEL{lbly)

This is possible since the 'Ok' operatcr requires only
one cf its operands to ke true to produce a true result.
When the first expression is evaluated TRUE, the truejump
branches around the remainder of +the expression to the
operatcrycperand which follows the false Jjump in the code
stieam. The remainder of the expression evaluation works as
descrikted previcusly. 2again, the length of the code is

increased by a displacement length.

- operand switching

This aspect of optimization is not well documented in
the literature. Generally though, the ckjective here is to
redace the number of temporary registers used 1in the
expression evaluation. However, within the PASCAL/S

versicn, the objective is to reduce the stack size,

a) aritheetic operators:; For an exaumple of operand
switching with arithmetic operators, consider the fcllowing
arithretic expression:

A + B ¥ C

=y Y
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which yields the following tree:
+
/ \
A *
/\
B C

Thus, the code generated in an unoptimized version wculd be:

P USH VAR A

PUSHVAR B

PUSHVAR € A stack depth = 3
MOL

ADD

To optimize the evaluation of this expression the
operarnds must ke 'switched'. In essence, the branches of a
node shall be switched so that the longest (that 1is, the
branch requiring the most number of entries on the stack)
subtree is on the left fkranch. In this case the new tree

would Lte:
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/\
B/ \c

and the code generated in the optimized version would be:

PUSHVAR B

PUSHVAR C stack derth = 2
KOL

PUSHVAR A {=mmmm—- stack depth = 2
ADD

Cbviously, operand switching on arithmetic operators is
lipited to additen and multiplication, that is the
arithmetic operators which are conmsutative ty definition.
It is interestiny to note that, in addition to reducing the
size of the stack, this optimization results in the
operards always being 1in the fast access portion of the

stack (FI5 and SIS).

k) relational operators: With respect to relational
operatcrs, it is sometimes necessary to modify the operators
when cperand switching is done. Consider the expression:

RE1 < RE2

where the absolute stack lengths are such that the length of
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RE1 is less than RE2 (i.e. RE > E1 ).

/\

RE1 RE2

In order to minimize stack depth the relaticnal expression,
RE2, =should be cn the 1left branch. Thus, optimization in
the form of operand switching is required. The resuolts
wouald Le:

RE2 > RE1

> .

RE 2 RE1
The impact of this optimization is to reduce the stack depth
and keep the operands in fast registers by evaluating the

longest branch first., (Note: The size cf the code remained

the same.)

The relational operators of >, >=, <=, < all require
the switching of operatcrs when the operands are switched.
The relational operators of <> {(not egual) and = do not

necessitate the switching of the operatcrs when their
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operands are switched,

c) Boolean operators: Consider the following
expression segment as an example related to Boolean
operatcrs:

A OR (B AND Q)

with tree:

N\

AND

I\

and urcptimized ccde:

PUSHVAR (A)

PUSHVAR (B)

PUSHVAR (C) R stack depth = 3
AND

OR

vhen optimized with operand switching, the new egivalent
expression is:
(B AND C) OR A

The revised tree is:
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OR
AND A

A

The ortimized code 1is:

PUSHVAR (B)
PUSHVAR (C)
AND

PUSHVAR (3)
OR

Following this operand switching, the Boolean
expressicn optimization would proceed so that the code

streanm of

B C AND A OR FALSEJUFE(lblx)

would becoma

E FALSEJUMP C TRUEJUMP A FALSEJUNMP <truepart>

{falsepart>

- redundant -operators

The circumstance of redundant operatcrs might arise
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with two unary ‘'NOT! operators preceding a Boolean
expressicn or two MINUS operators preceding an arithmetic

expression (e.g. YNOT NOT BE1Y).

Cptimization in this pass would eliminate these
redundant operators since they have no impact on either the
Boolean expression or the arithmetic exXpression

respectively.

-~ iseediate operators

Expression evaluation is extended further with
‘immediate operand optimization'. Consider the following
assignment statement:

X <-- A+ B

where the tree ccnsists of:

Cmm

AN
A/ \B
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and tke unoptirized code is:

PUSHADDR X

PUSH A

PUSH B R i stack depth = 3
ADD

ASSIGN

with the cptimizaticn discussed thus far, the code and

tree lecome:

PUSH A
PUSH B (=== stack depth = 2
ADD

PUSHADDR X

T SWAP' ASSIGN

-—>

/N
A/ \B

Bormally, the assign instruction would take the FIS and
assigr it to the address at SIS, When operand switching is
done, howaver, these two are reversed. Rather than actually

doing the PUSHADDR and 'SWAP' ASSIGH shown in the optimized
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code, there exists an instruction which allows the immediate
assignment of the F1S to the address from within the code
strean (pcp FIS to INT). when this immediate type operator
is wused, the key 1is that the code (in the example the
address of ) 1immediately follows the operator in the code

strean.

Thus the code becomes:

PUSHVAR (3)
P USH VAR (B)
ATL
ASSIGNIMH (ADDR OF X)
These 'immediate' type operators are especially

applicable to constants within arithmetic and felational
expressions. For example, consider the arithmetic
expressicn with variable A and constant C1:

A + C1

Normally, the code generated would be:

PUSH A
PUSH C1
ALD
By taking advantage of the instructioas within the

instruction set, it is possible to condense this code to:
PUSH A

ACDIMM C1
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Consider also, the relational expressicn with variable
A and constant C1:
A > C1
which generates unoptimized code:
PUSH A
PUSH C1
COMPARE
Following optiaization applying the 'CF inmediate!
instruction the optimized code is:
PUSH A

CCMPAREIMH (C1hH

Inmediate ofperators could be similarly applied to
Booleans where at least one operand is a constant. However,

this is accomplished in pass 6 by folding Boolean constants.

Thus, there is some savings 1in ccde as well as an
increase in execution speed and a reduced stack size when
‘op irmediate' instructions are used. This approach can be
aprlied to all operators when they operate cn a constant or

a sirple single variable,

Cnce again, it is important to note that any of the
specific instances of optimization discussed in this section
may be applied at any level of any of the trees created for

the tlock.
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3.4: Ad Hoc or Imvariant Optimization

The final pass of optimization includes diverse
optimization features which do not fall aprropriately into
the categcries of optimization of the previous two passes.
Optimization is done on control structures to the extent
that unreachable code is removed. The following examples
illustrate situations which are representative <c¢f such
optimizaticn:

- IF FALSE THEN A:= E1 ELSE A:= EZ;

can ke optirized to: A:= E2

= IF TRUZ THEN A:= E1 ELSE A:=E2
can ke optieized to: A:= EI1
- CASE C1 OF . . .
can be optimized to include only the proper onc
from the enumeration
- WHILE FALSE DO . . .
can be deleted

- REPEAT <statements> UNTIL FALSE

can be optimized to: <statements>

Crtimization which removes invariant code from loops is
also done. That is, operators whose cperands are unaffected
by ccde witnin the loop may be removed from the loop itself
and thus execute once versus the numeroué times ghen inside

the lccp.
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Cptimization is done which removes all branches to
branches. Further, all tranches are flagged to insure that

they can ke reached.

This pass performs factoring of sutexpressions. For
example:
-C * (- (A +B) +I) =>
-C (- {((A + B) - D) =>

C * (A+ B - D)

This pass scans for identical operaticns within each
block., Thus if the following two statements occurred in the
same tlock, the temporary, resulting from evaluating A * B
is calculated cnly once and saved on tahe stack.

X := X + (A ¥ B)

Y 1= 2 * (A ¥ B)

pnother major contritution of this pass is strength
reduction, which replaces an expensive (in time) operation
by a cheaper one, often this means multiplication vs.

addition respectively.

The following example involves array subscripts which

are the most representative of strength reduction:
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FCR I:= A TC B DO X{I]:= E

where the array element is calculated by:
EUSHALDR (X)

FUSHVAR (1)

INDEX (min, max, lenyth)

can te optiwized as follows:

EUSHALDDR (X)

EUSHVAR (2)

INDEX (min, max, length)

KFOR . « o2

EUSHACDR (TN
EUSHCONST (length)
BLDINT

EUSHADDR (T1)
EUSHVAR (E)

STORE

In this exanple, the code size is increased; however
exccution speed will decrease. In this instance

optimization reguires trade-offs.
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COLE GENERATICN

———— e - - ——

B.1: Introduction

The EASCAL/S compiler's last two passes are dedicated
to c¢cde generation, wusing the conmon two-pass design,
PASCAL/S pass 9 performs code selection while pass 10 does

code assenkly.

In effect, code generation must take the intermediate
code input and ccnvert it into the object program. (See
figure 21.) Aho and Ullman state that "designing a code
generator that produces truly efficient object programs is
one of the most difficult parts of cowpiler design, both
practically and theoretically" {Aho 77a]. Good code
generation dictates utilizing the facilities of the hardware
as effectively a=  possible, which is difficult to do in an

optimal way.

Cne reascn that code generation 1is difficult is a
result of its dependence upon particular rachines. Thus,
code generaticn must produce an object program which
perforos the ccmputations directed by the intermediate code
input, by efficiently wusing the instruction set of the

machire.
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The remainder of this chapter contains discussion of
code generation ty first describing ccde selection and then

code assernkly.
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§.2: Code Selection

Fass 9 of the PASCAL/S compiler performs code selection
and is similar in task to Hartmann's pass 6. The main
distinction between the two, is in the code which is being
selected. The code selected for PASCAL/S is the code for
the =tack machine being developed by Perkin-Elmer CLCata
Systems [Goet77a]. Hartmann's compiler, however, performed
code selection for Brinch Hansen's virtual Pascal machine

(in essence the kernel and interpreter written by Brinch

Hanser) .

The tasks of this pass are to define the addresses of
program labels, determine the run-time stack requirements of
routines, pull constants out-of-line and place them in a
constants table, and translate the intermediate code input

into the proper olbject code.

Befcre discussing the specifics of code selection, it
must ke noted that the PASCAL/S instructicn set is quite
exhaustive and differs from instruction sets associated with
machines of the Von Neumann architecture. The PASCAL/S
instructicn format consists of an 8 bit profile, followed by
an 8 Dbit op code, followed Ly zero cr more arguments

(orerands).
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The profile specifics the-base register to be used with
the cperatcr, the length of the operands -- which is either
known implicitly by the instruction op code or is specified

-- and the length of any displacement,

The extensive instruction set when comkined with the
profile - allows for efficient code 4generation. The
instruction set 1s obLviously oriented toward the stack
machire for which it is designed. This instruction set
includes many virtual instructions (e.g. flow-of-control)
similar tc those used within Brinch Hansen's virtual Pascal

machine (e.g. ENTERMON, ENTERPROCESS, kernel call, etc.).

'Selecting' the ©proper object <code is done by first
analyzing the types of operands which indicate the object
code cperator, Next, the mode of any address, the length of
any operands and the 1length of any displacement are
deternsined., This information thus allows the proper profile

to be created and hence the proper code to be selected.

This pass creates fcur tables -- a routine iabel table,
a jump takle, a stack takle and a constants table which are
to Le used by the next pass. These tables contain the
addresses of routine labels,the addresses of Fjump labels,
the stack requirements of routines, and the large constants

(strirqg ccnstants only in EASCAL/S) respectively.
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Informaticn which is used in code sclection comes fromn
several of the previous passes. Body analysis passes along
the nurber of routine labels, the number of jump labels, and
the length of the constants area thrcugh the inter-pass
recoré. The number of routine 1labels was determined during
declaration analysis. Syntax analysis recorded the number
of Jjump labels, The 1length of the constants area was
deterrined by name analysis., This size infcrmation is used
by ccde selection to allocate tables during the

initialization of the pass.

Cne c¢cf the functions of this pass is to define the
addresses of prograwm labels which are either routine latels
or jumg labels. Routine lakels occur at the beginning of
each routine body, one per routine, Routine labels are
delineated during declaration analysis of routine
declaraticns, Jump labels only occur within routine bodies.
Juap labels are created during syntax analysis as statements

are ccnverted to postfix notation.

In the input code, routine latels appear as arguments
to the ENTER command, which begins all routine bodies. When
such a latel is encountered, the current program address is
added to the routine 1lakel table. The entries from this
tabtle are used in the next pass to replace the labels of the

call instructions by addresses.
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In the input code, Jjump labels are represented by 5
latel corrand followed by a label number. When such a label
is encountered the current program address is added to the
jump label table indexed by the label number. As with
routine labels, the next pass will use the information fron
the JSump 1label table to replace the label in Jjump

instructions with a relative address.

Jump labels are associated with four different
instructions, the jump, the false jump, the +true jump, and
the case jump. The first three are followed in the code by
a specific label numter. The case Jjumg, however, 1is
follcwed by the minimum and maximum case label 'values' and

precisely maxiwmum - minimum + 1 labels.

The displacement argument of jump commands may Le one
of three 1lengths C16 (16 bits), D24 (24 bits) or D32 (32
bits) depending upon the actual Jump displ;cement. The
provision for variakle displacerents is included for
optimization, As a result, another table is constructed
during pass 9, the jump table. All jurp displacements are
assumed to be 16 bits during code selection. This table is

used tc adjust the displacement argument upward as needed,

The following example demonstrates the need for

adjustment:
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LOC 1

LOC X JUMP NAME 2

- =

CLoc Y DEF LBL WAME 1
LOC V JUMP NAME 1

- -

LOC z DEF LaL NAVME 2

The displacement of the jump instruction at (a) is
assumed to be 16 Dbits. The Jjump table is ‘searched
sequertially fcecr each entry encountered, the name is looked
up in the jump label tatle or the routine 1lakel tatle, and
the difference between the current 1location in the jump
table and the location of the 1label in the jump lakel table
or rcutine label table forms the displacement, For the
example, it is determined that D24 is required to represeht
this displacement. Thus, what was loc Yy should be adjusted
to loc y + 1 along with all succeeding entries in the jump
‘takle. Ncte: The location counter is in bytes and there
exists a one byte difference ketween these three
displacement tyres, In the profile, the proper 1length

displacement is updated from this takle in the next rass.

Lisplacements into the variable area are static by this
pass and their displacement lengths are known after pass 4.
Bven though they may be one of three lenygths there 1is no

need for concern in this pass.
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Another function of code selaction is determining the
maximum run-time stack size of all rcutines. This is done
by ccrputing the requirements for each routine and then
using the sum of the stack requirements for all routines as
the wcrst possible case for the program. This can be rather
misleading. Segquential Pascal permits recursion, yet this
estirate cf the paximum run-time stack ignores the effect of
recursion, Further, this estimate of the worst Gfossible
case is highly unlikely, since it implies that all routines
must have been called at one tire. Thus, the stack
requirements represented by this estimate might prohibit the
execution of a program whose actual stack requirements were

much less.

Input to code selection consists c¢f approximately 50
unique ccemands., This pass encodes types into the cpcodes,
so that the command set is more than tripled (e.g. ALD now
becomes either ALCDINTFIS or ADDBYTEF1S, etc.). There are
many e€xtensions to the operand set of Brinch Hansen's which

forms this exhaustive instruction set of the new machine.

Output from this pass lacks only the displacements for

routine labels and jump lakels to be the final machine code.

In summary, PASCAL/S pass 9 takes code which is
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oriented for the stack machine and selects the proper
profile and operations for the PASCAL/S instruction set, It
is guite similar to Hartmann's pass o and tuilds the same
four takles, which remain in the heap for use by the

succeeding pass.
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8.3: Code Assembly

Ihé final pass of the PASCAL/S compilcr <completes the
transfcrmation c¢f the original program into its target
program, the final wmachine code., The achievements of this
pass are essentially the same as those of Hartmann's pass 7.
Code assembly replaces routine 1labels and Jump lakels by
their displacements., The maximum stack 1length fcr each
routire is placed in the entry instructon of +the routine,
Error messages, if any, are written and the table of large

constants is arpended to the generated code.

The four tatles created during ccde assembly are used
by this rpass. The addresses of 1labels are attained from
either the jump label takle or the routine 1label table and
sukstituted for the 1labels, The entries of the stack table
indicating the size of the run-tirme stack are used to
complete the enter instructicns for each routine, The table
of constants 1is used so that the «ccnstants may be output

follcwing the code.

The 1listing of error- messages 1is the remaining
accorrlishment of this pass. Errors have been flagged (with
an arror operator, the pass number, and the error message
type) in ©previous passes as they were encountered, As a

result, errors from the various passes will be listed in
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order of the line number, Code assenrkly is responsible for
processiny these error operators and printing the 1line

nunber and the appropriate error message text.

Fass 10 optionally outputs the object code 1listing.
This option may Le specified by the ©progranmeer. (See
Appendix C.) 1In conclusion, PASCAL/S pass 10 completes the

translation of source ccéde to final code.
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COMMENTS AKD CONCLUSIONS
This chapter is divided into a discussion of the
results and impact of the project frem two different
_perspectives: the author's personal point of view and the

more general project view.

Fcr the authcr, this was a satisfying venture. The
documentation and code conversion tasks served to cultivate
an understanding of the Sequential and Concurrent Pascal
Compilers, and develop a thorough kncwledge of the features
added cor mcdified, Creating documa2ntation for a project of
this size was indced a new experience. This specific effort
focused attention on facets of documentation essential in
response to anticipated needs of others. Constructing the
syntax grarhs for the eleven languages associated with the
new version of the compiler provided insight into the effect
of each pass c¢n the code produced. This_ project, as
designed, was to modify and extend the existing compilers.
This resulted in the author gaining a real appreciation for
Pascal as an implementation language. The original conmpiler
source text (surplemented by Hartmann's dissertation) was

understandable and relatively easily rodified.

The biggest benefit from the author's perspective was

that this project was involved with state-of-the-art

- 118~



CHAPTER 5 - COMMENTS AND CONCLUSIONS

software develcprent, Thus this project was considerably
more satisfying than any of the <class-type projects the
authcr had been exposed to previously. The author is
appreciative of the opportunity and enthusiastic about

pursuing this area even more,

Felated to the general project fpcint of view the
discussicn will focus on the following areas: project
expectations and effort, problems encountered, and notions

about further developnment.

The focus cf this applied research was to develop
Pascal compilers, both Sequential and Concurrent, for a
stack machine, The particular machine was to emulate the
PASCAI/S machine which is being developed by a division of
Perkir-Elmer Data Systems, The project included:

- modifying the Sequential and Concurrent Pascal

ccmpilers tc produce FASCAL/S object code,

- writing an interpreter and modifying the kernel

cf the current KSU implementation [ Neal76a] to

emulate the new architecture,

- writing new passes to perform optimization,

- testing and detuyging the compilers and the

interpreter, etc., and

- documenting the modifications to HHartmann's

Sequential ccmpiler.
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This research project was undartaken by a research teém
consisting of a faculty member and two vpart-time graduvate
studerts at Kansas State Universiy, It is estimated that
the total time spent working onm the prcject bty the entire
team was cver 28C0 hours, The following accounting of time
is based upon the best estimates and notes of the research

tean.
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approx. % hours

Gary: {(100% - 6 mos.)

administrative tasks 10 164
learning 20 328
code conversion & writing 20 328
testing & debugging 50 820

TCTAL 100 1640

Dave: ( 504 - 6 mos.)

learning, design, 18 390
implementation, & testing
of interpreter

adapted Hartmann's intermediate 10 50
operators to PASCAL/S
operatcrs (pass 9)

adapted kernel and Pascal 12 60
lcader mcdule

TOTAL 100 500

Bark: ( 50% - 4 mos.)

learning 27 200

dccumenta tion
. writing, editing, etc. 18 130
. Syntax graphs ' 7 50
. Sequential Report 2 15
. editing & final report 10 70

(since Sept. 19)
code conversion, writing, & 36 265

debugging (CPascal - passes
1 - 5 and pass 1 XREF )

TOTAL 100 730
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There were several types of problems which were
encountered during work on this project. Basically these
problers resulted from the initial decision regarding the
working copy of the compilers, machine down-time and
availakility, and an under-estimation of the effort required

for project completion,

Early in the development process, the decision was made
to use the Navy's version of the compilers, both Seguential
and Ccncurrent, as the wcrking copy. Initially it was felt
that this would allow the research team to «capitalize on
sore cf the optimization flags and features which had
already Leen incorporated 1in the Hartmann compiler.
Unfortunately, this choice caused problems and cost time.
Since it was alsc decided to model the Hartmann compiler as
closely as possible, it would have saved effort to have
started with Hartmann's compiler and then added the flags
and features incorporated in the Navy's version which were
related to optimization. Initially, those involved were
unaware of the profound impact of scme cf the changes the
Navy made related to 1I/C, parameter passing, data save

areas, etc.

Machine dcwn-time had a substantial negative impact on
the research pro ject. It was particularly a factor during

the final weeks of the project when there were two weeks of
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interrittant up-time and two weeks of complete down-time.
Most down-time —resulted from protlexs with perirherals.
Other incidences of machine down-time were frequent enough

to be inconvenient and annoying.

Ferhaps an even bigger factor was machine availability.
Due to the heavy research 1load currently on the Interdata
8/32, rachine availability was limited and the response-tinme

was slow.

The criginal estimate of the time required to complet=
the project was closer to 1900 hours than the 2800+ hours
actually reported. As a result, it would have helped
consideratly tc have had more time to complete the currant
project. The division of responsikilty (later and talents)
seened ccnsistent with the original intent of the project,
so that adding additional personnel rprokably would not have
contrituted toward on-time completion, An ad@itional month
in the overall plan would 1likely have guaranteed timely

coeplction, however,

It is likely that further development cf the compiler
would ke reneficial, There are other optimization features
which could - ke added to improve the object code still
further. Thus, there still exists opportunities to continue

to improve upon the current version.
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Feferences to bilkliographic itemns are sorted and

indexed by a key which has the following format:

[ <NAME> <YEAR> <LETTER> ]

Where <NAME> is the first four letters ¢f the last name of
the =<senicr authcr, <YEAR> 1is the year the article was
published, and <LETTER> 1s a letter arpended to the year
which uniquely qualifies a paper if the author published

more than one paper in a specific year.
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are used to 1illustrated the basic problems
associated with multiprogrameing.

Brinch Hansen, P. Oniversal Types in Concurrent
Pascal, Information Science, California
Institute c¢f Technology, Novemb2r, 1974,

The third of three papers in ‘'Concurrent
Pascal Introductiont', describes Universal types
as implemented in Concurrent Pascal. Universal
types imply that type checking of operands nmay
be relaxed as needed in system programming.

Brinch Hansen, P, The Programming Language
Concurrent Pascal, Infcrmation Science,
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[Brin75b]

[Brin75c]

[Brin754d]

[Brini5e]

ARNCTATED BIBLIOGRAPHY

Calitornia 1Institute of Technolcyy, February,
1975.

The first of three ©pagers in ‘'Concurrent
Pascal Intrcduction' describes concurrent tools,
processes and monitors which extend the
programming language Sequential Pascal.
Concepts are explained via illustrations and an
example. The monitor «concept within Concurrent
Pascal 1is such that the hierarchy of access
rights to shared data can be explicitly stated
in the program and checked by the computer.

Brinch Hansen, P, Jok Control in Concurrent
Pascal, Information 5cience, California
Institute of Technoloyy, March, 1975.

This paper 1is ths second of three papers
included in 'Concurrent Pascal Introduction’'.
This ©paper describes how a Concurrent Pascal
operating system when started prempts Seguential
Pascal programs, Also in the paper are a
description of using Sequential Pascal as job
control language and the interaction of
Sequential Pascal program with the ofperating
system.

Brinch Hansen, P. Concurrent Pascal Report,
Information Science, California Institute of
Technology, June, 1975,

This report defines the programming
language for structured programming of oreratiny
systems--Concurrent Pascal., The report includes
compelte discussion of syntax and the extensions
beyond Sequential Fascal of systen
types--processcs, monitors and classes.

Brinch Hansen, P. Disk Scheduling at Compile
Time, Information Science, California Institute
of Technolecgy, June, 1975,

This paper presents a simple alqgorithm for
allocating program files on a moving head disk.
The method descriked claimrs to combine the best
features of consecutiva and non-consecutive
allocation, fast sequential access and fast
allocation. This method is used in FPBH's SOLO
operating systen.

Brinch Hansen, P, The Programming Langquage
Concurrent Pascal, IEEE Transactions on Software
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{Brin75f)

[Brin753)

 [Brini5h]

[Brin75i j

[Brin757 ]

ANNCTATED BIELIOGRAPHY

Engineering 1, 2, June, 1975,
A collection of three papers annotated in
[Brin75a], [Brin75b] and [Erin7dal,

Brinch Hansen, P. Sequential Pascal Report,
Information Science, California Institute of
Technoleoqy, July, 1975.

This report defines the programming
language Sequential Pascal as implemented for
the PDP 11,45 computer.

Brinch Hansen, P. The SOLO Operating System: A
Concurrent Pascal Program, Information Sciance,
California Institute of Techrology, July, 1975.
The first of thres papers in 'The SOLO
Operating System!'!, this paper describes SOLO--a

single user operating system-- which is written
in Concurrent Pascal. SOLO utilizes the
abstract data types (classes, monitors and

processes) such that most access rights are
checked at compile-time. The paper describes
SOLO from the user's point of view by describing
the processes and the interaction of seguential
programs with the systen.

Brinch Hansen, P. Thes SCLC Cperating System:
Jot Interface, Information Science, California
Institute of Technoloyy, July, 1975,

The second of three papers in 'The SOLO
OPerating System', this paper descriltes the
interface tetween the SOLO Operating system and
Sequential Pascal prograas,

Brinch Hansen, P. The SOLO Operating Systen:
Processes, Monitors and Classes, Information
Science, California Institute of Technology,
July, 1975,

The third of three papers in 'The 5S0LO
Operating System' describes SCLC as implemented
in Concurrent Pascal. The overall structure and
the details are described.

Brinch Hansen, P. The Concurrent Pascal
Compiler, Information Science, California
Institute of Technology, Octoker, 1975.

The fo urth of four papers in 'Concurrent
Pascal Machinet, this pager descrikbes the
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[Brin75k ]

[Brin751 ]

[Brini5m]

[Brin75n]

[Brin7ea]

ANNCTATED BIBLIOGRAPHY

Concurrent Pascal Compiler, which is a pcrtable,
seven pass ccmpiler written in Sequential Pascal
and reguires 16K words of core store. Each pass
is surmarized along with its interface to the
operating systen.

Brinch Hansen, P. Concurrent Pascal HMachino:
Store Allocation, Information Science,
California Institute of Technclogy, October,
1995,

The first of four papers in ‘'Concurrent
Pascal Machine? describes the scheme of
allocation of <core store among the various
prccesses of a Concurrent Fascal progranm.

Brinch Hansen, P. Concurrent Pascal Machine:
Code Interpretation, Information Science,
California Institute of Technology, October,
1975.

The second of four papers in 'Concurrent
Pascal Machine?', this pager descrikes the
prccess of interpretation of the virtual code
generated by the Concurrent Fascal Compiler as
accomplished on the PDP 11,45,

Brinch Hansen, P. Concurrent Fascal Machine:
Kernel, Information Science, California
Institute of Technology, Cctober, 1975.

The third of four papers in ‘'Concurrent
Pascal Wachinpe', this paper describes the kernel
of Concurrent Pascal as ircplemented on the PDP
11/45 computer. Also described in the paper are
the kernel control of processcr wultiplexing and
the scheduling of monitor calls.

Brinch Hansen, P. A Real-Time Scheduler,
Information Science, California Institute of
Technology, November, 1375.

This paper describes a real-time scheduler
for process control applications given a fixed
number of tasks which ars to be carried out
periodically as determined by the operatcr. The
design, programming and testing of the progranm
are descrited in detail.

Brinch Hansen, P. Concurrent Pascal:
Implementation Notes, Information Science,
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[BLin76b]

[Brin77a ]

[Geet77a]

[Grie71a]

ANNCTATED BIBLIOGRAPNY

California Institute of Technclogy, January,
1976.

This pa per contains information about
porting the SOLO op=srating system and the
programming languagje Concurrent FEascal to other
computers, This paper is technical encugh to
require familarity with other EBH papers.,

Brinch Hansen, P,  The Jck Stream Systenm,
Information Science, California Institute of
Technology, January, 1976. '

This paper describes an operating system
which compiles and executes short user progranms
as input from a card reader and output to a line
printer. This model of an operating systenm is
written in Concurrent Fascal and uses buffers
stored on disk to allow simultaneous input,
execution and ocutput.

Brinch Hansen, P. The Architecture of
Concurrent Ercgrams, Prentice-Hall, 1977,

This Look describes a systematic way of
creating concurrent programs in Concurrent
Pascal. The use of the language is illustrated
in three nmnon-trivial concurrent prograns,
including a single-user operating syster. This
book 1is gparticularly useful as a practical
supplement in operating system ccurses.

Goettelman, J. KSU Project: Tefinition/ Hork
Statement, FPerkin-Elmer Data System Memcrandum,
January, 1977.

This memorandum provides a description of
the problem and the expectaticns associated with
KSU perscnnel's response to the problenm
including time constraints and final product.

Gries, D. Compiler Construction For Digital
Computers, John Wiley & Scns, Inc., 1971,

This bcok provides an introduction to
compiler construction. Included are numerous
examples and discussions of many of the
technigques and methods employed in compiler
constructicn.
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[Hank77a]

[Hart7eéa]

[Hoar73a]

[Jdens7la]

[Lewi76a ]

ANNOTATED BIBLIOGRAPHY

Hank ley, W. and Rawlinson, J. Sequential Pascal
Surplement for Fortran Programmers: A Primer of
Slides, Kansas State University Cepartment of
Computer Science, Technical Report CS XX-XX,
1977.

This report consists of numerous slides
designed to serve as an aid to introduce
prcgrammers familiar with Fortran to the version
of Sequential Pascal currently implemented at
KS0.

Hartmann, A. A Concurrent Fascal Compiler for
Mini Computers, Loctoral Dissertation,
Califcrnia Institute of Technology, 1976.

This Cissertation describtes a seven-gpass
compiler for the Concurrent Fascal programming
language. Each of the rasses, written 1in
Sequential Pascal, generates intermediate code.
The final pass generates which can then be
interpreted. This paper documents an
implementatiof this compiler cn cn the PDP 11,/45
computer at Cal. Tech.

Hoare, C.A.R. and Wirth, N. An Axiomatic
Definition «cf.the Programming language Pascl,
ACTA Informatica, 2, pp. 335-355, 1973.

This paper describes an implementation of
Brinch Hansen's concept c¢f a monitor for
structured programming of operating systeas. It
descrikes a form of synchrcnization, the
implementaticn in terms of semaphores, a proof
rule and examples.

Jensen, K. and Wirth, N. Pascal User - Manual
and Report, Lecture Notes in Ccmputer Science,
18, Spring=r-verlag, 1974,

Primarily, this book is intended as a means
of learning the programming langjuage PASCAL for
those already familiar with programming
constructs,

Lewis, P., Rosenkrantz, D. and Stearns, R.
Compiler Design Theory, Addison-Wesley
Puklishing Co. May, 1976.

This book discussa2s the mathemetical theory
underlying the design of compilers and other
language processors and describes how to use the
theory in practical design.
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[ Neal76a]

[ Nori74a]

[Wall7éa]

[WelsT24a]

[Wirt71ta]

[Wirt75a)

ANNCTATED BIBLIOGRAPHY

Neal, ©D., Anderson, G.., Ratliff, J. and
Wallentine, V. KSU Implementation of Concurrent
Pascal -- A Reference Manual, Kansas State
University Cerartment cf Computer Science,
Technical Report CS 76-16, January 1, 1977,

This report reflects the porting of the
language Cecncurrent Pascal to the Inderdata 8/32
at KSU. It 1s intended to serve as 'an cverview
to the implementation approach', 'a reference
manual for the SOLO user c¢n the 8/32', ‘'a
reference manuval for the Sequential Pascal
Programaer using SOLO', and 'a configuration
guide to SCLC systems maintenance personnel.?

Nori, K.V., Ammann U., et. al. The Pascal ‘P!
Cowrpiler: Implementation Notes, Institute for

Informatika, Technical University, Zurich,
Switzerland, December, 1974,

<O
Wallentine, V, and McBride, R. Concurrent
Pascal--A Tutorial, Kansas State University
Department of Computer Science, Technical

Report CS 76-17, November, 1976.
This paper provides several examples of the
utility of Concurrent Pascal applications of the

larguage, The examples include such
applications as priority scheduling of
resources, message systen, the data base
reader/writer problen, data link control
procedures and network inter-process

communication systess.

Wwelsh, J., and Quinn, C., A Fascal <Compiler for
ICL 1900 series computers, Scftware Practice and
Exgerience, 2, pp. 73-77.

<>

Wirth, N. The Programming Language Pascal, ACTA
Informatica 1, 1, 1971, pp. 35-63.
<>

The Design of a Pascal Compiler, Software
Practice and Experience 1, 1971, pp. 309-333.
<>
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[Wirt75b]

ANNCTATED EIBLIOGRAPHY

Wirth, N. An Assessment c¢f the Programming
Language Pascal, TIEEE Transactions on Softsare
Engineering 1, 2, June, 1975,

A brief assessment of Pascal 1s presented
which includes an enurmeraticn of features in
constructing correct programs which have proven
valuable without jepodarizing conceptual
simplicity or efficient use of the language.
Also, it includes discussion of features which
may ke controversial.
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APPENDIX A:

MCDIFIED SEQUENTIAL PASCAL REPORI



=P PP Lo L

Per Brinch Hansen
Alfred C. Hartmann

Information Science
California Institute of Technoclogy

July 1975

Original Alstract

This report defines the sequential programming lanyguage

Pascal as implemented for the PDP-11/45 corputer.

Current Abstract

This regert, as modified, defines the seguential
programming language Pascal as implemented for the Future
System Architecture c¢f Interdata Corp. and for a current
version of the compiler on the Interdata 8/32 computer at

Kansas State University.

Key Words and Phrases: Pascal, programming languages.
R

* The changes in this report reflect changes in Hartmann's
Compiler which were made by Gary Andarson. These changes
wvere documented and added +to this repoct ty Barbara K.
North.
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1. INTRODUCTION

1. Introduction

This report defines the sequential programming language
Pascal implemented on the PDP-11/45 computer. Pascal 1is a
general purpose language for structured programming invented
by WNiklaus HWirth, Also included are modifications and
changes within the language which are currently implemented
on the Interdata 8,32, Changes to the original report are
flagged by bold face type.

This is a brief concise definition of Pascal. A more
informal introduction to Pascal is provided by the following
reports:

Wirth, N. Systematic Programming, Prentice-Hall,

1973.
Jensen, K. and Wirth, N. Pascal-User HMapnumal and
Report, Lecture Notes in Computer Science 18,

Springer-Verlag, 1974,

The central part of this report 1is a chapter on data
types. It is based on the assumption that data and
operations on them are inseparable aspects of computing that
should not be dealt with separately. For each data type ve
define the ccnstants that represent 1its values and the
operators and statements that apply to fhese values,

Sequential Pascal has been implemented for the
PDP-11/45 computer at Caltech and the Interdata 8/32 at

Kansas State.
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2. SYNTAX GRAPHS

2. Syntax Graphs

The language syntax is defined by means of syntax

graphs of the form:

while statement

==-2WHILE -->expr -->D0 -->statement-->
A syntax graph defines the name and syntax of a language
construct. Basic symbols are represented by capitals and

special characters, for example

WHILE DO +

Constructs defined by other graphs are represented by their

names written in small letters, for example
eXxpr statement

Correct equences of basic symbols and constrocts are

represented by arrows.
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3. CHARACTER SET

Pascal programs are written in

character set:

a subset of

|=--> graphic character --->|

j-—->

|---> control character ---3>|

-------- > special character ---—-—--->
I |
|-——-----> letter —--------—- >1
| l
|=—-=-—==> digit ---=—----->|

|
|

|===-=-=-=-=> space

A graphic character is a printable character.

The

The

‘'special characters are

"™ $%& () * {1
s = e /2 3 <=>22

letters are

ABCT CEFGHIJKLHMEN.

OPQRSTUVERWRXYZ
abcdefghiijklan
nopgqrerrs¢tuvuwzxyz
digits are

01234567829

-2 3-
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con

trol character

A control
represented by
{Appendix A).

0..127,

-——

> (3 ==-=> digits -==> :} =--->

character is an unprintable character,

an integer constant called its

The ordinal value must be in

il W

ordinal

the



4, BASIC SYMBOLS

4, Basic Symbols

A program consists of symbols and separators.

symb

- —

(O/\/t A EXT

VoL,

The special synm

£ = {)
(-
They have fixed 1g constants and

comments) .

The word symbols are

ARRAY BEGIN CASE CONST DIV

DO DOWNTO ELSE END FOR
FORWARL FUNCTION IF IN MOD

NOT OF OR PROCEDURE PROGRAM
RECORD REPEAT SET THEN TO

TYPE UNIV UNTTIL VAR WHILE
WITH

They have fixed meanings (except within string constants and

comments) . Word symbols cannot be used as identifiers.

-A 5-



identifier
===>letter ~——=~e———mmm e >
j<—- letter <{--}
| |
|<-- digit <--{
An identifier is introduced by a programamer as the nanme

of a constant, type, variable, or routine,

identifiers
------ > identifier -—=--->

fQmmmmmms 1 Cmmamee]

Separator
--------------- > space SR S
}-----—-—--) HAN TARE o= >:
}---—) " ==> cogment =2 B ~——==- >}

|====——=====> (*~-D>comment--=>%) --3|

| |
jmes—mneees) w===DCORREGRL===) i==3]

Two constants, identifiers, or word symbols must be
separated Ly at 1least one separator or special symbol.
There may ke an arbtitrary number of separators between two
symbols, but separators may not occur within symbols.

A comment 1is any sequence of graphic characters
enclosed in delimiting symbols, The exceptions to this
statement are ® , ¥) or when the symbol is the same as the

one to delimit the end of the comment,
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5. BLOCKS

The Ltasic program unit is a block:

'D‘
H

cck

---> declarations ---> compound statement --->
It consists of declarations of computational objects and a

compound statement that operates on thesm.

declarations

| <~-const definitions<-—| | =-- -- ———————— >

--------------- ———meeme-e——e—3Var declaration-==-—=>

A declaration defines a constant, type, variable, or

routine and introduces an identifier as its nanme,

compound statement

-==>BEGIN-—-==——- >statement-——==-—-- >END-=-=->

A compound statement defines a sequence of statements

to be executed one at a time from left to right.
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6. CONSTANTS

6. Constants

A constant represents a value that can be used as an

operand in an expression.

constant definitions

==>CONST===~~ >identifier---> = --->constant--> ; -——-—- >

A constant definition introduces an identifier as the

name of a constant.

constant

f=imm > string constant --->|

I I
At --> set constant -=--->|
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7. TYPES
7. Iypes
A data type defines a set of values which a variable or

expression may assuee,

type definitions

~~>TYEE-—---->identifier----- > = ==3type--> ; =====>

' <......._._... - PR S S S — I

A type definition introduces an identifier as the name
of a data type. In general, a data type cannot refer to its
own type identifier. A pointer type may however refer to a

data type Lefore it has been defined.

type

———mmememeee > identifier ———-=-———-=- >

: |
|--2 enumeration type =-->|

1 I
j===—====> REAL —-——-—-==D]

i i
|—==—===> SREAL =-=—===-=m >

| 1

Bnumeration types and reals can only be operated upon
as a whole., They are simple types.

Arrays, records, sets and pointer types are defined in

-3 9-



terms of other types. They are structured types containing
component types.

A data type that contains a pointer type is a list
type. All other types are nonlist types.

An operation can only be performed on two operands if

their data types are compatible (Section 9).
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7.1. ENUMERATION TYPES

T e s S e~ -

An enumeration type consists of a finite, ordered set

of values.

---------------- > CHAR ===-==m===omeeus>
| |
|————————— - > BOOLEAN —===c—---- >
i |
|m——m————— > INTEGER —==-=-==—=~ >

j====>(~--=-> identifiers =--->)--->|

| ]
|-->constant~--> .. =-=->constant-->|

The types char, boolean, and integer are standard
enumeration types.

A non-standard enumeration type is defined by listing
the identifiers that denote its values in increasing order.

A non-standard enumeration type can at most consist of
128 constant identifiers.

An enumeration type can also be defined as a subrange
of another enumeration type by specifying its min and max
values (separated by a double-period}. The min value must
not exceed the max value, and théy must be <compatitle

enumeration constants (Section 9).

- = 11-



———— e ——— i

____________ > identifier —==--—------>
:—--—-> char constant —------>:
:—---> boolean constant ----- >=
:-—--> integer constant ————->:

:= (assignment)

A

{less)

{equal)

v

{greater)

N
L]

{less or egual)

<> (not equal)

>= (greater or equal)
The result of a relation is a boolean value.
An enumeration value can be used to select one of

several statements for execution:

case

 —

tatement

-=>CASE-->expr-->0F-->labeled statements-->END--D>

A case statement defines an enumeration expression and
a set of statements. Each statement is labeled by one or
more constants of the same type as the expression. A case
statement executes the statement which is labeled with the
current value of the expression. (If no such label exists,

the effect is unknown.)

-A 12-



labeled statements

-—=-=3enumeration constant----- > : -->statement—=--- >
I | |
| ¢ Semmmm—m———— |
| |
| i o o e e e y L = |

The case expression and the labels must be of
compatible enumeration types, and the lakels must be unique.
Integer case labels must be in the range 0..127.

The fcllowing standard functions apply to enumeratioans:

succ (x) The result is the successor value of x
(if it exists).

pred {x) The result is the predecessor value of x
(if is exists).

An enumeration type can be used to execute a statement

repeatedly for all the enumeration values:

for statement

-->FOR-->identifier--> := --expr------->T0----- >1
| [
| =>DORNTO->] |

{--statement{--DO<L~--expr<-——-|

A for statement consists of an identifier of a contro

variable, two expressions defining a subrange, and a

et

statement to be executed repeatedly for successive values in
the subrange,

The ccntrol variable can either be incremented from its
min value T0 its max value or decremented from its max value
DOWNTO its min value. If the min value is greater than the

max value, the statement is not executed. The value of the

-A 13-



control variable 1is undefined after completion of the for
statement,

The ccntrol variable and the expressions must be of
compatible enumeration types. The control variable may not
be a constant parameter, a record field, a function
identifier, or an array element (Sections 7.3, 7.4, 11).
The repeated statement may not change the value of the

control variable,
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7.1.1. CHARACTERS

7.1.1. Characters

S e — e . G

The type CHAR 1is a standard

enumeration type. Its

values are the set of ASCII characters represented by char

constants:

char constant

-==> ' -=-> character ---> ' --->

The following standard function

ord (x) The result (of
ordinal value of

The ordering of characters

values (Aprendix A).

appl

type
the

is

-A 15-
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7.1.2. BOOLEANS

7.1.2. Bogcleans

The type BOOLEAN is a standard enumeration type. Its

values are represented by boolean constants:

e - M —— — ——

|====> TRUE --->|

where FALSE<KTRUE.
The fcllowing gggﬁg;g_g are defined for booleans:
& (and)
or
not
The result is a boolean value.
A Dbocolean value can be used to select one of two
statements for execution. It can also be used to repeat the

execution c¢f a statement while a condition is true {or until

it becomes true).

An if statement defines a boolean expression and two
statements. If the expression 1is true, then the first

statepent is executed; else

-2 16-



the second statement is executed. The second statement may
be omitted in which case it has no effect.

The expression value must be a boolean.

while statement

~=->WHILE~~-->expr-~-->D0--->statement--->

A while statement defines a boolean expression and a
statement. If the expression is false, the statement is not
executed; otherwise, it 1is executed repeatedly until the
expression becomes false,

The expression value must be a boolean.

Fepeat statement

-=->REPEAT---—-- >statement--—--->0UNTIL--Dexpr——->

| 1
|<==mmm § ==

A repeat statement defines a sequence of statements and
a boolean expression, The statements are executed at least
once, If the expression 1is false, they are executed
repeatedly until it becomes true.

The expression value must be a boolean.

-2 17~



7.1.3. INTEGERS

7.1.3 Integers

The type INTEGER is a standard enumeration type. Using
INTEGER in type definitions is synonmous with either SHORT-a
16 bit enumeration (-32768..32767), STANDARD-a 32 bit
enumeration (-2147483648..2147483647) or LONG-a 64 bit
enumeration [-2 TO 63..(2 TO 63)-1). Type INTEGER is one of
these three depending upon the defaults of the specific

implementation, Its values are a finite set of successive

whole numbers represented by integer constants,

integer constant

I==> + =—==>|
1 | .
> -=->digits-——->

I |
I==> = =—==>|

The following gperators are defined for intggers:
+ (plus sign 6: add)
- (minus sign or subtract)
¥ (multiply)
div (divide)
mod (modulo)
The result is an integer value.

The fcllowing standard functions apply to integers:

abs (x) The result (of type integer) 1is the
absolute value of the integer) x.

chr (%) The result (of type char) is the
character with the ordinal value x.

-A 18-



conv (x) The result is the real value
corresponding to the integer x.
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7.2. REALS

7.2. Reals

The standard type REAL consists of a finite subset of
real numbers represented by real constants in 8 bytes. The
short type real, SREAL, consists of a finite subset of real

numbers represented by real constants in 4 bytes.

Y| 1=> + =>|
| 1 I 1
-->digits---> . =-->digits==-==> B =======—=—->digits-——->
I | | |
| 1=-> - =>1 1

The letter E represents the scale factor 10.
The fcllowing operators are defined for reals:

:= (assignment)

A

(less)

(equal)

> (greater)

A
[

(less or egual)

<> (not equal)

v
"

(greater or equal)
+ {(plus sign or add)
- (minus sign or subtract)
* (multiply)
/ (divide)
The result of a relation is a boolean value. The result of
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an arithmetic operation is a real value.

The following standard functions apply to reals:

abs (x) The result (of type real) is the
absolute value of the real x.

trunc(x) The result is the (truncated) 1integer
value corresponding to the real x.
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7.3. ARRAY TYPES

7.3. Array Iypes
An array consists of a fixed number of components of
the same type. An array component is selected by one or

more index expressions.

— _—

array tyee

-=->ARRAY--> (.=~=--~-D>enumeration type----- >.)==>0F-->type-->
1 I | |
i J e i Kmmmmme—|

l |
|-> [ ---->enuneration type---> ] -2>|

| |
’ A o I

l L

The index ¢types must be enumeration types. The

component type can be any type. The number of index types

array component

--=->variable-=>(,-==--- >expr-—--- >.)——==>
1 | | |
| <=~ 4 <——-| |
| |
1-> [ ---->expr----- > 1 =231

| |

I<== , <===|

A cospponent of an n-dimensional array variable is

selected by means of its variable identifier followed by n

index expressions (enclosed in brackets and separated by
compas) .

The number of index expressions must equal the number
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of index types in the array type definition, and the
expressions must be compatible with the corresponding types.
The basic operators for arrays are:
:= (assignment)
= (equal)
<> (not equal)
The operands must be compatible arrays. The result of a
relation is a boolean value.
A one-dimensional array of m characters is called a
string type of length nm. Its values are the string

constants cf length m:

The ordering of characters defines the ordering of strings.
A string must contain an even number of characters.

The following operators are defined for strings (in

addition to those defined for all array types);

< {less)

> {greater)

<= (less or equal)
>= (greater or equal)

The operands must be strings of the same length. The result
of a relation is a boolean value. Enumeration types cannot

be defined within record types.
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7.4. RECORD TYPES

- ———— —

A reccrd consists of a fixed part and a variant part.

One of these (but not both) can be missing.

record type

--=>RECORD--->field list--->END

The fixed part consists of fields of fixed types.

fixed part

-——-=>identifiers--> : -->type---->
| |

| <=====mmmmm- R e

-=->CASE-->identifier--> ; -->identifier-->0F---->variant--

1
[ § <-=m-

The variant part defines a tag field and one or more

different sets of fields (called variants). Each possible

—— e e

variant is labeled by one or more constants. A record of
this type can represent any one of the variants. The value
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of the tag field defines the chosen variant.

<

ariant

--->labels---> : ——=>(-->field list-->)--->

The tag field and the 1labels must be of compatitble
enumeration types, and the labels must be unique.

A non-standard enumeration type used as a tag field
type can contain at most 16 constant identifiers.

Integer variant labels must be in the range 0..15.

A field of a record variable is selected by means of
its variatle identifier followed by the field identifier

(separated by a period).

——— e i — i —

-==>variable---> ., --->identifier--->

A variant field can only be selected if the value of
the tag field is equal to one of the lables of that variant.
The kasic operators for records are:
:= (assignment)
= (egqual)
<> (not equal)

The operands must be compatible records. The result of a
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relation is a boolean value,
A with statement can be used to operate on the fields

of a record variable:

===>FITH~===~ »>variable----- >D0--->statement-—>

|<==== , <===-]

A with statement consists of one or more record
variables and a statement. This statement can refer to the
record fields by their identifiers only (without qualifying
them with the identifiers of the record variatles).

The statement

with v1, v2, «.., vn do S
is equivalent to
with vl do

with v2, ..., ¥vn do 5.
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7.5. SET TYPES

7.5. Set Types
The set type of an enumeration type consists of all the

subsets that can be formed of the enumeration values:

[ad

set type

--=>SET--->0F--->type--->

|

The component type of a set type is called its base type.
It must be an enumeration type.

Set values can be constructed as follows:

Set constructor

Jrrrm e s ——_ |
|
—==> (a==--==Dexpr---—-—--->.,)-=->
| | | |
| == & == |
| |
|=-> [ ===---expr----- > ] =>1
| |

1 <= » =—1
A set constructor consists of one or more expressions
enclosed in brackets and separated by commas. It computes
the set consisting of the expression values. The set

——

expressions must be of compatible enumeration types.

A set of integers can only include members in the range
0.. 127.

The empty set is denoted

(<)
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:= (assignment)

<

"

(contained in)

>

(contains)
- {(difference)
& (intersection)
or (union)

The orerands must be compatible sets. The result of a
relation is a boolean value. The result of the other
operators is a set value that 1is coapatible with the
operands:

in (membership)

The first operand must be an enumeration type and the

second one must be its set type. The result is a boolean

value.
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7e5.1« SET CONSTANTS

7.5.1 Set Constants

The set constant consists of a finite binary string,
which mnust be completely specified. A set constant may
consist of a binary string of length 32, 64, or 128 only. A
repetition factor may be used to facilitate completely

specifying the binary string.

set ccnstant

—=====> [ ==> B ==> ' ==Dbits--> ' --=> ] ---—-- >

| 1
[-=> (o ==> B ==> ¥ —=>bits--> ' ==> .) =--D>|

i
mm—m==D>bit-mmmmm mmmm e >|--=>

] _ |
|-->repetition factor-->bit-->|

repetition factor

= e===> ( =-=-->integer constant---> ) —-—-=—--- >
bit
s ) S s i >

| !

1==> 1 ==>|
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7.6. POINTER TYPES

————> B -——-- > type —-=> type ---->

pointer componen

| |

----> variable ----- > ——===>

The type referenced by a pointer is its component type.

The component of a pointer variable 1is selected by means of

:= (assignment)
= (equal)
<> (not egqual)
The operands must be pointers to compatible components.
An assignment associates the component of one pointer
variable with another pointer variable as well,
Two pcinters are equal if both are associated with the
same component. The result of a pointer comparison 1is a
boolean.
The pointer constant NIL denotes an undefined
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component, Initially all pointer variables have the value
NIL. They may dget a new value by assigmnment or by the
standard procedure:

new (p) Associates a new component with the pointer
variable p.
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8. VARIABLES

8. Variatles

A variable 1is a named store location that can assume
values of a single type. The basic operations on a variable
are assignment of a new value to it and a reference to its

current value.

A variable declaration defines the identifier and type
of a varialle.
The declaration
var vi, vé, ese 5 VR T;
is equivalent to

var v1: T; v2: T; eea. 3 ¥vn: T3

variable

-==>identifier—————==——- = - >
¢ i
|<--array component{-=--|

| - |
| <~-record component<{---|

| |
| {==-pointer component<{--|

|
|{--identifier<-- ., <{---|

variable is referenced by means of its identifier., A

A
variable component is selected by means of index
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expressions, field identifiers, or pointer references

(Sections 7.3, 7.4, 7.6).

>

assignment

———

--->variable---> := --->expr--->

An assignment defines the assignment of an expression
value to a variable. The variable and the expression must

be compatitle.

The variable may not be a constant parameter (Section

11) .

-A 33-



9. EXPRESSIONS

9., Expressions

An expression defines a computation of a value by

application of operators to operands. It is evaluated from

First, factors are evaluated.
Secondly, terms are evaluated.

Thirdly, simple expressions are evaluated.

— ——

Fourthly, complete expressions are evaluated.

——

10
7

X

= IGIADIE DR P a c s g o s >
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et - L < e e
I (I | I |
| (. | | |
factor * / DIV MOD 8
| 11 | |
| 1 | | |
I v v v v v
| R e e S
factor
cmem—e==-=3constant---—--=-—=—- >

|=--=-—->variable-—--===>|

1 |
]===->routine call---->|

| |
|===> (-=>expr=-=>) ===-->|
| |
|=->80T---->factor--->|

) I
|=-->set constructor-->|
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9.1. TYPE COMPATIBILITY

9.1. Type Compatibility

An operation can only be performed on two operands if
their data types are compatible. They are compatible if one
of the following conditions is satisfied after coercion:
1) Both types are defined by the same ¢type
definition or yvariable declaration (Sections
7, 8).

2) Bcth types are ubranges of a single
enumeration type (Section 7.1).

3) Bcth types are strings of the same 1length
{(Section 7.3).

4) Bcth types are sets of compatible base types.

The empty set 1is compatible with any set
(Section 7.5).
5) A set constant is compatible with any set of

the same length,
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9.2, COERCION

Coercion is the process of forcing real, integer or set
operands of an operator to be of compatible types. Within
arithmetic expressions

1. all variables' values are coerced (expanded)
to the length of the 1longest value in the
expression,

2. all integer constants are coerced to the
length of the longest value in the expression,
and

3. all real constants are coerced (truncated or
expanded) to be the 1length of the longest
variable®'s value in the expression.

When parameters are passed

1. if the formal parameter is of type VAR, then
on coercion takes place,

2. if the formal parameter is of type constant,
then shorter actual parameters are coerced to
the length of the formal parameter, and

3. if the formal parameter is of type short real
constant, then long real actual parameters are
coerced (truncated) to the 1length of the

formal parameter.
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10. STATEMENTS

10. Statements

e T

Statements define operations

variables:

|=-->compound statement-->|

| |
|---->case statement---->|

|]-=-=-=->for statement----- >]
| 1
|=———- >if statement----- >|
| |
|]=-=-=>while statement---->|

| |
|-——>repeat statement--->|

| |

|=---=->with statement---->|
I |
 —— >assignment------>|
i 1
|--=-->procedure call-—--->|

on constants

SECTION

5
7.1
7.1
7.1.2
7.1.2
7.1.2
7.4
8

11

and

Empty statements, assignments, and routine calls cannot

be divided into smaller statements.

They

are

simple

statements. All other statements are siructured statements

v e S .

formed by combinations of statements.

An empty statement has no effect.
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11. ROUTINES

11. Routines
A routine defines a set of parameters and a block that
operates on then. In the case of prefix routines (Section

13) and forward declarations, the block is omitted.

There are two kinds of routines, procedures and
functions. A procedure consists of a procedure heading and

a block to be executed when the procedure is called:

preccedure

|=-->block—----]

1 |
-=-=->procedure heading---| {=-—=>

| |
|-—>FORWARD--|

A function consists of a function heading and a block to be

executed when the function is called:

function
|=->block—----|
-=-=>function heading---—} :--->
:——)FORH!BD——:
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If a routine is referenced before its block is defined,
it must be introduced first by means of its heading followed
by the symbol FORWARD. The routine can then be completed
later by repeating its heading (without the pétameter list)
followed by the block.

A procedure heading defines the procedure identifier

and its parameter list.

procedure heading

i i i ]

I ]
-=->PROCELURE-->identifier---->parameter list---->;-->

A function heading gives the function identifier, its

parameter list, and the function type.

->FUNCTION->identifier-->parameter list->:->identifier-->;->

A function computes a value. The value e of a function
f: = e
within the function block.
The function and its value must be of compatible

enumeration or pointer types.
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———— e — e —

I Ead y~-—==31

| | | | I |
-=>(===>VAR--->identifiers->:--->UNIV--->identifier--->)-==>

A parameter list defines the type of parameters on
which a routine can operate. Each parameter is specified by
its parameter and type identifiers (separated by a colon).

A

<

ariable parameter represents a variable to which the

routine may assign a value., It 1is prefixed with the word
VAR. The parameter declaration
var v1, v2, ... , ¥vn: T
is equivalent to
var v1: T; var V2, e« o ¥YN: T

A constant parampeter represents an expression that is

evaluated when the routine is called. 1Its value cannot be
changed by the routine. A constant parameter is not
prefixed with the word VAR.
The parameter declaration
Vi, V2, ees o, vn: T
is equivalent to
Vi T; V2, cae + vn: T
A parameter is of universal type if its type identifier
is prefixed with the word UNIV. The meaning of universal
types is explained later.
The parameters and variables declared within a routine
exist only while it is being executed. They are temporary
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11.1. UNIVERSAL PARAMETERS

11.1. Universal Parameters

The prefix UNIV suppresses compatibility checking of
parameter and argument types in routine calls (Sections 9,
11) .

An arqument of type T1 is compatible with a parameter
of universal type T2 if both types are monlist types and
represented by the same number of store locations.

The type checking is only suppressed im routine calls.
Inside the given routine the parameter is comsidered to be
of non-universal type T2, and outside the routince call the

argqument is considered to be of momr—umiversal type Tl.

routine call

-==>identifier-—->arguments-—>

A routine call specifies the executian of a routine
with a set of arquments. It cam eitker be a function call

or a procedure call.

A routine call used as a factor im an expression must
be a function call. A routime call used as a statement must

be a procedure call (Sections 9, 10).
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An argument 1list defines the arguments used in- a
routine call, The number of aryuments must equal the number
of parameters specified in the routine. The arguments are
substituted for the parameters before the routine is
executed.

Argunents corresponding to variable and constant
parameters must be variables and expressions, respectively.
The selection of variable arquments and the evaluation of
constant arquments are done once only (before the routine is
executed) .

The argument types must be compatible with the
corresponding parametér types with the following exceptions:

1. An argqgument corresponding to a constan

ler

string

parameter may be a string of any length.

2. An argument corresponding to a

=

iversal

parameter may be of any nonlist type that

occupies the same number of store locations as

the parameter type.
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12. SCOPE RULES

12. Scope Rules

A sccpe 1is a region of program text in which an
identifier is wused with a single meaning. An identifier
must be introduced before it is used. (The only exception
to this rule is a pointer type: it may refer to a type that
has not yet been defined.)

A sccpe is either a program, a routine or a with

statement. A program or routine introduces identifiers by

declaration; a with statcement does it by selection (Sections

5, 7«4, 7.6, 11).
When a scope is defined within another scope we have an

outer score and an inner scope that are pested. An
identifier can only be introduced with one meaning in a
scope. It can, hovever, be introduced with another meaning
in an inner scope. In that case, the inner meaning applies
in the inner scope and the outer meaning applies in the
outer scope.

Routines cannot be nested. Within a routine, with
statenents can be nested. This leads to the following
hierarchy cf scopes:

(program
{(non-nested routines
{nested with statements)))

A program can use

(1) any standard identifier.
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(2) ccnstant, type, and routine identifiers introduced
within and after the prefix (Section 13).
A routine can use
(1), (2) defined above and
{3) all identifiers introduced within the routine
itself.
A with statement can use
(Y, (2), (3) defined above and
(4) all identifiers introduced by the with
statement itself and by its outer with
statenments,
The rhrase "all identifiers introduced in its outer
scopes" shculd be gualified with the phrase "unless these
identifiers are used with different meanings in these

scopes, In that case, the innermost meaning of each

~identifier applies in the given scope."
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13. SEQUENTIAL PROGRAMS

13. Seguential Programs
A sequential program consists of a prefix followed by a
block:

progran

--=>prefizx-->block--> . -—->

The prefix defines the program's interface to the operating
systen. This interface consists of constant, type, and

routine definitions:

prefix
|<-const definitions<-|

----------------------- >prefix routines->program heading->
|<-type definitions<--|

prefix routines

--procedure heading<{----- > escape heading-->

<
<--function heading<---|
|

..-)l
|
I
|
| sl e e g

Prefix routines consist only of procedure or function

headings. The prefix routine blocks are defined within the

operating system. They can be called as other routines by

the program (Section 11).

The program heading gives the program identifier and
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its parameter list:

-=->PROGRAM-->identifier-->parameter list--> ; -->

escape heading

->ESCAPE-->id--> (=-=-Descape list-->;-->id-->:-->INTEGER-->)->

escape list

| —=======> 3]

| I | |
——===>VAR=-—==- >id list--=-=> 3 ==--- SUNIV-—-==>id--—-- >
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INDEX

abs, 18, 20
and, 16
argument, U2

argument list, 42

arithmetic, 18, 19

array compcnent, 21

array types, 21, 22

assignment, 12, 19, 22
24, 26, 29, 31, 32, 39

base type, 26
basic symbcl, 2
block, 7, 38, 45
boolean, 16, 17

case statement; 12

character, 3, 15
chr, 18
coercion, 135, 36

comment, 6

compatikle types, 10, 35
41, 42
component type, 9, 21, 29

compound statement, 7
constant, 4, 8

constant parameter, 32, 40

const defipnition, 7, 8
control character, 4
control variable, 13
conv, 18

declarations, 7
digit, 3
dimension,
div, 18

21

empty set, 26, 35

enpty statement, 37

enumeration constant, 12
enumeration type, 11-18

39 :
escapes, 46

expression, 33, 34

INDEX

factor, 33, 34
false, 16
field, 23, 24, 31

fixed part, 23

for statement, 13

forward declaration, 38

function, 38

function call, 41
function heading,
function type, 39

graphic character,

identifier, 6
if statement,
in, 27

16

39,

3

45

index expression, 21, 31

index type, 21
integer, 18

interface, 45

label, 13,
letter, 3
list type,

24

10

mod, 18

nested scopes, 43
new, 30

new line, 6

nil, 29

nonlist type, 10
not, 16

operating system, 45

operator priority,
or, 16

ord, 15

ordinal value, 4,
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parameter, 39-42

parameter declaration, 40
parameter list, 39, 40, 46
pointer, 29-31

pointer tyge, 9, 10, 29, 39
pred, 13

prefix, 45

prefix routine, 38, 45
priority rule, 33
procedure, 38

procedure call, 41
procedure heading, 39, U5
program, 4%, U6

program heading, 45, 46

real, 19-2C

record type, 23-25
repeat statement, 17
routine, 38-42
routine call, 37

scale factcr, 19

scope rules, 43, 44

selection, 24, 29, 33-38

separator, 6 <

sequential program, 45

set constant, 28

set constructor, 26

set expression, 26

set type, 26, 35

simple expression, 33

simple statement, 37

simple type, 9

space, b6

special character, 3

special symbol, 5

standard function,
18-20

standard procedure, 29

standard type, 11

statement, 37

string type, 22, 35

structured statement, 37

structured type, 9

subrange type, 11

succ, 13

symbol, 5

syntax gragh, 2

13-15

tag field, 23, 24

temporary variable, 40

term, 33, 34

true, 16

trunc, 20

type, 9-10

type compatibility, 10
35, 41-42

type conversion, 15, 18
20, 41

type definition, 9, 35

universal parameter, 41, 42
universal type, 40

var declaration, 31, 35
variable, 31-32
variable component, 31
variable parameter, 40
variant, 23, 24 '
variant field, 24
variant part, 23

while statement, 17
with statement, 25
word symbol, 5-6
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SYNTAX GRAPHS

SOQOURCE

1. Progran
~===> prefix ----> block ====> , -===>
2. prefix

|<-- const <~-]

| declarations |

| | prefix program
———————————————————————— > routines --> declaration --->

|
| type I
|{-—declarations<--|

3. prefix routines

==

|<{--procedure declarations<--|
I 1

——=—m e eeeee———--)escape declarations--->

|
|<--function declarations<---|

-B 1_



5. declarations

|]<-- constant <--|

| declarations | =i T R >]

| 11 ] |
------------------------- > variable -----> routine --->

| | declarations declarations

| type |

| <--declarations<--|

6. constant declarations

-===>CONST---->id---> = =--->constant--=> ; -—--- >

=B 3=



——— e

1.

|---> enumeration type ---->|
‘ [

|=--=--=-> subrange type ----- >|
:----—) set type ——————— >=
}-——-—) array type -------—- >:
:-—--—> record type -—-=---- >}
:-----> real type ~—~——==== >:
}--——-> sreal type —======- >:

| 1
je=====D piT Lype =——s=m=a>|

|==~=-===> CHAR —--=--—=—--——=m-

|=======> BOOLEAN —----—-—————-

|-——— > INTEGER =—==——=====—mx

subrange type

-=> constant -———= o4 ====—>2
set tyre

-=> SET QF -~-==-- > type --=—=-- >

-B 3-

—-———D
----- >

l
>|

|
>

|
>
constant



12. array type

==>ARRAY=-=-> (o4 =————= >enumeration type----- 2 o) ==20F-->type

|
|
|
|
|
|
]—

(I |
| |-->subrange type-->|

| <=mmmmmmms

— — — —

i o

’

13. record type

==-==> RECORD ----> field list ----> END

——— . I

| === >|
| |
————— > fixed part -----> variant part ----->
| 1
== >
15. fixed part
----- 218 list=—===) 3 ====sHlype-—==)
| |
| == P e |
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16. variant part

-==>CAS§E=--=->id---> ¢ ===>id--->0F--->variant--->

I<=== § <=

17. yariant

-==->labels===> : =-==-> ( —=-->field list---> )

|==> = ===>|

20. variatle declaration

===>VAR=-=-=->id list---> : —--->type--=-> ; --->

-B 5-
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22. routine declarations

|<-=-- ; <--- function declarations <----|
| |

- e e - e B e e e, e e >

l |
|{-=- ; <--- procedure declarations <-=--|

24, function declaration

S S i >1
| |
~>FOUNCTION->id~->parm list-> : ->id-> ; ----—-->block---—----
| |
| =>FORWARD-> ; ->]
25. program declaration
--=-> PROGRAM ---> id ---> parm list ---> ; --->
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|===== > | =======>

| | 1 |
~=> ( =-===>VAR--->id 1list--> : —--DUNIV---->id---> ) -->

27. escape declaration

-->ESCAPE-->id--> ( -->escape list--> ; -->id--|

|
i
| ==Fiiteger—2 )} =~¥ § =—em= >

|=====>| |~=====>]

1 | ! !
—====>VAR--->id list-=--> : --=D>UNIV-=-->id----- >
I | |
[{—=————mmm e ittt I
29. body

--=-> BEGIN ----> stat list ----> END.
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i--) assignment ------ >{

:—-> compound stat —-—):

:——> if stat -=-=-—-—-- >I

:-—> case stat -—---——)i

:--> while stat ----—)}

;--> regeat stat -—---)}

:—-> for stat ————- >:

:—-> with stat =——==== >{

:—-> procedure call ——>:
32. assignpent
----- > Yariableé ——— =D 2 ===—==} SXPL ~———
33, procedure call
————=> id ---—- > arg list ----->
34. arg list

| E e ———————— |

| |
el [ ZRX PLe———— > J e——
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—— e ———

----- > BEGIN -----> stat list -----> END
36. if stat

-==>IP--->expr--->THEN---D>stat---DELSE--->stat-—---->

37. ase stat
-~=—>CAS5E~-Dexpr-->QF----->constant---> : --->stat-——>END--->

I i |
| 5= ; === |

i !
J<mmmm e e § Kmmmmemn|

38. while stat

—===> WHILE ----> expr ----> DO ----> stat

39. repeat

Ita

tat

—---> REPEAT ----> stat list ----> UNTIL ----> expr ~---=>
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4L0. for stat

| ====>T0-==>|
->FOR-=->id=--> := --Dexpr--| |->expr-->D0-->stat-->
|->DOWN TO->|

47. with stat

-==>WITH--->variable--->D0--->stat--=->
| |

I<=== , <==-|
42, expr
O I o s et 4, ks s
| | | | | i | |
| | I | l | I |
= <> < <= .> >= 1IN sexpr
| | | | | | | |
| J I | | | | i
v v v v v v v |
---------------------------- >
43. sexpr
j-—> + —=->|
| 1
------------------ o i e e e e
| | | ! | |
1=-=> = =-=>| | | I I



e - —————————  ————
45. factor
------------ > constant -—-—-——-———m-———-—-
| |
|~——————— > variable —-=-—=======)|

| I
|==—-=> function call ---——---=3|

| |

jemsms) { =<=0 BPAPL ~==DP. ] === >
| |
| =————-- > RUT ====~ > factor ----- >1
|
y fw e 7 GEPL. memmmlk 5] ==
I 11 |

1<==—= » ——=1 |




I<== .) <=-- expr <--- (. <--|

I | i
I==> , -=>1

| = & &~—]
N | | <mmmmmn |

| === = L===]

|-—---> char constant =------=->|

' |
|-—--> boolean constant ---->|

' a
|=-=--=-> integer constant ---->|

49, constant

e > id - >

————————— > string --—======>|-=-=>

I
I
I
I ,
| ---> scalar constant —---—-->|]
|

|

-=——=-=> set constant =---—--- >1

=0 12~



|{—=- letter <{---|

1 |
J<--- digit <=-—-|

51. string

|s==m=se=s=Dcharactor=-

----- > 1 ......_.l

52. scalar constant

|=-=--=-=-> real constant .—=---=>|

e | |- >
| ==—=—- > index constant ---—-->|
53. real constant
| === ——————=—=>|
o | o | I=> + =—=>|
digit l digit | l |
=SPSRYUENCR=T=F  ==3F SO WEIIT = T s g i i
| i [
| I-> - =-=>]

-B 13-

|-—==>  ————- >
| |=-=-> {: =--=>integer---> 3) --=>|

digit



54. digit seguence

55. index constant

' |
| =====> char constant -=-«-=-=- >\
|
_ }====> boolean constant —---->|

56. boolean constant

|===> TROE --=>|
a— e >
|=—> FALSE --->|

57. integer

|==> + ==>|
I I

|==> = ==>]

58. char ccnstant

——_> [ ] ___l l
|-=-> (: --->integer---> :) --->|

-B 14-



59. set ccnstant

—— ——— —— s —

--------- > bits§ =——=—mm e 2>

' I
|-—>reretition factor--->bit--->| |

61, repetition factor

--==> ( ===--> integer ----> ) ---=>

62. bit
cmmmmmmmm> ) mmmmmm—e=)

I I
j====> 1 ====>]

-B 15-



== SRl 6F 1108 ——————— >1
:—-—-—> N =l CORRENL ====3 B —-——>l|
:-—--—-> (¥ -=-=~> comment =---> ¥) --—->!|
:-——> —————— > comment ----> ———-)I]

-B 16-



OUTPUT PASS 1

1. prograp

-=-=> prefix ----> block ----> PERIOD =---> EQOM ---->

2, prefix

| {— const <==]

| declarations |

| | prefix program
———————— -———— - ->routines-->declaration--->

| |

| type |

|{--declarations<--|

3. prefix routines

——m——— mem e e -

---------------------------------- >escape declarations--->

|<{-——function declarations<---|

4. Dblock

--=--> declarations ----=-> body ---->

-B 17-



5. declarations

| <-- constant <——| :
] declarations | |==———m————————e >] |=—=mmmmmmm——=)]
|

I | |
------------------------ > variable =-----> routine --->

| declarations declarations

|
| type ]
|]<--declarations<--|

6. constant declarations

-==>CONST--->ID (spix) --->EQ--->constant--->SEMICOLON-—=->

— — ——— ——— ——

-B 18-



8. type

———-=—=—===> ID(SPiX) =———=m=—————m- >

| |
|--=-> enumeration type --=>|

I |
|--=--~> subrange type ——=-=2|

1 |
|======> set type =——=—===-=>|

|-----> array type ------->|
: !
|=-—--> record type —----- >1
: !
|--—---> real type ------->|

| |
|-———<3 gredl Ltype -——————>_]

| |
o=l DEE LYPE e )]

--——-> OPEN ---> id 1ist =--> CLOSE ----->
} —————————————— AT R — >
: ——————————— > BOOLEAN -==-=-o==== >:
:—; ---------- > INTEGER -——-=--===m >

10. subrange tyre

---=>» constant ----> UPTO =——--> constant ———D

11. set type

-—-=> SET ----> OF ----> type ---->

-B 19-



12. array type
===>ARRAY-=-=->SUB-==~- >enumeration type----- >BUS-->0F--->TYPE

— i —

13. record type

-===> RECORD ----> field 1list ----> END

| === >l
! . |
-=-—-->fixed part----->variant part----- >
| |
| === >1
15. fixed part
----->id list--~-=>COLON----- >type----- >
| l
| {=mmmmmm———— SEMICOLONK=========== 1

16, yvariant part
~=>CASE-->1ID (spix)-->COLON-->ID (spix)-->O0F---->variant---->

i |
|<~-SEMICOLON-|

-B 20-



17. yariant

--> labels --> COLON --> OPEN --> field list --> CLOSE -->

18. labels
--—==> enumeration constant =----- >

| <=—m—————- COMMA C=————=m—n]

19. pointer type

-=—=> ARROK --=--> type

20. varialle declarations

-=> VAR ---> id list =--> COLON --> type --> SEMICOLON --->

| {=—= COMMA <——-|

-B 21-



22. routine declaration

| <-—SEMICOLCN<--~function declaration<--|

23, procedure declaration

-==-==->PROCELURE---->1ID (Sspix)---->parn---->SEMICOLON---|
| list |
| |
prsrese >

I e e e e i e e e S

|==>FORWARD-->SENMICOLON~-==>|

24, function declaration

T ——— ————— o ———— —

s P R >|
| |
~==>FUNCTICN--=>ID (Spix)~-->parm--->COLON--=>ID (spix)—----|
list |
|
oo, 0 o o e o P o o e e e |
]
|===>SEMICOLON=======>bloCck==========—=——————m e e

] 1
|=====>FORWARD--->SEMICOLON--->]

25. program declaration

--> PROGRAM --> ID(spix) --> parm list --> SEMICOLON --->

-B 22-



-_——

27. escape declaration

-->ESCAPE~->ID (spix)-->0PEN--D>escape list-->SEMICOLON---|

28. escape list

|======> |~==mmm- >
] 1 |
----- >VAR----->id list---=>COLON--->UNIV---->id---->
|
| {mmmmmmmm—mm - SEMICOLONK———===-===——oouoe I
29. body
----> BEGIN ----> stat list ----> END ---->

-------- >stat----—---->

| |
]<-=--SEKICOLON<-~|

-B 23-



|
|--—--=-> assignment ----- >
1

|
|---> procedure call --->|

| 1
{=-=-> compound stat ---->|

j=——— > case stat ——-——>|

! |
|-——-=-> while stat =---->|

1 |
|===--> repeat stat --——=>|

| |
|]-—--=> for stat -=—--=>|

I |
|-—-=-=> with stat =----=>|

32. assignment

~--> variatle ---> BECOMES ---> expr —--->

33. procedure call

---> ID(spix) =---> arg list --->

| <=-COMMAL—-|

-B 24-



35. ompound statement

=--> BEGIN ---> stat list ---> END --=>

36. Aif stat

S ——

|
===>IF--->expr—-->THEN--->stat---DELSE~--->stat---->

37. ase stat

-==>CASE-->expr-->0F----->constant--->COLON-->stat--->END-->

11 | |
i 1<—=CONMA-~—| |

| {~=====-—--SEMICOLON{-======—- |
38. while stat
-==> WHILE ---> expr ---> DO ---> stat --->
39. repeat stat
—=--> REPEAT ---> stat list ---> UNTIL ---> expr --->

-B 25-



40, for stat

->FOR->1D (spix)->BECOMES->expr--->DOWNTO~--->expr->D0->stat->
| |

| ==>T0=-==>|
41. with stat
-====>WITH-—=-—~ >variable--—===->D0--~-- Fstat-—m—- >
| |
| <=——COMMAL~——--|
42. expr
bbbl
| |
-=—==>SeXprL—--—-->eXpL Op—--—-—-2SeXpr-——-—- >
exprop: EQ NE LE GE LT GT IN
43. sexpr
|==>UPLUS——->] [ s s >
| | | |
----------------- >terp----->sSexpr op--->terp----->
| | 1 |
}|==->UMINUS-=>| | = |

sexpr op: PLUS NINUS OR

-B 26-



- A LG L~m—— >term op--->factor----- >

R

term cp: STAR SLASH DIV MOD AND

45. factor
—————————————— > constant -=-==—-—————————--
| |
e > variaghle —~—e——=sa=l|
|

|===—----> function call --=---==-- >

|
|-==> OFEEN --> expr —--> CLOSE ——-->|

| |
|===—-====> NOT ---> factor ------=>|

|
|
|=====mm=mmm- >1 I

| |
--> SUR ----- > expr -----> BUS -->|

| i
| <—COMMA-~|

46. function call

--==> ID(Spix) =-=--~> arg list ---->

-B 27-



===2ID(spiX)~—-r-—em e rccmen e e c e e

I |
| {===-ID(spix){-==-- PERIODK ==~~~ ]

|
j{~==BIS{=—=== @XPr{===== S BR=s==]
| I | |
| | <==COMMA<-~| i
I |
| |
[ e mnmmmes  RRO W = i o e 2 |

48. enumeration constant

——e—me=—===<> ID(SpiX) =-======-me——————v >
| |
|---> character constant --->|

| |
|=---> boolean constant ---->|

| |
|==-=-=> integer constant ---->|

49, onstant

—e————mee—==> ID(Spix) —-—=====—==e=-- >
1 |
]-——-> STRING (length) -—--- >1
| |
|-—---> scalar constant =--=-=>|

| 1
|-——-—> set constant ------>|

52. calar constant

—— ——

-B 28-



----- >INTEGER--->LARGE CONSTANT--->(value)-=---=-
I I
|--->CHAR---> (valuge)~~=====——ccemme——— e >

59. set constant

-==>» SUB ---> SET CONST (value) ---> BUS

-B 29-



OUTPUT PASS 2

1. program

-=—--> prefix ----> block =----> EOM ---->
2. prefix
| <= const ==
| declarations |
| | prefix program
------------------------ >routines-->declaration--->
I |
| type |
|]<{-—-declarations<--|

_———— e e—m———_——_—

--------------------------------- >escape declarations--->

|<-—function declarations<---|

-B 30-



5. declarations

<-- ccnstant <--|

|

| declarations I e > |=mmmm——m———————— >

| (I | 1 |
—————————————————————————— variable -----> routine --=>

| ; declarations declarations

| type !

| {——declarations<--|

6. constant declarations

--—--->CONST ID(spix)--->constant--->CONST DEF--—--- >

7. type declarations

~=—==>TYPE ID(spix)--->type--->TYPE DEF-—-—- >

-B 31-



---------- > TYPE (SpiX) =-——===——====>
| |

|-——> enumeration type =--=>|

|----> subrange type —---- >
}'-———~> set type --—====-- >
l-----> array type —---—=-=>
:--—--> record type ------ >

|=-——=—- > real type -------=>

|=====> sreal type —————=- >

i
|------> ptr type =-—------>

. — — —— T m— G D — —

10. subrange type

-=-->» constant ----> constant ----> SUBR DEF -—-—->

----- > Lype ~====3 BET DEPR —==—=3

-B 32-



12. array type
--=-> type ---> type ---> ARRAY DEF --->

13. record type

—

---> REC ---> field list ---> REC DEF --->

| === === m e mmm > |

15. fixed part

-=-=>FIELD ID(spix)--->type--->FIELD LIST (number)--->

16. yvariant part

==>TAG ID(spix)-->TAG TYPE (spix)-->TAG DEF-->variant-->

-B 33-



17. yvariant

-->VARNT--->enumeration-->LABEL--->LABEL END---|
| constant | |

|]=->field 1list-->VARNT END---->

19. pointer type
----- > POINTER (Spix) =—----=>

20. varialtle declaration

--=>VAR ID(spix)}--->type--->VAR LIST (number)-—-->
| | i

| K== mmmm i mmm e | |

22. routine declarations

| <~=-—-procedure declarations<{---|
| |

___________________ —— - -_.......——..)
[ _ | |
j{<=---function declarations<{---|

23. procedure declaration

-->PROC ID(spix)->parm list-->PROC DEF-->block-->PROC END-->

-B 34-



|==->FUNC END----->

25. program declaration

—=--> PROG ID(spix) =---> parm list ---> PROG DEF --->

26, parnm

[

ist

-~=>PARM IL (Spix)--->PARM/UNIV TYPE (spix)-—-|

|-—-=>V/C PARM LIST (length)---------->

e e e e |
1 .
|-->PABM TYPE(integer spix)-->C/V PARM LIST (number)-->

29. body

-==> BODY ---> stat ---> BODY END --->

-B 35-



|=--> assigcment ==-===3|

| |
|--> if stat ==--——--==>]

I |
|==> case Stat ——————=3]

|--> while stat ---——- >1

|--> with stat -——-—-- >1

|--> prccedure call -->|

32. signment

[e=p-ta-g

I

-=--> name —---> ANAME ---> expr ---> STORE --->

33. procedure call

--> name =--> CALL NAME --> arg list --> CALL -->

| Cmmm e e

-B 36-



36. if stat

| Cm=m == e e |
|
|
| 1==>LEF LABEL(L1)=--==——m———mmmmme e e >
e |====>
{-->JUMP DEF (L2,L1)--->stat-~->DEF LABEL (L2)-->|
37. case stat

ot

38. while sta

-~=>DEF LAEEL (L1)--->expr--->FALSE JUMP (L2)---|

|
e |

|
|
|-->stat--->JUMP DEF(L1,L2)-----=--- >

39. repeat stat

--> DEF LABEL(L) --> stat --> expr --> FALSE JUMP (L) -->

-8B 3=



40. or stat

|
|
|->FOR LIM(L1,COMP,L2)~->stat-->FOR UP/DOWN(L1,L2)--->

-=> WITH VAR --> name --> WITH TEMP --> stat --> WITH -->

l
--->sexpr--->VALUE--->sexpr--->expr op--->

43. sexpr

|=====mmmmmmm s oo >
[=>UPLUS--] | |
==>termn—-| {====>VALUE---D>term——->sexpr op----->
|->UMINUS-| | |
[ b i o o |
44, term
it >1
I
--->factor--->VALUE--->factor--->term op---—- >



------------------- >name-->FNAME-—=-—————————-ommm— e
: ----------------- >factor constant----—---—---——- >:
} —————————————————— >function call-~=~—==s—ce=se >:
:—— -------------------- JeXpPL——=——————-—-———————- >;
:-- -------------- FrAct o= 2RO T=r=r s - >:

l

|
|==>EMFTY SET-->expr-->INCLUDE-->END BUILDSET--->|

factor constant: constant w/ 'F' prefixed to all

ko,

terminal symbols.

function cal

--> name --> FUNCTION --> arg list --> CALL FUNC -->

47. Dnape

—==>NAME (SEiX) ====m=== == mmm e e e e o >
=<--——--—-conp(591x)<—--—---}
:<--sUB(-—expr(—-address(---:
:< ------- ARBOH(Spix}<----——-:

48. enumeration constant

-===> CONST ----> (spix,sign) =---->

-B 39-



49. constant

------=>CONSTANT (Spix,sign)---====-
:-——-—>STRIHG(len9th} ----- >}
:—-—->scalar constant-——-->:

I !
|-—->SET CONST (length)--->|

52. scalar constant

—_—— e e m——

|==~>REAL-=-->LCONST (value)-—-|

——=>] o

|-->index constant---—-—--—--- |

55. index constant

— e — ———

~---=>INTEGER (value)--=-—->

| 1
{=--=->CHAR (value)--=>|

59. set ccnstant

————— e —— —

—===> SET CCNST(length) —---->

-B 40-



OUTPUT PASS 3

1. progras

-—-==> prefix ----> klock =-=---> EOM

<-=-declarations<--

2., prefix

| == const <~-]

l declarations |

| l prefix program
———————————————————————— >routines~->declaration--->

| |

I type I

| |

3. prefix routines

{{--procedure declarations<--|

l I
--------------------- s >escape declarations--->

| ]
|<--function declarations<{---|

4. Dblock

-=-=-=-> declarations ----> body ---->

-B 41-



5. declarations

-——> tyre  ==-—- > variable ==--=-=> Troutines =---->
| declarations | -~ declarations | ~ declarations |
] 11 I _ ]
| v | LA |
| = e e s e e e e e e e e e S e S S Ss Se S S e — >
7. type declarations
-——->type---->TYPE DEF---->
| |
| i 5 i v et e e |
8. type
------ -=e—w=—=====3>TYPE (nOUD) =—~====—====———=——===)
I |
| - >ENUM DEF (noun,max)-—===———===== 21
| |
1=-->SUBER DEF (noun, "range" noun,min,max)--->|
| |
|rmeesmasmdype==dSET DEF (NOUR) —iememammm >
| i
j====-=->type-->type-->ARRAY DEF (noun)------ >
| |
[ e P TEEOT], O Pt oy i st i e 2|
| |
| o o i i >pointer type—————m=——mmeaao >1

13. record type

-==> REC =---> field 1list =---> REC DEF (noun) =-=-=>

-B 42-



s

R >1
| |
----- >fixed part----->variant part----->
| i
e s
15. fixed part
----- D>NEW NOUY (poun)=-=-=->type-—-->FIELD LIST(number)----->
1 | |
T e ! [
i |
|

~=->NEW NOUN (noun)-->TAG DEF (noun)--->variant--->PART END-->

17. variant

~=->NEW NOUN (noun)-->t ype-->FIELD LIST (number)-=->VARNT END-->

19. pointer type

-—==> POINIER (noun) ==--=>

-B 43-



20. variakle declaration

22, routine

| &~—procedure declarations<{----}
i

- - fa— -_--..___-____.____----__)

l 1
| <~——-function declarations<----|

23. procedure declaration

--> parm list --> PROC/(f) DEF (noun) --> block -->

24, function declaration

-->parm list-->FUNC/(f) DEF ("type" noun, noun)-->block-->

25. program declaration

-=->parm list-->PROG DEF (noun)--->FWD DEF (noun)--->
| |

L e

-B 44-



- —— — - — — — —— ——— —  — — — ———  — — —— —— ——— - ——

! | |
| {mmmmmmmmm e ! |

— — —

--->C/V PARM LIST (number)---->

27. escape declaration

~=>parm list-->NEW NOUN (noun)-->PARM TYPE (integer name)--|

29. Dbody

—_—

---> BODY ---> stat ---> BODY END --->

-B u45-



|{====== case stat {----- i
=<-—--- while stat <{=---- :
}<-——— repeat stat <----- :
}<—‘—--- for stat (-———--:

| |
]{~===-- with stat <{-----|

~==>name--| . |-->expr-->STORE
|=-=>RESULT ("type"™ noun)-->|

33. procedure call

-—-> name ---> arg list ---> CALL PROC/PROG --->

-B 46-



36. if stat

-—=2>expr--->FALSE JUMP(11)---D>stat-—-|

|==>CEF LABEL (L 1)=======———m—mmmmm e >

-—-] | ====>
|-->JUMP DEF (12,11)--->stat--->DEF LABEL (12)-->|

— d— m— —

|
|
|
|
| ==mmmmmm e I 1 |
| - : |
| |
! 1

-=~>CHK TYPE (“type" noun)--->stat-->JUMP (1n)--—-

38. while stat

-~=>DEF LABEL (11)-->expr-->FALSE JUMP (12) -->stat-—-|
|

| s e |

I "
|=--->JUMP DEF(11,12)-~---———— >

39. repeat stat
-->DEF LABEL (1)-->stat-->expr-->FALSE JUHMP (1) -->

-B 47-



40, for stat

|
|-->FOR LIM(11,comp,12)-->stat-->FOR UP/DOWN {11,12)-->

41. with stat
-->WITH VAR-->name-->RWITH TEMP (noun)-->stat-->WITH-->

2. expr

— D . — —————— ———

-—=>sexpr--->VALUE--->sexpr--->expr op--->

43. sexpr

———— —— ————— e D W . - - — A —— T ——

j=>UPLUS—-| |
==>tern—-| |---->VALUE--->term=--->sexpr op----->

|=>UMINOUS—|

et - -=21
|
--=>factor--->VALUBE--->factor--->term op----->
| |

| B e |

-B 48-



-------------------------- PHA DO i e o o e e
: --------------------- FEODECANE =S e ot S ot omsms >
: ------------------- >function call--=----s-=e-conoeo >
: ———————————————————————— P P it s skt S s o v >
| e ot o g i LAt Or=- N0 T mm i e e i e e >

! |
|G e e e |

46, function call

-->name-—>FUNCTION ("type” noun)-->arg list-->CALL PUNC-->

47. name
-->VAR("var"noun,"type"noun) ----=-——=--=----—---——-—————=——== >

| l _ |
[K=====gelection{=~====]

{

|

| |
]{--==-subscripting<----| |
| 1 |
|<{-ARRO¥ ("type"noun) <--| |
: |

|

|

S st ——— —
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47.1 selection

——— |==-=>
|-—>RCCHMP ("routine" noun) ----=----=-- |

| |
| -=——->STRING (length,displ) -=--->|
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OUTPUT FROM PASS 4

1. prograe
-==-> body ----> EOE(var length) ---->

29. body

BODY (mode,label,parm length,var length,stack length)--|

31. stat

.

| |
| {—=---- assignment {-—=-=-|

| |
j 4~ Pproc call <~-———- i

| |
|Kemmmmm= I f gtab L—vmmsex]

I |
| §m—=——= gase stat (=—==—= |

| |
|{~=-=- while stat <{------|

| 1
| {r—~—— TEpedt Stat C-———~ |

| |
| {====== for stat {~~=—=—=- |

| I
|{====~= with stat {-——=—- i

-B 51-



32. assignment

]=>ADDRES S==—==—=—mmmm e e o >l
-->operand--| |-->expr--|
|=->RESULT (displ,kind,noun,length)-=>] |

33. proc call

-=-=-=> operand ----> arg list ----> CALL PROC ---->

I |<-==——- e

—
| o e e e e o —
[ o - e e s

->CONST/VAR/SAVEPARM (mode,displ,context, kind,noun,length)

36. if stat

- l—-—)

|->JUMP DEF (12,11)-->stat-->DEF LABEL (12)--|

-B 52-

>



-=>expr-->CASE JUMP (10)--->DEF LABEL (1li)--|

|

I

| |
e I |
|
1
I

|
i -
|
|

|
-->CHRTYPE (kind,noun, length)--->stat-->JUMP (1ln) -——-

38. while stat

-->DEF LABEL (11)-->expr-->FALSE JUMP(12) -->stat--—|

39, repeat stat

--=>DEF LAFEL (1)--->stat--->expr--->FALSE JUOMP(1l)--->

-B 53-



40. for stat

~->operand-->ADDRESS-->expr---|

|
|
|

47. with stat

p——

-->operand-->ACDRESS-->WITH TEMP-->stat-->WITH-->

--=>sexpr--->VALUE--->sexpr--->expr op--->

43. sexpr
e S e >
|->UPLUS--| |
-=>term--| j————3VRLUE—~~ DL e A~~—J58XpL 6p~—— >
|->UMINUS—-| | |
P e s e ]

-B 54-



k4. term

-—-->factor--->VALUE--->factor--->term op

| == e l
45, factor
---------------- POpErand=—s= e e mea
;--------->function G L L i >:
: ————————————— I P e >}
: --------- >factor-->NOT-=~-=====—= )}

|
|--—>EMETY SET-->expr-->INCLOUDE--->|

‘46, function cal

-->operand-->FUNCTION {(kind,noun,length)-->arg list---|

|
|
|
|
==

{=-->CALL FUNC--|]

|--=>

{==>CALL GEN---—|

-B 55-



47. operand

|-->ROUTINE (node,label ,parm length,var length)----- |
-] | =—->
|=-->VAR (pode,displ,context,kind,noun,length) ---~---- |

|{-==-=—=---selection{--——=—=-—-- |
| |
|{-=-~=-----subscripting<----—----|
| |
|<==--ARROW {kind, noun, length) <---|

47.1 selection

|=->VCOMP (mode,displ, context,kind,noun,length)~===——==———|
-1 1=>
|->RCOMP (node,label, parm length,var length,stack length) |

---ﬁhDDRESS——)expr——)SUB[min,max,length,“index“ kind,
noun,length,"element™ kind,
RGN LERGERY ——mmmeeshme S S >
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OUTPUT PASS 5

1. progras

-=> JUMP{(l) --> body --> EOM{var length) -->

29. body

ENTER (mode,label,parm length,var length, temp length)---|

31. stat

e e m— e ——— e ——————————
| |
| {~—--- assignment <-----—|
| |
j{=—==== pro call L=—==-—= |
| |
|{<=——--- if stat {-==-==- 1

|{-———~-- case stat <-----|
:<-'-—- while stat <—---=
:<-—--— repeat stat <——-—:
:<—--—-- for stat <-—-——-1

| |
|<~=—-- with stat <------=|
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32. assignment
|-->ASSIGN (type)--|

--->var addr-->expr---| |====>
|-->COPY (length) =~ |

33. proc call
~-—==>arg list-->PROCEDURE (std number’) —-—--=---=—-ccmceca— >
| _
| ———————- >arg list-->CALL PROG-->POP(intf length)-->

|=-->var addr-->FIELD (displ)--|

— g W v W m— l—

|-->arg list-->CALL (mode,label,parm length)------——->

34, arg list

===>ARG LIST--—-==c—-o-———u=)>

| 1
| {=—expr<{--|

36. if stat

—

-->expr-->FALSE JUMP(l11)-->stat--->DEF LABEL(11)-~-=----- >

I :
l I
|->JUMP (12)-->DEF LABEL (11)-->stat-->DEF LABEL (12)--->
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39. repeat stat

--->DEF LAREL (1)~--->stat--->expr--->FALSE JUMP(1l)--->
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40. for stat

-=>HWcontrol" var addr-->"initial" expr-->ASSIGN(type)--|

|->FOR STATEMENT (INCREMENT/DECREMENT (type) -->JUMP (11)--|

{ ->DEF LABEL (12) -->POP (word) —==-----—---

41. with stat

--=> var addr ---> stat ---> POP(word) --->
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s ot e e 5 el e e PSS R >
| |
| |
| | -——>COMPARE (comp, type) -——==—- } |
=SB Y P L=~ RE X Pr =] | ===
| -->COMPSTRUCT {comp, length)--|
43, sexpr
| s D] s st o b >|
| |
-->tern-~-->NEG (type)-—--->tern--->ADD/SUB/OR (type) ~——==-—=
1 |
| s s [
4y, ternm
o e e S S S s >1
| |
-==>factor----- >factor--->MUL/DIV/MOD/AND (type) —====—- >
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I |
|=ommm e >variable--—--—-—--=e——- >
| |
[smmmesaemm=sdfynction call-~—w=mens=maasa >
| |
| == >eXpr==—=———---=-—==—=- >
| |
S S 2factor——>N0T-~—~=—a=—a - >
| |
| I
| | R SR >1
| ' | |
|=-=->var value-=-=--- >expr--->BUILD SET----- |

| |

e e |

|-->FUNC VALUE (mode,type)--->arg list--|

[ e [

|
|->CALL (mode,label,parm length)---—-- >

47. ariatle

|==> var value =--|

e |-===>

|-—> var addr ---|
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47.1 yar

|t

alue

|-->PUSHVAR (type,mode,displ)--~|
imase) | | e
|=-=->var addr-->PUSHIND (type)---|

47.2 vwvar addr

-====—=>PUSHADDR (mode ,displ) ~~=-=wee-—m—mcmeccna-
I l
| |
|-->var addr----—-—-——-=-m~cme—mm——————=3|
| ] l
j<{---selection{----—- |

47.3 selection

---—=> FIELD (displ) --—-->

L7.4 subscripting

-=—=> expr ---> INDEX(wmin,max,length) --->
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OUTPUT PASS 6

1. prograr
--> JUMP (1) --> body ~--> EOM(var length) -->

29. body

ENTER (node,label,parm length,var length,temp length)---|

31. stat

__________________________________ "
' I
|{~==-~- assignment <----- |
:<-—--—- pro call <---———:
:< ------ if stat <------ :
=< ----- case stat <---—-=
=<-*--*- while stat <--——:
:<—--—- repeat stat <————=
}<----—- for stat {=----- i
=<---—— vith stat <---—--:
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32. assignment
|-->ASSIGN (type)--|

=-=->var addr-->expr---| |=-——=>
|==>COPY (length) --|

33. proc call
----- >arg list-->PROCEDURE (std number)---—=-—=——————eee=-2>
[ —— >arg 1ist-->CALLPROG-->POP (intf length)=--->

|=-=>var addr-->FIELD (displ)--|

— D M SR S N m— —

|-->arg 1list-->CALL (mode,label,parm length)-——--—->

j{-=expr<-—}|

36. if stat

~—=>expR--->FALSEJUMP (11)-->stat--->DEFLABEL (11) ~—------ >

1
! |
{-==>JUMP (12)-->DEFLABEL (11) -->stat-->DEFLABEL (12) -——->
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-=->expr->CASEEXPR->JUMP (10) -->DEFLABEL (1i)->stat->JUMP (1ln) -~
|

| Qo o o e |
|

|
|
|-->DEFLABEL (1n)---—- >

38. while st

t

--=>DEFLABEL (11)-->expr-->FALSEJUMP (12)-->stat-—-|

{==>JUMP (1 1) =->DEFLABEL (12) ===-=>

39. epeat stat

—--->DEFLABEL (1)--->stat--->expr--->FALSEJUMP (1) -—->

43. sexpr
== m o e e e e oo >

! |
=>terp-===—== >NEG (type) -—————~-- >term-->ADD/SUB/OR (type) ————-
1o I

| |==->TRUEJUMP (1bl) -->term—->DEFLABEL (1bl)--=>| |

: |
[t e e |



G |
45. factor
R e erm= 2 PUSHCONST (VA llg) Severavwesecmuenecs >
| |
e o >variable~~=~=meemcana=- >1
| |
[ >function gall=—=s=ss—wosos >
| |
|=—————————————— FERPL oo s e >|
! i
= s bt e mpnie v gl L b e >
I |
| )
| g e i e >
I 1 |
|=-->var value-=---- >expr--->BUILDSET----- >
| I
e e s e s |

46. function call

-==-=>arg 1list--->FUNCTION (std number,type)---—=-~-===>

| |
|=->var addr--->FIELD (displ)--|

(mrmmm = — - - —— l

]

|

|

|

|-->FUNCVALUE (mode, type)—--=->arg list---| i
|

|

|

->CALL (mode,label, parm length)----——- >1
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47. yariatle

|===> var value =--=->|

e e

| ===> var addr ---->|

|=-->PUSHVAR (type ,node,displ)-==>|
s | j-—==>
|=->var addr-->PUSHIND (type)--->|

47.2 yar addr

—======>PUSHADDR {mode ,displ} ~—=~=m=e-——mcmmmmc——
|
L= DV AL (B0 T o i o o e 5 5 >
| | |
|{---selection<-~---|

| 1
|<--subscripting<--|]

— S gl Bt S SE et S m—

--->var value-——=-=—=c~ccmccccnce——=)

47,3 selection

~===> FIELL (displ) —--=-=>

47.4 subscripting

-==> expr ---> INDEX(min,max,length) =-=-->
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OUTPUT PASS 7 and 8

1. prograpm

--> JUMP(1l) --> body —--> EOM(var length) -->

29. body

ENTER (mode,label,parm length,var length, temp length)---|

j-->stat—-->RETURN (node)--——-—->

|{-—--- assignment <{----- |
' |
| {====== pIo CAll {m===== I

I I
|{======= if stat {-=—=-=-- |

:<*---—— case stat <----- :
:<--—'-- while stat <——-—i
:<----* repeat stat <-—--:
:<-‘--—— for stat <—-——--:

! |
|]<----- with stat <&------ |
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|-->ASSIGN (type)-=-->|
-=-=>var addr-—-->expr---| | ——————- >
| |-->COPY (length) -—=>| |

| |
|emmmman =Y ABSICGNI N~ ~~=~=>Vvar addr-=—==c—c=—= >

33. proc call

-=—==3>arg list-->PROCEDURE {std number)----—-=-=--————emee= >
|
|-====—==-=->arg list--->CALLPROG-->POP(intf length)-->

|
|-->var addr-->FIELD(displ)--|

--=>ARGLISI--———————— >
| |
| {=-=expr<--|{
36. if stat
-==>aXxpr-->FALSEJUMP(11)--->stat--->DEFLABEL (11) - ———--—- >1
| |
mmmmmm e | |

|
| !
| -->JUMP (12) -->DEFLABEL (11) --->stat-->DEFLABEL (12) ~-->
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I
|
|-=>DEFLABEL (1n) —==-- >

38. while stat

-=-=>DEFLABEL (11)-=->expr-->FALSEJUMP (12)-->stat---|
: |

39, repeat stat

--->DEFLABEL (1)--->stat--->expr--->FALSEJUMP (1) -—->
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40. or stat

1
|
| =->DEFLABEL (12) -->POP (word) —-=—-=--——-

41. with stat

--=-> var addr ---> stat ---> POP(word) --->
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42. expr

et e s >1
| |
I |
| | ==>COMPARE (conmp,type) ———=—-- | |

—=PEGEPL-—~ S8 pr~—~1] o >

| -->COMPSTRUCT {(comp, length) -—{

43. sexpr
e S S e O >
| |

->term------->NEG (type) --—->term---->ADD/SUB (type) —————-—-

I i 1
| |==->ADDINM/ 111
11 SUBIMNM/ (I
11 ORIMHM (type) ~=>term--->]| | |
I b
| |--->TRUEJUNP (1bl) ~-->term~-->DEFLABEL--->| |
I |
sttt et |
4y, term
L >
| _ !
| |-->MULIMM/DIVIMM/MODINN/ |
11 ANDIMM (type)—-->factor--->] |
(| 1
g 7 Lot o o »factop————— >MUL/DIV/MOD (type) ——=~==—————==—=
1| Il
| |->FALSEJUMP (1bl)->factor->DEFLABEL (1kl)->| |
i I
IR s et l
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————————————————— FPUSHCONST [Vade) = s ik i o B
| |
R et bt PHETLAB] s i >
| |
| ———— >function call-=====esmwen- >
| |
| == DO PE s e >
| |
| o 2LaC COE === JUT = wrmim el o >1
| |
| ==m———————- >NOTIMM--->factor-—=-=—====-=-= >1

|
{
1
|
|

|
| i mmmom i m i i 1

46. function call
|--->FUNCTIONIMM (CHR/RBS/ORD/type)---->|
|
~-->arg list-->FUNCTION(std number,type) ———-==—==———=—ee---

|
{=-=->var addr---->FIELD (displ)---|

|==>
|==-->FUNCVALUE (mode, type)-->arg list---| {
| |
e s i l i
| |
|=-->CALL (mode,label,parm length)-----—- >1

47. ywariakle
|===> var value —--->|
s Jrmense®

|—-> var addr ---->|
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47.1 yar value
|-->PUSHVAR (type,mode,displ)~-=>|

S |====>
|=-->var addr-->PUSHIND (type)-->|

47.2 var addr

47.3 selection

———

-—--> FIELD(displ) ---->

47.4 subscripting

-===> expr ---> INDEX(min,max,length) --->
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OUTPUT PASS 9

1. progranm
---> JUMP (loc,label) ---> body --=> EOM --->

29, body

-==-> enter ---> stat ---> return

ct
[n]

29,1 ente

ENTERPRCG (pop length,line,lblock,var length)
ENTERPRCC (block,pop length,line,var length)

EXTT
EXITEROG
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|- proc call

|{===-=-=-- if stat <-

|{=—=---- case stat

|
|{==--—- wWhile stat

|
G|
|
G|
|
------ |
|
<
l
e |

| {(==-=-- repeat stat <----|

|<{-=---- for stat <=—----|

|]{~=—==- with stat <{--—-—-—- |
32. assignment
-=--=>var addr--->expr--->assign---—--=—---

J]--->assign immediate--->var addr--->|

32.

32.

1 assigin

POPFISINT
POPFISREAL
POPFISCHAR
POPFISSET
ASSIGNTAG
MOVESTRUC (length)

assign immediat

ASSIGNIMMINT
ASSIGNIMMCHAR
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33. proc call

--=-> arg list =----=>CALLSYS (number)--->|
| f=—=>
|=-->CALL (loc, block) -—->]

| £—=2XPL~~|

36. if stat

|
~->expr-->FALSEJUMP (loc,11)-->stat-->JUMP (loc,12)-->stat-->

37. case stat

i ——— i ———

~===>BRANCHCASE (min,max-min,loc,11...1n)---=>

38. while stat

-—->expr--->FALSEJUMP (loc,12)--->stat--->JUMP (loc,11)--->
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39. repeat stat

---> stat ---> expr ---> FALSEJUMP(loc,l) --->

4o. or stat

|
|
|-=>INCINT/DECINT-->JUMP(loc,11)-->POP (length)

41. with stat

Itn

-=--> var addr ---> stat ---> POP{length) --->

42, expr

--->sexpr---->sexpr-—--->expr op---->
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expr op

INTLSFIS REALLSFIS CHARLSFIS SETEQFIS
INTEQFIS REALEQFIS CHAREQFIS SETINCALLFIS
INTGRFIS REALGRFIS CHARGRFIS SETNEQFIS
INTNLSFIS REALNLSFIS CHARNLSFIS SETWITHINFIS
INTNEQFIS REALNEQFIS CHARNEQFIS SETMEMBFIS
INTNGRFIS REALNGRFIS CHARNGRFIS
CSSTRUC RLSSTROC
EQSTRUC NEQSTRUC
GRSTRUC NGRSTRUC
43, seipr
[ i i e S e o e e e i 2|
| ]
-=>terp~——-—--—- >NEG (type)—-—-->term-->Sexipr Qop-—-—-=———=—==—==—==
| 1 | Pl
| 1 |=-->sexpr imm op-->term-->| | |
1 (I
| |--->TRUEJUMP (loc,1bl)--->term=--=~==~-- > 1
| |
[ et o o o et s e e o o A e l
43.1 sexprop
ORFISINT
ORFISBCOL
ORFISSET
NEGINTFIS
NEGREALFIS
ADDFISINT
ADDFISREAL
SUBFISINT
SUBFISREAL
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43.2 sexprimmop

ADDIMMINT
SUBIMMINT
ORIMMINT
EDRIMMINT
b4. term
i e S S A >1
| |
| |-->tern imm op--->factor--->| |
| | |
===l actorc=~wa= Lactor=—=«=3torp Qp= == swanveaose s
(I 1|
| |-=-->FALSEJUMP (loc,1bl)-->factor-->| |
| |
| e it S [

44,1 termog

ANDFISINT
ANDFISEOOL
ANDFISSET
MULINTFIS
MULREALFIS
DIVINTFIS
DIVREALFIS
MODINTFIS

44.2 term inm op

MULIMMINT
DIVIMMINT
MODIMMINT
ANDIMMINT
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------- SPUSHINTFIS=—====-emeemmemmmm—m— e ->
:-—--)PUSHREALFIS ------------------------- >||
}——-—)PUSHSETPIS -------------------------- >|[
:——->PUSHCHARFIS ------------------------- >|;
:--—>variab1e ---------------------------- >l
:—--)function CARLL e it s o s et >:
:-—->expr -------------------------------- >i
:--—>factor~—->NOT ----------------------- >{

1
|

|

|

| | !

|--->var value----->expr--->BUILDSET----=>|
I I

J R e e :
46. function call
----- >arg list----->std func----—--=-=-=-—-—----——-=e-so—-o--

|==>CALLSYS (number)--|
->FUNCVALUE (mode)-->arg list-—| _ |=-->
|=-->CALL (loc,block) --|
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46.1 SID EUNC

ABSINTFIS
ABSREALFIS
CNVTINTFIS
CNVTCHARFIS
INCINTFIS
SUCCCHARFIS
DECINTEFIS
PREDCHARFIS
CNVIREALFIS

47. variatle

|==-=-> var value --->|
-—==2] |====>
|==-=-> var addr ---->|
47.1 yar value

—-======> EUSHINTFIS --==m====————-

|----> FUSHREALFIS —---———-——-—- >
| i
]----> EUSHCHARFIS —=-=—====-== >|
| |
|=-==> EUSHSETFIS -==========)|
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47.2 yar addc

==—==-=====> PUSHADDR -----=-—=c-meo———— oo
| |
| |
|=-=-> var addr --—=-=-—cm—emmemec—c———— >
I | | !
| |<--selection{-~---- | |
| | | |
| |]{=-=-subscripting<--} ]
| |
| |
[mmad HAE FRALAG e o i >]

47.3 selection

ADDINTEIS

47,4 subscripting

-=-=>expr--->INDEX (min,dimension,length)--->
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OUTPUT PASS 10

1. program

--=->(prog length,code length,stalk length,var length)--->|

| Q== s e e 1
|
|~==>JU0MP (disp)--->body--->constants-—-——--- >

29. Dbody

—==> enter ---»>» stat ---> return

29.1 enter

ENTERPRCG (Fop length,line,stalk length,var length)
ENTERPRCC (block,pop length,line,var length)

29.2 return

EXIT
EXITPROCG
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__________________________________ "
' |
| {~=--~ assignment <=----|
:<-—-——— proc call <----- 1
:< ------ if stat <-—-—-—-- :
:<---—-— case stat <----- :
:<————— while stat <----- }
:<---—— repeat stat <—--—:
:<----— for stat <------ :

| |
|<-==---- with stat <-----|

32. assigpment

~====3>yar addr--->expr--->assign---—-———-—-

| |
|=--->assign immediate--->var addr--->|

32.1 assigin

POPFISINT
POPFISREAL
POPFISCHAR
POPFISSET
ASSIGNTAG
MOVESTRUC (length)

ASSIGNIMMINT
ASSIGNIMMCHAR
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.—J

33. proc cal

---> arg list ----- >CALLSYS (number) --->|
| | ===>
|==->CALL (disp) ========>]

| {-=expr--|

36. if stat

|
-~->expr-—->FALSEJUMP (disp1)-->stat--->JUMP (disp2) -->stat--->

37. ase stat

— ——— ————

--->BRANCHCASE (nin,max-min,displ...dispn)--->

38. while stat

--->expr-—-->FPALSEJUMP (disp2) --->stat--->JUMP (disp1)--->
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39. repeat stat

--=> stat ---> expr ---> FALSEJUMP (disp) --->

40. for stat

41. with stat

—_— —

-=-<> var addr ---> stat ---> POP(length) --->

42. expr

* L4 DSGK PL~==IGEXPL==——==D@XPT" Qp=====
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| = S s s s s s s s m e >
I |
~=>tern-~---- >NEG (type)--->term—->sexpr op-—-—-——-————=—==--=-
I | (I
[ |=->sexpr imm op-—->term-->] | |
11 I
| |=====-->TRUEJUMP (disp)--->termp--=-——=--=- > |
| [
| €= o o o e e oo [
44, term
J s ks memmmmmme————— ==
l _ [
] J]=->terr imm op--—->factor--->| |
| 1 |
--->factor---=-=--- >factor---->term op------———==—=—-------- >

44.1 termop

ANDFISINT
ANDFISEOOL
ANDFISSET
MULINTFIS
MULREALFIS
DIVINTFIS
DIVREALFIS
MODINTFIS
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44.2 term imm op

MULIMMINT
DIVIMMINT
MODIMMINT
ANDIMMINT

45. factor

——=—=—=>PUSHINTFIS—=-—=======mmee—————e— e}
] |

|=—=>PUSHREALFIS--~————====mcce———ee——mee >1
i |
|===2PUSHSETFI S~~~ = e R g >1
| |
|--->PUSHCHARFIS-~-=-——====—mme———m—e e >1
) |
|~—D¥ATidhle——m——r e e ——————————— >1
| |
[--->function call----—---====-= A et >
| |
| e N o T o i o e o e e e e >1
| |
[ oo el G T O B Tt ol >}
| |
i |
| i Iy |
| | |
j=-->var value----->expr--->BUILDSET--—--- >
| I
| <mmmmmmm oo |

46. unction call

———==2arg list-—=—- >std func- o e A A

|
I }==>CALLSYS (number)~--|

|->FUNCVALUE (node) -->arg list--| -
|-->CALL (disp) ------~- |
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ABSINTFIS
ABSREALFIS
CHNVTINIFIS
CNVTCHARFIS
INCINTFIS
SUCCCHARFIS
DECINTFIS
PREDCHARFIS
CNVTREALFIS

47. wvariatle
|===> var value --->|
-=-=>] el
|=-=> var addr ---->|

———————— > BUSHINTFIS ----=------=-—=->
-{-———> PUSHREALFIS -;---_---_->I|
}---> PUSHCHARFIS --------—- >'|
:-—--> FUSHSETFIS ~-———=-——-=- >’1
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!

| i

| |{--subscripting<--|
|

|

|=———- > var value ~—————————a———————x)

47.3 selection

ADDINTFIS

47.4 subscripting

--=>expr--->INDEX (nin ,dimension,length)--->
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APPENDIX C:

USER'S MANUAL FOR PASCAL/S



PPENDIX C

There are numerous options available to the programmer
in the PASCAL/S version of the <compiler. This appendix
provides a list ‘of these options. The 1list summarizes the
available cptions, by including a brief description of the
option, where it is wused, how it is imélemented, and the

default for the option.

The list of compiler options must precede the first
executable line of code in the program, The list mnmust be
enclosed in parentheses with the entries separated by
compas, Pass 1 scans the 1list immediately after pass
initialization and sets the options in the argqument list.
Only the first character of an option identifier is scanned
except in the case of integer type optioms. In this case,
the integer option identifier is scanned to deternmine the

length (2, 4, or 8).

Compiler options are communicated to all passes through
an argument list. The argument 1list is part of the
interpass record which remains in the heap between passes

during comgilation.

The cptions which are currently implemented in the

PASCAL/S version of the compiler are listed in the table.

-C 1-



OPTION DEFAULT USEAGE

COMMERNTS

LISTOPTION off pass 10
produces object 1listing. Turned on by

'"TEST' or 'LIST' in options list.

SOURCEOPTICN on pass 1
produces object 1listing. Turned on by
YTEST* and off by ‘'SOURCENO' 1in options

list.

TESTOPTION off all passes
Prints intermediate code. Turned on by

'TEST' in options list.

CHECKOPTION on ‘pass 9
Generates range and pointer checks in obiject
code. Turned off by Y*CHECKNO' in options

list.

CODEOPTION off passes 9 & 10
Set by pass 9 if there are no errors. Pass
10 generates object code if CODEOPTION is
set, This option can not be set by the

usere.
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NUMBEROPTICN

OPTIMOPTICN

ASSEMOPTICN

INT20PTION

INTUOPTION

INTBOPTION

on pass 9
Generates line numbers in the obkject code.

Turned off by "NUMBERNO' in the options

list.
off Passes 7,8,9
Includes optimization. Turned on by

YOPTIMIZATION' in options list.

on pass 10
Generates object code, Turned off by

YASSEMNO' in options list,

on pass 1 *
Indicates length in bytes of integers.

Turned on by 'INT2' in options list.

off pass 1 *
Indicates 1length in bytes of integers.

Turned on by 'INT4' in options list,

off pass 1 *
Indicates 1length in bytes of integers.

Turned on by 'INT8' in options list.



XREFOPTION off XREF pass
Initiates Cross Reference. Turned on by

"XREF' in options list.

DUMP off passes 5a,6a,7a,Ba
Writes intermediate code in a readable form,
i.e. formatted mnemonic representation.

Turned on by 'DUMP' in the options list,

* Only one INT option may be in effect at any one
time, The last one 1listed in the options 1list or the

default, INT2, is the one used.

While pass 1 test and sets the options, the options are
tested in the passes indicated in the useage column of the
table except for three options, They are OPTIMIOPTION,
XREFOPTION and DUMP. Since the occurrence of one of these
three necessitates the initiation of an additional pass or
passes, the options list is checked by the driver. Thus,
the driver retrieves the options from the argument list and

determines the correct calling sequence.

Passes 5a, 6a, 7a, and 8a referred to in the DUMP

option represent calls to additional passes which follow

-C 4-



passes 5, 6, 7, and 8 respectively. Each of the 'a!' passes
takes as input the intermediate code from the previous pass
and writes it in readable form leaving the intermediate code
unchanged. The output is a formatted version of the
intemediate code with the mnemonic description of all the

internmediate code integers.
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This report documents a ten-pass optimizing compiler
for the programming languaje Sequential Pascal (with
extensicns). This versicn of the compiler, denoted
PASCAL/S, was developed _for implementaticn on a specific
stack wmackine architecture. Further, this coﬁpiler was
adapted from the compiler for the prograrming iénguage
Concurrent Pascal which was written and documented by Alfred
C. Hartmann. Following brief introductions to Hartmann's
compiler and the PASCAL/S combiler, the major contributions
of the new version are descritkted in detail. The language
rodificaticns and extensions which have been added are
enumerated. Three of therten passes of the new version are
designated as cptimizing passes. The optimization perforamed
in this compiler includes <constant folding, Ecolean and
arithmetic expression evaluation and miscellaneous other
optimization. This optimization is described- and npumercus
examples are fprovided, The process of code generation is
also described. The main distincticn Letween ccde
generation of the current version and Hartmann's version is
in the code that is being selected; In the PASCAL/S version
the code selected in the next-to-last pass is being selected
for th2 specific stack machine. This document includes the
following appendices: the SEQUENTIAL FASCAL REPCRT, as
modified to reflect the changes in the PASCAL/S version; the
syntax graphs depicting the eleven languages associated with
this versicn; and a User's Manua4al which contains the varicus

user opticrs.



