
A Digital Logic Fault Grader

by

JOSEPH W. NAAB

BSEE, Kansas State University, 1986

A MASTER'S THESIS

submitted in partial fulfillment
of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhatten, KANSAS

1988

Approved by:

hfiaWl-fi.fc/-
Major Professor

AllEOfi 531tm
-

2

A Digital Logic Fault Grader

Copyright, 1988 , by Joseph W. Naab

Table of Contents

1. Introduction 1

2. The Fault Grader 3

1. The Single Stuck-At-X Fault Model 9

2. Fault Collapsing 12

3. Parallel Fault Simulation 17

4. Event Driven Simulation 21

3. The Fault Grading Program 22

1. Input 23

2. Output 2 5

3. Program Operation 27

4. The Element Libraries 30

1. The Gate Library 31

2. The Macro Library 37

4. Outputs and Results 40

5. Conclusions and Recommendations 50

Appendix A - User Manual

Appendix B - Source Code Listing

Appendix C - Gates Library

Appendix D - Macros Library

Appendix E - References

List of Figures

Figure 1. AND Gate and its Stuck-at-X Faulted Circuits 11

Figure 2. A Sample Circuit 16

Figure 3. Fault Grader's Flow Chart 2 9

Figure 4. Sample 'GATES' Initialization Line 31

Figure 5. An AND Gate's Fault Collapsing Function . . 32

Figure 6. An AND Gate's Simulation Function 35

Figure 7. Macro Library Initialization Lines 39

Figure 8. A Five-State Circuit 42

Figure 9. Five-State Circuit's Netlist Files 43

Figure 10. Five-State Circuit's Input Vectors 45

Figure 11. Five-State Circuit's Output Files 46

Table 1. Outputs of an AND Gate and its Faulted Models 13

Table 2. Fault States at Various Stages 16

li

1. Introduction

The subject of this thesis is a C language software program

that fault grades a digital circuit's input test vectors.

Fault grading is the evaluation of the ability of a set of

input test vectors to detect faults in a digital circuit.

Inserting faults from a single stuck-at-x fault model into

the circuit model, the fault grader creates a set of

faulted circuit models that represent some of the physical

defects and environmental effects that could occur. By

simulating the unfaulted and faulted circuit models using a

event driven parallel fault simulator the fault grader can

predict the ability of the input vectors to detect

malfunctioning circuits. The input vectors detect a

faulted circuit if the outputs of a faulted circuit ever

differs from the outputs of the unfaulted circuit. The

fault grading techniques used by this program are discussed

in Section 2 of this thesis.

This fault grading program is a student version board level

fault grader. It is intended to be used in conjunction

with a commercially available digital logic design package

called Micro Logic 2[1]. The Micro Logic 2 package is an

inexpensive, user friendly, graphics oriented package which

was also designed for use at the student level.

Incorporating its output files into the input files used by

the fault grader was intended to make fault grading as

painless as possible. The fault grader uses the netlist

output of the Micro Logic 2 package to define the model of

the circuit. The only modification to the Micro Logic 2

package is the addition of an 'OUTPUT 1 component that is

used by the fault grader to identify primary outputs. The

two programs were not integrated into a single package

because the source code of the Micro Logic 2 package was

unavailable.

Section 3 of this thesis describes the fault grading

program. A description of the inputs and outputs is given

along with a flow chart and general overview of the

program's flow. The section also explains the interface

between the Micro Logic 2 package and the fault grader in

more detail, including a discussion of the addition of the

'OUTPUT' component. For more detailed information about

the program, a documented copy of the C language source

code has also been include in appendix B.

Element libraries are used by the fault grading program to

define the elements that it is required to model. To

handle a new element the libraries must be modified. Any

element that appears in a circuit model that is not in the

element libraries will cause the program to generate an

error message and abort. The element libraries already

contain all of the elements defined in the Micro Logic 2

package and expanding the libraries will usually be

unnecessary. The concepts needed to expand the libraries

are given in Section 4 of this thesis.

2. The Fault Grader

After the construction of a digital circuit it is necessary

to determine if it works correctly. One test is to apply a

set of input test vectors to the circuit and observe the

circuit's outputs. If the outputs match the outputs of a

'good' circuit the circuit under test is considered a

working circuit. The input test vectors used must

completely test the entire circuit or a 'bad' circuit might

escape the test. So a fault grader is used to determine

how well the input vectors test the circuit.

The intent of the test is to cause a primary output of a

'bad' circuit to differ from the output of a 'good'

circuit. A complete set of input vectors must detect the

failure of each component and each connection in the

circuit. Finding such a set of input vectors is not easy.

Using all possible combinations of inputs is impractical

for many circuits because it would take too long and if the

circuit is sequential using all possible combinations of

the inputs would probably still leave parts of the circuit

untested.

A fault grader can be used to assist in the task of

developing test vectors. It is a software program that

evaluates the ability of a given set of input vectors to

detect a 'bad' circuit. Models of 'bad' circuits are

produced and evaluated by the fault grader. By comparing

the outputs of the 'bad' circuit models with the output of

a 'good' circuit the fault grader can determine which 'bad'

circuits will, and will not, pass the test. Outputs

generated by the fault grader signify which 'bad' circuits

will be detected by each input, and which 'bad' circuits

remain undetected. This information can then be used to

improve the input vector set by removing the input vectors

that do not detect any 'bad 1 circuits and writting new

input vectors to test the 'bad' circuits that remain

undetected.

The 'bad' circuits are modeled by faulted circuit models

created with the single stuck-at-x fault model[2]. This

fault model assumes that any failure in the physical

circuit will look like a gate with a single input or output

stuck-at either a logical 1 , or a logical 0. The faulted

circuit model is identical to the unfaulted circuit model

except for the single fault. A complete set of stuck-at-x

faulted circuits has two faulted circuits for every input

and output, one modeled with a stuck-at-1 fault and the

other modeled with a stuck-at-0 fault.

It is not necessary to evaluate all of these faulted

circuits. Many of the faulted circuits will be

indistinguishable from each other or will be automatically

tested by tests for other faulted circuits. The fault

grader removes these unnecessary faulted circuits in a

process called fault collapsing which produces an

equivalent but much smaller set of faulted circuits. A

more detailed explanation and a example of fault collapsing

appears in Section 2.2.

To further decrease the amount of evaluation time necessary

several of the faulted circuits are simulated in parallel.

This is possible because each faulted circuit only differs

from the unfaulted circuit at the location of the fault.

The faulted circuits must be handled separately at these

points but during the rest of the simulation they are

identical to the unfaulted circuit. The circuits are

simulated in parallel by using each bit of the computer's

simulation word for a different circuit. This simulation

is almost as fast as a simple simulation being slowed

slightly by the handling of the individual faults.

A event driven simulator is used to evaluate the circuits.

It is an efficient simulation method because it only

simulates those parts of the circuit that are active.

Elements are only simulated at the point in simulation time

when their outputs could change do to a previous change on

one of the element's inputs. This avoids simulation of the

inactive elements in the circuit and simulates the circuit

dependent upon the maximum time delay of the individual

elements. A more complete explanation of event driven

parallel fault simulation appears in Section 2.3 and 2.4.

Two libraries provide the information that is unique to

each element. The gate library is used during the model

input, the fault collapsing, and the simulation processes.

The gate library contains the number of inputs on each

element, the time delay of the element, a function that

performs fault collapsing for the gate, and a function that

performs the simulation of the gate.

Another library is necessary because the Micro Logic 2

package allows the use of objects it calls 'macros' in the

design of circuits. A macro is a functional unit rather

than an gate level device, examples would be a SR latch or

a 7474 IC chip. A macro library is used to convert faults

internal to a macro to faults that occur on the macro's

periphery and to remove unused parts of macros from the

fault grading. The macro library contains the number of

gates used in its gate level expansion, a method of

identifying the different parts of a macro, and a text

string for each of the possible internal faults. If an

element is used in a circuit that does not appear in the

element library the fault grader is forced to abort. The

libraries already contain all the elements defined in the

Micro Logic 2 package but it may be necessary to change the

time delay information or add a new gate or a new macro so

the information necessary for such modifications is

included in Section 3.4.

The operation of the fault grading starts with the input of

the circuit model, which is read from the gate-level

network listing file produced by the Micro Logic 2 package.

After forming a model of the circuit the fault grader

constructs a collapsed set of faulted circuits. The fault

collapsing functions in the gate library are used to

collapse the faults at the individual gates. The next

operation is the reading of the file that contains the

input test vectors in ASCII form. If macros exist in the

circuit then another file that contains the macro level

representation of the circuit is read.

Once a collapsed set of faulted circuits has been

constructed and the input files have been read the circuits

are simulated. An event driven parallel fault simulator

simulates the unfaulted circuit and as many faulted

circuits as will fit in the simulation word in parallel.

The simulation functions in the gate library are used to

simulate the individual gates.

At the completion of the simulation of each input vector

the outputs of the circuits are compared to see if any of

the faulted circuits have been detected. Detected outputs

statements are generated for any detected faulted circuits.

After the last input vector has been simulated any of the

faulted circuits in the simulation word that remain

undetected will not be detected so an undetected output

message is generated for each. If the fault was internal

to a macro a message that explains the fault in terms of

the periphery of the macro is also generated. If there are

still faulted circuits unsimulated the fault grader

performs the simulation process again for the next set of

circuits. The outputs are discussed in more detail in

Section 3 .2

.

2.1 The Single Stuck-At-X Fault Model

A faulted circuit model is a model of a possible failure in

the circuit. A failure refers to the erroneous state of

the hardware caused by any physical defect or environmental

effect. Just how many such failures could exist for a

given circuit is very hard to determine. Two assumptions

are made to restrict the number of faulted circuits

necessary to model the failures.

The first assumption will be that any failure will act like

an input or an output of a gate being stuck-at either a

logical 1 or a logical value. This assumption simplifies

the determination of the number of possible faults, because

each input and output can have at most two faults, a

stuck-at-1 or a stuck-at-0. The number of possible faults

is given by 2n, where n is the number of inputs and outputs

in the circuit. The number of possible faulted circuits is

determined by the number of ways these faults can be

combined, a very large number for any nontrivial circuit,

leading to yet another assumption.

The second assumption will be that only one stuck-at fault

can occur in a circuit at any one time. This reduces the

number of faulted circuits to be exactly the number of

possible faults, 2n. Each of these faulted circuits will

contain only one gate which has an input or an output

stuck-at either a logical 1 or a logical value. The

above modeling technique is commonly called the single

stuck-at-x fault model, a stuck-at-x fault represents

either a stuck-at-1 fault or a stuck-at-0 fault.

This fault model has been used for several years with gate

level circuit representations and is still considered one

of the best fault models available. Input test vectors

that produce good fault coverages using the single stuck-

at-x fault model catch almost all the possible defects.

This is not so much a theoretical result as it is a

practical one. The fault model has been widely accepted by

industry to be a very good one [3] .

Figure 1 shows a simple circuit and all of the faulted

circuits associated with it. The single stuck-at-x fault

model creates the six faulted circuits shown for the simple

two input AND gate circuit. Fault grading the input vector

10

STUCK
RT ONE

STUCK
HT ZERO

—

STUCK
RT ONE

STUCK
RT ZERO-

STUCK
RT ONE

STUCK
RT ZERO

Figure 1, AND Gate and its Stuck-at-X Faulted Circuits

{1, 1} requires that all seven models be evaluated and the

outputs of the six faulted circuits compared to the

unfaulted circuit's output.

The unfaulted circuit outputs a 1 , as would all the stuck-

at-1 faulted circuits. Each of the stuck-at-0 faulted

circuits outputs a 0. The result of the fault grading is

50% of the faulted circuits detected, the input vector

detects exactly one half of the possible faults. Adding

the vectors {0, 1} and {1, 0} to the input test vector set

would result in 100% faulted circuit detection. Each of

the new input vectors would detect one of the input stuck-

11

at-1 faults and either would detect the output stuck-at-1

fault.

The fault coverage is defined as the ratio of detected

faults to the number of possible faults and can be used to

rate the effectiveness of the input test vectors. A good

set of input vectors will give a fault coverage equal to or

slightly less than one. Fault coverages of around 99% are

usually considered acceptable for large complex circuits

because not all the faults are detectable with a test

vector set of reasonable size.

2 .2 Fault Collapsing

Table 1 contains the four possible input vectors to the

circuits in Figure l f and the outputs produced by each

circuit. All three stuck-at-0 faulted circuits act in the

same manner for each input. This is because any stuck-at-0

fault controls the gate and forces its output to 0. The

location of the stuck-at-0 fault does not matter since the

three are indistinguishable, the three stuck-at-0 circuit

models are equivalent. The two input stuck-at-0 faulted

circuits are removed leaving five of the original seven

faulted circuits.

12

Inputs Outputs of Circuits Detectable Faults
I A Bllalblcldlelflgll SAO

I SA1 |

T~0 OIIOIOIOIIIOIOIOM none I d 1
10 lMOIllOlllOlOlOM none

I d, b
|

|1 OMOIOIIIIIOIOIOM none | d, c I

II 1 I I 1 I 1 I 1 I 1 I I I I I e,f,g | none
I

Table 1, Outputs of an AND Gate and its Faulted Models.

The output stuck-at-1 fault dominates the input stuck-at-1

faults. Any test that detects one of the dominated faults,

the stuck-at-1 input faults, also detects the dominating

fault, the output stuck-at-1 fault. The two input vectors

{1, 0} and {0, 1} each detect an input stuck-at-1 fault and

they both detect the output stuck-at-1 fault. The input

vector {0, 0} also detects the output stuck-at-1 fault but

it detects neither of the input stuck-at-1 faults. The

input vector {1, 1} detects none of the stuck-at-1 faults.

Thus it is impossible to detect either of the input stuck-

at-1 faults without simultaneously detecting the output

stuck-at-1 fault. The output stuck-at-1 faulted model is

therefore unnecessary and can be removed.

The fault grader only needs to evaluate the four remaining

circuits instead of the original seven. The circuits that

still must be evaluated are, the unfaulted circuit, the

output stuck-at-0 faulted circuit, and the two input

13

stuck-at-1 faulted circuits. The six original faulted

circuits are represented by just the three remaining

faulted circuits.

Using fault dominance and fault equivalence to reduce the

number of faulted circuits leads to the following

algorithm! 4]

:

1. Assign stuck-at-x faults to the primary inputs.
2. Assign stuck-at-x faults to the output of any gate

with a fanout greater than one.
3. Translate faults forward through the circuit using

equivalence and dominance.
4. Create a faulted circuit model for each remaining

fault.

This algorithm produces a collapsed set of faulted circuits

that is much smaller than the set of faulted circuits

created by the single stuck-at-x fault model. It is still

a complete set because detecting all the collapsed faults

detects all possible stuck-at faults.

Calculating the fault coverage has now become difficult

because no one-to-one correspondence exists between the

collapsed faults and the original faults. One collapsed

fault can represent any number of original faults that have

been collapsed into it. The fault coverage given by the

14

ratio of detected to possible collapsed faults should

approximate the original fault coverage, at least for large

circuits. This new pseudo fault coverage will be the value

generated by this program.

Figure 2 is a circuit that will be used to illustrate the

application of the fault collapsing algorithm. Table 2

contains the fault state of each of the inputs and outputs

at each stage of the application of the fault collapsing

algorithm. Each column in the table contains the set of

faults that exist at each of the stages of the application

of the fault collapsing algorithm.

The first step of the algorithm assigns the four primary

inputs stuck-at-x faults (Stage 1, Table 2). The second

step is to assign gates with fanouts greater than one, the

inverters II and 13, stuck-at-x faults, Stage 2. The

third step in the algorithm is performed repeatedly until

the faults in the circuit stabilize. Feeding the faults

towards the primary outputs leaves them at the inputs of

the inverters and the AND gates, Stage 3. The faults at

the inputs of the inverters are transferred to their

outputs using fault equivalence, Stage 4. Again feeding the

faults forward leaves all the faults at the AND gate's

inputs, Stage 5. Using equivalence again, the stuck-at-0

15

Figure 2, A Sample Circuit

Pins
of the Gates

Stages
13 14

Dl output
D2 output
D3 output
D4 output
11 input
11 output
12 input
12 output
13 input
13 output
AND1 input
AND1 input2
AND1 input3
AND1 output
AND2 inputl
AND2 input2
AND2 input3
AND2 output
OR inputl
OR input2

1 1 SaX 1 SaX
1 I SaX 1 SaX
1 1 SaX 1 SaX
1 I

SaX SaX

SaX

SaX

SaX

SaX

SaX

SaX

SaX

V

SaX SaX
SaX

Sal
Sal

Sal I |

Sal
I |

SaX SaX SaX SaX Sal
SaO

Sal 1 1

SaX SaX SaX SaX Sal Sal
SaX SaX SaX SaX Sal Sal

I |

SaX SaX SaX Sal
SaO

Sal
j

SaO
SaO

I |

total faults
I I 8 16 I 16 I 14 I 12 I 8 I 8 I I

Table 2. Fault States at Various Stages,

16

faults on the inputs are transferred to the outputs of the

AND gates, Stage 6. Feeding the two stuck-at-0 faults

forward leaves them on the inputs to the OR gate, Stage 7.

No more fault collapsing can be done and step four is

performed to produce a minimum set of faulted circuits

having eight members. Six of the circuits have a stuck-

at-1 fault on the input of an AND gate, and two circuits

have a stuck-at-0 fault on the input of the OR gate, Stage

7 again. These eight faulted circuits represent all

twenty-eight of the original faulted circuits. Another

useful property of the algorithm is that all the collapsed

faults appear on inputs. This fact simplifies the

construction of the fault grader because output faults need

never be considered.

2.3 Parallel Fault Simulation

Now that a collapsed set of faulted circuits has been found

it is necessary to evaluate them. The fault grader

evaluates each circuit model using an event driven logic

simulator. The most obvious way of performing the

simulations would be to simulate the unfaulted circuit

first and then each of the faulted circuits. It is faster,

17

however, to simulate the circuits in parallel, which is

possible because each faulted model differs from the

unfaulted model by a single stuck-at fault. Parallel

simulation of several circuits greatly reduces the amount

of simulation time required.

To simulate several circuits in parallel each bit in the

computer's word is assigned to a different circuit. A

computer has a word length of several bits but only one of

those bits is needed during simulation to represent the

logical values. Another bit is required to determine if

the logical value is defined or not but it can be handled

in the same manner as the simulation bit. The extra bits

in the simulation word are assigned faulted circuits which

require special handling only at the points where a faults

occur. To further increase the efficiency of the

simulation, the unfaulted circuit is simulated each time,

eliminating the necessity of retrieving the unfaulted

outputs to compare them to the faulted outputs.

A fault simulation list contains the information for the

faulted circuits that were assigned to bits in the

simulation word. To simulate a faulted circuit the bit

corresponding to the faulted circuit is forced to its

stuck-at value at the point of the fault. The gates that

18

have faults in the fault simulation list are marked so that

as they are simulated the faults can be easily found. When

a marked gate is encountered, its associated fault or

faults are found in the fault simulation list so the

appropriate masks can be applied.

The simulation technique just described is a common fault

simulation process called, parallel fault simulation. Put

concisely, a parallel fault simulator uses each bit in the

computer word to simulate a different circuit in parallel.

While one bit of the word is used to simulate the unfaulted

circuit, each of the other bits is used to simulate a

faulted circuit.

Parallel fault simulation requires a presimulation process

to assign one of the faulted circuits to each bit of the

simulation word. As each gate is simulated it is checked

for a fault. If a fault exists in any of the circuits being

simulated the bit corresponding to the fault is forced to

the stuck-at fault's value. A stuck-at fault ignores the

value passed to the faulted circuit's input, replacing it

with the value of the stuck-at fault.

After the simulation of each individual input vector a

postsimulation process looks at the values of the primary

19

outputs. A bit that differs from the unfaulted output

represents a fault that has been detected by that input

vector. The detected fault is removed from the fault

simulation list and an output statement identifying the

fault and input vector number is generated.

A faulted circuit that never causes its corresponding

simulation output bits to differ from the unfaulted

circuit's output bits remains undetected. After the last

input vector is simulated, any faults that remain in the

fault simulation list are not detectable with the current

set of input vectors. These faults are removed from the

fault simulation list so the next set of faulted circuits

can be simulated. As each undetected faults is removed an

output statement is generated signifying that the fault

remained undetected. If the fault was internal to a macro

an output relating it to the periphery of the macro is also

generated. When there are no faulted circuits to be

simulated the parallel fault simulation process is

finished.

20

2.4 Event Driven Simulation

The parallel fault simulation is performed using an event

driven simulator which only simulates the active parts of

the circuit[5]. An event driven simulator simulates events

as they occur in simulation time. An event is the possible

change of an element's output caused by a change to one of

the element's inputs. The time at which an event will be

simulated is the sum of the simulation time at which the

input changed plus the element's delay time. An element's

changing output causes the elements that have inputs tied

to the changing output to be scheduled for simulation. An

elements delay time and the simulation time used by the

event driven simulator are relative figures, the only

restriction is that they be integers. The initial

definition of the gate library uses time measured in

integer values of nanoseconds.

The event driven simulator uses a time ordered list to

schedule the events. At the beginning of the simulation of

each input vector the gates tied to the primary inputs are

scheduled. These gates are simulated and the gates whose

outputs change cause the scheduling of the gates that have

inputs tied to the gate's output net. The time at which

21

they are scheduled depends on the gate delay which is

defined in the gate library. The time is calculated by

adding the current time, the time when the inputs changed,

to the gate delay time of the changing gate.

Gate delay times restrict the order in which the gates in

the circuit are simulated. This gives a close

approximation of the way the signals would actually

propagate through a real circuit. An event driven

simulator was used as the simulator for the fault grader

because it gives a realistic simulation with respect to

time and it ignores the inactive parts of the circuit.

3. The Fault Grading Program

The fault grading program is described below. First the

inputs and outputs of the grader are discussed, then a

general outline of the operation of the program is given

along with a flow chart. The last part of this section

explains the concepts necessary to expand the program to

include new gates or chips. More detailed information

concerning the program can be found in the documented copy

of the source code in appendix B.

22

3 .1 Input

The fault grader was designed to operate on the outputs of

a commercially available digital logic design package,

Micro Logic 2. The output files produced by the Micro

Logic 2 package are used to define the circuit model. The

first file that the fault grader reads contains the gate

level network listing of the circuit. If elements more

complex than simple gates were used in the design of the

circuit then another network listing file is read that

contains the complex elements. A complex element, which is

called a macro, is a functional rather than a logical

element and contains several simple gates. The last file

read, which must be written by the user, supplies the input

test vectors.

The three file names are, 'filename.NET', 'filenameM.NET',

and 'f ilename.VEC . They are accessed by the fault grader

by appending the different endings to the filename which

should appear on the command line that runs the program.

The network listing files contain one line for each

element. Each line is numbered and contains an element

name and a listing of the nets attached. Simple gates have

23

their nets listed with the inputs first followed by the

output's net. Macros have their nets listed by pin number,

pin one appearing first. The listing of nets cannot begin

before column eighteen. A blank line signifies the end of

the model.

The input test vector file ' filename. VEC is written by the

user and is a file of ASCII O's and l's that defines the

input test vector set. Each row of the file corresponds to

a input vector and each column corresponds to an individual

primary input. A value in the second column of the third

row would be the value of the second primary input during

the third input vector's evaluation. No spaces, blank

lines or comments may appear in this file.

The CLOCK components used by the Micro Logic 2 package to

clock sequential circuits are not implemented by the fault

grader because the Micro Logic 2 package provides no method

of outputting the clocking information. Fault grading a

sequential circuit requires that one of the DATA, primary

input, components be used as a clock. Two input vectors

are therefore required for every different input. The

first input vector sets up the values of the non-clock

inputs while the clock input is a and they remain the

same during the second input vector which brings the clock

24

to a 1

.

The files generated by the Micro Logic package have the

same base filename and are differentiated by their

extensions. The network output file has an extension

'NET 1

, the unexpanded macro file has the ending of * M.NET',

and the input vectors appear in a file with the extension

'VEC' . The outputs of the fault grader will appear in

files with the same filename used by the Micro Logic

package but with the extensions of 'DFA' , 'UFA', and 'MFA'

which are the detected fault file, the undetected fault

file, and the macro fault file, respectively. The macro

fault file will only appear if a macro is present in the

circuit model.

3 .2 Output

The fault grader generates output to both the standard

output and to stored files. As faults are determined,

either detected or undetected, they are sent to the

standard output. Detected faults are also recorded in the

file with the extension "DFA 1

. The undetected faults are

recorded in a file with the extension 'UFA'. If macros

were used in the circuit, a macro fault file with the

25

extension 'MFA' will also be generated. The macro fault

file differs from the undetected fault file in that the

undetected faults internal to macros are converted to

faults on the periphery of the macros. Redundant faults

that appear internal to macros are removed from the fault

grading because they can not be detected by steady state

testing. These faults are identified in the macro library

so they can be discarded by the fault grader. The

undetected faults that are not internal to a macros appear

as they do in the undetected fault file.

In the output files the faults are identified by their gate

number, the name of the element, the pin they appear on,

and whether it is a stuck-at-1 or a stuck-at-0 fault. A

gate's number and name are the same as they appear in the

network file 'f ilename.NET' . An macro's number and name

are the same as they appear in the network file

'filenameM.NET'. A detected fault's output line will also

contain the number of the input vector that detected it.

Undetected faults that are internal to a macro, produce two

lines of output, the first maps the fault to the periphery

of the macro and the second identifies the exact location

of the undetected fault.

At the bottom of all three files appears the fault coverage

26

percentage. This is calculated by dividing the number of

detected faults by the total number of collapsed faults

minus any redundant faults that were removed. It should be

noted that this fault coverage is a relationship of the

number of detected collapsed faults to undetected collapsed

faults rather than a relationship of detected faults to

possible faults. The two ratios are similar but differ

because of the unknown number of possible faults that is

represented by each collapsed fault.

3 .3 Program Operation

Figure 3 is a flow chart of the fault grading program. The

program begins by reading the network output file with the

extension 'NET' , using it to define the internal model of

the circuit. If a macro is used in the circuit model the

file with the ending 'M.NET 1 is also read. The primary

inputs and the gates with fanouts greater than one are

assigned stuck-at-x faults. The assigned faults are then

collapsed and the first n-1 of the collapsed faults, where

n is the number of bits in the simulation word, are

assigned to corresponding bits of the simulation word.

These faults are put on the fault simulation list and the

gates they appear on are marked so the faultl can be found

27

during simulation. The unfaulted circuit is represented

with the most significant bit and the remaining bits are

used to represent faulted circuits.

The input vectors are all read and the first input vector

is simulated. The gates with faults are marked so that as

each gate is simulated it can be checked for faults in the

fault simulation list. When a marked gate is found during

the simulation, the faulted circuit or circuits associated

with the gate are found in the fault simulation list.

Using the information in the list, the bit or bits are

forced to the appropriate stuck-at value. The outputs are

checked for the presence of detected faults at the

completion of the simulation of each input vector. A fault

is detected if its faulted circuit's primary output bits

differs from the unfaulted circuit's primary output bits.

Detected faults are removed from the fault simulation list

and a fault detected output is generated.

The fault grader repeats the above process for each input

vector. After all the input vectors have been simulated

any remaining faults in the fault simulation list are

undetectable with the current input vector set. These

faults are removed from the fault simulation list and an

undetected fault output is generated for each. The fault

28

(STRRT)
.

ASSIGN PRIMRRY INPUTS
STUCK-RT-X FAULTS

RSSIGN GATES WITH A FANOUT
GREATER THAN ONE STUCK-AT-X FAULTS

READ IN THE INPUT TEST VECTORS

f

CONSTRUCT THE FAULT SIMULATION LIST

(r

SIMULATE AN INPUT VECTOR

HANDLE THE DETECTED FAULTS

YES

HANDLE UNDETECTED FRUL.TS

l_RST \ YES
FRULT?

NO

MRP UNDETECTED FRULTS TO MACRO PERIRPHERY

.STOP

Figure 3, Fault Grader's Flow Chart

29

grader now addresses the next n-1 faulted circuits.

Faulted circuits are modeled n-1 at a time until there are

no unmodeled faulted circuits remaining.

3.4 The Element Libraries

The fault grader requires considerable information about

each of the elements that appear in the circuit models it

grades. This information is included in element libraries

which already contain all the elements that are defined in

the Micro Logic 2 package, except the CLOCK component. The

following section discusses the element libraries and how

to add elements to them.

There are two element libraries, the gates library and the

macro library. The gates are defined in a completely

different manner than the macros. The information in the

gates library is actually used for fault collapsing and

circuit simulation, whereas the macro library is only used

to interpret the network listings and the undetected faults

in relation to the macro's periphery.

30

3 .4 .1 The Gate Library

The gate library is in the file ' gates. c' and consists of a

structure entry and two functions for each gate. The

structure is initialized with the gate's name, the number

of pins, the time delay of the gate, the name of the

function used for fault compression, and the name of the

function used for simulation. An example initialization

line is given by Figure 4. The name of the gate can not

exceed eight characters because of the input specifications

of the fault grader. A gate can have any number of pins up

to sixteen, but only one of them may be an output. The

time delay of the gate must be an integer and is used by

the simulator to determine at what time the gate's output

will change after an input value changes.

n AND2 n
, 3,1, and2f, and2s,

Figure 4. Sample 'GATES' Initialization Line.

The function names must be the names of valid C user-

supplied functions. The fault collapsing function is used

during the fault compression stage to transfer faults from

the inputs of the gate to the its output, using equivalence

and dominance rules. For a two-input AND gate this

31

corresponds to transferring any stuck-at-0 faults from the

inputs to the output. Figure 5 is the fault collapsing

function for a two-input AND gate. The function first

looks at the output of the AND gate for a stuck-at-0 fault,

If one exists then any stuck-at-0 input faults are removed

and the status of the gate's output is returned as

unchanged. If no stuck-at-0 exists on the output then the

function looks at the inputs to see if there are any input

stuck-at-0 faults. If there is not then the gate's output

status is again returned as unchanged, but if there is a

input stuck-at-0 fault an output stuck-at-0 fault is

produced, any input stuck-at-0 faults are removed and the

output status of the gate is returned as having acquired a

stuck-at-0 fault.

1 int and2f(state)

2

3 int *state;
4

5 {

6 if (! (*state & 0x10)

)

7 if(*state & 0x5)

8 {

9 *state 1= 0x10;
10 *state &= 0x3a;
11 return 1;
12 }

13 state &= 0x3a;
14 return 0;
15 }

Figure 5, An AND Gate's Fault Collapsing Function.

32

This function can be used as a template for the development

of a fault collapsing function for a new gate. The

argument 'state' represents the faults by using each bit of

the word to represent one of the possible faults. The

least significant two bits represent the faults on the

first input, the next two bits represent the next input and

so on until the output's faults are represented. The least

significant bit in each pair represents the stuck-at-0

fault. The other bit represents the stuck-at-1 fault. A

fault exists if the bit representing it is set.

The 'and2f is the name of the function and is the only

item in the first five lines that should be modified. The

next part of the function that differs from gate to gate is

the conditional of the first 'if, line 6. The conditional

checks to see if the output is already faulted. Bitwise

anding the word 'state' with the hexadecimal value 10 will

be nonzero, or true, only if the gate has a stuck-at-0

fault on its output. If this is true the output fault

state of the AND gate will not change regardless of the

faults input into the gate. The '
!

' is a NOT operator and

changes the tested condition from true to false. The 'if 1

fails so the program flow skips down to line 13 which masks

off any input stuck-at-0 faults. A stuck-at-0 fault on the

output is equivalent to the input stuck-at-0 faults so the

33

input stuck-at-0 faults are removed.

If the conditional is true, no stuck-at-0 on the output,

line 7 is processed. The 'if on line 7 tests for the

presence of a stuck-at-0 fault on either input. If there

is not an input stuck-at-0 fault the program skips to line

13 as described above. If there is an input stuck-at-0

fault, the output is given a stuck-at-0 fault, line 9. Any

input stuck-at-0 fault is removed and a value of 1 is

returned, lines 10 and 11. The value 1 is returned to

signify that the output fault state of the gate has changed

and that it has acquired a stuck-at-0 fault. Returning a

value of 2 would indicate that the output had acquired a

stuck-at-1 fault, and a returned value of 3 would represent

both faults. A value of 3 can only be returned by elements

that simply transfer faults, like an inverter. It is

necessary to return the new fault value of the output so it

can be propagated forward through the circuit.

The simulation functions are used to simulate the gates.

The simulation function for the two-input AND gate is shown

in Figure 6. This function uses the inputs to the AND gate

to determine the output of the gate. Two variables are

required to define a gate's output, the logical value of

the output and whether or not the output is defined. The

34

output of the AND gate is defined if either of the inputs

has a defined logical value or if both of the inputs have

defined logical values. The logical output of the AND gate

is simply the logical anding of the inputs regardless of

their defined states.

1 int and2s(logic_input, def ine_input f

2 logic_output, def ine_output)

3

4 long *logic_input f

5 *def ine_input,
6 *logic_output r

7 *def ine_output

;

8

9 {

10 *def ine_output = (def ine_input [0] & ~logic_input [0])

11 I (def ine_input [1] & ~logic_input [1])

12 I (def ine_input [0] & def ine_input [1]);
13
14 *logic_output = (logic_input [0] & logic_input [1]);
15 }

Figure 6, An AND Gate's Simulation Function.

The arguments input to all the simulation functions are the

same. The first two are pointers to integer arrays that

hold the values of the inputs. The array element indexed

with a refers to the first pin, the array element indexed

with a 1 refers to the second input, and so on for each of

the inputs. The array pointed to by the pointer

'logic_input' contains the logical values of the inputs.

The array pointed to by ' def ine_input ' contains the defined

states of the inputs. A bit in the def ine_input' array

35

means that the logical value for that input is not defined.

The simulation function only has two statements. The first

one, which starts on line 10 , determines the output defined

state. It states that, if either the first or the second

input has a defined logical value of 0, or if both inputs

are defined, then the output is defined. The second

statement, line 14, determines the value of the logical

output regardless of the defined states.

The operations performed on the inputs and outputs must be

bitwise. This is because each bit of the simulation word

represents a different circuit. The '&' operator AND' s the

bits of its operands, the '

I

' OR's the bits of its

operands, and the ' "' complements each bit of its operand.

The steps for adding a gate to the library file ' gates.

c

1

are:

- Write a fault function for the gate.
- Write a simulation function for the gate.
- Add the gate to the initialization list of the

structure 'GATES'.
- Increase the value of ' GATE_NUMBER' by one for each

gate added to the library.
- Recompile and relink the file 'gates. c'.

36

3.4.2 Macro Library

The macro library appears in the file macros.

c

1 and

contains the information necessary to relate faults to the

macros used in the circuit model and to remove the unused

parts of macros from the fault grading. A macro is a

collection of gates grouped together to form a functional

unit or to model a chip level device. The purpose of the

macro library is to map undetected faults internal to the

macro to their corresponding peripheral faults. The intent

is to give the program user a idea of the faults remaining

untested on the periphery of the macro. The library also

supplies information that is used for the removal of unused

macro faults and redundant faults internal to a macro.

Faults that are undetectable, e.g. because of redundancy in

the circuit, are marked so they can be ignored by the

program.

The best method for finding the faults associated with a

new macro is to individually fault grade its expanded form.

The fault list generated by this method is a complete fault

list that contains all the macro's internal faults. Once

the relationships between the internal faults and their

corresponding peripheral faults are known, the macro can be

added to the macro library.

37

When a macro is used to represent a chip level device it is

possible that extra unused gates will be included in the

model. Some chips are dual devices, there are two

identical functions provided by the chip one of which could

remain unused. The macro library provides enough

information so that the unused parts of a macro can be

removed from the fault grading.

Three structures and an integer array are used in the macro

library. The first structure 'macros' contains the

characteristics of the macro in one initialization line for

each macro. The line contains the macro name, the number

of gates in the macro's expansion, the number of faults

defined for the macro, an index into the second structure,

'macrof aults' , and a index into the third structure,

'macroparts' . The macro's name is a character string

identical to the string that will identify the macro in the

Micro Logic 2 netlist output. Figure 7(a) gives a sample

initialization line for a TTL 7 47 4 chip.

The second structure holds the statements that map the

internal faults to the periphery of the macro. It requires

one initialization line per possible fault, which contains

the gate and pin the fault is located on, the type of

fault, and an output statement for the fault. The gates

38

"14% 12, 36, 0, 1

(a)

1, 1, 1, "Preset stuck-at-1 fault",

(b)

7, 1, 6

(c)

Figure 7, Macro Library Initialization Lines.

and pins are numbered sequentially as they appear in the

macro expansion produced by the Micro Logic 2 package. The

type of the fault is given by a '1' if it is a stuck-at-1

and a '0' if it is a stuck-at-0. The output statement will

be printed immediately preceding the undetected fault

statement with the intention of explaining the internal

fault. The convention in the macro library is that this

message be mnemonic in nature but should contain the pin

number when appropriate. Figure 7(b) gives a sample

initialization line.

The third structure holds three integers that are used to

identify the parts of compound macros. Macros that are not

compound, i.e. have only one functional unit, all use the

39

first line of this structure. The first two integers

specify a gate and a pin, respectively, that is checked to

see if the macro part is in use. If the pin is tied to the

net, the null net, then that part of the macro is not

used by the circuit. The third integer is the number of

gates used to expand the macro part. When an unused macro

part is found the gates used in that macro parts expansion

have their faults removed, this removes the unused macro

part from further consideration by the fault grader. The

removed faults do not appear in the fault grader's outputs,

nor are they included in the calculation of the fault

coverage.

The steps for adding a macro to the library file ' macros, c' are:

- Create an initialization line in the structure MACROS.
- Create an initialization line in the structure MACROFAULT

for every possible internal macro fault.
- If the macros has multiple parts, create a initialization

line in the structure MACROPARTS for each part.
- Increase the value of MACRO_NUMBER one for each new macro.
- Recompile and relink the file 'macros.c 1

.

4. Outputs and Results

The circuit in Figure 8(a) is a five state sequential

circuit which will be used to illustrate how the fault

grader operates. The circuit was chosen as a simple and

40

traceable circuit that will completely exercise the fault

grader. A state diagram of the circuit's operation, Figure

8(b), shows that the circuit does little more than walk

around in a circle, occasionally taking a shortcut

dependent upon the two inputs.

The two listings in Figure 9 are the netlist outputs of the

Micro Logic 2 package after it was used to make the

schematic of the circuit. They are the files that the

fault grader will use to define its circuit model. The

first listing, Figure 9(a), is the unexpanded macros

netlist and is the most readable. The second, Figure 9(b),

is the one the fault grader uses most. In this file the

macros of the D flip-flops have been expanded to the gate

level. The fault grader does all its work at the gate

level, referring to macros only for its I/O interfacing.

Figure 10 shows the input vectors as they are read by the

fault grader. This file is not created by the Micro Logic

2 package, but it is produced by the user, using any text

editor. The columns in the file correspond to the 'DATA'

inputs, the first column is the first data input, ' DATA1 '

.

The rows in the file correspond to the input vectors, the

first row is the first input vector. The fault grader does

not have a clock input so one of the data inputs must be

41

Figure 8(a), A Five-State Sequential Circuit

Figure 8(b), Five-State Circuit's State Diagram

42

Report for STATEM
1 DATA1 1

2 DATA2 2

3 AND2 1 13 3

4 OR2 5 6 4

5 AND2 14 16 5

6 AND3 10 13 15 6

7 AND3 9 14 18 7

8 OR2 7 5 8

9 DATA3 9

10 INV 1 10
11 DATA4 11
12 DATA5 12
13 OUTPUT 18
14 OUTPUT 13
15 OUTPUT 14
16 OUTPUT 17
17 OUTPUT 15
18 OUTPUT 16
19 74 11 4 2 12 13 14 15 16 12 2 8 11
20 74 11 3 2 12 17 18 19 20

Figure 9(a), Five-State Circuit's Unexpanded Netlist

used. The other data inputs should be stable, unchanged as

the clock's data input rises from '0' to '1' or the timing

requirements of the D flip-flop will be violated in which

case the simulator does its best to simulate the circuit

but it was not designed to handle races.

The three files that are produced by the fault grader are

shown in Figure 11. They are the detected fault file,

Figure 11(a), the undetected fault file, Figure 11(b), and

the macro mapped undetected fault file, Figure 11(c). Each

of the files contain the fault coverage percentage

calculated from the collapsed fault set. All three types

43

Report for STATE
1 DATA1 1

2 DATA2 2

3 AND2 1 13 3

4 OR2 5 i5 4

5 AND2 14 16 5

6 AND3 10 13 15 6

7 AND3 9 :L4 18 7

8 OR2 7 !5 8

9 DATA3 9

10 INV i :L0
11 DATA4 11
12 DATA5 12
13 OUTPUT 18
14 OUTPUT 13
15 OUTPUT 14
16 OUTPUT 17
17 OUTPUT 15
18 OUTPUT 16
19 NAND3 12 21 22 23
20 NAND3 23 11 2 22
21 NAND3 22 2 21 24
22 NAND3 24 11 4 21
23 NAND3 12 22 14 13
24 NAND3 13 11 24 14
25 NAND3 12 25 26 27
26 NAND3 27 11 2 26
27 NAND3 26 2 25 28
28 NAND3 28 11 8 25
29 NAND3 12 26 15 16
30 NAND3 16 11 28 15
31 NAND3 12 29 30 31
32 NAND3 31 11 2 30
33 NAND3 30 2 29 32
34 NAND3 32 11 3 29
35 NAND3 12 30 18 17
36 NAND3 17 11 32 18
37 NAND3 33 34 35
38 NAND3 35 34
39 NAND3 34 33 36
40 NAND3 36 33
41 NAND3 34 19 20
42 NAND3 20 36 19

Figure 9 (b)

,

Five-State i

44

10000
10011
11011
10111
11111
00011
01011
00111
01111

Figure 10, Five-State Circuit's Input Vectors

of output messages are sent to the standard output as the

fault grader runs, ordered by the their occurrence in time

only.

The fault coverage value gives an idea of how well the

circuit was tested, but it does not help in the creation of

better test vectors. To improve the test one must look at

the undetected fault files and try to create additional

inputs that will detect those faults. It may also be

possible to decrease the size of the test vectors by

looking at the detected fault file and removing the input

vectors that do not detect any faults. But care must be

taken with sequential circuits, in order that

initialization input vectors are not removed.

A macro appeared in the circuit so the macro mapped

undetected fault file may also be useful because it

contains output statements that relate the internal faults

45

23 NAND3 pin 1 stuck-at-1 detected by input 1

24 NAND3 pin 2 stuck-at-1 detected by input 1
20 NAND3 pin 3 stuck-at-1 detected by input 2
24 NAND3 pin 1 stuck-at-1 detected by input 2
3 AND2 pin 2 stuck-at-1 detected by input 3

5 AND2 pin 2 stuck-at-1 detected by input 3

20 NAND3 pin 1 stuck-at-1 detected by input 3

22 NAND3 pin 3 stuck-at-1 detected by input 3

7 AND3 pin 1 stuck-at-1 detected by input 3

22 NAND3 pin 1 stuck-at-1 detected by input 5
8 OR2 pin 1 stuck-at-0 detected by input 5

4 OR2 pin 1 stuck-at-0 detected by input 7

19 NAND3 pin 2 stuck-at-1 detected by input 7

19 NAND3 pin 3 stuck-at-1 detected by input 7

21 NAND3 pin 2 stuck-at-1 detected by input 7

23 NAND3 pin 2 stuck-at-1 detected by input 7

21 NAND3 pin 1 stuck-at-1 detected by input 7

8 OR2 pin 2 stuck-at-0 detected by input 7

23 NAND3 pin 3 stuck-at-1 detected by input 8

3 AND2 pin 1 stuck-at-1 detected by input 9

5 AND2 pin 1 stuck-at-1 detected by input 9

6 AND3 pin 3 stuck-at-1 detected by input 9

7 AND3 pin 2 stuck-at-1 detected by input 9

35 NAND3 pin 1 stuck-at-1 detected by input 1

30 NAND3 pin 2 stuck-at-1 detected by input 1

29 NAND3 pin 1 stuck-at-1 detected by input 1

32 NAND3 pin 3 stuck-at-1 detected by input 2

26 NAND3 pin 3 stuck-at-1 detected by input 2

30 NAND3 pin 1 stuck-at-1 detected by input 2

32 NAND3 pin 1 stuck-at-1 detected by input 3

26 NAND3 pin 1 stuck-at-1 detected by input 3

28 NAND3 pin 3 stuck-at-1 detected by input 3

25 NAND3 pin 2 stuck-at-1 detected by input 5

27 NAND3 pin 2 stuck-at-1 detected by input 5

29 NAND3 pin 2 stuck-at-1 detected by input 5

29 NAND3 pin 3 stuck-at-1 detected by input 6

25 NAND3 pin 3 stuck-at-1 detected by input 7

27 NAND3 pin 1 stuck-at-1 detected by input 7

24 NAND3 pin 3 stuck-at-1 detected by input 9

28 NAND3 pin 1 stuck-at-1 detected by input 9

30 NAND3 pin 3 stuck-at-1 detected by input 9

36 NAND3 pin 2 stuck-at-1 detected by input 1

36 NAND3 pin 1 stuck-at-1 detected by input 2

The fault coverage was 64.18%.

Figure 11(a), Detected Fault File

46

4 OR2 pin 2 stuck--at-0 remains
6 AND3 pin 1 stuck--at-1 remains
6 AND3 pin 2 stuck--at-1 remains
7 AND3 pin 3 stuck--at-1 remains

19 NAND3 pin 1 stuck--at-1 remains
20 NAND3 pin 2 stuck--at-1 remains
21 NAND3 pin 3 stuck--at-1 remains
22 NAND3 pin 2 stuck--at-1 remains
25 NAND3 pin 1 stuck-at-1 remains
26 NAND3 pin 2 stuck--at-1 remains
27 NAND3 pin 3 stuck-at-1 remains
28 NAND3 pin 2 stuck--at-1 remains
31 NAND3 pin 1 stuck-at-1 remains
31 NAND3 pin 2 stuck--at-1 remains
31 NAND3 pin 3 stuck-at-1 remains
32 NAND3 pin 2 stuck--at-1 remains
33 NAND3 pin 1 stuck-•at-1 remains
33 NAND3 pin 2 stuck--at-1 remains
33 NAND3 pin 3 stuck-•at-1 remains
34 NAND3 pin 1 stuck--at-1 remains
34 NAND3 pin 2 stuck-•at-1 remains
35 NAND3 pin 2 stuck--at-1 remains
35 NAND3 pin 3 stuck-•at-1 remains
36 NAND3 pin 3 stuck--at-1 remains

he fault coverage was 64i .18%.

undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected,
undetected.

Figure 11(b), Undetected Fault File

to the periphery of the macro. Not all of the internal

faults possible in a macro can be directly mapped to a

macro pin. Some of the faults deal with the ability of the

macro to perform the function it was designed for. The

macros are modeled so that the input test vectors test the

macros as well as the network connecting them.

A few of the faults that occur within a macro are

untestable without some type of dynamic test. Each D

47

4 0R2
6 AND3
6 AND3
7 AND3

19 74

19 74

19 74

19 74

20 74

20 74

20 74

20 74

20 74

20 74

20 74

20 74

20 74

20 74

pin 2 stuck-at-0
pin 1 stuck-at-1
pin 2 stuck-at-1
pin 3 stuck-at-1

remains undetected,
remains undetected,
remains undetected,
remains undetected.

Preset stuck-at-one fault
19 NAND3 pin 1 stuck-at-1 remains undetected,

Clear stuck-at-one fault CI while Ck 1
20 NAND3 pin 2 stuck-at-1 remains undetected,

Preset stuck-at-one fault.
25 NAND3 pin 1 stuck-at-1 remains undetected.

Clear stuck-at-one fault CI while Ck 1

26 NAND3 pin 2 stuck-at-1 remains undetected.
Preset stuck-at-one fault

31 NAND3 pin 1 stuck-at-1 remains undetected.
D input stuck-at-zero fault.

31 NAND3 pin 2 stuck-at-1 remains undetected.
Clear stuck-at-zero fault.

31 NAND3 pin 3 stuck-at-1 remains undetected.
Clear stuck-at-one fault CI while Ck 1

3 2 NAND3 pin 2 stuck-at-1 remains undetected.
Clock or Clear stuck-at-zero fault

33 NAND3 pin 1 stuck-at-1 remains undetected.
Clock stuck-at-one fault.

33 NAND3 pin 2 stuck-at-1 remains undetected.
Ability to hold clear ck high.

3 4 NAND3 pin 1 stuck-at-1 remains undetected.
Clear or Clock stuck-at-zero fault.

3 5 NAND3 pin 2 stuck-at-1 remains undetected.
Flip-flop ability to hold set

3 5 NAND3 pin 3 stuck-at-1 remains undetected.
Flip-flop ability to hold clear

36 NAND3 pin 3 stuck-at-1 remains undetected.

The fault coverage was 64.18%.

Figure 11(c), Macro Mapped Undetected Fault File

flip-flop contains two faults that can only be detected by

dynamic testing of the circuit with close attention to the

timing considerations. These faults are undetectable under

the conditions assumed by the fault grader so they have

been removed initially. They do not appear in any of the

48

fault lists and are not counted in the fault coverage.

They can only appear in the detected fault list and then

only if the input vectors are unrealistic.

The fault grader was designed for use with relatively small

circuits. Speed was important because the fault grader

will probably be used as an iterative design tool. A set

of vectors would be fault graded, modified and graded again

until a set of vectors achieves complete fault coverage.

This process requires the repeated use of the fault grading

program and would be grueling if the fault grader was

excessively slow.

Because it was designed for student use, the operation of

the program was kept as simple as possible. The Micro

Logic 2 package, which is itself easy to use, is used as

the circuit editor. Use of the fault grader in conjunction

with the Micro Logic 2 package only requires a few commands

once the circuit has been designed. The input vectors are

in ASCII so they can be edited with whichever editor the

user is most familiar with. Care was also taken to

simplify the addition of elements to the libraries.

Probably the hardest addition would be a macro addition

because it is necessary to define the internal faults in

relation to the periphery of the macro. The fault grader

49

itself can be used to assist in this process by fault

grading the expanded model of the macro as a circuit.

The program was also written to be portable. It was

written on an AT&T UNIX PC but is used on an IBM PC clone.

The program was written in C because of the growing

acceptance of it as an engineering programming language,

and because of C's reputation for portability. The bit

operations available in C were also a determining factor.

The element libraries are C functions so their operation is

traceable.

5. Conclusions and Recommendations

The fault grader is a useful engineering tool. It supports

the production of a good set of input test vectors that can

be used to test a circuit. This leads to a greater

confidence in the circuits that pass the test. Most of the

possible physical failures are included in the single

stuck-at-x fault model and if the fault grader gives the

input vectors a good fault coverage figure the test when

applied to the circuit will catch almost any problem.

50

Use of the fault grader will usually be iterative. An

initial set of test vectors is prepared and evaluated with

the fault grader. Then modifications of the test vectors

are made, guided by the outputs from the fault grader until

complete fault coverage is achieved. Outputs of the fault

grader can be used to determine which of the input vectors

are effective and to indicate what parts of the circuit

remain untested and will require additional test vectors.

One possibility for further development of the package

would be a method of generating a test vector set that

could detect undetected faults. It would also be an

improvement if the fault grader can be made to integrate

more closely with the Micro Logic 2 package, specifically,

to' be able to perform a fault grading from within the Micro

Logic 2 package. Another useful addition would be the

ability to insert the undetected faults back into a Micro

Logic 2 drawing file so they could be displayed,

graphically overlaid on the circuit diagram.

51

Appendices

The User Manual for the fault grading program appears in
appendix A. The documented C language source code for the
fault grader appears in appendix B. The files are listed in
alphabetic order not the order of importance. To follow the
flow of the code start with the 'main' function titled Fault
Grader . The two library files only appear in part because
of their extensive length. The gates library appears in
appendix C, and the macros library appears in appendix D.

Table of Contents for the Appendices.

User Manual (users.doc) A-l
Assign (assign, c) B-l
Collapse (collapse. c) B-3
Define (define, c) B-5
Evaluate (evaluate. c) B-ll

Fault Grader (main.c) B - 14

Input (input, c) B - 20

Macro (macro, c) B - 24

Macrofault (macrofault.c) B - 26

Push (push.c) B-29

Queue & Unqueue (queue. c) B - 31

Simulate (simulate, c) B - 35

Unusedmacros (unusedmacros.c) B - 41

Vector_input (vector, c) B - 43

Gates Library (gates. c) C - 1

Macro Library (macros, c) D-l

Appendix A

Fault Grader's User Manual

by

Joseph W. Naab

May 15, 1988

User ' s Manual

1. Introduction

This is a C language software program that evaluates the
ability of input test vectors to test a circuit. The
program is designed to run on the outputs of another
program called Micro Logic 2, which is a graphics driven
digital logic simulation package. The fault grader reads
the netlist files generated by the Micro Logic 2 package to
form a model of the circuit. Once a model has been formed
a collapsed set of faulted circuit models are constructed
using the single stuck-at-x fault model. The faulted and
unfaulted circuits are simulated using a event driven
parallel fault simulator and outputs which explain which
faulted circuit models were detected or remained undetected
are produced.

The outputs of the fault grader can be used to improve the
quality of the input test vectors. The undetected fault
outputs show which parts of the circuit remain untested and
the detected fault outputs show which input vectors do not
detected any faults.

2. Starting out

If Micro Logic 2 does not reside on the system you are
using it must be installed. After it is installed it will
be necessary to construct an output component. Run the
Micro Logic 2 package and get into the component editor,
open the component window, go to the second page of
components and select a blank component. The blank
component should be redefined as follows:

Name OUTPUT
Name of shape used DELAY
Definition NULL
Text X location -50
Text Y location
Text OUTPUT

The rest of the definitions can be ignored. Escape from
the component editor and confirm that the OUTPUT component

A - 1

now appears in the component window on the right hand side
of the screen in the page above the BUFFER element. The
page above BUFFER is accessed by clicking the component
window up arrow.

Once the Micro Logic 2 package has been installed and the
OUTPUT component created, it is necessary to compile the
source code for the fault grader unless the fault grader is
already installed or has been ported from an identical
system. If the system you are using does not support 32-
bit 'long' integers then it is necessary to change the
constant ' WORDLENGTH' in the file ' define. c' from 3 2 to the
number of bits in a 'long' integer. The exact method of
compiling differs from system to system but the object is
to compile and link all the files that have the extension
'c 1

. These are the fault grader's source files:

assign.

c

collapse.

c

define.

c

evaluate, c
gates.

c

input.

c

macro.

c

macrof ault. c

macros, c
main, c
push.

c

queue.

c

simulate, c
unusedmacros. c

vector.

c

If the system you are on is a UNIX system the source code
can be compiled with the command:

cc *.c -o fault

Which will create an executable file called 'fault' which
will be the fault grader if the above files are the only
files in the directory that have the extension '

c'

.

If you have Turbo C on your system then run Turbo C and
•make' the project file 'fault'.

A - 2

3. Circuit Model for the Fault Grader

After drawing the circuit using the Micro Logic 2 package
and attaching 'OUTPUT' components on all primary outputs,
save the drawing file using the 'Save Drawing' option in
the 'File' pop down window. Now print a netlist report to
disk with the macros expanded using the 'Print' pop down
window and selecting the 'Expand Macros' and the 'Disk'
options, this generates the gate-level netlist of the
circuit. If a macro was used in the drawing then in is
necessary that the file be resaved but with the letter 'M'
appended to the filename, again use the 'Save Drawing'
option of the 'File' pop down window. Print another
netlist report to disk but with the macros unexpanded,
again using the 'Print' pop down window and select the
'Expand Macros' option again to remove the check mark so
the netlist is unexpanded. This creates the macro-level
netlist of the circuit which is used by the fault grader to
produce macro related undetected fault outputs.

4. Input Test Vectors

The input test vectors are read from a file you must create
with the same base name as the circuit but with the
extension ' .VEC . This a an ASCII file that contain the
input vectors, each line of the file corresponds to a input
vector. The columns of the file correspond to the data
elements, i.e. column 1 is DATA1 . Each DATA component must
have its own column filled with either a 1 or a . No
blank lines, spaces, or comments may appear in the input
vector file.

The fault grader does not support the Micro Logic 2 CLOCK
component. CLOCK components are not supported by the fault
grader because the Micro Logic 2 package will not produce
an output file containing the clocking information.
Circuits are clock by dedicating a DATA component as a
clock. Two input vectors are required for each clock
period by circuits that contain positive edge- triggered
elements. The first vector defines the state of the inputs
that are not a clock while the clock input is 0. The
second vector maintains these input values and changes the
clock to a 1

.

A - 3

5. Running the Fault Grader

The fault grader can be passed the name of the circuit on
the command line or the fault grader will prompt for it.
This is the only information the fault grader needs. It
will read the files that have the circuit name as the base
name and the extensions 'NET 1 and 'VEC. If the a file
ending in 'M.NET' exists it will be read also. Two or
three files will be produced along with output to the
screen. The output to the screen is time ordered but the
files are sorted by content. The file with the circuit's
base name and the extension 'DFA' will contain the detected
fault output statements. The file with the extension 'UFA'
will contain the undetected fault output statements, and
the file with an extension of 'MFA' will contain the
undetected fault statements mapped to the periphery of the
macros but will only appear if the 'M.NET' file was found.

6. Outputs

The outputs of the fault grader identify the location of a
fault by using the number and name of the gate or macro as
it appeared in the netlist file, gates from the gate-level
file and macros from the macro-level file. The pin number
is also given and is defined by the order that the pins are
listed in the netlist file. The detected fault outputs
also contain the number of the input vector that detected
the fault. The relative merit of the individual input
vectors can be found using these output statements. The
undetected fault files indicate which parts of the circuit
remains untested. This information can be used to guide
the writting of additional input vectors designed to test
the parts of the circuit that remain untested.

To relate the gate and macro number to the schematic
drawing produced by the Micro Logic 2 package, select the
'View' pop down window and deselect the 'Disply comp text'
option and select the 'Display comp nos. ' option. This
will display the component numbers rather than the
component's names. If macros appear in the circuit the
only way to have the schematic's gate numbers agree with
the netlisting's gate numbers is to have the macros'
numbers greater than any gate's number. The macros do not
appear in the expanded macros netlist file so gates will
have the missing macros' numbers. Since Micro Logic 2

numbers sequentially in time adding the macros as the last
circuit element will give them the largest numbers.
Drawing the rest of the circuit without the macros is not

A - 4

the easiest method. Instead draw the circuit without
regard to the component numbers then force the renumbering
of the macros. The best way is to move each macro to a new
location that will allow easy deletion of them later, as
each macro is moved replace it with a new macro of the same
type. Once all the macros have been replaced go through
and delete the moved macros. The macros will all have
numbers greater than any of the gate's numbers and the
expanded netlist numbers will agree with the schematic's
numbers.

The gates used for macro expansions always appear after the
gates appearing in the schematic. The order of the macros
is also the order of the gates used to expand them. To see
the gate level model of a macro, load the drawing file with
the macro's name, be careful not to modify these drawings.
The gates internal to a macro are listed in the same order
as they appear in the macro's drawing file.

7. Libraries

Two libraries are used by the fault grader and the elements
used in the circuit model must be defined by one of the
libraries. The libraries already contain all the elements
that appear in the Micro Logic 2 package except for the
CLOCK components. The gate library defines the properties
of the individual gates and contains two C language
functions that perform fault collapsing and simulation.
The macro library defines the fault properties of the
macros used in the circuit model. Information used to
remove unused macro parts from the fault grading, map
faults internal to macros to their periphery and define the
number of gates used in the macro's expansion is found in
the macro library. The details and concepts for adding a
new gate or macro are found in the libraries' internal
documentation and in more detail in a Masters Thesis
written by Joseph W. Naab in May of 1988 for the Department
of Electrical and Computer Engineering at Kansas State
University.

A - 5

Appendix B

Fault Grader's Source Code Listing

by

Joseph W. Naab

April 27, 1988

/*
Assign Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: Assign is the function that performs the
presimulation process of determining the faulted cir-
cuits. It goes through the gates looking for faults,
when it finds one it adds it to the fault simulation
list and marks the gate as well as removing the fault
from the gates 'state' variable. The fault simulation
list is a list of all the faulted circuits that are in
the current simulation word. It is formed using the
structure 'fault' described in the file 'define.c'. Ba-
sically it holds all the information necessary to dif-
ferentiate the faulted circuit from the unfaulted cir-
cuit.

RETURN: The function returns the number of faults that were
actually assigned to the fault simulation list. If
there were no faults left in the circuit a zero is re-
turned. */

#include "define.c"

static int next = 1;

int assign ()

{

extern struct FAULT parallel [];
extern struct LIST list[];
extern struct GATES gates [];
extern int num_gates;

int faults;

int bit, shift;

/* This is the part that walks through the gates. It uses
'next' as a static pointer to the present position so that
each time the function is entered it already knows the
current gate. The gates are walked through in numeric
order. */

B - 1

bit = 0;
f or (; next <= num_gates; next++)

{

shift = 0;
if(list [next] .state)

if(faults = list [next] . state &
~(-1 << 2*(gates [list [next] .of fset] .pins - 1)))

/* The following section fills the fault simulation
list for each fault. The first section is for
stuck-at-zer o faults the second for stuck-at-one
faults. The 'andmask 1 and 'ormask' bit fields are
used to mask the appropriate bit of the faulted cir-
cuit to the correct stuck-at-value. Only one of
them is necessary for each faulted circuit but they
are both used anyway to reduce the decision making
necessary for the code. */

while(faults)

{

list [next] .stable = 1;
if(faults & 1)

{

parallel [bit] .element = next;
parallel} bit] .pin = shift/2 + 1;
parallel [bit] .fault = 0;
parallel! bit j|. andmask = -1 * (1 << bit);

parallel [bit] .ormask = 0;
list[next]. state &= -1 << shift/2 + 1;
if (bit++ == WORDLENGTH - 1)

return WORDLENGTH - 1;

}

if(faults & 2)

{

parallel [bit] .element = next;
parallel} bit].pin = shift/2 + 1;
parallel [bit]. fault = 1;
parallel} bit]. andmask = -1;
parallel} bit] .ormask = 1 << bit;
list[next]. state &= -2 << shift/2 + 1;

if(bit++ == WORDLENGTH - 1)

return WORDLENGTH - 1;

}

shift +=2;
faults >>= 2;

}

}

return bit;

B - 2

/
Collapse Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: Collapse is the function responsible for
creating a collapsed set of faults. It goes through the
following steps.

- set all fanouts to stuck-at-x faults.
- set all primary inputs to stuck-at-x faults.
- push the faults through the circuit.

To do the first step it goes through the netlist looking
for nets with fanouts greater than one. When it finds
one it sets all of the inputs tied to that net to
stuck-at-x faults. The second step uses a list of data
element, which are the primary inputs, to assign an
stuck-at-x fault to an input tied to each date element.
Fanouts are not considered because they would already
have stuck-at-x faults from the proceeding step. The
third step is done by traversing the gate list looking
for a gate that is still unstable. A gate becomes un-
stable whenever a fault is assigned to it and stable
after it has had its faults 'pushed'. The faults will
be completely collapsed when there exist no unstable
gates in the circuit.

FUNCTIONS CALLED: The only function used by this routine is
the function 'push* which takes care of the unstable
gates by performing fault rules of the gate. Push is
described in more detail in 'push.c'. */

#include "define. c"

int collapse ()

{

int i, j;
extern struct NET net[];
extern struct GATES gates []

extern struct LIST list[];
extern struct LIST *data [

]

B - 3

extern int num_data;
extern int num_gates;

/* First go through the net list and find the nets with
fanouts greater than one and assign the inputs tied to
those nets stuck-at-x faults. */

i = 0;
while(net[++i] .driver)

if(net [i] .fanout > 1)

f or (j=net[i] .fanout; j— ;)

{

list[net[i].elements[j]] .stable = 1;
listj net [i].elements[j j j. state 1=

((long)3 << (2 * (net [i] .pin [
j] -1)))

;

}

/* Second go through the data element list an assign one
of the inputs tied to each a stuck-at-x fault. Fanouts can
be ignored because they have been taken care of by the
previous section. */

f or (i =0 ; i <= num_data; i++)

{

list[net[data[i] ->net] .elements []]. stable = 1;
list[net [data[i] ->net] . elements []]. state |=

((long)3 << (2 * (net [data [i] ->net] .pin [0] -1)))

;

}

/* Go through the gate list looking for unstable gates,
gates that have newly assigned faults. For each unstable
gate found pass it to the function 'push'. Repeat the
this process until there are no more unstable gates, go
all the way through the gate list without calling 'push'.
V
j = -l;
f or (i=0 ; i != j; i = (i % num_gates) + 1)

if (list [i] .stable)

{

ifdef DEBUG
printf("collapse: pushing element %d \n", i);

endif

}

3 - i;
push(i)

;

}

B - 4

/*
Define file

Joseph W. Naab
April 2 , 19 88
Version 1 .0

DESCRIPTION:
This file is used by every function to define the
structures that they work with. The structures have
individual descriptive documentation as well as in
line documentation. All of the structures used in
this program are used by more than one function so
they are defined here because the compiler must be
able to see the structure definition.

Several of the structures in this file contain an in-
teger that is used as an index into another struc-
ture. This was done to make the fault grader some-
what memory efficient. The differing size and char-
acter of the individual elements makes it difficult
or wasteful to use a structure large enough to hold
the worst case. So another structure was defined and
just an index to and the number of entries in the new
structure can be stored. An example is the integer
•pins' in the structure 'list 1

. The number of pins
is variable so the nets tied to each pin are kept in
a integer array. The index to a gate's nets is held
by 'pins'

.

The first few lines define compiler constants.

DEBUG if defined causes diagnostic messages to be
printed out by each function as they run. The print
statements that are produced are crude but were put
in during the writing of the program for debugging
purposes. They remain for future programmers, if DE-
BUG is undefined the lines between ' if def DEBUG' and
'endif* are ignored by the compiler.

MAXDATA defines the maximum number of data inputs
that can appear in the circuit model.

MAXINPUTS defines the maximum number of input vectors
that can be used.

MAXNETS defines the number of nets that may appear in

B - 5

the circuit model.

MAXPARTS defines the number of gates that may appear
in the expanded circuit model.

PINCOLUMN is the first column that the nets that are
tied to the pins of the gates may appear. */

#def ine MAXDATA 32 /* the
#def ine MAX IN PUTS 100 /* the
#def ine MAXMACROS 100 /* the
#def ine MAXNETS 100 /* the
#def ine MAXPARTS 100 /* max
#def ine PINCOLUMN 17 /* col
#def ine WORDLENGTH 32 /* the

#include <stdio.h>
/*#define DEBUG*/

number of data inputs */
number of input vectors */
number of macros in model */
max num of networks */
n urn of elements */
imn pin net's list start */
length in bits of a long */

/* FAULT is the structure that is used for the fault
simulation list. Each member of an array of type
structure 'fault' is a faulted circuit that is being
currently simulated. The integer 'element' contains
the number of the element where the fault is located.
The pin of the element is stored in 'pin'. The fault
type f one for stuck-at-one f zero for stuck-at-zero is
in fault. The next two integers, 'andmask' and ' or-
mask', are bit field that are used during simulation
to force the faulted circuits value that of the
fault. */

struct FAULT
{

int element; /* element's index into list & number */
int pin; /* pin that fault is on */
long fault; /* the type of fault */
long andmask; /* the AND mask for stuck-at value */
long ormask; /* the OR mask for stuck-at value */

};

/* GATES is the structure that is used in the gate
library. It is initialized in the file 'gates, c 1

.

The string pointed to by 'name' is used in a string
comparison with the element names that appear in the
circuit model. The integer pins tells how many pins
are associated with the gate. The integer time is
used during simulation to determine the gate delay
for the event driven simulator. The variable 'fault'

B - 6

is a pointer to an user supplied integer function
that will be used during the fault collapsing stage
of the fault grading to determine the fault state of
the gate. The variable 'simulate' is a pointer to the
user supplied integer function that is used to simu-
late the gate. It is called whenever a gate of the
type 'name' is simulated. */

struct GATES
{

};

char *name; /*
int pins; /*
int time; /*
int (*fault) (); /*
int (simulate) () ; /*

};

ascii name of the element */
element's number of pins */
element's simulation delay time*/
pointer to fault compress funct*/
pointer to element sim function*/

/* LIST is the structure used to hold the gates that
define the circuit model internal to the fault
grader. Each gate that appears in the circuit's ex-
panded netlist file creates a member of this struc-
ture. The integer offset is an index into the li-
brary of gates. It is assigned the value of the in-
dex to the structure 'gates' member whos name matched
the name in the netlist file. The integer 'stable'
is used in both the fault compression and simulation
processes. It is basically a flag variable, in the
fault compression it is set if the gate must have its
faults pushed and in the simulation it is set if a
faulted circuit has a fault on this gate. The in-
teger 'state' is really a thirty-two bit long bit
field. It is used by the entire fault grader to keep
track of the faults for this gate. The least signi-
ficant two bits represent both of the stuck-at faults
on the first input, the next two bits are used for
the second input and so on. The integer pins is a
index in to the integer array 'parts' that contains
the number of the net that is tied to each of the in-
put pins. The integer net is the number of the net
that is driven by the output of this gate. */

the index into GATES library */
fault flag */
hold's fault information */
pointer into array input nets */
net driven by this element */

B - 7

struct
{

int

LIST

offset; /*
int stable; /*
long state; /*
int *pins

;

/*
int net; /*

/* MACROLIST is the structure that holds the macros
that appear in the circuit model. 'offset 1 is a in-
dex into the macro library and and number is the
number of the line the macro appeared on in the unex-
panded netlist file. */

struct MACROLIST
{

int offset;
int number;

};

/* MACROS is the structure used by the structure li-
brary. It is initialized in the file 'macros'. The
string pointed to by 'name' is use in a string com-
parison with the elment names that appear in the
unexpanded circuit model. The integer 'gates' holds
the number of gates that are used to expand the mac-
ro. It is used to enable the fault grader to calcu-
late the boundaries of the macros in the expanded
circuit model. The integer 'list' holds an index
into the structure 'macr ofaults' where the faults for
the macro are defined in terms of the macro's peri-
phery. The integer 'parts' is an index into the
structure 'macroparts' which holds the information
necessary to break compound macros up into their sub-
functions. This is used to remove unused parts of the
macro from the fault graders consideration. It will
be zero if the macro is a single functional entity.
V

struct MACROS
{

char *name; /* The name of the macro */
int gates; /* tgates in expanded macro */
int faults; /* #faults defined by each macro */
int list; /* list of faults for this macro */
int parts; /* to 'parts' of compound macros */

};

/* MACROFAULTS is the structure that is used as a

secondary storage space in the 'macros' library. It
identifies a specific fault as an offset from the
start of the macro and contains the corresponding
mapping statement which is output to give the user
the relationship between the internal fault and an
external fault, if any. The integer 'gate' is the
number of gates offset from the first gate in the
macro the gate with the fault on it appears. The in-

B - 8

teger 'pin 1 is the pin on that gate where the fault
appears. The integer 'fault' is the type of fault,
one for a stuck-at-one, zero for a stuck-at-zero.
The string 'map' hold the statement that will be out-
put along with the undetected stuck-at statement.
The string should relate the internal fault to a
fault on the periphery of the macro. If the internal
fault is undetectable the string should be initial-
ized to NULL, this will cause the fault grader to ig-
nore the existence of that fault. No undetected fault
statement will be generated for it and it will not be
included in the fault coverage calculations. */

Struct MACROFAULTS
{

};

int gate;
int pin;
int fault;
char *map;

/* the gate the fault appears on */
/* the pin the fault appears on */
/* the type of fault that detected*/
/* the output for this fault */

/* MACROPARTS is a structure that is used as a sub-
structure in the library 'macros'. It each member
describes a subfunction of a macro that has more than
one function, e.g. a dual D flip-flop. The parts are
identified so that any unused part can be removed
from the fault grading. The integer 'gate' is the
number of gates offset from the first gate of the
macro. The gate is of interest because a unconnected
input on this gate means this part of the macro is
unused. The integer 'pin' is the pin that is a macro
input. If the pin is unconnected then that part of
the macro is unused." The integer 'length' is the
number of gates used to expand that part of the mac-
ro. */

Struct MACROPARTS
{

};

int gate;
int pin;
int length;

/* the offset to macro input
/* #pin has zero net if unused
/* #gates to expand macro part

*/

V
V

/* NET is the structure that hold the net's informa-
tion in the internal model of the circuit. The nets
are were the simulation values are stored during
simulation. A nets logical value is determined sole-
ly by the gate's output that it is tied to. The in-
teger 'fanout' contains the number of inputs tied to

B - 9

the net. The integer 'driver' contains the number of
the gate that drives the net. The integer 'logic' is
a bit field used as a simulation field, each of the
bits in 'logic' is used for a different circuit
model. The integer 'defined' is also a bit field and
is used to signify whether or not the logical value
in 'logic' is a defined logical value. A set bit in
'defined' means that the corresponding logical value
in 'logical' is the known logical value of the net.
The integer array 'elements' provides space for stor-
ing the number of the elements that have input pins
tied to the net. The integer array 'pin' give the
pin number that is tied to the net of the correspond-
ing elment in 'elements'. */

struct NET
{

int f anout

;

/*
int driver; /*
long logic; /*
long defined; /*
int elements [10]

;

/*
int pin [10]

j

/*

#inputs tied to the net */
#gate driving the net */
value of the net during simul

.

*/
defined state during simul. */
elements tied to the net */
pins of elements tied on net */

/* QUEUE is the structure used to queue the elements
for future simulation by the event driven simulator.
The queue is in the form of a linked list so 'next-
time' is a pointer to the next queue structure. The
integer 'time' is the time that the elements in the
current structure are scheduled for. One queue
structure is used for each time, several elements
could be scheduled at the same time in which case
they would use the same queue structure member. The
character array 'element' a bit field of variable
length. If more then sixteen elments are in the cir-
cuit model the queue is allocated extra memory at run
time which is appended to 'element'. Each bit in
'element' corresponds to an element in the model, if
the a bit is set then the corresponding element is
scheduled. */

struct QUEUE
{

In-

struct QUEUE *nexttime;/* pointer to the next time */
int time; /* the queue element's time */
char element[l]; /* list elments in queue element */

B - 10

/*
Evaluate Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This function is used by the 'simulate' func-
tion to perform the simulation of the individual gates.
The actual simulation is done by the simulation function
that appears in the gate library. This function sets up
the input variables and calls the library simulation
functions.

Each library function is passed the same information, two
arrays that contain the logical and defined states of the
gate's inputs. This function fills the array from the
state and defined information that is stored by the nets.
The state and defined states of each input pin is read
from the net that the input pin is tied to and the infor-
mation is stored in the array that is passed to the simu-
lation function.

This is also the function that checks the gates to see if
a faulted circuit is associated with it. If there is one
the bit associated with the faulted function is forced to
the fault state by masking with the corresponding masks
that are already stored in the in the fault simulation
list, ' parallel'

.

After calling the library simulation function the new
output of the gate is compared to the old output of the
gate. If a change has occurred the net driven by the
current gate is updated to the new state and the time the
net changed its value is calculated. The funtion returns
a 1 if the output changes and a if the output remains
unmodified.

ARGUMENTS: 'element' is the number of the element that is to
be simulated.

•time' is the current simulation time and is passed back
as the time at which the net's state changes.

B - 11

RETURN: 1 if 'element 1 outputs has changed and a if it is
unchanged.

FUNCTIONS CALLED: Calls the simulation functions in the gate
library through the use of function pointers. The
pointers appear in the library structure 'GATES'. */

#include' "define, c"

int evaluate (element, time)

{

int element,
*time;

extern struct NET net[]; /* holds net info */
extern struct GATES gates []; /* the gate library */
extern struct FAULT parallel []; /* fault simulation list*/
extern struct LIST list[]; /* holds element info */

extern long linputs[]; /* logical input states */
extern long dinputs []; /* defined input states */

int i

;

long loutput; /* logical output state */
long doutput; /* output defined state */

/* Fill the arrays that contain the logical and defined
states of the inputs by looking at the states of the nets
that are tied to the input pins.*/

for(i = gates[list [element] . of f set].pins-l; i— ;)

{

linputs[i] = net[* (list [element] .pins + i)]. logic;
dinputs [i] = net [* (list [element]

.
pins + i)]. defined;

ifdef DEBUG
printf("eval: gate %d pin %d logic %x defined %x\n",

element, i+1, linputs[i], dinputs [i]);
endif

}

/* Check the gate for the presence of a faulted circuit
model. If one exists then go through the fault simula-
tion list to find the associated fault and mask the input
bits to the stuck-at value. */

if(list [element] .stable)

B - 12

for(i = 0; i < WORDLENGTH - 1 ; i++)

if(parallel! i] .element == element)

{

linputsf parallel [i] .pin - 1] &= parallel [i] .andmask;
linputsf parallel! i].pin - 1] |= par allel [i] . ormask

;

}

/* Call the simulation function and see if the outputs
returned have changed. If they have update the driven
net's state and calculate the time the net changes
states. Return a 1 if the output has changed and a if
it remain unmodified.*/

(*(gates [listf element]. off set]. simulate))

(linputs, dinputs, Sloutput, Sdoutput);

if(((net [listf element] . net] .logic ' loutput) I

~net[list[element] .net] .defined I
~doutput)

& (net[list[element] . net]. defined | doutput))

{

ifdef DEBUG
printf(" eval : change in element %d, new logic %x,",

element, loutput) ;

printf (" new define %x f old logic %x old define %x\n",
doutput, net [list[element] . net] .logic,

net[listf element] .net]. defined);

endif
netf listf element] .net] .logic = loutput;
net [listf element j. net]. defined = doutput;
*time += gates [list [element] .of f set] .time;
return 1;

return 0;

B - 13

/'

Fault Grader

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This is the main routine for the fault grading
program. It contains the declaration of the global vari-
ables, the file opening code, and the calls to the pri-
mary subf unctions. The basic order of operation is:

read in the model of the circuit
read in the macro model of the circuit if it exists
produce a collapsed set of faulted circuits
remove unused macro parts
read in the input vectors
repeat until all faulted circuits are simulated

assign a set of faults
simulate the assigned fault set

The model of the circuit is read from the file
'f ilename.NET' . If the model input is unsuccessful the
program aborts. An attempt is made to open the file
'filenameM.NET 1

, if it is opened successfully the macro
level model of the circuit is read from that file. A
collapsed set of faulted circuits are constructed for the
circuit model. If a macro file was read then the unused
parts, if any exist, of macros are removed from the set
of faulted circuits. The file ' filename. VEC is opened
and the input vectors are read in. The first set of
faulted circuits are put on the fault simulation list and
they are simulated. The next set of faulted circuits are
put on the list and simulated until there are no faulted
circuits left unsimulated.

ARGUMENTS: The base filename of the circuit's files can be an
argument on the command line.

RETURN: Three output files are produced as well as outputs to
the screen. The three files all have the base filename
but with the extensions, 'DFA', 'UFA', and 'MFA' which
are the detected fault file, the undetected fault file,
and the macro fault file, respectively.

B - 14

FUNCTIONS CALLED: input(), macro(), collapse(), unusedmac-
ros() f input_vectors () , assign () , and simulate (). The
function 'input' reads the gate-level circuit netlist
file 'filename.NET' and is responsible for creating the
internal model of the circuit. The function 'macro' is
called if the file 'filenameM.NET' opens correctly. It
is the file that read the macro-level model of the cir-
cuit and fills the 'macrolist' with the macros that it
finds. The function 'collapse' creates a collapsed set
of faulted circuits using the gate-level model of the
circuit created by 'input'. The function ' unusedmacr os'
is only called if the macro-level file was read. It goes
through the 'macrolist' looking for unused parts of mac-
ros, if any are found the faulted circuit models associ-
ated with the unused macro parts are removed from the
collapsed set of faults. The function ' input_vectors

'

reads the file ' filename. VEC for the input vectors which
appear there in ASCII. The functions 'assign' and 'simu-
late' are called repeatedly until all of the faulted cir-
cuits have been simulated. 'assign' creates the fault
simulation list for the parallel fault simulator. 'simu-
late' simulates the unfaulted and faulted circuits in
parallel generating the output of the fault grader. Out-
puts for detected faults are produced as the faults are
detected. Undetected and macro fault outputs are gen-
erate after the simulator has simulated all of the input
vectors. */

#include "define. c"

struct NET net [100] = { };

struct LIST *data[32 In-

struct LIST *output[32];
Struct LIST list[MAXPARTS] = { };

struct MACROLIST macrolist [MAXMACROS In-

struct FAULT parallelf WORDLENGTH] ;

long dinputs[16];
int expanded = 32000;
long linputs[16];
int num_vectors;
int num_output = -1;
int num_data = -1;
int num_gates;
int num_macros = 0;
int part[6*MAXPARTS] = { };

int vector [32] [MAXINPUTS]

;

main(argl, arg2)

B - 15

{

int argl;
char **arg2;

extern struct GATES gates [];

int assign (); /* assigns bits to faults */

int collapse (); /* collapses the fault set */
int input (); /* reads in the circuit model */

int input_vectors ()

;

/* reads ASCII input vectors. */
int macro(); /* reads macro circuit model */

int faults, /* #faults being simulated */
totalfaults = , /* # of fault in collapsed set */
detectedf aults=0 ,/* # of detected faults */

if J;

char f ilename[40] ; /* name of I/O files */
char circuit[40]; /* generic circuit name, "arg2'*/

FILE *file, /* input files pointer */
macrofile, / circuit. MFA file, macro out */
detected, /* circuit. DFA file, detect out*/
undetected; /* circuit. UFA file, undet out */

/* Open the gate-level circuit model file 'filename.NET 1

and input the circuit model. If and error occurs during
input the function 'input' will return a -1 and the pro-
gram will terminate. */

if(argl<2)

{ printf("Enter the name of the file containing the ");

printf("circuit model. \n");
scanf("%s", circuit);

}

else
strcpy(circuit, arg2[l]);

strcpy(filename, circuit)

;

strcat(filename, ".NET");
file = fopen(filename, "r");

while("file)

{

printf(" Unable to open %s correctly,", filename);

printf(" reenter file name.\n")

;

scanf("%s", filename);

strcpy(circuit, arg2[l]);
strcat(filename, ".NET");
file = fopen(filename, "r");

B - 16

/* Open the input vector file ' filename. VEC and read in
the input vectors. */

if(input (file))

{

ifdef DEBUG
for (i=l ; i<=num_gates ; i++)
{

printf("main: net %d fanout %d", i, net [i] .fanout,
11 driving element %d\n", net [i] . driver);

f or (j=net[i] .fanout; j— ;)

printf(" element %d pin %d", net [i] . elements
[j]

,

net[i] .pin[j]);

printf("\nmain: element %d inputs ", i);

f or (j=0; j < gates[list [i] .of f set] .pins; j++)

printf(pin %d on net %d,",j, * (list [i j .pins+j))

;

printf("\n n
);

}

endif

/* Try to open the macro-level file 'filenameM.NET 1

, if
opens successfully call 'macro' to read the file and also
open the output file 'macrof ile' .*/

strcpy(filename, circuit);

strcat(filename, "M.NET");

if(file = fopen(filename, "r"))

{

ifdef DEBUG
printf("main: reading in macro file \n");

endif
macro (file) ;

strcpy(filename, circuit);

strcat(filename, ".MFA");

macrof ile = fopen(filename, "w")

;

}

/* Create a collapsed set of faulted circuit models. */

collapse ()

;

B - 17

/* If the macro-level file was read remove the unused
parts of the macros from the fault simulation. */

if(file)

unusedmacros () ;

ifdef DEBUG
f or (i =1; i <= num_gates; i++)

{

printf("main: element %d has faults %x \n"

,

i, list [i] . state) ;

}

endif

strcpy(filename, circuit);

strcat(filename, ".VEC");

file = fopen(filename, "r");

while(!file)

{ printf(" Unable to open %s correctly,", filename,
" enter input vector file name. \n");

scanf("%s", filename);

file = fopen(filename, "r")

;

}

num_vectors = input_vector (file);

strcpy(filename, circuit);

strcat(filename, ".DFA");

detected = fopen(filename, "w");

strcpy(filename, circuit);

strcat(filename, ".UFA");
undetected = fopen(filename, "w");

/* Create a fault simulation list by assigning some of
the faulted circuits to it. The integer returned by the
function 'assign' is the number of faulted circuits it
placed on the fault simulation list. While there are
faulted circuits in the fault simulation list simulate
them and generate the fault grader's outputs. */

while(faults = assign ())

{

ifdef DEBUG
printf("main: after assign: % assigned faults \n", i) ;

for(j =0; j < faults; j++)
{

printf("fault %d - gate %d pin %d fault %d ", j,
par all elf j] . element, parallel [j] .pin,

B - 18

par all el
[j] .fault)

;

printf(" andmask %x ormask %x stable %d\n",
parallel[j] .andmask, parallelf j] .ormask,
list [parallel [j] .element] .stable) ;

}

endif

totalfaults += faults;

detectedf aults += simulate(detected, undetected,
macrof ile, faults) ;

}

printf("\nOhe fault coverage was %4.2f%%.0,
100 * detectedfaults / (float) totalfaults)

;

fprintf(detected, "\nThe fault coverage was %4.2f%%.0,
100 * detectedfaults / (float) totalfaults)

;

fprintf (undetected, n\nThe fault coverage was %4.2f%%.0,
100 * detectedfaults / (float) totalfaults)

;

if(macrof ile)

fprintf (macrof ile, H\nThe fault coverage was %4.2f%%.0,
100 * detectedfaults / (float) totalfaults)

;

B - 19

/'

Input Function

Joseph W. Naab
April 27 , 1988
Version 1 .0

DESCRIPTION: This function is responsible for inputing the
circuit model. It is the function that fills the element
and net structures which forms the model of the circuit.
The input file pointer is passed to the function and the
function assumes that the input file is the gate level
output file of the Micro Logic 2 package or of the same
format. Very little error checking is done during the
model input because it was designed to read the output
file of another program.

The circuit model is read in line by line. Each line de-
fines a gate in the circuit model first the gate number
and name are read off the line. The gate name is found
in the gate library and the offset to the type of gate is
stored in 'list' indexed by the gate number. The input
net numbers are read next and stored in both the net
structure 'net' and a list pointed to by the gate struc-
ture 'list' called 'part'. If the element is a 'data' or
an 'output' element it receives special handling.

ARGUMENTS: 'file' is a pointer to the gate level circuit
model file.

RETURN: if an error, 1 otherwise.

FUNCTIONS CALLED: none. */

#include <ctype.h>
#include "define. c"

int input (file)

FILE *file;

{

/* A more complete description of the external variable
can be found in the file 'define.

c

1 for the structures
and 'main.c' for the integers. */

B - 20

extern struct GATES gates []; /* library of gates */
extern struct LIST list[]; /* holds gate's info */
extern struct LIST *data[j; /* list of data inputs */
extern struct LIST *output[]; /* list primary outputs */
extern struct NET net[]; /* holds netlist's info */

extern int gate_library

;

/* # gates in library */
extern int num_data; /* # data in model */
extern int num_gates; /* # gates in model */
extern int num_output; /* # outputs in model */
extern int part[]; /* list of nets on input*/

int next; /* The next column to read input line */
char inbuf[80]; /* The input line buffer. */
char element [15]; /* The gates name as read off input */
int i f j,pin, /* Miscellaneous variables */

status = 1, /* Value return by function fgets() */
step =0, /* index into 'parts' array */
index, /* offset into gate library */
gatenum; /* current gate number */

/* Look for the first line of the circuit model's defini-
tion signified by a one in either the first or second
space on the line. */

for (; (status = (int) fgets (inbuf, 80, file)) &&
inbuf [0] != '1' && inbuf [1] != '1' ;);

/* Continue reading in lines until the EOF or a blank
line is reached. Everything inside this loop is for each
line of input.*/

while (status)

{

ifdef DEBUG
printf(model input: %s \n", inbuf);

endif
sscanf(inbuf, ,, %d%s", Sgatenum, element);

/* Find the name of the gate in library structure 'gates'
and remember the offset into the library to identify the
gate.*/

f or (i =0; strcmp(element, gates [i] .name)

&& i < gate_library ; i++);

if(i < gate_library)

index = i;

B - 21

else
{

printf(" The circuit model contains a element ");

printf("unknown to the simulator %s. ", element);

printf(" PR OGRAM ABORTED !! ");

}

return 0;

/* Set up a pointer into the list that holds the net
numbers of the nets that are tied to the input pins of
this gate. This is done so gates with different numbers
of input pins could be handled the same way.*/

list[gatenum] .pins = &part[step];

list[gatenum]. off set = index;

/* Pull off the net numbers of the nets that are tied to
the input pins. Store the net number for each pin in the
input pin net list 'parts and add the gate to the net's
fanout. The exception is the 'output' element which is
not put in the net's fanout for simulation purposes. */

next = PINCOLUMN;
if(!(strncmp(element, "OUTPUT", 6)))
{

output [++num_output] = &list[gatenum];

sscanf(Sinbuf [next], "%d", Spin);

part[step++] = pin;
}

else
{

j-ll
f or (i= gatesf index] .pins - 1; i; i—)

{

f or (; isspace(inbuf [next]); next++)

if(inbuf [next] == '\n')

{

printf("ERROR: Element %d ", gatenum);
printf("has too few input pins\n");

return 0;

}

pin = atoi (&inbuf[next]);

f or (; !isspace(inbuf [next]); next++);

B - 22

if(pin)

{

net[pin].elements[net[pin].fanout] = gatenum;
net [pin] . pin [net [pin] ,fanout++] = j++;

}

part[step++] = pin;
}

/* Pull off the output net of this gate. The net tied to
the gates output is driven by that gate and is stored
separately in both gate structure and the net structure.
V

f or (; isspace(inbuf [next]); next++)

if(inbuf [next] == '\n')

{

printf("ERROR: Element %d ", gatenum);
printf("doesn't have output pin\n");

}

pin = atoi (&inbuf[next]);
list[gatenum] .net = pin;
net[pin] .driver = gatenum;

if(!(strncmp(element, "DATA", 4)))
data[++num_data] = &list[gatenum];

}

status = ((int)fgets(inbuf, 80, file)

&& inbuf [0] != '\n')

;

}

num_gates = gatenum;

/* Go through the entire net structure and convert the
fanout elements from the number of the net driven by the
gate to the actually number of the gate the net is tied
to. */

f or (i = 0; net[i]. driver; i++)

for(j = net [i] .fanout + 1; — j;)

net [i] .elements [j] = net[net [i] .elements [j]] .driver ;

return 1;

B - 23

/*
Macro Function

Joseph W. Naab
April 27 , 1988
Version 1 .0

DESCRIPTION: This is the function that reads in the macro
level network listing file generated by the Micro Logic 2

package. The function reads in the file line by line and
compares the element names with the names in the macro
library. When it finds and element in the macro library
it records the offset to the macro and the macros element
number in the macro list. By counting the number gates
used in the expansion of each macro, information that is
in the macro library, the function can calculate which
gates in the circuit model are expansions of macros. The
Micro Logic 2 package lists all discrete gates before it
lists the gates in the macro expansion so by known the
total number of gates used for all the macro expansion
the gates used in a macro expansion can be identified.
This information is used in the generation of undetected
fault messages.

ARGUMENTS: The pointer to the file ' f ilenameM. NET' , the macro
netlist file, is passed to the function.

RETURN: none.

FUNCTIONS CALLED: none. */

#include "define. c"

int macro(file)

FILE *file;

extern struct MACROS macros[];
extern struct MACROLIST macrolist[];
extern int num_gates;
extern int num_macros;
extern int macro_libr ary

;

extern int expanded;

B - 24

char inbuf [80]

;

char element [15] ;

int i

;

int macrogates = 0;
int status = 1;
int newnet;

f or (; (status = (int) fgets (inbuf, 80, file)) &&
inbuf [0] != '1' && inbuf [1] != 'I 1

;);

while (status)

{

ifdef DEBUG
printf(" model input: %s \n", inbuf);

endif
sscanf(inbuf, "%d%s", Snewnet, element);

for(i =0; strcmp (element, macros [i] .name) &&
i < macro_library ; i++);

if(i < macro_library)

{

macrolist[num_macros] .of f set = i;

macrolistf num_macros++] .number = newnet;
macrogates += macros[i] .gates;

}

status = (int)fgets(inbuf, 80, file) && inbuf [0] != '\n'

;

}

expanded = num_gates - macrogates;
}

B - 25

/*
Macrofault Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This function finds the message in the macro
library that correlate the faults internal to a macro to
conditions on the periphery of the macro. The function
is called by the function 'simulate' when a undetected
fault occurs at a gate that is internal to a macro. It
finds the fault and returns a pointer to the correspond-
ing message.

The fact that the gates are simulated in numeric order
and that undetected faults are also found in numeric ord-
er. The function walks through the possible faults in
the library until it finds the current fault. There is
no provision for backing up, the function always looks
forward through the faults associated with a macro.

ARGUMENTS: The exact fault is passed to the function and is
identified by the gate and pin it appeared on and the
type of fault. The function returns the number of the
macro that the fault was internal to.

RETURN: The function returns a pointer to the text string
that maps the fault internal to the macro to the peri-
phery of the macro.

FUNCTIONS CALLED: none. */

#include "define. c"

static int current = 0,
first,
bottom,
last;

char *macrofault(gate, pin, fault, macro)

B - 26

int gate,
pin,
fault,
*macro;

{

extern int expanded;

extern struct MACROS macros [];
extern struct MACROFAULTS macrof aults []

;

extern struct MACROLIST macrolist [] ;

ifdef DEBUG
printf("macfttlook fault %d gate %d pin %d macro %d\n",

fault, gate, pin, current)

;

endif

/* Find the macro that the gate is internal to. The mac-
ro is found by keeping a running sum of the gates used in
the other macros. When a macro is found that extends
past the current gate it is the macro that contains that
gate. */

for (gate -= expanded; gate > last ; current++)

{

last += macrosf macrolist[current] .of fset] .gates;
first = macrosf macrolist [current]. off set] .list;
bottom = macros! macrolist

[

current] .of fset] .faults +
first;

}

/* Convert the gate number to its number with respect to
the start of the macro's expansion. Then look through
the possible faults for the current until a fault with
the same gate number, pin number and fault type is found.
V

gate -= last - macros[macrol ist [current-1] .of f set] .gates;
ifdef DEBUG

printf ("macft:look fault %d gate %d pin %d macro %d\n",
fault, gate, pin, current)

;

endif
while(first <= bottom)

{

if(macrofaults[first] .gate != gate)

f irst++;
else if(macrofaultsf first] .pin != pin)

first++;
else if(macrofaults[first] .fault != fault)

B - 27

first++;
else
{

macro = current-1;
return macrofaults[first] .map;

}

}

printf("ERROR: Fault not found in macro library. \n");

printf("\tMacro %d, gate %d , pin %d, stuck-at-%d .0

,

current, gate, pin, fault);

return "";

B - 28

/*
Push Function

Joseph W. Naab
April 27 , 1988
Version 1 .0

DESCRIPTION: This function is responsible for calling the
fault collapsing functions found in the gate library to
propagate changed fault states forward through the net-
list. The function marks the gate passed in, as fault
collapsed, fault collapses it and checks to see if the
gate's output fault state has changed. If the output
fault state has changed then the change is passed on to
the gates that have inputs tied to the current gate'

s

output. The function marks these gates as unfault col-
lapsed because it changed the fault state of one of the
inputs. This function is called by the function 'col-
lapse. '

ARGUMENTS: The function is passed the gate number of the gate
it is to fault collapse.

RETURN: none.

FUNCTIONS CALLED: none. */

#include "define. c"

int push(index)

int index;

{

extern struct GATES gates[];
extern struct NET net []

;

extern struct LIST listfj;

int i;
long out;

list[index] .stable = 0;

B - 29

/* Call the fault collapsing function associated with the
gate in the gate library. If its output has changed a
nonzero value is returned that represent the new fault.
This fault is passed forward towards the primary output
along the output net of the gate. */

] .fault))

(

if (out = (*(gates[list[index] .of fset
&list[index]. state))

f or (i = net[index = list[index] .net J.fanout; i~;)

ifdef DEBUG
printf("push: assigning faults to gate %d pin %d\n",

net [index]. elements [i] , net [index]
. pin [i]

)

endif
list[net[
list[net

[

index]. elements! i]

index j. elements [i

] .stable =

] . state
I

=

((long)out << (2 * (net[index] .pin [i] -1)))

;

B - 30

/*
Queue and Unqueue Functions

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: These are the two functions used by the
late' function to maintain the priority linked list that
is the event schedule. The function 'queue' puts gates
in the queue and 'unqueue' returns the gate that is to be
simulated next. The queue is a time ordered linked list
that contains a bit string that represents each gate. To
put a gate in the queue the 'queue* function finds the
queue element with the same time as the time the gate is
to be simulated and sets the bit corresponding to the
gate in the queue element. If no queue elements exist
for the time of the gate one is created. The function
•unqueue' returns a gate from the top of the queue, the
gate with the smallest time. If more than one gate is
scheduled for simulation at the same time the gate with
the smallest number is returned.

To maintain the linked list and their present position in
the linked list both functions use static variables. The
queue is dynamically allocated and to reduce the calls to
the memory allocation function the unused queue elements
are kept and reused. The gates are each represented by a

bit in a character string. If the bit corresponding to a
gate is set in a queue element then that gate is
scheduled for simulation at the queue element's time.

ARGUMENTS: The gate number and the time it is to be simulat-
ed are passed into 'queue'. The gate number and the time
it is to be simulated are returned by 'unqueue 1

.

RETURN: 'Queue' does not return anything. 'unqueue' returns
a 1 if a gate was found in the queue and a if the queue
is empty.

FUNCTIONS CALLED: none. */

#include "define. c"

B - 31

static struct QUEUE *head = NULL, /* top queue linked list */
junk = NULL; / top of junk pile */

static int next = 0; /* current character in unqueue */

int queue (element, time)

int element,
time;

{

extern int num_gates;

int i

;

struct QUEUE *temp,
*old = NULL,
current

;

ifdef DEBUG
printf("queue: element %d at time %d\n", element, time);

endif

/* Look for the queue element with the same time as the
gate time passed in. */

f or (current = head; current && current->time < time;
current= current->nexttime)

old = current;
if(current && current->time == time)

current->element [element / 8] |= 1 << (element % 8);

else
{

if(junk)

{

temp = junk;
junk = j unk->nexttime

;

}

else
{

/* If a queue element does not exist for the gate's time
create one that does. If it is an unused queue element
on the junk pile, use it, if not allocate on form memory.
V
temp = (struct QUEUE *)malloc(sizeof(struct QUEUE)

+ num_gates/8) ;

for(i = 0; i <= num_gates/8; temp->element [i++] =);

B - 32

}

/* Put the gate in the queue element. Each bit in the
character string corresponds to a gate. The gates are
ordered by the gate number they had in the netlist file.
V
temp->nexttime = current;
temp->time = time;
temp->element [element / 8] |= 1 << (element % 8);
if(old)

old->nexttime = temp;
else
head = temp;

}

}

int unqueue (element, time)

{

int *element,
*time;

struct QUEUE *temp;
char c;
int bit;

/* While the queue is not empty. Look for the next
nonzero character in the queue elements or the end of the
queue element. If the end of queue element is reached
then put it in the junk pile. If a nonzero character is
found find the first gate in the character and pass it
back to the calling function 'simulate 1

. */

while (head)

{

f or (; next <= num_gates/8+l && !head->element [next]

;

next++)

;

if(next > num_gates/8+l)

{

next = ;

temp = head;
head = temp->nexttime;
temp->nexttime = junk;
junk = temp;

}

else
{

c = head->element [next]

;

if(c & 15)

B - 33

if(c & 3)

if(c & 1)

bit = 0;

else
bit = 1;

else
if(c & 4)

bit = 2;
else

bit = 3;
else

if(c & 0x30)

if(c & 0x10)

bit = 4;
else

bit = 5;
else

if(c & 0x40)

bit = 6;
else

bit = 7;
element = next*8 + bit;
*time = head->time;
head-> element [next] &= -2 << bit;

ifdef DEBUG
printf("unque: elem %d time %d bit %d next %d\n",

element, *time, bit, next);
endif

return 1;

}

}

ifdef DEBUG
printf("unqueue: queue is empty\n ");

endif
return 0;

}

B - 34

/
Simulate Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This is the primary function that simulates the
circuit. The function simulates in parallel n-1 faulted
circuits and an unfaulted circuit for the entire set of
input vectors, where n is the number of bits in a long
integer, WORDLENGTH. At the completion of each input
vector the primary outputs are examined to see if any
faulted circuits output differs from the unfaulted cir-
cuits output. If one does and it hasn't already been
detected, a detected fault output statement is generated
and the faulted circuit is removed from further consider-
ation by removing its bit from the mask. When the outputs
are compared the mask is used to ignore any circuit that
has already been detected.

After the simulation of the last input vector, faulted
circuits remaining in the mask are not detectable by the
input vectors. For each of these faulted circuits an
undetected fault message is produced. If the gate the un-
detected fault occurred on was internal to a macro a
undetected macro fault output is generated.

ARGUMENTS: The file pointer to the three output files gen-
erated by the fault grader are passed input the function
along with the number of faulted circuits to actually
be simulated. Normally n-1 faulted circuits are simulated
but the last time any number of faulted less than n-1 may
be all thats left.

RETURN: The function returns the number of faults that were
detected by the input vectors.

FUNCTIONS CALLED: The four functions called, 'simulate',
'queue' and 'unqueue' are used to schedule gates for
simulation and find the next gate scheduled, respective-
ly. The function 'evaluate' is responsible for the simu-
lation of the individual gates, 'macrofault* returns the
macro number and the macro fault message of faults that

B - 35

occur internal to a macro. */

#include "define, c"

int simulate(detected, undetected, macrofile, faults)

FILE *detected,
undetected,
*macrof ile

;

int faults;

{

extern struct FAULT parallel!];/* info of fauted circs */
extern struct GATES gates []; /* library of gates */
extern struct LIST list[]; /* holds gate's info */
extern struct LIST *data[j; /* list of data inputs */
extern struct LIST *output[]; /* list primary outputs */
extern struct MACROLIST macrolistU; /* list of macros */
extern struct MACROS macros[]; /* library of macros */
extern struct NET net []

;

/* holds netlist's info */

extern int vector [] [MAXINPUTS] ; /* input vectors */
extern int num_data; /* # data in model */
extern int num_gates; /* # gates in model */
extern int num_output; /* # outputs in model */
extern int num_vectors; /* # input vectors */
extern int expanded; /* first gate in macro */

int evaluate () ;

char *macrof ault () ;

int queue () ;

int unqueue () ;

int i, j , index, element, row, time, macro;
int detectedfaults = 0;
long logic, defined, mask;
int *input;
char *map;

/* Set up the mask to show which bits of the simulation word
is associated with an active faulted circuit. If a bit is
not set in mask then the corresponding bit in the simulation
word is always ignored. */

mask = ~(-1 << faults);

B - 36

/* Give the primary inputs the values of the input vectors
and queue the elements that are tied to the primary inputs.
V

f or (row = 0; row < num_vectors; row++)

{

f or (i=0 ; i <= num_data; i++)

{

index = data[i]->net;
for(j = net [index J.fanout; j— ;)

{

element = net[index]. elements! j];
ifdef DEBUG

printf ("simulate: data %3d being queued, net %3d",
element, index, " logic %x %3d %3d\n",
-vector [i] [row] , i, row);

endif
queue (element, gates [list[element] .of f set] .time)

;

net [index] .logic = -vector [i] [row];
net[index] .defined = -1;

}

}

/* Simulate the circuit until the queue is empty, the circuit
has stabilized. If the current gate changed its output then
schedule the gates that have inputs tied to the output of the
changing gate. */

while (unqueue(selement, &time))

if(evaluate (element, stime))

ifdef DEBUG
{ printf ("simulate: element %d evaluated", element);
printf (

" and changed to time %d\n", time);

endif
f or (j = net[list[element] .net] .fanout; j— ;)

{

index = net[list [element] .net]. elements! j];

queue(index, time+gates [list [index] . of f set] . time)

;

ifdef DEBUG
printf ("simulate:element %d ", list [element] .net)

;

printf ("being queued, net %d\n", index, element);
endif

}

ifdef DEBUG
} else
printf ("simulate: element %d ", element);
printf (

" evaluated and not changed. \n")

;

B - 37

endif

/* After the simulation of each input vector look at the out-
puts for faulted circuits that differ from the unfaulted cir-
cuit. If one is found that has its bit set in 'mask' , gen-
erate a detected fault output statement and clear the faulted
circuits bit in 'mask 1 .*/

for(i = 0; i <= num_output; i++)

{

input = output [i]->pins;
logic = net [*input]. logic;
defined = net[*input]. defined;

ifdef DEBUG
printf("OUTPUT: %d logic %x defined %x num %d\n",

i, logic, defined, i)

;

endif
#undef DEBUG

if(logic <)

logic ~= -1;

logic &= defined;
logic &= mask;

for(j=0; logic; j++)

{

if(logic & 1)

{

printf("%3d %-8s pin %d stuck-at-%d ",

parallel! j] . element,
gates[list[parallel

[j] .element] .of f set] .name,
par all el

[j] .
pin, par all el

[j] .fault);
printf("detected by input %3d\n", row + 1);

fprintf(detected, "%3d %-8s pin %d stuck-at-%d ",

parallel [j] .element,
gates[list[parallel

[j] .element] .of f set] .name,
par allelf j] .pin, par allelf j] .fault);

fprintf(detected, "detected by input %3d\n", row+1)

;

detectedf aults++;

mask * 1 << j;
ifdef DEBUG

printf("mask = %x\n", mask);

endif
}

logic >>= 1;

}

B - 38

}

/* After the simulation of all the input vectors look through
mask for faulted circuits that remain undetected. For each
undetected faulted circuit generate an undetected faulted
output statement. If the gate the fault appear on was in the
expanded gates section of the model the gate is internal to a
macro. So find the macro number and macro fault message and
generate a macro undetected output statement. */

for(j=0; mask; j++)

{

if(mask & 1)

{

iifprintf(undetected, "%3d %-8s pin %d stuck-at-%d
par all el [j] .element,
gates[list[parallel [j] .element] .of f set] .name,
par allel[j] .pin, par all el

[j] .fault);
fprintf(undetected, remains undetected. \n");

if(parallel! j]. element >= expanded)

{

map = macrofault(parallel [j] .element,
par all el [j] .pin, parallel! j] .fault, Smacro);

if(map[0])

{

printf("%3d %-8s %s\n",
' macrolist [macro] .number,
macros [macrolist [macro] .of fset] .name, map);

printf("\t%3d %-8s pin %d stuck-at-%d ",

parallel [j] .element,
gates[list[parallel

[j] .element] .of fset] .name,
parallel! j] .pin, par allel[j] .fault);

printf(" remains undetected. \n");

fprintf(macrofile, "%3d %-8s %s\n",
macrol ist [macro] .number,
macros [macrolist [macro] .of fset] .name, map);

fprintf(macrof ile,"\t%3d %-8s pin %d stuck-at-%d",
parallel [j] .element,
gatesf list[parallel

[j] .element] .of fset] .name,
parallel! j] .pin, par allel[j] .fault);

fprintf(macrofile, " remains undetected. \n");

}

}

else
{

printf("%3d %-8s pin %d stuck-at-%d ",

B - 39

}

par all el [j] .element,
gates[list[parallel

[j] . element] .of f set] .name,
par allel[j] . pin, par allel [j] .fault);

printf(" remains undetected. \n");

fprintf(macrofile, "%3d %-8s pin %d stuck-at-%d ",

pa r al 1 el [j] . el em ent

,

gates[list[parallel
[j] .element] .of f set] .name,

parallel! j] .pin, par allel
[j] .fault);

fprintf(macrofile, " remains undetected. \n");

}

}

mask >>= 1;
ifdef DEBUG
printf("mask = %x\n", mask);

endif
}

return detectedf aults;

B - 40

/'

Unusedmacros Function

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This function walks through the macro list ' ma-
crolist* and removes the parts of compound macros that
are unused. A macro part is unused if the the pin speci-
fied in the macro library is unconnected, tied to the
zero net. By looking at each of these pins the function
can tell which parts of compound macros are unused.
Unused macro parts are removed from the fault grading by
removing any faults that appear on the gates internal to
the unused part of the macro.

ARGUMENTS: none.

RETURN: none.

FUNCTIONS CALLED: none. */

#include "define. c"

int unusedmacros ()

extern struct LIST list[];
extern struct MACROS macros [];
extern struct MACROPARTS macroparts []

;

extern struct MACROLIST macrolist[];

extern int expanded;
extern int num_macros;

int i,
last,
first,
current,
walker,
index;

last = expanded;

B - 41

/* Look at the pin specified in the macro library of each
part of compound macros. If the macro part is unused go
through the gates used in that macro part expansion and
remove any fault that exist on them. */

f or (current = 0; current < num_macros; current++)

{

walker = last;
first = last;
last += macros[macrolist[current] .of fset] .gates;

if(index = macros[macrolist [current] . offset]. parts)

while(walker < last)

{

if(!*(list[first + macroparts [index] .gate] .pins
+ macroparts [index].pin - 1))

for (i = macroparts [index] .length; i; i—)

list[walker + i]. state = 0;

walker += macroparts[index++]. length;
}

B - 42

/*
Vector_input Function

Joseph W. Naab
April 27 , 1988
Version 1 .0

DESCRIPTION: This function reads the file * filename. VEC' and
fills the array vector. The file contains only l's and
0's. Each row corresponds to an input vector and each
column corresponds to a primary input, DATA component.
The first row is the first input vector and the first
column is DATA1.

ARGUMENTS: A file pointer to the file ' filename. VEC is
passed to the function.

RETURN: The number of input vectors read is returned to the
calling function 'main 1

.

FUNCTIONS CALLED: none. */

#include "define. c"

int input_vector (file)

FILE *file;

{

extern int vector [][MAXINPUTS];

extern int num_data;

char inbuf [80] ;

int row =0, i;

row = ;

while (fgets(inbuf, 80, file))

{

f or (i = 0; i <= num_data; i++)

vector! i] [row] = inbuf [i] - '0';

row++;

}

return row;

B - 43

Appendix C

Gates Library

by

Joseph W. Naab

April 27, 1988

/*
Gates Library

Joseph W. Naab
April 27, 1988
Version 1.0

DESCRIPTION: This is the gate library and consists of a
structure entry for each gate and the functions that per-
form fault collapsing and simulation of each gate. The
structure initialization appears at the bottom of the
file and consists of the gate's name, the number of pins,
the time delay of the gate, the name of the function used
for fault compression, and the name of the function used
for simulation. The name of the gate can not exceed
eight characters because of the input specifications of
the fault grader. A gate can have any number of pins up
to sixteen, but only one of them may be an output. The
time delay of the gate must be an integer and is used by
the simulator to determine at what time the gate's output
will change because of an input value change.

The fault collapsing function is responsible for applying
the fault dominance and equivalence rules for the gate.
The AND gate's fault collapsing function will be the only
fault collapsing function commented. All the fault func-
tions pass and return the same types of information. The
input argument 'state' represents the faults by using
each bit of the word 'state' to represent one of the pos-
sible faults. The least significant two bits represent
the faults on the first input, the next two bits
represent the next input and so on until the output's
faults are represented. The least significant bit in
each pair represents the stuck-at-zero fault. The other
bit represents the stuck-at-one fault. A fault exists if
the bit representing it is set.

The values returned signify the output fault state. If a

zero is returned the output state remains unchanged, if a

1 is returned the output state of the gate has changed to
a stuck-at-zero fault. Returning a value of two would in-
dicate that the output had acquired a stuck-at-one fault,
and a returned value of three would represent both
faults. It is necessary to return the new fault value of

the output so it can be propagated forward through the
circuit.

C - 1

The arguments input to all the simulation functions are
also the same. The first two are pointers to integer ar-
rays that hold the values of the inputs. The subscript
zero refers to the first pin, the subscript one to the
second input, and so on for each of the pins. The array
pointed to by the pointer logic_input contains the log-
ical values of the inputs. The array pointed to by
' def ine_input ' contains the defined state of the input.
A zero in the def ine_input array means that the logical
value for that input is not defined. No value is re-
turned by the simulation functions.

The procedure for adding another gate to the library fol-
lows:

- Write a fault function for the gate.
- Write a simulation function for the gate.
- Add the gate to the initialization list of the

structure 'GATES'.
- Increase the value 'GATE_NUMBER' by one for each

gate added to the library.
- Recompile and relink this file.

V
NOTE: This is only a partial listing, see the file

' gates. c' for the entire library.

#include "define.c"

/* AND2f AND2f AND2f AND2f AND2f AND2f AND2f AND2f AND2f */
int and2f(state)

long *state;
{

/* If the output already has a stuck-at-0 fault then re-
move any stuck-at-0 faults on the inputs and return the
status output unchanged. */

if (! (*state & 0x10))

/* Check to see if one of the inputs has a stuck-at-0
fault.*/

if(*state & 0x5)

{

/* There is a stuck-at-0 on one of the inputs so generate
a stuck-at-0 on the output and return a output status of
changed to stuck-at-0 */

C - 2

*state |= 0x10;
*state &= 0x3a;
return 1;

}

*state &= 0x3a;
return 0;

}

/*AND2S AND2S AND2S AND2S AND2S AND2S AND2S AND2S AND2S */
int and2s(logicin, definein, logicout, defineout)

int *logicin,
*def inein,
*logicout f

*def ineout

;

/* Determine if the output of the AND gate is defined or
not. Translates to either input with a defined zero in-
put or both inputs defined causes the output to be de-
fined. */

*defineout = (definein[0] & ~logicin[0])

I (definein[l] & ~logicin[l])

I (defineinfO] & definein[l]);

/* Logical AND of the two inputs regardless of thier de-
fined states. */

*logicout = (logicin[0] & logicin[l]);

}

/* AND9F AND9F AND9F AND9F AND9F AND9F AND9F AND9F AND9F */
int and9f(state)

long *state;

if (! (*state & 0x40000)

)

if(*state & 0x15555)

{

*state |= 0x40000;
*state &= Oxeaaaa;
return 1;

}

*state &= Oxeaaaa;
return 0;

C - 3

/* AND9S AND9S AND9S AND9S AND9S AND9S AND9S
int and9s(logicin, definein, logicout, defineout)

long *logicin,
*def inein,
*logicout,
*def ineout;

AND9S*/

*defineout = (definei
def
def
def
def
def
def
def
def
def
def
def
def
def

n[0] &

inein [

1

inein [2

inein [3

inein[4
inein [5

inein[6
inein[7
inein [8

inein [0

inein [2

inein [

4

inein[6
inein [

9

logicin[0]
& "logicin
& "logicin
& "logicin
& "logicin
& "logicin
& "logicin
& "logicin
& "logicin
& definein
& definein
& definein
St definein
) ;

*logicout =

}

(logicin[0]
logicin[3]
logicin [6]

& logicin[l]
& logicin[4]
& logicin [8]

& logicin[2] &

& logicin[5] &

& logicin[9])

/* OR2F
int or2

long
{

if(!

if(

{

*

OR2F OR2F
f(state)

*state;

OR2F OR2F OR2F OR2F OR2F OR2F OR2F OR2F*/

}

}

*stat
retur

(*state & 0x20)

)

state & Oxa)

state |= 0x20;
state &= 0x3 5;
eturn 2;

e &= 0x35;
n 0;

/* OR2S OR2S OR2S OR2S OR2 S OR2S OR2 S OR2 S OR2 S */
int or2s(logicin, definein, logicout, defineout)

long *logicin,
*def inein,

C - 4

*logicout,
*def ineout;

{

*defineout = (definein [0] & logicinfO])

I (definein[l] & logicin[l])

I (defineinfO] & definein[l]);

*logicout = (logicin[0]
I logicin[l]);

}

/* INVF INVF INVF INVF INVF INVF INVF INVF INVF INVF INVF*/
int invf(state)

long *state;
{

if (! (*state & Oxc)

)

if(*state & 0x3)

{

*state 1= *state << 2;
*state &= Oxc;
return *state >> 2;

}

*state &= Oxc;
return 0;

}

/* INVS INVS INVS INVS INVS INVS INVS INVS INVS */
int invs(logicin, definein, logicout, def ineout)

long *logicin,
*def inein,
*logicout,
*def ineout

;

{

*defineout = defineinfO];

*logicout = ~logicin[0];
}

/* BUFFERF BUFFERF BUFFERF BUFFERF BUFFERF BUFFERF */
int buff erf (state)

long *state;
{

if (! (*state & Oxc)

)

if(*state & 0x3)

{

*state 1= *state << 2;
*state &= Oxc;

C - 5

return *state >> 2;

}

*state &= Oxc;
return 0;

}

/* EX0R2F EX0R2F EX0R2F EX0R2F EX0R2F EX0R2F EX0R2F */
int exor2f(state)

long *state;

{

ifdef DEBUG
printf("exor2f: in state %x " , *state);
printf("exor2f: out state %x0, *state);

endif
return 0;

}

/* EXOR2S EXOR2S EXOR2S EXOR2S EXOR2 S EXOR2S EXOR2S */
int exor2s(logicin, definein, logicout, defineout)

long *logicin f

*def inein,
*logicout,
*def ineout

;

{

*def ineout = (definein[0] & definein[l]);

*logicout = (logicin[0] * logicin[l]);

}

#define GATE_NUMBER 41 /* Number of members in GATES */

struct GATES gates [GATE_NUMBER + 1] =

{

/* gate pin gate fault simulate
name # delay function function */

"INV", 2, 1, invf, invs,
"NAND2", 3, It nand2f , nand2s,
,,AND2 M

, 3, 1, and2f

,

and2s f

"OR2", 3, 1, or2f, or2s,
"NOR2 "

,

3, 1, nor2f

,

nor2s,
"EXOR2 M

, 3, If exor2f

,

exor2s f

"NAND3" , 4, If nand3f

,

nand3s f

"AND3"

,

4, 1, and3 f, and3s f

C - 6

"0R3", 4 r 1, or3f, or3s,
"N0R3 "

,

4
t 1, nor3f

,

nor3s,
"EX0R3"

,

4
t If exor3 f

,

exor3s,
"BUFFER", 2 r 1, buff erf

,

buffers,
"DATAl"

,

1 r 1, dataf

,

datas,
"DATA2", 1,r 1, dataf

,

datas,
"DATA3", 1 r 1, dataf, datas,
"DATA4", 1,r 1, dataf, datas,
"DATA5", 1,f 1/ dataf, datas,
"DATA6", 1, > If dataf, datas,
"DATA7", 1, - If dataf, datas,
"DATA8", 1, - If dataf, datas,
"DATA9", 1, - 1, dataf, datas,
"DATA10", 1, 1, dataf, datas,
"DATAll", 1, If dataf, datas,
"DATA12'1

, 1, If dataf, datas,
"DATA13", 1, If dataf, datas,
"DATA14", 1, If dataf, datas,
"DATA15", 1, If dataf, datas,
"DATA16", 1, If dataf, datas,
"OUTPUT", 1, 1, dataf, datas,
"NAND4", 5, If nand4f

,

nand4s,
"AND4"

,

5, If and4f

,

and4s,
"OR4"

,

5, If or4f, or4s,
"NOR4"

,

5, 1, nor4f

,

nor4s,
"NAND5", 6, If nand5f

,

nand5s,
"AND5", 6, If and5f

,

and5s,
"OR5", 6, If or5f, or5s,
"NOR5"

,

6, If nor5f

,

nor5s,
"NAND9

,

10, If nand9f

,

nand9s,
"AND9", 10, If and9f

,

and9s,
"OR9", 10, If or9f

,

or9s,
"NOR9"

,

10, If nor9f

,

nor9s
};

/* Construct an extern variable number of gates*/

int gate_library = GATE_NUMBER;

C - 7

Appendix D

Macros Library

by

Joseph W. Naab

April 27, 1988

/*
Macros Library

Joseph W. Naab
April 27, 1988
Version 1 .0

DESCRIPTION: This is a library that defines the macros and
provides the messages that map the faults internal to the
macros to the periphery of the macro. Another function
of this library is to provide information that is used to
remove unused parts of compound macros form the fault
grading. A description of the methods for adding a new
macro are explained in the thesis "A Digital Logic Fault
Grader" written by Joe Naab for the Electrical and Compu-
ter Engineering Department at Kansas State University.

The library consists of three structures. The first
structure contains the fault mapping message for every
possible internal fault associated with the macro. These
messages are intended to give a relationship of the
internal fault to a external fault or condition of the
macro. It is very important that every possible fault be
included in the macros definition. If one is excluded
the program will be forced to abort when the fault mes-
sage is not found. Some of the faults associated with
the macro are redundant faults and can not be detected by
nondynamic testing. These faults can be removed from the
fault grading by giving it a null fault message, ie. "".

The second macro 'macros' gives the name of the macro,
less than eight characters, the number of gates used in
the macro's expansion, the number of internal faults pos-
sible, a offset into the fault message structure, and an
offset into the macro parts structure. The third struc-
ture, 'macroparts' identifies the the parts of compound
macros. An example is the 7474 which has two edge trig-
gered D flip-flops. The structure contains three in-
tegers, the first two identify the gate and pin that will
have a net number if the part is unused. The third in-
teger is the number of gates that make up this part of
the macro. Each part of a compound macro is examined
after the construction of the collapsed faults. Any
unused macro parts are removed from the fault grader by
deleting any faults that appear on the gates of the

D - 1

unused macro part. */

#include "define. c"

struct MACROFAULTS macrofaults [] =

{

/* 747 4 Edge triggered D-flipflop */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

V
V
V
*/
V
V
*/
*/

.1

.2

.3

.4

.5

.6

.7

.8

.9 */

.10*/

.11*/

.12*/

.13*/

.14*/

.15*/

.16*/

.17*/

.18*/

.19*/

.20*/

.21*/

.22*/

.23*/

.24*/

.25*/

.26*/

.27*/

.2 8*/

.2 9*/

.30*/

.31*/

.32*/

.33*/

.34*/

.3 5*/

.36*/

1,, 1
r If

1,f 2,f If
1 r 3 r If
2 r lif If
2,, 2 f If
2

t
3 r If

3,f 1-r If

3,r 2
(, If

3 r 3,f If
4,F 1.r If
4,f 2,f If
4,- 3,' If
5,f li- If
5, 2, - If
5, 3, 1,
6, 1, - If
6, 2, 1,
6, 3 ,f If
7

,- 1<- If
7,' 2,f If
7

,r 3,- If
8,f li> If
8,t 2,> If
8,- 3,f If
9,r 1<f If
9,r 2,f If
9 r 3,f If
10, 1

10, 2

10, 3

11 f 1

11, 2

11, 3

12, 1

12, 2

12, 3

"Preset stuck-at-one fault",
"D input stuck-at-zero fault.",
"Clear stuck-at-zero fault.",
"Flipflop ability hold clear thru ck",
"Clear stuck-at-one fault CI while Ck
"Clock stuck-at-one fault.",
"Clock or Clear stuck-at-zero fault",
"Clock stuck-at-one fault.",
ii H

f

"Ability to hold clear ck high.",
f

"D stuck-at-one fault.",
"Preset control of primary output",
"Clear or Clock stuck-at-zero fault.",
"Flip-flop ability to hold set",
"Preset stuck-at-zero fault.",
"Clear control over secondary output",
"Flip-flop ability to hold clear",
"Preset stuck-at-one fault.",
"D input stuck-at-zero fault.",
"Clear stuck-at-zero fault.",
"Flipflop ability hold clear thru ck",
"Clear stuck-at-one fault CI while Ck
"Clock stuck-at-one fault.",
"Clock or Clear stuck-at-zero fault",
"Clock stuck-at-one fault.",

1, "Ability to hold clear ck high.",In it

f f

1, "D stuck-at-one fault.",
1, "Preset control of primary output",
1, "Clear of Clock stuck-at-zero fault.
1, "Flip-flop ability to hold set",
1, "Preset stuck-at-zero fault.",
1, "Clear control of secondary output",
1, "Flip-flop ability to hold clear",

/* 74138, 3X8 Decoder/Demultiplexor */

/* 2.1 */ 1, 1, 1, "Select A stuck-at-0 for output 0.",

D - 2

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

V
*/
V
*/

V
*/

V

.2

.3

.4

.5

.6

.7

.8

.9

.10*/

.11*/

.12*/

.13*/

.14*/

.15*/

.16*/

.17*/

.18*/

.19*/

.20*/

.21*/

.22*/

.23*/

.2 4*/

.25*/

.26*/

.27*/

.2 8*/

.2 9*/

.30*/

.31*/

.32*/

.33*/

.3 4*/

.3 5*/

1, 2, 1,
1, 3 , 1,
1, 4, 1,
2, 1, 1,
2, 2, 1,
2, 3, 1,
2,• 4, - 1/
3

,
- li - 1/

3, 2, - If
3, 3, 1,
3, 4, - 1/
4, - li - If
4, 2, - If
4, - 3, 1,
4, - 4, - If
5, - lj - If
5, - 2, - If
5, ' 3,> If
5, - 4, - If
6,- li - If
6, , 2

,t If
6,r 3,r If
6,r 4,f If
7 , 1

t If
7 r 2

T If
7 r 3 r If
7 r 4 r If
8 , 1 r If
8 t 2 r If
8 r 3 r If
8 , 4 t If
9 , 1 r 0,
9 f 2 r 0,
9 F 3 r 0,

"Select B stuck-at-0
"Select C stuck-at-0
"Ability to disable
"Select A stuck-at-1
"Select B stuck-at-0
"Select C stuck-at-0
"Ability to disable
"Select A stuck-at-0
"Select B stuck-at-1
"Select C stuck-at-0
"Ability to disable
"Select A stuck-at-1
"Select B stuck-at-1
"Select C stuck-at-0
"Ability to disable
"Select A stuck-at-0
"Select B stuck-at-0
"Select C stuck-at-1
"Ability to disable
"Select B stuck-at-0
"Select C stuck-at-1
"Select A stuck-at-1
"Ability to disable
"Select A stuck-at-0
"Select C stuck-at-1
"Select B stuck-at-1
"Ability to disable
"Select B stuck-at-1
"Select A stuck-at-1
"Select C stuck-at-1
"Ability to disable
"G2A stuck-at-0. ",

"G2B stuck-at-0 .",

"Gl stuck-at-1.",

for output ,

for output 0.
output 0."

,

for output 1.

for output 1

,

for output 1.

output 1.",
for output 2.

for output 2

for output 2.

output 2 .

",
for output 3.

for output 3 ,

for output 3,

output 3 .",

for output 4.

for output 4

for output 4.

output 4.",
for output 5,

for output 5

for output 5,

output 5.",
for output 6,

for output 6

for output 6

output 6
.

",

for output 7

for output 7

for output 7

output 7.",

/* 74194 4-bit Shift Register */

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9 */
3.10*/
3 .11*/
3.12*/

V
*/
V
V
V
*/
V
*/

If If
If 2,
2, 1,
2, 2,

3, 2,
3, 3,

1

1

1

1

3, 1,

5, 1,
5, 2,
6, 1,
6, 2,
7, 1,

"Data input A stuck-at-1 ."
,

"Can't ignore Data A 1 s 1.",
"Shift Right Input stuck-at-1. ",

"Can't ignore Shift Right Input 1

"Can't right shift a 1 into QA. ",

"Can't load a 1 into QA. ",
"Can't left shift a 1 into QA. ",

"Can't left shift into QA. ",

"QA can't ignore QB's 1.",
"Can't right shift into QB.",
"Can't ignore Data B's 1.",
"Can't left shift into QB.",

D - 3

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

.13*/

.14*/

.15*/

.16*/

.17*/

.18*/

.19*/ 10

.20*/ 10

.21*/ 11

.22*/ 11

.23*/ 12

.2 4*/ 12

.2 5*/ 12

.26*/ 13

.27*/ 13

.2 8*/ 14

.2 9*/ 14

.30*/ 15

.31*/ 15

.32*/ 16

.33*/ 16

.3 4*/ 16

.3 5*/ 17

.36*/ 17

.37*/ 18

.3 8*/ 18

.3 9*/ 20

.40*/ 20

.41*/ 21

.42*/ 21

.43*/ 29

.44*/ 29

.45*/ 30

.46*/ 30

.47*/ 31

.48*/ 31

.49*/ 32

.50*/ 32

.51*/ 33

.52*/ 33

.53*/ 33

.54*/ 34

.55*/ 34

.56*/ 35

.57*/ 35

.5 8*/ 36

.59*/ 36

.60*/ 37

.61*/ 37

, 2,r If

r 1/ - o,
, 2, , 0,

f 3, t
o

,

, I-
p If

t 2
,
- If

t 1/ » If

, 2, F If
f 1- p If
, 2, F If
, I, , 0,

, 2
(, ,

, 3, - o,

, 1; t If
, 2, r If

, 1, r If
, 2,P If

t 1,P If
, 2,P If

, 1,p o,
t 2, p o,

, 3,- o,
t 1/ . If

t 2, - If
t 1,, 0,
t 2, > o,
, 1,p o,

, 2,p o,
, 1»p If

, 2, p If
t 1/p If
, 2 p If
, 1 p If
f 2,p If
, 1 p o,

, 2 p o,

, 1/r If

, 2 r If
t 1,p If
, 2,p If
, 3,p If

/ 1.p o,

t 2
(
, 0,

f 1<p If
r 2,r If
f 1/P If

r 2,p If
, 1 p If

r 2 P If

"Can't
"Can* t
"Can't
"Can't
"Can't
"QB can
"Can't
"Can't
"Can't
"Can't
"Can't
"Can't
"Can't
"Can't
"QC can

ignore QA's 1.

"

f

right shift a 1 into QB.
load a 1 into QB. ",
left shift a 1 into QB.

"

left shift into QB. ",
' t ignore QC s 1. ",

right shift into QC",
ignore Data C's l."#
left shift into QC. ",
ignore QB' s 1

.

",
right shift a 1 into QC.
load a 1 into QC. ",
left shift a 1 into QC.

"

left shift into QC. ",
* t ignore QD' s 1

.

",

"Can't right shift into QC. ",
"Can't ignore Data D's 1.",
"Can't left shift into QD.",
"Can't ignore QC's 1. ",

"Can't right shift a 1 into QD.",
"Can't load a 1 into QD. ",

"Can't left shift a 1 into QD.",
"Can't left shift into QD.",
"QD can't ignore Shift Left Input's 1",

"Ability to load input, SI",
"Ability to load input, SI",
"Ability to hold output, SI",
"Ability to hold output, SO",
"Ability to clock chip",
"Ability to block clock",
"QA indeterminent on set.",
"QA ability to ignore reset on low ck",
"QA ability to ignore set on high ck.",
"QA always reseting.",
"QA ability to hold set pulse high ck",
"QA ability to reset.",
"QA always setting.",
"QA ability to ignore reset high ck.",
"QA ability to ignore set low ck.",
"QA indeterminent on reset.",
"QA ability to stay cleared.",
"QA ability to set. ",

"QA ability to hold reset pulse.",

"QA indeterminent on reset.
"QA ability to set. ",
"QA ability to hold reset."
"QA ability to hold set.",
"QA ability to reset.",

D - 4

/* 3 .6 2*/
/* 3.63*/
/* 3 .6 4*/
/* 3.65*/
/* 3 .66*/
/* 3.67*/
/* 3 .6 8*/
/* 3.69*/
/* 3.70*/
/* 3.71*/
/* 3 .72*/
/* 3.73*/
/* 3.7 4*/
/* 3.75*/
/* 3.76*/
/* 3.77*/
/* 3.7 8*/
/* 3.7 9*/
/* 3.80*/
/* 3.81*/
/* 3.82*/
/* 3.83*/
/* 3 .84*/
/* 3.85*/
/* 3 .86*/
/* 3.87*/
/* 3.88*/
/* 3.89*/
/* 3.90*/
/* 3.91*/
/* 3.92*/
/* 3.93*/
/* 3.94*/
/* 3.95*/
/* 3.96*/
/* 3.97*/
/* 3.9 8*/
/* 3.99*/
/* 3 .00*/
/* 3.01*/
/* 3 .02*/
/* 3.03*/
/* 3 .0 4*/
/* 3.05*/
/* 3 .06*/
/* 3.07*/
/* 3 .0 8*/
/* 3.0 9*/
/* 3 .10*/

37, - 3, - If
38,t 1, t If
38, - 2, > If
39, - 1/ - If
39, - 2, - If
40,> 1, f o,
40, - 2, o,

41,t 1, f If
41, r 2, - If
42,r 1, t If
42, 2, 1,
42, 3, 1,
43, 1, o,
43, 2, o,
44, - 1, 1,
44, f 2, - lf
45, - 1,f If
45,r 2, f If
46,f 1| - lf
46,r 2, - lf
46,t 3, f lf
27,r 1, p lf
27, - 2, » If
38 , 1 r If
38,' 2,r If
39 r 1 r 0,
39 r 2 f o,
30

r 1 r If
30 r 2 r If
31 r 1 r If
31 r 2 r 1,
31 r 3 r If
32 , 1 r 0,
32 r 2 r 0,
33 r 1 r If
33 r 2

r If
34 r 1 r If
34 t 2 r If
35 , 1 r 1,
35 r 2 f If
35 r 3 r If
26 , 1 r If
26,r 2,r If
37 r 1,r If
37 r 2 f If
38 r 1 r 0,
38,, 2 r 0,
39 r 1,f If
39 r 2 r If

"QA ability to clear.",
"QB indeterminent on set. 11

,

"QB ability to ignore reset on low ck",
"QB ability to ignore set on high ck.",
"QB always reseting.",
"QB ability to hold set pulse high ck",
"QB ability to reset.",
"QB always setting.",
"QB ability to ignore reset high ck.",
"QB ability to ignore set low ck.",
"QB indeterminent on reset.",
"QB ability to stay cleared.",
"QB ability to set. ",
"QB ability to hold reset pulse.",
n n

f

"QB indeterminent on reset. 11

,

"QB ability to set. ",

"QB ability to hold reset.",
"QB ability to hold set.",
"QB ability to reset.",
"QB ability to clear.",
"QC indeterminent on set.",
"QC ability to ignore reset on low ck",
"QC ability to ignore set on high ck.",
"QC always reseting.",
"QC ability to hold set pulse high ck",
"QC ability to reset.",
"QC always setting.",
"QC ability to ignore reset high ck.",
"QC ability to ignore set low ck."

,

"QC indeterminent on reset.",
"QC ability to stay cleared.",
"QC ability to set. ",

"QC ability to hold reset pulse.",
•i it

f

"QC indeterminent on reset.",
"QC ability to set. ",

"QC ability to hold reset.",
"QC ability to hold set.",
"QC ability to reset.",
"QC ability to clear.",
"QD indeterminent on set.",
"QD ability to ignore reset on low ck",
"QD ability to ignore set on high ck.",
"QD always reseting.",
"QD ability to hold set pulse high ck",
"QD ability to reset.",
"QD always setting.",
"QD ability to ignore reset high ck.",

D - 5

/* 3.11*/ 30, 1, 1, "QD ability to ignore set low ck. "
,

"QD indeterminent on reset. "

,

"QD ability to stay cleared.",
"QD ability to set. ",

"QD ability to hold reset pulse.",

/* 3.12*/ 30, 2, It
/* 3 .13*/ 30 , 3, If
/* 3.14*/ 31, It 0,
/* 3 .15*/ 31, 2, 0,
/* 3.16*/ 32, If If
/* 3.17*/ 32, 2, 1,
/* 3.18*/ 33 , If 1,
/* 3.19*/ 33, 2, If
/* 3.20*/ 34, 1, If
/* 3.21*/ 34, 2, 1/
/* 3.22*/ 34, 3, li

};

II II

t

"QD indeterminent on reset. ",
"QD ability to set. ",

"QD ability to hold reset.",
"QD ability to hold set.",
"QD ability to reset.",
"QD ability to clear.",

#define MACRO_NUMBER 2

int macro_library = MACRO_NUMBER;

struct MACROS macros [MACRO_NUMBER] =

{

/* macro's number number offset offset
name of of into into

gates faults macrofaults macroparts */
"7 4", 12, 36, 0, 1,

"138", 16, 35, 35, 0,
"194", 68, 122, 70, 0,

struct MACROPARTS macroparts [3] =

{

/* gate pin number
number number of gates */

0, 0, 0,
It If 6,
7, 1, 6

};

D - 6

Appendix E

References

by

Joseph w. Naab

May 15 , 1988

"References"

1. Micro-Logic II , Spectrum Software, 1987

2. Frank F. Tsui, LSI /VLSI Testability Design , McGraw-Hill
Book Company, New York, 19 87.

3. Statements by D.H. Lenhert, Professor of Electrical and
Computer Engineering, Kansas State University,
Manhattan, Kansas, April 1988.

4. Alexander Miczo, Digital Logic Testing and Simulation ,

Harper & Row, Publishers, New York, 1986.

5. Melvin A. Breuer and Arthur D. Friedman, Diagnosis &

Reliable Design of Digital Systems , Computer Science
Press, Inc., Rockville, Maryland, 1976.

E - 1

A Digital Logic Fault Grader

by

JOSEPH W. NAAB

BSEE f Kansas State University, 1986

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment
of the requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhatten, KANSAS

1988

ABSTRACT

This thesis describes a software program that evaluates the

ability of a set of input vectors to detect digital logic

circuit failures, a process that is commonly called fault

grading. This fault grading program uses a gate level model

of the circuit, the stuck-at-x fault model and an event

driven parallel fault simulator to evaluate the input test

vectors. Because it was designed to be used by one-time

student users working with board sized circuits an effort

was made to make the fault grader easy to use and

understand. The fault grader's inputs are compatiable with

the outputs of a graphic driven digitial logic design

package called Micro Logic 2. Both programs operate at the

gate level and are easy to understand and use. A documented

source code listing and a user's manual are also included in

the appendices.

