
LOAD MANAGEMENT CONTROLS FOR SURFACE IRRIGATION

by

Michael T. Lasch

B.S., Michigan State University, 1985

A MASTER'S THESIS

submitted In partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

ACKNOWLEDGEMENTS A112D7 aOflfiflE

This work is dedicated to my family which provided

unfailing support in my endeavors.

I would like to express my gratitude to Dr. Harry

Manges, without whose guidance and encouragement this pro-

ject would have never been completed. Thanks are extended

to Steve Young and Doris Grosh for serving on my committee.

Their constructive criticisms have been incorporated

throughout my work.

My thanks are also extended to Phil Barnes and the

staff of the Silver Lake Experiment Station for providing a

platform for my research.

For the funding of this project, I thank the Agricul-

tural Experiment Station and Kaw Valley Electric.

I would like to express my gratitude to the faculty,

staff, and fellow graduate students that made my work in

Manhattan pleasant. Mike Schwarz and Sheri Shanks deserve

special mention. My gratitude extends to Anne Moore for her

hours of editing.

TABLE OF CONTENTS

Page

INTRODUCTION 1

LITERATURE REVIEW 3

PROBLEM DESCRIPTION 7

SYSTEM CONSIDERATIONS 15

MATERIALS AND EQUIPMENT 17

Field Hardware 17

Computer Description 17

Carrier Current System 21

SOFTWARE CONSIDERATIONS 25

PROGRAM DESCRIPTION 27

DESCRIPTION OF INTERFACE BOARD 32

RESULTS AND DISCUSSION 3H

System Operation 38

Relationship between Temperature and Load 40

SUMMARY 4 6

SUGGESTIONS FOR FURTHER RESEARCH 49

Incorporation of Advance Detection 49

Remote Communication with the Controller 49

On-Field Scheduling 50

Multi-Tasking Operating System 50

Connection to Kaw Valley Electric 50

REFERENCES 51

APPENDIX A PORT FUNCTIONS ON AN IBM PC COMPUTER 5 3

APPEiNDIX B ADVANCE DETECTION 55

APPENDIX C SUMMARY OF CONTROL PROGRAM FUNCTIONS 69

APPENDIX D CONTROL PROGRAM FUNCTIONS LISTING 81

IV

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5A.

FIGURE 5B.

FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE 9.

FIGURE lOA.

FIGURE lOB,

FIGURE 11

.

FIGURE 12.

FIGURE 13.

FIGURE 14.

FIGURE 15.

FIGURE lb.

FIGURE 17.

TABLE OF FIGURES

Page

Load Distribution with no Load Management.... 8

Load Distribution with Load Management 9

Income Potential Lost Due to Over-Control of

Loads 14

Schematic of the Field and Test System 18

Schematic of the Bladder Valve in the Open
Position 19

Schematic of the Bladder Valve in the Clcsed
Position 19

Schematic of the Carrier Current System 22

Surge Controller Algoritnm 28

Board Layout - Surge Controller 33

TTL Voltage Levels 34

556 Set Up as a One-Shot 36

Function of a One-Shot 36

Dramatic Increase in Demand wjtn no
Load Management 41

Constrained Increase in Demand Due to
Load Management 42

Electric Load Dependence on Temperature 43

Electric Load Dependence on Temperature
Kiro Substation 44

Theory of Operation - Advance Detector 57

Constant Current Source 62

Sensor Schematic 65

INTRODUCTION

Surface irrigation typically suffers from low effi-

ciency in water usage. Efficiency refers to the the amount

of water applied to the field compared to the amount of

water that moves into the root zone of the crop. A solution

to the problem of low efficiency is to alter the method of

water application to the field.

The typical method of surface irrigation is to apply

water to a set of furrows for an amount of time that fits

the farmer's work schedule. This usually results in over-

application of water. Previously, costs of pumping did lit-

tle to induce the farmer to conserve water or energy.

Recently, increased energy prices and decreased grain

prices have prompted farmers to search for alternatives to

reduce costs.

One alternative is the implementation of surge irriga-

tion. Surge irrigation is the intermittent application of

water to land. The resulting flow is in the form of surges.

Surge offers reduction in water advance times and a reduced

variation in the infiltration opportunity time over the

field (Podmore et al . , 1983). The primary drawback to surge

irrigation is the regulation of intermittent water applica-

tion. The repetitive nature of controlling surge lends

itself to automation.

In an effort to reduce pumping costs, many farmers

served by the Kaw Valley Electric Cooperative near Topeka

,

Kansas, participated in a load management program. Rate

reductions applied only if the farmer subjected his irriga-

tion pumps to power interruption.

Load management refers to the process of temporarily

interrupting service to a customer in an effort to reduce

the utility's service demand. If a farmer participated in

the load management program in 1986, his connected hor-

sepower charge was cut in half. Due to the success of Kaw

Valley's load management program, the connect charge has

been eliminated for irrigators for the summer of 1987.

Kaw Valley implements load management around the clock

as needed. The random power interruption does interfere

with a farmer's irrigation schedule, regardless of the

method of irrigation.

The emphasis of this research was to design an irriga-

tion controller that would insure that the desired quantity

of water was applied to a field regardless of the incidence

of power interruption. The controller allows the farmer to

substitute technology for his presence on the field. The

controller is not intended as a substitute for management

skills, but rather allows the farmer to make better use of

his time.

LITERATURE REVIEW

Considerable work has been done on comparing the effi-

ciencies of surge and continuous irrigation. Continuous

irrigation is a term that applies to the continuous applica-

tion of water to a field until the desired infiltration is

achieved. Izuno and Podmore (1984) made extensive comparis-

ons of application efficiency between surge and continuous

irrigation. They varied the timing of water application,

soil types, and length of fields. Their studies suggested

that surge irrigation resulted in a more uniform depth of

irrigation, since there is less variation in the opportunity

for infiltration. Izuno and Podmore (1984) constructed

empirical equations based on soil properties, slope of the

field, and length of run to determine surge timing.

Application efficiency may be improved if cutback irri-

gation is instituted after the water crosses the field. Cut-

back involves reducing the inflow into the furrows. This

reduces the amount of water that runs off the field, but

maintains the potential for infiltration. Cutback irriga-

tion capabilities were omitted from the initial design of

the controller.

Heerman et al . (1983) designed an integrated irrigation

control system which combined pump control, irrigation

scheduling, and load control to reduce peak electrical

demand. The system controls irrigation for fourteen center

pivots. As a management aid, the system estimated soil

moisture based on: weather, crop, possibility of service

interruption, and soil properties. The farmer used

estimated soil moisture as a basis for determining the order

in which his fields were to be irrigated. Power to the

pumps was dropped in reverse order of the famer ' s priority.

The software used to implement their system is described by

Buchleiter et al . (1983).

There are several differences between the circumstances

in which the system of Heerman et al . and this controller

operate. The loads in their system were all on the same

load management address. The farmer was requested to drop

enough of his load to satisfy the utility, but he was not

obligated to drop more than one-half of his total load.

This gave the farmer flexibility to irrigate a particular

field by changing his field priority schedule. In Kaw

Valley's service area, an irrigation pump may not have the

same address as a nearby pump. Therefore, the farmers were

not able to choose which pump would be interrupted. If a

pump's power was to be interrupted, the farmer had no oppor-

tunity to irrigate the field until the power was restored.

Another significant difference was that the system of

Heerman et al . scheduled center pivots. When power to a

center pivot is interrupted, the pivot stops at its current

position. When power is restored, the center pivot contin-

ues as if the interruption did not occur. The depth of

water applied by a center pivot is controlled mechanically;

it is not time dependent. A surge irrigation system must

save its schedule and resume at the point of its interrup-

tion. The controller must be sensitive to the timed

schedule but independent of the length of the power interr-

uption.

Sauer and James (1985) developed a program to modify

daily irrigation schedules which reduced and smoothed power

requirements on a large farm using center pivots. The pro-

gram shifted irrigation schedules to avoid operating during

peak load conditions. The local utility's rate structure

was such that their system reduced power bills by nearly 10S8

without affecting yields.

Automation of irrigation has not been limited to center

pivot systems. Podmore et al . (1983) conducted tests to

evaluate surge irrigation as applied to furrow irrigated

corn. To decrease the amount of labor required to conduct

surge irrigation, the Investigators developed automated

techniques to control the water flow. Pneumatically

operated pillow valves were used to regulate the flow of

water. The pillow valves required a source of compressed

air at the field.

Weckler et al . (1984) determined that surge irrigation

could be used to reduce furrow run-off. A microprocessor-

based controller was developed to implement the surge

schedule. The controller was based on the Z-80 and

programmed in assembly language. Pneumatically driven

valves were used to control the application of the water.

The possibility of eliminating pneumatically controlled

valves was demonstrated by Bradbury and Manges (1984). They

constructed a surge irrigation system which used wire

telemetry to control bladder valves. Bladder valves make

use of the kinetic energy of the water in the pipe to switch

the valves. The state of the valve was controlled by a

solenoid. The need for a compressed air source on the field

was eliminated. Their system was controlled by a Synertek

SYM-1 single board computer and was later upgraded to a Com-

modore VIC-20. This design did not account for the possi-

bility of load management conditions.

PROBLEM DESCRIPTION

Kaw Valley purchases all of its power from Kansas Power

and Light. Kaw Valley's purchase agreement requires sub-

stantial penalties for establishing a new demand peak. Kaw

Valley is charged eighty percent of their peak demand each

month. This amount is in addition to the charge for the

actual power consumed. The peak charges are used by the

generating utility to offset the capital costs incurred in

establishing facilities. This means it is not locked into

peak charges established several years earlier. The possi-

bility of reducing the demand peak charge gives Kaw Valley

incentive to implement load management.

If their peak demand is higher than the average con-

sumption, significant savings could be realized by reducing

the peaks. In 1985, Kaw Valley Electric implemented a load

management program in an effort to reduce costs. In the

1986 calendar year, Kaw Valley saved $204,000 (Winnerling,

1986) as a result of load management.

Load management provides an opportunity to shift the

service demand to a different part of the day. In this

instance, irrigation pumps are taken out of service during

peak demand periods (afternoon) and are returned to service

during periods of less demand (nighttime). The shifting of

demand is apparent by comparing Figures 1 and 2. No load

management was instituted on the day shown in Figure 1.

D
O

IP

o

4^

c

cr

c

^ o u

u

C CD

O

rN- r-,

c 3
IT)

IT
03

Q
Qj

JZ

O
X

s^iene6at*J ui peo"]

c
®
E

O)
ce

c

IE

o
CO

o

o
c

c
o

£1

(0

a
o
(0

o

iiJ

D
O
iZ

"D

O

IP
in

o

c

6
0/

C
03

Of -D

<=: u

ID

u

^ vD U
L_ CD

IT
ano 2^

nj nj

"3 3-

3

IT

O

D
OX

sa^enebeui ui peon

c
o
E
®

CD

C
CO

CO

o

c
o

(0

Q
o
CO

o

CM

HI

CO.

o

10

Figure 2 shows a day in which load management was imple-

mented from about noon to until midnight. The increases in

demand are less dramatic in Figure 2, since load management

was used to reduce service demand.

The ratio of average load to peak load is a utility's

load factor. Before load control was instituted, Kaw Valley

had a load factor of 39 %. In 1985, the load factor was

increased to 47 %. In the first year of operation, load

management was instituted only in the summer. Although, Kaw

Valley monitors peak loads during all seasons, summer

weather had the potential to cause peak conditions due to

irrigation and cooling loads.

The different types of loads managed on Kaw Valley's

grid were: irrigation pumps, residential air conditioners

and water heaters, a radio station, and commercial customer

air conditioners. Kaw Valley divided its service area into

seven zones. The loads for each zone are managed indepen-

dently. Each zone is fed from a different point on KPL '

s

grid. Two zones serve all the irrigation pumps on the Kaw

Valley system.

Kaw Valley installed a Westinghouse EMETCOM load

management system. The system was capable of providing

one-way and two-way communication with the central office.

The system monitors the substation loads every fifteen

minutes. The two way communication is used to monitor loads

at commercial sites and to perform remote metering; however.

11

the expense of the two-way communication devices prevents

their installation at all load management sites.

The EMETCOM system is controlled by a MicrovaxII mini-

computer. The Microvax communicates with smart controllers

at each substation via a microwave link. The controllers

perform load calculations and switch capacitor banks into

service as needed. The smart controllers reduce the load on

the Microvax. The status of the substation is transmitted

to the central office where the load is evaluated. If a

substation warrants load management, the Microvax issues a

command to drop some loads. The loads on a substation are

split into several addresses which allows the cooperative to

shave its load incrementally.

Irrigation pumps are good targets for load management.

A typical irrigation pump in Kaw Valley's service area con-

sumes the same amount of power as nearly sixty home air con-

ditioners. In 1986, thirty eight irrigation pumps were

included in the utility's load management program. Thus,

irrigation pumps are good targets for load management since

they represent a large load and a small customer base.

Crops are insensitive to the time of water application.

The same cannot be said of air conditioning demands. By

interrupting service to irrigators during the day, the

cooperative decreases peak demand and shifts irrigation

demand to a time when the total demand is low. Due to the

cooperative's purchase agreement, the managers would like to

12

have the demand at 80% of peak conditions, since they pay

for their peak consumption. Ideally, the cooperative would

smooth their power demand without setting new peaks.

However, irrigation loads can be interrupted only to a

limited extent. The time required to irrigate a field is

dependent on the size of the field, the capacity of the

well, the capacity of the soil, and the efficiency of the

water application. If a farmer's yield will be affected

because he is denied the opportunity to irrigate his. crop,

the farmer is less likely to participate in a load manage-

ment program. The cooperative then loses the capability to

manage his power demands

.

The performance of irrigation pumps was measured in the

Kaw Valley service area by Black and Barnes (1986). The

average performance of the measured wells was fifty seven

percent of the Nebraska pumping plant performance criteria.

Improving the well efficiency would make the farmer's crop

less susceptible to load management, since less time would

be required to apply the same amount of water.

Load management has prompted farmers to monitor the

soil moisture level more closely. The occurrence of load

management increased the number of calendar days required to

irrigate a field. If the soil moisture levels fell too low

and load management occurred, the yield would suffer because

of water stress. Barnes et al . (1986) demonstrated that

irrigation scheduling by estimating soil moisture depletion

13

made it possible to avoid yield losses from the load manage-

ment implementation.

Kaw Valley's load management system is limited by a

lack of two way communication between the loads and the cen-

tral office. Most of the loads on the Kaw Valley grid are

controlled one-way devices. The central office can switch

the power to the loads. Two way devices would allow the

central office to monitor the status and demand of a load.

Two-way devices were not installed at irrigation sites

because of high initial cost.

With the use of one-way load control, Kaw Valley cannot

determine the change in load resulting from a load manage-

ment command. Since the change in load must be estimated,

Kaw Valley over-controls the loads so a peak does not result

from insufficient load management. This led to the utility

realizing less than full income potential. The utility must

pay for its peak demand, so it could reduce costs if it sold

power to the peak. Over control of the demand occurred on

July 21, 1986 (Figure 3). The peak demand for the day was

less than had been established on June 27, 1986. However,

the managers would rather over-control the loads, rather

than set a new pe-ak.

14

CO

"O
CB

o

v£) o
00 00
0^ c^
-" -^

^^ fN.

fU ru

:? 0;
^^ c
3 J
-) -1

o

o

u
o
!^ 4^

^ u
0;

r
o U

O
CJ

0/

00

—

<

—J
^^

i^ OJ ^
0) 3

F
^ 3 e

o 01

CO

3^

D
OX

oo
3-

ooo
oo oo

nj

oo
00

si^enebeui ui'peo"]

o

o

o
O

I

o
>
O

o
(0

o

0)

o
QL

O
E
o
o

CO

UJ

o
iZ

15

SYSTEM CONSIDERATIONS

Flexibility of the irrigation controller was a high

priority in the design. The controller had to be capable of

acting as a surge controller, as well as a continuous irri-

gation controller. An irrigation schedule was selected

irrespective of the possibility of load management.

If load management was instituted after irrigation was

started, the controller logged the power interruption. When

power was restored, the controller resumed the irrigation

schedule" as if load management had never occurred. This

insured that the desired amount of water was applied to the

field. The controller continued in this fashion until the

irrigation schedule was completed, then the controller tog-

gled a relay to turn the pump off.

The controller was capable of addressing six valves.

If part of the field was to be irrigated, valves could be

left out of the irrigation sequence. The user programmed

the amount of time that water flowed through each valve. If

the user alternated the water application between two

valves, surge irrigation would be implemented. The program

allowed a valve to be actuated up to twelve times.

Flow through a valve could be from minutes to days. A

very long set time would in effect be continuous irrigation.

The operating sequence of the valves was at the user's dis-

cretion; the controller did not necessarily cause valves one

16

and two to be actuated before valves three and four. The

controller did not force the operator to open valves that

were side by side.

A prime consideration was that the controller be easy

to program. The controller prompted the user for informa-

tion, and was designed to then operate without further user

assistance; the user could leave the field. As mentioned

previously, the controller cut power to the pump when the

schedule was completed. However, a facility to interrupt

the progress of the irrigation sequence was included. This

made it possible to stop the program if conditions war-

ranted. A suspend command was included for user conveni-

ence. The suspend command differed from the stop command in

that the schedule could be resumed after the suspend command

was lifted. It was not possible to alter the irrigation

schedule without re-starting the program.

The controller provided status information about the

irrigation schedule being executed. The current time was

displayed to show the user that the controller was function-

ing. The current stage of execution was displayed along

with the length of the current cycle and elapsed time that

water had flowed during that cycle. The status of load

management was displayed so the user could see if the util-

ity had taken his pump off-line.

17

MATERIALS AND EQUIPMENT

Field Hardware

The controller was tested on Sam Kelsey's farm near

Silver Lake, Kansas. The field measured 1550 ft. x 1300

ft., approximately one-third the size of the typical surface

irrigated field. The furrows ran 1300 ft. and furrow spac-

ing was thirty inches. The crop on the field was corn.

Eight inch gated pipe was used to apply water to the field.

A schematic of the field is shown in Figure 4

The controller actuated six Hastings bladder valves.

The bladder valves (Figures 5a and 5b) were controlled by a

solenoid in a pitot tube line. When the solenoid allowed

flow through the pitot tube, the bladder inflated and cut

off flow through the valve. When the solenoid switched, it

blocked the pitot tube and allowed the bladder to vent to

the atmosphere which caused the bladder to collapse and let

water flow through the valve body.

The pump at the field delivered 890 gallons per minute

at a pressure at the pump of 3 pounds per square inch. It

was driven by a 30 horsepower, three-phase motor.

Computer Description

The choice of the computer to serve as the controller

was based on many factors. The majority of the development

time was to be spent programming the computer, not attempt-

18

S

C
o

CP a;
•'^ 3

c

:>

0;

13

en

0;

C

0)

r.

u

0;

19

f^=^

FIGURE 5A. Schematic of the Bladder Valve
in the Open Position.

FIGURE 5B. Schematic of the Bladder Valve
in the Closed Position.

20

ing to bypass shortcomings of the computer system. It was

desirable to use a computer that was widely available since

this would improve the likelihood of obtaining service If

required. It also meant that a large group of knowledgeable

users existed.

A full keyboard, monitor, and floppy disk drive were

considered vital components of the computer system. Other

hardware requirements were at least one empty ROM (read only

memory) socket or slot on the processor board and a parallel

printer port. An empty socket would allow a custom ROM to

control the computer. The parallel port would be used to

connect the valve control devices. A parallel printer port

would use a simpler interface board than a serial port. A

parallel port has several lines that transmit data simul-

taneously. If few enough devices were to be controlled, a

line could be assigned to a single device. Serial ports

transmit nearly all data through a single line.

IBM PC compatibles support the desirable features.

They have a large user base. MS-DOS provides a stable

operating system. The IBM PC standard supports up to 640k

RAM, providing a large workspace for program development.

Many languages are supported by the IBM PC class machines.

An IBM PC compatible computer was used to implement the

controller. The computer consisted of: a motherboard con-

taining an IBM PC compatible basic input output system

(BIOS), 150 watt power supply, a composite monitor, a

21

standard keyboard, a floppy drive, and an input/output card.

The input/output card contained a serial port, a parallel

port, and a real time clock.

The motherboard had eight expansion slots. The central

processor was an 8088 running at 4.77 Megahertz. The moth-

erboard also had empty sockets for an 8087 numeric co-

processor and four additional ROMs. A color graphics

adapter was used to maintain compatibility with computers in

the Agricultural Engineering Department. Additional equip-

ment included a 10 megabyte Winchester hard disk and an

Adaptec hard disk controller. Since the hard disk was her-

metically sealed, the field conditions did not affect the

operation of the disk drive.

Carrier Current System

A carrier current link was used to transmit actuating

signals to the bladder valves. A schematic of the system is

shown in Figure 6. A carrier current system superimposes a

high frequency signal on the same lines that supply power to

the device being controlled (Stearne, 1981). The carrier

current hardware was the same as used by Bradbury and Manges

(1984) in their surge controller. They used a 24 volt car-

rier current system to reduce shock hazard.

A carrier current system is a form of hard-wired radio

transmission. Instead of the signal being broadcast through

the air, it is propagated on the power lines. This allows

22

y.
switch 1

switch 2

txl

tx2

switch 3
tx3

/.
switch 4

tx4

y.
switch 5

tx5

switch 6

24 VAC

txB

transmitters

rcl

rc2

rc3

rc5

rc6

receivers

Idl

ld2

ld3

rc4 ld4

IdS

7^
loads

FIGURE 6. Schematic of the Carrier Current
System.

23

signals to be transmitted without the complexity of a radio

link. However, there can be problems, since AC lines were

not intended to carry the high frequency signals typically

used in carrier current systems. There can also be problems

with coupling a high quality signal to an AC line. The cou-

pling device must isolate the power supply voltage of the

transmitter or the receiver. The coupling of the

transmitter/receiver pair to the power lines is usually

accomplished by means of a capacitive circuit. Carrier

current systems may be degraded by the noise generated by

motors and other electrically noisy devices.

The bladder valves had two desired states, opened or

closed. There was no feedback on the state of the valve.

Therefore, if a valve failed to change state, the controller

could not detect it. No workable means of providing feed-

back was apparent. The valves took as long as a minute to

change state. If the solenoid changed state, the valve did

not necessarily follow suit. If there was insufficient

velocity through the valve body, the valve would not close

regardless of the solenoid position. Positive valve closure

probably could have been detected by mounting several pres-

sure switches within the valve body. However, all the

switches would need to be activated at once, since the valve

would slap if it were not closed. A decision was made to

forego the feedback loop. The lack of feedback and binary

state of the valves significantly reduced the complexity of

24

the data link.

Each valve was assigned Its own transmitter/receiver

pair. All of the valve signals were transmitted on the same

wire pair. This allowed the valves to be controlled without

a control line dedicated to each valve. The control and

power lines need only be as long as the distance between the

farthest valves. The receivers were triggered by their

unique signal. The signals from several transmitters could

be on the wires at the same time without interfering with

the different receivers.

Southwood Electronics, the manufacturer of the carrier

current system, spread the frequencies out widely. The six

frequencies used were: 107 kHz, 130 kHz, 167 kHz, 200 kHz,

233 kHz, and 250 kHz. These frequencies prevented the sig-

nals from interfering with each other, even when several

were present at once. Each transmitter contained an oscil-

lator which generated its unique frequency when power was

available. The receiver contained active filters which

closed a relay when its frequency was detected on the line.

The carrier current system required AC voltage to

operate. However, the solenoids at each valve operated on

DC voltage, A rectifier was placed at each receiver to sup-

ply the necessary DC voltage.

25

SOFTWARE CONSIDERATIONS

Several factors were considered in the choice of the

programming language. It was desired to use a well struc-

tured high level language; a well structured language aids

in program development and debugging.

A useful feature of some languages is the ability to

compile modules of code separately. This allows the program

to be divided into separate units. If a module needs to be

upgraded, the whole program does not need to be modified.

This alleviates the need to recompile the whole program,

resulting in a significant time savings. The separately

compiled modules are then joined together by a program

called a "linker.

"

Ease-of-use features that are important in application

programming include: descriptive error messages, capability,

and speed. These features are dependent upon the size of

the language. Too large a language requires overhead which

may hinder its speed or require a larger computer. Yet, a

larger language tends to have more descriptive messages and

extended capabilities. These factors must be considered in

choosing a language.

Closely related to languages' ease-of-use is the time

required to learn the language. Some languages are intui-

tively obvious, others are less so.

26

Another trait to be considered would be complete

independence from a specific computer. This would allow the

application to be transferred to nearly any convenient com-

puter. This is a noble idea but is rarely realized. The

authors of a language usually cannot resist the temptation

to include machine specific features. Some languages are

more easily transported from machine to machine, but none

have complete independence.

Even though machine independence would be convenient,

there are advantages to using a language that makes use of

specific features of a computer. Support of machine

specific features violates the intention of high level

languages, which is to remove the user from the hardware.

An example of a machine specific feature would be the real-

time clock available in IBM PC class machines. It is often

useful to refer to the clock, but not all computers have a

real-time clock. Supporting a clock makes languages more

difficult to transport across computers.

The programming language used to implement the con-

troller was Computer Innovations C86 C. The desirable

features of C include: low level hooks to the hardware,

small executable programs, the capability to produce stand-

alone programs, some level of transportability, and a

language known to local group of programmers. It is argu-

able as to whether C can be called a high level language in

that it supports many machine specific features.

27

PROGRAM DESCRIPTION

The controller program was written in C. The authors

of C have published their definition of the language (Ker-

nighan and Ritchie, 1978). This allows programmers to know

the standard theory and syntax of the language.

All C programs begin execution in a "main" program.

Other subprograms may be called by the main program. The

thread of a program can be followed by tracing its function

calls. C makes any function available to the main function

or any subprogram.

The program could operate on any IBM PC compatible com-

puter running MS-DOS with a parallel printer port and a

real-time clock. The real-time clock was a battery powered

clock that operated independently of the computer's power.

The parallel printer port provided a means to access the

board used to control the bladder valves.

The controller's main program was little more than a

scheduler for the functions (Figure 7) . First the main pro-

gram executed the setup function which established the irri-

gation schedule. The function queried the user for the

number of valves to be controlled. If less than the maximum

(six in this case) was specified, the program skips the

other valves. The user did have to enter null on-tlmes for

these valves. The term "on-time" refers to the length of

time that water flows through a valve. The program then

28

/^ p^
-i-)

^^v^

c_ a ^ Qi

(0
4-1

O
o

>
1—1

rn 03 1—1 (0

Vw/
[w lo >

o

©

o
*-
c
o
o

3
CO

m

D
O

29

asked the user to enter the number of times the valve would

cycle in order to complete the irrigation sequence. The

function then requested the on-times for each of the cycles

that were to be executed. The setup function sorted the

irrigation schedule according to the order of execution that

had been entered by the user. The setup function also

checked for invalid entries.

After the setup function had executed, control reverted

back to the main program, which then scheduled the remaining

functions in an infinite loop. The infinite loop could only

be broken by the operator. If the loop was interrupted, the

program execution was disrupted. Each remaining function

was written so that it would execute without the possibility

of entering an infinite loop condition. This assured that

every controlling function had an opportunity to execute.

Once the irrigation schedule was set, the program func-

tioned without additional user input. This was an important

feature since the irrigation schedule used as a test took

over a day to complete.

The first function in the infinite loop was the key_act

function. Key_act acted as a keyboard filter. It ignored

all keyboard activity except function keys. When certain

function keys were pressed, it diverted the program flow. A

function key was used to abort the program. Others printed

a help menu or the execution order and on-times for the

irrigation schedule. After executing these functions,

30

control returned to key_act . Key_act then finished execut-

ing and the flow returned to the main program.

The next function called by the main function read the

real-time clock and displayed the time on the monitor.

Since the rest of the program depended on timing, the clock

function executed before the others.

The succeeding function, next_valve, called another

function (valve_exec) to determine if the elapsed time a

valve was open exceeded the scheduled on-time. If the

elapsed time was exceeded, valve_exec would reset the

elapsed time. The called function returned a flag to signal

this condition. If the flag indicated the on-time was

exceeded, the execution schedule was incremented.

The elapsed time a valve was open was computed in the

following function. The elapsed time variables were glo-

bally declared so that they would be available throughout

the program. Incrementing the elapsed time depended on the

condition of load management. If the power to the pump was

interrupted, the elapsed time did not increase. The status

of load management was determined by the lm_flag function.

Lm_flag checked a pin on the parallel printer port which was

connected, by means of a relay, to the power leads to the

pump. The relay isolated the printer port from the voltage

levels in the power line. If the pump was on load manage-

ment, a message was printed on the screen.

31

The valves were controlled by the port function. The

printer port had eight lines for passing characters to a

printer. Six lines were dedicated to the six valves to be

controlled. The seventh line was used to activate a relay

which could switch the pump off. While the schedule was

executing, the relay was on. When the schedule was fin-

ished, the power to the relay was cut. This in turn cut

power to the pump. Since there was a line for each valve,

the presence or absence of a signal was the only data

required to actuate a valve.

After the port function was executed, the flow of the

program returned to the key_act function.

32

DESCRIPTION OF INTERFACE BOARD

An interface board (Figure 8) was constructed to allow

the computer to control the bladder valves and the power

line to the pump. The same board detected the condition of

load management. The board was needed because the parallel

printer port could not directly drive the output lines, nor

could it handle the voltage levels on the input side.

The addressing of the printer port is detailed in

Appendix A. The printer port uses TTL logic levels (Figure

9) . A high signal on the printer port had a five volt level

and was limited to 64 milliamperes of current. Relays were

used on the board since the carrier current system operated

at 24 volts AC.

Printed circuit board relays were used to switch the

power to the carrier current transmitters. These relays

were used because they drew little power and were readily

available. However, they required more current than the

printer port drivers could provide. The relays required

nearly 80 milliamperes to close. As the printer port tried

to drive the relays, the voltage levels dropped so low that

the relays would not close.

No immediately available TTL components could provide

enough current to drive the relays. Linear integrated cir-

cuits are capable of providing several hundred milliamperes.

The 555 and 556 timer chips are linear devices that can pro-

33

+5

-=- from printer port

24 Uolts a.c

to field

r neutral

FIGURE 8. Board Layout - Surge Controller

34

•* D •* t*

D a O ^ Da «* a a a
c 3 c a -*^ o H- c J« or JT r
cr cr o> 3 3— --00
X X X _i _i

6 e E E e
D 3 3 3 3
S 6 6 6 S

X C C X X
(T) — — r^ (TJc E s: E i:

10

:>

CD

>

0)

(0

(Li

in

o
>

I-

O
Z>

h-

o
in en

o
ftj

oo

siion

0)

LU

o

35

vide 200 milliamperes . The 556 is a chip that contains two

555 timers and is readily available.

A monostable circuit can be built around a 555 timer

chip (Mims, 1984). A monostable circuit acts as a "one-

shot" with a delayed reset. A one-shot fires once regard-

less of the number of triggering signals that are present.

The one-shot fires on the first signal of suitable voltage.

A reset signal forces the one-shot to wait for the next

trigger signal. The function of a one-shot is shown in Fig-

ure IDA. Of course, with a time delay reset, the 555 could

trigger again after it resets. The one-shots were reset by

placing a low signal on the printer port line.

The circuit shown in Figure lOB shows the 555 in a

monostable circuit except that the capacitors that allow the

one-shot to reset after a time have been omitted. The omis-

sion of the capacitors prevents the circuit from resetting

until another signal is sent to the chip.

The printer port could not deliver enough power to

drive the 556's set up to act as one-shots. A hex inverter

was used to provide the current and voltage required to

trigger the 556. The hex inverters require 12 milliamps to

trigger the inverters (Texas Instruments, 1985). Now that

the relays could be driven reliably, the transmitters could

be driven from the printer port.

The pump control line was set up in the same manner as

the transmitter drivers except the the pump drew more power

36

Vcc

14 8

55B
1 7

cl
c2

data lines

Figure lOA: 556 Set Up as a One-Shot

U—LJ_LLJ-J—LL trigger

i k J clear

\J U output

Figure 10 B= Function of a One-Shot

If

37

than the printed circuit relays could handle. Two relays

were staged, that is one was used to trigger the other, to

alleviate this problem. The printed circuit relays were

used to switch the relay rated at 250 volts and 10 amperes.

The load management status was sensed by placing a

relay in the pump's power box. The relay was placed immedi-

ately after Kaw Valley's load management device but before

the pump's power switch. If there was no power to energize

the coil of the relay, load management had interrupted the

power. The signal which ran through this relay was con-

nected to a pin normally used to check the status of a

printer. This was one of the few input lines available on

the printer port. Five volts on this line indicated that

load management had not interrupted the pump. The five volt

level was taken from the power to the interface board.

Two different power levels were required on the inter-

face board. The TTL levels were available from the computer

itself. One of the unused floppy power cords was used to

supply the five volt and ground lines. The transmitters and

solenoids operated on 24 volts. One of the three-phase legs

was run through a step down transformer to provide 24 volts.

38

RESULTS AND DISCUSSION

System Operation

There were several problems encountered during the

operation of the irrigation controller. Most of these prob-

lems involved the Initial operation of the system. The

problem which caused the longest delay had to do with the

installation of the bladder valves. There was inadequate

pressure at the pitot tube to consistently inflate the

bladder when the water was flowing in the main. When the

valves did not fully inflate, they would slap hard enough to

shake the mainline. The pressure surges caused the valves

to try to push apart from the tees.

This problem had been encountered in previous work with

this type of valve (Bradbury and Manges, 1984), If the

operating pressure were in a different range, perhaps the

problems with the valve closure would not have occurred.

Constrictors were made from sheet metal. The constrictors

were placed between the mainline and the pitot tube.

After this problem was solved, there were still a few

incidents of the system failing. One failure was due to a

solenoid sticking in the closed position. Another was due

to a relay sticking. Both of these problems caused all the

valves to be closed at the same time. The failures of the

solenoid and relay were solved by replacement of the com-

ponents.

39

The pressure surges due to these system failures forced

the pipe apart at the tees. It also forced a plug nearly

out of the gated pipe. These problems were solved by clamp-

ing the pipe and the placement of stakes in the appropriate

places. Pressure surges due to the normal operation prob-

ably had the same effect, but not on such a dramatic scale.

A decision was made to install a pressure transducer at

the wellhead. The transducer would stop the pump if the

rated pressure was exceeded in the main. The pressure

transducer was not installed before the irrigation season

was cut short by rainfall events. This transducer was to be

connected to an empty input line on the printer port.

A recurrent problem was encountered when the main was

empty prior to an irrigation. There was not enough flow in

the pipe to allow the pitot tubes to fill the bladder. This

problem was solved by inflating the bladders by mouth. As

stated, this would be encountered only upon the initiation

of a new irrigation event. Later, it was found that filling

the bladders with water before operating the system would

solve this problem without exhausting the operator.

None of the other problems recurred after the system

had operated for a short time. The interface board could be

modified by including indicator lights tracing the signal

through the board. This would minimize the time the user

would have to spend finding a problem. With the inclusion

of the pressure swatch, there should never be damage to the

40

irrigation system.

The controller functioned as intended. Testing was not

as extensive as planned due to above average precipitation.

The controller completed two extensive irrigation schedules.

As desired, periods of load management were not included in

the calculation of water application times.

Relationship between Temperature and Load

In July and August, Kaw Valley began implementing load

management approximately eight hours a day. The irrigation

loads were interrupted near noon and the power was restored

between 6 p.m. and midnight. The load profiles shown in

Figures 11 and 12 show the effects of load management on the

electrical demand. In Figure 11, the demand shows a

dramatic rise and a quick fall after the peak was reached.

Figure 12 shows the effect of load management; the demand

rose quickly, then leveled as some loads were shed. The

demand curve continued upward, but the effort to trim the

load was evident by the many small increases.

The extent of load management seemed to be related to

the temperature. The electrical load for the entire Kaw

Valley service area was plotted against the daily high tem-

peratures (Figure 13). The load followed the temperature

profile. A similar plot was constructed for the Kiro subs-

tation (Figure 14); the trend is the same. The Kiro substa-

tion serves all the irrigation pumps served by Kaw Valley.

41

•a

o

O

c

e
Oj

CP

c
n3

^ o u

r u

-_ vXl u
L_ 00

IT

ID

~D nj 0)

O
Ol

c
J

3

oo
3-

O
oo
CM

oo oo
ru

3
O

c

E
o
o
fS
c

o

•o
c
(0

E

U
c

CO

E
cs

oo
CO

siienebaui ut peon
LU

2

42

E
®

cs

c
CO

T3

O

^ cQ E

CP
^4- Tl

O c

2:

Oj D
E O u
i-H _l •f^

1—
<->

u
CI'

n
c 00

u
^ 0^

ID
CO
nj n)

H] y^
3

() 3
1

J T)

sneneba^j ut peon

o

o

o
c

IP CD

0) EQ
(h

o
H c
4-> •—

0)

(0

CO

®^ k_
J o
u c
_r;

D
0)

c
CO
^
*-
(0

c
o
O

-) i^

CM

LU

43

(snisiaj) ajniejedwax

0>

w
•3

•o a
t) s
O Oi

I ** k.

U <I

^ u u

o

:r ^
d ^— 0;—

«

CT)

0)

3 „^
TJ

3 •->

n}

^ 1—

n
-1 1 1 L.

00 3- o
on
nj

3-

O
OJ

o^

>

a
E

c
o
9
O
c
o
a
c
o
a

Q
•o

O
00 ^^

in

oo
in
OJ

oo
OJ

oo oon

I

oo

nj
in

oo
in

siiene&aui ut peo"]

o

UJ

CO

lU

cc

o
n

44

C
O
**
CO
*^

CO

o

(snisieQ) e^jnipjadwai

o a
Ti e

a<

Oi
v^

1^ CD

D cr>

*->

^
^
(\i 3 (L

CL
cn U

E u
^
^

(b
-p^ (L

t— 1^
CO

u C
0; n

U (^

c u •>

0] J"
in

—• n
-1—1 —• Du TJ en

03 z>
o

() D ^
'U ^-1

. 1 M i*:

siienebeuj ui peo"]

I

o
Q.

E
o

c
o

®
o
c
o
a
c
®
a
o
Q
T3
CO

o

o

o
o

2

45

Temperature could have been used to estimate the duration of

load management.

46

SUMMARY

An irrigation controller was designed and tested to

address two problems associated with surface irrigation.

Surface irrigation is typically inefficient, that is not all

of the water applied is available to the crop. A recent

problem is the interruption of power to the Irrigation pump.

Electric utilities are instituting load management programs

to reduce costs. Load management shifts some of the load to

off-peak times. This reduces the capital expenditures asso-

ciated with increasing generating capacity.

Irrigators are good targets for load management pro-

grams, as their pumps represent a significant load, yet a

small customer base. Crops are not time-critical with

regard to irrigation. Farmers receive financial incentive

for participating in load management programs.

The low efficiency of surface irrigation occurs because

a famer will schedule his irrigation around his work

schedule, rather than the time required to irrigate his

fields. Load management results in interruption of electric

service for an Indeterminate amount of time. A farmer com-

pensates for the possibility of load management by increas-

ing the time that his irrigation pump will run under the

assumption that power will be interrupted. This reduces

application efficiency and leaves the farmer uneasy about

the completeness of his irrigation.

47

Automation of the irrigation offers a solution to these

problems. This controller could be scheduled to institute

surge and cutback irrigation, methods of higher application

efficiency, and monitor the condition of load management.

This allows the controller to apply the desired quantity of

water regardless of the number or duration of service

interruptions. The controller cut power to the pump when

the irrigation sequence was completed.

The controller kept a running time on th length of time

that the pump had power available. When load management was

instituted, the controller suspended the time update, and

waited for power resumption.

Bladder valves were used to control the application of

water to different parts of the field. The bladder valves

did not require high current to drive them as butterfly

valves do. The energy to operate the valves comes from the

water flowing in the delivery pipeline. The bladder valves

were controlled by solenoids, a carrier current system and

other hardware.

Some failures of the system occurred initially. High

pressure prevented the bladder valves from closing con-

sistently. Constriction plates were placed within the valve

body to increase velocity, and thus reduce pressure at the

bladders. Several relays failed, but their replacements

eliminated the associated problems. Debris in the delivery

pipeline became lodged in the solenoids. This prevented

48

their operation until they were cleaned. After the debris

was flushed from the system, the solenoids performed without

fail.

49

SUGGESTIONS FOR FURTHER RESEARCH

>

Incorporation of Advance Detection

A system to detect the advance of water in a furrow is

described in Appendix B. Advance detection could be incor-

porated into the controller as a feedback loop. The con-

troller could make use of the advance data to modify the

irrigation schedule. Additionally, cutback irrigation might

be implemented as the water progressed to the far end of the

field.

Remote Communication with the Controller

A modem would allow the controller to be activated by a

user not on the field. Of course, it would require that a

phone line is available on the field. Slight software

modifications would allow the user to program the controller

without being at the site. A communication link would allow

the user to monitor the progress of an irrigation sequence.

A farmer could determine if his pumps were being load

managed by the utility without visiting the site. Communi-

cations could also be used by the cooperative to implement

two way communication between irrigation pumps and the cen-

tral office. The utility could predict start-up loads when

restoring power if their Microvax could poll irrigation

pumps and determine if they were going on line.

50

On-Field Scheduling

The controller could perform on-field Irrigation

scheduling. This is currently done by Phil Barnes at the

Silver Lake Experiment Field. If the scheduling were done

on field, Phil could call the controller and determine the

irrigation requirements.

Multi-Tasking Operating System

A multi-tasking operating system would allow additional

functions to be added to the controller without re-writing

the whole software package each time a change was made.

Connection to Kaw Valley Electric

If several controllers were tied to the utility via

modems, it would provide the utility with a very flexible

management scheme for managing their peak and off peak load-

ing. They could incorporate th flexibility of the con-

troller into their load management program.

51

REFERENCES

Barnes, P.L., Black, R.D., and L.D. Maddux. 1986. Schedul-
ing for irrigation load management. ASAE Paper MCR 86-119.

Black, R.D., and P.L. Barnes. 1986. Irrigation pumping
performance in Eastern Kansas. ASAE Paper MCR 86-102.

Bradbury, W.J., and H.L. Manges. 1984. Microcomputer con-
trol of surge irrigation using wire telemetry. ASAE Paper
84-2091

.

Buchleiter, G.W., D.F, Heerman, and H.R. Duke. 1984.
Integrated water-energy management system for center pivot
irrigation: functional requirements. Transactions of the
ASAE 27(5) : 1419-1423.

Heerman, D.F., G.W. Buchleiter, and H.R. Duke. 1983. An
Integrated water-energy management system— implementation.
ASAE Paper 83-2003.

Izuno, F.T., and T.H. Podraore, 1984. Surge irrigation
management. ASAE Paper 84-2592.

Kernighan, B.W,, and D.M. Ritchie. 1978. The C program-
ming language. Prentice-Hall, Englewood Cliffs, New Jersey.

Mims , F. 1984. Engineer's mini-notebook 555 timer IC cir-
cuits. Siliconcepts, Fort Worth, Texas.

Ortel , T.W. 1986. Optimization of surge irrigation. M.S.
Thesis, Kansas State University, Manhattan.

Podmore, T.H., H.R. Duke, and F.T. Izuno. 1983. Implemen-
tation of surge irrigation. ASAE Paper 83-2018.

Reddel, D.L., and E. Latimer. 1986. Advance rate feedback
irrigation system. ASAE Paper 86-2578.

Reddel, D.L., and H. Latortue. 1986. Evaluation of furrow
surface storage and the Kostiakov Infiltration parameters
using Irrigation advance data. ASAE Paper 86-2574.

Sauer, B.W., and L.G. James, 1985. Adjusting irrigation
schedules to reduce peak power requirements, ASAE Paper
85-2612.

Stearne, I.G. 1981. How to design/build remote control
devices. Tab Books Inc., Blue Ridge Summit, Pennsylvania.

52

Texas Instruments. 1985. TTL databook part 2. Texas
Instruments Publishing, Dallas, Texas.

Weckler, P.R., W. Walker, and G.E. Stringham. 1984. Cut-
back irrigation with automated surge flow techniques. ASAE
Paper 84-2090.

Winnerling, B. 1986. Report to Kansas managers. Kaw Val-
ley Electric Cooperative, Topeka, Kansas.

Zaks, R., and L. Austin. 1979. Microprocessor interfacing
techniques. Sybex Inc., Berkeley, California.

53

APPENDIX A

PORT FUNCTIONS ON AN IBM PC COMPUTER

Parallel Printer Port

The parallel printer port was used to interface with

the external hardware for the surge controller. The printer

port had 17 addressable lines; twelve were output lines,

five input. These lines are unidirectional, the direction

of communication was determined by the hardware. The surge

controller uses six output lines to control the bladder

valves and one to operate the pump control relay. Two of

the input lines monitored the status of load management and

the position of the pump switch.

The process of reading or writing signals on the

printer port is accomplished in C86 C by use of "inport" and

"outport" functions respectively. Similar functions are

available in Basic and Turbo-Pascal, This simplifies the

process of addressing the machine hardware since the archi-

tecture of the IBM PC treats port instructions the same as

instructions to memory.

The normal printer port hand-shaking was not used.

Omission of the hand-shaking reduces the complexity of the

printer port routines and the interface hardware.

If the program has an instruction to read an output

line or write to an input line, the hardware prevents any

meaningful action. Each line on the printer port is

54

uniquely addressable, but some lines act as triggers for

other events. The data lines were used as output lines, the

busy and select lines were used for data input. These lines

do not depend on signals being present on any of the other

lines. The address of the parallel printer port is 0x378,

the "Ox" indicates the numbers are given in hexadecimal

notation. Printer lines were addressable by their binary

position on the port. The first six data lines were given

by 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, and 0x40. The busy

and select lines were pins 12 and 13 on the printer port.

Real Time Clock

The real time clock on the i/o card also had to be read

by port calls. The clock handler had to read several ports.

The location of these ports depended on the manufacturer of

the expansion card. In this case the card mimicked an AST

I/O II + card. The ports that were read are 0x344 (hours),

0x343 (minutes), 0x342 (seconds), 0x345 (day of the week),

0x346 (date), and 0x347 (month).

The values obtained from the port calls had to be mani-

pulated before decimal values could be obtained. The result

of the call must be shifted four places to the right, as it

occupies the top half of the byte. The value was then mul-

tiplied by six to obtain the decimal value.

55

APPENDIX B

ADVANCE DETECTION

Introduction

Increased surface irrigation efficiency requires

improved management techniques. However, the implementation

of advanced techniques (ie. surge and/or cutback irrigation)

demands additional labor or automation.

The ability to monitor the water advancement in a fur-

row would be a management asset. This type of system has

potential applications in irrigation research. It could be

used to save time in irrigation research. For example,

automatic monitoring of the advance front could have been

incorporated into Terry Ortel's (1986) data collection

methods. An advance detection system could also be used to

save water and the energy required to pump it. The advance

detection system could be used to monitor the performance of

different irrigation techniques or various schedules.

Reddel and Latimer (1986) designed a system which moni-

tored the advance in a furrow. The sensor feedback was used

to institute cutback irrigation. The position of the

advance front at two locations in the field was logged. The

information was transferred back to a controller via radio

links. Some properties of the soil were determined from

their data. Disadvantages of this system were the limita-

tion of two data points per furrow and the high cost associ-

56

ated with each data point.

Description of Advance Detection Theory

Advance detection can be accomplished by utilizing a

series of water closure switches in the field. As the v^ater

advances down the furrow, it passes a switch and causes it

to close. By determining the position of the last closed

switch, the water front can be determined. A resistor at

each switch would make this determination possible. As the

switch closes, the resistor would become part of a parallel

resistor network (Figure 15).

The resistors would be connected in parallel. Each

time an additional resistor was switched into the circuit,

the overall resistance of the resistor network would

decrease. If a constant current was available to the resis-

tor network, the voltage across tne resistors woula oe

directly proportional to the equivalent resiGtanc;e. Thi55 is

in accordance with Ohm's law, V = I -^^ R.

Resistor values could be selected so that an incremen-

tal voltage drop occurs as each switch is incorporated into

the circuit. An incremental voltage drop would make the

determination of which switch closed easier.

Determination of appropriate resistors at each point is

a problem well suited to solving on a spreadsneet program

(Table 1). This is due to the numerous "what It" calcuJa-

tions which deoena on tne values in other cells. The resis-

57

m~^-\

V\A^

w^-

"m-

'W-

WA-

Uoltage is measured
across the resistor
netuork

.

As suitches closer
the resistor is

included in the
netuork

.

This reduces the
equiv^alent resistance
of the netuork

.

Resistance can be
found according to

^eq

Rp t Rn+i

^n • f^n+l

Assuming a constant
current is available
through the netuork.
^^'oltage is proportional
to resistance.

FIGURE 15. Theory of Operation -

Advance Detector.

58

>

n
m

>
Q.

<
0)

3
O
<t>

D
CD

f*

(D

O

03

0)

3
X3

(D

O
0)

/T ^ /T «» < 0. 10 3 n 1
Js T T »* Ox- (ISO 7 a
(• 1* It 9 w a a -1 rr 3 a a

3 < 1^ /» >- 1 a a a M
>1 •via 9 • ana fT a

1 ri 9 c 3 .^ 3 •• a 01^ ^
b> t an a ft 3 • a 9
N> h* i w s « 3 /T M >t 3
a a S 7 • a n a « O

fi* b- 3 > 0" < a < a o k- a
r" • • t^ a a a a s o
3 T a rY h«^ h* 0 1 O

h« f* s e a b. 1 O ni
< 3 3 a a n a a
• a a 7 3 •* sM hrt ^ W 3 >• «• b- *^ a M

S S 3" 3- 9 1 o a a -1
9 I* a • 3 a o a T a
9 • a 3 >v a a o >*

• a 3 1 B
• • (1 8 3 >»0 n
3 B a a
• • • » 1 » a •

h* 3
• k"K a 7
3 3 M3 •«•
1* • >* a
4 1^ b«i • • a a
•1 rt at. a a M
^ :r f* 3 a s s B 3

(I T S w t. if •1 a ^< II •» a 1 O aa a a a • • 1 3
1* • « a •-<» Man
2 T N- "1 N» M < o a• • < M » a a 01 O '-

• a a n hrt "> 7
/t 0" ba -J M U> r* a a
brt e e »• * 3 3 a a '^
•< k« a 3 <a T Xw a A a a a •^ a
fc* » o • a a a3 • MM 3'
^ h» M O k- M

3 N- 7
a 77

a « «! -J

-< •

«

i

*<«}A9MO«Ci"jotai*cj(o>*

oooooooooooooo

MOI>0O*4(OC|IM<a}UtMM<£UI

1 •0 9
3 t a
a a <M 9
a - 3
^ a- fl
1 3

ai

1 a
< a

**

a*
• n
a <*
-0
« 1
3

1
«
•M
a
/* M

3
1

h*
< S
a a

a
s a
•

^
7
a

S 1
h* a
1 a
a

a
t /T
(5 •
3 3
*« (1

a a
^
9 a
3 e
n a
a

(^

a „
.»^ 3>

c
a ^ O
ai < 31

3 a C
ta — a

a a
3
/* I

T 1
a a
aM
a
•
a
3
n
a

o
c

O
3

a <MMMMmmommm... .]|g
oat 3^UM««00>J9I(JI*IOOU<>- 'Q -r

9io*4M^aO0i<dui<tfaou a

59

tor values would depend on ths numoer of sensors.

The desired number of sensors should be determaned

first in order to size tne resistors. Calculation of tne

incremental drop for each sensor would spread the response

across the voltage range. If 10 sensors were used and tne

voltage available to the resistive circuit was 5 volts, the

incremental voltage drop at each station would be 5 volts

divided by 10 sensors or 0.50 volts per sensor. Inadequate

choices for the first resistors could result in a minuscule

incremental voltage drop as subsequent switches were closed

and the additional resistors added to the circuit.

The advance detection system design possesses some lim-

itations. The system senses the advance of water in a fur-

rov;, but it may not be suitable for determining the retreat

of water in a furrow. If the swi tones were to open as the

water retreated, a resistor would be switched out of the

circuit. The first resistor in the parallel circuit may no

longer be the first resistor that you would encounter as you

travel down the furrow. This would cause tne circuit to

have an equivalent resistance in the circuit that may not be

incremental, since the equivalent resistance of the circuit

was calculated for a predetermined order of switch closure.

It would then be more difficult to estimate the position of

the water in the furrow. The calculated voltage drop.y are

dependent on all tne previous resistances leaaing up to the

next switch.

60

This situation can be demonstrated by tne following

example

.

If: the current in the system is 1 amp,

and the first resistor is 1 onm.

Then: the voltage drop across the resistor is 1 volt

V = I * R

The equivalent voltage of the resistor gang is 1 ohm.

The remaining resistors have not been switcaed into tne cir-

cuit .

If the second resistor is also 1 ohm, then the voltagt^

drop across the resistor is 1 volt. But since tne resistor

is in parallel with the previous one, the equivalent voltage

of the gang is 1/2 ohm and the voltage drop across tna gang

is 1/2 volt.

Now suppose the retreat of the water in the furrow

caused the first resistor to be switched out of the circuit.

The second resistor is the only one in the parallel circuit.

The voltage drop across the resistor gang is again l voit.

Thus, there is nov; no way of determining which switcn ir>

closed

.

It may be possible to determine which sv;itche5i are open

and closed. All of the possible voltage values due to com-

binations of open and closed switches would have to De cal-

culated. If voltage drops across tne circuit were un.iaue,

it would be possible to determine which resistor has fallen

61

out of the circuit. The voltage drops and rises would not

be incremental in this case.

However, the switches will remfiin closed as lony as the

furrow is moist; current will flow through the switcn as

long as the soil is moist which will prevent the previously

described condition from occurring.

Materials and Methods

The following hardware was required to implement the

advance detector: a relay, an NPN transistor, several resis-

tors, two metallic plates to act as tne switch, wire, and an

analog to digital converter compatible with the controller.

Constant-Current Supply

The constant current source was constructed from a IHOh

voltage regulator and a resistor. The resistor was con-

nected across the ground and the regulated voltage rails

(figure 16). For the regulator to act as a constant-current

source, the ground rail was not connected to ground. Tne

7805 is capable of providing one ampere. The current pro-

vided by the 7805 is determined by the size of the resistor,

according to Ohm's law. A ten onm resistor wouia proviae

one half ampere (5 Volts / 10 ohms).

62

Constant Current Source

materials needed=

^^o It age regulator;
such as 7805. 7808
(last 2 digits gi^^e

output *v»oltage) .

1/2 uatt resistor

.

Il is found according to

U = I * R

Il = 1/2 amp
_5_Uolts

10 Ohms

II

note: if the •v'oltage

regulator is to

supply more than 1/2

amp> a heat sink
uill be needed.

FIGURE 16. Constant Current Source,

63

Circuit Hardware

The sensvors were constructed from:

two 16 pin wire wrap sockets,

one 6 pin wire wrap terminal

,

perf board with centers at 0.10 inches,

wire wrap tools and wire.

These components were obtained from Radio Shack and Digi-Key.

A voltmeter measured the voltage acrosE^ the the cir-

cuit. An analog-to-digital board, such as tne Tecmar boaras

owned by the Agricultural Engineering Department, could be

used as an alternative to a voltmeter.

The analog-to-digital boards are rated according to tne

number of digital bits available in the output. Tne number

of discrete voltage levels that can be determined is com-

puted by two raised to the number of outpur birs. For exam-

ple, a converter with a 8 bit output could determine 2Db

different voltage levels across the range. If the range is

5 volts, a change of 0.0195 volts (5 volts / 2ftb levels)

could be detected by the converter. The last oit m tne

rating is generally considered to be inaccurate. Assuming

that 128 accurate voltage levels could be determinea, a vol-

tage change of 0.0391 volts could be detected.

Computer usage permits unsupervisea system monitoring.

The computer logs the time the water took to advance to a

64

new sensor position. A computer basea system is capable ot

automatically switcning oetween several different circuits.

Switches

The advance detector switches were constructed from 20

gauge sheet steel. The steel was cut into strips l men by

5 inches. The switch halves were separated by a sheet of

plastic of equivalent thickness to the steel. Holes were

cut into the plastic to allow water to enter between the

plates. The switches were held together with epoxy. Leads

were soldered to the plates using a torch since a soldering

iron did not deliver enough heat to tne plate.

The assembled switches did not have continuity betv;een

the plates. Tne resistance of tne switches was less tnan

ten ohms when immersed in tap water. The switches do not

require zero ohms between the plates to perform adequately.

In further discussion, when the resistance of tne switcn

f.alls below 10 ohms, it will be considered closed.

Circuit Description

The primary component of the advance serisor is an NPN

transistor (Figure 17). The 2N4401 transistor had tne capa-

bility to provide 600 mA . As the switch closes, the current

flows to the base. The switcn had some resistance oetween

the plates, but because its resistance was less than the

resistor in parallel with the switch, tne switcn acted as a

current shunt. This caused the transistor to switch on.

65

Ucc

/ Sl^ R3

resistor
netuork

Rl 4.7k ohm
R2 100k ohm
R3 2.2k ohm
RH 1.0k ohm

Ql 2NH401 transistor
Ucc +21 Uolts d.c
SI uater closure suitch

FIGURE 17. Sensor Schematic,

66

In the active (open) state, the transistor allowed

enough current to pass from the emitter to tne collector of

the transistor to close the relay contacts. If the switcn

opened, the amount of current passing to the base of tne

transistor was reduced. This in turn switched the transis-

tor off, the relay then closed, taking the associated resis-

tor out of the resistor network.

If the value of the resistor in parallel with tne

switch was changed, the sensitivity of the switch would vary

for a constant voltage across the switch.

The voltage level across the switch in the design was

approximately 20 volts. This allowed tne switcn to caose

when immersed in tap water. It was assumed that tap water

contains fewer ions and polar particles than tne water in a

furrow since the presence of clay particles and ions would

reduce the resistance across the switch.

However, increasing the voltage potential across the

switch to 20 volts made the switch relatively insensitive to

a lack of these particles or ions. In fact, it caused eloc-

trolysis to occur. In addition, the increased voitage poten-

tial made the switches functional with greater distances

separating the plates of tne switcn.

The relays exhibited hysteresis. Tne relays did not

change states at the same voltage, but were aepenaent on the

previous state. A higher voltage was required to close tne

relay tnan was required to open tne contacts. This occurred

67

since a higner magnetic flux was required to draw tne relay

contacts together than was required to maintain contact . In

certain applications, this could prove trouolesome

.

Design Considerations

The current design had six wires at each sensor. Two

wires connected the switch to tne circuit board, four wires

connected the sensor into the circuit, and two wires sup-

plied the power and ground to the sensor circuit board. The

remaining wires were tied to the resistor at the sensor.

It would be possible to eliminate one wire by connect-

ing one side of the resistor network to the ground wire.

This was not done since switching of the transistor ana tne

relay may introduce small fluctuations on the power ana

ground lines.

Test Results

The output from the sensor was relatively stable over a

one hour period. That is, it was stable within tne range of

the ohmmeter connected across the resistor network.

The reproducibility of the sensor was checked. Again

the readings were within the sensitivity of the voltmeter.

The readings were not dependent on the opening or closing

sequence of the switches.

Some minor difficulties were encountered during the

system development. The relays used m tne sensors were

rated at 5 vf)lts. Operating the relays at 20 volts v/ill

68

probably shorten their service life. The use -of relays with

a higher rating is suggested.

The resistance of the length of wire was incluaed in

the equivalent resistance calculations. Of course, tne

resistance per unit length of wire is dependent upon tne

gauge of the wire. According to the National Electric Coae,

the resistance for 16 gauge wire is 5.29 per thousand

feet. Calculations showed that the resistance of tne wire

was negligible.

The advance detector system may be vulnerable to

lightning strikes. The system would probably not be struck

directly by lightning per se , but rather woiild be affected

by nearby lightning strikes. A nearby strike nas tne effect

of momentarily elevating the voltage level of the qrouna

which can cause large amounts of current to flow tnrougn a

circuit as the conductors attempt to reach equilibrium with

the new ground level

.

A possible solution to lightning strike prot)lems would

be to place transient/surge absorbers in the lines. These

might introduce a new resistance source which would neea to

oe considered in the resistor selection at eacn sensor. An

additional recommendation would be to tie each groui\d rail

to tne earth. This would minimize tne length or potential

ground loops.

69

APPENDIX C

SUMMARY OF CnNTROI. PROGRAM FUNCTIONS

name buffer (

)

where menu.c

usage buffer(row, col
,
page

)

purpose performs integer buffering instead of line Buffer-
ing . returns an integer, sensitive to backspace and
escape. a decimal point signifies the end of an
integer

.

remarks originally setup to buffer floating point data, most
of the facilities are still present, puts the ini-
tial character at the row, column, page specified,
then it increments across the row.
upon encountering non-special characters, the cursor
does not advance and the Duffer is not written to.

special characters are digits, decimaJ point,
escape, return, and backspace.
upon escape, the buffer is flushed, cursor reposi-
tioned, upon backspace, last character is fiusned,
cursor backed a space, taut not farther than
row, column, page specified. upon return, tne integer
is completed, execution resumes. if more than lb
characters are entered, tne ouffer ratcnets at 15 to
prevents stack overflow, beeps.

bugs integer is limited to 15 characters, floating point
capability has been defeated,
cnange the cursor to a flashing block, for looics

.

functions called
key_getc (

)

atoi (

)

isdigit(

)

crt_srcp(

)

putscrn(

)

printd(

)

70

name data .

n

where data.h

usage #include "data.h"
used to declare some global variables

purpose used as an include file

remarks necessary for compilation

bugs none known

functions called
none

name elapse (

)

where el .

c

usage elapse (

)

purpose to figure the elapsed time of the global values
interr and beenon. tnese values are depenaent upon
the value of lm_flag. if Im flag is clear beenon is
incremented, if set Deenon is incremented, also
prints beenon, interr, accum on page zero.

remarks resets the reference time with the occurrence or a
new execution item, or a change in the load manage-
ment status. it saves the old values in static
variables, that way, when the reference is updated
the values of interr, and beenon are preserved,
this function has minutes as tne lowest uni t, of
time. it would be nice to make the lowest unit
seconds, that way the user would be assured that it
is functioning.

bugs none known

.

functions called
lm_f lag(

)

printd(

)

71

name hour (

where port .

c

usage hour (

)

purpose to pull the time off of the multifunction card,
bypasses the DOS time facilities.
makes the time available for stamping the time into
different functions. also calls the day of week,
date of month, and the month of the year,
prints the time on the screen

remarks uses the clock ports on the multifunction card.
0x3 4 2 -seconds
0x3 4 3 -minutes
0x344-hours
0x345-day
0x346-date
0x347-month
does not to establish an absolute time base 3ucn
that UNIX uses.

bugs none known

.

functions called printd(

)

72

name key_act (

)

where port.c ???

usage k;eY_act()

purpose looks for action at the function keys and transfers
control to the appropriate function.

remarks if a non-function is pressed causes tne message
"invalid keystroke" and a beep to occur,
was originally to contain an option to susptmd exe-
cution, and one to resume, tnese facilities nave yet
to see the light of day. if these are inciudod a
diskwrite should be executed.

bugs case for flU is written in hex rather than aecimai

functions called
exit(

)

key_getc (

)

key_scan(

)

prints (

)

paper (

)

menu(

)

73

name im_f lag(

)

where lm_flag.c

usage lm_f lag(

)

purpose to determine the condition of load management and
the availability of power to the pump,
sets the global variables lm_flag, power. also se?ts

the global variable delta_lm on a change .in tne
load management status.

remarks looks to pins 12 and 13 on tne printer port
appropriate signals.

for tne

buas none known.

functions called
prints(

)

diskio(

)

inportb{

)

74

name main(

)

where main.c

usage main(

)

purpose is the main driver of the program.
this must be the first function executed.

remarks after the setup stage, it executes an infinite loop,

loop can be broken by the key_act() function.

bugs none known

functions called
setup (

)

keY_act (

)

hour (

)

next_valve{

)

valve_exec (

)

elapse (

)

port(

)

printf (

)

name menu(

)

Where menu.c

usage menu(

)

purpose print the execution menu on page zero.

remarks prints the function key designation and it .LI "pur-
pose .

bugs for flO, move the message, make it erase witn a
valid entry,
add the beep function on invalid keystrokes.

functions called
prints (

)

crt els (

)

75

name next_valve()

where valve.

c

usage next_valve()

purpose determines when it is appropriate to change the open
valve

.

sets the global variables ontime, valve, and exatem.

remarks checks for power-on to computer.
if flag has been cleared then it pulls the schedule
in from the disk.

bugs none known.

functions called
valve_exec (

)

diskio(

)

name paper (

)

where paper.

c

usage paper (

)

purpose prints the execution order on the screen.

remarks a temporary fix, incorporates printf's.

bugs needs some sort of timing loop to prevent the menu
items from getting written on top of tne screen.

functions called
keY_act (

)

prints (

)

printd{

)

crt_cls
(

)

crt_srcp(

)

76

name port (

)

where port .

c

usage port (

)

purpose activates the driver for the current valve,
prints the active valve on page zero.

remarks upon default, not valve 1-6, probably 0, the func-
tion activates valve 1

.

each valve has its own pin on the printer port,
in order to facilitate cutback irrigation, the oreaic

statements should be removed from the case struc-
ture .

bugs none known

.

functions called
outportw(

)

printd(

)

name printd(

)

where graph .

c

usage printd(mss)

purpose print a data stream.

remarks similar to prints().
mss is of the form defined in the typedet screen
found in display. h. allows the following to be
specified: row, column,
page, and attribute.

bugs the data stream cannot exceed 10 characters,
unknown effect if used in place of prints

functions called
putscrn(

)

itoa()

77

name prints (

)

where graph.

c

usage prints(mss)

purpose print a data stream.

remarks similar to prints().
mss is of the form defined in the typedef display
found in display. h. allows the following to oe
specified: row, column, page, and attribute.

bugs attribute is set to 6, this over-rides any value
passed

.

if this is accidentally used instead of printd it
usually writes a happy face or some otner equally
unexpected character.

functions called
putscrn{

)

78

name putscrn(

)

where graph.

c

usage putscrn(ascii , row, column, page, attribute)

purpose print an ascii character.

remarks essential to the operation of prints, printd.
allows the following to be specified: row, column,
page, and attribute.

bugs will not print more than 80 cnaracters, this allevi-
ates any decision regarding line feeds and carriage
returns

.

when 80 is reached, the function will ratchet at
column 80.
will not print a null string.

functions called
crt_srcp(

)

crt putc(

)

79

name setup (

)

where setup.

c

usage setup (

)

purpose
prompts the user to estabiish the irrigation
schedule

.

allows the number of valves to be set from 1 to 6.

allows up to 8 cycles for each valve.
currently there are no constraints on the order of
execution.
initiates a check for duplicate execution order.
also initiates a check for ontimes of zero.

remarKs

bugs no way to accommodate cutback irrigation,
does not cause the pump to be sriut off.
always prints the message that there is an ontime of
zero

.

functions called
prints (

)

printd(

)

valve_chek(

)

crt_cis (

)

buffer (

)

order chek(

)

: j
> 4^

80

name valve_exec{)

where valve.

c

usage vaive_exec()

purpose returns a value which indicates if the ontime ror a
valve has been exceeded.
if exceeded it clears the global variables beenon,
interr, accum.
writes beenon, interr, and accum on page zero.

remarks

bugs currently contains 2 disposable printf's.

functions called
printd(

)

81

APPENDIX D
CONTROL PROGRAM FUNCTIONS LIESTING

buf fer .c

buf fer(row,coJ .page) (

/• returns an integer, it ajso puts the «/
/• integer at the location passed lo it •,
/• recognizes backspacn. and escape. •.
/• also prevents stack overflow •/
/• caJJs the function putscrnf) •/

char buffer(16)

;

int Index, key. flag. frac. hub;

for (index « 0; index <»14; index**)
buffer [index] -0x20;

putscrn(buffer, row. col, page)

:

index • 0:

buffer[0] « 0;

do {

crt_srcp(row, col »index. page)

;

key = key_getc() :

key 4- 0x7f;

if (key •« • 33'
) (

index - 0;

buffer[0) •

/* when escape is pressed

/• the buffer goes back to zero
) >,

else if (key -- •

(
. ,

/* when a backspace is pressea •/
index—

;

/• the buffer backs up h character «
else if (index >- 15) (

/•if the buffer is filli-d ii,e »
index « 14:

/* index ratchets to prevent the*/
buffer[15j - ' '

;

/• stack froB overflowing •/

>

else if (flag — o) (

if (isdlgit(key) ! =. O) {

buffer(indexj = key;
index**

;

)

>

else if (key -- '
.

') {

flag . 1;

bufferfindex] - '
.

'

;

index**

;

82

frac - index;

)

elsp if (f]ag != 0) (

if (isdigit(key) !- 0) (

buf fer[indexj » key:

index»»;

>

>

putscrn(buf f^r .row, col .page, 6)

;

> while (key != '

buffer [index] • ' '
;

nun - atoi (buffer)

:

putscrn(buffer, row, col .page. 6)

;

return (nuB I ;

data.h

extern int sector, offset:
/• diskio globals •/

extern Uflag, delta_l», power:
/• lii_flae globals ~ •/

extern int bozo, valve. ontine.chek[74 J , exitea:

extern row, col, page;
/« buffer globals •/

/• this is the declaration of the time variables
/• necessary for operation, nowtime is current

typedef struct {

Int hr:

int Bin:

int sec;

int Bon:
int day;

int date;
) tine;

elapse.

c

•include <stdio.h>
•include "tiaeday.h"
•include "setup. h"

•include "display. h"

•include "data.h"
extern hour()

:

extern graph()

;

static screen BsgelL] ' (3. 50, 0, 7, 4beenon,0 ,0. 0. 0. 0);

83

static screen .sgel-ll •
(5. 50. 0, 7. Sn.lerr.O 0)

stdtjc srri-ei. SKPJIJ - (7. 50. 0. 7. 4accui..O ,0. U)

'

extern int start;

eJapse() {

static oJdday. olddate. oJdmon, oJdhr, oJdmin;
static next, beesave. intsave;
int days, hrs. ins;
long elapse;

days « 0: hrs - 0; sins = 0;

if (start !- 1) <

oldday - nuday; olddate « nudatc; ojd.on ^ nu«on ; oldhr ^ nuhroldain • nunin;
start -];

next 0;

}

days = nuday - oldday;
if (days <)

days - 7;

hrs = nuhr - oidhr;
if (hrs <)

hrs *» 24:

ins • numin - oldnin;
if (ins <)

ins = 60;

elapse = (days • 24 . hrs) • 60 ains;

l«_flag();

if (next I- Bins) {

next = Bins;
if (Inflag >») (

beenon - elapse;
if (delta_l« -. i)

beenon « beesave
)

else
(

interr « elapse:
if (delta_lii -= o)

interr - intsave:

)

beesave - beenon;
intsave - Intorr;

prlntd(«sgel
)

;

printd(BSKP2)
:

pr intddnsRca) :

84

hour c

staric screen nsghllJ = I i- 50. 0. 7. &bo2o. 0, 0. 0. 0. 0)
static screen sgh^l) - { 1, 53. 0, 7, ibozo. 0. 0. 0|
stilt ir screen Bsghal] - (1. 56. 0. 7. &bozo . 0. 0. 0. 0. 01

hour() (

extern unsigned char inportwl
unsigned int fixed(3];
unsigned int port, word;
static display asshl] = (1,

/" this function is used to
/• pull the time off of the
/• system clock, puts the time
/• in the struct nowtime
/• struct defined in daiH U

/• calls functions print(d.sl

52. 1. 55. 0. , . . . (1 .)

word = inportw(0x344 I

:

nuhr = word - (word >> 4) "6
word = inportw(0x343)

-.

nuBin « word - (word >> 4 1 "6
word ' inportw(0x342)

:

nusec ' word - (word >> 4) • 6

word • inportw(0x345)

:

nuday • word - (word >> 4) * 6:

word - inportw(0x346)

:

nudate - word - (word >> 4) • 6;

word - lnportw(0x347)

:

nuBon - word - (word >> 4) • 6;

bozo - nuhr:

printd(«sgh])

:

bozo • nuMin;

printd(«SEh2)

;

prints(BSSh | ;

bozo « nusec:
printd(Bsgh3)

:

/• prints hrs .Bins . spc

.

/* to the screen

key act.c

extern key_getc()

;

static display bss1[] - (17. 6. 0. 7. 'invalid key-stroKe '
)

:

key_act() (

85

/• looks for action at tho function keys
/• transfers control to paper, neiiu. or
'• pxits the proeraii(exU(-l)

)

int c . d

:

d = kcy_scan()

:

if (d I- -1) (

c - key_gelt () ;

•witch (c) {

case 0x3b00

case Ox3cOO

l«_f lag.c

•include <stdio.h>
•include "data.h"
•include "display h"

case 0x3d00

case 0x3e00

case OxSfOO

case 0x4000

case 0x4100

case 0x4200

case 0x4300

case 1740B

default

print f(

'

fl 'l:

break :

paper (1 ;

break

:

enu() ;

break;

printf (f4 -1;

break

:

printf (

"

f5 •):

break

;

printf (

"

f6 ••):

break

:

printf (•
f7):

break;

print! (

"

f8 •);

break ;

printf (• f 9) :

exit(-l)
break:

printf (

"

f 1 '

)

break

:

prints(»ssl)

:

break

:

86

extern inl inponbl) :

extern diskjo()

;

static display BssJinll) /in kt n 7 •• rr •• „
stat.c display .ssi,.| . Jo,' 6 : o'

'

"0 '
'o S'S'o

.°'

^

static display .ssl.3|J . (14 67 7 "n^f '

"

' n n
' '

'

static display .ssl«,4 - 4 tl' o' 7
•"•"O".''*:

• t J (14. 67, 0, 7, on .0,0.0.0,0)

;

l»_fJaE()
{

/ his function is used to set or clear the v
/ lag indicating load -anage-ent 1 .eans on •/

/« ,e; LVfT T!"' °P^^«'^"" It .ni also ./
/ »'t the flag indicating a change in the ./

/'h. Vk '"" '"'^^ (dHtaJ.). .his Will
/ be u«ert hsr->i..o n._ 1. J .

/ flag indicating load -anage-ent 1 »eans
/ J". leans nor»aJ operation, it mill a
/ set the flag indicating a change in thestatus of the l.fiag (dHtai.). this wiiibe used because the history of the 1. w,Ji ./
/ be necessary in resu.ing operation .,
/ calls the functions prints ,^

unsigned int port - 0x379;
unsigned Int word;
•tatlc int old_]». oJd_pow;

word - lnportb(port
)

;

iBflag . (word & 0x10); /• checks hit « .? „ ,,
power . (word » 0x020

;
/. checks b t , 4

' "
]l

°" Pnnterport VcnecKs bit » 4, pin 12 on printer port*.
if

(J-fiag .. oJd_l.
) { /.if ,j,^^^

/'
is a change In th., „ >.iiaii);e in the •/

load Banage.ent then delta ImV-

)

else

dlskio(4.3):
/• is set to non-zero

old_l« = iBflag;
delta ! ='

1 •

delta_J» . 0;

if
(power !' oldpow) (/•(<,,-P

>
i /If there is a change in the V

/ load Banagenient then deJtala*
/• Is set to non-zerodiskio(4.3)

;

oJd_pow ^ power:

)

If (laflag •=-
) /• .

Prints(.ssl«l)- " ^'"' condition of 1» ,oV
else

prlnts(.ssl.2),.
*'"' '"'"^" °" P***-'^ "--o "/

If (power =-
) ,,

prlnt»(fissi»3).
P'"i"'-s the condition of power'/

elst

prlnt3(.ssl»4):
^' *° ^''^ "^reen on page zero •/

87

include <stdio.h>
«)ii()uili- "srtup li"

•include "disploy.h
• ini ludr "ti»edijy.h"

•incJude "data.h"

int sector. offset
;

/• diskio globals */

int nuday. nudate. nunon . nuhr, numin. nusec:
loHR beenon. interr. accum:

'* elapse globals •/

laflag. delta_l»i. power;
/• l»_flap; eJobals •/

int bozo, valve, ontiae. chek(48]. exiten. start;

row
. col

.

pa^e

;

/• buffer globals •/

order sort (101]

;

time nowtime;

•lainl) {

setup!)

:

poll: key_act():
hour()

;

next_valve()

;

/ val ve_exec()

.

eiapsel)

;

port!) ;

goto pol 1 ;

printfl "we're having fun now");

•include <stdio h>
•include display. h"
• include "data.!."

extern key_getc()

;

extern key_scan()

;

extern isdigit () ;

extern lont aloi ()

;

extern prints() ;

extern crt_cls()

;

88

enu I I {

/* this fufntion prints thi! aenu
/* on page 7.ero. the default page
/• Cdljs the fiincljons prints! I

static display grphi) -
(

1 .] . . 6 ,
' F 1

"
,

2. 1. 0. 6."F2 aap of action .

3. 1.0. 6."F3 execution ordi^r"

4. 1. 0. 6.T4
5. 1. 0. 6."F5
6. 1 . 0. 6. "Ke

7. 1. 0. 6,"F7
8. 1. 0. 6."F8
9. 1, 0. 6."P9 exit execution'.
10.1. 0, 6."F10 don't touch me"
0.0.0.0.0) :

2. 35. 0. 6. t inc \
3. 35. 0. 6. 'ueenoM .

5. 35. 0. 6. ' int crruptfd'
7. 35. 0. C. cumu lat 1 ve .

9. 35. 0. 6. 'exeru^ ion "

.

11 35 6 "onl imc"

.

13 35 6 "J as; I upddte
9. 65, 0. 6. lin status '

.

13 65 6 "power '

.

3 Bo u G "valve open

crt_cls ()

;

prints(grph)
;

next valve. c

•include <stdio.h>
•include "ti»eday.h'
•include "display. h"

•include "setup. h"

•include 'data.h"
extern prints!) ;

extern putscrnl) ;

extern diskio()

;

extern int start:

n»'xt_val ve() {

/* deteraines when to change the open valve
/• calls the functions val ve_exec () . disl<io()

static int hasbeens. poweron

;

•/

/•

if (poMeron !» 1) (

diskiod .2);
pull in the value of execution ite» (hasbeens)
also pull in the co»plete structure sortl4Bj

poweron » 1 ;

)

hasbeens - 1 ;

exitea « hasbeens:
ontlae - sort [exi tea] . ontiae

;

valve - sort (exi tea] . valve •

lf(valve_exec() .:« i) (

hasbeens-^'!'

:

If (hasbeens > 72)

hasbeens - 72;

1:

89

else;
printfc e>.te- %d ont.me *d vajv. %d "

. exi te-
. ont 1... . vaJ ve) ;

paper .

c

•inciude <stdio.h>
•inrJude "display. h"
•include "data.h"
include "setup. h"

extern crt_cls(
)

:

extern crt_srcp(
)

;

extern prlnts()

;

static display prnt
(

) -
{ i. i. o, 6. execut ion" .

1, 40. 0. 6. "execut ion
'

.

1. 12. 0. 6, "vaj ve"

.

1. 52. 0. 6. "valve"

,

1. 22. 0. 6. "oiitime '

,

1. 62. 0. 6, "ont ime
.

24, 6. 0. 6, "f2 Benu".
24. 16 .0, 6. "f3 paper'

,

24, 40 .0. 6. "f9 exit ".0.0. 0,0.0paper () (

char exe, val , ont

;

int i, index, row. page, attr-
int coll. col2, coJ3. col4. coi5, cols-
extern struct order:

page ' 0:

C012 46, C014 . 58; col6 - 68;
o 1 1 r o I

crt_cls() ;

crt_srcp(2.
1 .0)

;

prlnts(prnt)
;

for (row = 2. index . O; row <.24
; index... row-.,

,

^

P-ntf,".d Xd «0,sortlindex). execute. s•rt..ndex^volve..ort^n.e..

key_act
()

;

)

90

po r t c

•include <stdio.h>
• include "display.li"

•include "setup. h"

•includr "dald h"

•include "t)»eday.h"
extern printd()

;

extern unsigned int outportwl)

;

static screen sepll] - {8, 68, 0, 7. ivalve. 0, 0. 0. 0. 0);

portO (/ sends a signal to the printer port to activate''
/* the appropriate valve •/

/• calls the functions printd() and outportw() •/

unsigned int flag;
unsigned int port = 0x378:

SMi tch(va]ve) {

case 1

case 2

case 3

case 4

case 5

case 6

default :

/' decides which word to writi- •

/* to the printer port to control
/• the vaJves »/

flag - 0x01

;

break:

flag = 0x02;
break

;

flag > 0x04;
break;

flag ' 0x08;
break:

flag • 0x10;
break;

flag - 0x20:
break

;

flag <= 0x001 ;

break

;

)

outportw{ port . f lag)

;

printd(«sgpl)

;

/• writes the value of flap to •/
/• the printer port •/
/• prints which valve is open •/
/• on page zero •/

91

prints a variabjf contained in the

pnntd. c

printdlptr] /

register screen -ptr: /• string w/ the » in'fronTot ii
'* according to the typcdef sicrcMi •'

char strllO); /. the variable printed is an inteap,- .-
for

(; ptr >dat, ptr--)
{

>

itoa(*ptr->aat .str)

:

putscrni str, ptr->roow, pir->cool. ptr->poep. ptr->aott):

)

prints .c

•include <stdio.h>
•include "display h"
include "data.h"
extern crt_putc()

:

extern crt_cls(| :

extern l«_f lag!)

:

extern int itoa() ;

extern crt_srcp{)

:

regiitlr'^d,. . .
'' "'"'"*= ^ ^^^'"^ "f ^^^'^ characters -register display ««sg, /' according to the typeaet oispi.y

for (; sg->str: sg-*)
putscrn(«sg->str, sg->row, sr->co1 .sK->pap,.- t; i ;

putscrn.c

Ststei^char-^^:^' ;! -Jf^- ^^-^—- to

register int r. c. pg , a,
'

""
'

"'"""' ^^^^ attribute

while Cp) <

crt_srcp(r,c.pe):
crt_putc(»p*f ,a)
if (c > 80)

c - 80:
>

crt_srcp(r,c.pg)
;

setup c

92

includp <stdio h>
•include "display. h"
•include "timeday.h"
•include "setup. h"

•include "data h"

extern key_Kelc()

:

extern key_scan()

:

extern isdigiK)

;

extern crt_putc()

:

extern crt_srcp()

;

extern crt_cls()

;

extern Int ltoa()

;

extern long atol ()

;

static screen Bsgsl
[

) -
{ 9.45

static screen Bsepat] - { 12.33,
static screen BsgpSIJ - { 12,46,

setup() {

'• ite»s in the schedule are valve_». ontime(], and »_cycJes.
/• this structure establishes a template for the user to input his
• irrigBtion schedule.
• the te«plate is naaed schedule, there are 6 independent copies
" with the nane setupfo thru 5].
• it then sorts the schedule according to order of execution and
• checks for duplicate execution iteas.
• calls the functions print(d/s). (valve/order) chek.and bufferO

0.6 Abozo. 0,0 o>

0.6 ibozo.O.O 0)
0.6 &bozo,0.0 0)

struct schedule (

int ontijie[l2]:
Int execute! 12J ;

Int no_cycles;

Int cycle(l2]
:

) setup(6)
:

int index:
int n. i . 1

;

int no_valves:

int j. counter, valve:

int errflag:

int orderflag:

/• ontiae designates the ainutes of flow*/
/• execute holds the order of execution •/
/•

/•

/«

/•

/•

/•

/•

/•

/•

/•

/•

/•

/•

/•

no_cycles gets the axiaun » of •/

cycles for a valve •/
cycle[nj steps thru the execution •/
the names of the copies of the •/

template schedule •/

this is used to check the scheaulinj*.'
n. 1. 1. J are indices for loops •/
no_valves is the « of valves in the •/
system, counter is another index •/
valve is the argument passed to •.'

the VBlve_chek function •/

errflag is used to detect an out of •/

range input value •/
used to detect error in exec, order •/

static display asp] []

static display Bsp2|

)

(3.4.0.6." this is to set-up the surge scheduling ".

6,4.0.6." enter the number of valves in the system ".0.0.0.
(9.4,0.6, "enter the number of cycles for vaJve • ",0.0.0,0.0

93

static display BspaH • (iz. 4 .0 , 6 , "enter the ontime for valve".
12. 39. 0. 6. eye ie". 0.0. 0.0.0);

statie display »sp4|l - (15 . 4 . o .6

.

"enter the order of execution of this cycle o o •

.static display Bspbl] - (18 . 4 . . 6 . "the ontlne Is inulos . .0 . . .)

static display Bspel] - (21 . 4 .0. 6. "the execution Is ".0.0.0.0.0)-
static display BspSl] = (17,4.0,6," the value Is out of bounds, try arain". 0.0.0
static display aspQlJ >: { 17 ,4 .0,6. "**********>***»••>>••*«««>*>««"

18,4.0.6," you goofed in the scheduling ".

19.4.0.6," entered an ontjae of zero".
20.4 . 0.6. "••*••'**•••»•••••»•••••«•••••«««•• 01-

statie display asplOt) = (17 . 4 .0 .6. ""•••••••*•••••••«•»«•••••«•»«•«»

18.4,0.6." you entered two jteas with the saae order of expc
19.4 .0,6

, "*•""•••••«•••«•••••»••••»«••««•• or

crt_cls()

;

prints(Bspl)

;

no_valves = buffer (7.6.0)

;

/* this picks out the value no_vilvps •'
valve = no_valves: /• these 2 lines chek tor valid input •/
vaJve_chek(valve)

;

errflag - valve_chek(valve)

;

if (errflag •= 0) (/• initiates execution iff valid mpui •/

for (1 « 0; I < no_va]ves: !)
(

/• steps thru the valves for schedule •/
/• below sets the « of surge cycles •/

prints(Bsp2)

;

bozo - 1+1:

printd(»sgsl)

;

setupflj .no_cycles « buffer (10.6,0)

;

for (n = 0; n < 8etup(1 J , no_cycles ; n**) {

prints(jisp3)

:

bozo = l»l ;

printd(Bsgp2)

:

bozo - n«l;

prlntd(»sgp3)
;

/• user enters the onl inif for a cyclr*/

•etupilj ontmeinj = buf fer I 13 . 6 .0) :

/• user enters the execution order*,'
prints(iisp4)

;

8etupll].execute(nj - buffcrdfi .6.0) ;

/• scheduling coupjete

94

else

vaive exec.

c

/" the section immediately beJow
/* prints the 8ch«'duJf to the srreen

for (i • 0: 1 < no_valves • 1; !•)
(

for (j ' 0; j < tetupl i J .no_cycJps: J»->) (

setupL 1 j . cycle! j] •
J :

counter-"*

;

)

)

/* this section establishes the urd.T ••

/• of executirn in an array •/

/• and transfers the values fro* thr •/
/" »etup(structure] to the sorttstruct] •/

for (n - 0: n < 72; n*-») {

for (1=0: i < no_valves. i*«) (

for (J • 0; j < Bctupli) .no_cycJes ; j»*| (

if (setupl i i executei J)
== nl (

8ort(n] .execute = setupl i J exrcute| j] ;

»ort(n) ontiBe - setupl i) ontimeij)

:

ort [n] .valve « i :

8ort(n] cycle • setup! i J . cycieu 1 ;

exitesi n:

if (order_cnel<() .«]

)

orderf lap =]

;

if (»ort[n] .ontime !
> 0)

printf("duplicates at *dO. sort (n j ont ine)

;

index**: .,

)

/' order now done •/
/* write zeroes in */
/* non-executing •/
/* blocks •/

for (i - counter: i < 72: i+*)
sortlcounter*!) execute •

for (1 - 1; i < 72; i**) <

)

if (counter !« index)
prints(asp9)

: •/
if (orderflag == l)

prints(BsplO)
;

print8(Bsp81

static screen bssvO - (3, 50, 0. 6.abeenon .0.0.0 0)-
static screen Bssvll) • { 11, 50, 0. 6

,

Aonti»e,0,0,0.0.0)
:

95

static screen Iissv2|l = (9. 50. 0.

static screen BssvJil = (4. b8 , 0.

b.Spxjtem.O.O.O.O.O) :

b.ivajve ,0.0.0,0,0);

vajve exec() (

/* this function is used to dptcrmirie if the "/
/• ontine for a particular item of execution has'/
/• been exceeded, if it has then the function *,

/• returns a one. If not It returns a zero •/
/• ontime, beenon . interr. and]»flag are globals •/
/• calls the function printd()

printd(mssv) ;

printd(Bssvl)

pr Jntd(nssv2

)

printd(Bssv3)

printfC exiten \d online Xd valve %6
printfC ontlBe Xd beenon *d" .onti«e , beenon)

if (beenon > ontiae) (

exi tea, on time. valve)

:

/'

/"

beenon • C

interr - C

start • 0:

return! 1)

:

test for beenon aore than online
resets the values for the next one

)

else
return(O)

;

LOAD MANAGEMENT CONTROLS FOR SURFACE IRRIGATION

by

Michael T. Lascb

B.S., Michigan State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

ABSTRACT

This project addressed the random nature of electrical

service interruption while maintaining the integrity of the

scheduled irrigation. Surface irrigation presents unique

problems when load management is instituted. The scheduled

irrigation is based upon uninterrupted availability of

water

.

A controller, capable of completing an irrigation

sequence without an operator present, was developed. The

controller insured that the desired quantity of water was

applied to a field. The electrical powered pumping plant

was subject to load management conditions. Load management

presents the possibility of power interruption for an un-

known length at unknown times. A farmer participating in a

load management program realizes substantial financial

reward. However, power interruption presents a scheduling

problem for the farmer.

This controller could implement surge and cutback irri-

gation. Surge irrigation is a method that can improve irri-

gation efficiency. Under surge irrigation, water is applied

to a field at specific intervals. Cutback irrigation

reduces the amount of water flowing off the field.

1 ', .,.

This controller modified the system timing to compen-

sate for periods of power interruption. The controller mon-

itored the condition of power line, controlled six irriga-

tion valves, and shut down the pump when the irrigation was

completed. The controller was tested under load management

conditions. The tests demonstrated that surge and cutback

irrigation could be implemented even though power to the

irrigation pump was interrupted.

