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INTRODUCTION 

Sandwich construction consists of two relatively thin sheets of a 

material called facings, separated by and bonded to a relatively thick 

internal member called the core. The facings are usually made of 

material with high strength and stiffness whereas the core is usually 

a material of less density and comparatively low strength and stiffness. 

The resulting composite structure has an extremely high strength-weight 

ratio as compared with that obtainable through the use of a single homo- 

geneous material. For this reason, it is widely used in construction of 

structural components in which weight is a major factor, such as guided 

missiles and air frames. Recently, improved techniques of bonding and 

fabrication are increasing its applications in many other industries such 

as the domestic appliance and marine, etc. 

Prior to fabrication, the core is extremely flexible with seemingly 

little strength and the thin facings of the sandwich are incapable of 

resisting reasonable design loads in their own plane because of their 

elastic instability. However, once incorporated in a sandwich, the core 

becomes the structural center of a rigid panel which has strength and 

dimensional stability. Thus, the facings must be of a high strength 

material that will withstand outside fiber stresses; the core must with- 

stand maximum shear which occurs at the center. The bonding agent -- 

adhesive, brazing, alloy or weld -- must transmit stresses from core 

to facing panels. 

Although sandwich panels are rigid and strong, they are susceptible 

to damages from concentrated loads (panels used as floors in aircraft 
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have been damaged by the heels of ladies' high-heeled shoes). It is 

difficult to fasten panels with conventional rivets or screws unless the 

internal core is sufficiently strengthened in the area to be fastened. 

Vibration hazards to structures are well known. The study of vibra- 

tion in sandwich panels which go into making guided missiles, air- 

craft frames, etc. is important. Because of its complex layered system, 

many variables have to be taken into account, a fact which makes the 

analysis of the problem more difficult. Much work of both theoretical 

and experimental nature has been done in the field of statics of sand- 

wich structures, but, to the knowledge of the author, there is nothing 

in the literature to suggest that work in the dynamics field has been 

undertaken. 

In view of these facts, Raville and Kimel (1) presented a mathe- 

matical derivation for calculating the natural frequencies of vibration 

of sandwich panels, simply supported on two opposite ends and con- 

structed with isotropic facings and orthotropic cores. 

The purpose of this thesis is to present an experimental verification 

of Ravi lle and Kimel's theory, and to lay the groundwork for the develop- 

ment of vibration techniques for future investigations in this field at 

Kansas State College. 

A series of vibration tests was performed on four sandwich panels, 

120 in. by 6 in. in size, and of two different thicknesses (0.25 in. and 

1.0 in.) supported knife edges. Data of resonating frequencies for 

various modes were obtained, and presented in tabular and graphical forms. 

The natural frequencies of the same four beams, for free-free and 

clamped end conditions, were also obtained and included in this thesis. 
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The latter investigations were necessary to develop the experimental 

technique. 

This thesis describes the outline of the theory and the test procedure 

used, and presents the results of the test. 

THEORETICAL ANALYSIS 

In their analysis, Ravi lle and Kimel assumed that the core of the 

sandwich panel is capable of resisting only normal stresses perpen- 

dicular to the facings and shear stresses in planes perpendicular to the 

facings, which are treated by isotropic thin plate theory. It is also 

assumed that Ec, the transverse modulus of elasticity of core, is 

infinite. 

The problem of the determination of natural frequencies of vibra- 

tion associated with the cylindrical bending of a rectangular sandwich 

panel simply supported on two opposite edges and free on the other 

edges was analyzed. Modes of vibration corresponding to "face wrink- 

ling" were not considered. 

The dimensions of the sandwich panel strip and the co-ordinate 

system used in this analysis are shown in Fig. 1. Each facing is 

assumed to have the same physical properties. 

Core Equilibrium Equations 

A differential element of the deformed core is shown in Fig. 2. 

Summation of forces in the x and z directions, respectively, yields 
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the two equilibrium equations 

and 

a r xz 
8 z 

a cr z 
a z 

=0 

8 7 xz - 6 
82wc 

ax 8 t2 

The boundary conditions are 

we (0, a) f = 
82w 

c (0, a) 1 = 0. 
a 3tz 

In order to satisfy the boundary conditions of the simply supported 

panel, as well as the core equilibrium equations, the core displace- 
ments are assumed to be of the forms 

7 = xz 
m=1 

and 
00 

c 
m=1 

where A and 

Substituting (3) 

oo 

(TZ = Ll 
m =1 

00 

M 1r X A sin t 

M1r3C sin 

(3) 

(4) 

at (5) 

cos w a 

m wx C sin sin t to a 

C are constants of integration. 

and (4) into (2) gives 

m 
An 602 C ) + B isir- - z a xn m a 
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Substitution of (3) and (4) into the equation 

gives 

auc 
7 = G ( xz xz z + 

8 8w 
) 

C ) z + F max x 

(6) 

t. (7) 
mir 

a cos sin a 

Equations (3), (4), (5) and (6) satisfy the core equilibrium 

equations (1) and (2), and the boundary conditions. 

Strain Energy in the Cores 

From (4) and (7), the core strains are expressed as 

8w 
E 

C 
= -0 

Z Z 

8 uc a we A m w x and /;czc = ' 8 x a cos m sin fa t. 
m=1 xz 

The elastic strain energy of the core can be expressed as 

a c 

vo ,1 

0 0 

Gxz xzc dx dz. (10) 

Substituting (9) into (10) and integrating, gives 

c 4 
a 
G 
c A2 sina wnl t. 
xz m =1 



Strain Energy in the Facings Due to 
Membrane Strains in the Facings 

The membrane strains in the right and left facings, E and xm 

x.M 
respectively, can be expressed in terms of the core displace- 

ments as follows: 

and 

8u 82w 
c c 

8x exz ° 

8uc 

xM = ax 
f 82w 

c 
2 83E2 

) Z C 

The elastic strain energy, VmF , associated with the 

membrane strain in the right facing can be expressed as: 

a 0 

V MF - e2 dx dz. 
2(1-v2) 

0 -f 

Substituting (12) into (14) and integrating gives 

E a f F f m2v 2 VMF C m 2 
)2 sine w t. (15) 

4(1.- v2 
m 

) -1 a2 

(12) 

(13) 

(14) 

Similarly, for the left facing 

2 

sinew t. m 

(16) 
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Strain Energy of the Facings Associated with 
the Bending of the Facings About 

Their Own Middle Surfaces 

The bending strains, exB and e'xB , in the right and left facings, 

respectively, can be expressed in terms of the core displacement as 

and 

82w 
(z ) ( c) 

8x2 

e' xB = (z - c - 
82 we 

2 8x2 

From (17) and(4), the elastic strain energy VBF' assoc- 

iated with strains due to bending of right facing about its middle 

surface, is 

Therefore, 

a 0 

V - 
5. 

e 2 
xB 

dx dz. BF 2(1 -v 2) -f 

4 
Tr 

4 
VBF =E a f3 M C- sinew t. 

48(1 -vz) a4 

Similarly, the elastic strain energy, V of the left facing 

can be expressed as 

Ea (f) 3 /II 4 
Tr 

4 
2 V BF - C sin t. 

48(1 -v 2) m -1 a4 

(17) 

(18) 

(19) 

(20) 

(21) 
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Total Elastic Strain Energy 

The total elastic strain energy, V, of the sandwich strip of 

unit width is 

V . + V + Nr' + V + c MF MF BF BF. 

Substituting equations (11), (15), (16), (20) and (21) 

into equation (22) gives 
co 

ac f mane 
V = Az 

+ 
m w F + Cm)z xz m 4(1 -v 2) a m m=1 

2 

E a f Am m A c ma 
(C ) a C ma Fin] 

4(1 - vz) as 

Ea EP+ (f° )33 m4 w4 
C-m sins com t. 

48(1 r v2) a4 

Kinetic Energy of the Vibrating Strip 

Kinetic energy T, of the vibrating strip is given by 

a 
1 .1' 8 w 

) dx T= - 
2 

P ( 
0 

Since, w = w . 

Equations (4) and (25) satisfy the boundary conditions 

Therefore, 

w(0, a) = (0, a ) It = 0 t x2 

P ei 
m 

a 
T = C2 cosz t. 4 m m m=1 

(22) 

(23) 

(24) 

(25) 

(26) 
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and 

Frequency Criteria 

The vibration system is assumed to be conservative so that 

a ( max max) o, 
m 

( v max) o, 
a cm max max 

3 
3 F ( max - max) - O. 
m 

Substituting maximum values of V and T from 

equations (23) and (26), leads to three linear, homogeneous 

equations in which An , C m and F are unknown. 

(27) 

(28) 

(29) 

Such a system of equations can yield for A m , C m and Fn, 

solutions other than the trivial one in which A = C = F = 0, 

only if the determinant of these equations is equal to zero. This 

condition brings to the frequency equation from which the frequencies 

of the various modes of vibrations can be calculated. Thus, the 

resulting equation can be simplified to give 

Z M4 T1 
4 E 

- m a4 (1 - v2) p 

IT 

1 + mz s 

OPERATION OF EQUIPMENT 

(30) 

A schematic diagram of the apparatus for a typical vibration 

test of a sandwich beam with free ends is shown on Plate I. 

A sandwich beam is suspended by two strings s, at its nodal 

positions. The vibration exciter is placed under the beam at a position 



EXPLANATION OF PLATE I 

A Schematic Diagram of Experimental Equipment 

Reference numbers: 

Panel cabinet 
2 Vibration exciter 

(3 Sandwich beam with sand Chladni figure 
4 Piezo electric pickup 
5 Amplifier 
6 Voltmeter 

(7 Electronic frequency counter 
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of maximum amplitude. 

The Model C-31 vibration exciter by MB Manufacturing Company 

consists of a moving assembly including two flat spring flexures which 

support a threaded magnesium tube. Mounted on the tube are a driver 

coil and a signal generator coil, and a vibration pickup attachment 

table. The function of the vibration exciter is to generate a sinusoidal 

forcing function when the probe is properly matched to the specimen 

being vibrated. The driver coil which is supplied by a variable fre- 

quency alternating current, is suspended in a constant magnetic field. 

The amplitude and acceleration of the driver coil at a desired frequency 

are controlled by varying the applied current. The generated force 

depends upon the direct current in the field coil as well as the alter- 

nating current in the driver coil. The amplitude of the response depends 

not only on the generated force, but also on the dynamic properties of 

the system, including both the moving parts and the specimen. The 

motion of the force take-off (probe) is limited to plus or minus one- 

fourth-inch travel (giving a total excursion of one-half inch ) or an 

acceleration of 100 g, whichever applies. 

A piezo electric crystal pickup was used to measure the vibra- 

tions of the beams. It was held on the beam manually at lower fre- 

quencies to make it follow the beam in spite of its inertia. It was fixed 

by means of an adhesive tape at higher frequencies where the amplitudes 

are small. 

The amplified signal of the pickup is lead simultaneously to a 

voltmeter and an electronic frequency counter. 
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The piezo electric effect is utilized in this crystal pickup to 

convert mechanical force (due to vibration) into electrical voltage. 

In other words, the voltage generated by the crystal is proportional 

to the force applied to it, and is therefore also proportional to the 

acceleration. The voltmeter gives a needle deflection proportional 

to the voltage generated by the crystal pickup. 

The high speed electronic counter has an accurate crystal con- 

trolled timing gate. The unit automatically counts and displays in 

integer form any number of events which have occurred during a 

precise one-second counting interval. The events may be optical, 

physical or electrical occurrences translatable into voltage changes. 

The unit can also display the accumulated number of events during 

any integral number of seconds desired. If the timing gate is kept 

open for ten seconds, and the accumulated number of events divided 

by ten, the resulting figure for one second gives an accuracy of one 

decimal place. 

EXPERIMENTAL PROCEDURE 

The tests were carried out for the following end conditions: 

1. Free-free, 
2. Simply supported, and 
3. Fixed-fixed. 

In order to avoid complications due to end conditions, and to develop 

the technique of determining the natural frequencies of the beam, com- 

paratively simple end conditions -- free ends -- were selected for the 

initial test. 



16 

Two symmetrical nodal positions and one antinodal position were 

calculated for each mode of vibration. These positions were carefully 

marked on the beam and used to support the beam and position the 

exciting probe, respectively. The beam was properly leveled to avoid 

any torsional effects while under transverse vibration test. 

The vibration exciter with a rubber probe was placed under the 

specimen (Plate II) at the position of maximum amplitude. 

After making proper electrical connections of the apparatus (see 

schematic diagram on Plate I ), the following preliminary procedure 

was adopted for the proper operation of the Vibration Exciter; 

1. The amplifier was turned on and allowed 10 to 
15 minutes warm-up time. 

2. The field supply was turned on and the field 
current was adjusted with the powerstat 
control to 0.7 amps. as specified by the 
manufacturer. 

3. The desired range of operating frequencies 
was selected with the help of the decade 
range switch at the right-hand side of 
the oscillator panel. 

4. The Amplitude Control, located just above 
the range switch on the oscillator panel 
was set at a 80 to 90 percent of the total 
rotation. 

The desired input to the vibrator was established by adjusting 

the AC output control (top panel) and the amplitude control (middle 

panel). The frequency of vibration was controlled by the frequency 

dial on the oscillator panel. 

The frequencies were slowly varied and when the forced frequency 

coincided with the natural frequency of the sandwich beam, resonance 



EXPLANATION OF PLATE II 

Photograph of the vibration test setup 
for free-free end conditions. 



Plate II 
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occurred. Resonance was detected by noticing a maximum voltmeter 
deflection, vigorous movement of sawdust or sand which was spread 

on the beam prior to the operation of the test, the formation of 

Chladni figures on the beam, and a peculiar change in the noise level 

(sound). The resonating frequency was read from the electronic counter 

panel. Sawdust collected at the nodal positions. The mode number in 

which the beam was resonating was determined by counting the nodal 

positions. The mode is one less than the number of nodes. 

When the frequency was slightly altered, the Chladni pattern of 

sawdust was disturbed and the voltmeter deflection decreased. The 

next higher mode was excited by increasing the frequency until a new 

maximum voltmeter deflection was observed, and the Chladni figure 

corresponding to the higher frequency appeared. 

The same technique for determining the natural frequencies of 

various modes was employed for the simply supported and clamped 

end conditions. 

COMMENTS ON THE PROCEDURE 

The symmetrical nodal positions were calculated before the 

operation of the test because if the beam is suspended at any other 

positions, the reactions cause couples at the supports, and the beam 

no longer has free-free end conditions. The positions of maximum 

amplitude (antinodes) are calculated and marked on the beam in order 

to determine where to place the vibration exciter. Both nodal and 

antinodal positions were calculated for various end conditions and are 

included in the Appendix. 
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The sawdust, being comparatively light and soft, moved with the 

beam at the lower frequencies and did not respond to t he vibrations 

of the beam at higher frequencies. In order to get better Chladni 

patterns, fine Ottawa sand of uniform size was substituted for saw- 

dust. The sand worked very satisfactorily and some of the patterns 

formed by it can be seen on Plate III. 

Difficulties were encountered in exciting modes beyond the 15th 

because of the fact that the rubber probe, like a soft (low stiffness) 

spring, absorbed most of the vibration energy of the generated force 

of the exciter. These difficulties were solved by substituting plastic 

and steel probes with which it was possible to excite modes up to the 

25th and 35th, respectively. 

The performance of the probes of different materials can be 

explained by the electromechanical analogy as shown in Plate IV. 

The probe corresponds to a capacitance C. The natural frequencies 

of the system are given by f 
n 

= where a is a constant. 

If the capacitance is too high, only current with low frequencies can 

pass through the circuit, or, in other vvo rds, the circuit can be tuned 

for comparatively low frequencies only. The rubber probe cor- 

responds to a relatively high capacitance, therefore, it could excite 

modes up to 15th only. Similar explanation can be offered for the 

behaviour of the plastic and steel probes. 

Modes beyond 35th could not be excited because, at these modes, 

the Chladni patterns became smaller than the length between the two 

free edges and the beams began to vibrate as plates giving complex 



EXPLANATION OF PLATE III 

Photograph of the vibration test setup 
for clamped end conditions. 



Plate III 
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EXPLANATION OF PLATE IV 

Electro-mechanical Analogy: 

Multiplier 
---D>-- Integrater [- Summer Source of power 

--11- Capacitance 
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patterns not accounted for in the theory. 

Another limiting factor was the force generating capacity of the 

vibration exciter; i.e., the acceleration at such frequencies was high, 

resulting in extremely small amplitudes to which the beam did not 

re spond. 

PRESENTATION OF DATA. AND SAMPLE CALCULATIONS 

Presentation of Data 

Three different tests, corresponding to three different end con- 

ditions, were made on four samples of sandwich panels. Their 

physical dimensions and properties are given in Table 4. 

The values of the natural frequencies which were determined 

experimentally for the different end conditions are recorded in 

Tables 1(a, b) , 2(a, b), and 3(a, b). 

Tables 1 (a,b) are for hinged or simply supported sandwich beams. 

A set of data for two beams (Nos. 2 and 5) of equal core thickness 

(0. 25 in.) but of different core strength is presented in Table la. 

Beam No. 2 has a stronger core (Gxz = 11,700 ) than that of 

No. 5 
-G( xz = 4375). Similarly, Table 1-b is for beams Nos. 10 and 7, 

of equal core thickness but of different strength. The facings are 

0.016 in. thick in all the beams. 

In all the cases, we is the experimental value of the natural fre- 

quency. tam is obtained by solving the equation derived by Raville 

and Kimel (see sample calculations). (oh is calculated by using the 

homogeneous beam theory (see sample calculations) with stiffness 



Table 1-a. Frequencies of vibration of hinged beams Nos. 2 and 5. 

No. of 
mode: 
a 

Beam #2, Gxlis = 11,700; Style 125-35; Type 20 
(strum core) 

tah/4'e 
% deviation 
of expt. freq. 

Beam #5, Grg = 4375; Style 60-20; Type 40 
(weak core) 

we m wh % deviation 
4,1i/"'e 

of expt.freci. 
7 8 9 10 11 1 2 3 4 5 

1 
2 

3 

4 40 
5 61 

6 90 

7 114 
8 178 
9 201 
10 254 

11 335 
12 353 
13 423 
14 479 
15 532 

16 585 

17 644 
18 712 
19 768 
20 835 

21 897 
22 966 
23 1039 
24 1111 
25 1172 

26 1251 
27 1320 
28 1396 
29 1470 
30 1536 

31 1613 
32 1691 
33 1759 

34 1833 
35 1919 

2.571 
10.283 
23.137 
41.132 

65.613 64.269 1.0536 -7.562 

2.624 
10.496 
23.616 

41.986 
65.602 

92.547 83 94.467 1.1382 

125.967 1.145 128.581 

164.528 7.94 158 158.0 167.943 1.0629 
208.231 1.170 239 212.552 

250.487 251.075 1.012 1.383 273 235.5 26.410 13.736 

311.061 - 313 317.516 1.0144 

351.555 370.188 1.049 8.687 357 320.773 377.871 1.0585 10.147 

406.908 434.457 1.025 3.963 396 443.473 1.1199 

503.867 1.052 445 514.324 1.156 

525.835 578.419 1.087 1.158 498 458.759 590.423 1.186 7.879 

658.112 1.150 
742.946 1.1536 
832.923 1.1698 

789.821 928.041 1.2084 -1.389 
1028.300 1.2315 -3.071 

551 671.77 

597 758.366 
646 850.21 1.3161 
701 947.301 1.3514 
754 702.10 1049.641 1.3921 6.883 

1133.701 1.2639 810 1157.229 1.4287 

1244.243 1.2879 868 1270.06 1.4632 

1359.926 1.3089 923 1388.15 1.5039 

1480.751 1.333 971 1511.483 1.5566 

1606.72 1.371 4.81 1037 951.31 1640.064 1.5815 8.263 

1304.18 1737.827 1.389 -4.25 1093 1773.893 1.623 -10.93 

1874.077 1.4197 1151 1912.971 1.662 

2015.47 1.4437 1198 2057.296 1.7173 

2152.0 1.471 1268 2206.87 1.7404 

1613.441 2313.675 1.51 -5.041 1317 1200.0 2361.692 1.7932 8.883 

2470.49 1.532 1376 2521.76 1.8327 

2632.448 1.556 1431 2687.081 1.878 

2799.55 1.5916 1490 2857.647 1.9179 

2927.786 1.6213 1552 3033.462 1.955 

2005.839 3149.169 1.641 1608 3214.525 1.999 



Table 1-b. Frequencies of vibration of binged beams Nos. 10 and 7. 

No. of 

mode: 

Beam #10, Gxz = 9725; Style 125-35; Type 20 

(strong core) 
we w 

na wh wh/we devlatIon 

Beam #7, Gxz = 3500; Style 60-20; Type 40 
(weak core) 

% deviation of 
expt. freq. 

1 

2 
3 

4 

5 

6 

7 

8 

21 
22 
23 

1 2 3 4 5 6 7 3 9 10 11 

71 

310 

435 

595 
652 
758 
865 

957 
1062 
1097 
1223 

1354 

1464 
1579 
1677 

1794 
- 

1933 

277.87 

8.015 

32.420 
72.420 
129.676 

202.619 
291.771 
397.133 
518.705 

656.486 
810.476 

980.676 
1167.086 

1369.705 
1588.534 
1823.572 
2074.82 

2342.276 
2625.943 
2925.819 
3241.905 

3574.201 
3922.705 
4287.42 

1.823 

1.1924 

1.1033 
1.243 
1.294 
1.359 

1.4312 
1.4958 
1.6623 

1.7936 
1.8529 
1.9331 

1.9923 

2.2180 

10.362 

-6.0 

5.529 

-2.524 

-11.&94 

-3.3196 
-7.156 
-7.698 

182 

359 
445 

578 

746 
831 

927 
1025 
1143 
1211 

1311 

1443 

1639 

1738 
1817 
1895 

355.16 
433.621 

513.124 

754.76 

994.54 

1231.0 

1387.58 

3824.542 
4197.457 
4587.716 

8.6724 

34.690 
78.052 
138.759 

216.811 
312.208 
424.950 
555.036 

702.467 
867.243 
1049.364 
1248.830 

1465.641 
1699.80 
1951.297 
2220.142 

2506.33 
2809.867 
3130.75 
3468.973 

3824.54 
4197.457 
4587.716 

1.823 

1.1924 

1.1033 

1.243 
1.2938 

1.359 

1.4312 
1.4958 
1.6623 
1.833 

1.912 
1.947 

2.1165 

2.200 
2.3101 
2.4209 

1.069 
2.557 

11.224 

9.174 

12.988 

14.69 

15.339 



Table 2-a. Frequencies of vibration of free-free beams Nos. 2 and 5. 

No. of 

mode, 
m 

Beam #2, Cxs = 11,700, 

C = 0.25 
(strong core) 

Beam #5, Gra = 4375, 

C = 0.25 
.(weak core) 

we 

expt. 
44h 

homo. 
wh/ 

expt. 
1411 

homo. 
wh/we 

1 
2 

3 

4 

5.947 
16.397 

32.137 
53.125 

5 74.0 77.75 1.0506 79.359 

6 104.0 108.59 1.0441 110.841 
7 142.0 144.57 1.0181 147.569 
8 174.0 185.69 1.0672 189 189.544 
9 218.7 231.95 1.0606 236.77 

10 260.0 283.35 1.0898 289.235 

11 339.9 319.2 1.0648 333 346.951 1.0419 
12 386.6 401.58 1.0388 409.914 
13 423.5 468.40 1.1060 438 478.124 1.1493 
14 489.6 540.37 1.1104 551.581 
15 545.0 617.47 1.1330 524 630.284 1.2028 

16 592.0 699.71 1.1820 564 714.234 1.266 
17 661.8 787.10 1.1893 614 803.432 1.3085 
18 732.4 879.62 1.2010 669 897.876 1.342 
19 793.0 977.29 1.2324 722 997.567 1.3817 
20 860.3 1080.09 1.2555 780 1102.506 1.4135 

21 930.5 1188.03 1.277 834 1212.69 1.4541 
22 1062.0 1301.12 1.2252 - 1328.12 
23 1066.8 1419.34 1.3305 952 1448.80 1.5219 
24 1138.5 1542.71 1.3550 - 1574.73 
25 1211.7 1671.22 1.3792 1065 1705.90 1.602 

26 1277.0 1804.86 1.4134 1121 1842.32 1.6435 
27 1366.0 1943.65 1.4228 1174 1983.98 1.6899 
28 1435.0 2087.57 1.4547 2130.89 
29 1505.0 2236.63 1.4861 1292 2283.06 1.7671 
30 2390.85 2440.47 

31 1646.0 2550.19 1401 2603.12 1.858 

32 1718.0 2714.68 2771.02 - 

33 1791.0 2884.31 1504 2944.17 - 

34 1864.0 3059.1 3122.56 - 

35 1913.0 3238.98 1625 3306.21 - 

28 
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Table 2-b. Frequencies of vibration of free-free 
beams Nos. 10 and 7. 

No. of 

mode: 

m 

Beam #10, Gxz = 9425; 

(strong core) 

C = 1.0 Beam #7, Gxz = 3500; C = 1.00 

(weak core) 

we 
expt. 

""h 

horn°, 

wh /we we 

expt. 

""h 

homo. 
whi4e 

5 413 455.78 1. 242 262.153 1.o833 

6 316 366.32 1.1592 

7 413 455.78 1.1036 420 487.706 1.1368 

8 513 585.424 1.1411 512 626.4315 1.2235 

9 595 731.273 1.229 617 782.475 1.2681 

10 693 893.326 1.2891 695 955.903 1.3754 

11 808 1071.587 1.3262 789 1146.65 1.4533 

12 890 1266.05 1.4225 880 1354.74 1.5395 

13 1006 1476.73 1.4679 982 1580.166 1.6091 

14 1107.0 1703.60 1.5389 1082 1822.94 1.6848 

15 1239.6 1946.68 1.5704 1192 2083.05 1.7475 

16 1306 2205.97 1.6891 

17 - 2481.46 
18 



No. 

of 
mode 

Table 3-a. Frequencies of vibration of clamped beams Nos. 2 and 5. 

Bean Ivo. 2; Glu = 11,700; (strong core) 

we experimental wh 
whiwe 

Rubber:Plastio:Steel Homo Rubber Plastic Steel 

Beam No. 5; G.1= 4375; (weak core) 

w 
e 

experimental I wh whi4e 

ubber1Plaatiopteel Homo.beam Rubber Plastio Steel \R 

1 

2 

3 

9.10 
25.10 

49.19 

9.29 
25.62 
50.21 

4 81.32 95 83.01 
5 116 121.48 120 123.99 1.033 

6 169.67 168 173.19 1.031 
7 215 203 225.89 1.051 1.113 204 230.58 1.130 
8 290.14 296.16 
9 315 362.43 1.151 304 347 369.95 1.217 1.066 

10 387 442.74 1.144 364 451.93 1.242 

11 448 473 531.09 1.186 1.123 422 443 542.11 1.285 1.224 
481 12 517 544 627.47 1.214 1.153 506 640.49 1.332 1.266 

13 590 608 731,88 1.241 1.204 545 569 747.07 1.371 1.313 
14 666 688 844.32 1.268 1.227 610 631 861.84 1.413 1.366 
15 759 762 964.79 1.295 1.266 679 697 984.82 1.450 1.413 

16 837 1093.30 1.306 757 1115.99 1.474 
17 918 922 1229.84 1.340 1.334 826 1255.36 1.52 
18 1004 1374.41 1.369 903 1402.93 1.554 
19 1090 1527.01 1.401 969 1558.70 1.610 
20 1175 1687.64 1.436 1035 1722.66 1.664 

21 1263 1856.30 1.470 1111 1894.83 1.706 
22 1351 2033.00 1.505 1176 2075.19 1.765 
23 1442 2217.73 1.538 1249 2263.75 1,812 
24 1526 2410.48 1.580 1317 2460.51 1.868 
25 1616 2611.27 1.616 1378 1.934 

26 1710 2820.1 1.649 1455 2878.62 1.978 
27 1793 3036.95 1.694 1520 3099.98 2.039 
28 1882 3261.83 1.733 1597 3329.53 2.085 
29 1966 3494.74 1.778 1657 3567.28 2.153 
30 3535.00 1748 3813.23 2.182 

31 2149 3984.68 1.854 1782 4067.37 2.282 
32 1875 4329.73 2.310 
33 1926 4600.26 2.389 
34 4879.00 
35 2125 5165.95 2.431 



Table 3-1),.. Frequencies of vibration of clamped beams Nos. 10 and 7. 

No. 

of 

mode 
m 

Beam No. 10; 
xz = 972; (strong core) 

w 
e 

experimental 

RubberPlasticiSteel Homo.beam 

wh/we 

Rubber Plastic Steel 

Ream No. 7; Gxz 
= 3500; (weak core 

w 
e 

experimental 
4/11/63e 

RubberiPlasticiSteel Homo.beam Rubber Plastic Steel 

3 

4 
5 

6 

7 
8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

131 155.09 1.1.-4 141 165.95 
218 256.38 1.176 248 233 274.33 
321 375 382.98 1.193 1.021 325 409.81 

41 534.91 1.277 422 572.37 

526 555 712.16 1.36 1.283 554 547 762.04 
642 914.73 1.425 660 978.79 
765 784 1142.62 1.494 1.457 760 1222.64 

891 1395.82 1.566 865 1493.59 

1027 1047 1674.36 1.63 1.599 976 1791.63 

1146 1978.21 1.726 1095 1106 2116.76 

1290 2307.39 1.789 1205 2468.99 

1452 2661.88 1.833 1331 2848030 

1570 3041.70 1.937 1414 3254.70 

1667 3446.84 2.067 1591 3668.20 

1836 3877.29 2.112 1692 4148.86 

1941 4333.1 2.232 1835 4636.57 

2030 4814.18 2.371 1942 5151.37 

1.177 
1.106 1.18 
1.261 

1.356 

1.375 1.40 
1.48 

1.61 
1.73 

1.84 
1.93 

2.05 
2.14 

2.302 
2.318 
2.450 
2.530 
2.653 



Table 4. Dimensions and physical properties of test beams. 

Beam Stiffness deter- 
No. mined by static 

bending test 
EI lb-in.2 

Face thick- 
ness 

f 
in. 

Core thick- 
ness 

in. 

Supplied by 
mfg. 

Gxs 

Determined 
by vibration 
test 

Gxm 

Total wt. 
of panel 

lb. 

Style and 
Type 

2 36,475 .016 0.25 11,700 11,540 3.040 125-35; 20 

5 35,906 .016 0.25 4,375 6,630 2.875 60-20; 40 

7 434,760 .016 1.00 3,500 6,870 3.185 60-20; 40 

10 511,990 .016 1.00 9,725 9,220 4.300 125-35; 20 

Modulus of Elasticity of aluminum facings, E = 10.3 x 10 
6 

psi. 
Poisson's Ratio = 0.33 

Length of the sandwich panel = 120 in. 
Width of the sandwich panel = 6 in. 



determined experimentally using static bending tests. 

Tables 2(a,b) and 3(a,b) are for free and clamped end conditions, 

respectively. For these two conditions, there are no values for 

theoretical, natural frequencies available. 

(4).L. 
Z 11 The ratios ( 

h 
) 

2 and (- are calculated and 

2 
1 - we 

and are plotted against the number 

of modes on log log graph paper. This representation was selected 

for the following reasons: 

1. It exhibits the properties of the Raville-Kimel theory. 

2. Graphical representation is a good way to detect 
scattering and trends in the observed data. 

According to the theory, the natural frequencies of the simply 

supported sandwich beam are given by the following equation: 

where, 

z - m4 Tr4 E 
(a m a4(1 -V 2 ) p 

S = 
icff' E 

IT 

+m2 s 

a2(f +f' ) Gxz(1 - V 2 ) 

+ I ) 

Those of equivalent homogeneous beams are given by, 

na4 714 Eh ih 
wz h a4 p 

where, Ih = moment of inertia of the cross-section of 
equivalent homogeneous beam, 

(a) 

(b) 

(c) 

33 
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and Eh = modulus of elasticity of the equivalent 
homogeneous beam. 

The parameter s in (a) represents the effect of shear in the core 

of the sandwich. If s is set to zero, equations (a) and (c) become 

identical. Therefore, taking the ratio of (c) to (a) and considering 

Eh = , gives 
(1 -v2) 

_ 
IT 

+ I ). m I h 1+m2 s F 

since, Th. IT and IF << Ih for usual panels, 

troz 
Goz 

m l+m2 s 

Taking the logarithm of both sides and simplifying, gives 

log 2 log m + log s. 

(d) 

(e) 

(f) 

(f) is the equation of a straight line ( y = mx + c) on log log graph 

paper with a slope 2, and an intercept log s. 

If the experimental values toe are to verify the theory, they 

should satisfy equation (f). Therefore, the theoretical and observed 

values of natural frequencies were substituted in equation (f) and the 

results plotted on log log graph paper (Fig. 3 (a, b) ). 

As no theory exists for free-free and clamped beams, only the 

experimental data is presented in Figs. 4(a,b) and 5(a,b). 

Columns 5 and 10 in Tables 1(a,b) for hinged beams show the per- 
centage deviation of experimental values of natural frequencies from 















the theoretical ones. 

Sample Calculations 

I. To find the natural frequencies of the simply supported, 

homogeneous beam. 

The natural frequency is obtained from the equation: 

m 
ash = --2 

gE Ih 
- c 

E Ih 

714 

m2 n2 w 4 w 9 w where c = - , , , 

4 

g = 386 in. per sec., 

EIh = Flexural stiffness in lb-in.2, 

7 = Beam weight in pounds per inch, 

= Beam length in inches. 

Considering beam No. 2 as a homogeneous beam, at 

is determined by following substitutions in equation (g): 

Elh = 36,475 lb-in.2 (determined experimentally), 

m = 15, number of mode, 

7 = .02535 lb per in. 

= 120 inches. 

Therefore, 

and 
411 

( 1 5 ) 2 ( , r ) 2 7(386) (36,475) 
2 7r (.02535)(120)4 

578.419 c.p.s. 

(g) 

41 
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II. To determine theoretical natural frequencies of simply 

supported sandwich beam. 

From equation (a), for Beam No. 2, 

m4 ,n4 E IT 
+ IF ) 

m f4 (1 -v 
6g 

1 +mz s 

where IT = 
f f' (c + f+ )2 and p - 7 
f+f' 2 6 g 

For f = f', 

IT f.)2, .016 (0.25 + 0.016)2 = 5.6605 x 10-4 
2 

and 

f3 + f' 3 f3 0 °61)3 
= 

12 
- 

6 
- 0.682666 x 10-6 

E = 10.3 x 106 p.s.i. ; v = 0.33 

7 = 0.02535 lb per in. ; t = 120 in., 

cf c f 

/2(f +f' ) G xz (1 -v2) 2 .e2 G xz (1 - v2) 

G xz is given by the manufacturer 

where 

(0. 25)(0. 016) (10.3 x 106) 
= 1.35423 x 10-3 . 

2 (120)2 (11,700 (0.8911) 

On substitution of above values, and on further simplification 

(15)4 n4 (10.3 x 106)(6)(386) 5.6605 x 10-4 
+ .6821 x 10-6 

(120)6 (.8911)(0.02535) _1+(15)2(1.35 x 10-') 



Therefore, 

= m 

III. 

similarly, 

525.835 c.p.s. 

57.419 8 
)2 

)2 

=(1.1)2 
= 1.21, 

abh 
( ) 2 

2 

= ( 

= 

m 

, "11 

5 21 . 8 35 

578.419 
= (1.0873)2 

= 1.1821 
e 

532 

IV. Per cent deviation of experimental values of natural frequencies 

from the theoretical ones. 

(.4) - w 
Per cent deviation - ( ew m )(100) 

e 

= ( 
532- 525.835) 

) 1.158 per cent 

V. To find the value of s and G for Beam No. 2. xz 

Rewriting equation (f) , 

log 
F6)11 )2 _ = 2 log m + log s. 

For any mode number, say m = 20, it is seen from the curve 

for Beam No. 2 on Fig. 3a, that 

D) z - = 0 . 5 5 , 

(1) 
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on substitution in (f) 

log (0. 55) = 2 log (20) + log s, 

1.7404 = 2(1.3060) + log s. 

Therefore, 

log s =7.1373 and s = 1.372 x 10-3 

now, since f = f' 

therefore, 

Itzc f s = 
212 Gxz(1 - v2) 

G = 
Itzcf 

xz 212 s (1-142) 

(m2)(. 25) (. 016) (10.3 x 10') 
2(14, 400) (1.372 x 10-3)(.8911) 

= 11,540 

44 
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DISCUSSION OF TEST RESULTS 

Graphical interpretation of the tests and calculated results are 

shown in Figs. 3 to 5 inclusive, for three different end conditions. 

Examination of the percentage deviation of the theoretical values from 

the observed values (in cols. 5 and 10 in table 1 (a,b), and Figs. 3(a,b), 

shows that the agreement between calculated and observed values is 

reasonable. A maximum deviation of 15 per cent was found at one 

calculated place; the majority of the results agreed within 10 per cent. 

The deviation of the calculated results from observed ones can be 

explained if it is considered that the natural frequencies of given simply 

supported beams, of constant dimensions and physical properties depend 

on the value of the core parameter s, which in turn is a function of 

G xz (modulus of rigidity in x-z plane). In other words, the accuracy 

of s depends upon the .accuracy with which the value of Gxz is 

determined. 

The determination of the value of G xz required a relatively com- 

plicated test set-up, and in view of the lack of time to perform such a 

test, the values of Gxz which were reported by the manufacturer were 

used in calculating the natural frequencies at various modes. The theo- 

retical curves in Figs. 3a and 3b were plotted from these values. 

Therefore, no estimate of the accuracy of the values of s, and hence 

, can be given. However, the theoretical and experimental curves are 

both asymptotic to a straight line with a slope 2 and an intercept log s. 

In view of this fact, straight lines are drawn through the plotted experi- 

mental results and the intercepts log s, and hence the values of are e 
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determined and listed in Table 4. These values are lower in case of 

strong core panels, and higher in weak core panels than the respective 

values reported by the manufacturer. 

Smaller and larger values (because of different G ) of intercept xz 
log's, caused the shifting up and down of the theoretical curve of the 

weak and strong core beams, respectively. This implies that G can xz 
be determined by vibration tests without destroying the panels, without 

having a complicated experimental set-up, and perhaps with better 

accuracy. 

Further examination of the percentage deviations in Tables 1(a,b) 

shows that the deviations between the calculated and observed values are 

mostly greater in case of beams with a weak core than those in beams 

with a strong core. These discrepancies are also due to higher dif- 

ferences in the values (between those reported by manufacturer and 

those determined from vibration tests) of G in case of weak core beams xz 
than those in strong core beams. 

It is difficult to get beyond 35 modes in case of thin beams, partly 

because at higher modes the limiting factor is the force generating 

capacity of the vibration exciter, that is, the acceleration at such high 

frequencies is high, resulting in extremely small amplitudes to which 

the beam does not respond, and partly because of the fact that the 

Chladni pattern becomes smaller than the length between the other two 

free edges. Vibrations of this type are not accounted for by the theory. 

Similarly, modes beyond 23 cannot be obtained for thick beams 

because their relatively higher stiffness requires higher frequencies for 
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resonance and the acceleration reached the maximum limit of the vibrator. 

CONCLUSIONS 

Conclusions derived from the limited number of tests performed 

are as follows: 

The theory for natural frequencies of vibration of sandwich panels, 

simply supported on two opposite ends is verified. 

The experiments indicate that theoretical formulas, similar to 

those of the Raville-Kimel theory for simply supported ends, exist for 

the free-free and clamped end sandwich panels. 

Assuming that the theory is valid, the testing procedure can be 

used as a non-destructive method for the determination G . When xz 
used this way, it yields values for Gxz which are consistent with 

those obtained by direct static methods. 



48 

ACKNOWLEDGMENTS 

The author is highly grateful to Dr. Philip G. Kirmser and 

Dr. M. E. Ravi lle for their encouragement, advice, and counsel 

during the course of the research work. He wishes to express his 

appreciation to Dr. W. R. Kimel and Dr. R. G. Nevins for their 

encouragement and kind help on many occasions. 

Grateful acknowledgment is also due to Mr. Marion W. Davis, 

Department of Applied Mechanics, and Mr. Wallace Myer, a student 

colleague, for their valuable and sincere help with the equipment. 



49 

NOMENCLATURE 

x, y, z Rectangular co-ordinates (Fig. I) 

t time co-ordinate 

a length of panel in direction of loading, (Fig. 1) 

c thickness of core, (Fig. I) 

f, ft thickness of right and left facings, respectively, 
(Fig. I) 

E Modulus of Elasticity of facings 

Poisson's ratio of facings 

Ec Modulus of Elasticity of core 

GXZ Modulus of Rigidity of core in xz plane 

11 W 
C C 

w 

, 7 zc xzc 
, e Ex' txM 

E'xB 

displacements of core in x and z directions, 
respectively 

displacement in z direction of any point in 
sandwich 

normal and shear strains, respectively in core 

membrane strains in right and left facings, 
respectively 

bending strains in right and left facings, respectively 

CT , T normal and shear stress, respectively, in core 
(Fig. I) Z xz 

Vc 

V' MF' MF 

V' BF' BF 

elastic energy per unit width of core 

elastic energy per unit width associated with membrane 
strains in right and left facings, respectively 

elastic energy per unit width associated with bending 
strains in right and left facings, respectively 

total elastic energy per unit width of panel 

T kinetic energy per unit width of panel 



p 

50 

mass density of composite panel per unit length 
and width 

6 mass density of core per unit volume 

m 

e 

theoretical natural frequency of vibration of 
panel, radians per unit time 

experimental (observed) natural frequency of 
vibration of panel radians per unit time 

4411 
natural frequency of vibration of equivalent homo- 
geneous beam, radians per unit time 

m integer 

A m ,B m,C m,F m configuration parameters 

f3 1) 3 IF 
12 

f ft f + fr z IT (c + ) 

7 weight of the beam, pounds per inch 

Tra c f ft 
az(f f' ) G (1 - V 2 ) 

XZ 
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APPENDICES 



APPENDICES 

To find the nodes and antinodes of a beam: 

Let 

where 

X =c 
1 3 4 

sin fax + c cos fax + c sin px + c cosh fax 

7 (I -Erg- ( (2) P. 325) 

Equation (1) represents the deflection curve of a beam performing 

normal mode vibration. 

The constants c1, ca, c3 and c4 can be determined from end 

conditions. 

1. Beam with free-free ends: 

On substitution of the end conditions, equation (1) reduces 

to the followings 

X = cosh /3x - sinh 13x + cos 13x. 

(a) At nodal positions, X = 0; therefore, 

cosh fax - sinh /3 x - sin [3x + cos fax= 0. 

For even modes, the nodal position is always located at 

x = 0.5 for a beam of unit length, where x is the distance of 

the node from either of the ends. 

For 6th mode, 

Since, 13 = 20.42033 and x = 0.5 ( (2) p. 336) 

13x = 10.21016 radians. 
10.21016 
29.845 = 0.342 Therefore, x - 

Table 5 presents the nodal positions for various modes. 

(1) 
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(b) To find antinodal positions or positions of maximum amplitude 

for beams with free ends (for use in placing the vibration exciter). 

Differentiate (2) with respect to x, gives 

dX 
dx = (sinh Px - cosh (3x - sin p x - cos (3x). (4) 

dX At antinode, - 0, therefore, (4) becomes dx 

sinh px - cosh Px - sin j3x - cos Px = 0. 

In the case of odd numbered modes, antinode always occurs 

at x = 0.5, therefore, for 9th mode, since 13 = 29.845 and x = 0.5 

then px = 14.923. 

So, for 16th mode, since 0 = 51.836 and 13x = 14.923 from which 

14.923 x - - .2885 51.836 

2. Beam with clamped ends: 

In this case, only antinodal positions are needed to place 

the vibration exciter and they are the same as free-free end beam. 

3. Beam with simply supported ends: 

In this case, also, only antinodal positions are needed to 

place the vibration exciter. On substituting the end conditions, 

equation (1) reduces to X = D sin i3x. 

Differentiating (6) gives 

dX 
= D /3 cos Px. 

(5) 
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For antinodal positions, therefore, 

cos g x = 0. 

Since, the frequency equation in this case is 

sin g = 0 

The values of g for unit length are 

2Tr, 31-r, 41T, etc. 

The antinode always occurs at x = 0.5 for odd numbered nodes. 

For 4th mode, since f3 = 4Trtherefore x = 
8 

-3 to satisfy equation (8). 



Table 5. Nodal and antinodal positions on the beam of unit length. 

No. 

of 

modes 

For free-free ends beam Clamped ends beam Hinged ends beam 
nodal posi- 
tion for 
strings 

antinodal posi- 
tion for vibra- 
tion exciter 

position for vibra- 
tion exciter 

position for 
vibration 
exciter 

1 0.21,4 0.5 0.5 0.5 

2 .132 .308 .308 .25 

3 .356 .5 .5 .5 

4 .277 .389 .389 .375 

5 .227 .5 .5 .5 

6 .192 .423 .423 .5833 
7 .3 .5 .5 .5 
8 .265 .441 .441 .5625 

9 .342 .5 .5 .5 
10 .309 .454 .454 .45 

11 .283 .5 .5 .5 

12 .26 .321 .381 .5416 
13 .315 .5 .5 .5 

14 .293 .466 .466 .5357 
15 .274 .5 .5 .5 

16 .318 .41 .41 .5313 

17 .30 .5 .5 .5 

18 .284 .474 .474 .5278 
19 .269 .5 .5 .5 

20 .256 .428 .428 .525 

21 .245 .5 .5 .5 

22 .278 .433 .433 .5227 

23 .266 .50 .50 .5 

24 .245 .481 .481 .5218 

25 .284 .5 .50 .5 

26 .274 .114 .1444 .5193 

27 .264 .50 .50 .5 

28 .255 .413 .413 .5179 

29 .280 .50 .50 .5 

30 .271 .484 .484 .5167 

31 .262 .50 .50 .5 

32 .254 .454 .454 .5156 

33 .276 .500 .500 .5 

34 .268 .428 .428 .5147 

35 .260 .50 .50 .5 
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Much work of both theoretical and experimental nature has been done 

in the field of statics of sandwich structures, but, to the knowledge of 

the author, very little work has been done previously in the dynamics 

field. 

In view of these facts, Raville and Kimel presented a theoretical 

analysis for calculating the natural frequencies of vibration of sand- 

wich panels, simply supported at the ends and constructed with isotropic 

facings and orthotropic cores. 

This thesis presents an experimental verification of the theory and 

reports the development of vibration techniques for future investi- 

gations in this field. 

Vibration tests were conducted for three end conditions, 

1. Free-free, 

2. Simply supported, and 

3. Fixed-fixed. 

In all cases the natural frequencies wm, derived from the Raville-Kimel 

theory where applicable, (oh derived from the homogeneous beam 

theory, and wc, obtained experimentally, were determined. The 

Raville-Kimel theory predicts that certain functions of these quantities 

should be asymptotic to straight lines when plotted against the mode num- 

ber on log-log paper. The slope of the straight line should be two, and 

the intercept determined by the value of Gxz, the shear modulus of the 

core. 

The experimental data shows this character, and the value of G xz 

obtained from the intercept method is approximately that obtained from 



2 

static tests as reported by the manufacturer of the sandwich material 

tested. 

It is concluded that the Raville-Kimel theory is verified, and 

that it can be used in combination with the vibration tests described 

here as a non-destructive method for determination of G . xz 

Although there is no theory at present for the free-free and 

fixed-fixed end conditions, analysis of the data shows that theoretical 

results similar to that for the simply supported beams should exist. 


