

FREQUENCY SHIFT KEYING DEMODULATORS FOR

LOW-POWER FPGA APPLICATIONS

by

RILEY T. HARRINGTON

B.S., Kansas State University, 2011

B.S., Washburn University, 2012

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2017

Approved by:

Major Professor

Dr. Dwight Day

Copyright

RILEY T HARRINGTON

2017

Abstract

Low-power systems implemented on Field Programmable Gate Arrays (FPGA) have

become more practical with advancements leading to decreases in FPGA power consumption,

physical size, and cost. In systems that may need to operate for an extended time independent of

a central power source, low-power FPGA’s are now a reasonable option. Combined with

research into energy harvesting solutions, a FPGA-based system could operate independently

indefinitely and be cost effective.

Four simple demodulator designs were implemented on a FPGA to test and compare the

performance and power consumption of each. The demodulators were a Counter that tracked the

length of the input signal period, a One-Shot that counted the input edges over time, a Phase-

Frequency Detector (PFD), and a PFD with preprocessing on the input signal to mitigate

distortion introduces by the 1-bit subsampling.

The designs demodulated a binary frequency shift keying (BFSK) signal using 10.69MHz

and 10.71MHz as the input frequencies and a 1kHz data rate. The signal was 1-bit subsampled

at 75kHz to provide the demodulators with a signal containing 15kHz and 35kHz. The design

size, power consumption, and error performance of each demodulator were compared. At the

frequencies and data rate used, the Counter and One-Shot are the most energy efficient by a

significant margin over the PFDs. The error performance was nearly equal for all four. As the

BFSK baseband frequencies and especially the data rate are increased, the PFD options are

expected to be the better options as the Counter and One-Shot may not react quickly enough.

iv

Table of Contents

List of Figures .. vi

List of Tables .. vii

Acknowledgements .. viii

Chapter 1 - Introduction .. 1

Frequency Shift Keying .. 2

Demodulation Methods ... 3

Chapter 2 - Sampling .. 6

Subsampling .. 8

1-bit Sampling Distortion ... 12

Averaging .. 16

Chapter 3 - Demodulator Design .. 19

Counter .. 19

One-Shot ... 21

Phase-Frequency Detector .. 22

Phase Frequency Detector with Preprocessor ... 26

Chapter 4 - Demodulator Comparison Tests .. 28

Power Consumption .. 28

Size of Design ... 28

Power .. 29

Error Analysis ... 29

Eye Diagram ... 32

Chapter 5 - Conclusions and Future Work ... 33

References ... 37

Appendix A – Hardware Design Language (HDL), Verilog Code .. 39

Counter .. 39

One-Shot ... 41

Phase Frequency Detector .. 43

Phase Frequency Detector with Preprocessor ... 44

Supporting Modules .. 46

v

Edge Detector .. 46

Clock Divider .. 47

Bit Sync ... 47

Binomial Average Filter ... 49

Moving Average Filter .. 50

Appendix B – MATLAB Code ... 53

Counter .. 53

One-Shot ... 53

Phase Frequency Detector .. 53

Phase Frequency Detector with Preprocessor ... 55

Test Bed .. 55

Supporting Modules .. 64

Error Generation ... 64

Find Edges .. 68

Subsampling .. 69

Replace Zeros .. 69

Repeat Elements .. 70

Averaging Filter .. 70

vi

List of Figures

Figure 1-1. BFSK and Demodulated Waveforms ... 2

Figure 1-2. Phase-Frequency Detector Circuit Model .. 5

Figure 1-3. Example PFD Inputs and Outputs .. 5

Figure 2-1 (a-d). Signal Sample Rates .. 7

Figure 2-2. Signal Bandwidth Position ... 8

Figure 2-3. Aliasing Diagram Showing Alias Overlap ... 9

Figure 2-4 (a-d). Frequency Domain .. 11

Figure 2-5 (a-d). 1-bit Sampling Distortion Examples ... 16

Figure 2-6. Period Averaging Example, R = 17/100 .. 17

Figure 2-7. MSE with No Averaging .. 18

Figure 2-8. MSE with Averaging 8 Periods.. 18

Figure 3-1. Counter Demodulator Simulation .. 21

Figure 3-2. One-Shot Simulation .. 22

Figure 3-3. Phase-Frequency Detector Circuit Model .. 23

Figure 3-4. PFD Pulses ... 24

Figure 3-5. PFD Pulse Subpatterns ... 25

Figure 3-6. PFD Demodulator Simulation .. 26

Figure 3-7. PFD Preprocessor ... 27

Figure 3-8. PFD Preprocessor ... 27

Figure 4-1. Counter Error Simulation Results .. 30

Figure 4-2. One-Shot Error Simulation Results .. 30

Figure 4-3. PFD Error Simulation Results .. 31

Figure 4-4. PFD with Preprocessor Error Simulation Results .. 31

Figure 4-5. Demodulator Eye Diagrams ... 32

vii

List of Tables

Table 4-1. Demodulator Power Consumption .. 29

Table 4-2 Error Simulation Results .. 32

viii

Acknowledgements

I would like to acknowledge and thank the NASA EPSCoR program for selecting the

Kansas State University Electrical and Computer Engineering department as a research partner.

That would not have been possible without much work from the ECE faculty members involved

in the project, Drs. Kuhn, Day, Gruenbacher, Natarajan, and Warren. In particular, I would like

my committee members Drs. Day, Kuhn, and Gruenbacher. I greatly appreciate all the help and

sticking with me through an unconventional timeline for completing degree requirements.

Thank you to Kansas State University, the College of Engineering, and the ECE Department. I

feel fortunate to have learned from teachers who truly cared and helped prepare me for a

successful career. Thanks to my parents for encouraging me to consider majoring in engineering

and for providing meals and advice whenever needed.

1

Chapter 1 - Introduction

This research was accomplished through an Experimental Program to Stimulate

Competitive Research (EPSCoR) grant partnering Kansas State University (KSU) with the

National Aeronautics and Space Administration (NASA). Part of the project research focused on

developing an intra-suit, wireless sensor network to collect the vital sign data of an astronaut

performing an extravehicular activity (EVA) and transmit the data back to the spacecraft. As

part of the wireless sensor network, each of the vital sign sensors would communicate through a

wireless radio link to an in-suit central radio with a microcontroller unit (MCU) for data

processing. The MCU would collect, compress, and transmit the data to the spacecraft for

analysis. Wireless sensors need a battery that can last several hours or an energy harvesting

system to replenish the energy consumed. To increase the power source lifetime, the sensors,

radio, and MCU need to use minimal power when active and when the system is asleep.

Transmitting and receiving signals in low-power systems required investigation of

techniques that would conserve power in each part of the system. Using a digital system would

allow for reduced power consumption, reasonable noise immunity, and flexible implementation

options [1]. At a high level, a communication system requires two parts, a transmitter and a

receiver. The transmitter modulates the input signal and transmits the data using the decided

frequencies and bandwidth. The receiver demodulates the data from the input signal and

provides the system MCU with the raw demodulated data. This thesis focused on low-power

demodulation design options to recover Frequency Shift Keying (FSK) modulated data.

A primary objective was to reduce the power consumption of the FSK demodulator.

Four demodulator designs were investigated and compared. The demodulators were

implemented digitally and tested using a Microsemi flash-based, Igloo nano Field Programmable

Gate Array (FPGA). FGPAs have gained popularity as technological developments allowed

FPGAs with higher capacity, smaller physical size, and lower cost. The size, power

consumption, and further potential development of each design were compared. An advantage to

using the Igloo nano FPGA family was that the power consumption was shown to be nearly

proportional to the size of the digital design implemented on the FPGA [2].

2

 Frequency Shift Keying

The data in the system will be modulated using Binary Frequency Shift Keying (BFSK).

BFSK modulation uses two frequencies; the higher frequency (𝑓𝐻) is transmitted to represent

when the data is a 1 and the lower frequency (𝑓𝐿) is transmitted when the data is a zero. An

example of a BFSK signal is shown in Figure 1-1. As the BFSK waveform changes between 𝑓𝐻

and 𝑓𝐿 , the frequency change will be detected and the demodulated data at the bottom of Figure

1-1 will be produced by the digital demodulator on the FPGA.

Figure 1-1. BFSK and Demodulated Waveforms

The frequencies and bandwidth used vary depending on the FSK system. The transmitted

signal frequencies, 𝑓𝐻 and 𝑓𝐿, have a defined frequency separation (∆f). To demodulate the data,

the receiver detects when each frequency is transmitted. ∆f must be large enough so the

demodulator can distinguish 𝑓𝐻 and 𝑓𝐿, but the ∆f should be minimized to reduce the bandwidth

required because it will affect the signal power needed [1]. Higher-order Multiple-FSK (MFSK)

modulations are also used. MFSK uses 2𝑁 different frequencies to transmit N bits of

information at a time. The main advantage of high-order FSK systems is higher data rates can be

used, so data can be transmitted quicker. The main disadvantages are a larger bandwidth and

3

more power are required and the demodulation is more complex. The work in this paper will

focus only on BFSK demodulation.

 Demodulation Methods

FSK modulated signals can be demodulated in several ways. Common techniques

include coherent and non-coherent detection methods that use filtering and comparators to

determine the frequency received. A phase-locked loop (PLL) could also be used. A PLL can

track the input frequency changes, but the PLL complexity may be excessive for a low power

application since BFSK demodulation only needs to distinguish between two frequencies. These

common methods, though proven and effective, require more power and increased design space

on the FPGA than some simpler demodulators, so other demodulation solutions were pursued.

The four methods investigated were a Counter, a One-Shot edge detector, a Phase Frequency

Detector (PFD), and a PFD with a pre-processor. Each method is introduced below and

discussed in more detail in chapter 3.

The Counter was used as a period detector. The frequency of each BFSK frequency, 𝑓𝐻

and 𝑓𝐿, will be significantly different similarly the period length, 𝑇𝐻 and 𝑇𝐿, of each BFSK input

will be significantly different. The Counter measures the period length by counting the number

of clock cycles during the period of the input. The counter value will rise and fall with the input

period length. A threshold value will be set between the expected values for a 𝑇𝐻 and 𝑇𝐿, and the

input will be demodulated to a 1 or 0 based on the counter value relative to the threshold.

The One-Shot demodulator detects the edges of the input signal. The signal is

demodulated by detecting when more or fewer edges are present over a time period. More edges

indicate a higher frequency which is used to determine when the input is 𝑓𝐻 or 𝑓𝐿. This

demodulator will output a pulse with each edge detected. The length of the generated pulse is

𝑇𝐻, so the pulse output for a 𝑓𝐻 input will be constantly high. When the input is 𝑓𝐿,the output

will be a pulse train where the duty cycle (D) can be found with equation 1.1. The output will be

filtered to find the average value of the signal. The output during 𝑓𝐻 will be at or near the

maximum value, and the output during 𝑓𝐿 will be near D. A threshold will be set between the

4

expected values. The actual value being above or below the threshold will determine if the input

is demodulated to a 1 or 0.

𝐷 = 𝑇𝐻/(𝑇𝐿 − 𝑇𝐻) (1.1)

The PFD uses a digital circuit represented in Figure 1-2. This circuit is commonly used

as part of digital PLL circuits to track the input frequency as it changes [3, 4]. A PLL uses a

PFD to provide a measure of the difference between the D flip-flops (DFF) inputs. A PLL will

adjust the Reference Frequency using feedback to match the input of the other DFF. A BFSK

demodulator only needs to determine which of two possible input frequencies are present, so the

operation was simplified and the feedback removed. Using a constant Reference Frequency set

between the two BSFK frequencies, the PFD can detect whether the BFSK Input is higher or

lower than the Reference Frequency.

The PFD produces UP and DOWN output pulses based on the time difference of the

input rising edges. UP and DOWN outputs pulses are used to indicate if the BFSK Input

frequency is higher or lower than the Reference Frequency. The outputs can be filtered and then

combined by subtracting DOWN from UP. A threshold will be set between the values expected

when the BFSK Input is 𝑓𝐻 and 𝑓𝐿. Comparing the combined output with the threshold will

determine if the input is demodulated to a 1 or 0. Figure 1-3 shows example input and outputs

for a PFD [5].

The PFD with preprocessing uses the same circuit in Figure 1-2. The preprocessing was

added because distortion that can occur with the sampling method used. The distortion causes

the input to have some jitter. The jitter is predictable based on the input frequency and the

sample frequency. The preprocessing uses period detection, binomial filtering, and a

numerically controlled oscillator (NCO) to reduce the distortion and generate a new signal that is

used as the BFSK Input.

5

Figure 1-2. Phase-Frequency Detector Circuit Model

Figure 1-3. Example PFD Inputs and Outputs

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

UP Pulse

DOWN Pulse

HIGH

HIGH

BFSK Input

Reference Frequency

6

Chapter 2 - Sampling

When a signal is sampled correctly, the original frequency information can be recovered

from the set of samples. The forms of equation 2.1 show the Nyquist sampling theorem specifies

the sample frequency (𝑓𝑠) must be at least twice the bandwidth (BW) of the sampled signal to

preserve the information in the original signal (𝑓𝑖𝑛) similarly a sample must be taken at least at

the Nyquist sample interval, (𝑇𝑠).

𝑓𝑠 ≥ 2 ∗ 𝐵𝑊 (2.1a)

𝑇𝑠 ≤
1

2𝐵𝑊
 (2.1b)

To maintain the actual frequencies in 𝑓𝑖𝑛, it must be sampled at twice the maximum

frequency (𝑓𝑚) present in the signal.

𝑓𝑠 ≥ 2 ∗ 𝑓𝑚 (2.1c)

Figure 2-1 shows the result of a signal being sampled at several different rates and

examples of recovered waveforms based on those sample rates. The graphs show an input signal

(blue), sample points (red circles), and the recovered waveform from the samples (red). Figure

2-1a (top left) used 8 samples per cycle, 𝑓𝑠 = 8 ∗ 𝑓𝑚, and the samples preserved the signal

frequency and shape. Figure 2-1c (bottom left) used 0.9 samples per cycle, 𝑓𝑠 = 0.9 ∗ 𝑓𝑚. Too

few samples were taken to preserve the frequency, so the output is an aliased frequency. The

original frequency and alias are related through 𝑓𝑠, so if the alias and 𝑓𝑠 are known, the original

frequency may be determined.

Figures 2-1b (top right) and 2-1d (bottom right), both display what can happen if the

minimum rate of two samples per cycle is used, 𝑓𝑠 = 2 ∗ 𝑓𝑚. If the samples are taken when the

waveform is at its peak, the samples can recover the signal frequency and some of the shape.

The samples could just as likely be taken when the signal is at the zero crossings. The recovered

signal would be a dc value where no frequency or shape information could be successfully

recovered. These examples illustrate why the theoretical minimum number of samples per cycle

is two, but practically the number of samples taken per cycle should greater than two and

preferably several times higher when feasible.

7

Figure 2-1 (a-d). Signal Sample Rates

Equation 2.1a implies that a signal reconstructed from a set of samples can use only

frequencies from 0Hz up to
1

2
𝑓𝑠. Because equation 2.1a specifies BW not 𝑓𝑚, the reconstructed

signal may not always appear the same as the original. Aliasing may occur but the information

can still be preserved. If the low end of the signal BW is located anywhere other than 0Hz, then

the Nyquist rate still applies, but the recovered signal may be represented with frequencies that

are not identical to the original frequencies in 𝑓(𝑡). To avoid aliasing, the 𝑓𝑠 could be increased

meet equation 2.1c. The same process would be used to recover the information from the

samples, but the sample frequency may need to be increased to a value that is not practical or

possible in the system.

8

Aliasing can be used intentionally while still preserving the frequency relationships in

𝑓(𝑡). When 𝐵𝑊 ≤ 𝑓𝑚, the signal information can be preserved despite the original frequencies

being lost. When the bandwidth does not start at 0Hz, equations 2.1a and 2.1c are no longer

equal because 𝑓𝑚 is greater than the BW. As 𝑓𝑚 increases, equation 2.1c may not be practical,

so subsampling may be utilized. For the signals in Figure 2-2, the same 𝑓𝑠 could be used, but if

𝑓𝑚 is used for both, the signal on the right would need 𝑓𝑠 to be six times higher. In a low power

system, the higher 𝑓𝑠 would use more power and require more resources to analyze.

Figure 2-2. Signal Bandwidth Position

 Subsampling

Subsampling, also called under-sampling, harmonic sampling, band-pass sampling, or

super-Nyquist sampling is a technique that uses aliasing intentionally to convert high frequency

signals to baseband [6]. Intentionally aliasing a signal will not allow the original signal

frequencies to be reconstructed from just the samples; however, the information contained in the

signal can still be preserved. As long as equation 2.1a holds, the aliased components maintain

the signal information through alias frequencies. If 𝑓𝑠 is chosen correctly, two components

separated by a frequency difference (𝑓𝑑𝑖𝑓𝑓) in the original spectrum will maintain the same 𝑓𝑑𝑖𝑓𝑓

after sampling, aliasing, and signal reconstruction [7].

The choice of 𝑓𝑠 requires some additional planning. In addition to equation 2.1a, 𝑓𝑠 must

be chosen so that no two frequencies in the sampled signal have the same alias frequency. If

multiple frequencies in the sampled band do have the same alias, there is no way to distinguish

which frequency produced the alias, so the reconstructed signal is corrupted. If any part of the

signal bandwidth lies on a multiple of 𝑓𝑠 2⁄ , then part of the band will overlap and some

fs/2 fs 3fs/2

Fs/2

2fs
f (Hz)

fs/2 fs 3fs/2 2fs
f (Hz)

fs/2

fs

3fs/2

2fs

Original Spectrum

Recovered Spectrum with No Filter

Aliasing Diagram

fs/2 fs 3fs/2 2fs
f (Hz)

Recovered Spectrum with Filter

Anti-Aliasing Filter

(c)

(b)

(a)
(d)

f1 f2 f3

fa fb fc

f1 f2

f3

f1 f2

f3

f1 f2f3

f3

-B
0

B
f (Hz)

fmax

6B
0 f (Hz)

fmax

B B
f (Hz)

fmax

0

9

frequencies will have the same alias [8]. A simple way to find whether any frequencies will

share an alias is to divide the maximum and minimum frequencies in the signal by 𝑓𝑠 2⁄ , as

shown in equation 2.2. If the integer part of the quotients are equal, then none of the signal

bandwidth lies on a multiple of 𝑓𝑠 2⁄ .

𝑓𝑙𝑜𝑜𝑟 (
𝑓𝑚𝑎𝑥

𝑓𝑠 2⁄
) = 𝑓𝑙𝑜𝑜𝑟 (

𝑓𝑚𝑖𝑛

𝑓𝑠 2⁄
) (2.2)

Figure 2-3 shows two signals prior to sampling. After sampling and reconstruction, both

bands produced aliases using the same frequencies. Sampling parameters must be chosen to

avoid alias overlap or the original signal must be filtered to remove the unwanted components in

the original signal. An aliasing diagram can be used to visualize this concept. As shown in

Figure 2-3c, an aliasing diagram is a graph of the frequency domain, but instead of extending

frequency axis continuously to the right, the graph extends to 𝑓𝑠 2⁄ after which the x-axis is

folded back on itself and placed below. The axis continues from right to left from 𝑓𝑠 2⁄ to 𝑓𝑠.

The graph is cut and placed below again and continues from left to right from 𝑓𝑠 to 3𝑓𝑠 2⁄ and the

frequency-axis continues with an “S” shaped pattern [9].

Figure 2-3. Aliasing Diagram Showing Alias Overlap

The alias of a signal is related to the original signal through 𝑓𝑠. Another form of a

frequency alias is given by equations 2.2, 2.3, and 2.4 below [10]. In the equations, 𝑓𝑎 is the

fs/2 fs 3fs/2 2fs
f (Hz)

fs/2 fs 3fs/2 2fs
f (Hz)

fs/2

fs

(2n-1)fs/2

nfs

Recovered Spectrum with No Filter

Aliasing Diagram

(b)

(a)
(c)

//

//

10

aliased frequency, 𝑓𝑖𝑛 is the input signal frequency being sampled, 𝑓𝑠 is the sampling frequency,

and W is an integer which is selected so that 𝑓𝑎 is minimized. W can be found by taking the ratio

of 𝑓𝑖𝑛 𝑓𝑠⁄ and rounding to the nearest integer. R represents the fractional remainder rounded off

to make W an integer.

𝑓𝑎(𝑊) = |𝑓𝑖𝑛 − 𝑊𝑓𝑠| (2.2)

𝑊 + 𝑅 = 𝑓𝑖𝑛 𝑓𝑠⁄ (2.3)

𝑓𝑎 = 𝑅 ∗ 𝑓𝑠 (𝑅 ≤ 0.5) (2.4𝑎)

𝑓𝑎 = (1 − 𝑅) ∗ 𝑓𝑠 (𝑅 > 0.5) (2.4𝑏)

For example, if 𝑓𝑖𝑛 = 10.7𝑀𝐻𝑧 and 𝑓𝑠 = 500𝑘𝐻𝑧, 𝑓𝑖𝑛 𝑓𝑠 = 21.4⁄ , then 𝑊 = 21 and

𝑅 = 0.4 = 2 5⁄ . The alias frequency can be found using equation 2.2. 𝑓𝑎 = |10.7𝑀𝐻𝑧 − 21 ∗

500𝑘𝐻𝑧| = 200𝑘𝐻𝑧.

If present, undesired signals outside of the desired spectrum may alias to the same

frequency as part of the desired spectrum. Any signal above 𝑓𝑠 2⁄ will be aliased to some

frequency in the range of the reconstructed signal spectrum, from 0Hz to 𝑓𝑠 2⁄ . If undesired

signals are not accounted for, the reconstructed signal could be corrupted by the alias of an

undesired signal. Theoretically an infinite number of frequencies could alias to the same

frequency. Though an infinite number of those frequencies will likely not appear in the system,

some may be present. The aliased frequency will be a copy of the original frequency that is

shifted down by a multiple of 𝑓𝑠. The multiple is represented by W in equation 2.3. There is an

𝑓𝑖𝑛 for each value of W that will result in the same alias frequency. One frequency on each level

of the aliasing diagram in Figure 2-3 would alias to one of the reconstructed alias frequencies.

The 𝑓𝑖𝑛 values that have the same alias are spaced by 𝑓𝑠 in the original signal. This is one reason

why subsampling must be done carefully. Using equation 2.2, the values of 𝑓𝑖𝑛that alias to the

same frequency can be found. If 𝑓𝑎 = 200𝑘𝐻𝑧 and 𝑓𝑠 = 500𝑘𝐻𝑧, different values of 𝑓𝑖𝑛with the

same alias can be found by plugging in values for W. Choosing example W values of 1, 5, 10,

15, and 25, 𝑓𝑖𝑛 components of 700kHz, 2.7MHz, 5.2MHz, 7.7MHz, and 12.7MHz respectively,

all will alias to 200kHz when 𝑓𝑠 is 500kHz.

11

Depending on where undesired signals appear in the frequency spectrum, the choice of 𝑓𝑠

may lead to undesired signals being aliased on top of the desired signal spectrum when it is

sampled and aliased. Figure 2-4 shows a spectrum and the effect of aliasing on that spectrum.

The gray triangle represents the desired signal to be sampled. The other signals, f1, f2, and f3

represent undesired signals. When the spectrum is sub-sampled at 𝑓𝑠, f1 is aliased on top of the

desired signal alias.

Figure 2-4 (a-d). Frequency Domain

Original Spectrum (Top), Recovered Spectrum With No Filter (Middle), Recovered

Spectrum Using a Filter (Bottom) and Aliasing Diagram (Right)

One way to combat undesired signals from aliasing to the same frequency as a desired

signal is to attenuate the undesired signals before the sampling occurs. An anti-aliasing filter can

be used to pass the desired signal and attenuate the undesired signals. The anti-aliasing filter will

attenuate undesired signals prior to sampling to prevent them from corrupting the desired

spectrum. An attenuated portion of the undesired signals will still be present and can alias on top

fs/2 fs 3fs/2

Fs/2

2fs
f (Hz)

fs/2 fs 3fs/2 2fs
f (Hz)

fs/2

fs

3fs/2

2fs

Original Spectrum

Recovered Spectrum with No Filter

Aliasing Diagram

fs/2 fs 3fs/2 2fs
f (Hz)

Recovered Spectrum with Filter

Anti-Aliasing Filter

(c)

(b)

(a)
(d)

f1 f2 f3

fa fb fc

f1 f2

f3

f1 f2

f3

f1 f2f3

f3

12

of the desired spectrum, but the filter should attenuate the signal enough so that the power of any

undesired signals is insignificant compared to the power of the desired signals.

Ideally a brick-wall filter with a bandwidth that perfectly matched the desired signal

spectrum bandwidth would be used to attenuate all signals outside the desired spectrum. Since a

brick-wall filter is impossible in practice, equation 2.5 can be used as a 1
st
 order constraint. The

filter needs to be wide enough to pass the whole desired spectrum, but not wider than the

spectrum that will be reconstructed. Because the signal reconstructed from the samples can only

represent frequencies from 0Hz to 𝑓𝑠 2⁄ , the anti-aliasing filter BW should not pass a spectrum

any wider than what the samples can represent. If the filter BW is less than 𝑓𝑠 2⁄ , no undesired

signals will alias to the same frequency as the desired signal spectrum without being filtered first.

Other signals may pass through the filter, but none that will corrupt the desired signal. Figure

2.4c shows that f3 was within the filter BW and passed through the filter, but f3 does not overlap

with any of the desired signal, so the reconstructed data is not corrupted. The filter bandwidth

also needs to be close to centered about the desired signal spectrum. Just as the desired signal

spectrum should not cross a multiple of 𝑓𝑠 2⁄ , the filter spectrum should not either.

𝐵𝑊𝑠𝑖𝑔𝑛𝑎𝑙 ≤ 𝐵𝑊𝑓𝑖𝑙𝑡𝑒𝑟 ≤ 𝑓𝑠 2⁄ (2.5)

In practice the filter does not need to have a very sharp roll-off if 𝑓𝑠 is chosen to be

greater than 2*BW. As 𝑓𝑠 gets larger than 2*BW, the filter cutoff can be relaxed more because

the spectrum of the reconstructed signal is larger, which allows for a more gradual roll-off. A

steep roll-off is still desired, but the size and cost of a filter generally increase with the steepness

of its roll-off.

 1-bit Sampling Distortion

1-bit sampling uses a comparator to determine whether the input is above or below a

threshold and records a 1 or 0 depending on the comparison result. The major advantage of

using 1-bit sampling are that it can be implemented easily using low complexity and low-power

circuitry in a digital system. Because the data recorded only uses one bit per sample, the shape

of the original signal will be lost due to quantization, but the frequency can be preserved. A

13

signal transmitting data using BFSK can work well with 1-bit sampling since the data is

transmitted using changes in frequency. The signal to be sampled will be centered at 10.7MHz

and provided by a radio frequency integrated circuit (RFIC) designed at Kansas State University

[11].

The ratio of input frequency to the sample frequency indicates how often a sample is

taken. Using the values from the previous aliasing example, 𝑓𝑖𝑛 𝑓𝑠 =
10.7𝑀𝐻𝑧

500𝑘𝐻𝑧
= 21.4⁄ , one

sample will be taken every 21.4 cycles of the input. Using equation 2.3 and 2.4, W = 21, R =

0.4, and 𝑓𝑎 = 200𝑘𝐻𝑧. The R value can be used to find the alias frequency. The aliasing

diagram in Figure 2-4 shows visually where a frequency will alias. The W value in the ratio

represents how many levels down on the diagram that 𝑓𝑖𝑛 is, and R represents the position of the

frequency on the level. As R gets closer to 0, the alias frequency decreases, and as R gets closer

to its maximum value of 0.5, the alias frequency increases. This happens because R represents

the phase shift between each sample taken. With this example there are 21.4 cycles of the input

signal between each sample. If the first sample is taken at the rising edge of a signal or 0° phase,

the next would be 21.4 cycles later at 0.4*360° = 144°. The subsequent samples would also shift

in phase by 40% of a cycles or 144°. Using a sine wave as an example, the sample will be a 1 if

taken when the phase is from 0° - 180° and a 0 if taken from 180° - 360°. Regardless of the

number of whole cycles skipped between samples, the phase shift, represented by R, is the same.

A larger change in phase between samples means the value of the sampled value will change

more often, so the alias frequency will be higher.

A problem that arises when using 1-bit sampling is the waveform reconstructed from the

samples usually will not have a 50% duty cycle or a consistent period. The single bit in the

samples at the given sample rate does not always provide enough resolution for the samples to

perfectly reconstruct every frequency from 0Hz to 𝑓𝑠 2⁄ . The sample is either a 1 or 0 and only

indicates whether the cycle was on the top half or bottom half of the cycle when that sample was

taken. The input may have been right at a peak, a zero-crossing, or anywhere in between. When

undersampling and using one-bit sampling like this, the samples can rarely reconstruct a

waveform to perfectly match the expected alias frequency. The frequency can still be

reproduced, but the waveform will be reconstructed using a combination of the closest frequency

14

above and closest frequency below the expected alias. The reconstructed signal will alternate

between the two frequencies with a repeating pattern. The average frequency over the full

pattern will be the expected alias frequency. The reconstructed wave will have a distorted

appearance because of the frequency changing back and forth. The distortion is related to the

ratio, R, from equation 2.4a.

R is similar to the inverse of the sample rate. If R, the ratio of the input frequency to the

sampling frequency, has a remainder of 0.42, then a sample will be taken every 0.42 cycles, or

there will be 1/R = 2.38 samples per cycle. The number of samples per cycle is not an integer, so

there may be either two or three samples taken during a single cycle in this case depending on

the phase of the first sample. If an inconsistent number of samples are used to reconstruct each

cycle in the waveform, the reconstructed cycles will necessarily have inconsistent period lengths

and therefore an inconsistent frequency. Some cycles will have a longer or shorter period by one

sample, but the period lengths in the waveform will follow a repeating pattern. Since the

frequency cannot be represented in a single cycle, the reconstructed waveform produces a pattern

using long and short periods, or a higher and lower frequency that will average out to the

expected frequency over a complete pattern. If R = 0.42, there are 2.38 samples per cycle, so

38% of the input cycles will be sampled three times and the remaining 62% of the cycles will

only be sampled two times. The rational form of R, seen in equation 2.6, can be used to find the

number of cycles (N) and the number of samples (M) in the whole pattern. N/M = 42/100 =

21/50, so there will be 21 cycles made of 50 samples in the repeating pattern that is formed. Not

all frequencies will require that many samples or cycles for a pattern. Some patterns require only

two samples, but some patterns require hundreds of samples to complete a pattern.

𝑅 = 𝑁 𝑀⁄ (2.6)

𝑅 − 1 = (1 − 𝑁) 𝑀⁄ (2.7)

The alias frequency and both the frequencies that will be averaged to get the alias

frequency can be determined using the same ratio. From equation 2.4, the alias will be R times

𝑓𝑠/2. When rounded up or down, the inverse of R indicates the number of samples that will be

used to reconstruct the long or short periods of the waveform respectively. The sample

frequency divided by those rounded values of R give the frequencies produced. For example, if

15

the input was 54.2kHz with a 10kHz sample rate, R = 0.42 = N/M = 21/50. The alias frequency

would be 0.42*10kHz = 4.2kHz. There would be two or three samples per period, so fL = fs/3 =

3.33kHz and fH = fs/2 = 5kHz.

The following example with Figure 2-5a-d illustrates what happens when 1-bit distortion

occurs. When the number of samples per cycle is inconsistent, the waveform periods get

lengthened and shortened as more and fewer samples are used in a given cycle. An additional

sample in a cycle causes the waveform to stay high or low for another sample time interval. The

samples will be taken in time intervals that are multiples of R. Using R = 0.4 = N/M = 2/5, the

pattern will be two cycles long and have five samples. Because 1-bit sampling is used, samples

with a decimal value of 0.5 or above are ones and samples with a decimal value below 0.5 are

zeros. Assume that the sampling starts with the beginning of the first cycle at time 0.0s and 0°.

The sample times in terms of cycles will be R = 0.4, 0.8, 1.2, 1.6, 2.0, … The integer portion of

the terms are ignored, and the samples are converted to a 1 or 0 based on the range they are in.

The sampled result will repeat the five-sample pattern: 0-1-0-1-0. The sampled waveform

pattern will average out to be the correct frequency using equation 2.4. The average period when

taken over the full pattern is equal the expected period based on equation 2.4a.

Figure 2-5 below shows an input signal sampled at two different rates and the

reconstructed waveforms. Fig 2-5a and 2-5c show the original signal with the sample points

marked for 𝑓𝑠 = 0.4𝑀𝐻𝑧 and 𝑓𝑠 = 0.5𝑀𝐻𝑧 on the input signal. Figure 2-5b and 2-5d show the

respective reconstructed, aliased waveforms. The different sample rates show how the aliased

output can be a consistent frequency or a combination of two frequencies.

The trivial solution for the problem of signal aliases having inconsistent periods would be

to make sure that any frequencies used have a remainder where N = 1 or 1-N = 1 so that no extra

processing was required to extract the actual alias frequencies. If possible that would be great,

but non-idealities in a real systems cause frequencies to not always be perfectly generated,

transmitted, or received, so the received signal may drift up or down in frequency from what is

expected even if the system is setup carefully. The most straight forward way to get the true

alias frequency or at least get close to it is to average the periods over a number of cycles. The

16

best method would be to match the number of cycles in an alias pattern with the number of

cycles averaged, but that is not always practical especially as full patterns can be lengthy, and

non-ideal signals have extra error introduced through jitter, frequency drift, and noise.

Figure 2-5 (a-d). 1-bit Sampling Distortion Examples

 Averaging

The most apparent solution to reduce the problems caused by the 1-bit sampling

distortion is to take the average over several periods of the sampled waveform to get more

accurate values for the period and frequency. The problem with averaging is that the length of

the patterns representing different frequencies varies. Using, 𝑅 = 𝑁 𝑀⁄ , M samples are needed

to complete the N cycles in a pattern. Another way to look at it is 𝑅−1 cycles are needed

complete the pattern. If 𝑅−1 is not an integer, then the first multiple of 𝑅−1 that is an integer

indicates how many cycles need to be averaged to find the period. A signal can require

anywhere from one to hundreds of cycles or more to complete waveform pattern. No matter how

many cycles are averaged, the result will not be perfect for most frequencies, but averaging can

still be a significant help and give a good approximation to the actual alias frequency.

17

A whole pattern may not be needed to get a good estimate of a signal period. Though a

fraction like 𝑁/𝑀 = 5001 10000⁄ technically requires 5001 cycles to be averaged to find the

exact average, the fraction is close to 1 2⁄ which needs no averaging. For most patterns, a

practical middle ground can be found. Most long patterns look very similar to a shorter pattern.

A shorter averaging window can be used which will reduce the overall effect of the distortion

and give a close estimate to the actual value. Figure 2-6 below shows the pattern for a frequency

with R=17/100. The figure used samples per period vs total samples to show the inconsistent

period length. The expected average of the samples (red) and the 3-period moving average

(green) are shown.

Figure 2-6. Period Averaging Example, R = 17/100

The error between the reconstructed signal and the expected average can be measured for

each period and accumulated using the mean squared error (MSE). The effect of averaging to

reduce the error will be tested for different R values. The error values will be checked for R

values from 1/100 to 50/100 in steps of 1/100. R values above 0.5 produce duplicate, mirrored

values and are not shown. Figure 2-7 shows the accumulated MSE over 1000 samples with no

averaging. Figure 2-8 shows the accumulated MSE over 1000 samples after a length of 8

18

periods have been averaged. Note the scale of Figure 2-7 has a maximum of 0.25 and Figure 2-8

has a maximum of 4x10
-3

, so there is a large reduction in MSE.

Figure 2-7. MSE with No Averaging

Figure 2-8. MSE with Averaging 8 Periods

The error measures the difference in the number of samples used per cycle and the

expected. The averaging decreases the error by nearly a factor of 60 in the worst cases and

significantly more in other cases. There is not a particular range of R values that appears suitable

19

to focus on aliasing signals to that area. Some particular values are better than others, but the

averaging helps no matter where in the spectrum the signal is aliased. Averaging over a larger

number of cycles would reduce the error even more. The easiest averaging choice for digital

systems would be a power of two because the divide operation can be implemented in a

hardware design language (HDL) easily using a shift operator if the divide is a power of two.

Chapter 3 - Demodulator Design

The signal demodulation will occur after the 1-bit sampling has occurred. The BFSK

frequencies will be in the kHz range after the sampling and waveform reconstruction. This will

allow the demodulators to run at a lower clock frequency contributing to power conservation in

the digital design. To reduce the effects of 1-bit sampling distortion, accumulating over multiple

periods, using a moving average filter, or binomial average filter were explored as possible

solutions for each demodulator [12]. Each of the demodulators were tested using parameters

taken from [13]. The IF 𝑓ℎ, 𝑓𝑙 BFSK frequencies were 10.71MHz and 10.69MHz with a 1kbps

data rate. After 1-bit sampling at 75kHz, the baseband 𝑓ℎ, 𝑓𝑙 BFSK frequencies used at the input

to the demodulators were 35kHz and 15kHz.

 Counter

The counter demodulator uses a counter to measure the time between positive edges of

the input signal, 𝑓𝑖𝑛. If the period of the BFSK frequencies can be counted, measured, and

distinguished from each other, then the data in 𝑓𝑖𝑛 can be demodulated. The number of clock

cycles between the positive edges of 𝑓𝑖𝑛 measure the period, 𝑇𝑖𝑛. The clock used for the count is

the input clock driving the FPGA demodulator module. The counter output signal can be

represented using equation 3.1. As the input changes between 𝑓𝐻 and 𝑓𝐿, the value of Ncount

produces a pseudo-square wave that mimics the values modulated data. The value of Ncount is

inversely proportional to the input frequency. The output from the counter will need to be an

actual digital signal, so the output will be created by comparing the Ncount waveform to a

threshold value. When Ncount is above or below the threshold, the output will be demodulated to

a 1 or 0 respectively.

𝑁𝑐𝑜𝑢𝑛𝑡 = 𝑓𝑐𝑙𝑘 𝑓𝑖𝑛 (3.1)⁄

20

The counter demodulator would benefit from the FPGA clock running at a high

frequency. More clock cycles per 𝑓𝑖𝑛 cycle allows higher count values and a larger difference

between Ncount for 𝑓𝐿 and 𝑓𝐻. The value Ncount can also be increased by accruing the count over

multiple cycles of 𝑓𝑖𝑛. Ncount is accumulated over several periods to reduce the effects of the 1-

bit distortion. The accumulation required additional registers in the HDL design, and the output

would be delayed, but the output would have more consistent and clearly defined data

transitions. Using a count accumulated over multiple cycles also helps increase the difference

between the values for each BFSK frequency.

The HDL counter design consists of two blocks, the edge detector and the counter with

accumulator. The counter increments on every system clock edge. The edge detector detects the

edges of the input signal and prompts the counter to output the current value and start a new

count. Ncount is the sum of the most recent four count values.

The counter demodulator signal can be seen in Figure 3-1. The figure shows four signals.

From top to bottom, the signals are 1MHz FPGA clock (green), FSK input signal (red) using 𝑓𝐿 =

15kHz and 𝑓𝐻 = 35kHz, Ncount (blue), binary output (blue). Ncount is accumulated over four

cycles, so the expected values using equation 3.1 are 114 and 266. The Ncount values are

typically one lower than expected because the clock and signal are not in sync, so the clock cycle

at the beginning of a 𝑓𝑖𝑛 cycle is usually not captured. The actual values seen in the simulation

are 110 and 262. The threshold is set midway between the values, 186. The binary output in

Figure 3-1 is converted to 1’s and 0’s based on the comparison of Ncount with the threshold. The

output does not perfectly reflect the input signal. The Ncount waveform requires a transition time

and the waveform shortens the time that represents 𝑓𝐿. Both of these occur because the counter

uses the length of the input cycle to perform operations. Because 𝑓𝐿 has a longer cycle, the

transitions from 𝑓𝐻 to 𝑓𝐿 are slower. The threshold is also reached slower meaning the

transitions take more time, so the time that the output can be interpreted as a 1 or 0 is reduced.

The bit decision will still be determined by taking a sample in the middle of the bit period, so the

demodulator will still function as intended, but the timing gets delayed slightly. This problem is

increased as the ratio of the data rate to 𝑓𝐿 is increased. If a bit is held for a shorter time, then the

21

transition time becomes more significant. The simulation in Figure 3-1 does not include 1-bit

distortion. The inputs are ideal 15kHz and 35kHz signals.

Figure 3-1. Counter Demodulator Simulation

 One-Shot

The One-Shot demodulator detects the signal edges of an FSK input signal [13]. The

number of edges over a period of time is proportional to the frequency of the signal. Over a set

period of time, the number of edges can be used to detect whether the FSK input is 𝑓𝐻 or 𝑓𝐿 .

The number of edges over a period of time can be counted and the result viewed as a pseudo-

analog value that is proportional to the input data.

When an edge is detected on the input, the demodulator produces a pulse. The length of

the pulse is designed to be the same length as a period of 𝑓𝐻. With the input at 𝑓𝐻, the output

pulses will run together producing a constant value until the input changes to 𝑓𝐿. When the input

is 𝑓𝐿, the edges will occur less often. The produced pulses remain the same length and occur at

every positive edge as before. Since there are fewer edges, and those edges are more spread out,

the average value of the output when the input is 𝑓𝐿 will be lower.

The average value of the output pulses over a time interval can be used to demodulate the

input. The average values taken from the output pulses give a pseudo-analog waveform that

represents the data modulated in the input. The waveform can be converted back to a binary

signal by finding an appropriate threshold value and comparing it to against the One-Shot output.

The result indicates when the signal should be demodulated to a 1 or 0.

The HDL design uses three blocks. One module detects the edges of the input BFSK

signal. Another produces a pulse for each edge detected. The last module averages the pulsed

signal to make the pseudo-analog waveform and then the bit decision based on the threshold to

22

demodulate the waveform to a 1 or 0. The output can then be put into a bit-sync module. The

clock running at the bit rate can be synced with the data. The middle of the bit period can be

found, and the data can be sampled to produce the final demodulated output.

Simulated signals from the One-shot demodulator are shown in Figure 3-2. From top to

bottom the signals in the figure are the system clock (green), FSK input (blue), edge detector

output (blue), output pulse (red), averaged pulse (light green), binary output (yellow). As a scale

reference, the yellow vertical bar on the ride edge of the figure intersects the averaged pulse

waveform near the median value, 950. The simulation in Figure 3-2 does not include 1-bit

distortion. The inputs are ideal 15kHz and 35kHz signals.

Figure 3-2. One-Shot Simulation

 Phase-Frequency Detector

The PFD demodulator is built around the PFD design shown in Figure 3-3. The PFD

uses two DFFs and one AND gate. The inputs to both DFFs are tied to logic high. In the figure,

the upper DFF clock is tied to the BFSK input and the lower DFF to a constant Reference

Frequency, 𝑓𝑟𝑒𝑓. The 𝑓𝑟𝑒𝑓 is generated by the FPGA for the PFD and set between the BFSK

frequencies. 𝑓𝑟𝑒𝑓 is 25kHz for the demodulator comparison. The outputs from the PFD are UP

and DOWN. The PFD outputs produce pulses that indicate whether the BFSK Input to the upper

DFF is at a higher or lower frequency than 𝑓𝑟𝑒𝑓 though only one of the outputs produces outputs

at a time.

The output pulses timing and duration depend on the spacing between the rising edges of

the inputs. On each DFF clock edge, the input is passed to the output. When both the UP and

DOWN lines are high, the AND gate output goes high resetting the DFF outputs. Both remain

23

outputs remain low until an input has a rising edge. Because the outputs depend on the timing of

the inputs, the UP and DOWN pulses have an inconsistent pattern, but the output pulse trends

show the frequency relationship between 𝑓𝑟𝑒𝑓 and the BFSK Input frequency.

Figure 3-3. Phase-Frequency Detector Circuit Model

The general parameters of the output pulses can be determined using the periods of the

inputs. The maximum output pulse is the 𝑇𝐿 minus one clock cycle (𝑇𝐶𝑙𝑘), equation 3.2. The

minimum pulse is the difference between 𝑇𝐿 and 𝑇𝐻, equation 3.3. The difference in pulse length

from one pulse to the next is defined as the Shift and the same as the minimum pulse length,

equation 3.4.

𝑇𝑀𝑎𝑥 = 𝑇𝐿 − 𝑇𝐶𝑙𝑘 (3.2)

𝑇𝑀𝑖𝑛 = 𝑇𝐿 − 𝑇𝐻 (3.3)

𝑆ℎ𝑖𝑓𝑡 = 𝑇𝑀𝑖𝑛 (3.4)

If 𝑇𝐿 and 𝑇𝐻 are close in length, the output pulse length will slowly increase from 𝑇𝑀𝑖𝑛 to

𝑇𝑀𝑎𝑥 similar to the top trace (green) in Figure 3-4. Those output pulses are more difficult to

average usefully because all the similarly sized pulses are grouped together. The output will

show a similar increase even with averaging several pulses. If there is a larger difference

between 𝑇𝐿 and 𝑇𝐻, the pulse lengths vary more, and different pulses lengths get interleaved like

in Figure 3-5. Both figures show that the pulses have a repeating pattern. Both figures repeat the

pattern twice.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

UP Pulse

DOWN Pulse

HIGH

HIGH

BFSK Input

Reference Frequency

24

The length of a full pulse pattern is the least common multiple of the two period lengths,

equation 3.5. Outputs like in Figure 3-5 have subpatterns that make up the full pattern. The

subpattern refers to the pulses that increase in size before overflowing and starting with a shorter

pulse. The subpatterns in Figure 3-5 are three, two, and two pulses long then the full pattern

repeats. The number of pulses in a subpattern is given by equation 3.6, and the number of

subpatterns in full pattern is given by equation 3.7. Averaging over an output that has

subpatterns gives a more even output since consecutive pulse lengths vary more.

𝑁𝐹𝑢𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑢𝑙𝑠𝑒𝑠 = 𝐿𝐶𝑀(𝑇𝐿 , 𝑇𝐻) (3.5)

𝑁𝑆𝑢𝑏𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑃𝑢𝑙𝑠𝑒𝑠 = 𝐹𝑙𝑜𝑜𝑟(𝑇𝑀𝑎𝑥 − 1𝑠𝑡 𝑃𝑢𝑙𝑠𝑒/𝑇𝑀𝑖𝑛) (3.6)

𝑁𝑆𝑢𝑏𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 = (𝑇𝐿 /(𝑇𝐿 − 𝑇𝐻)) (3.7)

Figure 3-4. PFD Pulses

25

Figure 3-5. PFD Pulse Subpatterns

Once the output pulses are formed, the relationship between the BFSK and 𝑓𝑟𝑒𝑓 should be

visually apparent. A filter averages and smooths the output pulses. The averaging operation will

be performed on the UP and DOWN pulses separately. The outputs are near inverses and the

values from both show when the BFSK value is higher or lower than the 𝑓𝑟𝑒𝑓. Only one output

produces pulses at a time, so one of the outputs will be a constant value of zero. If DOWN is

subtracted from UP, the result produces values that show an even larger difference between

values that represent the BFSK input frequencies than they do separately. A threshold value will

be set for the combined output to determine when to demodulate the output to a 1 or 0.

The HDL design uses modules for a clock divider, the PFD, and an averaging module.

The clock divider is used to establish 𝑓𝑟𝑒𝑓. The FPGA clock is divided to a frequency that is half

way between 𝑓𝐻 and 𝑓𝐿. The PFD code implements the circuit in Figure 3-3. Separate Verilog

always blocks are used for the DFFs, so each can perform operations on the appropriate input

signal edge. On a positive edge of the input signal, the output register is set high. A wire

defined as the AND of both DFF outputs is used to reset the DFF outputs. On the negative edge

of the reset signal, both DFF outputs are set low. The averaging module uses registers and a

counter. The register of size N holds the last N outputs bit values. The register acts as a FIFO to

26

shift the bits in and out. The counter increments when a 1 is shifted in and decrements if a 1 is

shifted out to keep a running count of the number of 1’s over the most recent n bits. The

simulated output used N = 1000.

Simulated PFD signals are shown in Figure 3-6 below. From the top down, the signals

are the 20MHz system clock (green), FSK input (red), reference frequency (red), PFD UP output

(blue), PFD DOWN output (blue), filtered UP (green), filtered DOWN (green), Sum (green),

output (yellow). The frequencies of 35kHz, 15kHz, and 25kHz are used for 𝑓𝐻, 𝑓𝐿, and 𝑓𝑟𝑒𝑓

respectively with a 1kHz data rate. The UP and DOWN signals were generated to be ideal. 1-bit

sampling distortion was not included. UP and DOWN were filtered using moving average

filters. The signal Sum is UP minus DOWN. The output is determined using a threshold of zero

for Sum. For reference, the vertical yellow marker on the right of the figure intersects Sum at a

value of zero.

Figure 3-6. PFD Demodulator Simulation

 Phase Frequency Detector with Preprocessor

The PFD used here is the same as the PFD demodulator described in the previous section.

The preprocessor used on the PFD input can correct some of the distortion introduced by the 1-

bit sampling. The waveform reconstructed from the 1-bit sampling function may have varying

period lengths as described in Chapter 2. The preprocessor will reduce the period length

variations prior to the PFD input. The preprocessor uses period detection, filtering, and a

numerically controlled oscillator (NCO) to produce a new signal with more uniform period

lengths. The period detector counts the number of clock cycles between edges to measure the

length of the input signal period. The counts between the edges are filtered using a binomial

27

filter to provide a more consistent output frequency [12]. The NCO generates a new waveform

using the filtered value to set the period length. The block diagram of the preprocessor is shown

below in Figure 3-7. All three of the blocks in the preprocessor can be implemented in hardware

using few resources on a FPGA.

Figure 3-7. PFD Preprocessor

The HDL design uses modules for each of the pre-processor blocks. The period detector

is similar to the Counter demodulator without the accumulator. A binomial filter is used to

average the pulse lengths and provide a value to the NCO. The NCO produces a new BFSK

input that is passed to the PFD.

The PFD outputs are based on the location of the input edges, so the output pulses are

inconsistent with the theoretical pattern when the input has variation. The processed input

waveform provides a more consistent frequency to the PFD input allowing the outputs to

produce the expected pulses. Figure 3-8 below shows the output from the processed input

From the top down, the signals are the 1kHz bit clock, BFSK input with 1-bit distortion,

processed BFSK waveform, Period Detector output, and the output from the PFD. The same

frequencies of 35kHz, 15kHz, and 25kHz are used for 𝑓𝐻, 𝑓𝐿, and 𝑓𝑟𝑒𝑓, but 𝑓𝐻 and 𝑓𝐿 were

generated to represent the 1-bit distortion expected.

Figure 3-8. PFD Preprocessor

PFD Preprocessor

Digital Loop FilterNCO PFD
Period

Detector
1-Bit

Sampling

28

Chapter 4 - Demodulator Comparison Tests

 Power Consumption

Power consumption on the Microsemi Igloo FPGA’s are directly related to the size of the

design and the frequencies used in the design [2, 14]. Amsler shows the power consumption

trends almost linearly with both parameters. Libero, the Microsemi Integrated Development

Environment (IDE), allows the size of the design to be viewed after the files are compiled and

the layout run. The layout was optimized in Libero minimize timing and power consumption.

The estimated power usage can be viewed with the Smart Power feature in Libero. The Smart

Power calculations are typically slightly low compared to observed power, but the values do

provide a good approximation [2]. Smart Power also gives an approximate battery life based on

a given battery size for the design. The battery life does not always follow with the size of the

design. The actual power usage will vary based on several factor including, the exact FPGA

used, the voltages used on the FPGA, and the clock frequencies used to run each module. These

values do provide a good means of comparison of the demodulator designs because all power

approximations will use the same factors except for the demodulator design.

 Size of Design

The size of the design can be measured within Smart Power. The design size of the

AGLN250 FPGA on the development board used for this project can be measured by the number

of flip-flops (FF) used. The AGLN250 has 6144. The FPGA uses components other than FFs,

but the number of FFs used provides a good indicator of design size.

A simpler design can lead to a smaller design. The Counter was the simplest design

discussed in this paper and produced the smallest FPGA design. The Counter used 356 of 6144

FFs. The simplicity and size are the greatest advantages to the Counter. The downside of the

design is that its functionality is very dependent on the clock frequency. The design can be

slowed, but the reaction time of the Counter will also be slowed meaning it will not work at

higher data rates. As expected, the more complicated designs required increased FPGA

resources to implement. The One-Shot, PFD, and PFD with preprocessor used 269, 2574, 3066

FFs respectively.

29

 Power

Ultimately, the power consumption and battery life are the most important factors.

Design size and frequency contribute to the power, but the primary figure of merit must be

power consumption. Using as little power as possible and extending battery life is the most

important factor. The battery life calculations were found using Smart Power assuming a

100mAh battery. The power and battery life for each demodulator are shown in Table 4-1.

Demodulator Power (mW) Design Size

(FFs)

Active Time (hr) per

100mAh Battery

Counter 0.30 356 398

One-Shot 0.54 269 222

PFD

PFD w/preproc

6.10

6.69

2574

3066

19.7

17.9

Table 4-1. Demodulator Power Consumption

 Again, these values do not exactly reflect how the demodulators will perform on any

given system. The power measurements are approximations made with several assumptions, but

because these values were all found using the same set-up, the measurements can be useful for

comparing the demodulators.

 Error Analysis

The demodulator performance in a system must also be evaluated when noise is present

together with the signal. The noise performance was evaluated using random input data. Errors

are projected on top of the data. The errors invert the input causing the BFSK signal to use the

incorrect frequency. A random number of errors, from 1 to 5, with random lengths, up to 𝑇𝑏

were projected onto the input. The total of the errors covered between 0.1% and 10% of the

input. The induced error inverted the logic level of the input causing the opposite IF BFSK

frequency to be used. The outputs of the demodulators were checked to see how many of the

errant bit decision were made by each demodulator compared to the error free input. MATLAB

was used to simulate 10,000 inputs with errors. The outputs were plotted with the error percent

on the x-axis and the number of errors in the demodulated output on the y-axis. To better view

30

the data, box plots were used to show the distribution of the output data. Figures 4-1 through 4-4

show the box plots of each demodulator.

Figure 4-1. Counter Error Simulation Results

Figure 4-2. One-Shot Error Simulation Results

31

Figure 4-3. PFD Error Simulation Results

Figure 4-4. PFD with Preprocessor Error Simulation Results

32

Each of the demodulators has very similar error box plots. The total number of errors over the

10,000 simulations was accumulated for each demodulator. Those results are shown in Table 4-

2 below. From this error analysis, all of the demodulators are nearly equivalent for this setup of

𝑓𝐻, 𝑓𝐿, 𝑓𝑠, and 𝑇𝑏.

Demodulator Total Simulation Errors

Counter 13576

One-Shot 13295

Phase-Frequency Detector 13384

Phase Frequency Detector w/Preprocessor 13365

Table 4-2 Error Simulation Results

 Eye Diagram

As a first order test to compare the noise added by each of the demodulators, an eye diagram for

each is shown below in Figure 4-5.

Figure 4-5. Demodulator Eye Diagrams

33

The waveform data was pulled from simulations in ModelSim with the results scaled and

plotted in MATLAB. Each of the plots was scaled to make the minimum zero and maximum

one for easy comparison. Each of the eye diagrams showed similar results for the maximum low

value, approximately 0.2, and minimum high value, approximately 0.8. These were first order

simulations. The ripple in the waveforms could be reduced if picking the inputs frequencies to

provide the demodulator inputs with closer to ideal inputs, but the case used in the simulation

provides a representative case for when input are not picked specifically for demodulator

performance. Overall, the noise in each of the demodulators appears to be about equal.

Chapter 5 - Conclusions and Future Work

Low-power designs will continue to gain opportunities for use with FPGAs as the

technology progresses. The BFSK demodulators investigated were all demonstrated to be viable

options for a low-power FPGA-based system. The best one for a particular design would depend

on the system requirements. For the NASA EPSCoR project using the demodulators as part of a

network of body sensors, the PFD with preprocessor showed the highest ceiling for usefulness

based on power consumption, and transition time between input changes. As the bit rate and

BFSK frequencies were increased, the PFD with preprocessor would be expected to outperform

the other demodulators. If a low bit rate was used in the final system, the Counter or One-Shot

would be the best options.

While the performance of all the demodulators is tied to the BFSK Input frequencies and

the frequency separation, the counter is the most limited. The Counter allows for a very simple

and small design, but the design is limited based on the number of clock cycles counted between

edges. Averaging over several periods helps, but that also adds delay and increases transition

time. The Counter does use the least power, so if the Counter were to meet system requirements,

the Counter would be an obvious choice. The One-Shot is similar in that enough edges have to

accumulate before the output can develop into a 1 or 0. The Counter and One-Shot will be

slower with lower frequencies and have more defined outputs with larger frequency separation.

34

The PFD, with or without the preprocessing, is also dependent on the input frequencies,

but as soon as an edge occurs, an output pulse is started. The output still needs to be filtered, but

less transition time in the PFD is needed before changing between UP and DOWN output pulses.

Once the BFSK input changes, the output pulse reflect the change.

If the frequencies out of the 1-bit sampling could be picked to optimize the BFSK input

into the PFD, the performance could increase and the preprocessor may not be needed. With the

right frequencies, the averaging could be reduced or eliminated, the transition time could be

reduced, and the ripple in the output pulses could be reduced. Those improvements would lead

to higher data rate capability, less delay, decrease in design size, and decreased power

consumption.

This study was mainly comparing the demodulator designs, but several steps could be

taken to minimize the power consumption once a design is selected. Reducing every register to

the bare minimum size would reduce the static and dynamic power usage. Synthesis of the HDL

design should remove unneeded parts or registers, but changing the design directly would be

cleaner and less ambiguous if a question of logic operation were to arise. Reducing every clock

rate as much as possible would be the next step. Internal clocks could likely be reduced with no

harmful effect on the demodulated output. Writing efficient code to perform operations in

parallel could be another option to reduce time and power. The HDL designs all used non-

blocking statements which may take more time resulting in more power usage. Every bit of

improvement helps when considering low-power designs especially when the power may rely

solely on an energy harvesting solution.

The input frequency could even be manipulated in a different way. There are several

frequencies that are important to the design. The clock frequency will play a large part in how

much power the design uses and also the data rate that the design can demodulate. The BFSK

frequencies will play a part in the bandwidth of the signal, the ease of demodulating the under-

sampled signal, and influence the maximum data rate that can be used. The data rate, 𝑅𝑏, must

be a much lower frequency than 𝑓𝐿. In order to detect the frequency, several cycles of 𝑓𝐿 must be

present for the demodulator to measure. If 𝑓𝐿was 20kHz and the data rate was 10kHz, 𝑓𝐿 would

35

only have time for two cycles before the BFSK Input would change back to 𝑓𝐻. That is not

enough for the demodulators to make a good measurement. A first order rule of thumb could be

for the data rate to be an order of magnitude lower than 𝑓𝐿.

One option to get around the requirement 𝑓𝐿 ≫ 𝑅𝑏 could be to choose the sample

frequency so 𝑓𝐿 is very close to 0Hz. The subsampled BFSK signal would use a 𝑓𝐿 near 0Hz and

𝑓𝐻 near the frequency separation, 2∆f. The signal would then appear to be similar to modulated

using On-Off Keying (OOK).

Figure 5-1. OOK Waveform [15]

The demodulator in this case would need to detect when the signal is present and when it

is not. A low pass filter is commonly used for OOK demodulation. Any of the demodulators

investigated in this paper would also work. One of the main advantages to using BFSK

frequencies that could alias to make an pseudo-OOK signal is that the data rate could potentially

be larger than 𝑓𝐿. The requirement would change to 𝑓𝐻 ≫ 𝑅𝑏. Lower BFSK frequencies could

also be used, so a lower clock frequency could run the demodulator leading to lower power

consumption. The 1-bit distortion may be less of a concern too. Averaging the signal after 1-bit

sampling would still be desirable, so 𝑓𝐻 would be more consistent, 𝑓𝐿 would not be of much

concern as long as it was still close to 0Hz.

36

The clock frequency used in the design will not need to be as high as the board clock in

most cases. The frequency needed will depend partly on the FSK frequencies used and the data

rate. The Counter may need to be run with a faster clock for the design to work better. The One-

Shot and PFD may be able to run on a slower clock.

Regardless of the frequencies or the type of demodulator used, low-power systems

implemented on Field Programmable Gate Arrays (FPGA) have become more practical with

advancements leading to decreases in FPGA cost, power consumption, and physical size. In

systems that may need to operate for an extended time independent from a central power source,

low-power FPGA’s are a reasonable option. Combined with research into energy harvesting

solutions, a FPGA-based system could operate independently indefinitely.

37

References

[1] B. Lathi, Modern Digital and Analog Communication Systems, 3
rd

 ed, New York:

Oxford University Press, 1998.

[2] C. Amsler, “The Effects of Hardware Acceleration on Power Usage in Basic High-

Performance Computing,” M.S. thesis, Dept Elec. and Comp. Eng., Kansas State Univ.,

2010.

[3] J. Meyer, “Modeling Phase-Locked Loops Using Verilog.” 39
th

 Annual Precise Time

and Time Interval (PTTI) Meeting, 2007 [Online]. Available:

http://www.dtic.mil/dtic/tr/fulltext/u2/a483891.pdf

[4] “Fundamentals of Phase Locked Loops (PLLs).” [Online]. Available:

http://www.analog.com/media/en/training-seminars/tutorials/MT-086.pdf

[5] “Behavioral Modeling of PLL Using Verilog-A.” [Online]. Available:

http://www.silvaco.com/tech_lib_TCAD/simulationstandard/2003/jul/a2/july2003_a2.pdf

[6] W Kester, “Undersampling Applications” [Online]. Available:

http://www.analog.com/static/imported-files/seminars_webcasts

/3689418379346Section5.pdf

[7] D. Lockhart, “What You Really Need to Know About Sample Rate.” [Online].

Available:

http://www.dataq.com/support/documentation/pdf/article_pdfs/sample-rate.pdf

[8] M Kostic, “Sampling and Aliasing: An Interactive and On-Line Virtual Experiment.”

[Online]. Available:

https://www.ni.com/pdf/academic/us/journals/sampling_and_aliasing.pdf

[9] R. Lyons, Understanding Digital Signal Processing, 3
rd

 ed, New Jersey: Prentice Hall,

2010.

[10] “Folding Diagram for Aliasing Calculations.” [Online]. Available:

http://www.mne.psu.edu/cimbala/me345/Exams/Folding_diagram_for_aliasing.pdf

[11] W. Kuhn, N. E. Lay, and et al, “A Microtransceiver for UHF Proximity Links

Including Mars Surface-to-Orbit Applications,” in Proc. of the IEEE, vol. 95, no 10, pp.

2019-2044, 2007.

http://www.analog.com/media/en/training-seminars/tutorials/MT-086.pdf
http://www.silvaco.com/tech_lib_TCAD/simulationstandard/2003/jul/a2/july2003_a2.pdf
http://www.analog.com/static/imported-files/seminars_webcasts/3689418379346Section5.pdf
http://www.analog.com/static/imported-files/seminars_webcasts/3689418379346Section5.pdf
http://www.dataq.com/support/documentation/pdf/article_pdfs/sample-rate.pdf
https://www.ni.com/pdf/academic/us/journals/sampling_and_aliasing.pdf
http://www.mne.psu.edu/cimbala/me345/Exams/Folding_diagram_for_aliasing.pdf

38

[12] R. A. Haddad “A Class of Orthongonal Nonrecursive Binomial Filters,” in Proc of the

IEEE, vol. Au-19, no 4, pp. 296-304.

[13] X. Zhang, “VHF & UHF Energy Harvesting Radio System Phisical and MAC Layer

Considerations,” M.S. thesis, Dept Elec. and Comp. Eng., Kansas State Univ, 2001.

[14] Microsemi. “Dynamic Power Reduction in Flash FPGAs.” [Online]. Available:

[15] “Digital Modulation one bit at a time.” [Online]. Available:

https://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part19/page1.html

https://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part19/page1.html

39

Appendix A – Hardware Design Language (HDL), Verilog Code

 Counter

// Counter_all.v

///

// Riley Harrington

// Kansas State University

// Electrical and Computer Engineering

// This file contains the modules used in the Counter BFSK

// demodulator.

// Modules:

// -Counter

// -Edge Detector

///

`timescale 1ps / 1ps

// Counter Module

module Counter_all(clk, ar, SigIn, SigOut);

 // inputs

 input clk;

 input ar;

 input SigIn;

 // outputs

 output wire SigOut;

 // end module I/O

 // Parameters

 parameter CountSize = 20;

 parameter RegSize = 15;

 parameter Ref_clock = 2;

 // For a clock frequency of 20MHz and FSK frequencies of 15kHz and 35kHz,

 // the count value will be between 5333 for 15kHz and 2286 for 35kHz.

 // Thoase numbers are found by dividing the clock frequency by the FSK

 // frequency then multiplying the result by four since the four cycles are

 // accumulated before setting the value to Count.

 // 20MHz/15kHz = 1333.3 --> 1333.3*4=5333

 // 20MHz/35kHz = 571.43 --> 571.43*4=2286

 // The mid-point between the numbers is ~3800

 parameter Threshold = 180;//3800;

 // end parameters

 // Registers

 reg [20:0] OutputCount, CountUp;

 reg AvgOut;

 reg [RegSize-1:0] S4, S3, S23, S34, S123, S234, S1234, Sout;

 // end registers

 // Wires & assignments

 wire EdgeP, EdgeN;

 wire Edges;

 wire ref_clk;

 assign Edges = EdgeP || EdgeN;

 assign SigOut = (Sout > Threshold)? 1'b1:1'b0;

 // end wires

40

 // Calls to other modules

 EdgeDetect_Cnt Edge1 (.clk(clk), .ar(ar), .SigIn(SigIn),

 .EdgeOutP(EdgeP), .EdgeOutN(EdgeN));

 Clk_Div #(Ref_clock) RefClkDivider(.clk(clk), .ar(ar), .d_clk(ref_clk));

 // end module calls

 always @(posedge ref_clk or negedge ar)

 if(~ar)

 begin

 // Initialize reg values to 0

 CountUp = {CountSize{1'b0}};

 OutputCount = {CountSize{1'b0}};

 S4 = {RegSize{1'b0}};

 S3 = {RegSize{1'b0}};

 S23 = {RegSize{1'b0}};

 S34 = {RegSize{1'b0}};

 S123 = {RegSize{1'b0}};

 S234 = {RegSize{1'b0}};

 S1234 = {RegSize{1'b0}};

 Sout = {RegSize{1'b0}};

 end

 else

 if(EdgeP)

 begin

 // bring in new sample & roll older values

 S3 = S4;

 S4 = CountUp;

 S23 = S34;

 S34 = S3 + S4;

 S123 = S234;

 S234 = S23 + S34;

 S1234 = S123 + S234;

 Sout = S1234 >> 4'd4;

 CountUp = {CountSize{1'b0}};

 end // end if EdgeP block

 else

 begin

 // If no edge, count number of clock cycles since last edge

 CountUp = CountUp + 1;

 //Go through output count

 if(OutputCount > Sout)

 begin

 // AvgOut = ~AvgOut;

 OutputCount = 10'b0;

 end

 else

 begin

 OutputCount = OutputCount + 1;

 end

 end // end EdgeP else block

endmodule // end "Counter"

41

 One-Shot

// OneShotDemod.v

// Riley Harrington

// Kansas State Univesity

// This file will contain all modules used to run the 1-shot demodulator

// 1. Edgedetector which will indicate input positive edges

// 2. PulseOut which will output a pulse of a certain length after a positve

data edge

// 3. Moving Average Filter will smooth out the output from PulseOut and

// make a decision based on a threshold whether the data is a one or zero.

// 4. Bit-sync will sync to the output of the filter and then take a sample

at mid bit-period

// This module will provide all parameter values, input, wire, and outputs

needed

// for a complete demod that can be tested on a FPGA.

`timescale 100ps / 100ps

module OneShotDemod(clk, ar, SigIn, DemodOut);

 input clk;

 input ar;

 input SigIn;

 parameter FilterSize = 20;

 output wire DemodOut;

 // This parameter is used to determine how many clock cycles will be

 // in the time frame to check for edges

 parameter FilterLen = 20;

 // This parameter is used to determine how long the output pulse will last

 // Ideally the pulse will last the same time as a period of the higher

 // frequency used in the FSK.

 parameter PulseLen = 50;

 parameter Threshold = 1000;

 wire SigIn;

 wire EdgeOutP;

 wire PulseOut;

 wire DataOut;

 wire [FilterSize-1:0] AvgOut;

 assign DemodOut = (AvgOut > Threshold)? 1'b1:1'b0;

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

 end

 else

 begin

 end

 // Finds edges on input on SigIn

 EdgeDetect Edge1(.clk(clk), .ar(ar), .SigIn(SigIn), .EdgeOutP(EdgeOutP),

.EdgeOutN());

 // Takes output from EdgeDetect and outputs a pulse when an edge is found

42

 // Output pulse should be close to or the same as the number of clock

cycles in the period

 // of the higher frequency

 // Tclk = 1/20MHz = 5e-8, T1 = 1/35kHz = 2.857e-5 ->570

 OutputPulse #(.PulseLen(571), .PulseReg(12))

 Pulse1(.clk(clk), .ar(ar), .SigIn(EdgeOutP), .PulseOut(PulseOut));

 // Moving Average Filter

 // This should be set long enough to cover a full period of the longer FSK

frequency period

 MovingAvg #(.FilterLen(FilterLen), .FilterSize(FilterSize)) //

 Avg1(.clk(clk), .ar(ar), .In(PulseOut), .Out(AvgOut));

 // should have a reg long enough to count the number of clock cycles in a

data bit period

 BitSync #(.Divider(10000))

 Sync1(.clk(clk), .ar(ar), .DataIn(FilteredOut), .DataOut(DataOut));

endmodule

// OutputPulse

// OutputPulse.v

// Riley Harrington

// Kansas State University

// This module will be used to Output a pulse

// The pulse will be put out when an input positive edge is found

// on the input. The pulse will last for a number of clock cycles

// indicated by the parameter PulseLen.

`timescale 100ps / 100ps

module OutputPulse(clk, ar, SigIn, PulseOut);

 input clk;

 input ar;

 input SigIn;

 output wire PulseOut;

 // Pulse Len determines how long the output pulse will be

 // Set this to be the length of the high FSK period.

 parameter PulseLen = 25;

 // Used to set register length.

 parameter PulseReg = 6;

 // This reg keeps track of the number of ones of the filter length.

 reg [PulseReg-1:0] Counter;

 wire EdgeOutP;

 assign EdgeOutP = SigIn;

 // Output assignment (Wire is asynchronous, but Counter changes on

posedge.)

 assign PulseOut = (Counter == 0)? 1'b0:1'b1;

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

 Counter = {PulseReg{1'b0}};

43

 end

 else

 begin

 if(EdgeOutP)

 begin

 Counter = PulseLen;

 end

 else

 begin

 // If Counter is at zero, no action (Counter=Counter), else

decrement Counter

 Counter = (Counter == 0)? Counter:(Counter-1);

 end

 end

endmodule // end OutputPulse

 Phase Frequency Detector

// PFD.v

// Riley Harrington

// Kansas State University

// Phase-Frequency Detector (PFD)

// PFD based on digital circuit using two D flip-flops and an AND gate

// with "UP" and "DOWN" outputs from DFFs. D inputs on both FFs are

// tied high. The Q output of the FFs will go HIGH at the next clk

// posedge after the input goes HIGH. The first output to go HIGH

// will remain HIGH until the other output also goes HIGH. When both

// outputs are HIGH, the AND gate will reset the FF outputs.

// The UP and DOWN outputs indicate whether the input signal frequency

// (InA) is higher or lower than the reference frequency (InB).

`timescale 100ps/100ps

module PFD(clk, ar, InA, InB, up, down);

 input clk;

 input ar;

 input InA;

 input InB;

 output reg up;

 output reg down;

 // DFF_Rst will reset both FFs if a reset is needed either

 // from the system level (~ar) or from the PFD, both inputs to the

 // AND gate being HIGH. In either case, the outputs, up and down,

 // will be set to their default, LOW.

 // **The AND gate is incorporated into this reset

 wire DFF_Rst;

 assign DFF_Rst = ((up && down) || (~ar))? 1'b0:1'b1;

 // This always block will take in the InA input signal.

 // The input will be transferred to the output on the

 // positive edge of clk. The output will be reset to

 // LOW when there is a system reset or the other output,

44

 // (down) goes HIGH.

 always @(posedge InA or negedge DFF_Rst)

 if(~DFF_Rst)

 begin

 up = 1'b0;

 end

 else

 begin

 up = 1'b1;

 end

 // This always block will do the same as the above InA

 // block except the input is from InB and the output

 // is "down" not "up".

 always @(posedge InB or negedge DFF_Rst)

 if(~DFF_Rst)

 begin

 down = 1'b0;

 end

 else

 begin

 down = 1'b1;

 end

endmodule

 Phase Frequency Detector with Preprocessor
// PFD_preproc_all.v

// Riley Harrington

// Kansas State University

// Phase-Frequency Detector (PFD)

// PFD based on designs using two D-flip-flops and an AND gate

// with "UP" and "DOWN" outputs

// D inputs on both FFs are tied high.

// The Q output of the FF will go HIGH at the next the posedge of the clock

after the input goes HIGH.

// That output will remain HIGH until the other output also goes HIGH.

// The AND gate will reset the FFs when both outputs are HIGH.

// The UP and DOWN outputs should indicate whether the input signal frequency

(InA)

// is higher or lower than the reference frequency (InB).

`timescale 100ps/100ps

module PFD_proproc_all(clk, ar, SigIn, DemodOut);

 input clk;

 input ar;

 input SigIn;

 output wire DemodOut;

 // Parameters

 parameter Threshold = 1000;

 // Parameters for called modules

 parameter FilterLen = 1000;

 // The FilterSize register needs to be large enough to count up to the

value of

 // FilterLen, so the requirement is 2^FilterReg > FilterLen

 parameter FilterSize = 20;

45

 parameter skipnum = 2;

 parameter CountSize = 20;

 parameter RegSize = 15;

 // end parameters

 // Registers

 reg Up, Down;

 // end registers

 // Wires and Assignments

 // DFF_Rst will reset both of the FFs if a reset is needed either

 // from the system level (~ar) or from the PFD (both inputs to the

 // AND gate being HIGH. In either case, the outputs, up and down,

 // will be set to their LOW default value.

 // **The AND gate is incorporated into this reset

 wire DFF_Rst;

 assign DFF_Rst = ((Up && Down) || (~ar))? 1'b0:1'b1;

 wire Sample_clk;

 wire BFSK_In;

 wire TENMHz_clk;

 wire BFSK_Ref;

 wire BFSK_Baseband;

 wire BFSK_Baseband_avg;

 wire [FilterSize-1:0] UpAvg;

 wire [FilterSize-1:0] DownAvg;

 wire [FilterSize-1:0] UpDown;

 assign DemodOut = (UpDown > Threshold)? 1'b1:1'b0;

 assign UpDown = UpAvg - DownAvg;

 // end wires

 // Module calls

 // Create PFD reference from 20MHz clock. BFSK are 15kHz & 25kHz, so

divide down to 25kHz.

 Clk_Div #(399) RefClkDivider1 (.clk_in(clk), .ar(ar), .clk_out(TENMHz_clk)

);

 // Divide 20MHz system clock down to 10MHz for 1-bit Sampling

 Clk_Div #(1) RefClkDivider2 (.clk_in(clk), .ar(ar), .clk_out(BFSK_Ref));

 // 1-bit sample BFSK input to bring it down to a BFSK_baseband signal

 OneBit_Sampling OneBitSample1 (.SampleClock(TENMHz_clk), .ar(ar),

.SigIn(SigIn), .SampledOut(BFSK_Baseband));

 // #(.CountSize(CountSize), .RegSize(RegSize))

 Binomial_4thOrder BinAvg4(.clk(clk), .ar(ar), .SigIn(BFSK_Baseband),

.SigOut(BFSK_Baseband_avg));

 // MovingAvg Up output

 MovingAvg //#(.FilterLen(FilterLen), .FilterSize(FilterSize),

.skipnum(skipnum))

 PFDFiltAvgUp(.clk(clk), .ar(ar), .In(Up), .Out(UpAvg));

 // MovingAvg Down Output

 MovingAvg //#(.FilterLen(FilterLen), .FilterSize(FilterSize),

.skipnum(skipnum))

 PFDFiltAvgDown(.clk(clk), .ar(ar), .In(Down), .Out(DownAvg));

 // end module calls

 // This always block will take in the InA input signal.

 // The input will be transferred to the output on the

 // positive edge of the clock. The output will

 // be reset to LOW when either there is a system reset or

 // the output, (down) from the other output goes HIGH.

46

 always @(posedge BFSK_Baseband_avg or negedge DFF_Rst)

 if(~DFF_Rst)

 begin

 Up = 1'b0;

 end

 else

 begin

 Up = 1'b1;

 end

 // This always block will do the same as the above

 // except the input is from InB and the

 // output is "down" not "up".

 always @(posedge BFSK_Ref or negedge DFF_Rst)

 if(~DFF_Rst)

 begin

 Down = 1'b0;

 end

 else

 begin

 Down = 1'b1;

 end

endmodule

 Supporting Modules

 Edge Detector

// EdgeDetect

// This module will take in an input signal and

// output a pulse when there is an edge detected.

// A parameter will specify when positive or negative

// edges or both are desired.

module EdgeDetect(clk, ar, SigIn, EdgeOutP, EdgeOutN);

 // inputs

 input clk;

 input ar;

 input SigIn;

 // outputs

 output wire EdgeOutP, EdgeOutN;

 // end I/O

 // EdgeIn will record the last two input bits.

 // These will be used to find when edges have occurred.

 reg [1:0] EdgeIn;

 // Wires & assignments

 assign EdgeOutP = (~EdgeIn[1] & EdgeIn[0])? 1'b1:1'b0;

 assign EdgeOutN = (EdgeIn[1] &~EdgeIn[0])? 1'b1:1'b0;

 // end wire assignments

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

47

 EdgeIn = 2'b0;

 end

 else

 begin

 EdgeIn = {EdgeIn[0] ,SigIn};

 end // end always if-else block

endmodule // end "EdgeDetect"

 Clock Divider

//Clock Divider

module Clk_Div(clk, ar, d_clk);

 input clk;

 input ar;

 output reg d_clk;

 parameter div = 1;

 parameter divsize = 2;

 reg [divsize-1:0] divreg;

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

 d_clk = 1'b0;

 divreg = {divsize{1'b0}};

 end//reset block

 else

 begin

 divreg = divreg + 1; //increment count

 if (divreg > div) //check if count has reached divisor

 begin

 d_clk = ~d_clk; //if divisor reached, toggle d_clk

 divreg = {divsize{1'b0}}; //and clear the divreg

 end

 end

endmodule //end clock divider

 Bit Sync

// BitSync

// BitSync.v

// Riley Harrington

// Kansas State University

// This module will have the following tasks

// 1. Produce a data clock signal at the same frequency as the data rate

// -The data rate will be known.

// 2. Align the negative edge of the data clock with the edges of the data

// 3. Take a sample on the positive edge of the data clock. The sampled

value

// will be transferred to the output at that time.

// This module will take a input signal bit stream, sync with the data, and

// sample the data in the middle of the bit periods.

48

// If there are mulitple of the same bits in a row, no data transition will

// be detected, so the sample clock will not be aligned in that perdiod.

// The negative edge will be lined up with the data edges and samples will be

// taken on the positive edges of the sample clock.

`timescale 100ps/100ps

// Data is independent.

// on system clock edges, check for data edges

// If data edge detected, align clock (reset)

// on data clock posedge, take sample

module BitSync(clk, ar, DataIn, DataOut);

 input clk;

 input ar;

 input DataIn;

 // output wire Sample;//probably doesn't need to be an output

 output wire DataOut;

 // SampledData will store the latest sample from the input.

 reg SampledData;

 // DataOut will reflect the latest sample from SampledData.

 assign DataOut = SampledData;

 // This reg will have the newest bit from the DataIn shifted in

 // It will be used to find when data edges occur

 reg [1:0] DataEdge;

 // Divider should divide the system clock to generate a clock

 // that is the same frequency as the data. (One cycle per data bit

period)

 parameter Divider = 99;

 wire DataClk;

 wire RstDataClk;

 assign RstDataClk = (DataEdge[1] != DataEdge[0])? 1'b0:1'b1;

 // This will produce a data clock. Once the clock is aligned with the

data, the

 // posedges, will indicate when to take a sample.

 Clk_Div #(.div(Divider)) DataClock (.clk(clk), .ar(RstDataClk),

.d_clk(DataClk));

 // This takes the sample of DataIn and stores it in SampledData

 // The output DataOut is assigned to SampledData, so the output reflects

the

 // value of SampledData.

 always @(posedge DataClk or negedge ar)

 if(~ar)

 begin

 SampledData = 1'b0;

 end

 else

 begin

 SampledData = DataIn;

 end

 // This is used to detect when an edge of DataIn occurs.

 // Those data edges are used to reset/align DataClk

 always @(posedge clk or negedge ar)

 begin

 if(!ar)

 begin

49

 DataEdge = 2'b11;

 end

 else

 begin

 DataEdge = {DataEdge[0], DataIn};

 end

 end

endmodule // end "BitSync"

 Binomial Average Filter

// Binomial_avg.v

// Riley Harrington

// Kansas State University

`timescale 1ps / 1ps

module Binomial_4thOrder(clk, ar, SigIn, SigOut);

 // inputs

 input clk;

 input ar;

 input SigIn;

 // outputs

 output wire SigOut;

 // end I/O

 // parameters

 parameter CountSize = 20;

 parameter RegSize = 15;

 // end parameters

 // registers

 reg [20:0] OutputCount, CountUp;

 reg AvgOut;

 reg [RegSize-1:0] S4, S3, S23, S34, S123, S234, S1234, Sout;

 // end regs

 // wires and assignments

 wire EdgeP, EdgeN;

 wire Edges;

 assign Edges = EdgeP || EdgeN;

 assign SigOut = AvgOut;

 //end wires

 // module calls

 EdgeDetect #() Edge1 (.clk(clk), .ar(ar), .SigIn(SigIn),

 .EdgeOutP(EdgeP), .EdgeOutN(EdgeN));

 //end calls

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

 // Initialize reg values to 0

 CountUp = {CountSize{1'b0}};

 OutputCount = {CountSize{1'b0}};

 S4 = {RegSize{1'b0}};

 S3 = {RegSize{1'b0}};

 S23 = {RegSize{1'b0}};

 S34 = {RegSize{1'b0}};

50

 S123 = {RegSize{1'b0}};

 S234 = {RegSize{1'b0}};

 S1234 = {RegSize{1'b0}};

 Sout = {RegSize{1'b0}};

 AvgOut = 1'b0;

 end

 else

 begin

 if(EdgeP)

 begin

 // bring in new sample & roll older values

 S3 = S4;

 S4 = CountUp;

 S23 = S34;

 S34 = S3 + S4;

 S123 = S234;

 S234 = S23 + S34;

 S1234 = S123 + S234;

 Sout = S1234 >> 4'd4;

 CountUp = {CountSize{1'b0}};

 end

 else

 begin

 // If no edge, count number of clock cycles since last edge

 CountUp = CountUp + 1;

 //Go through output count

 if(OutputCount > Sout)

 begin

 AvgOut = ~AvgOut;

 OutputCount = 10'b0;

 end

 else

 begin

 OutputCount = OutputCount + 1;

 end

 end

 end

endmodule

 Moving Average Filter

// MovingAvg

// MovingAvg.v

// Riley Harrington

// Kansas State University

// This module separates a moving average filter into a separate module

// The module will add up the number of ones over a certain number of samples

// which is set by "FilterLen"

// SigIn has nearly constant pulses when the signal is at the higher FSK

frequency

// the signal will have intermittent pulses when the input is at the lower

FSK frequency.

51

// PFD_MovingAvg.v is the same as MovingAvg. with an extra input and

registers to handle

// a moving average operation on two signals at once. One of the resulting

Sum values

// is subtracted from the other to combine them into one signal. This worked

well for

// the particular situation this module was needed for where only one output

was desired.

`timescale 100ps / 100ps

module MovingAvg(clk, ar, In, Out);

 // PARAMETERS or #define sections

//

 // FilterLen is the length of the filter. FilterLen of bits will be summed

 // to provide the moving average.

 // It is easier to make this a power of two, so the divide needed for the

 // average can use logical shift operation.

 parameter FilterLen = 64;

 // The FilterSize register needs to be large enough to count up to the

value of

 // FilterLen, so the requirement is 2^FilterReg > FilterLen

 parameter FilterSize = 7;

 // END PARAMETERS

///

 // I/O

///

 input clk;

 input ar;

 input In;

 output wire [FilterSize-1:0] Out;

 // End I/O

///

 // REGISTERS

//

 // This register will hold the bits that will be summed

 reg [FilterLen-1:0] FilterReg;

 // This register will sum the values in the FilterReg.

 // This reg will need to be large enough to count up to the length of

FilterLen

 // 2^FilterReg > FilterLen

 reg [FilterSize-1:0] FilterSum;

 reg [FilterSize-1:0] skip;

 parameter skipnum = 2;

 // END REGISTERS

//

 //assign Out = (FilterSum[FilterSize-1] == 0)? 1'b1:1'b0;

 assign Out = FilterSum;

 always @(posedge clk or negedge ar)

 if(~ar)

 begin

 // Reset the registers to all zeros on a reset

 FilterReg = {FilterLen{1'b0}};

 FilterSum = {FilterSize{1'b0}};

 skip = {FilterSize{1'b0}};

 end

52

 else

 begin

 // Four situations can happen

 // 1. A zero is shifted in and a zero is shifted out

 // 2. A one is shifted in and a one is shifted out

 // No change needed for either case

 // 3. A one is shifted in and a zero is shifted out

 // One is to be added to the sum

 // 4. A zero is shifteed in and a one is shifted out

 // One is to be subtracted from the sum

 // If data bits going in and out are different

 // then if SigIn is one add one to the sum

 // else (if SigIn is zero) subtract one

 // else (if the original condition is zero) the

 // bits going in and out are equal, so no change to the sum

 if(skip == skipnum)

 begin

 FilterSum = (FilterReg[FilterLen-1] ^ In)?

 ((In == 1)? (FilterSum +1):(FilterSum -1)) :

FilterSum;

 // Shift new data into FilterReg and shift old data out

 FilterReg = {FilterReg[FilterLen-2:0], In};

 skip = {FilterSize{1'b0}};

 end

 else

 begin

 FilterSum = FilterSum;

 skip = skip + 1;

 end

 // Ideally the FilterSum value will equal the size of FilterReg

 // when the lower of the FSK frequencies is at the input. When

 // the higher FSK freq is at the input, it should be considerably

 // less.

 // FilterReg Size GUIDE:

 // Overall the register needs to be long enough so that the

accumulation

 // developed from the pulses using the lower and higher FSK freqs can

be

 // distinguished from one another. A logical size would be enough to

 // cover the period of the lower FSK frequency. The pulse should be

high

 // all or nearly all the time when the higher FSK frequency is

present, so

 // the size constraint can be based more on the lower FSK freq.

 // Example for f_low = 15kHz, f_high = 35kHz and f_clk = 20MHz.

 // -First find the number of clock pulses per each FSK freq period.

 // 571 for f_high and 1333 for f_low

 // The pulse should last for the whole period of f_high, 571 clk

pulses.

 // The pulse would have the same length when f_low is present, so for

a 1333

 // length reg, all (1333 out of 1333) samples would be high for

f_high while

53

 // 571 out of 1333 would be high for f_low. 1333 vs 571 would be the

values

 // output from FilterSum that would be used to determine whether a

One or Zero

 // should be output. The average, 952, is a good 1st order threshold

value.

 end

endmodule // end MovingAvg

Appendix B – MATLAB Code

 Counter

%% Counter operation is performed within the Testbed

 One-Shot

%% One-Shot operation is performed within the Testbed

 Phase Frequency Detector

function [Up, Down, Reset] = PFD_Sim(f_ref, f_in)
%% PFD_check Summary of this function goes here

%% Error Checks

% Check length of the input waveforms. Report error is lengths differ.
if length(f_ref) ~= length(f_in)
 msg = ['Error f_ref (', num2str(length(f_ref)), ') and f_in (' ...
 , num2str(length(f_in)), ') are not the same length.'];
 error(msg)
end

% End Error Checks

%%
[x, f_ref_PosEdge, z] = FindEdges(f_ref);
[u, f_in_PosEdge, w] = FindEdges(f_in);

% need to consider f_ref, f_in, Up, Down, Reset

% Reset Changes:
% -Check current value. If High, set low. If low check for Up=Down=1
% -Check Up and Down to see if it should be set high
% When reset goes high, it should be high for 1 clock cycle.
% Up and Down are set Low immediately if Reset is High
Len_Waveform = length(f_ref);

54

Up = zeros(1, Len_Waveform);
Down = zeros(1, Len_Waveform);
Reset = zeros(1, Len_Waveform);

%% Find pulses
for ii = 2:Len_Waveform
 % Reset
 if(Reset(ii-1) == 1)
 Up(ii) = 0;
 Down(ii) = 0;

 %added
 Reset(ii) = 0;
 else
 Up(ii) = Up(ii-1);
 Down(ii) = Down(ii-1);
 end
 % End Reset

 % Up/Down Edges
 if(f_ref_PosEdge(ii) == 1)
 Up(ii) = 1;
 else
 %Up(ii) = Up(ii-1);
 end

 if(f_in_PosEdge(ii) == 1)
 Down(ii) = 1;
 else
 %Down(ii) = Down(ii-1);
 end
 % End Up/Down Edges

 % Recheck Reset
 if(Up(ii) == 1 && Down(ii) == 1)
 Reset(ii) = 1;
 end

end

% Up Changes
% if Up is currently High, keep it High
% -if f_ref pos edge, set Up High

% Down Changes

%% Plots

% [xUp, yUp] = stairs(Up);
% [xDown, yDown] = stairs(Down);
% [xReset, yReset] = stairs(Reset);
%
% hold on; figure(1); clf;
% plot(xUp, yUp*.8, 'g'); hold on;
%

55

%
% plot(xDown, yDown, 'b'); hold on;
%
%
% plot(xReset, yReset, 'rx'); hold on;
%
% axis([-1 (length(Up)+1) -0.1 1.1]);

% End Plots

% % Initialize output vectors
% Up = zeros(1, length(r_ref) +1);
% Down = zeros(1, length(r_ref) +1);
% Reset = zeros(1, length(r_ref) +1);
%
% % RisingEdge_f_ref =

 Phase Frequency Detector with Preprocessor

%% Test PFD w/ preprocessor operation is performed within the Testbed and

calling the PFD_Sim function.

 Test Bed

function [] = Testbed_DemodErrorAnalysis()
% b=a;
%% %%
% Riley Harrington
% Kansas State University
%%
% Testbed to test error performance of BFSK demodulators
% Testbed will call other modules to:
% -create a bit stream with errors from 1-5% of the total
% --bit stream shall simulate 10.7MHz +/- delta_f
% -1-bit undersample the bit stream to "mix" it down to baseband
% -pass the sampled waveform into the demodulators
%%

clear all;
ClearCommandWindow = 0;
if (ClearCommandWindow == 1)
 clc;
end

%% Load Previous Data
% Establish variables
ErrorPercentAll = [];
CounterErrorNumAll = [];
OneShotErrorNumAll = [];

56

PFDErrorNumAll = [];
PFD_c_ErrorNumAll = [];
TotalErrorNumAll = [];
FileName = 'D:\Google Drive\1A_Thesis\MATLAB_Files\DemodErrorData_3.mat';
load(FileName, 'ErrorPercentAll', 'TotalErrorNumAll',

'CounterErrorNumAll',...
 'OneShotErrorNumAll', 'PFDErrorNumAll', 'PFD_c_ErrorNumAll');

%% Variables %%
plot_error = 0;
display_vals = 0;
Error_percent = 0;
Max_error = 0.10;
Min_error = 0.001;
Impulse_noise_freq = 0;
error_stream = [];
Bit_Stream = [];
Bit_Stream_Original = [];
NumBits = 24;

f1 = 10.69e6; %10.69MHz
f2 = 10.71e6; %10.71MHz
SampleFrequency = 75e3; %75kHz

% expand waveform
Resolution = 1000;

%% Call modules %%%

% %%%% Add Loop here to run x error simulations? Or make this file a
% function and call it from outside?
error_tries = 0;
stop = 0;

% Bit Stream Generation
% Call to adapted version of Charles Carlson's Frame_Sync code
% Check if Error percent
while(stop == 0)
 [Error_percent, Impulse_noise_freq, error_stream, Bit_Stream, ...
 Bit_Stream_Original] = Frame_Sync_Sim_BitInput();
 %display(Error_percent);
 error_tries = error_tries + 1;
 if(Error_percent >= Min_error && Error_percent <= Max_error)
 stop = 1;
 end

end
% display(Error_percent);
% Check percentage of error in waveform
% Throw away if error is outside of specified min/max

% Find the Matlab resolution of the data input
SamplesPerBit = length(Bit_Stream_Original)/NumBits;

57

Bit_Stream_x = (NumBits/length(Bit_Stream)) : ...
 (NumBits/length(Bit_Stream)):NumBits;

%% 1-Bit sample IF BFSK %%%
% The original plan was to create a IF signal with high resolution that
% would be undersampled just like what would happen on the FPGA, but the
% size of the arrays needed was higher than my 32-bit version of MATLAB
% woudld create. Instead the baseband samples were created directly using
% the known IF and fs frequencies.

% a = Bit_Stream;
% b = repmat(a, Resolution, 1);
% c = reshape(b, 1, (length(b)*Resolution));
% figure(3); clf; plot(c);
% c_len = length(c);
% axis([0 c_len -0.1 1.1]);

%% Generate Baseband BFSK samples based on IF BFSK %%%%%%%%%%%%%%%%%%%%%%%%
% Edge detection is used to find the high and log bits in the input data.
% That info will be used to find when the BFSK IF would be f1 or f2. The
% baseband samples will be created using that information.
% Bit_Stream start and end times appear to slide back and forth a bit to
% fit the errors correctly. Frame_Sync code performs that shifting.
[AllEdges, ~ , ~] = FindEdges(Bit_Stream);

% EdgeIndices provides the indices of each edge in AllEdges.
EdgeIndices = find(AllEdges > 0.1);
% PulseLengths provides the lengths of each pulse in AllEdges
PulseLengths = [EdgeIndices length(AllEdges)] - [0 EdgeIndices];
% NumPulses provides the number of pulses in the input data.
NumPulses = length(PulseLengths);
% PulseSizes provides a scaled length relative to a single bit time, Tb.
PulseSizes = PulseLengths/(length(Bit_Stream)/24);

%%
% Create BFSK baseband pulses for PulseSizes lengths.
% The UnderSample function provides the samples that would be recorded for
% a given input frequency and sample frequency. This assumes the input and
% sample frequencies both start a T_0 at 0 degrees. The output provides an
% array of the samples and a ratio of the input to sample frequency. The
% middle output gives the whole number portion and the last output gives
% the decimal remainder portion of the ratio. Thw W and R values are not
% needed in this script. The output array provides a single complete
% pattern based on the inputs. A final output needs to be compiled using
% this output.
[f1_Samples, ~, ~] = UnderSample(f1, SampleFrequency);
[f2_Samples, ~, ~] = UnderSample(f2, SampleFrequency);
% f1_Samples = f1_Samples(1:75);
% f2_Samples = f2_Samples(1:75);
f2_clean = [1 0];
f3_Samples = RepeatArray(f2_clean, 38);

% Compile baseband samples using for loop
% Loop will determine the time that a IF frequency would be present and

58

% compile the appropriate baseband samples for that pulse then repeat for
% rest of the pulses.
% BaseBandPulse provides the 1-bit sampled output.

% Initialize variables
BaseBandPulse = [];
PulseA = [];
PulseB = [];
a=0;
b=0;
for ii = 1:NumPulses
 if(mod(ii,2) < 1)
 Bits = f2_Samples;
 Bits_clean = f2_Samples;
 a=a+1;
 else
 Bits = f1_Samples;
 Bits_clean = f3_Samples;
 b=b+1;
 end

 whole = floor(PulseSizes(ii));
 fraction = mod(PulseSizes(ii), 1);
 PulseA = repmat(Bits, 1, whole);
 PulseAc = repmat(Bits_clean, 1, whole);

 fraction_bits = fraction*length(f1_Samples);
 rnd_bits = round(fraction_bits);
 PulseB = Bits(1:rnd_bits);
 PulseBc = Bits_clean(1:rnd_bits);

 if(ii < 1.1)
 BaseBandPulse = [PulseA PulseB];
 BaseBandClean = [PulseAc PulseBc];
 else
 BaseBandPulse = [BaseBandPulse PulseA PulseB];
 BaseBandClean = [BaseBandClean PulseAc PulseBc];
 end
% BaseBandPulse = [BaseBandPulse PulseA PulseB];
end

%% Test Counter %%%
% Get the edges of the BaseBand BFSK input
[BaseBandAllEdges , BaseBandRisingEdges, ~] = FindEdges(BaseBandPulse);

% An extra check because BaseBandAllEdges was an element too long once
BaseBandAllEdges = BaseBandAllEdges(1:length(BaseBandRisingEdges));

% BaseBandIndices provides the indices of all the edgs locations
BaseBandIndices = find(BaseBandRisingEdges > 0.1);
% BaseBandPulseLengths provides the length of each pulse
BaseBandPulseLengths = [BaseBandIndices length(BaseBandRisingEdges)] - [0

BaseBandIndices];
% BaseBandIndices has one added since the last pulse is not accounted for

59

BaseBandIndices = [BaseBandIndices length(BaseBandRisingEdges)];
% CounterPulseInfo provies the lengths of the pulses at the location where
% the pulse occurs.
CounterPulseInfo = zeros(1, length(BaseBandRisingEdges));
CounterPulseInfo(BaseBandIndices) = BaseBandPulseLengths;
% ReplaceZeros replaces all the zeros in the array with the value of the
% element before it. That operation is repeated until no zeros remain.
% The OutputPlotArray can be used to plot the Counter demod output waveform
% with no averaging
[CounterPlotArray] = ReplaceZeros(CounterPulseInfo);

% Counter Averaging %%%
% Average over 4 pulses
len_BBPL = length(BaseBandPulseLengths+1);
% BBPL_Avg2 provides the average over 2 elements of BaseBandPulseLengths
BBPL_Avg2 = BaseBandPulseLengths(1:len_BBPL-1) +

BaseBandPulseLengths(2:len_BBPL);
% The last element gets cut off, so the first element is repeated and added
% to the front of the array. This is done is the later averages as well.
BBPL_Avg2 = [BBPL_Avg2(1) BBPL_Avg2];
% BBPL_Avg4 provides the average over 2 elements of BBPL_Avg2.
BBPL_Avg4 = BBPL_Avg2(1:len_BBPL-1) + BBPL_Avg2(2:len_BBPL);
BBPL_Avg4 = [BBPL_Avg4(1) BBPL_Avg4];
% BBPL_Avg8 provides the average over 2 elements of BBPL_Avg4.
BBPL_Avg8 = BBPL_Avg4(1:len_BBPL-1) + BBPL_Avg4(2:len_BBPL);
BBPL_Avg8 = [BBPL_Avg8(1) BBPL_Avg8];
Avg8_Output = zeros(1, length(BaseBandPulse));
Avg8_Output(BaseBandIndices) = BBPL_Avg8;

% A threshold value was approximated between the low and high values on the
% plot.
Avg_Threshold = 30;
% CounterPulseInfo does not maintain the spacing of the pulses, so the
% array needs to be spaces properly again. A new array needs to be created
% that is the correct size. BaseBandPulse is the correct size.
Avg_Output = zeros(1, length(BaseBandPulse)); %CounterPulseInfo;
% The elements at the Indices of BaseBandIndices will be repalces with the
% elments of BBPL_Avg8. (BaseBandIndices and BBPL_Avg8 must be equal sizes)
Avg_Output(BaseBandIndices) = BBPL_Avg8;
% ReplaceZeros replaces all the zeros in the array with the value of the
% element before it. That operation is repeated until no zeros remain.
% Avg_Output_NoZeros can be used to plot the averaged Counter value.
[Avg_Output_NoZeros] = ReplaceZeros(Avg_Output);
% Counter_FinalOutput provides a binary output using the Avg_Threshold as
% the value to determine what a 1 and 0 is.
Counter_FinalOutput = (Avg_Output_NoZeros > Avg_Threshold)*...
 max(Avg_Output_NoZeros);
% x values for plots
BaseBandPulse_x = (NumBits/length(BaseBandPulse)) : ...
 (NumBits/length(BaseBandPulse)):NumBits;
BBPL_x = (NumBits/length(BBPL_Avg2)):(NumBits/length(BBPL_Avg2)):NumBits;

% Plot-able:
% Averaged Counter Output array: plot(BaseBandPulse_x, CounterFinalOutput)
% Times for Bit decisions:

60

%% Find Bit Decision Times
% There is an offset at the beginning, so the decision times cannot be
% set purely on Tb because the start time of the actual data will vary.
% The edge of the first pulse will be detected and the bit decision times
% will be set from that edge. The size of the offset can vary, so an extra
% sample time will be generated. It will be cutoff later if it is not
% needed.
BitDecisionTimes = (EdgeIndices(1)+SamplesPerBit/2) : SamplesPerBit : ...
 SamplesPerBit*(NumBits+1);
% There are two bits that are both zeros before the first pulse made by a
% 1, so two samples that match the times of the preceeding zeros.
Bit_InitialZeroTimes = [(BitDecisionTimes(1)-SamplesPerBit*2)...
 (BitDecisionTimes(1)-SamplesPerBit*1)];
% Zero times are added to the front of the BitDecisionTimes
BitDecisionTimes = [Bit_InitialZeroTimes BitDecisionTimes];
% Only first 24 Decision times are used since there are 24 input data bits.
BitDecisionTimes = BitDecisionTimes(1:24);
% If the last BitTime goes past the alloted time, set it equal to a value
% near the end. (Not sure if this problem is fixed anyway)
if(BitDecisionTimes(24) > length(Bit_Stream))
 BitDecisionTimes(24) = length(Bit_Stream)-5;
end

%% Find Counter Bit Decision Times %%

% Scale BitDecisionTimes from times that match Bit_Stream_Original to times
% that match Counter_FinalOutput.
% BitDecisionTimes has 3840 long because it comes from Frame_Sync and
% Counter_FinalOutput is 1824 long because it is the result of
% undersampling, so the samples times for Counter_FinalOutput need to be
% scaled from 3840(max) to 1824(max).
ScaledBitDecisionTimes = round(BitDecisionTimes/length(Bit_Stream_x)*...
 length(Counter_FinalOutput));

% The values of Counter_FinalOutput at the indices of
% ScaledBitDecisionTimes are used as the final demodulated outputs from the
% Counter demodulator.
CounterBits_Out = Counter_FinalOutput(ScaledBitDecisionTimes)/...
 max(Counter_FinalOutput);

%% Test One-shot %%
% Start with BaseBandPulse but some of the counter arrays can be reused,
% edge locations and edge
% BaseBandRisingEdges will be used.
% [OneShot_Avg] = MovingSum(BaseBandRisingEdges, 10);
[OneShot_Avg] = MovingSum(BaseBandAllEdges, 10);
[OneShot_Avg2] = MovingSum(OneShot_Avg, 10);
OneShot_Threshold = 75;
OneShot_Out = OneShot_Avg2 < OneShot_Threshold;
OneShotBits_Out = OneShot_Out(ScaledBitDecisionTimes);

%% Test PFD

61

% Reference frequency will be 25kHz, half way between the baseband BRSK
% frequencies, 15kHz and 35kHz. The program has 76 samples per Tb though
% there should be 75. The timing of 25kHz makes it so there should be one
% cycle every 3 MATLAB samples, so [1 0 0] will be repeated 608 times to
% match the length of BaseBandPulse and create a reference frequency array
% that can be used as an input to the PFD.

f_ref_period = [1 0 0];
f_ref_repetition = floor(length(BaseBandPulse)/length(f_ref_period));
f_ref = repmat(f_ref_period, 1, f_ref_repetition);
diff = length(BaseBandPulse) - length(f_ref);
if(diff > 0)
 f_ref = [f_ref zeros(1,diff)];
end

PFD_Threshold = 2;
[Up, Down, Reset] = PFD_Sim(f_ref, BaseBandPulse);
[Up_Avg10] = MovingSum(Up, 10);
[Down_Avg10] = MovingSum(Down, 10);
PFD_Out = (Up_Avg10-Down_Avg10) > PFD_Threshold;
PFD_Bits_Out = PFD_Out(ScaledBitDecisionTimes);

%% Test PFD w/ proprocessor
% redo some operations for BaseBandPulse (now BaseBandClean)
[Up_c, Down_c, Reset_c] = PFD_Sim(f_ref, BaseBandClean);
[Up_c_Avg10] = MovingSum(Up_c, 10);
[Down_c_Avg10] = MovingSum(Down_c, 10);
PFD_c_Out = (Up_c_Avg10-Down_c_Avg10) > PFD_Threshold;
PFD_c_Bits_Out = PFD_c_Out(ScaledBitDecisionTimes);

%% Analysis %%%
% Need to record the error info and the output info for the demod with and
% without the averaging. Error info should include each of the parameters
% just in case that data could be useful.
% Input error percentage, number of errors in demodulated output, durations
% of each error?, placement of each error? Percent error for sure...
OriginalBits = Bit_Stream_Original(BitDecisionTimes);

% Find the errors added in the signal at bit decision times
BitStreamBits = Bit_Stream(BitDecisionTimes);

% Calculate Error %%%
CounterErrorNum = sum(xor(OriginalBits, CounterBits_Out));
OneShotErrorNum = sum(xor(OriginalBits, OneShotBits_Out));
PFDErrorNum = sum(xor(OriginalBits, PFD_Bits_Out));
PFD_c_ErrorNum = sum(xor(OriginalBits, PFD_c_Bits_Out));
TotalErrorNum = sum(xor(OriginalBits, BitStreamBits));

%% Display Values
if(display_vals == 1)
 display(Error_percent);
 % display(Impulse_noise_freq);
 display(CounterErrorNum);
 display(OneShotErrorNum);
 display(PFDErrorNum);

62

 display(PFD_c_ErrorNum);
 display(TotalErrorNum);

end

%% Save Variables %%%
% FileName = 'D:\Google Drive\1A_Thesis\MATLAB_Files\DemodErrorData_2.mat';
ErrorPercentAll = [ErrorPercentAll Error_percent];
CounterErrorNumAll = [CounterErrorNumAll CounterErrorNum];
OneShotErrorNumAll = [OneShotErrorNumAll OneShotErrorNum];
PFDErrorNumAll = [PFDErrorNumAll PFDErrorNum];
PFD_c_ErrorNumAll = [PFD_c_ErrorNumAll PFD_c_ErrorNum];
TotalErrorNumAll = [TotalErrorNumAll TotalErrorNum];

save(FileName, 'ErrorPercentAll', 'TotalErrorNumAll',

'CounterErrorNumAll',...
 'OneShotErrorNumAll', 'PFDErrorNumAll', 'PFD_c_ErrorNumAll');

%% Plots
%% Use the stair function for any plots in the paper **********************

if(plot_error == 1)
% plot error stream, bit stream, and bit stream with errors
 figure(1); clf; hold on;
 plot(Bit_Stream_x, Bit_Stream, 'b');
 plot(Bit_Stream_x, Bit_Stream_Original+1.1, 'r');
 plot(Bit_Stream_x, error_stream + 2.2);
 plot_len1 = length(Bit_Stream);
 plot(BitDecisionTimes/length(Bit_Stream_x)*24, ...
 ones(1, length(BitDecisionTimes)), 'rx');
 axis([0 NumBits -0.1 3.3]);

% plot baseband BFSK
 figure(3); clf; hold on;
 plot(BaseBandPulse_x, BaseBandPulse + 1.1, 'b');
 plot(Bit_Stream_x, Bit_Stream, 'b')
 plot_len3 = length(BaseBandPulse);
 axis([0 NumBits -0.1 2.2]);

% plot Counter
 figure(4); clf; hold on;

 subplot(5,1,1); hold on;
 plot(BBPL_x, BaseBandPulseLengths);
 axis([0 NumBits -0.1 max(BaseBandPulseLengths+1)]);

 subplot(5,1,2); hold on
 plot(BBPL_x, BBPL_Avg2);
 axis([0 NumBits -0.1 max(BBPL_Avg2+1)]);

 subplot(5,1,3); hold on
 plot(BBPL_x, BBPL_Avg4);
 axis([0 NumBits -0.1 max(BBPL_Avg4+1)]);

 subplot(5,1,4); hold on

63

 plot(BaseBandPulse_x, Avg8_Output);
 axis([0 NumBits -0.1 max(BBPL_Avg8+1)]);

 subplot(5,1,5); hold on
 plot(BaseBandPulse_x, Avg_Output);
 plot(BaseBandPulse_x, Avg_Output_NoZeros, 'g--');
 plot(BaseBandPulse_x, Counter_FinalOutput, 'r');
 plot(BitDecisionTimes/length(Bit_Stream_x)*24, ...
 ones(1, length(BitDecisionTimes))*max(Counter_FinalOutput), 'ro');
 axis([0 NumBits -0.1 max(Avg_Output+2.1)]);

% plot Counter Outline
 figure(6); clf; hold on;
 plot(BaseBandPulse_x, CounterPulseInfo, 'b');
 plot(BaseBandPulse_x, CounterPlotArray, 'r');
 plot(BitDecisionTimes/length(Bit_Stream_x)*24,...
 ones(1, length(BitDecisionTimes))*max(CounterPlotArray), 'gx');
 axis([0 NumBits -0.1 (max(CounterPlotArray) + 1)]);

% plot One-Shot
 figure(7); clf; hold on;
 subplot(2,1,1);
 plot(BaseBandPulse_x, OneShot_Avg2, 'b');
 axis([0 NumBits (min(OneShot_Avg2) - 1) (max(OneShot_Avg2) + 1)]);
 subplot(2,1,2); hold on;
 plot(BaseBandPulse_x, OneShot_Out, 'b');
 plot(BitDecisionTimes/length(Bit_Stream_x)*24,...
 ones(1, length(BitDecisionTimes)), 'gx');
% plot(OneShotBits_Out
 axis([0 NumBits -0.1 1.1]);

% plot PFD
 figure(8); clf; hold on;
 subplot(3,1,1); hold on;
 plot(BaseBandPulse_x, Up_Avg10 + (max(Down_Avg10)+1.1));
 plot(BaseBandPulse_x, Down_Avg10);
 axis([0 NumBits -0.1 2*(max(Down_Avg10)+1.1)]);
 subplot(3,1,2); hold on;
 plot(BaseBandPulse_x, Up_Avg10-Down_Avg10);
 axis([0 NumBits -1*(max(Down_Avg10)+1.1) (max(Down_Avg10)+1.1)]);
 subplot(3,1,3); hold on;
 plot(BaseBandPulse_x, PFD_Out, 'b');
 plot(BitDecisionTimes/length(Bit_Stream_x)*24,...
 ones(1, length(BitDecisionTimes)), 'gx');
 axis([0 NumBits -0.1 1.1]);

% plot PFD w/preprocessing
 figure(9); clf; hold on;
 plot(BaseBandPulse_x, BaseBandPulse + 2.2, 'b');
 plot(BaseBandPulse_x, BaseBandClean + 1.1, 'b');
 plot(Bit_Stream_x, Bit_Stream, 'b')
 plot_len3 = length(BaseBandPulse);
 axis([0 NumBits -0.1 3.3]);

 figure(10); clf; hold on;
 subplot(3,1,1); hold on;

64

 plot(BaseBandPulse_x, Up_c_Avg10 + (max(Down_c_Avg10)+1.1));
 plot(BaseBandPulse_x, Down_c_Avg10);
 axis([0 NumBits -0.1 2*(max(Down_c_Avg10)+1.1)]);
 subplot(3,1,2); hold on;
 plot(BaseBandPulse_x, Up_c_Avg10-Down_c_Avg10);
 axis([0 NumBits -1*(max(Down_c_Avg10)+1.1) (max(Down_c_Avg10)+1.1)]);
 subplot(3,1,3); hold on;
 plot(BaseBandPulse_x, PFD_c_Out, 'b');
 plot(BitDecisionTimes/length(Bit_Stream_x)*24,...
 ones(1, length(BitDecisionTimes)), 'gx');
 axis([0 NumBits -0.1 1.1]);

end

% End Function

End

 Supporting Modules

 Error Generation

function [Error_percent, Impulse_noise_freq , error_stream, Bit_Stream,

Bit_Stream_Original] = Frame_Sync_Sim_BitInput()

%Charles Carlson
%System to simulate Correlation Frame Sync Performance
%Oct 7th 2014
%Updated on October 28th, to have impulse noise only effect SW
% clear all
%
% ** This version of the code was adapted to fit the needs for Riley
% Harrington's FSK demodulator error testing. **

% Comments were added and some unneeded code was removed by Harrington

% for this version.
%%
%System Parameters
Oversampling_ratio = 16; % 16 Samples per bit
DataRate = 20000; % Datarate = 20k
BitTime = 1/DataRate; % BitTime = 50us
SamplingRate = Oversampling_ratio*DataRate; % fs = 320k
SampleTime = 1/SamplingRate; % Ts = 3.125us
TotalBits = 24; % 24 Bits in each frame sent
TotalTime = (TotalBits*BitTime); % 24*50us = 1.2ms
DataPoints = TotalTime/SampleTime; % 1.2ms/3.125us = 384
SNR_dB = 0; % Only variable use is commented out
Resolution = 10; % number of Matlab points per sample
% Number of MATLAB samples per bit = Oversampling_ratio*Resolution = 160
% Min lenght of an "error" is the size of Resolution, 10.
Max_Impulses = 5; % max number of noise impulses
%%
%Number of simulations
run = 1; % Number of runs per simulation

65

Sync_array = zeros(1,run); % Used to record if noisy data synced correctly
False_Sync_array = zeros(1,run); % Used to record if data synced when it

shouldn't have

%% For Loop executes code to simulate each "run"
for run_index = 1:run
 Synchronization = 0; %Indicates if received frame has synced
 False_sync = 0; %Indicates if frame synched at incorrect time

 %Need Bit Stream to start at random time, can range from 0 to Bit_Time
 %Finds random time to to start bit stream, so stream will not
 %necessarily start at the beginning of the simulated bit time. BitTime
 %is 50us, so the stream will start between 0us and 50us
 data_start = rand(1)*BitTime;
 %The start time needs to be coerced to the nearest resolution
 %available. For initial to get set properly, the start time
 %(data_start) would need to be divided by the SampleTime.
 %To account for resolution, the result needs to be muliplied by the
 %resolution (10).
 initial = round(data_start/SampleTime * Resolution);
 %Matlab is 1 indexed and the line above has the possibility of being a
 %zero, so increase value by one
 initial = initial+1;

 %Setup time and data vectors
 %Initialize vector to fit size of Matlab bits needed
 Bit_Stream = zeros(1,Resolution*DataPoints);
 i = 1;
 k = 1;
 % generate random vector that will be used for testing on this run
 r_v = round(rand(1,8));
 %8 zero bits added on front

 %% Frame Options

 % Demods will be tested with Ethernet frame, so others frames were
 % removed (saved at bottom of file)
 % demods could just use a totally random vector as long as the input
 % and output are known and compared.

 %Ethernet 10101011
 % Changing 8th bit to always be the same as 7th bit.
 % With the shifting that happens, the 8th bit can be too narrow to
 % effectivly detect which throws off the error check.
 r_v(8) = r_v(7);

 Frame_bits = [0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 r_v(1) r_v(2) r_v(3)...
 r_v(4) r_v(5) r_v(6) r_v(7) r_v(8)];

 Initial_Frame_bits = Frame_bits;
 %Initial_Frame_bits = [0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0];

%used for correlation
 %random_bits = round(rand(1,TotalBits-16));

66

 %% Section for adding noise
 %%
 %Section for adding noise
 %Add either impulse noise or gaussian, channel noise based on BFSK

 %probability of bit error for BFSK
% SNR = 10.^(SNR_dB./10);
% Pe = 0.5*erfc(sqrt(SNR./2));
% %only effect frame word
% for t = 9:16
% r = rand(1);
% if(r < Pe)
% Frame_bits(t) = -1*Frame_bits(t)+1;
% end
% end
 %%%%%%%%%%%%%%Impulse noise section
 % Determine (randomly) how many pulses will be generated. Up to
 % Max_Impulses (5)
 Impulse_noise_freq = round(rand(1)*Max_Impulses); %How many
 % Determine (randomly) how long each pulse will be. Up to a full
 % BitTime (50us -> 16 samples per bit -> 160 Matlab bits)
 Impulse_noise_duration = rand(1, Impulse_noise_freq)*BitTime; %How long

is each one
 % Determine (randomly) where the noise will occur
 % The random position is multiplied by (TotalTime-8*BitTime) because
 % the first 8 bits in the frame are all zeros. The sync doesn't start
 % until the next 8 bits, so the result is also offset by 8 BitTimes so
 % the noise occurs in places where it means something.
 Impulse_occurance = rand(1,Impulse_noise_freq)*(TotalTime-8*BitTime) +

8*BitTime; %Where do they occur within SW
% Impulse_occurance = rand(1,Impulse_noise_freq)*(TotalTime-4*BitTime) +

4*BitTime;

 % Need to start and end the noise on an actual bit time, so this
 % coerces the data to use the bit times nearest the random values.
 % Each element needs to be rounded so matrix multiply is used here
 % though I'm not sure it needs to be since the vector is being
 % divided by a scalar.
 Bit_Stream_occurance_index =

round(Impulse_occurance./(SampleTime/Resolution));

 % in case the index computed is 0, change to 1 (because Matlab is
 % 1-indexed. A zero here would cause an error
 Bit_Stream_occurance_index(Bit_Stream_occurance_index == 0) = 1;
 % As with other places, round this so it starts/ends on a bit time
 Bit_Stream_length_index =

round(Impulse_noise_duration./(SampleTime/Resolution));

 %% Check if noise impulse(s) will go past the end of the data.
 % If so, move it back, so it occurs at the very end
 % For each noise impulse
 % if the end point of the noise is past the end of the data
 % move the noise back so that it occurs on the end of the last bit
 % end
 % end
 for t = 1:Impulse_noise_freq

67

 if(Bit_Stream_occurance_index(t)+Bit_Stream_length_index(t) >

Resolution*DataPoints)
 Bit_Stream_length_index(t) = Resolution*DataPoints -

Bit_Stream_occurance_index(t);
 end
 end

 %%
 %%
 % Stop variables are used to find the stop bits in the sync frame
 % ^ I think??
 stop1 = 0;
 stop2 = 0;

 %Setup Bit Stream
 % data start is close to starting at zero, so the end needs to happen
 % at Time minus 1
 % some of this could likely be done without loops
 for Time_array = data_start:(SampleTime/Resolution):(TotalTime-

SampleTime/Resolution)
 % if the array isn't past all the sync bits and into the actual
 % data, set Bit_Stream to the initial bit (zero).
 if(Time_array < (BitTime+data_start))
 Bit_Stream(initial+i) = Frame_bits(1);
 end

 % Does this run for the last bit?
 for k = 1:TotalBits-1
 if(k < 24) % 24 could be replaced w/TotalBits variable?
 % There are only 24 frame bits and that's hard coded, so I
 % don't know what this does?
 if(Time_array >= k*BitTime+data_start)
 Bit_Stream(initial+i) = Frame_bits(k+1);
 end
 end
 end
 %%%
 %for testing results
 if(Time_array >= 15*BitTime+data_start && stop1 == 0)
 Correct_sync_start = (initial+i);
 stop1 = 1;
 end
 if(Time_array >= 16*BitTime+data_start && stop2 == 0)
 Correct_sync_stop = (initial+i);
 stop2 = 1;
 end
 %%%
 i = i + 1;
 end
 Bit_Stream = Bit_Stream(1:Resolution*DataPoints);
 Time_array = 0:(SampleTime/Resolution):(TotalTime-

(SampleTime/Resolution));
 %%
 %Add impulse noise
 % adding a variable to save wavefrom w/o impulse noise
 Bit_Stream_Original = Bit_Stream;

68

 for t = 1:Impulse_noise_freq

Bit_Stream(Bit_Stream_occurance_index(t):Bit_Stream_occurance_index(t)+Bit_St

ream_length_index(t)) =...
 -

1*Bit_Stream(Bit_Stream_occurance_index(t):Bit_Stream_occurance_index(t)+Bit_

Stream_length_index(t))+1;
 end

 % Sometimes the last bit in the array would be different for no good
 % reason, so this will set the last bit equal to the 2nd to last bit
 Bit_Stream_Original(length(Bit_Stream_Original)-1) =

Bit_Stream_Original(length(Bit_Stream_Original)-1);
 Bit_Stream(length(Bit_Stream_Original)) =

Bit_Stream(length(Bit_Stream_Original)-1);

end
Failed_Sync_count = sum(Sync_array(1,:) == 0);
False_Sync_count = sum(False_Sync_array);

%% Changed code
 %Changed line below to line above, so it made more sense to me
 %initial = round(data_start/(SampleTime/Resolution));
%%

error_stream = xor(Bit_Stream, Bit_Stream_Original);
%display(Impulse_noise_freq);
% Multiply by 2/3 because the error only occurs on the last 16 bits, and
% never on the first 8 bits.
Error_percent = sum(error_stream)/length(error_stream)*(2/3);

end

 Find Edges

function [AllEdges, Rising, Falling] = FindEdges(Waveform)
%% FindEdges Summary of this function goes here

% Find Edges
Full = [Waveform 0] - [0 Waveform];
% Find Rising Edges
Rising = Full(1:(length(Full)-1)) > 0;
% Find Falling Edges
Falling = Full(1:(length(Full)-1)) < 0;

%AllEdges = AllEdges(1:length(AllEdges)-1);
AllEdges = Rising | Falling;

end

69

 Subsampling

function [Samples_out, W, R] = UnderSample(f_in, f_s)
%%
% Riley Harrington
% Kansas State University

% If the input is constant for a period of time and the first sample is
% acquired to give the first value (initial condition?), then the rest of
% the sample values should be easy to simulate

%% Test Values; Comment out when using file as function
% f_s = 75e3; %75kHz % Sample Frequency
% f_in = 10.71e6; % Input Frequency

T_s = 1/f_s; % Sample Period
T_in = 1/f_in; % Input Period
DataPeriod = 1e-3; %0.1ms

%% Pattern Info
W = floor(f_in/f_s);
R = mod((f_in/f_s), 1);

SampleTimes = 0:T_s:DataPeriod;
Samples = R:R:(length(SampleTimes)*R);
Samples_R = mod(Samples, 1);
IntStep1 = Samples_R>0.999;
Samples_R_OnesRemoved = abs(Samples_R - IntStep1);
Samples_R_OnesRemoved_Rounded = round(Samples_R_OnesRemoved);
Samples_out = Samples_R_OnesRemoved_Rounded;

 Replace Zeros

function [OutputArray] = ReplaceZeros(InputArray)
%%
% Riley Harrington
% Kansas State University
%%

% InputArray = [1 0 0 0 0 0 0 0 5 0 0 0 1 2 0 0 0 7 0 3 3 3 0 0 1 0 0];
IntArray = InputArray;

ArrayZerosIndices = find(IntArray < 0.1);
ArrayZerosRemaining = length(ArrayZerosIndices);

while(ArrayZerosRemaining > 0)
 IntArray(ArrayZerosIndices) = IntArray(ArrayZerosIndices - 1);

 % Update Loop Index
 ArrayZerosIndices = find(IntArray < 0.1);
 ArrayZerosRemaining = length(ArrayZerosIndices);

70

end

OutputArray = IntArray;

end

 Repeat Elements

function [NewArray] = RepeatElements(Array, N)
%%
% Riley Harrington
% Kansas State University
%%

% Test Inputs
% Array = [1 2 3 4 5];
% N = 4;
% to repear whole array, used b = repmat(Array, 1, N);

b = repmat(Array, N, 1);
NewArray = reshape(b, 1, length(Array)*N);
end

 Averaging Filter

function [OutputArray] = MovingSum(InputArray, N)
%%
% Riley Harrington
% Kansas State University
%%
% Function description
%%

%% Test Inputs
% InputArray = [1 1 0 0 1 0 1 0 1 3 1 0];
% N = 4;
%%

TempArray = InputArray;
for ii = 1:N
 [TempArray] = MoveSum(InputArray, TempArray, ii);

end
% [OutputArray] = MoveSum(InputArray);
OutputArray = TempArray;

end

function [OutputArray] = MoveSum(InputArray, TempArray, N)

% Check Array length

71

if(length(InputArray) <= N)
 OutputArray = [];
else
 NewArray = InputArray(1 : length(InputArray) - N) + ...
 TempArray((1+N) : length(TempArray));
 % Add the first element to the front, so the Input and Output arrays
 % have the same length.
 OutputArray = [NewArray(1:N) NewArray];
end
end

