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ABSTRACT

Remote sensing offers a potential alternative to tedious
hand sampling as a means of monitoring vegetation condition and
estimating productivity over large areas of grasslands.

Spectral reflectance measurements were made on a tallgrass
prairie (Konza Prairie) near Manhattan, Kansas during 1983 and
1984 with two multiband radiometers (Barnes MMR and Ezotech model
100- A). Measurements were made on a weekly basis depending on
the weather. Two treatments were examined: one prairie treatment
was burned in the spring and the other was left unburned with the
previous year's senescent grasses covering the soil. Green leaf
area index and dry matter accumulations (green above ground
phytomass) were measured on the area monitored by the radiometer.
Three indices: near- infrared to red ratio (NIR/RED), greenness
(GN), and normalized difference (ND) were computed from spectral
reflectance data.

Reflectance index values calculated from 1983 data were used
to develop regression models with LAI and green phytomass. The
NIR/RED gave the best results for both parameters when these
models were tested on 1984 data. Measured and estimated values
were found to be signif igantly different for LAI, but not for
green phytomass.

Leaf area index and green phytomass were also estimated
from models utilizing canopy interception of photosynthetically
active radiation as estimated from 1984 NIR/RED. When tested on
1983 data estimated and measured values for both LAI and green
phytomass were not signif igantly different. Since this approach
is based on physical attributes of canopy structure (for LAI) and
energy absorption (for phytomass), its application should extend
to different sites and years.



Figure 1. Reflectance, transmittance, and absorptance of

radiation by a typical healthy green leaf; adapted from
Knipling (1970).

Figure 2. Reflectance of wet and dry bare soil, and green and

senescent prairie vegetation, as measured by Barnes MMR

;

from Asrar et al. (1985d).

Figure 3. Relationship between leaf area index and NIR/RED for
different treatment- year combinations for Barnes (A) and
Exotech (B) data.

Figure 4. Leaf area index estimated from 1984 Barnes (A) and
Exotech (B) data is regressed with 1984 measured LAI. Leaf
area index was estimated from the NIR/RED model developed
from 1983 data.

Figure 5. Reflectance ratio NIR/RED as it varies with solar
elevation for days 220, 22 6, and 228 in 1984. Error bars
are one standard deviation from the mean.

Figure 6. Relationship between PAR interception and NIR/RED
developed from 1983 and 1984 data from Barnes (A) and
Exotech (B) radiometers.

Figure 7. Leaf area index estimated indirectly using NIR/RED
reflectance data to estimate PAR interception (Barnes (A)

and Exotech (B) radiometer data).

Figure 8. Seasonal trend in measured and indirectly estimated
phytomass for 1983 data.

Figure 9. Relationship between green phytomass and NIR/RED for
the different treatment- year combinations for Barnes(A) and
Exotech (B) data.

Figure 10. Green phytomass dry weight as estimated from 1984
reflectance data by a NIR/RED relationship is compared to
measured values for Barnes (A) and Exotech (B) data.

Figure 11. Exponential relationship for cumulative PAR
interception versus accumulated green above-ground phytomass
from 1984 Barnes (A) and Exotech (B) data.

Figure 12. Estimated versus measured dry weight of above-ground
phytomass using 1983 Barnes (A) and Exotech (B) data.

Figure 13. Seasonal trend in measured and estimated phytomass
1983 Barnes and Exotech data.

Figure A1 . Relationship between leaf area index and greenness
for different treatment-year combinations for Barnes (A) and
Exotech (B) data.



Figure A2 . Relationship between leaf area index and normalized
difference for different treatment-year combinations for
Barnes (A) and Exotech (B) data.

Figure A3. Seasonal trend in regression model predictions of LAI
for 1984 data.

Figure A4 . Leaf area index estimated from 1984 Barnes (A) and
Exotech (B) data is regressed with 1984 measured LAI. Leaf
area index was estimated from the greenness model developed
from 1983 data.

Figure A5 . Leaf area index estimated from 1984 Barnes (A) and
Exotech (B) data is regressed with 1984 measured LAI. Leaf
area index was estimated from the normalized difference
model developed from 1983 data.

Figure A6 . Relationship between PAR interception and greenness
developed from 1983 and 1984 data from Barnes (A) and
Exotech (B) radiometers.

Figure A7. Relationship between PAR interception and normalized
difference developed from 1983 and 1984 data from Barnes (A)
and Exotech (B) radiometers.

Figure A8 . Leuf area index estimated indirectly from reflectance
data by first estimating PAR interception from greenness for
both Barnes (A) and Exotech (B) radiometer data.

Figure A9 . Leaf area index estimated indirectly from reflectance
data by first estimating PAR interception from normalized
difference for both Barnes (A) and Exotech (B) radiometer
data.

Figure A10. Relationship between green phytomass and greenness
for the different treatment-year combinations for Barnes(A)
and Exotech (B) data.

Figure A1 1 . Relationship between green phytomass and normalized
difference for the different treatment-year combinations for
Barnes(A) and Exotech ( B) data.

Figure A12. Green phytomass dry weight as estimated from 1984
reflectance data by a greenness relationship is compared to
measured values for Barnes (A) and Exotech (B) data.

Figure A1 3 . Green phytomass dry weight as estimated from 1984
reflectance data by a normalized difference relationship is
compared to measured values for Barnes (A) and Exotech (B)
data.

Figure A1 4. Seasonal trend in regression model predictions of
green phytomass for 1984 data.



Table 1. Regression statistics for LAI vs. the different
reflectance indices for the burned and unburned treatments of
1983 (B83 and U83) and 1 984 (B84 and 084) for both Barnes and
Exotech radiometers.

Table 2. Comparison of regression models of LAI versus each
reflectance index for different treatment- year combinations.

Table 3. A) Equations developed for estimation of LAI from 1983
reflectance data. B) Statistics from regression of measured
vs. estimated LAI for 1984 data.

Table 4. Regression statistics for PAR interception estimated
from GN, ND, and NIR/RED from Barnes and Exotech data
collected in 1984 and 1985.

Table 5. Regression statistics for measured versus estimated
(indirectly) LAI for models where GN, ND, and NIR/RED from
Barnes and Exotech data.

Table 6. Linear regression statistics for estimation of green
phytomass from greenness, normalized difference and NIR/RED
for the burned and unburned treatments for 1983 (B83 and U83)
and 1984 (B84 and U84) .

Table 7. Comparison of regression models of green phytomass
versus each reflectance index for the different treatment-
year combinations.

Table 8. Regression statistics for green phytomass (dependent
variable) versus each reflectance index for all 1983 data.

Table 9. Regression statistics for green phytomass estimated by
each reflectance index (dependent variable) versus measured
green phytomass for 1984 data.
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INTRODUCTION

Remote sensing offers a potential in agriculture for

estimation of crop growth, condition, and yield. Traditional

field methods of hand sampling of vegetation over a given ground

area is time consuming, expensive, and destructive. In the

past spectral reflectance of crop canopies in the visible and

infrared wavebands has been used to calculate reflectance indices

such as normalized difference, greenness, and a ratio of near

infrared to red reflectance. These were related directly to crop

parameters such as leaf area index (LAI) and dry weight of plant

material produced. Although strong relationships were commonly

found they were often inconsistent over different years and

locations.

The objective of this study was to estimate LAI and dry

phytomass of a native tallgrass prairie from spectral data.

Burned and unburned treatments were used to obtain a range of LAI

and phytomass. Mul tispectral reflectance data were collected

over a period of two growing seasons (1983 and 1984).



I. LITERATURE REVIEW

Using remote sensing as a tool in agriculture to estimate

the productivity or condition of a plant canopy depends on our

ability to understand the spectral characteristics of the

components of the canopy and the soil background. The

interaction between incoming radiant energy and the leaves

determines the quantity of incoming radiation that is absorbed,

reflected, and transmitted by the canopy; and hence the potential

for processes such as photosynthesis, ev apotranspiration, and

growth.

A. LEAF REFLECTANCE

Current hypotheses of leaf reflectance arose from the

Willstatter and Stoll theory (1918). Their theory is based on

the assumption that reflectance of visible radiation occurs

within a leaf when light passing through an area of low

refractive index strikes an area of higher refractive index at an

angle of incidence greater than the critical angle for

reflection. Willstatter and Stoll thought this was most likely

to occur in the spongy mesophyll of leaves where many cell-air

interfaces occur. Higher reflectance was observed from the

abaxial side where spongy mesophyll occurred, supporting this

hypothesis.

Mestre (1935) asserted that reflectance from the leaf

surface could occur as well by specular or diffuse reflectance

depending on the glossiness of the cuticle or density of

pubescence on the leaf surface. Upon entry into the leaf the

path length of light was increased because it could not exit



unless it struck the surface at an incidence angle less than the

critical angle. The longer path length would allow more

opportunities for visible light to be absorbed by photopigment

s

(chlorophyll and carotenoids )

.

Dinger (1941) found near infrared radiation was not absorbed

by chlorophyll. Consequently, intact leaves had high reflectance

and transmittance in that spectral region. Sinclair et al

.

(1973) proposed that the microfibrils composing cell walls act as

diffusive reflecting surfaces that obey Lambert's cosine law.

Gausman (1977) using infrared photography of leaf components

showed that stomata, nuclei, cell walls, crystals, and cytoplasm

also contributed to the reflectance of light in the near infrared

(0.7-1.1 um) region.

The characteristic spectral reflectance, transmittance, and

absorptance of light by a green leaf (Fig. 1) is determined by

the pigments, cell structure, cell components, and cell numbers.

The high absorptance in the visible region is due to

photopigments. The reflectance and transmittance are greater in

the middle infrared region due to diffraction by cell components.

Absorptance in the middle infrared region is due to water.

During leaf senescence the infrared reflectance remains constant

as long as the cell structure is intact, but red and blue

reflectance increases as the sensitive photopigments breakdown.

B. CANOPY REFLECTANCE

The reflectance of a plant canopy is similar to that of

individual leaves, but modified by background reflectivity,

canopy structure, shadows, and view angle. Bowers and Hanks

(1965) described the reflectance properties of soils in the
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visible and infrared region and said they were affected by

moisture content, particle size, and organic matter. By

increasing moisture content, soil reflectance decreased and

absorptance increased. Removal of organic matter increased

reflectance, and reflectance was inversely proportional to

particle size. Kanemasu (1974) also found soil reflectance was

sensitive to soil moisture, especially in near infrared

wavelengths. Huete et al. (1984) studied the reflectance

properties of 20 different soil types in relation to plant canopy

development and found the best contrast between spectral

characteristics of soil background and vegetation is provided by

considering individual soils as compared with the combination of

all soils. If the reflectance of the soil and vegetation is

similar at a particular waveband, the relationship between

reflectance and area covered by vegetation will be weak. It

follows (Fig. 2) that red and near infrared are the best

wavebands for estimation of vegetation amount because reflectance

of living vegetation differs most from soil reflectance in these

regions. Tucker and Miller (1977) found experimentally that

wavelengths of 0.68 and 0.75 um showed the greatest soil-dry

green phytomass reflectance contrasts for blue grama grass

(Bouteloua gracilis (H.B. K. ) Lag.)

Besides soil and leaf reflectance, leaf area and

orientation, reflectance of plant components other than leaves,

solar zenith angle, look angle, and solar azimuth angle affect

the canopy reflectance (Colwell, 1974).

The orientation of leaves in space determines the leaf area

projected to a sensor. Leaf orientation is relatively constant
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Figure 2. Reflectance of wet and dry bare soil, and green and
senescent prairie vegetation, as measured by Barnes MMR

;

from Asrar et al. (1985d).
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for a given species but may fluctuate seasonally and diurnally as

a result of disease, stress, or wind movement (Knipling, 1970).

The canopy reflectance may increase in the visible region if

chlorophyll pigments are destroyed. The canopy reflectance is

altered as a result of stress by a change in the leaf area

projected to the sensor. This may occur by loss of leaves,

change in orientation, or reduced growth, and will affect the

near infrared region more than visible in full canopies because

of the greater number or leaf layers required for maximum near

infrared reflectance. Plant components other than leaves such as

stems, branches, or inflorescences may alter canopy reflectance.

Solar zenith angle and azimuth angle affect reflectance by

determining the area and darkness of shadows (Curran, 1980). The

minimum shadow area occurs at solar noon when sun is at its

highest elevation. Reflectance from areas in shadow were

described by Richardson et al. ( 1975) as intermediate between

soil and vegetation. As the sensor look angle deviates from

nadir the relative proportion of soil visible decreases. Azimuth

angle may affect the amount of shadow independently from the

zenith angle especially before complete canopy closure in row

crops when the direct solar radiation is parallel or

perpendicular to row direction.

Given that soil is neither too bright or dark, leaves are

mostly green, reflectance of non-leaf plant parts is minimal, and

spectral readings are taken consistently near solar noon on clear

days from a nadir view angle, changes in the canopy reflectance

should be proportional to the vegetation density (Curran, 1980).
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C. ESTIMATION OF VEQ STATION DENSITY

Leaf area index (LAI), the ratio of leaf area to ground area

is commonly used to measure vegetation density. Estimation of

LAI by remote means has been the goal of many studies because

conventional hand sampling and physical measurement of LAI is

time consuming and expensive. Most of these studies have relied

on reflectance in the red and infrared wavebands.

Colwell (1974) and Holben et al. (1980) found a negative

correlation between LAI and red reflectance until the canopy

coverage is complete, after which further increases in LAI affect

red reflectance very little, while near infrared reflectance was

still sensitive to increases in vegetation. Tucker (1977)

studying blue grama canopies also found reflectance in regions of

strong pigment absorption to be asymptotic at much lower

vegetation levels than the near infrared region where absorption

is a minimum because of the transparency of leaves at that

spectral region.

If LAI could be estimated remotely and used as an input in

evapotranspiration and photosynthesis models, their application

could be extended for large land areas. Using LANDSAT

Multispectral Scanner (MSS) data to calculate the perpendicular

vegetation index (PVI), transformed vegetation index (TVI), and

greenness vegetation index (GVI), Wiegand et al . (1979) concluded

reflectance of wheat ( Triticum aestivum L. ) was related to and

could be "calibrated" to provide LAI estimates. Pollock and

Kanemasu (1979) developed an empirical model to estimate LAI of

wheat in three Kansas counties from LANDSAT MSS data (R2 =0.69).

This model had separate equations for LAI values below and above
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0.5 units indicating the relationship changes over time in a

given season. Kimes et al. (1981) showed that NIR/RED was

highly correlated with the green leaf area index. Chance (1981)

stated that he could calculate LAI to within 0.66 units from a

prior knowledge of soil reflectance and full crop canopy

reflectance using a canopy reflectance model. Kollenkark et al.

(1982) found that greenness and LAI were strongly related;

however, they showed an even stronger relationship between soil

cover and greenness for soybeans ( Glycine max L. ) . They also

showed that greenness reached a maximum, although LAI continued

to increase suggesting that at upper LAI values greenness may be

saturating. Wallburg et al. (1982) found that LAI in corn ( Zea

mays L. ) could be estimated with a near infrared to red ratio.

In a two year study, Daughtry et al. (1983) found for different

planting dates, populations, and soil types of corn that

greenness was associated with 76% of the variation of LAI.

Hatfield et al. (1985) found for various planting dates of wheat

the seasonal pattern of greenness did not always follow that of

LAI. The NIR/RED reflectance and LAI relationship was found to

be more stable over all planting dates. Above-ground

phytomass per unit area has also been used as a measure of canopy

density. In some applications, especially grassland, phytomass

productivity is the parameter of interest to determine stocking

rates of grazing animals. Dry weight of green phytomass of wheat

has been related to LAI (Aase, 1978) and may therefore be used to

estimate LAI. Richardson et al. (1983) used the near infrared to

red ratio (Thematic Mapper wavebands) to estimate above-ground
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phytomass of Alicia grass ( Cynodon sdp. ) rangeland at different

fertility levels (R2 =0.61) in Texas. Boutton and Tieszen (1983)

also used a near infrared to red ratio (0.800 /0 ,675um) to predict

green phytomass of grassland at the Masai Mara Game Reserve,

Kenya (R2 =0.70); however, the relationship did not work if less

than 30$ of the vegetation was live. Weiser et al. (1984) found

senescent vegetation of unburned tallgrass prairie in Kansas

interfered with spectral estimation of LAI and phytomass.

In summary, these studies indicated that direct estimates of

LAI and phytomass from spectral data were site and data set

dependent, and separate relationships before and after maximum

growth were often found.

D. USING PAR INTERCEPTION TO ESTIMATE CANOPT DENSITY

Interception of phot osynthetically active radiation (IPAR)

and spectral reflectance indices have been shown to be

correlated. Fuchs et al. (1984) used IPAR data measured in three

wheat cultivars at different seeding rates to indirectly

determine LAI. The exponential relationship between light

penetration and LAI (Monsi 4 Saeki, 1953) as affected by the leaf

angle distribution was used to estimate LAI for various leaf

angle distributions. In wheat, average leaf inclinations of 60°

and 75°, and spherical distribution were acceptable for LAI

estimation that was within 0.7 units of the measured LAI for a

range from 1.5 to 5.0 units. Asrar et al . (1984a, 1985a) found

normalized difference to correlate well with fractional PAR

interception in wheat canopies up to an LAI of 6.0. Thus, this

indirect technique by Fuchs et al. (1984) was used to estimate
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LAI from spectrally estimated IPAR. In a similar study of a

tallgrass prairie Asrar et al. ( 1985b) used greenness to estimate

the IPAR and found the spherical leaf distribution adequately

described the canopy for indirect estimation of LAI from

spectrally derived IPAR.

Intercepted PAR has also been used in several studies to

estimate dry phytomass accumulation. Simply stated, dry matter

production is related to; 1) the quantity of incident solar

radiation, 2) fraction of radiation absorbed by foliage, and 3)

the efficiency of the plant stand to convert energy into dry

matter, which may be affected by stage of development or exposure

to stress. Hsiao and Acevedo (1974) found efficiency of

conversion to be relatively insensitive to water stress. Dry

matter yield depends primarily on the ability of a plant to cover

the soil rapidly and intercept as much available energy as

possible. Hodges and Kanemasu (1977) found the photochemical

efficiency of wheat (grams phytomass produced per MJ IPAR) to

change with growth stage with the most efficient conversion from

emergence to jointing. Steven (1981) reported dry matter (DM)

production over time (t) could be estimated from the proportion

(P) of the incident solar radiation (SR) intercepted by a plant

canopy according to the equation,

DM: E«P'SR dt

where E is the photochemical efficiency found to be 1-3 g/MJ for

most crops. Daughtry et al. (1983) using estimates of

accumulated solar radiation accounted for 6 5% of the variation in

yield of corn. They concluded estimation of IPAR was a viable
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approach for merging spectral and meteorological data in crop

yield models. Tucker et al . (1983) following this approach

related the cumulative integrated normalized difference to total

dry matter production from satellite data over a Senegalese

Sahel. Steven et al (1983) used NIR/RED (0 . 78-0 .94um/0 .60-

0.66um) to estimate IPAR in sugarbeets ( Beta vul garis ) and

related IPAR to yield of an independently grown crop (predicted

within 6% of the observed values). Wiegand and Richardson

(1984), using various vegetation indices to estimate fractional

IPAR in sorghum ( Sorghum bicolor L. (Moench).), confirmed that

cumulative interception or vegetation indices would be better

than instantaneous values for estimating yield. Hatfield et al.

( 1984) found normalized difference was signif igantly better than

greenness for estimating IPAR for five planting daces of wheat in

Arizona. Separate equations were used for the growth (R2 =0.974)

and senescence (R2 =0.869) of the crop. Asrar et al . (1984b)

found the fractional interception of PAR radiation in wheat

increased smoothly until anthesis and varied during senescence.

The photochemical efficiency was highest early in the season

decreasing toward maturity. Gallo et al. (1985) found in corn

canopies between planting and silking that greenness, normalized

difference, and NIR/RED were associated with more than 9 5 % of the

variation in IPAR. They also found cumulated IPAR was a better

indicator of yield than cumulated LAI. Asrar et al . (1985c)

found estimates of above-ground phytomass based on cumulated

absolute daily IPAR (estimated from spectral reflectance) and a

stress factor correlated strongly with observed above-ground
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phytomass for a wide range of climate and plant canopy conditions

in wheat. On a larger scale Tucker et al. (1985) using N0AA6 and

N0AA7 advanced very high resolution data from a Senegalese Sahel

over three years found a linear relationship between end of

season total phytomass and normalized difference integrated over

time.
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II. Materials and Methods

A. Site Description

Spectral and growth analysis data were collected in 1983 and

1984 at separate locations on the Konza Prairie Research Natural

Area (KPRNA) located 8 kilometers south of Manhattan, Kansas

(39° 9'N, 96° 40«W). Soil at these two sites is a silty clay

loam classified as a Udic Ustoll (Bidwell and McBee, 1973)

typical of the Flint Hills uplands. The area of study is

unplowed native bluestem prairie dominated by three species of

grass, big bluestem ( Androppgon gerardil Vitman), little bluestem

( Andropoeon scoparius Michx. ), and Indian grass ( Sorghastrum

nutans (L.) Nash). In addition, 36 other species of grasses,

forbs, and small shrubs were identified on the 1983 site in a

vegetation composition study performed on 23 August by L. C.

Hulbert (personal communication). Thirty-nine species were

identified in a similar study on 5 September at the 1984 site in

addition to the three dominant grasses. The large number of

species provide spatial diversity in canopy qualities such as

leaf area, leaf size, leaf shape, and leaf color. In addition,

phytomass density and spatial distribution are more variable than

in monoculture crops.

Climate of the prairie uplands is humid subtropical with

temperature ranges from -35 °C to 47 °C annually. Average

precipitation is 800 mm per year with variable seasonal

distribution resulting in many wet-dry cycles in the normal

growing season of 176 days.

Two treatments were established at both the 1983 and 1984

sites on opposing sides of a fireguard. On one side the
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senescent vegetation from previous years was removed by burning

in the early spring (20 April 1983, 19 April 1984). The prairie

on the other side of the fireguard was left unburned resulting in

a senescent vegetation accumulation that covered the soil

surface. These two areas will be referred to as the burned and

unburned treatments, respectively.

B. DATA ACQUISITION

Spectral reflectance measurements were initiated the week

prior to burning in 1983 and 1984 with a Barnes modular

multispectral radiometer (MMR) model 12-1000 and an Exotech model

100-A radiometer. The Barnes radiometer measured reflected

radiation in three discrete wavelength bands in the visible

(MMR1= 0.45-0.52um, MMR2 = 0.52-0.60um, and MMR3= . 63-0 . 69um) ,

two in the near infrared (MMR4= 0.76-0.90um and MMR5= 1.15-

1.30um), and two in the middle infrared (MMR6= 1.55-1.75um and

MMR7= 2.08-2.35um) wavelength bands. The Exotech radiometer has

two wavelength bands in the visible (MSS4= 0.50-0.60um and MSS5=

0.60-0.70um) and two in the near infrared (MSS6= 0.70-0.80um and

MSS7= 0.80-1.10um) regions. Both radiometers were placed on the

end of a truck-mounted boom in the nadir position 8 m above the

soil surface with a 15° field of view. On near weekly intervals

throughout the growing season at least 20 canopy reflectance

measurements were taken on each treatment transect. Measurement

periods were limited to near midday on clear days. Measurements

were taken alternately over the two treatments and referenced to

a BaSO^ calibration panel every 15-20 minutes. The raw values

were multiplied by calibration factors to provide a canopy
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reflectance factor.

Photosynthetically active radiation (PAR) components were

measured with two quantum sensors (LiCor model LI- 190 S) and a

quantum line sensor (LiCor model LI-1915) during 1984.

Measurements were initiated during mid-morning on each date by

pointing all three sensors upward, leveling them, and sampling

the incoming PAR 10 times for inter calibration of the sensors.

To measure the PAR components the two quantum sensors were

mounted on a tripod assembly and positioned above the canopy.

One sensor faced upward and recorded the total (direct + diffuse)

incoming PAR, the other faced downward and recorded the PAR

reflected from the canopy. The line quantum sensor was placed

underneath the canopy, below the last layer of green leaves, to

measure PAR transmitted through the canopy. All three sensors

were wired into a data acquisition system (Polycorder model 51 6A)

for simultaneous data collection. The PAR-sensor assembly was

placed at three different locations in each treatment transect.

Five sets of measurements were made at each location,

transferring the line quantum sensor to different spots in the

vicinity of the tripod assembly. This sequence of measurements

was repeated until mid-afternoon for both treatments on each day

of data collection.

In 1983, four plant samples, each 0.1 m2 of ground area,

were obtained from three sampling locations established each day

of reflectance measurements on each treatment transect (12

samples per treatment per date). These sites were marked to

avoid resampling. In 1984, one 0.1 m2 plant sample was obtained

from nine sampling locations of each of the two treatment
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transects (9 samples per treatment per date). In the laboratory,

the plant samples were separated Into green grass leaves, green

nongrass leaves, and senescent material. Total green leaf area

of both grass and nongrass species was determined using a LICor

model LI-3100 optical area meter. Wet weights were recorded and

plant sample components were oven dried at 65 °C for 72 hours,

then reweighed. A cubic spline procedure was applied to smooth

these measured values of green leaf area and phytomass components

over time.
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III. RESULTS AND DISCUSSION
A. LAI estimation
1) Direct approach—-regressions

In this study three spectral indices, normalized difference

(ND), the near infrared to red ratio (NIR/RED), and greenness

(GN), calculated from both Barnes and Exotech data were

evaluated. The spectral Indices were calculated as follows,

NDexotech= (MSS7-MSS5 ) / ( MSS7+MSS5

)

[1]

NDbarnes= (MMR4-MMR3 )/ (MMR4+MMR3

)

[2]

NIR/REDexotech= MSS7/MSS5 C33

NIR/RED
barQes= MMR4/MMR3 C *]

GN
exotech= -0.3974MSS4 -0.6849MSS5 +0.256 4MSS6 [5]

+0 .5543MSS7

GNbarnes= -0.0440MMR1 -0.0240MMR2 -0.1747MMR3 +0.7916MMR4 [6]
+0.3875MMR5 -0.2387MMR6 -0.3699MMR7

where MSS4 through MSS7 are the Exotech wavelength bands that

correspond to the LANDSAT Mul tispectr al Scanner channels, and

MMR1 through MMR7 are the Barnes Modular Mul tispectr al Radiometer

wavelength bands. The greenness coefficients were derived from

the 1983 data using a modified principal component analysis (PCA)

as described by Miller et al. (1984). Linear regression

equations were derived between the spectral indices and the

smoothed measured leaf area index (LAI) data for the burned and

unburned treatments in 1983 and 1984.

Ideally the slope and intercept linear regression equations

should be the same for the different years and treatments. To

reliably estimate grassland LAI, a regression equation should
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perform well for a variety of locations, environmental

conditions, times of season, species compositions, management

practices, and other grassland variables. In this study a burned

and an unburned treatment for 1983 (B83 and 083) and 1 984 (B84

and U84) were used to provide some of these elements of

diversity.

The first portion of the analysis is a comparison of the

regression lines for LAI versus each reflectance index from the

different treatment-year combinations. The relationship between

LAI and NIR/RED for the Barnes and Exotech data is shown in

Figure 3. Mean values of LAI and NIR/RED for each day of data

collection during the entire season are presented for both the

burned and unburned treatments for 1983 and 1984. Regression

lines for the individual treatment-year combinations have been

plotted with R2 values (Table 1) ranging from 0.76 to 0.91 for

Barnes and 0.80 to 0.88 for Exotech data; therefore, strong

linear relationships for these individual treatment year

combinations exist.

The "Extra Sum of Squares" principle (Draper and Smith,

1981) was used to test if the regression lines for the different

treatment-year combinations were significantly different (Table

2). A probability level of 0.05 was arbitrarily chosen to decide

whether a set of relationships were different. This probability

level was used for all subsequent statistical tests. If the

probability (p) value for a given comparison is greater than

0.05, it can be concluded that there is no statistically

significant difference between the equations compared. The

highest p-values were obtained for NIR/RED when comparing two



24

2.00-

1.75-

1 .50-

1.25-

1 .00-

0.75-

0.50

0.25-1

0.00

BARNES OATA U84 384

T -r •T*

5 6 7

MIR/RED

U83

10 1 !

2.00-

I .75-

1.50-

I .25

I .00-

0.75^

0.50-

0.25

0.00-

CXOTECH OATA

5 6

NIR/RED

10 1

1

Figure 3. Relationship between leaf area index and NIR/RED for
different treatment- year combinations for Barnes (A) and
Exotech (B) data.
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Table 1. Regression statistics for LAI vs. the different
reflectance indices for the burned and unburned treatments of
1983 (B83 and U83) and 1984 (B84 and 084) for both Barnes and
Exotech radiometers.

BARNES DATA

REGRESSION TREATMENT

LAI VS. NIR/RED B83
08 3

B84
08 4

LAI VS. GN B83
08 3

B84
08 4

LAI VS. ND B83
08 3

B84
08 4

SLOPE INTERCEPT R2 RMSE*

0.15 0.00 .91 0.15
0.14 -0.03 0.81 0.14
0.16 0.19 0.81 0.25
0.21 0.15 .76 .27

4.56 -0.40 0.64 .29
4.02 -0.46 0.77 .16

5.55 -0.25 0.83 0.2 3

6.54 -0.43 0.95 .12

3.04 -1.07 .84 0.19
1.91 -0.47 .82 0.14
2.76 -0.59 .91 .17
2.77 -0.45 0.93 0.14

EXOTECH DATA

LAI VS. NIR/RED B83 0.20 -0.18 0.88 .17
08 3 .17 -0.13 0.83 .13
B8 4 0.20 .0 1 0.84 .22
08 4 0.24 .00 .80 .25

LAI VS. GN B83 7.35 -0.44 .76 0.2 4

083 5.17 -0.22 0.77 .15
B84 9.17 -0.37 .89 .18
084 9.18 -0.21 0.94 0.14

LAI VS. ND B83 3.75 -1.52 .83 0.20
083 1.88 -0.47 0.73 .17
B84 3.62 -1.18 0.92 .16
08 4 3.22 -0.77 0.92 .15

RMSE is the root mean squared error
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Table 2. Comparison of regression models of LAI versus each
reflectance index for different treatment-year combinations.

BARNES DATA EXOTECH DATA

REGRESSION COMPARISON F calc p Value F calc p Value

LAI VS NIR/RD B83 vs. U83 1 .07 0.3523 1.56 .222 4

B84 vs. 084 3.35 .0 437 3.19 .0504
B83 vs. B8 4 8.10 .0010 5.08 .0100
08 3 vs. 08 4 23.77 .0000 21.07 .0000
all trts. 1 1.45 .0000 9.35 .0000
83 vs. 84 26.88 .0000 21 .28 .0000

LAI VS. GN B83 vs. 083 4.08 .0245 4.16 0.0228
B8 4 vs. 08 4 1 .67 0.1989 5.05 .0103
B83 vs. B84 13.81 0.0000 21.26 0.0000
083 vs. 08 4 120.94 .0000 101 .66 .0000
all trts. 25.53 .0000 32.32 0.0000
83 vs. 84 63.93 .0000 75.81 0.0000

LAI VS. ND B83 vs. 083 6.22 .0045 9.63 .0004
B84 vs. 084 5.44 .0076 8.23 .0009
B83 vs. B84 17.09 .0000 1 1.06 ,0001
083 vs. 084 7 1.45 .0000 50.6 9 .0000
all trts. 26.28 .0000 22.13 .0000
83 vs. 84 55.07 .0000 35.32 .0000
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treatments for a particular year. For the 1983 Barnes data the

treatments were not significantly different (p =0.3523), but in

1984 they were (p = 0.0 437). For the Exotech data the regression

lines for the two treatments were not different for either 1983

or 1984 (p=0.2224 and 0.0504, respectively). When regressions

for the burned or the unburned treatments were compared between

1983 and 1984 the p values were much lower (p<0.01) suggesting

the regressions equations were different. When the data for both

treatments were combined and the regressions for the 2 years were

compared, they were also different (p<0.0001). Therefore, the

data indicate year to year differences are greater than treatment

differences for the NIR/RED and leaf area index relationship.

The analysis of greenness and normalized difference (Figures

A1&A2, Table 2) show similar results. The regression lines and

statistics for the Barnes and Exotech data were slightly

different, but were in good agreement and the same conclusions

would be reached using data from either radiometer.

The next step in the analysis was the elucidation of a

regression equation and testing its performance on an independent

set of data. Since the treatment differences were small the

data from the burned and unburned treatments for 1983 were

combined and linear regression equations calculated by least

squares estimates for measured leaf area index (dependent

variable) versus each of GN, ND, and NIR/RED (independent

variable), see Table 3a. The 1984 reflectance data were used to

predict leaf area index from these equations. To test each

equation, measured LAI from 1984 was compared with estimated LAI

and a test (Appendix 1) was performed to see if the estimated
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values differed from the observed values. When NIR/RED was used

to estimate LAI (Fig. 4) the R2 for the relationship was 0.76 for

Barnes and 0.80 for Exotech data showing strong linear

relationships; however, the p values (Table 3b) indicate that

both lines are different than 1:1 lines. The seasonal trend of

this model's performance is shown in Figure A3. Thus the

equation developed from 1983 was not able to accurately estimate

LAI from 1984 data. This confirms our earlier conclusion that

the LAI vs. NIR/RED relationship was different from one year to

the next. For greenness and normalized difference the

relationships are also linear but differ from 1:1 lines (Figures

A4&A5 , Table 3b).

We conclude that the regression equations display site or

data set dependency that limits their usefulness in extrapolating

to different sites or for different years. Factors such as

species composition, stress, canopy geometry, sun angle, zenith

angle, or soil background may affect these relationships.

Differences between the 2 years can be divided into site

differences and growing season differences. The 1983 site was

located on a ridgetop while in 1984 the study was conducted on a

lowland site. The soil depth was different between the ridgetop

and lowland areas. Occasionally, limestone bedrock was exposed

on the ridges. Both burned and unburned treatments were dominated

by grasses, but detailed species composition studies (Tables

A1&A2) indicated that nongrass types not tolerant to burning are

able to invade the unburned areas displacing the grasses and

thereby altering the species composition of the treatments. The
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Table 3.

A) Equations developed for estimation of LAI from 1983
reflectance data.

RADIOMETER ESTIMATION EQUATION R2 RMSE

Barnes LAI= . 1 54*NIR/ RED - 0.04
LAI= 4.56«GN - 0.50
LAI= 2.52*ND - 0.77

Exotech LAI= 0. 1 97*NIR/ RED - 0.19
LAI= 6.60»GN - 0.37
LAI= 2.70»ND - 0.88

B) Statistics from regression of measured vs. estimated LAI for
1984 data.

RADIOMETER INDEX SLOPE

Barnes GN 0.68
ND 0.85
NIR/RED 0.69

Exotech GN 0.67
ND 0.75
NIR/RED 0.77

.89 0.14
0.68 .25
.82 0.19

.88 0.15

.76 .22

.74 .22

INTER-
CEPT R2 RMSE P VAL0E

-0. 16 .89 0.14 .0000
-0.24 .91 .16 .0000
-0.02 .76 0.21 0.0000

-0.12 .90 .13 .0000
-0.07 .90 0.14 .0000
-0.0 4 .80 0.21 0.0004
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average canopy coverage for big bluestem in 1983 was 9 3$ for the

burned and 96$ for the unburned areas, while in 1984 it covered

86$ and 80$ for the burned and unburned treatments, respectively.

Some nongrass species such as western ragweed ( Ambrosia

D3llostachy a) and heath aster ( Aster ericoides ) had less than 10$

cover in all the treatments except the unburned of 1984 where

they covered 25$ and 45$ of the area respectively. Plant traits

such as leaf angle, shape, and pigmentation are largely governed

by genotype. Thus, the species differences between sites could

have affected the spectral reflectance for a given LAI between

the burned and unburned sites. There could also be differences

in the amount of litter between the 2 years.

Growing season differences or climatic variations between

years such as temperature and moisture stress may also affect

the leaf angle (wilting), shape (leaf rolling), or pigmentation

(chlorophyll degradation) since the development of a particular

genotype is modified by its growing environment. Wilting and

leaf rolling especially could reduce the projected leaf area

viewed by a radiometer.

Daily and seasonal changes in solar elevation affect

spectral reflectance of plant canopies (Fig. 5). However, most

reflectance data in this study were collected within 1 or 2 hours

of solar noon and the variability along a transect (one standard

deviation) is greater than the differences in mean reflectance

measurements due to solar angle. Since the vegetation on the

prairie is not planted in rows, but has a non-ordered spatial

arrangement, the "row effect" in spectral reflectance produced in

crops by variations in solar azimuth angle is minimized.
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If soil background differed between years we would expect

the 1983 and 1984 regression lines to converge at maximum LAI

when soil background effects on the spectral reflectance are

minimized. However, the regression lines diverge at high LAI

(Fig. 3). This suggests other factors such as canopy geometry or

a stress affect the LAI-spectral index relationship more

strongly. The reason the relationship between LAI and the

spectral reflectance differed between 1983 and 1984 cannot be

conclusively determined, but different species composition or

stresses are probably responsible for the different spectral

response. Solar elevation, azimuth, and background reflectance

effects probably have a minor role in explaining the year to year

differences.

2) Indireot Approach

Since the direct approach to leaf area index estimation did

not perform well between years, an indirect approach to LAI

estimation was used in which LAI was estimated indirectly with

the use of canopy interception of phatosynthetically active

radiation (IPAR). This method originally used by Asrar et al.

(1984a) to estimate LAI of wheat. Solar angle and canopy

geometry were taken into account. From quantities measured in

the field the interception of PAR was calculated as,

IPAR= (PAR
±

_ PA R r
- PAR

t )/PAR ± [7]

where PAR ±f PAR r , and PAR
fc

are incoming, reflected, and

transmitted PAR, respectively. The amount of PAR reflected from

the soil surface was found to be small and was assumed to be

zero. Monsi and Saeki (1952) defined PAR interception as,
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IPAR= l-e(-K'.LAI) [8]

where K' is the leaf angle shape coefficient. This equation can

be changed to estimate LAI,

LAI= -ln( 1-IPAR)/K» . [9]

In homogeneous canopies with spherical leaf angle distribution,

K' is defined as,

K'= 0.5/cosn [10]

where n is the solar zenith angle. Thus, if the PAR interception

and solar zenith angle are known an estimate of LAI can be

calculated (Asrar et al . , 1984a). Interception has been related

to reflectance indices in previous studies on crops (Steven et.

al. , 1983, Hatfield et. al. , 1984). Linear relationships between

measured PAR interception (Eq. 7) and NIR/RED (Fig. 6), GN

(Figure A6 ) , and ND (Figure A7) were developed (Table 4) from

data collected on the Konza prairie during 1984 and 1985.

Reflectance data from 1983 were then used to calculate estimates

of interception from these relationships. The daily means of

estimated interception and calculated K» (Eq. 10) were used to

estimate LAI (Eq. 9) for the 1983 season. Estimated LAI values

were compared with measured LAI from 1983.

For both Barnes and Exotech data the equation using

greenness (Figure A8 ) to estimate the interception overestimated

leaf area index and was significantly different than a 1:1

relationship (Table 5). When normalized difference was used to
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Table 4. Regression statistics for PAR interception estimated
from GN, ND, and NIR/RED from Barnes and Exotech data
collected in 1984 and 1985.

RADIOMETER INDEX SLOPE
INTER-
CEPT R2 RMSE

Barnes NIR/RED
GN
ND

.0579
2.1503
1.0523

.0654
-0.0885
-0.2538

. 6 50 9

.7876

.6 410

.1396

.10 89

.1416

Exotech NIR/RED
GN
ND

0.0725
3.1319
1.2547

.0066
-0.0577
-0.3 80

.6487
0.7381
.6298

. 1 40 1

.1209

.143 8



37

Table 5. Regression statistics for measured versus estimated
(indirectly) LAI for models where GN, ND, and NIR/RED from
Barnes and Exotech data.

RADIOMETER INDEX E icalc P VALDE

Exotech GN 15.39 .0000
Barnes GN 25.34 .0000
Exotech ND 2.75 0.0131
Barnes ND 2.63 .0167
Exotech NIR/RED 1 .62 0.1393
Barnes NIR/RED 2 .02 .0589
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estimate interception, the relationship between measured and

estimated LAI (Figure A9 ) was improved for both Barnes and

Exotech data. However, both were significantly different than a

1:1 relationship (p=0.0 17 for Barnes and p=0.0 13 for Exotech),

but the p values are substantially greater than those for the

greenness equation. When NIR/RED was used (Fig. 7) the

relationship was improved and was not significantly different

than a 1:1 line. The temporal trend of this model is shown in

Figure 8

.

We conclude that the best results for indirect estimation of

LAI were obtained when NIR/RED was used in the model to estimate

interception. In this case the estimated LAI values were not

different from the measured LAI values. Good agreements (based

on R2 values) were found between measured LAI and that estimated

based on ND and GN, but these relationships were different than

1:1 lines.
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B. PHITOMASS ESTIMATION
1) DIRECT APPROACH REGRESSIONS

Direct estimates of dry weight of above-ground green

phytomass (GP) may be preferred to LAI for some resource

inventory and management activities. Estimates of green

phytomass are also needed for forage availability, primary

productivity, and related studies.

The different treatments and sites studied provide a range

of species compositions, as discussed earlier, as well as

phytomass dry weights through each season. Because the

reflectance indices respond primarily to green plant material,

only data from the early portion of the season (before day of

year 190, July 9) were used because the relationship between a

particular index and green phytomass changes as the photopigment

s

degrade and cell structure changes during senescence, thus

altering the reflectance characteristics of a given phytomass

value. The three reflectance indices (GN, ND, and

NIR/RED) were regressed with green phytomass for each treatment-

year combination. Regressions of NIR/RED with green phytomass

(Fig. 9, Table 6) were calculated for the 1983 and 1984 turned

and unburned treatments. For a given green phytomass value, the

unburned treatment of 1984 (084) had the lowest NIR/RED values

based on the data from both radiometers. The next highest were

obtained on the unburned treatment of 1983 (083). The NIR/RED

response was greater for the burned treatments for both years.

The low NIR/RED values in the unburned treatments indicate the

reflectance characteristics of the green phytomass are different,

possibly due to the litter background. Statistical tests (Table 7)
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Table 6. Linear regression statistics for estimation of green
phytomass from greenness, normalized difference, and NIR/RED
for the burned and unburned treatments for 1983 (B83 and
U83) and 1984 (B84 and 084).

BARNES DATA

COMPARISON TREATMENT SLOPE INTERCEPT R-SQDARE RMSE

PHYTO VS. GN B83
08 3

B8 4

08 4

89.12
92.38
85.73
128.3

-7.559
-10.58
-3.504
-8.055

.8356

.9119

.920 4

.9731

4.44
2.53
3.38
2.05

PHYTO VS. ND B83
08 3

B8 4

08 4

63.22
42.15
42.19
48.59

-28.66
-11.28
-10.87
-6.866

0.6071
.9163
. 7 90 7

.97 46

6.86
2.46
5.48
1 .98

PHYTO VS. NIR/RED B83
083
B84
08 4

2.988
3.40 5

2.85 8

3.881

-5.451
-3.224
-3.669
0.159

.6843
0.9391
.9508
. 9 40 3

6.15
2.11
2.66
3.04

EXOTECH DATA

PHYTO VS. GN

PHYTO VS. ND

PHYTO VS. NIR/RED

B83 138.0 -8.497 .8337 4.46
08 3 1 10.9 -4.126 .8431 3.38
B8 4 139.2 -5.651 0.9138 3.41
08 4 165.5 -2.2 50 0.9731 2.09

B83 71.37 -32.41 0.5971 6.95
08 3 38.07 -8.601 .7334 4.41
B84 56.36 -19.79 .8068 5.09
08 4 4.295 -1.474 .9482 2 .89

B8 3 3.688 -6.584 .6 461 6.51
08 3 3.843 -3.954 .8830 2.92
B84 3.559 -6.235 .9455 2 .71
08 4 4.295 -1.474 .9 482 2.89
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Table 7. Comparison of regression models of green phytomass
versus each reflectance index for the different treatment-
year combinations.

GREEN PHYTOMASS

BARNES DATA EIOTECH DATA

REGRESSION COMPARISON Fcalc p value Fcalc p value

PHYTO VS. NIR/RED B8 3 VS. 08 3 1 .91 .180 5 .87 .4381
B84 VS. U8 4 22 .81 .0000 21.50 .0000
B83 VS. B84 .09 .9107 .03 .9686
08 3 VS. 08 4 10.79 .0013 5.94 .01 18

all trts. 5.96 .0003 4.33 .0028

PHYTO VS. GN B83 VS. 083 0.93 .4166 0.55 .5874
B8 4 VS. 08 4 9.98 .0020 15.54 .0002
B83 VS. B8 4 1.51 .2 5 45 1 .39 .2799
08 3 VS. 08 4 46.76 .0000 2 9.80 .0000
all trts. 8.88 .0000 8.78 .0000

PHYTO VS. ND B83 VS. 083 1 .90 .1818 1 .97 .1718
B84 VS. 08 4 7.03 .0077 9.47 .0022
B83 VS. B8 4 1.35 .2886 .62 .5488
08 3 VS. 08 4 27.97 .0000 11.79 .0007
all trts. 4.45 .0025 4.15 .0036
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were performed to see if regression lines for the different year-

treatment combinations differed signif igantly. The burned and

unburned treatments for 1983 were not found to be different for

the Barnes or Exotech data and had p values of 0.1805 and 0.4381,

respectively. The two treatments were different in 1984, both

radiometers having p values less than the standard 0.05

signifigance level. When comparing each treatment over the 2

years, the burned treatments were not different while the

unburned treatments were. Similar results were found for

greenness and normalized difference (Figures A10&A11, Table 7).

Since the individual regressions for B83 and 083 of green

phytomass versus each reflectance index did not differ

significantly they were combined to get a single least square

estimate (Table 8). The resulting regression equations to

calculate estimated green phytomass (EGP) were tested with data

from 1984.

The equations based on greenness (Figure A12) slightly

underestimated green phytomass. The regression equations (Table

9) had R2 values of 0.88 and 0.85 for Barnes and Exotech,

respectively. However, when compared to a 1:1 line the p values

are less than 0.05 indicating that the regression lines were not

the same. When normalized difference was used (Figure A13) to

estimate GP the R2 values dropped to 0.79 for Barnes and 0.80 for

Exotech and sensitivity at high phytomass decreases, but p values

show the regressions are not different from the 1:1 relationship.

The near infrared to red ratio (Fig. 10) had similar R2 values to

HD and was not different than a 1:1 line for data from either

radiometer. The seasonal trend in this model is shown in Figure A14,
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Table 8. Regression statistics for green phytomass (dependent
variable) versus each reflectance index for all 1983 data.

RADIOMETER INDEX SLOPE INTERCEPT R- SQUARE RMSE

BARNES GN 92.31 -9.500 .8687 3.60
ND 44.52 - 1 3 . 92 0.7033 5.41

NIR/RED 2.776 -2.227 0.7639 4.83

EXOTECH GN 124.7 -6.060 .8490 3.86
ND 44.09 -12.72 .6198 6.12

NIR/RED 3.430 -3.663 .7 455 5 .0 1

Table 9. Regression statistics for green phytomass estimated by

each reflectance index (dependent variable) versus measured
green phytomass for 1984 data.

RADIO-
METER INDEX SLOPE

INTER-
CEPT R- SQUARE RMSE P- VALUE

BARNES GN
ND

NIR/RED

.8 40 4

0.8673
0.7 85 9

-3.882
-3.215

. 3 40 7

.8823

.7866
0.7839

3.63
5.31
4.85

.0017

.0922
0.17 95

EXOTECH GN
ND

NIR/RED

.7816
0.7232
0.8374

-2.047
. 5 40 2

.5400

.8512

.8029

.80 89

3.86
4.23
4.81

.0037

. 3 3 40

.3572
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We conclude that estimates of green phytomass in the prairie

for the growth portion of the season can be obtained from

reflectance indices. We found NIR/RED and ND estimates of green

phytomass from regression equations tested on an independent data

set not to be signif igantly different than 1:1 relationships and

had R2 values ranging from 0.78 to 0.81. GP estimated based on

greenness index versus measured GP regression lines were found to

be different than 1:1 relationships for both Barnes and Exotech

data, but had higher R2 values than either NIR/RED or ND.

2) INDIRECT APPROACH

Biscoe et. al. (1975) found net photosynthesis of a barley

( Horde um vul stare L. ) canopy depended on the photosy nthetic

response of leaves to light, the vertical distribution of those

leaves, and the vertical distribution of light in the canopy.

Net photosynthesis and the accumulation of phytomass is thus

dependent on the amount of intercepted PAR during growth, and

total phytomass accumulation could be estimated from cumulative

values of PAR interception. The photochemical efficiency (ratio

of chemical energy stored in dry matter to absorbed PAR) could be

estimated by the slope of the line describing the relationship of

total phytomass (dependent variable) to cumulative PAR

interception (independent variable). Hodges and Kanemasu (1977),

Monteith (1977), Asrar et. al. (1984b), and others have described

the photochemical efficiency for different crops and

applications. In this analysis an indirect procedure was used to

estimate the dry weight of phytomass accumulated during a given

growing season. The photochemical efficiency of the vegetation

at the Konza prairie is approximated from data collected in 1984
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and applied to 1983 data.

The relationship of PAR interception and NIR/RED (Table 4)

was used to predict IPAR for the 1984 season. The absolute

amount of daily PAR intercepted (APAR) by the canopy was

estimated from,

APAR= I Q*K f
*EPAR [11]

where Iq is the daily solar radiation (MJ m ); Kf is the

fraction of the total incoming radiation in the PAR region

(assumed to be 0.5); and EPAR is the fraction of intercepted PAR

as estimated from NIR/RED.

Cumulative interception (CUMICP) was obtained by integrating

the estimate of absolute interception (APAR) over the 1984

season. An exponential model was developed (Fig. 11) to

estimate green phytomass (EGP).

6Ph.mil- 405.1(1 - e
-°- 008011 *CUMICP

), R 2 = 0.993 [12]Dal UcS

EGPexotech = 394.1(1 - e
-

- 008725 *CUMICP
), R

2 = 0.994 [13]

The derived relationships indicate that photochemical efficiency

is variable, apparently depending on the stage of plant

development. The photochemical efficiency can be estimated by

differentiating these equations to obtain the instantaneous

slope. For the Barnes relationship the slope ranges from 3.25

g/MJ at CUMICP=0 to 0.44 g/MJ at CUMICP=250. Similarly for

Exotech these values were 3.44 and 0.39 g/MJ. Average values for

this time period are 1.30 and 1.38 for Barnes and Exotech,

respectively. Monteith (1977) compared four crops and found the
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Figure 11. Exponential relationship for cumulative PAR
interception versus accumulated green above-ground phytomass
from 1984 Barnes (A) and Exotech (B) data.
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slope to be about 1.4 g/MJ. Equations [12] and [13] were tested

on the 1983 data set. The NIR/RED was calculated from Barnes and

Exotech reflectance data and averaged for the burned and unburned

treatment on each day of data collection. Estimates of intercep-

tion for each day and treatment were calculated from NIR/RED

(Table 4) and used with daily solar radiation (Eq. 11) to calcu-

late the absolute PAR intercepted. These values were integrated

over time resulting in cumulative interception. Estimated green

phytomass was calculated (Eqs. 12&13) from these values and

regressed (zero intercept model used) with the 1983 accumulation

of measured total phytomass (Fig. 12). Comparisons with a 1:1

line indicated this indirect method of estimating green phytomass

for burned and unburned treatments performed well as illustrated

by the p values of 0.2930 and 0.1495 (Fig. 12). The Barnes and

Exotech data provide similar results. Figure 13 shows the data

plotted through the season. From this graph it appears that
,

modelled estimates for the burned treatment were consistent with

measured values, but modelled estimates of phytomass for the

unburned treatment were high early and low late in the season.

In summary, dry weight of above-ground green phytomass on

the Konza prairie was estimated by linear regression with either

NIR/RED or normalized difference using data from both radiome-

ters. Dry weight of accumulated above-ground green phytomass was

successfully predicted for the growth portion of the season by

estimating and integrating canopy interception from NIR/RED,

combined with incoming radiation, and photochemical efficiency.

It appears the model performed better on the burned than the

unburned treatment.
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Figure 12. Estimated versus measured dry weight of above-ground

phytomass using 1983 Barnes (A) and Exoteoh (B) data.
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CONCLUSIONS

LAI and phytomass of the Konza were successfully estimated

directly from the spectral reflectance and indirectly by first

estimating PAR interception. The direct relationships between

spectral reflectance and LAI or phytomass were different for the

2 years of this study. The indirect approach for estimating both

LAI and phytomass overcame the site dependency and provided

better estimates of these parameters. Since this approach is

based on physical properties of canopy structure (for LAI) and

energy absorption (for phytomass) the application should extend

to different sites, years, and canopy types.
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57

2.00

1 .75-

1 .50-

1 .25-

1 .00

0.75
I

N

D 0.50
E
X

0.25-

0.00

BARNES DATA

B83 *—¥

U83 e-o

B84 «

U84

0.0 0.1

T T* T
0.2 0.3 0.4 0.5 0.6

NORMALIZED DIFFERENCE

"
'l I I

0.7 0.8 0.9

2.00- EXOTECH DATA
2/ B84

t .75-
B83 ^++ O i

/ B83
t^fy- U83 o o-e

'

IT s*
I

E

A

1 .
50-J BS4 X -K—t* SS* )

U8A -»--»
«,

o ox/
F 1 .25-

*

>

x x/o + U83

A /> /D
R 1 .00- X .

/a a/
E + /
A

!

0.75-|
o o

s y ^

0°

N X *J?\* +

D
E

0.50-^ o
D

e

Y*% B
X

0.25-

0.00-
1" '

a
o

/ *

a
*/

I i
""\

i i

0.0 0. I 0.2 0.3 0.4 0.5 0.6

NORMALIZED DIFFERENCE

0.7 0.8 0.9

Figure A2 . Relationship between leaf area index and normalized
difference for different treatment-year combinations for
Barnes (A) and Exotech ( B) data.



58

125 150 175 203 225

DRY OF YEAR

250 275 300

3.0

2.5

-J 2.0w
X
Lia
5 1.5

cn
U
s
L. 1.0
IT
Ul

0.5

1384 EXOTECH DR-TH

BURNED
MERSURED * * «

ESTIMATED
UNBURNED
MERSURED o o o

ESTIMATED

0.0
125 150 175 200 225 250

E3Y OF" YERR

275 300

Figure A3. Seasonal trend in regression model predictions of LAI
for 1984 data.



59

I-2H

0.8-

0.4-

0.0-

-0.4-

BARNES DATA
GREENNESS MODEL
ELAI= 0.6821-AI - 0.162
R -SQUARE = 0.89 RMSE = 0.14

-*«

I

0.0 0.4 0.3 1.2

LEAF AREA INOEX

l
'

1 .6 2.0

'•2-1

E
S

T

I

M
A

T

E
D

L

E
A

F

A
R

E
A

I

M

D

E
X

0.3-

0.4-

0.0-

-0.4-

EXOTECH DATA
GREENNESS MODEL
ELAI= 0.674«LAI - 0.121
R-SQUARE= 0.90 RMSE= 0.13

* .. '

0.0 0.4 0.8 1.2

LEAF AREA INDEX

1 .8 2.0

Figure A4 . Leaf area index estimated from 1984 Barnes (A) and
Exotech (B) data is regressed with 1984 measured LAI. Leaf
area index was estimated from the greenness model developed
from 1983 data.



60

I . 3-1 BARNES DATA

E
S
T

I

M
A

T

E

L

E
A
F

A

R

E

A

I

N

D
E
X

0.9-

0.5-

0.1-

-0.3-

0.0 0.4 0.8 1-2

LEAF AREA INDEX

1 .6 2.0

1 .3-1

E

S

T

I

1
A
T

E

D

L
E

A
F

A
R
E
A

1

N

D
E
:<

CXOTECH DATA
NORM. DIFFERENCE MODEL
ELAI= 0.747*UU - 0.075

R-SQUARE= 0.90 RMSE= 0.1*

0.9-

0.5-

0. I-

-0.3-

• *
• *

.«

0.0 0.4 0.8

LEAF AREA 1N0EX

1 .6 2.0

Figure A5 . Leaf area index estimated from 1984 Barnes (A) and
Exoteeh (B) data is regressed with 1984 measured LAI. Leaf
area index was estimated from the normalized difference
model developed from 1983 data.



61

1.0- 3ARNES DATA
ICP= 2.15'GN - 0.09

R-SQUARE= 0.79 RMSE* 0.1

1

A

0.8-

'

a S

0.6-

a

0.4-
a

a

D / a a a

0.2-^
a

0.0- a ^ a

0.0 O.I 0.2

P.C.A. GREENNESS

0.3 0.4

P

A

R

!

N

T

E
R

C

£

P
r

l

o
N

i .OH

0.8-

0.6-

0.4-

0.2-

0.0

EXOTECH DATA

ICP= 3.13'GN - 0.06

R-SQUARE= 0.74 RMSE= 0.12

0.00

a o

0.05
I I

0.10 0.15

P.C.A. GREENNESS

1
'

i

0.20
' I

0.25

Figure A6. Relationship between PAR interception and greenness
developed from 1983 and 1984 data from Barnes (A) and
Exotech (B) radiometers.



62

1.0- BARNES DATA
ICP= 1.05«ND - 0.25

R-SQUARE= 0.64 RMSE= 0.14

A

0.8-

Qfa

0.6-

0.4-
D ^ a

a
CP

0.2-

0.0-

^"^ a

"a a
i i ' ' ' 1

0.25 0.35 0.45 0.55 0.65

NORMALIZED DIFFERENCE

0.75 0.85

1 .0- EXOTECH DATA
ICP= 1.25»ND - 0.38
R-SOUARE= 0.63 RMSE= 0.14 B

0.8-

D
G *b .

0.6-

a

0.4^
a

a

**'a B

0.2-;

0.0-

^^ a

^ a a
i i • •

i
i

0.25 0.35 0.45 0.55 0.65

NORMALIZED DIFFERENCE

0.75 0.85

Figure A7. Relationship between PAR interception and normalized
difference developed from 1983 and 1984 data from Barnes (A)
and Exotech ( B) radiometers.



63

E

S

T

1

n
A

T

E

D

I

E
A

F

A

R

E

A

1

N

E

X

2.5-

2.0-

I .5-

I .0-

0.5-

o.oh

BARNES DATA
INDIRECT APPROACH
GREENNESS USED
ELAI= 1.10»LAI - 0.39

R-SQUARE= 0.72 RMSE= 0.30

0.0 0.5 1-0

MEASURED LEAF AREA INDEX

I .5

E
S

T

I

n
A

T

E

L

E

A

F

A

R

E

A

I

N

D

E

X

2-5-1

2.0-

1 .5-

1 .0-

0.5

EXOTECH DATA
INDIRECT APPROACH
GREENNESS USED
ELAI= 1.24«LAI - 0.22

R-SQUARE= 0.81 RMSE= 0.27

0.0-

0.0 2.0

MEASURED LEAF AREA INDEX

Figure A8 . Leaf area index estimated indirectly from reflectance
data by first estimating PAR interception from greenness for
both Barnes (A) and Exotech (B) radiometer data.



64

2.0-

I .5-

1 .0-

0.5-

0.0-

BARNES DATA
INDIRECT APPROACH
NORM. DIFFERENCE USED
ELAI= 1.01 *LAI - 0.096

R-SQUARE= 0.82 RMSE= 0.21

* *

* *

t
—

"

0.0 0.5 1.0

MEASURED LEAF AREA INDEX

1.5 2.0

2-0- EXOTECH DATA
INDIRECT APPROACH
NORM. DIFFERENCE USED
ELAI= 1.03»LAI - 0.076
R-SQUARE= 0.80 RMSE= 0.22

• • yf
*yf

1 .5-

»

»

*
jT •

•
*

*

1 .0- *

• /
*

**' **/
* * /

0.5-

«x» * B
* jS

, *s* *

S+
0.0-

' —i

i

0.0 0.5 1.0

MEASURED LEAF AREA INDEX

1 .5 2.0

Figure A9
. Leaf area index estimated indirectly from reflectance

data by first estimating PAR interception from normalized
difference for both Barnes (A) and Exotech (B) radiometer
data.



65

36^

30-

E

in

i
O

18-

0.

2
UJ
o:
O

12-

6-

0-

BARNES data

B83 ' * >

U83 a a a

B84

U84

i
, , . ,

0.2

P.CA. GREENNESS

U8A

0.0 0.1 0-3 0.4

36-

30-

2 24-

CM
I

12-

I
3 6 -

0-

EXOTECH DATA

B33 ' l f

U83

884

U84

U84

0.00 0.04 0.08 0.12 0.16

P.CA. GREENNESS

0.20 0.24 0.22

Figure A10. Relationship between green phytomass and greenness
for the different treatment- year combinations for Barnes(A)
and Exotech (B) data.



66

36-1

30-

24-

E

18-

1 :

a.

z

o

12-

6-

0-

BARUtZ DATA

883 *-•—•
USA

l

0.850.15 0.2S 0.35 0.45 0.55 0.65

NORMALIZED DIFFERENCE

0.75

36-i

30-

24-

18-

12-

5
'uj

tr.

o
5-

0-

EXOTECH OATA

883 ' ' '

U83

884

U84

U84

I
'

I

'

I
'

I

—

0.15 0.25 0.35 0.45 O.SS 0.65

NORriALIZED OIFFESENCE

0.75 0.85

Figure A1 1 . Relationship between green phytomass and normalized
difference for the different treatment- year combinations for

Barnes(A) and Exotech (B) data.



67

I.

o

o
Q
F

en

30- BARNES DATA
GREENNESS MODEL
ECP= 0.840»GP - 3.88 J^

25- R-SQUAKE= 0.88 RMSE= 3.63 y^ •

- ••

20-
y»r *«

»

15-
s*+

>r *

10- •

s' *

5-

JS •

s' -.* •
0-s • * A

*

-5-
*

»

10-
L—i—,

1—,—, ,—i—,—,—,

1
1 • i

12 18

-2 -1
v

MEASURED GREEN PKYTCWASS (g . m -10 )

30 36

30-

I

25

o
*-

CN 20
'e

C*

(A
lb

v\
<
a
g
R 10

0-

2
Id

C. 5

O

ffl

<

P
1/1

-5-

EXOTECH DATA
GREENNESS MODEL
EG?= 0.782'GP - 2.05

R-SQUARE= 0.85 RMSE= 3.86

'—

i

-

12

1—r-

13

—r~

24
-2

30

MEASURED GREEN PHYTCMASS (g . m 10

Figure A12. Green phytomass dry weight as estimated from 1984

reflectance data by a greenness relationship is compared to

measured values for Barnes (A) and Exotech ( B) data.



68

BARNES DATA
NORM. DIFFERENCE MOOEL
ECP= 0.867»GP - 3.22

R-SQUARE= 0.79 RMSE= 5.31

GREEN PHtTOMASS

30-

E
S
T

1

M
A

T

E

G
R

E

E

U

P
H

r

T

n
A
S
s

25-

20-

! 5-

10-

5-

EXOTECH DATA
NORM. DIFFERENCE MODEL
EGP= 0.723'GP - 0.540

R-SQUARE= 0.80 RMSE= 4.23

'I I
'
—

'

12 18

GREEN PHYTOHASS

30 3624

Figure A13. Green phytomass dry weight as estimated from 1984
reflectance data by a normalized difference relationship is
compared to measured values for Barnes (A) and Exotech (B)
data.



69

125 153 175 203 225
DAY CF YERR

250 275 sea

63

S 50

a

e

05

in
W
C
z
o
V
X
Q.

u
u
(J

40

30

20

10

1984 EXOTECH BflTfl

BURNED
t-.EHSURED » * *

UNBURNEO
MERSURED o o o
ESTIMATED

o 00

\
» « »* »n *

* o

/irL"-\ N

M

/ A—^\ s

A /' "A/ / \S 9

- A /
V—' V^

**./\_^ »**"**»

- J J N„ ;:^>^
<&-~~'

~'' *"
NT

t 1 1 1

—

I ' p i 2

125 150 175 200 225
DRY OR YERR

250 275 300

Figure A14. Seasonal trend in regression model predictions of
green phytomass for 1984 data.



Table Al ku^ st & >
1 ?83 70

VEGETATTCII COMPOSITION OF ET LAB SPECTRAL REFLECTANCE STUDY AREAS ON
KONZA PRAIRIE RESEARCH NATURAL AREA

Location: Kansas, Riley County, southeastern part of sec. 19, T11S, R8E.
Konza Prairie Research Natural Area, grid R27. Flat ridge.

Soil: Dwight-Irwin complex, 1 to h percent slope. The Dwight silt loam is a claypan
range site, the Irwin silty clay loam a clay upland range site.

Date: Field sampling was dons August 15, 1 983 by Lloyd C. Hulbert.

Method; Canopy coverage was recorded for each species in 20 circular plots of 10
pi area in each site. The burned site is in area 1D, burned each spring since
1978 in late April. The area was burned April 20, 1983. The unburned area
across the fireguard (area N1B) has not been burned since the area was added
to Konza Prairie in 1977, and for some unknown number of years before that.

The method follows that of DaubenmLre, R. 1959. A canopy-coverage
method of vegetational analysis. Northwest Science 33(l):b3-6U. The only
modification was by adding another category, to 1 percent. The categories
used were: Area Category number Midpoint

up to 1* 1 0.5$
1 to 5 2 3

5 to 25 3 15
25 to 50 h 37.5
50 to 75 5 62.5
75 to 95 6 85
95 to 100 7 97-5

Canopy is defined as the area within lines connecting extremities of the
plant canopy.

Legend: First figure is average canopy coverage in the 20 plots.
Second figure is frequency, the per cent of the plots in which the species

occurred.
Example: 0.!i/30 Canopy of the species occupied O.ii!? of the area and

the species occurred in 6 of the 20 plots (30%).

Interpretation: Differences are due to treatment, scril variability and chance.
Small differences are likely to be due to sampling error or chance. Occurrence
of a species in one or two plots in one treatment but not the other could be
due to chanceof being included in the sampling. Analysis of the individual
plot data by t-tests could aid interpretation, but greater reliability could be
obtained by comparison with results of other sampling in a variety of areas.
If such information is needed, let me know.

Some of the results agree with previous findings. For example, spring
burning is detrimental to cool-season species, as evidenced by the differences
for Poa pratensis , Bromus japonicus , and Symphoricarpos orbiculatus .

Species preceded by an asterisk are introduced from Eurasia.

Nomenclature: follows the Flora of the Great Plains (in preparation).

Lloyd C. Hulbert
Biology



Tall , perennial warm-season grasses
Andropogon gerardii , big bluestem
Sorghastrum nutans , indiangrass
Panicum virgatum , switchgrass

Medium and short perennial warm-season grasses
Andropogon scoparius , little bluestem
Sporobolus asper var. asper , tall dropseed
Bouteloua curtipendula , side-oats grama
Eragrostis spectabilis , purple lovegrass
Sporobolus heterolepis

, prairie dropseed
Muhlenbergia cuspidata

, plains muhly
Bouteloua gracilis , blue grama
Bouteloua hirsuta , hairy grama
Buchlbe dactyloides , buffalograss

Cool season perennial grasses
Poa pratensis, Kentucky bluegrass
Dicanthelium oligosanthes var. scribnerianum

(Panicum scribnerianum j. scribner panicum
Bromus inermis subsp. inermis , smooth brome
Koeleria pyramidata , prairie junegrass

Annual grasses
* Bromu3 japonicus , Japanese brome O.Ii/30

Grass-like plants (Cyperaceae)
Carex spp . , sedges
Cyperus lupulinus (C. filiculmis ), fern flatsedge

Woody plants
Amorpha canescens , leadplant
S3/mphoricappos orbiculatus , buckbrush

Perennial forbs
Ambrosia psilostachya , western ragweed
Artemisia ludoviciana , Louisiana sagewort
Asclepias viridis , green antelopehorn
Baptisia bracteata var. glabrescens ,

plains wildindigo
Achillea millefolium subsp. lanulosa , western yarrow 1

Verr.onia baldwinii var. interior , inland ironweed
Salvia pitcheri , pitcher sage
Aster ericoides , heath aster
Ruellia humilis , fringeleaf ruellia
Cirsium undulatun , wavyleaf thistle
Dalea purpurea var. purpurea , purple prairieclover
Astragalus crassicarpus var. crassicarpus ,

groundplum milkvetch
Asclepias verticillata , whorled milkweed
De-nodiun illinoense , Illinois tickclover
Physaiis pumila , prairie groundcherry
Asclepias stenophylla , narrowleaf milkweed
Dalea Candida , white prairieclover
Callirhoe involucrata , purple poppymallow
Kuhnia eupatorioides var. corynbulosa , falseboneset
L>»spedeza capitata , roundhead lespedeza
ptygalis virginiana , Virginia groundcherry

Unburned area Burned area

96.25/100
22.25/100
2.75/UO

92.625/100
61.875/100

10.025A0

3_1.0/100

10.8/70

0.15/5
0.025/5

60.625/100
U. 925/55
0.525/80
0.075/15

0.6/U5
0.25/25
0.025/5

U7. 625/1 00
2. 95/1 00 0.575/90

0.75/5
0.025/5 0.375/75
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2.U5/95 1 .675/90
0.1/20

0.075/15
0.375/25

7.55/95 0.75/100
a. 85/90
1 .U5/65 0.95/65

1 .U25/U0 0.575/UO
1.25/75 0.025/5
0.575/65 0.U5/U0
0.5/25 0.975A5
O.U75A5 2.375/85
0.325/65 0.325/65
0.25/25 0.075/15
0.2/UO 0.15/30

0.2/15 0.5/25
0.175/35 0.025/5
0.175/10 0.05/10
0.175/10 0.025/5
0.1/20 0.175/35
0.05/10 0.025/5
0.05/10
0.025/5 0.325AO
0.025/5
0.025/5 -



Perennial forbs, continued

Solidago missouriensis var. fasciculata ,

Missouri goldenrod

Aster oblongifolius , aromatic aster

Ratibida columnifera , upright prairieconeflower

Asclepias viridiflora . green milkweed

Aster sericeus , silky aster

Sisyrinchium campestre ,
prairie blue-eyedgrass

Apocynum cannahinum , hemp dogbane

Physalis heterophylla, clammy groundcherry

Unburned area Burned area

0.025/5 0.175/35
0.025/5

0.2/L0
0.05/10
0.05/10
0.025/5
0.025/5
0.025/5
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Annual and biennial forbs

Lactuca sp., wild lettuce

Euphorbia marginata , snow-on-the-mountain

Linum sulcatum , grooved flax

Tragopogon dubius , western salsify

0.025/5
0.025/5

O.h/80
0.025/5

Total number of species 39 Ul



A2. Canopy coverage/frequency of plant apeciea in apectral reflectance 7 3

atudy aitea. Konza Prairie Beeearch Natural Area, Saptaabar 5, 1984.

TALL UARH-SEASOM PERENNIAL GRASSES
Andropogon gerardil, big bluaataa
Sorghaatru* nutans , indiangraaa

?SQi£H* XiESltH!* awitchgraea

HEDIUN HEIGHT, WARM -SEASON PERENNIAL GRASS!

*0^E°2292G *£ogariua, littla bluaataa
Bquteloua curtipandula, alda-oata graaa
jpofQbolua taper var. aapar , tall dropaeed

2*E2E222.ilJl hattrolapla, prairie dropaaad

Total of all parannial C4 graaaaa

COOL SEASON PERENNIAL GRASSES AND SEDGES
??* 2E?t»naia, Kentucky bluagraaa
Kqeleria pyraaldata, prairla junegraaa

Pic5S£?iiH! gligoaantheaea var.
acribnerlanua, acrlbnar'a panicua

Slyaua canadanala. Canada wildrye
Carex app.

Unbumad
SW of IOC

uppar alopa

Burnad
SE of IC

upper alopa

Burned
S aida IC

lower alopa

80/100
40/100
9/40

86/100
69/100

0.3/10

98/100
48/100
90/100

5
13/90
3/90

52/100
0.3/10

50/100
24/100

19/90
1.3/60
6/100

199/530 230/410 262/550

11/100
0.2/50 0.1/20

1.4/90
1.5/10
6/80

0.3/60

0.3/10

0.2/30

Total C3 gj and graaallke 20/330 0.7/90 0.2/30

ANNUAL GRASSES

§E2*H? lSE2Si2HS» Japanese broae 1.5/10

PERENNIAL FORBS
Achillea alllefgllua var. lanulgaa,

western yarrow

*!^E°?i* 2*ii2§t*9*il?» western ragweed

*Et£*i?i5 iy^2*i?i*25» Louiaiana aagawort
Aacleglaa •tenop.hy.lla, narrow-leaved illkweed
Aaciegiaa ZSEticillata, whorled illkweed

*5?i*2i5* *iEidi flora, green ailkweed

*?^?E •Ei£2i^??» heath aatar

*.*£•£ 2Bl252il2iiyS' aroaatic aater
A.SE-5S eericeua, allky aater

§52ii?i» BEiSteata, plalna wlldlndigo
9"1*5 Candida, white prairieelover

?5i*5 BHE2HES*' purple prairleclover

P.£252d.iH! ilIi22*D«§' Illinola tlckclover

Hu^Qi5 ?u2at2Ei2i2
,

*5 *er. cgryabuloaa,
boneaet

•rf?2?S*5» 2*2ir*ta, roundhead leapedeza

t*?2?2??5 ^i2i*2*"» violet leapedeza
Phyaalia pualla, prairie groundcherry 0.1/20

?25E"iSi £!QHi£±2ES v"r « ii2Ei2H5^§»
anyflower acurfpea 0.3/10

3H*±Ai5 &y"iii2» fringeleaf ruellia 0.4/70

0.6/80
25/100 0.5/50 3/80
1.5/10 0.05/10

0.15/30
0.3/60 0.05/10

0.1/20
0.2/40

45/100 0.2/30 0.5/50
0.05/10
1.9/40
0.6/30 0.7/40
0.4/20
0.05/10 0.05/10

2/60

0.2/40

0.3/10

0.2/30
0.2/30
0.05/10

0.4/70

continued on next page



?§i*A" pitchfri. pitcher's sage

isiiSH! csrollnenso, horsenettle

§21*2^22 Sjngd;ngi» var. gcabrg,
Canada goldenrod

§2ii9i2° gigaourignaia var. rig i dua,

Hisaouri goldenrod
Vernonla baldwinli var. interior,

inland ironv«ed

1.5/30 74
0.05/10

0.05/10 0.05/10

0.6/60 0,.3/60 0.1/20

3/100 1..2/90 0.6/100

Total, perennial forba 80/770 6/440 6/460

WOODY PLANTS

A.£2£E£* eanyacgng, leadplant

ANNUAL AND BIENNIAL F0RBS

Lgctucg ludovlciana, Louialana lettuce
Linug aulcatus , grooved flax
Trigdanlg perfoliate, elaspinglookingglai

Total, all plant*

10/80

0.1/20
0.1/20
0.05/10

312/1770

19/90

255/1030 268/1040

Averagea of data fron 10 plota, each 10 square asters.
Scientific naaea according to Great Plains Flora.
Ratings by Lloyd C. Hulbert, following aethod of R. Daubenaire. 1959.
coverage aethod of vegetation analvaia. Northwest Science 33:43-66.
was aodified by adding an additional category of to lx.

A canopy
The aethod
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Test A1

.

To test if measured and estimated values of a parameter are

different an F value was calculated as,

p

F > (obs est - obsmeas )
/n

model SS/df . ,model

where obsea t is the estimated value and obsmeaa is the measured

value of an observation, n is the number of observations. Model

SS is the sum of squares for the original model from which

estimates were made and df m0 H e i are i fcs degrees of freedom. For

convenience p values were calculated to give an estimate of the

signifigance level of a comparison. This test was developed with

the help of Dr. Dallas Johnson (Statistics Dept.). We expect our

calculated F follows the true F distribution but is has not been

tested; however, this test does measure the relative signifigance

of these comparisons in either case.
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