

LINK DISCOVERY IN VERY LARGE GRAPHS BY

CONSTRUCTIVE INDUCTION USING GENETIC PROGRAMMING

by

TIMOTHY EDWARDS WENINGER

B.S., Kansas State University, 2007

A THESIS

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Approved by:

Major Professor
William H. Hsu

Abstract

This thesis discusses the background and methodologies necessary for constructing

features in order to discover hidden links in relational data. Specifically, we consider the

problems of predicting, classifying and annotating friends relations in friends networks, based

upon features constructed from network structure and user profile data. I first document a data

model for the blog service LiveJournal, and define a set of machine learning problems such as

predicting existing links and estimating inter-pair distance. Next, I explain how the problem of

classifying a user pair in a social networks, as directly connected or not, poses the problem of

selecting and constructing relevant features. In order to construct these features, a genetic

programming approach is used to construct multiple symbol trees with base features as their

leaves; in this manner, the genetic program selects and constructs features that many not have

been considered, but possess better predictive properties than the base features. In order to

extract certain graph features from the relatively large social network, a new shortest path search

algorithm is presented which computes and operates on a Euclidean embedding of the network.

Finally, I present classification results and discuss the properties of the frequently constructed

features in order to gain insight on hidden relations that exists in this domain.

 iii

Table of Contents

List of Figures .. vi

List of Tables ... viii

Acknowledgements .. ix

CHAPTER 1 - Introduction .. 1

1.1 Inductive Learning .. 3

1.1.1 Feature Extraction ... 6

1.1.2 Selective Induction.. 8

1.1.3 Constructive Induction .. 10

1.2 Evolutionary Computation .. 14

1.2.1 Traditional Search Methods and Local Maxima ... 15

1.2.2 Genetic Algorithms ... 17

1.2.2.1 Genetic Operations .. 18

1.2.2.2 Probabilistic Selection .. 21

1.2.3 Genetic Programming ... 23

1.2.3.1 Representation... 24

1.2.3.2 Genetic Operations .. 25

1.3 Graph Theory .. 28

1.3.1 Directed Graphs .. 29

1.3.2 Social Networks .. 30

1.3.3 Link Mining .. 32

1.4 Principal Claims .. 33

CHAPTER 2 - Related Research .. 35

2.1 Meta Learning ... 35

2.1.1 Bagging ... 36

2.1.2 Boosting .. 37

2.1.3 Random Forests .. 37

2.2 Krawiec’s Feature Construction with Genetic Programs Approach 38

2.3 Hsu’s Feature Selection for Link Mining Approach .. 39

 iv

CHAPTER 3 - Methodology .. 40

3.1 Crawling a social network .. 40

3.1.1 Crawl Results .. 43

3.2 Base Feature Selection .. 44

3.2.1 User-dependent Base Features .. 44

3.2.2 Pair-dependent Base Features ... 44

3.2.3 Graph Base Features ... 45

3.3 Candidate Pair Generation .. 45

3.3.1 Graph Density ... 46

3.3.2 Forced Parity Candidate Generation ... 46

3.4 Genetic Feature Construction ... 47

3.4.1 Symbolic Regression .. 47

3.4.2 Feature Construction via Multiple Regression Trees .. 48

3.5 Feature Computation ... 49

3.5.1 Shortest Path Approximation .. 50

3.5.1.1 Graph Embedding ... 51

3.5.1.2 Finding the Approximate Shortest Path .. 51

3.6 Experiment Design ... 52

3.6.1 Evaluation Metrics .. 53

CHAPTER 4 - Results .. 55

4.1 Results from Traditional Learning using Base Features ... 55

4.2 Results of Feature Construction using a Single Symbol Tree 60

4.3 Results of Feature Construction using Multiple Symbol Trees 61

4.3.1 OneR ... 61

4.3.2 Logistic ... 63

4.3.3 J48 ... 64

4.3.4 NaiveBayes ... 66

4.3.5 IB1... 67

4.3.6 Comparative Analysis ... 69

4.3.7 Constructed Feature Trees .. 70

4.4 Meta Learning Results .. 72

 v

CHAPTER 5 - Conclusions and Future Work .. 74

5.1 Large Graph Crawling and Feature Extraction ... 75

5.2 Efficient Feature Computation on Large Graphs .. 76

5.3 Analysis of Genetically-Constructed Features ... 77

5.4 Prediction Performance of Genetically-Constructed Features 78

5.5 Future Work .. 80

Bibliography ... 81

Appendix A - Complete Feature Set ... 87

Appendix B - ECJ Parameters File ... 89

Appendix C - Symbol Trees for Best Individuals ... 96

 vi

List of Figures

Figure 1.1: An example decision tree for ܣ ש ܤ ר ܥ ש 12 ... ܦ

Figure 1.2: Decision tree from Figure 1.1 with two newly constructed features 12

Figure 1.3: Example search space gradient with two local maxima (ܣ, and a global optimum (ܤ

 16 .. .(ܥ)

Figure 1.4: Example of reproduction when applied on bit-sequence 100101. 19

Figure 1.5: Example of mutation occurring on bit #3 in the bit-sequence 100101. 20

Figure 1.6: Example crossover of the bit-sequences 100100 and 001111. 21

Figure 1.7: Roulette wheel visualization for normalized fitness .. 23

Figure 1.8: Pseudocode for a genetic algorithm. .. 23

Figure 1.9: Tree representation of the equation ܼ െ 4ܺ ൅ ܻܹ ൅ 9 for an individual in a genetic

program. .. 25

Figure 1.10: Example of GP mutation where the individual from Figure 1.9 is mutated to form a

new individual. .. 26

Figure 1.11: Example of GP crossover where two parent individuals are split and recombined to

form two new individuals. .. 27

Figure 1.12: Example undirected graph with five vertices and five edges. 28

Figure 1.13: Example digraph with five vertices and six arcs. ... 29

Figure 2.1: Taken with permission from the feature construction Genetic programming-based

framework for [Kra02]. ... 38

Figure 3.1: Pseudocode for dynamic thread control in LJCrawler ... 41

Figure 3.2: Storage schema for MySQL database .. 43

Figure 3.3: Example symbol tree used in Table 3.1 ... 48

Figure 4.1: Decision tree for J48 classifier trained on base features. ... 58

Figure 4.2: ROC curves for learning algorithms trained and cross-validated 59

Figure 4.3: Progression of the fitness of the best individual through 4 generations. Higher is

better. .. 60

Figure 4.4: Best individuals per generation with OneR for 5 GP runs. Lower is better. 62

Figure 4.5: Average validation score over the entire population per generation with OneR for 5

GP runs. Lower is better. .. 62

 vii

Figure 4.6: Best individuals per generation with Logistic for 5 GP runs. Lower is better. 63

Figure 4.7: Average validation score over the entire population per generation with Logistic for 5

GP runs. Lower is better. .. 64

Figure 4.8: Best individuals per generation with J48 for 5 GP runs. Lower is better. 65

Figure 4.9: Average validation score over the entire population per generation with J48 for 5 GP

runs. Lower is better. .. 65

Figure 4.10: Best individuals per generation with NaiveBayes for 5 GP runs. Lower is better. .. 66

Figure 4.11: Average validation score over the entire population per generation with NaiveBayes

for 5 GP runs. Lower is better. .. 67

Figure 4.12: Best individuals per generation with IB1 for 4 GP runs. Lower is better. 68

Figure 4.13: Average validation score over the entire population per generation with IB1 for 4

GP runs. Lower is better. .. 68

Figure 4.14: Average validation scores for the best individuals for all generations. Lower is

better. .. 69

Figure 4.15: An example genetically-constructed condensed symbol tree. 70

Figure 4.16: An example genetically constructed symbol tree with ... 71

Figure 4.17: ROC curves for learning algorithms trained and cross validated on feature data set.

 ... 73

Figure 5.1: Comparison of results from classifiers trained by (1) genetically-constructed features

(2) base features and (3) meta-learning algorithms. ... 79

 viii

List of Tables

Table 1.1: Example problem individuals with fitness values and corresponding selection

probabilities ... 22

Table 1.2: Types of link in the blog service LiveJournal ... 31

Table 3.1: Example Symbolic Regression Interpretation ... 48

Table 3.2: Example of features constructed with multiple regression trees 49

Table 4.1: Attribute Ranking in terms of .. 56

Table 4.2: Results for classifiers trained on base features, tested with ... 57

Table 4.3: Results for classifiers trained on base features, tested ... 59

Table 4.4: Symbol trees and corresponding fitness for 4 generations of single symbolic

regression .. 61

Table 4.5: Classifier results in terms of AUC (1 – fitness) compared to base results. Higher is

better. .. 70

Table 4.6: Top 10 features ordered by their prevalence in individuals’ symbol trees 71

Table 4.7: Results for meta-learning algorithms trained on base features, 72

 ix

Acknowledgements

I would like to thank my wife, Jordan, for her patience and understanding during the

formulation and writing of this thesis. I also thank my major professor, Dr. William Hsu, and my

committee, including Dr. Dan Andresen and Dr. Doina Caragea, for their help and guidance

throughout the construction of this work.

I would also like to thank the Defense Intelligence Agency and the National Agriculture

Biosecurity Center for their sponsorship of this work, the Department of Homeland Security and

the University of Illinois Urbana-Champaign for my fellowship at the Multimodal Information

Access and Synthesis Summer Institute, Dr. Krzysztof Krawiec for permission to use his

illustration in this thesis, and Dr. Rod Howell, Dr. Todd Easton, Dr. Caterina Scoglio, Dr. Janis

Crow, and Dr. Jiawei Han for their useful discussions during the formulation of this thesis.

 1

CHAPTER 1 - Introduction

Traditional data mining tasks such as association rule mining or market basket analysis

attempt to find patterns in a dataset. According to Getoor, “This is consistent with the classical

statistical inference problem of trying to identify a model given a random sample from a

common underlying distribution” [Get03]. However, it is important to also data mine datasets

that are relational, semi-structured or otherwise consist of links between various entities. These

links can be explicit, such as an anchor tag in a web page, or implied such as a join operation in a

relational database. As shown by the PageRank algorithm used by the popular search engine

Google, link existence can be exploited to improve the predictive accuracy of learned models.

[Bri98] Intuitively, attributes of linked objects are often more closely related than those of

unlinked objects, and links are more likely to exist between objects that share common attributes.

[Get03]

Feature construction in the multi-relational setting is also possible. Traditionally, the

attributes of an object provide the basic description of the object. However, by leveraging the

information contained in the relationships of objects, more information about the object can be

gleaned providing the learning algorithm an appropriate context for a better induction model.

 2

This thesis focuses mainly on link discovery, i.e., predicting the existence of links

between objects. In order to discover links not previously known to exist, a genetic programming

approach is used to construct features that appropriately leverage the knowledge contained in the

presence or absence of links. One computational challenge is that the graph that is studied is

prohibitively large for traditional graph analysis algorithms to operate effectively. Therefore

efficient memory-management techniques are devised to manage the underlying data structure.

This introductory chapter contains necessary information for readers who are unfamiliar

with one or more of the following topics: constructive induction, genetic and evolutionary

computation, social networks, and link mining, as well as a brief background study of the earlier

work this thesis builds upon. This chapter is not intended to be a complete introduction to the

topic; I refer the interested reader to Mitchell’s book on machine learning [Mit97], Han and

Kamber’s book on data mining [Han06], Koza’s book on genetic programming [Koz98],

Wasserman and Faust’s book on social networks [Was07], and Lise Getoor’s paper on link

mining [Get03]. In the final section of this chapter the principal claims of this thesis are stated.

These claims are defended in the proceeding chapters.

Chapter 2 contains a brief overview of the related research. The first section describes an

alternative approach called meta-learning while the next two sections on Krawiec’s GP-based

construction of features and Hsu’s link mining approaches serve as motivations for this thesis.

Chapter 3 discusses the methodology of my approach. The first section describes how a

large social network is crawled and locally stored as a graph. Subsequent sections describe the

setup and execution of the experiments to be performed and the means by which results are

gathered and presented.

Chapter 4 presents four sets of results for each of the four experiments described in

Chapter 3. The standard results metrics will often-times be accompanied by a more descriptive

analysis of the results. The final section of this chapter will present the results in a comparative

context leading towards the final chapter and its coverage of conclusions that can be drawn from

these experiments.

 3

Chapter 5 contains discussion about and interpretations of the results by systematically

demonstrating how well the experiments support the principal claims of this thesis. Finally, this

chapter presents possibilities for future research and concludes the thesis.

1.1 Inductive Learning

Inductive learning, as an active research area of machine learning, explores algorithms

that reason from external examples (also known as instances or cases) to produce general

theories (or hypotheses), which then inductively make predictions about more examples.

Examples, in this sense, are representations of concrete knowledge about individuals, including

specific characteristics of the set of individuals, as well as an assessment of the individuals. For

instance, the medical records and current symptoms of a patient is an example and the doctors’

diagnosis of that patient is a theory because of the doctor’s experience with previous patients.

Externally supplied examples used for generating theories are typically known as training

examples. Created theories should be more general then the specific examples from which they

are derived because theories can make predictions about not only trained examples but also

previously unseen examples. This generalization is at the core of inductive reasoning. Of course,

there is no guarantee that the results induced by an inductive learner are completely correct even

if all of the training examples are correct. Therefore, gauging the validity of a particular learning

algorithm is often determined by the accuracy or error rates of the learned theories on previously

unseen examples.

In the medical example provided above, if the training examples are provided with

known labels such as the diagnoses of an illness for the patients then the inductive learning

algorithm is called supervised learning. [Mit83] [Qui86] Supervised learning can solve two types

of problems: classification problems, in which labels are categorical and regression problems, in

which labels are continuous. [Wei95] This is in contrast to unsupervised learning, in which

training examples are unlabeled or their labels are unknown. [Fis87] For classification problems,

labels are referred to as classes and the induced theories are collectively called a classifier. In the

likely instance that a problem involves only two classes, inductive learners typically consider

examples to be either positive or negative examples of a concept [Qui86] [Mic83], in this case,

the supervised learning task can be viewed as that of generating a definition of a concept.

 4

Generally, these types of problems can be viewed as search problems [Mit82] involving a

large hypothesis space, that is, the space consisting of all possible theories (hypotheses) under

consideration. The goal of the search is to find the best theory with respect to the available

training examples.

For each learning problem (domain), the set of attributes that is used to represent the

examples is fixed and every example is represented using the same set of attributes. Moreover,

all possible classes are fixed and mutually exclusive. A set of training examples is called the

training set, and this set is usually a subset of all the examples in the domain. Examples that are

used to test the learned theories are called test examples and they are typically different from the

training examples. The most commonly used attributes are one of three types: continuous

(numeric), nominal or binary. Continuous attributes have ordered values. An example of a

continuous attribute is age. Nominal attributes have a fixed set of discrete values. Cardinal

directions such as north, south, east, west, etc. are examples of nominal attributes. Binary

attributes are a special case of nominal attributes where there are only two distinct values. An

example of a binary attribute is a logical variable with values that can be either true or false.

Learned theories are often evaluated using two measurements: generalization

performance (accuracy) and theory complexity. Generalization performance is the expected

prediction accuracy of a theory when tested against unseen examples [Wol92]. To estimate the

generalization performance prediction counts are made by tallying the four indicators:

1. True Positives: the number of correctly identified positively-labeled examples

2. True Negatives: the number of correctly identified negatively-labeled examples

3. False Positives: the number of incorrectly identified positively-labeled examples,

e.g., false alarm

4. False Negatives: the number of incorrectly identified negatively-labeled examples

e.g., miss

Furthermore, several generalization performance indicators are employed to determine the

validity of a learned theory:

 5

1. Accuracy: ሺܶܲ ൅ ܶܰሻ ሺܶܲ ൅ ܶܰ ൅ ܲܨ ൅ ⁄ሻܰܨ , number correctly identified over

total number.

2. Precision: ܶܲ ሺܶܲ ൅ ⁄ሻܲܨ , aka Positive prediction value

3. Recall: ܶܲ ሺܶܲ ൅ ⁄ሻܰܨ , aka True positive rate, hit rate, sensitivity

4. F-Measure: 2 כ ሺܲ݊݋݅ݏ݅ܿ݁ݎ כ ܴ݈݈݁ܿܽሻ ሺܲ݊݋݅ݏ݅ܿ݁ݎ ൅ ܴ݈݈݁ܿܽሻ⁄ , harmonic mean

5. Receiver Operating Characteristic (ROC), trade off in true positive rate and false

positive rate

6. Area Under ROC, aka Area Under Curve (AUC)

The theory complexity refers to the size of the description of the theory. For instance, a theory

with many complex rules has a higher theory complexity than a theory with a single linear rule.

 To learn a theory from a given set of training examples an induction algorithm needs to

make some assumptions about the nature of theory that is being learned. In this context, these

assumptions are called biases. The inclusion of a bias is necessary because the number of

potential theories that are consistent with the training examples is usually prohibitively large.

Furthermore, the training data does not necessarily indicate which theory is correct. [Mit80] In

the same work, Mitchell comments that, “an unbiased learning system’s ability to classify new

instances is no better than if it simply stored all the training instances and performed a lookup

when asked to classify a subsequent instance” [Mit80]. In other words, biases are used to reduce

the hypothesis search space in order to make learning possible.

 There are, essentially, two types of biases: absolute and relative. Absolute bias, otherwise

known as language bias, assumes that the target theory belongs to some restricted set in the

hypothesis space. This type of bias restricts the domain of theories that can be expressed and thus

can be learned by the system because it is defined in terms of the description language of the

learning system. For example, a decision tree model can only represent finite rules, whereas a

neural network can represent a network of probabilities. Relative bias, otherwise known as

preference bias or search bias, assumes that the theory to be learned is more likely to be from

one set of hypothesis than from another. It places a preference ordering on hypothesis by

directing the search through the hypothesis space. As an example, consider the following

question: “How many marbles are in the jar?” To begin to formulate an answer to this question

 6

one should consider all of the answers available. This set of potential answers is effectively a

hypothesis space, and this hypothesis space would include meaningless answers, such as

negative numbers, words that do not denote counting numbers, objects, or the plethora of

conceivable hypothesis that would exist to answer any and all questions, ever. When venturing a

guess at how many marbles are in the jar, valid answers can only be positive integers. Therefore,

the bias applied to this example is that answers may only be positive integers. Learning

algorithms that employ relative bias often cite Occam’s Razor principle, which states that, “all

other things being equal, the simplest solution is the best” [Blu87]. Occam’s Razor is also known

as lex parsimoniae or the law of parsimony. [Wik08a]

As stated above, every inductive learning algorithm uses some degree of bias. Therefore,

there exist some domains in which a particular bias will perform well and some domains where

the bias will cause the classifier to perform poorly. The Conservation Law of Generalization

Performance explains this by stating, “total generalization performance over all learning

situations is null” [Sch94]. In other words, no single learning algorithm can be superior to all

other algorithms across all domains. Watanabe’s Ugly Duckling Theorem similarly states that it

is impossible to perform classification without some sort of bias. [Wat69] Fortunately,

researchers in machine learning focus mainly on problems of a relatively limited domain.

Because of the Conservation Law of Generalization Performance, when this thesis states that one

learning algorithm is superior to another, the statement rather means that the former learning

algorithm is superior to another in the particular domain being discussed. Upon further review of

Schaffer’s conservation law, Rao et al. find that the conservation law is only applicable to a

uniformly random universe. However, it is highly unlikely that common problems in machine

learning are uniformly random therefore we measure performance taking into account the

probability that each concept occurs. Using this understanding it is possible that one learning

algorithm can be superior to another in our universe [Rao95].

1.1.1 Feature Extraction

Feature extraction is the process of extracting a set of new features from an original set of

features through some mapping. [Wys80] Assuming there are ݊ features ܣଵ, ଶܣ … , ௡ afterܣ

feature extraction there exists another set of features ܤଵ, ଶܤ … , ݉ ௠ whereܤ ൏ ݊ and ܤ௜ ൌ

 7

,ଵܣ௜ሺܨ ଶܣ … , ௜ is a mapping function. Long searches are typically required to find goodܨ ௡ሻ, andܣ

transformations, but the goal of feature extraction is to find a minimum set of new features via

some transformation function to optimize some performance measure.

The reason for performing feature extraction is that when analyzing complex data one of

the major problems encountered is that learning with a large number of variables generally

requires a large amount of memory and computation power. Moreover, supervised learning

algorithms alone may overfit the training sample and generalize poorly to new samples. Feature

extraction is a general term for methods of constructing combinations of the variables to get

around these problems while still describing the data with sufficient accuracy.

Several general feature extraction techniques are available. For example, principal

components analysis (PCA) is a standard technique in which the original ݊ features are replaced

and a set of ݉ new features are generated by linear combinations of the original features. The

basic idea is to form an ݉-dimensional projection (where 1 ൑ ݉ ൑ ݊ െ 1) by the linear

projections that maximize the sample variance subject to being uncorrelated with all of the

already selected linear combinations. The number of new features ݉ is determined by the ݉

principal components that capture a variance greater than some pre-determined threshold.

Finding ݉ principal components can be otherwise thought of as finding the ݉ eigenvectors with

the largest eigenvalues that correspond to the dimensions that have the strongest correlation in

the data set. [Dan01] Similarly, a feedforward neural network approach can be used to realize a

functional mapping and extract new features. The basic idea of this approach is to use the hidden

units in the neural network as newly extracted features. The prediction accuracy is used as the

performance metric; of course, this requires that the data must be labeled with classes, and,

contrary to PCA, the transformation from input units to hidden units is nonlinear. Two types of

algorithms have been developed to extract the minimum number of hidden units (and their

corresponding features) from neural networks: the network construction algorithm iteratively

adds hidden units to improve prediction accuracy, and the networks pruning algorithm removes

redundant connections between the input and hidden layers so long as the prediction accuracy

does not decrease. [Set01]

 8

1.1.2 Selective Induction

Selective induction, also known as feature selection, is a process that chooses a subset of

ܯ features from the original set of ܰ features, where ܯ ك ܰ, for the purpose of reducing ܯ

according to some criterion [Blu97]. The goal of selective induction in machine learning is to:

1. Reduce the dimensionality of a feature space.

2. Increase the speed of the learning algorithm.

3. Improve the accuracy of the classification algorithm.

4. Improve the comprehensibility of classification results.

Studies have also shown that the reduction in feature spaces provided by feature selection can

improve the prediction accuracy in unsupervised clustering algorithms. [Tal99] [Tal99a] [Das00]

[DyJ00]

Intuitive, though naïve, ways to generate feature subsets exist. For instance, starting with

an empty set we could sequentially add features one at a time and test the efficacy for each

subset. If we start with a full set then sequentially we can remove one feature at a time similar to

the first scheme. Alternatively, we can randomly generate sets so that each candidate feature has

an equal probability of being chosen (from 2|ே| possible subsets). Finally, we could exhaustively

enumerate all 2|ே| possible subsets. With each scheme a best score is kept, and after the selection

process is complete the best feature set is chosen. In all cases, the best score is always relevant to

a certain evaluation criterion. “Best” can thus be defined as the optimal feature subset for a given

criterion.

Evaluation criteria can be categorized into two distinct groups based on their

independence from the learning algorithm. A filter evaluates the optimality/goodness of a feature

subset independent of the learning algorithm by calculating a distance measure, information

measure (i.e., entropy), dependency measure, consistency measure, etc. [Liu98]. A wrapper

evaluates the optimality/goodness of a feature subset by evaluating the performance of the

learning algorithm applied on the selected feature subset. For supervised learning, the main goal

is to maximize classification/predictive accuracy. While for unsupervised learning many

 9

measures exist for estimating the quality of clustering results, such as cluster compactness,

scatter separability, and maximum likelihood. [Tal99a] [DyJ00] [Kim00]

Many feature selection algorithms exist. Using the model described above, we can use

one or more types of algorithms to generate a feature subset better suited for classification tasks.

Exhaustive approaches

 Starting with an empty or complete feature set we can sequentially add or remove

features as described above. Search algorithms, such as branch and bound, evaluate estimated

accuracy by starting with a full feature set and running until a preset bound is reached.

Heuristic approaches

 Sequential forward search and sequential backward search, described above, can be

implemented using many different univariate heuristics. The simplest version of a wrapper

model is to run a decision tree learning algorithm and apply only those features that are used, this

is effectively using the entropy heuristic because decision trees operate mainly on the entropy

score of features. [Car93]

Nondeterministic approaches

The Las Vegas Filter randomly generates and tests feature subsets with an inconsistency

measure. [Liu96] Genetic algorithms and simulated annealing are also used in feature selection,

but are essentially nondeterministic versions on the heuristic and exhaustive approaches

described above.

Instance-based approaches

Relief [Kir92] is a typical example of an instance-based approach. There is no explicit

feature subset generation in this approach, rather many small data samples are sampled from the

training data and features are ranked based on how well they differentiate instances of different

classes for a data sample. Features with a higher score are selected.

 10

As discussed in the above section on biases, if the initial training features are appropriate

for the representing the target theories then selective induction works very well in terms of

theory complexity and prediction accuracy. However, if the initial training features are not

appropriate for describing target theories, then the prediction accuracy and theory complexity

performance can quickly deteriorate. This is the fundamental limitation of selection induction

algorithms and is one main focuses of this thesis.

In practice, it is very common that domain experts only supply low-level features. An

example of a low-level feature for a checkers game domain is the contents of a square on the

board. [Sam59] These low level features might contain some information on the state of the

game, but there is no direct information simply in the contents of the squares that represents

whether or not the game has been won. Even worse, some low-level features might be irrelevant

to the target theory, and irrelevant features can often result in worse performance. [Lan94]

There are several other limitations of selective induction, see [Ren90a] [Ren88] [Car94],

but the fundamental limitation is that the training features are not always appropriate for learning

the target theory. One method for overcoming these limitations is constructive induction.

Constructive induction algorithms construct new features from among the initial training features

and then build theories based on those newly constructed features, sometimes together with the

initial training features. In this context, initial training features are known as primitive features.

The newly constructed features are expected to be more appropriate for learning the target

theories than the primitive features from which the new features are constructed.

1.1.3 Constructive Induction

Constructive induction is the process of improving the attribute vector of a learning

algorithm in order to make the problem more easily learned for a particular learning algorithm.

[Mat89] Constructive induction is often used when the explicitly selected features do not

effectively represent the stated problem. For instance, given a machine learning algorithm (ܮ),

constructive induction would be appropriate if the training set contains all of the relevant

information for the induction of the target function but this information cannot be extracted by ܮ.

[Ren90] Moreover, constructive induction is used to deal with learning algorithms, such as feed

forward neural networks trained with back propagation and classification and regression tree

 11

(CART) algorithms. [Ben96] [Bre84] Constructive induction generally consists of two parts: one

for the construction of new features, and the other for generating theories. After being

constructed, new features are treated the same way as the initial, primitive features that were

used to construct the new features.

The construction of new features is essentially the application of a set of constructive

operators to the set of existing features; this results in the combination, and therefore the

construction, of one or more new features. [Mat89] For common learning problems the number

of possible constructive operators, such as mathematical operators, set operators, logical

operators, etc. and the number of possible constructive operands for each operator is very large,

so it is not feasible to search through all possible combinations. This thesis will present an

algorithm that does not need to search through all possible combinations.

Common operators include conjunction (ר), disjunction (ש) and negation (-). As an

example of their use consider the following features: ܣଵ (binary), ܣଶ (nominal with values ܽ, ܾ,

and ܿ), and ܣଷ (continuous), new features ൫ሺܣଵ ൌ ሻ݁ݏ݈݂ܽ ר ሺܣଶ ൌ ܾሻ ר ሺܣଷ ൐ 5ሻ൯ and ቀሺܣଵ ൌ

ሻ݁ݑݎݐ ש ሺܣଶ ൌ ܾሻതതതതതതതതതതതത ש ሺܣଷ ൑ 5ሻቁ can be constructed. Notice that the first new feature is simply the

negation of the second new feature; ሺܣଵ ൌ ଵܣሻ is simply the negation of ሺ݁ݏ݈݂ܽ ൌ .ሻ݁ݑݎݐ

Take, for example, the decision tree depicted in Figure 1.1. This decision tree shows a

fundamental limitation of the selective induction procedure involved in the creation of decision

trees called the replication problem. [Pag90] Because a decision tree divides each feature space

into mutually exclusive regions it is possible to derive duplicate subtrees, such as those shown in

the grey regions. If a subtree is replicated many times then many more training examples are

needed in order to grow the size of the tree. This often leads to either an overly complex final

decision tree, inaccurate pruning of the decision tree, or a premature termination of the learning

algorithm. In other words, the replication of subtrees degrades the prediction accuracy of a

decision tree learning algorithm.

 12

Figure 1.1: An example decision tree for ൫ሺܣ ש ሻܤ ר ሺܥ ש ሻ൯ܦ

Because the structure of the theory language is fixed, theory learning in the new feature

space is expected to be easier than in the original feature space. By constructing new attributes

ሺܣ ש ܥሻ and ሺܤ ש ܣሻ, a decision tree can be built for the constructed features ൫ሺܦ ש ሻܤ ר

ሺܥ ש ሻ൯ whose representation, shown in Figure 1.2: , is dramatically simplified making moreܦ

complex concepts easier to learn. Therefore, from this point of view, the newly constructed

features are more representationally powerful than the primitive features.

Figure 1.2: Decision tree from Figure 1.1 with two newly constructed features

Motoda and Liu [Mot02] recognize four categories in the constructive induction field.

How to construct new features

Various approaches can be categorized into: data-driven, hypothesis-driven, knowledge-

based, and hybrid. The data-driven approach is used to construct new features based on some

analysis of the primitive data by applying the available operators. The hypothesis-driven

 13

approach constructs new features based on previously generated hypothesis. The knowledge-

based approach constructs new features by applying existing domain knowledge to the set of

primitive features. The hybrid approach is a combination of the other three.

How to choose and design operators for feature construction

There are many operators to choose from when combining features. As mentioned above,

construction, disjunction and negation are commonly used operators for nominal features. Other

operators include ܯ-of-ܰ and ܺ-of-ܰ. [Zhe98] ܯ-of-ܰ is true ݂݂݅ ܯ out of ܰ conditions are

true; ܺ-of-ܰ is similar to ܯ-of-ܰ in that ܺ-of-ܰ consists of a set of conditions, but ܺ-of-ܰ states

how many conditions in the set are true. ܺ-of-ܰ has ordered discrete values.

How to use operators to construct new features efficiently

The number of possible combinations of all operators and primary features, even in a

relatively simple problem, is too large to exhaustively explore every possible combination. It is

necessary to find intelligent methods to avoid an exhaustive search. In later chapters, this thesis

will show one solution to this problem.

How to measure and select useful new features

Intuitively, not all constructed features are good. In fact, most of the possible

combinations of features very poorly represent the target theory. It is thus necessary to be

selective when chosing candidate features and operators. One option is to select features by

applying the features selection techniques from Subsection 1.1.2 to remove irrelevant or

redundant features. If the number of current features is very large it is sensible to make these

decisions when a new compound feature is generated to avoid too many features. This requires

some indicator as to the validity of the newly constructed feature, some examples measure

consistency and distance as used in feature selection.

Constructive induction can be realized in several ways. One commonly used algorithm is

greedy search. Greedy search is easily applied to constructive induction tasks on decision trees;

the algorithm generates new feature at each decision node based on original features or

previously constructed features. To construct a new feature, the algorithm searches greedily

 14

through the instance space using a pre-specified set of constructive operators. Starting from an

empty set of decision nodes, the algorithm systematically adds and/or deletes decision nodes

until the instance space has been searched or the algorithm is forced to terminate (greedy search

is an anytime algorithm, meaning it can be stopped at any time and still return valid, although

possibly incomplete, results). To evaluate candidate decision trees standard decision tree metrics,

such as class entropy and model complexity, can be considered in lieu of test date, or

classification accuracy can be used to evaluate the performance of the candidate decision tree in

the presence of test data. In the event that all features are numeric, Gama shows that it is useful

to search for the best linear discriminant function instead of using standard decision tree metrics.

[Gam98]

Finally, constructive induction can be achieved using evolutionary computation

approaches such as genetic algorithms or genetic programming. Evolutionary computation

algorithms are adaptive search techniques based on the simulation of Darwinian natural

selection. This thesis explores the application of the evolutionary computation approach to

constructive induction, and will therefore describe the approach in greater depth in Section 1.2.

1.2 Evolutionary Computation

Evolutionary computation is the set of search procedures based on the mechanics of

natural selection and natural genetics. That is, they base their approach on Darwin’s theory of the

survival of the fittest. More specifically, evolutionary algorithms contain some data structure that

computationally represents the genes of a candidate theory. Operations, based on naturally

occurring phenomenon, are applied to the data structure to effectively evolve the theory. At the

end of each iteration, all of the offspring are evaluated according to a fitness function to

determine whether the offspring lives or dies. If the offspring dies then it is effectively deleted

from the population, otherwise, if the offspring lives then it remains in the population where it

can reproduce offspring of its own. This basic approach is repeated until the algorithm stabilizes

(stop evolving) or until a threshold fitness is reached. Evolutionary algorithms are an anytime

algorithm, that is they can be stopped at any time and the best, current result can be returned.

Although evolutionary algorithms are randomized, they are not merely random walk. They

 15

efficiently exploit historical information contained within the population to produce a new

generation of the population with a higher fitness. [Gol89]

The main advantage in evolutionary computation is its robustness. That is, evolutionary

algorithms leverage the natural ability of species to repair, regulate and reproduce themselves

according to natural pressures. This makes evolutionary algorithms far more robust than

traditional search methods.

1.2.1 Traditional Search Methods and Local Maxima

When discussing evolutionary algorithms it is important to note the common alternatives.

Calculus-based search methods are the most common alternative. Hill climbing is a simple way

to find a simple solution. Hill climbing works by starting with an initial structure in the search

space (a point) and testing the fitness of several alternative structures that are adjacent to the

initial point. The adjacent point with the best fitness is always picked and the algorithm repeats

itself until it cannot find a better next point. Hill climbing can be easily conceptualized as a

stubborn hiker climbing a mountain that refuses to ever decline in elevation. The problem with

this approach is that the hiker will never reach the top of the mountain because smaller hills are

in the way, and if the hiker can never travel down in elevation then he will become stuck at the

top of some small hill. This example accurately describes the problem of local maxima. Greedy

search algorithms such as hill climbing are destined to be caught in local minima. [Rus03]

Visually, Figure 1.3 shows an example search space gradient for which the hill climbing

algorithm would perform very poorly. Starting on the far left of the search space, the hill

climbing algorithm would return a theory represented by peak ܣ with a fitness score of 20. A

more robust searching algorithm would be able to recognize that peaks ܣ and ܤ are not globally

optimal and would instead return the best possible theory represented by peak ܥ.

D

maxima.

discrete,

values at

search is

[Rus03].

large bec

programm

is becaus

purposes

R

shortcom

walks thr

process l

programm

approach

states. [K

randomn

Figure 1

Dynamic prog

The crux of

finite search

t every point

the distance

The dynami

cause of its in

ming, descri

se of this pro

 of construct

Random searc

mings as the c

rough the se

arge problem

ming approa

h that uses ra

Kir83] Evolu

ness in this ap

1.3: Example

gramming se

f the dynami

h space the s

t in the space

e traveled plu

ic programm

nherent lack

ibed this effi

oblem that dy

tive inductio

ch algorithm

calculus-bas

arch spaces

ms, and in th

ach. [Gol89]

andom proce

utionary algo

pproach refe

e search spac

and a glo

earch algorit

ic programm

search algori

e, one at a tim

us the estima

ming approac

k of efficienc

iciency prob

ynamic searc

on.

ms have beco

sed or dynam

that search a

he long run a

Besides ran

esses to break

orithms are c

erences the e

16

ce gradient w

obal optimum

thms, such a

ming approac

ithm looks at

me. The obje

ated distance

ch breaks do

cy. Richard B

lem as “the c

ch algorithm

ome popular

mic programm

and save the

a random sea

ndom walks,

k an otherwi

classified as a

evolutionary

with two loc

m (ܥ).

as A*-search

ch idea is stra

t objective fu

ective functi

e from the cu

own, howeve

Bellman, the

curse of dim

ms largely ca

because the

ming approa

best still are

arch will do

simulated a

ise greedy se

a randomize

operations t

al maxima (

h, are not cau

aightforward

function (or c

ion, for insta

urrent point

er, if the sear

e inventor of

mensionality”

annot be used

ey tend not to

aches. Howe

e not efficien

no better tha

annealing is a

earch out of

ed search alg

that are discu

,ܣ (ܤ

ught in local

d: given a

cost function

ance, of A*-

to the goal

rch space is t

f dynamic

” [Bel61], an

d for the

o have the sa

ever, random

nt enough to

an the dynam

a hybrid

local minim

gorithm, but

ussed primar

n)

too

nd it

ame

m

o

mic

ma

the

rily

 17

in Subsection 1.2.2. It is important to remember that randomized search does not necessarily

imply directionless (or blind) search.

Because of the stated deficiencies of traditional search methods, especially in the realm of

constructive induction where the search space is very large, evolutionary algorithms are

considered more robust.

1.2.2 Genetic Algorithms

The genetic algorithm (GA) is a computational technique that models the evolutionary

process in order to solve problems. In GAs, each possible point in the search space of a problem

is encoded as a fixed-length bit string (i.e., as a gene). The genetic algorithm attempts to find the

best solution to the problem by genetically breeding the population of individuals over a number

of generations. According to [Koz98], there are four major preparatory steps required to use the

conventional GA:

1. Determine the representation scheme.

2. Determine the fitness measure.

3. Determine the parameters for controlling the algorithm.

4. Determine when to terminate the algorithm.

The representation scheme is essentially what separates GAs from other types of

evolutionary algorithms. In a GA, the individuals of a population are usually represented by a

fixed-length sequence of bits patterned after biological chromosome strings. In most cases the

bits in the sequence are binary making the alphabet size equal to 2. Arguably the most important

part of the representation scheme is the mapping that expresses each bit-sequence as a point in

the search space. This mapping is a fundamental limitation of GAs that is discussed in

Subsection 1.2.3.

Even though the representation may be the most important facet of the GA, the fitness

function is what drives the evolutionary process. The fitness function evaluates every individual

in the population and assigns each individual a score. It is important that a fitness function be

able to properly evaluate every possible individual capable of being encountered in the search

 18

space. The fitness function varies widely among GAs, but in most GAs an individual’s fitness

score is directly proportional to its absolute fitness.

The primary parameters required for controlling the GA are the population size (ܯ) and

the maximum number of generations to be run (ܰ). Population sizes can range from a few dozen

individuals up to several thousand individuals. The number of possible generations need not be

limited; setting a maximum merely stops the GA before the termination criterion is met. Other

parameters include probabilities for mutation and crossover, etc.

Termination criteria are necessary for deciding when to terminate and what to do upon

termination. An example termination criterion is a fitness threshold or a maximum number of

generations (ܰ). The final result (or theory) of the GA is usually the individual in the final

generation with the highest fitness.

Once the four preparatory steps are completed the GA is ready to be run. According to

[Koz98] there are essentially three execution steps of a GA:

1. Randomly create an initial population of size ܯ with randomly generated bit-

sequences.

2. Iteratively perform the following steps until termination criteria is satisfied:

a. Find the fitness of each individual using the predetermined fitness function.

b. Create a new population of bit-sequences by applying one or more genetic

operations from Subsection 1.2.2.1.

3. Upon termination, find the individual to be designated the final result and return it.

Because the GA is a probabilistic algorithm probabilistic steps are used to determine

nearly every step of the algorithm. “Thus, anything can happen and nothing is guaranteed in the

genetic algorithm” [Koz98]. Also, due to the nondeterministic nature of GAs, multiple runs are

necessary in order to obtain a reliable result.

1.2.2.1 Genetic Operations

There are four biologically recognized genetic operations that contribute to the

evolutionary process: reproduction, mutation, crossover and death. Genetic algorithms (GAs)

 19

model these biological processes by applying similar transformation to bit-sequences that

digitally represent a chromosome. For every individual the sum of the probabilities for all four

genetic operations is 1.

Reproduction

Reproduction happens when an individual is probabilistically selected from among the

population on the basis of fitness and then copied, without change, into the next generation of the

population. The selection is done in such a way that the higher the individuals’ fitness the more

likely it is to appear in the next generation. As an example of reproduction, consider the bit-

sequences from Figure 1.4. The original bit-sequence is simply copied from Gଵ to Gଶ. [Koz98]

Figure 1.4: Example of reproduction when applied on bit-sequence 100101.

Mutation

Mutation happens when an individual is probabilistically selected from among the

population on the basis of fitness. From that individual bit-sequence a mutation point is chosen at

random and the bit at that location is changed with some mutation probability. The altered

individual is then copied into the next generation of the population. Mutation is useful in

cultivating diversity among individuals in a population and helps avoid becoming stuck in a local

optimum as discussed in Subsection 1.2.1. As an example of mutation, consider the bit-

sequences from Figure 1.5. The individual in Gଵ is probabilistically selected from among the

population and then the mutation point is selected at random to be the third bit in the sequence.

Next bit, #3 is randomly changed (in this binary alphabet the probability for a bit flip is .5), and

the final bit-sequence is copied into Gଶ. [Koz98]

F

Crossove

T

individua

parent-in

In

to produc

replacem

next gene

possibly

are more

A

crossove

remainde

remainde

the bit-se

point is r

then sepa

Figure 1.5: E

er

The crossove

als in order t

ndividuals ar

ndividuals ca

ce in reprodu

ment, meanin

eration the o

be selection

 likely to pro

After parents

r points, one

er. The cross

er from ଶܲ an

equence from

randomly cho

arated and re

Example of m

r operation a

to test new p

re probabilist

an be selecte

uction and cr

ng that after t

original paren

n again. Repl

oduce offspr

(ଵܲ and ଶܲ)

e from each p

sover operat

nd vice versa

m Figure 1.6

osen to occu

ecombined to

mutation occ

allows two n

points in the

tically select

ed, and usua

rossover. W

the individua

nt-individua

lacement mo

ring.

are chosen,

parent. Each

ion then com

a to create tw

. The parent

ur after the fo

o form offsp

20

curring on bi

new individu

search space

ted from the

ally are selec

When this hap

al is operate

al(s) are plac

odels the bio

crossover b

h parent is th

mbines the cr

wo offspring

t-individuals

ourth bit. Th

pring that are

it #3 in the b

uals to be cre

e. The crosso

e population

ted, multiple

ppens the GA

d on and chi

ed back into

logical notio

egins by ran

hen split into

rossover frag

g. As an exam

s in Gଵ are se

he fragment a

e copied into

bit-sequence

eated from tw

over step sta

on the basis

e times durin

A is said to b

ildren are pr

o the initial p

on that more

ndomly selec

o a crossover

gment from

mple of cros

elected and t

and remaind

o Gଶ.

 100101.

wo parent

arts when tw

 of their fitn

ng a generati

be operating

roduced for t

population to

e fit individu

cting two

r fragment an

ଵܲ with the

ssover, consi

then a crosso

der pieces are

wo

ness.

ion

with

the

o

uals

nd a

ider

over

e

 21

Figure 1.6: Example crossover of the bit-sequences 100100 and 001111.

The two children are usually different from their two parents and from each other. Notice

that the child individuals are produced entirely of genetic material from their parents. Therefore,

if a bit-sequence representing a relatively fit parent is crossed with another relatively fit parent

then it is possible, even likely, that more highly-fit child individuals will emerge as a result of the

interaction. When GAs begin to converge on a possible solution, a highly-fit individual begins to

dominate the population and crossover operations may involve identical parent-individuals. In

this special case, the two child individuals will be identical to each other and identical to their

parents. Premature convergence occurs when an individual dominates the population but the

dominant individual does not represent the globally-best possible individual. [Koz98]

Death

Death occurs when an individual from the initial population is not selected from

reproduction, mutation or crossover and therefore does not get included into the next

generation’s population. That genetic bit-sequence then ceases to exist in the population,

although it can be produced again by another genetic operator described above.

1.2.2.2 Probabilistic Selection

Darwin’s theory of natural selection is at the heart of evolutionary computation. The

ability to select individuals to participate in crossover, mutation and/or reproduction based on

their fitness allows the algorithm to keep the good genes and eliminate the bad genes.

Probabilistic selection is ability that GAs (and other evolutionary algorithms) employ to give

 22

every individual in the population a chance of being selected to participate in one or more

genetic operations. Individuals with a higher fitness score duly receive a higher probability of

being selected. In this sense GAs are not merely a greedy hill climbing algorithms. Instead, GAs

more closely resemble the nondeterministic nature of simulated annealing [Kir83] because

individuals with poor fitness still have a certain, although relatively low, probability of being

selected.

As an example of probabilistic selection consider a population described in Table 1.1.

The population consists of four individuals with their bit-sequences listed in the second column.

Each individual’s absolute fitness is listed in the third column with a total absolute fitness score

of 1079. The corresponding normalized fitness scores are shown in the fourth column as the

percentage of the total fitness.

Table 1.1: Example problem individuals with fitness values and

corresponding selection probabilities

No. Individual Fitness % of Total
1 011100 150 13.9
2 110011 524 48.6
3 101101 320 29.7
4 100011 85 7.8
Total 1079 100.0

When probabilistically selecting individuals for genetic operations each individual’s

normalized fitness is conceptually placed on a roulette wheel, as shown in Figure 1.7, the result

is a weighted roulette wheel, where the probability of selection for an individual is conceptually

equal to the probability of the corresponding individual being chosen from the roulette wheel. To

reproduce, simply spin the weighted roulette wheel and select the resulting individual. In the case

of crossover operations, two individuals are required and so two spins are required. [Gol89]

Selection without replacement occurs if the selected individual is removed from the

selectable population and the remaining individuals are reweighted. Selection with replacement

occurs when the selected individual is not removed from the selectable population and

probabilities remain the same. Intuitively, evolutionary systems that perform selection with

 23

replacement can operate on the same individual multiple times, while evolutionary systems that

perform without replacement cannot select the same individual more than once.

Figure 1.7: Roulette wheel visualization for normalized fitness

From the above content the genetic algorithm according to Perry is shown in Figure 1.8. [Per03]

1. generate initial population;
2. do{
3. evaluate fitness for all individuals;
4. select best individuals;
5. perform genetic operations to create next generation;
6. increment currentGeneration;
7. } until (currentGeneration = maxGenerations);

Figure 1.8: Pseudocode for a genetic algorithm.

1.2.3 Genetic Programming

Genetic programming (GP) is an extension of the genetic algorithm (GA) described in

Subsection 1.2.2 in which the structures that are operated upon vary in size and shape, and have

expression tree semantics. The goal of a GP is the same as that of a GA in that GPs non-

deterministically search for a solution to a problem using the principles of Darwinian natural

 24

selection. Therefore this section will focus only on the issues that are distinctly related to GP; for

a broader survey on evolutionary computation see Subsection 1.2.2.

Before a GP can begin five preparations must be made. These involve determining:

1. The set of terminals

2. The set of primitive function

3. The fitness measure

4. The parameters for controlling the algorithm

5. When to terminate the algorithm

Notice that steps 3, 4 and 5 are identical to steps 2, 3 and 4 from the genetic algorithm set

up from Subsection 1.2.2. Therefore this subsection will only address steps 1 and 2.

The first major step in preparing a GP is to identify the terminal set for the problem.

Terminals correspond to the features from the search space.

The second major step in preparing a GP is to identify the function set for the problem.

The functions are typically arithmetic operators such as ൅, െ, etc., logical operators such as ש ,ר,

etc., set operators such as ׫ ,ת, etc., domain specific operators, or any combination of one or

more types of operators. These functions should be able to accept any terminal presented to them

during computation, and, furthermore, each function should be able to recursively accept every

possible function containing any number of possible sub-functions containing any defined

terminals, etc. A function set and a terminal set that together satisfy this requirement are said to

have closure. [Koz98]

1.2.3.1 Representation

As previously stated, the main difference between GAs and GPs is the representation of

the feature space. Because of the combination of functions and terminals involved GPs are

typically represented as trees where functions are always found at branch nodes and terminals are

always found in the leaves.

 25

As an example, consider the following random equation: ሺܼ െ 4ሻܺ ൅ ܻሺܹ ൅ 9ሻ. As an

individual in a GP this example equation would be represented as a tree where the functional

operators ሼכ, െ,൅ሽ are branch (i.e., non-leaf) nodes in the tree and the variables and literals

ሼZ, 4, X, Y,W, 9ሽ are leaf nodes, and therefore terminals, as shown in Figure 1.9.

Figure 1.9: Tree representation of the equation ሺܼ െ 4ሻܺ ൅

ܻሺܹ ൅ 9ሻ for an individual in a genetic program.

1.2.3.2 Genetic Operations

As previously illustrated in Subsection 1.2.2.1, there are four primary genetic operations

that can be performed. They are reproduction, mutation, crossover and death. Reproduction

occurs when one individual from the current generation is copied to the next, and death occurs

when an individual is not operated on at all. These simple genetic operations behave the same in

GAs as they do in GPs so no further explanation is required. However, mutation and crossover

operations behave differently because of the different representation semantics.

Mutation

When an individual is probabilistically selected for mutation a node (branch or leaf) is

selected at random and is replaced by another random subtree. As an example, suppose the

individual from Figure 1.9 is selected for mutation. As shown in Figure 1.10, the node

representing the ൅ operator is randomly chosen from tree A. Tree B shows that the selected node

and all children-nodes are deleted. Tree C is randomly generated and appended to the original

 26

tree to form tree D. The final tree represents the newly formed equation: ൫ሺZ െ 4ሻX൯ ൅

ቀY൫Yሺ4 െ Xሻ൯ቁ. [Koz98]

Figure 1.10: Example of GP mutation where the individual from

Figure 1.9 is mutated to form a new individual.

Crossover

As in GAs, crossover in GPs requires two parent individuals to donate a part of

themselves to be crossed with the other. Also as in GAs, two parents are probabilistically

selected. Then each parent randomly selects a crossover node. The resulting crossover fragments

are sub-trees where the selected crossover node is the root of the fragment. The remainders are

the original individuals with the selected fragment removed. The fragments are crossed and

rejoined with the remainders in the empty spot to form two offspring that are copied into the next

generation. For example, Figure 1.11 shows two probabilistically selected parent-individuals

(Parent 1 and Parent 2) which have each had crossover points identified. Then the individuals are

split into remainder and fragment pieces. Finally, the fragments are crossed and reattached to the

opposing remainder piece to form two new offspring. Specifically, this example crosses the

parent-equation ሺZ െ 4ሻX ൅ YሺW ൅ 9ሻ with the parent-equation ሺ4 െ XሻY to form offspring

equations ሺZ െ 4ሻX ൅ Yሺ4 െ Xሻ and ሺW ൅ 9ሻY. This effectively crosses the term W൅ 9 from the

first parent with the term 4 െ ܺ from the second parent.

As in GAs, it is possible for a GP to select the same individual as both parents. One

difference between GPs and GAs is that the crossover points are selected at random

 27

independently of one another. In other words, the crossover point for Parent 1 is not necessarily

the same as the crossover point for Parent 2. Therefore, in GPs it is not necessarily the case that

crossover between twin individuals will result in twin children. Because the crossover operation

results in children that contain only genes (i.e., data) from their parents the crossover operation

always produces syntactically valid individuals [Koz98].

Figure 1.11: Example of GP crossover where two parent

individuals are split and recombined to form two new individuals.

1.3 Gr

O

network

called fri

vertices)

A

For exam

of five ed

Figure 1.

T

and ݊ଷ ar

which ea

to ݊ହ. An

another i

distance

vertex, d

1.12 ݀ሺ݊

O

that the e

undirecte

raph Theo

One goal of th

of friends pe

iendship. Sit

representing

A graph cons

mple, conside

dges ൫ࣦ ൌ ൛

.12 [Was07]

Figure 1

Two vertices

re adjacent. A

ach successiv

nother path f

s the numbe

from ݊ଵ to ݊

enoted by ݀

݊ଵሻ ൌ 2 and

One importan

edges of the

ed graph.

ory

his thesis is

eople are ent

tuations such

g the entities

sists of a coll

er a graph (࣡

൛ሼ݊ଵ, ݊ଶሽ, ሼ݊ଵ
.

.12: Exampl

are said to b

Adjacent ve

ve pair is an

from ݊ଵ to ݊

er of vertices

݊ହ is 3 and th

ሺ݊௜ሻ, is the n

݀ሺ݊ହሻ ൌ 1.

nt note about

graph are no

to study the

tities and the

h as this are e

s and lines (c

lection of ve

࣡) with a set

ଵ, ݊ଷሽ, ሼ݊ଶ, ݊

le undirected

be adjacent i

rtices are als

edge. For ex

݊ହ is ݊ଵ, ݊ଶ, ݊

s that are in t

he correspon

number of ve

t the type gra

on-directiona

28

relationship

e relationship

easily descri

called edges

ertices and a

of five verti

݊ସሽ, ሼ݊ଷ, ݊ସሽ,

d graph with

if they form

so called nei

xample, in F

݊ସ, ݊ଷ, ݊ହ [Co

the path from

nding shortes

ertices that a

aphs that hav

al; specifical

ps between e

ps between p

ibed graphic

) representin

collection o

ices ሺࣨ ൌ ሼ

ሼ݊ଷ, ݊ହሽൟ൯. ࣡

h five vertice

an edge. Fo

ighbors. A p

Figure 1.12, ݊

ol92]. The d

m ݊௜ to ௝݊. F

st path is ݊ଵ,

are adjacent

ve been desc

lly, this type

entities. For e

people-entiti

cally, with po

ng the relatio

of vertex pair

ሼ݊ଵ, ݊ଶ, ݊ଷ, ݊

࣡ is expresse

es and five e

r example, in

path is a list o

݊ଵ, ݊ଷ, ݊ହ is

distance from

or example,

, ݊ଷ, ݊ହ. The

to it. For ex

cribed in this

e of graph is

example, in

ies are often

oints (called

onships. [Co

rs called edg

݊ସ, ݊ହሽሻ and

ed graphicall

dges.

n Figure 1.1

of vertices in

a path from

m one vertex

the shortest

e degree of a

ample, in Fi

s section so

said to be an

a

n

d

ol92]

ges.

a set

ly in

2 ݊ଵ

n

݊ଵ

 to

t

a

gure

far is

n

 29

1.3.1 Directed Graphs

Many relations are directional, which means that the ties are oriented from one vertex to

another and the relation is not necessarily reciprocated. The import and export of goods from one

nation to another is an example of a directional relation while the more simple relationship of

trade is undirected. This thesis deals only with directional relations that are presented in directed

graphs, or digraphs.

As in the case of the graph discussed in Section 1.3, the digraph ࣡ௗሺࣨ, ࣦሻ consists of two

sets: a set of nodes ࣨ ൌ ൛݊ଵ, ݊ଶ, … , ݊௚ൟ with a size of ݃, and a set of directed edges or arcs

ࣦ ൌ ሼ݈ଵ, ݈ଶ, … , ݈௅ሽ with a size of ܮ. Each arc is an ordered pair of vertices such that ݈௞ ൌ ,௜݊ۃ ௝݊ۄ.

The arc ݊ۃ௜, ௝݊ۄ is directed from ݊௜ (the origin) to ௝݊ (the sink or receiver).

In a digraph, a vertex can be either adjacent to or adjacent from another node depending

on the direction of the arc. Therefore the indegree of a vertex, ݀ூሺ݊௜ሻ is the number of vertices

that are adjacent to ݊௜. The indegree of node ݊௜ is equal to the number of arcs where ݈௞ ൌ

ۃ ௝݊, ݊௜ۄ for all ݈௞ א ࣦ and all ௝݊ א ࣨ. The outdegree of a vertex, ݀ைሺ݊௜ሻ is the number of

vertices that are adjacent from ݊௜. The outdegree of node ݊௜ is equal to the number of arcs where

݈௞ ൌ ,௜݊ۃ ௝݊ۄ for all ݈௞ א ࣦ and all ௝݊ א ࣨ [Was07].

As an example, consider the digraph shown in Figure 1.13. Mathematically, the digraph

is represented by ࣡ௗሺࣨ, ࣦሻ with ࣨ ൌ ሼ݊ଵ, ݊ଶ, ݊ଷ, ݊ସ, ݊ହሽ and

ࣦ ൌ ሼ݊ۃଵ, ݊ଶۄ, ,ଶ݊ۃ ݊ସۄ, ,ସ݊ۃ ݊ଷۄ, ,ଷ݊ۃ ݊ସۄ, ,ହ݊ۃ ݊ଷۄሽ. In the same example, ݀ூሺ݊ଵሻ ൌ 0, ݀ூሺ݊ଷሻ ൌ

 3, ݀ைሺ݊ଵሻ ൌ 2, and ݀ைሺ݊ଷሻ ൌ 1.

Figure 1.13: Example digraph with five vertices and six arcs.

 30

Moreover, in this directed graph there is no path from ݊ଵ to ݊ହ because ݊ହ has no

incoming arcs. Likewise there is no path from ݊ହ to ݊ଵ.

1.3.2 Social Networks

Interest in social networks has grown rapidly in recent years. This growth can be

attributed to an increasing sophistication in the technical tools available to users. Web sites such

as, Facebook, MySpace, LiveJournal and others have each in their own way contributed to the

popularity of social networks. The use of these social networking sites has drawn attention from

researchers who look to study social networks because these sites provide a means for explicitly

stating the relationships between people. Before the advent of social networking sites,

researchers relied upon surveys of relatively small groups of people to develop their theories.

As collections of explicit social network information began to grow, so did the scale of

social network research. Epidemiologists realized that epidemics do not progress uniformly

through populations [Mor93], biologists began to use methodologies from social networks to

analyze protein interactions [Par07], counterterrorist organizations began model terrorist

networks [Kre02], and so on [Was05].

The analysis of social networks is one perspective methodology that is based on the idea

that society can be modeled as a group of relationships between people. Therefore, every social

phenomenon can be described in relational and social terms with the condition that the structure

of the phenomenon can be expressed in terms of persons and relationships of varying nature

between those persons. [Dam08]

Social network services such as MySpace and Facebook allow users to list interests and

link to friends, sometimes annotating these links by designating trust levels or qualitative ratings

for selected friends. Some such services, such as Google’s Orkut, are community-centric; others,

such as the video blogging service YouTube and the photo service Flickr, emphasize social

media; while some, such as Six Apart’s LiveJournal and Vox, are organized around text-and-

image weblogs. LiveJournal and its derivative services, such as InsaneJournal, DeadJournal,

and JournalFen, are based on the same open-source server code. In 2008, there are over 17.5

million LiveJournal accounts, 1.9 million of them active. This thesis studies the friends network

 31

of LiveJournal, which has two varieties of accounts: users and communities (omitting RSS

feeds). One advantageous property of its data model, stemming from a common schema for the

two account types (which could originally be converted from user to community), is that it

provides a simple, flexible representation for entities and relations.

Table 1.2: Types of link in the blog service LiveJournal

Start End Link Denotes
User User Trust or friendship
User Community Readership or subscribership
Community User Membership, posting access, maintainer
Community Community Obsolete

Table 1.2 shows the types of links in LiveJournal and their constituent attributes.

Friendship is an asymmetric relation between two accounts, each represented by a vertex in a

directed graph. The type of the start and endpoint defines the relationship set attributes of the

link. For example, a user ݑ who adds another user ݒ to his or her friends list can specify the

membership in any of up to 30 groups. These serve the dual purpose of blog aggregation (posts

from each group’s members are filtered into its aggregator page, which ݑ can read or make

public) and groups-based security (each group denotes a read/comment access control list).

Access control lists for communities are associated with memberships (community-to-user

links), while content is controlled by posters or subscribers. Acquisition of privileges is a

community property, of which only membership may be acquired solely by user action

(“joining” a community), if the moderator has specified open membership.

Thus, a reciprocal link between a user and a community means that the user both

subscribes to the community and is an approved member. Links from user ݑ to ݒ are listed in the

“Friends” list of ݑ and in an optionally displayed “Friends Of” list of ݒ. This list can be

partitioned into reciprocal and non-reciprocal sublists for a user ݑ:

Mutual Friends: ሼݒۃ|ݒ, ۄݑ א ࣦ ר ,ݑۃ ۄݒ א ࣦሽ

Also Friend Of: ሼݒۃ|ݒ, ۄݑ א ࣦ ר ,ݑۃ ۄݒ ב ࣦሽ

The community analogue of the “Friends Of” list is the “Watched By” (subscriber) list,

whose members have the community name listed in the “Friends: Communities” sections of their

 32

individual user profile pages. The community analogue of the “Friends” list is the “Members”

list.

The friends network for LiveJournal consists of a very large central connected

component and many small islands, most of which are singleton users. There are a few source

vertices, corresponding to accounts that link to others but have no reciprocated friendships; these

are usually RSS or blog aggregator accounts owned by individuals. Additionally, there are sink

vertices corresponding to accounts watched by others, but which have named no friends. Some

of these are channels for announcement or dissemination of creative work. [Hsu07]

1.3.3 Link Mining

Analysis of friends networks provides a basis for understanding the web of influence

[Kol01] in social media. In particular, the problems of determining the existence of links and of

classifying and annotating known links are first steps toward identifying potential relationships.

This inferred information can in turn be used to introduce new potential friends to one another,

make basic recommendations such as community recruits or moderator candidates, or identify

whole cliques and communities.

In 2006, Hsu et al. introduced a link prediction problem for LiveJournal: given a graph in

which the existence of a candidate link is hidden (elided if it exists), classify it as present or

absent given all other attributes of the graph and of the endpoints. Hsu’s initial approach to link

identification consisted of dividing friends network features into graph features and interest-

based features. [Hsu06]

Graph features could be computed simply by scanning the graph, in the case of pair-

distance metrics, performing all-pairs shortest path (APSP) search:

1. Indegree of ݑ, i.e., ݀ூሺݑሻ: popularity of the user

2. Indegree of ݒ, i.e., ݀ூሺݒሻ: popularity of the candidate

3. Outdegree of ݑ, i.e., ݀ைሺݑሻ: number of other friends besides the candidate; saturation

of friends list

 33

4. Outdegree of ݒ, i.e., ݀ைሺݒሻ: number of existing friends of the candidate besides the

user; correlates loosely with likelihood of a reciprocal link

5. Number of mutual friends ݓ s.t. ݑۃ, ۄݓ א ࣦ ר ,ݓۃ ۄݒ א ࣦ

6. “Forward deleted distance“: minimum alternative distance from ݑ to ݒ in ࣡ௗ without

the edge ݑۃ, ۄݒ

7. Backward distance from ݒ to ݑ in ࣡ௗ

These were supplemented by interest-based features:

8. Number of mutual interests between ݑ and ݒ, i.e., |ࣣ௨ |௩ࣣ ת

9. Number of interests listed by ݑ, i.e., |ࣣ௨|

10. Number of interests listed by ݒ, i.e., |ࣣ௩|

11. Ratio of the number of mutual interests to the number listed by ݑ, i.e., |ࣣೠת ࣣೡ||ࣣೠ|

12. Ratio of the number of mutual interests to the number listed by ݒ, i.e., |ࣣೠת ࣣೡ||ࣣೡ|

1.4 Principal Claims

In this thesis, I consider the problem of discovering links in a large, incomplete graph.

This thesis presents an approach to link prediction that is based on the combinations of graph

feature analysis and intrinsic attributes of entities. Therefore the principal claims of this thesis

are:

1. By crawling the social network service LiveJournal an appropriately large graph can

be realized and learnable features can be ascertained.

2. Feature analysis can be achieved on a very large graph by the efficient management

of the underlying data structure.

3. Operators within the genetic programming approach can be used to construct new

features from primitive features that provide a more learnable description of the

graph.

4. Features constructed from a genetic program will improve the performance of

learning algorithms for link mining.

 34

Therefore, this thesis asserts that link discovery in very large graphs by constructive

induction using genetic programming achieves better results than previous attempts that do not

consider the entire graph and/or do not employ genetic programming.

 35

CHAPTER 2 - Related Research

In the previous chapter I introduced the four broad concepts that encompass this thesis, as

well as stated the principal claims of this work. This chapter will discuss current and continuing

research in link discovery and constructive induction in order to give a context for my original

work which is described in the following chapters.

2.1 Meta Learning

Meta learning studies how learning algorithms and other systems can increase in

efficiency with experience. The goal of meta-learning is to understand how learning occurs and

then use that information to improve the learner. [Vil02] The traditional learning algorithm,

discussed in Section 1.1, differs from meta-learning in that a meta-learner discovers the learning

bias dynamically by searching for the best learning strategy as the algorithm progresses. [Thr98]

The proper meta-learning system would begin with a certain base learner, i.e., a

traditional learning algorithm with a fixed bias. Once the system is started and meta-information

about the state of the learner begins to accumulate, the meta-learner is able to change its bias by

 36

switching to another base learner [Wol92]. A more “granular” [Vil02] approach consists of

selecting a learning algorithm for each individual training example. That is, if meta-data is

gathered that can be applied to discriminate different classes of examples then the best base-

learner can be chosen and applied to each particular example [Mer95]. The algorithm selection is

done based on its performance on each class of examples.

Meta-learning is similar to constructive induction using genetic programming because

they both leverage information about the current state/progress of the system in order to make

adjustments to the learning process. Meta-learning does this in the manner described above,

while genetic programming does this by constructing new features based on previous features

recursively.

Despite the current research efforts and promising results thereof, meta-learning is not a

candidate for this thesis because it will not necessarily result in a generalized theory. This is

because the different base learners will all individually construct their own theories based on

their inherent biases. While meta-learning is useful in leveraging those biases, I seek a single,

generalized theory about my examples.

The following subsections describe three popular meta-learning approaches that are used

for comparison in this thesis.

2.1.1 Bagging

Bagging [Bre96] is an iterative approach that creates a set of classifiers such that each

classifier is trained by a random redistribution of the original training set (with replacement) and

each random redistribution has the same number of examples. For example, a set of training

examples ܺ ൌ ሼݔଵ, ,ଶݔ ,ଷݔ ௜ܦ ସሽ can have redistributions such asݔ ൌ ሼݔଵ, ,ଵݔ ,ଶݔ ௝ܦ ଷሽ orݔ ൌ

 ሼݔସ, ,ସݔ ,ସݔ ௜ will have 63.2% of the originalܦ ,is always equal to|ܺ|. On average |ܦ| ସሽ, butݔ

training data in it because each feature has a 1 െ ቀ1 െ ଵ
ே
ቁ
ே

 probability of being selected for

inclusion in ܦ௜. Iteratively, all test examples are evaluated on all classifiers and in each instance

the classifier with the highest performance on that specific test example is used.

 37

Bagging, essentially, improves generalization error by reducing the variance of the base

learner. That is, if the base learner is unstable then bagging can help reduce the errors associated

with random fluctuations in the training data. However, if the base learner is already stable then

bagging can actually degrade performance because the base learner is using only 63.2% of the

total training data. [Tan06]

2.1.2 Boosting

Boosting [Fre96] is a specific, formally proven approach to meta-learning that is based on

the observation that finding many low quality hypotheses can be a lot easier than finding a

single, highly accurate hypothesis. The boosting algorithm works by training a base learner

repeatedly, each time feeding it a different subset of the training examples. Each time the base

learner is called a new, weak hypothesis is produced. After many iterations, the boosting

algorithm combines the weak hypothesis into a single hypothesis that is hopefully more accurate

than any of the weak hypotheses.

To make this approach work two questions must be answered: (1) how should the

training examples be chosen each round, and (2) how should the weak hypotheses be combined

into a single strong hypothesis? Regarding question one, generally boosting algorithms choose

examples that are most often misclassified by preceding attempts. In effect, this forces the base

learner to focus most on the difficult examples. Regarding question two, the final or combined

classifier is a weighted majority vote of the base classifiers where the weights are an inverse

function of the base classifiers’ error. [Sch02]

2.1.3 Random Forests

Finally, Random Forests [Bre01] is a meta-learning approach which constructs many

classifier trees (i.e., a forest) and combines them into a single decision tree. The algorithm is as

follows. Let the number of training cases be ܰ, and the number of features be ܯ. The number of

decisions ݉ at each node of the tree is explicitly given; ݉ ا Next a training set is chosen by .ܯ

choosing ܰ times with replacement from all ܰ training cases, exactly as in bagging (see

Subsection 2.1.1). For each node in the tree, ݉ features are randomly chosen and the best split on

these features is calculated. This split calculation is usually based on entropy.

 38

According to a website on random forests by its creator, Leo Breiman’s [Bre02],

“[random forests] is unexcelled in accuracy among current algorithms.” Empirical studies

[Tan06], [Cha08] show that random forests typically provide better performance accuracy and

the algorithm is much faster than bagging alone or boosting.

2.2 Krawiec’s Feature Construction with Genetic Programs Approach

In Krawiec’s work [Kra02], a genetic program (GP) is used to change the representation

of the input data (i.e., training and test examples) for machine learning algorithms. Specifically,

the author first proposes the general framework for GP-based feature construction. The author

also proposes an extended approach that preserves useful features from being evolved as

opposed to the standard approach where valuable features can be lost during search. Figure 2.1

shows Krawiec’s feature construction model graphically.

Krawiec uses the ECJ software package [Luk01], and the function set included ൅,

െ, ൈ,%, log ൏,൐,ൌ, and an approximate equality operator. The terminal set contained the

original features. Individuals’ fitness was evaluated by running 5 independent 2-fold cross

validation runs on the training set. The WEKA [Wit99] implementation of the decision tree

inducer C4.5 [Qui92] is the learner used from training and testing.

Figure 2.1: Taken with permission from the feature construction Genetic programming-based

framework for [Kra02].

 39

Results of Krawiec’s experiments show “remarkable” gains in predictive accuracy. The

GP-constructed features always resulted in an accuracy which was better than or equal to the

original, unconstructed features. Despite the success of his methods, the extended approach did

not outperform his unextended approach. Krawiec concludes that GP-based construction of

features is a promising endeavor, but more research is necessary “to get rid of some weak points

of the method” [Kra02].

2.3 Hsu’s Feature Selection for Link Mining Approach

Hsu et al. propose an approach for link mining that effectively recommends relationships

(e.g., friendship) where none currently exists, or predicts the existence of relationships if and

when they are hidden. [Hsu06], [Hsu07] The approach uses graph features, such as indegree and

outdegree, pair-dependent features, such as the number of mutual friends and the distance

between users, and user-only features, such as number of interests, number of friends, etc. A

941-node graph was computed from a short crawl of LiveJournal and the appropriate features

were computed. To train a classifier, links were explicitly cut between candidate pairs so that a

distance of 1 does not automatically reveal the friendship and the features were fed to three

learning algorithms.

Hsu et al.’s approach obtained a very high test-set accuracy of 98.2% using the J48

classifier on their graph. More interestingly, when distance features were removed the prediction

accuracy dropped severely to 94.8%. Furthermore, when only interest features were used the

prediction accuracy dropped even further to 88.5%. This shows that the inclusion of graph

features and pair-dependent features significantly improves the prediction accuracy. The authors

conclude that their feature selection methods coupled with a good inducer can effectively predict

relationships.

 40

CHAPTER 3 - Methodology

This chapter presents my approach for link discovery in very large graphs by constructive

induction using genetic programming. This is done in several parts. First, I present a web crawler

that gathers semi-structured user information from LiveJournal and constructs a large directed

graph representing that data. Second, I select base features from the gathered data. Third, I

generated 3 sets of candidate pairs. Fourth, I developed genetic program which takes as input the

aforementioned base-features and constructs new features. Fifth, I developed algorithms that

compute those newly-constructed features for each candidate pair. Finally, I discuss the

experimental design for this research with descriptions of the standard evaluation metrics.

3.1 Crawling a social network

Before learning can begin an appropriately sized and realistically distributed example set

needs to be obtained. For this thesis, I choose to crawl the social network LiveJournal for user

information and relationships. Toward that end, the fourth generation of the LJCrawler

application was developed and executed. LJCrawler has essentially five modules: (1) Multi-

threaded downloader, (2) text extraction, (3) Storage, (4) URL Queue, and (5) Scheduler. This

 41

section will discuss my implementation of these parts before presenting some of the crawl

results.

Proper web crawlers need to be able to handle multiple requests at once. This is because

the bandwidth usage of a single web-document download does not fully utilize most systems’

capabilities. Any software system that is capable of spawning sub-processes to handle

simultaneous tasks is said to be multi-threaded. In the web crawling domain individual threads

simultaneously request web pages so a higher throughput can be achieved. LJCrawler uses the

multi-threaded approach by keeping a thread pool which maintains the threads. Due to the terms

of LiveJournal’s bot policy1, a crawler may not request more than 5 pages per second (pps).

Therefore, the thread pool is initially given a maximum of 7 threads. During execution the thread

controller monitors the download rate and dynamically adjusts the maximum number of threads.

For example, if the thread controller finds that the crawler is retrieving pages at 3pps then the

controller will increment the maximum size of the thread pool by 1. Inversely, if the thread

controller finds that the crawler is retrieving pages at 7pps then the controller will decrement the

maximum size of the thread pool by 1 effectively throttling the system. The dynamic multi-

threading property of LJCrawler keeps the system crawling as fast as LiveJournal’s terms allow

regardless of the wide fluctuations often seen in Internet bandwidth and latency. The dynamic

thread controller algorithm is shown in Figure 3.1.

1. int MAX_RATE = 5;
2. int maxThreads = 7;
3. ThreadPool pool = new ThreadPool(maxThreads);
4. while (stillCrawling)
5. float rate = determineCrawlRate();
6. if (rate.isBetween(MAX_RATE-1, MAX_RATE))
7. //do nothing
8. else if (rate > MAX_RATE) //too fast
9. maxThreads--;
10. else //too slow
11. maxThreads++;
12. pool.setMaxThreads(maxThreads);

Figure 3.1: Pseudocode for dynamic thread control in LJCrawler

1 LiveJournal’s bot policy is available at http://www.livejournal.com/bots/

 42

User information is kept in two forms on LiveJournal: in HTML profile pages and in

friend of a friend (FOAF) files. Profile pages are available from

http://username.livejournal.com/profile?mode=full. FOAF pages are available as

XML documents from http://username.livejournal.com/data/foaf. Earlier versions of

LJCrawler attempted to extract content from the profile pages, but that proved to be difficult and

time consuming because it is difficult to automatically extract structured content from within

messy HTML pages. The current version of LJCrawler downloads the structured FOAF pages

and uses a visitor pattern to extract the content from the XML. This is much easier to do because

the FOAF schema2 is readily available and rarely changes.

Once the data is extracted from the FOAF document it is sent to storage. In order to store

the vast amounts of data being gathered by LJCrawler, a data model is needed to be able to

express to graph-nature of LiveJournal while accurately storing and retrieving the previously

extracted data quickly. After several attempts at alternative storage approaches, e.g., Lucene

[Gos05], and the Berkeley Database [Ols99], the relational database MySQL was chosen to store

user-data and the corresponding structure.

Because a social network is essentially a graph of users, the database schema, shown in

Figure 3.2 has a VERTICES table and an ARCS table. The VERTICES table stores the user-

independent information while the ARCS table essentially stores a pair of users representing a

directed edge in the graph. The PERSON_INTERESTS and INTERESTS tables are a normalization of

the interest content from the VERTICES table.

A seed user ݑ௦ is given when LJCrawler is first started. That user’s FOAF page is the first

to be accessed and downloaded. ݑ௦ is added to VERTICES and VERTICES.CRAWLED is set to TRUE

because ݑ௦ is being crawled. Once ݑ௦ is downloaded, user information is extracted including

friends information. The friends ௦ܸ of ݑ௦ are then added to VERTICES and

 ௏ೞሺVERTICES.CRAWLED = FALSEሻ to indicate that they have not yet been crawled. Threads areא௩೔׊

now able to query the VERTICES table to get uncrawled users. As soon as a thread retrieves the

first of the uncrawled users, it takes control of it by setting VERTICES.CRAWLED to TRUE so that

another thread does not crawl it. Also note that VERTICES.NICK is an index and is therefore

2 FOAF schema is available at http://xmlns.com/foaf/0.1/

unique; t

than once

table inse

their con

T

operating

even a la

bottlenec

database

performa

3.1.1 C

L

9:10pm C

crawled a

users in 1

declared

3 I

this prevents

e. In this ma

erting unique

venience.

The database

g in memory

arge server’s

ck is still the

usage provi

ance.

Crawl Resul

LJCrawler wa

CST on Kan

and 770,595

159 minutes)

a total of 2,

Information on

s the same us

anner the VER

e users, and

Figure 3

queue does

y; however, t

memory cap

 limit of 5 p

ides a much

lts

as executed

nsas State’s B

 users were

). Also, in th

151,090 inte

n Beocat can be

ser to be inse

RTICES table

a cursor iter

3.2: Storage

not have a r

the sheer am

pacity. Desp

ages per sec

needed stora

once at 6:41

Beocat cluste

scheduled g

hat time, 372

erests, giving

e found at http

43

erted into VE

e operates as

ratively prov

schema for M

response tim

mount of data

pite the obvio

cond imposed

age solution

1pm CST on

er3. As a resu

giving an ave

2,931 unique

g a mean of 5

://support.cis.k

ERTICES, and

s a queue wit

viding the thr

MySQL data

me as fast as a

a would quic

ous speed dr

d by LiveJou

without a no

August 13,

ult of that cr

erage of 4.09

e interests we

55.12 interes

ksu.edu/Beocat

d therefore c

th a cursor a

read pool wi

abase

a similar dat

ckly overrun

rawback, the

urnal. In oth

oticeable dec

2008 and w

rawl, 39,024

9 users per se

ere discover

sts per user a

tDocs

crawled, mor

at the end of

ith new user

ta structure

the limits of

e crawler’s m

her words, th

crease in

was let run un

users were

econd (39,02

red and users

and a mean o

re

the

rs at

f

main

he

ntil

24

s

of

 44

5.77 unique interests per user. From the users crawled, 2,992,607 directed links were found,

giving a mean of 76.69 links per user.

3.2 Base Feature Selection

Base feature selection is an essential part of the overall approach. Without a broad set of

base features, the constructed features may not adequately represent the search space. If the

constructed features under represent the problem space then the classifier’s performance will

suffer as a result. As discussed in Chapter 1, base features are typically gathered from a domain

expert and from among the available data. [Hsu06], [Hsu07] and [Dam08] all study a similar link

mining problem and use a similar feature set. This feature set includes features that are (1) user-

dependent, (2) pair-dependent, and (3) graph-dependent. From among the available features I

chose the features that I believe best captured the breadth of the problem. They are discussed in

the following subsections.

3.2.1 User-dependent Base Features

User dependent features are those features that are based solely on a single individual.

For example, the age of a person is a user-dependent features, whereas the difference ages is a

pair-dependent feature. There are relatively few user-dependent features because I believe that

they do not sufficiently address of link mining problem. Nevertheless, I include

1. Number of interests listed by ݑ.

2. Number of interests listed by ݒ.

in the list of all features.

3.2.2 Pair-dependent Base Features

Pair dependent features are those features that are based on a pair of individuals. For

example, the size of the intersection of each individual’s listed interests is a pair-dependent

feature, whereas the size of an individual’s interest list alone would be considered a user-

dependent feature. Pair dependent features are very important to consider when performing link

mining. Intuitively, the greater the intersection of interests the more likely the individuals are

alike and therefore are friends. Inversely, if a pair has a large difference in interests the more

 45

likely that they have little in common and are consequently not friends. For this study I include

features based on

1. Interests of ݑ and ݒ.

2. Friends of ݑ and ݒ.

3. Location of ݑ and ݒ.

in the list of all features.

3.2.3 Graph Base Features

Graph features are those features that are based on the relative locations of a pair of

individuals. For example, if ݑ is a friend of ݒ then ݑ and ݒ are likely to be very close to one

another in the graph, not considering the actual friendship link between ݑ and ݒ. Inversely, if ݑ

and ݒ are not friends and do not share any friends then they will likely be very far apart in the

graph. For this study I include graph features based on

1. The indegree of ݑ: the popularity of ݑ

2. The indegree of ݒ: the popularity of ݒ

3. The outdegree of ݑ: the number of friends of ݑ

4. The outdegree of ݒ: the number of friends of ݒ

5. Shortest path length between ݑ and ݒ

6. Shortest path length between ݒ and ݑ: backward distance

in the list of all features.

This list of features is by no means exhaustive. Rather it is a sample of features from

other works that I find useful for this particular problem. More features have been crawled and

gathered, but in the interest of brevity and maintaining a reasonable scope they are omitted.

3.3 Candidate Pair Generation

Generating candidate pairs for link mining operations is an important task. Because the

ultimate goal is to predict the existence of a link between two nodes a method for generating a

candidate pair ݑۃ, is needed. Randomly picking two nodes to form a pair initially seems to be ۄݒ

a sound method, however Subsection 3.3.1 shows that the graph density of the corpus is too

 46

sparse to give testable pairs. Therefore a less random method for generating candidate pairs is

necessary.

3.3.1 Graph Density

Graph density is the number of edges relative to the number of vertices. For instance, a

dense graph is a graph in which the total number of edges is close to the maximal number of

edges. Symmetrically, the sparse graph has a relatively small number of edges. Chartrand shows

that the maximal number of edges ܭ௡where ݊ ൌ |ܸ| is ܭ௡ ൌ
௡ሺ௡ିଵሻ

ଶ
. [Cha85] By this definition, a

graph with ݊ vertices is sparse if |ܧ| ا .௡ and dense otherwiseܭ

By applying this definition to the crawl results in Subsection 3.1.1 it is seen that ݊ ൌ

39,024 and therefore ܭ௡ ൌ 2.96 ൈ 10ଵଵ. Because |ܧ| ൌ 2,992,607, which is sufficiently less

than ܭ௡, the graph used in this thesis is considered sparse.

Sparse graphs such as the social networks graph used in this work do provide poor

candidate-pair generation because pairs are selected at random. This is because the odds of

randomly generating a pair that is connected is |ா|
௄೙
ൌ 0.00393. Therefore, this method would

need to generate about 300 negative pairs for every 1 positive pair. The poor odds of generating a

positive candidate pair would lead to inaccurate and unstable results. [Kub97]

3.3.2 Forced Parity Candidate Generation

In order for the learning model to be accurate, the training set must contain a sufficient

number of both positive and negative examples. While the ratio of positive examples to negative

examples does not need to necessarily be 1, a sufficient number of both should exist. [Kub97] To

resolve the problem that a random approach presents I force the example set to have 50%

positive examples and 50% negative examples.

Caution should be observed when transforming the distribution of the example set.

Performing this redistribution on the training data given to the machine learning algorithm may

provide an inaccurate representation of the original distribution, therefore if the learned classifier

is tested against data from the original distribution the traditional accuracy, precision and recall

 47

metrics will not accurately describe the validity of the classifier. For example, consider a training

set with 1000 total examples where 950 examples are negative and only 50 are positive. A poorly

trained classifier might simply assign no to all of the examples and would still receive a cross

validation accuracy of 95% (950/1000). These results are misleading because a poorly-trained

classifier can still give good results. Subsection 3.4.1, therefore, outlines metrics that are better

suited for judging the performance of classifiers trained with imbalanced data.

3.4 Genetic Feature Construction

Evolutionary algorithms can be used to change the representation of the inputs for

machine learners. In this work I use a widely known genetic programming technique called

symbolic regression which was described in Subsection 1.2.3, as well as an unexplored approach

which uses multiple symbolic regression trees to construct multiple features.

3.4.1 Symbolic Regression

In the symbolic regression approach, an optimal prediction function can be obtained by

means of a genetic program. With this approach, a single mapping function can be learned by

constructing a symbol tree with a single base feature as the leaves. For example, in a training set

with examples containing 7 features, including a class feature (yes/no), a single tree would be

learned and applied to each of the 7 features. In this way, a feature set from the original dataset

would be transformed into a feature set where all of the features have been mapped with the

regressed function. Table 3.1 shows this example where 2 instances with their 7 features are

mapped to a new set of instances from the symbol tree: (% (* (% x x) (* x x)) (+ x x)),

which is in prefix-notation and where % represents protected division (not the modulus operator).

 48

Table 3.1: Example Symbolic Regression Interpretation

Features ID of ݑ ID of ݒ Forward Deleted
Distance

Intersection
of Interests

Intersection
of Friends

Outdegree
of ݑ

Friends

Instance 1 150 254 3 15 63 151 yes
Instance 2 64 125 6 19 14 25 no
Symbol
Tree

(% (* (% x x) (* x x)) (+ x x)) n/a

Instance 1
Result

75 127.0 1.5

7.5 31.5

75.5

yes

Instance 2
Result

32 62.5 3

9.5 7 12.5 no

This symbol tree can be represented graphically, as in Chapter 1, by the tree shown in

Figure 3.3.

Figure 3.3: Example symbol tree used in Table 3.1

As Figure 3.3 shows, the simple regression tree approach is limited because it attempts to

apply the same symbol tree on distinct features. This is problematic because different features

ought to be optimized individually. Subsection 3.4.2 is formulated to solve this specific

shortcoming.

3.4.2 Feature Construction via Multiple Regression Trees

To optimize individual symbol trees per feature, 10 regression trees were genetically

computed on the 108 base features. Afterwards, the newly constructed features were used to train

 49

and cross validate a classifier. The major difference between this method and that of a single

symbol tree is that the symbol trees’ leaves represent different features rather than a having a

single tree applied to all features. For example, consider the features and trees from Table 3.2

where each of the 10 features are constructed solely from a symbol trees with base features as the

leaves. Note that unlike in the previous section, the features in Table 3.2 are distinct. That is, F1

represents forward deleted distance, and F7 represents Euclidean distance, etc.

Table 3.2: Example of features constructed with

multiple regression trees

Constructed
Feature Symbol Tree

1 (* F1 F7)

2 (* (% F9 F54))

3 (+ (* F6 F8) (- F67 F87)

4 F2

5 (+ F15 F16)

6 (- (* F4 F6) F46)

7 F5

8 (% (% F45 F39) (* F70 F3)

9 (- F7 F91)

10 (* F1 F1)

In many cases the constructed features might not make any logical sense and an

inappropriate conclusion may be drawn from the intricate details of the specific sampling.

Therefore, I ran this experiment several times, each time with a different seed. Finally, I

examined the commonalities from among the different executions in order to draw appropriate

conclusions about the data set.

In all symbolic regression experiments, only four symbols are used: addition, subtraction,

multiplication and protected division (where a division by 0 returns 1). [Koz92]

3.5 Feature Computation

After the genetic program constructs new features, their values need to be computed

before any learning can begin. Set computation is algorithmically easy, but its theoretical

 50

complexity can be problematic for sufficiently large sets. For example, if the genetic program

constructs a feature composed of the intersection of ݑ’s interest set ܫ௨ with the interest set ܫ௩ of ݒ

then the computation time is ߠሺ|ܫ௨| ൈ ሺ݊ଶሻ in the expected caseߠ ௩|ሻ, which is expected to beܫ|

where ݊ is the average number of user interests. Section 3.1 shows that the average number of

interests per user is about 55. Although 55ଶ ൌ 3,025 comparisons in the expected case are not of

too much concern, it is important if scalability is considered. Set union and difference operations

are performed in a similar fashion and can be shown to have the same computational complexity.

Set computation is shown above to not be of much concern because of the relatively

small size of the sets. However, computation of the graph features is a difficult problem because

of the relatively large size of the graph. Consider the crawled graph with 770,595 vertices and

2,992,607 edges, in order to compute the distance between ݑ and ݒ a shortest path algorithm is

needed. Currently, the fastest shortest path algorithm is Dijkstra’s Shortest Path Algorithm which

operates in ߍሺ|E| ൅ |ܸ|ଶሻ, or simply ߍሺ|ܸ|ଶሻ. Because our graph’s edges are all of equal

weight/distance a small adaptation on Dijkstra’s algorithm becomes Breadth First Search (BFS)

which operates in ߍሺ|E| ൅ |ܸ|ሻ. The computational complexity of even the fastest known

algorithm is unacceptable for such a large graph. Therefore I propose the following

approximation to find the shortest path between two nodes in a graph.

3.5.1 Shortest Path Approximation

To find the shortest path in a very large graph I considered how humans are able to

quickly approximate the shortest path between two points on a street map. For instance, when

humans look at a street map we are able to very quickly determine the general direction from

start to destination (e.g., left is East, up is North). Without any background information

concerning speed limits or traffic conditions, we pick a route that provides the clearest path

towards the destination. I hypothesize that by treating a graph as a street map and

computationally approximating path decisions, I will be able to quickly find an approximate

shortest path between two arbitrarily connected vertices. To do this, I need to create an accurate

Cartesian embedding of the graph, and then I will be able to navigate the graph according to the

Cartesian directions and distances gained from the embedding.

 51

3.5.1.1 Graph Embedding

Graph embedding, otherwise known as graph drawing, is the standard means for the

visualization of relational information. Its usefulness depends on the readability of the resulting

layout; that is, the drawing algorithm’s ability to convey the meaning of the graph. Many graph

drawing algorithms have been developed [DiB99] [Kau01]. However, these approaches can be

prohibitively slow for sufficiently large graphs. Harel and Koren observed that laying out a graph

in a high dimension is much easier to do than drawing it in 2-dimensions [Har02]. Therefore they

propose an approach that initially lays out the graph in a very high dimensional space (e.g., in

50-100 dimensions) and then projecting that layout into a more visually appealing 2-dimensions.

To do this the authors use principal components analysis (PCA) which is described in Subsection

1.1.1.

The result is an extremely fast, simple algorithm that was able to draw the 770,595-vertex

graph in about 3 hours. By laying out the graph I was able to ascertain 2-dimensional Cartesian

points. These points were stored in the VERTICES table in the database.

3.5.1.2 Finding the Approximate Shortest Path

Once Cartesian coordinates are assigned to vertices the shortest path problem becomes a

matter of directed search. Therefore I adopted the popular A*-search algorithm to suit this

problem. This approach allows me to specify three cost functions: ݃ሺݔሻ, which is the actual

shortest path distance traveled from the initial vertex to the current vertex; ݄ሺݔሻ, which is the

estimated or heuristic distance from the current node to the goal; and ݂ሺݔሻ, which is the sum of

݃ሺݔሻ and ݄ሺݔሻ, i.e., the heuristic shortest path distance. To find ݃ሺݔሻ I need to simply keep track

of the distance that I have searched, and because the edges are un-weighted this is simply the

sum of the Cartesian distances between all vertices in the current path. To find ݄ሺݔሻ I look at the

straight-line distance between the current vertex and the destination vertex. This is possible

because the algorithm is given the location of the destination vertex. For more general search

problems where the location of the destination is not known this approach would not work. By

knowing ݃ሺݔሻ and ݄ሺݔሻ I can keep an open-set of candidate vertices ranked by ݂ሺݔሻ and picking

paths based on the candidates with the lowest ݂ሺݔሻ score until the destination is reached.

 52

By applying these two approaches I was able to find an accurate Cartesian layout of the

graph with a one-time computation time of about 3 hours. By using the Cartesian coordinates

gleaned from the layout I was able to use an A*-search with a Cartesian distance heuristic to

quickly find the shortest path between two vertices4.

3.6 Experiment Design

This thesis aims to test the ability of a genetic program to construct features which

improve the accuracy of current link mining algorithms. In order to do so, different sets of

experiments were performed on identical training data, namely the social networks data

described in Section 3.1.

First, as a baseline, the original features were used to train and cross-validate three types

of learning algorithms: J48, which is a tree learning algorithm based on ID3, NaïveBayes, which

is a probabilistic learning algorithm which uses Bayes’ theories of probability, and Logistic,

which is a function finding method similar to symbolic regression, and OneR, which simply

picks the best possible single rule. [Wit99]

Second, the genetic program was invoked to learn a classifier based on the application of

a single symbolic regression tree as described in Subsection 3.4.1. The fitness function of the

genetic program was determined based on the area under the receiver operating characteristic

(AUC) metric of the classifier. Because of the random nature of evolutionary algorithms, the

symbolic regression experiment was run 5 times.

Third, the genetic program was invoked to learn a classifier based on the application of

multiple symbolic regression trees as described in Subsection 3.4.2. The fitness function of the

genetic program was determined by the AUC metric of the classifier. Because of the random

nature of evolutionary algorithms, the multiple symbolic regression experiment was run 5 times

for each classifier. Appendix B contains the ECJ parameter file used in the configuration of the

genetic program. Because the test hold out data was used to reinforce the genetic program, it can

4 Early analytical results show that for a graph size of 50,000 the mean time to find the shortest path

between random vertices is 5.44 milliseconds with the approach described in this section compared to a mean time
of 229.88 milliseconds for Dijsktra’s algorithm. Although this is an approximation the algorithm generally achieves
100% accuracy.

 53

be argued that the test hold out data is an inconclusive indicator of the algorithm performance.

Therefore, validation holdout data with 2000 examples of the original distribution was used to

validate the performance of the various learning algorithms.

Finally, the genetic program performance results were compared to those of the meta-

learning algorithms such as bagging, boosting, etc. described in Section 2.1.

3.6.1 Evaluation Metrics

The Receiver Operating Characteristic (ROC) curve is an alternative to accuracy for the

evaluation of classifiers. The ROC curve is a curve and not a single number statistic. In

particular, this means that the comparison of two algorithms on a dataset does not always

produce an obvious order. Accuracy, on the other hand, is 1 – error rate, and is the standard

method used to evaluate learning algorithms. Accuracy is a single-number evaluation of

performance. [Pro05]

According to Wikipedia [Wik08]:

 A ROC space is defined by the false positive rate (FPR) and the true positive rate

(TPR) as ݔ and ݕ axes respectively, which depicts relative trade-offs between true

positive (benefits) and false positive (costs). Since TPR is equivalent with sensitivity and

FPR is equal to 1 - specificity, the ROC graph is sometimes called the sensitivity vs (1 -

specificity) plot. Each prediction result or one instance of a confusion matrix represents

one point in the ROC space.

 The best possible prediction method would yield a point in the upper left corner or

coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and

100% specificity (no false positives). The (0,1) point is also called a perfect

classification. A completely random guess would give a point along a diagonal line (the

so-called line of no-discrimination) from the left bottom to the top right corners. An

intuitive example of random guessing is a decision by flipping coins (head or tail).

The area under the ROC curve (AUC) is a single-number statistic often used to rank ROC

curves. More importantly, for these experiments the AUC can handle the problems that were

 54

described at the end of Section 3.4 regarding accuracy, precision and recall statistics. Most

results in this thesis will be evaluated using the Area under the ROC Curve (or AUC).

 55

CHAPTER 4 - Results

This chapter presents four sets of results for each of the four experiments described in

Section 3.6. The standard metrics used will often be accompanied by a more descriptive analysis

of the results. The final section in this chapter will view the results in a comparative paradigm

setting up the final chapter containing the conclusions that can be drawn from these experiments.

The implementations of all algorithms are from WEKA 3.5.75.

4.1 Results from Traditional Learning using Base Features

This section looks at the performance of traditional machine learning techniques using

the base features. For these experiments the 2000 instances were calculated each with 108

features annotated in Appendix 1. The training data has 50% positive examples and 50%

negative examples.

As described in Chapter 1, many learning algorithms, especially tree algorithms such as

J48, C4.5, etc., use entropy as the means for ranking and dividing attributes. Therefore, it is

5 WEKA 3.5.7 is available at http://www.cs.waikato.ac.nz/ml/weka/

 56

helpful to look at the ranking of the attributes in terms of information gain (i.e., entropy). Table

4.1 shows that intersectionfriendsidcount (the count of the intersection of friends) is the

highest ranking feature followed by other statistics based on the intersection of friends followed

by fdd (forward deleted distance) and bdd (backward deleted distance. These findings differ

slightly from previous research in which bdd and fdd were consistently the features with the

highest entropy.

Table 4.1: Attribute Ranking in terms of

Information Gain [Mit97]

Ranking ID Feature Name
0.39492 22 intersectionfriendsidcount

0.39492 27 intersectionfriendsagecount

0.38747 18 intersectionfriendsidsum

0.38298 19 intersectionfriendsidavg

0.26334 83 firstfriendsagesum

0.24935 23 intersectionfriendsagesum

0.24732 24 intersectionfriendsageavg

0.22317 1 fdd

0.20616 2 bdd

0.20546 3 indegreeu

0.17388 43 unionfriendsagesum

0.15208 84 firstfriendsageavg

0.14285 79 firstfriendsidavg

0.13935 4 outdegreeu

0.13935 82 firstfriendsidcount

0.13935 87 firstfriendsagecount

0.11199 71 firstinterestsidmax

0.09812 69 firstinterestsidavg

0.08678 44 unionfriendsageavg

0.08443 15 intersectioninterestspopularitymin

0.07647 78 firstfriendsidsum

0.07029 39 unionfriendsidavg

0.06293 7 euclidDist

0.06171 8 intersectioninterestsidsum

 Next, the same data was used to train a classifier using several traditional learning

algorithms. In each experiment the classifier was trained on the 2000 instances and a holdout

 57

data set with a 1.5% positive example rate (roughly matching that of the original distribution)

was applied to test the performance of the classifier. For the purposes of this research, the

learning algorithm which produces a classifier that maximizes area under the ROC (AUC) was

declared the winner. Table 4.2 presents results from the various learning algorithms including the

AUC, confusion matrix breakdown and the accuracy, precision and recall statistics. Other

performance metrics can be calculated based on the confusion matrix breakdown as needed, but

are not needed for this work. Note that the precision and recall statistics give two percentages:

the first for the positively labeled instances, and the second for the negatively labeled instances.

Table 4.2: Results for classifiers trained on base features, tested with

10-fold cross validation.

Learning
algorithm AUC Confusion Matrix Accuracy Precision Recall

OneR 82.7 703 298 82.65 93.5/76.1 70.2/95.1 49 950

J48 89.5 903 98 90.4 90.6/90.2 90.2/90.6 94 905

IB1 74.3 695 306 74.25 76.9/72.1 69.4/79.1 209 790

Logistic 95.4 891 110 91.2 93.1/89.5 89/93.4 66 933

NaiveBayes 92.1 786 215 85.1 90.4/81 78.5/91.7 83 916

 These results correspond with results from earlier experiments on smaller data sets

wherein the J48 learning algorithm performed the best at maximizing the accuracy. However, in

these results the Logistic learning algorithm outperformed all other algorithms. Again, these

results are not conclusive because testing must be done on examples from the original

distribution.

In order to more deeply understand the results of the J48 learning algorithm it helps to

visualize the generated decision tree. This decision tree shown in Figure 4.1 has 59 leaves and

117 total nodes. The distance from the root of each decision node largely coincides with the

information gain rankings from Table 4.1. That is, the higher the information gain ranking, the

higher the corresponding node is in the decision tree.

 58

Figure 4.1: Decision tree for J48 classifier trained on base features.

Judging from the size of the decision tree (58 decision points) relative to the total number

of features, the induced classifier does not seem to overfit, but in order to empirically test that

assumption, the same classifier is tested against data that it did not train on. This test data again

contains 2000 instances with 29 positive and 1,971 negative examples or about 1.5% positive

examples.

Table 4.3 shows the results of training and testing on two independent data sets (i.e., no

cross validation). The performance does not decrease, and in some cases the classification

performance actually increases. These results show that the classifiers being constructed do not

overfit and are good representatives for the larger distribution.

 59

Table 4.3: Results for classifiers trained on base features, tested

with hold out data with original distribution.

Learning
algorithm AUC Confusion Matrix Accuracy Precision Recall

OneR 86.7
23 6

93.95 16.7/99.7 79.3/94.2
115 1856

J48 88.7 27 2 90.05 12.1/99.9 93.1/90.0 197 1774

IB1 77.4 21 8 82.15 5.7/99.5 72.4/82.3 349 1622

Logistic 98.0 28 1 94.05 19.2/99.9 96.6/94.0 118 1853

NaiveBayes 91.4 22 7 91.7 12.2/99.6 75.9/91.9 159 1812

As a final test of performance, ROC curves are generated in order to visualize the overall

performance of the learning algorithms. Figure 4.2 shows the ROCs for the various learning

algorithms (IB1 could not generate a ROC). Logistic performed best with an AUC of 98%.

Figure 4.2: ROC curves for learning algorithms trained and cross-

validated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

J48

Logistic

NaiveBayes

OneR

 60

4.2 Results of Feature Construction using a Single Symbol Tree

In an initial test of the genetic programming approach to feature construction, a symbolic

regression tree was genetically grown according to the specifications in Subsection 3.4.1.

Because this was an initial test of the capabilities of the genetic program, the results in this

section are much less robust than in other sections. Nevertheless, these results are reported to

highlight the shortcomings in a simple symbolic regression approach.

Figure 4.3 shows the result of applying a single symbol tree to each of the features. The

fitness is in terms of AUC (87.129% in this result) of a J48 classifier. As the flat fitness curve

shows, the results do not improve regardless of the symbol tree that is used to modify the feature

values.

Figure 4.3: Progression of the fitness of the best individual

through 4 generations. Higher is better.

Table 4.5 shows the symbol trees which were generated by the genetic program and the

corresponding fitness of the symbol trees. The reasons for these results are discussed as a

conclusion in Chapter 5.

0

20

40

60

80

100

1 2 3 4

A
U

C

Generation

 61

Table 4.4: Symbol trees and corresponding fitness for 4 generations of single

symbolic regression

Generation Symbol Tree Fitness
1 (* x x) 87.129
2 (sin (- (exp (% x x)) (% (exp x) (sin x)))) 87.129

3
(rlog (- (exp (- (exp (* (cos x) (% x x)))
 (+ (sin (sin x)) (cos (+ x x))))) (+ (sin
 (sin x)) (cos (+ x x)))))

87.129

4 (sin (- (exp (% x x)) (% (exp x) (sin x)))) 87.129

4.3 Results of Feature Construction using Multiple Symbol Trees

The results of the major contributions of this work are presented in this section. I first

present the results of several iterations of feature construction experiments. In each experiment

the total number of constructed features was exactly 10, and the genetic program’s population

was exactly 100 individuals. As explained in the previous chapter, the learning algorithm was

trained with 2000 examples of a 50/50 distribution and tested on an independent set of 2000

examples of the original distribution; because of this “wrapper” approach, the test examples

influenced the learning algorithm, therefore another independent validation set of 2000 examples

of the original distribution was used to rate the final performance of each algorithm. The scores

reported in this section are from the holdout validation data.

4.3.1 OneR

First, the genetic program was executed using the OneR learning algorithm in order to

train a classifier which was then tested on test hold out data of the original 1.5%-positive

distribution, results are computed by validating the resulting classifier on validation hold out data

of the original 1.5%-positive distribution. 1 minus the AUC of the classifier was used as the

fitness function. In total, five independent executions were tried each with a random starting

seed. Figure 4.4 shows the fitness of the best individual from each generation of these

executions, wherein “Base” is the non-GP result from Section 4.1, and “Avg” is the mean of the

five runs. The “Avg” fitness (1 – AUC) remains relatively consistent at 13.16%.

As Figure 4.4 illustrates, the genetic program was unable to genetically construct features

to improve the AUC over the five generations. Exploratory repetitions show that the results

 62

remain steady up to 50 generations.

Figure 4.4: Best individuals per generation with OneR for 5 GP runs.

Lower is better.

Despite these flat results the population does become more specialized as shown in

Figure 4.5, where the mean validation score over the entire population increases (error

decreases). Specifically, the “Avg” AUC begins at 27.88% in the first generation and decreases

to 13.37% in the tenth generation.

Figure 4.5: Average validation score over the entire population per

generation with OneR for 5 GP runs. Lower is better.

0.13
0.131
0.132
0.133
0.134
0.135
0.136
0.137
0.138

0 2 4 6 8 10

Fi
tn

es
s (

1
-A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

Fi
tn

es
s (

1
-A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base
Avg

 63

4.3.2 Logistic

In the same manner as above, the genetic program was executed again using the Logistic

learning algorithm in order to train a classifier which was tested on test hold out data of the

original 1.5%-positive distribution, results are computed by validating the resulting classifier on

validation holdout data of the original 1.5%-positive distribution.

1 minus the AUC from the classifier was used as the fitness function. In total, five

independent executions were tried each with a random starting seed. Figure 4.6 shows the fitness

of the best individual from each generation of these executions, where “Base” is the non-GP

result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg” validation score (1 –

AUC) begins at 2.5% in the first generation and decreases to 1.77% in the tenth generation.

Figure 4.6: Best individuals per generation with Logistic for 5 GP

runs. Lower is better.

The results from the experiment using the Logistic learning algorithm show a 0.78%

average decrease in the validation score of the classifier (i.e., 0.78% increase in AUC).

Furthermore, the mean validation score of the entire population decreases dramatically from

17.80% in the first generation to 1.77% in the tenth generation as shown in Figure 4.7.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

 64

Figure 4.7: Average validation score over the entire population per

generation with Logistic for 5 GP runs. Lower is better.

4.3.3 J48

Again, the genetic program was executed using the J48 decision tree learning algorithm

in order to train a classifier which was tested on test hold out data of the original 1.5%-positive

distribution, results are computed by validating the resulting classifier on validation hold out data

of the original 1.5%-positive distribution.

1 minus the AUC from the classifier was used as the fitness function. In total, five

independent executions were tried each with a random starting seed. Figure 4.8 shows the

validation score of the best individual from each generation of these executions, where “Base” is

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg”

validation score (1 – AUC) begins at 3.69% in the first generation and decreases to 2.21% in the

tenth generation.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

 65

Figure 4.8: Best individuals per generation with J48 for 5 GP runs.

Lower is better.

The results from the experiment using the J48 learning algorithm show a 1.48% average

decrease in the validation score of the classifier (i.e., 1.48% increase in AUC). Furthermore, the

mean validation score of the entire population decreases dramatically from 17.34% in the first

generation to 2.23% in the tenth generation as shown in Figure 4.9.

Figure 4.9: Average validation score over the entire population per

generation with J48 for 5 GP runs. Lower is better.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

 66

4.3.4 NaiveBayes

Again, the genetic program was executed using the NaiveBayes learning algorithm in

order to train a classifier which was tested on test hold out data of the original 1.5%-positive

distribution, results are computed by validating the resulting classifier on validation hold out data

of the original 1.5%-positive distribution.

1 minus the AUC from the classifier was used as the fitness function. In total, five

independent executions were tried each with a random starting seed. Figure 4.10 shows the

validation score of the best individual from each generation of these executions, where “Base” is

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg”

validation score (1 – AUC) begins at 3.32% in the first generation and decreases to 2.40% in the

tenth generation.

Figure 4.10: Best individuals per generation with NaiveBayes for 5

GP runs. Lower is better.

The results from the experiment using the NaiveBayes learning algorithm show a 0.75%

average decrease in the validation score of the classifier (i.e., 0.75% increase in AUC).

Furthermore, the mean validation score of the entire population decreases dramatically from

22.66% in the first generation to 2.34% in the tenth generation as shown in Figure 4.11.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

 67

Figure 4.11: Average validation score over the entire population per

generation with NaiveBayes for 5 GP runs. Lower is better.

4.3.5 IB1

Again, the genetic program was executed using the IB1 learning algorithm in order to

train a classifier which was tested on test hold out data of the original 1.5%-positive distribution,

results are computed by validating the resulting classifier on validation hold out data of the

original 1.5%-positive distribution.

1 minus the AUC from the classifier was used as the fitness function. In total, five

independent executions were tried each with a random starting seed. Figure 4.10 shows the

validation score of the best individual from each generation of these executions, where “Base” is

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg”

validation score (1 – AUC) begins at 13.20% in the first generation and decreases to 8.42% in

the tenth generation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg

 68

Figure 4.12: Best individuals per generation with IB1 for 4 GP runs.

Lower is better.

The results from the experiment using the IB1 learning algorithm show a 4.79% average

decrease in the validation score of the classifier (i.e., 4.79% increase in AUC). Furthermore, the

mean validation score of the entire population decreases dramatically from 30.94% in the first

generation to 8.62% in the tenth generation as shown in Figure 4.13.

Figure 4.13: Average validation score over the entire population per

generation with IB1 for 4 GP runs. Lower is better.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Base

Avg

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Base

Avg

 69

4.3.6 Comparative Analysis

Now that the individual learning algorithms’ results have been presented in Subsections

4.3.1 through 4.3.5, a comparative analysis can be performed on the averages from each learning

algorithm’s results. Figure 4.14 shows the average validation scores for the best individuals for

all generations. Note all experiments ran for an equal number of generations, and each run had

converged after by at least the tenth generation. A single execution was deemed to have a

sufficient likelihood of having converged when the best individual’s fitness (i.e., 1 – AUC) was

identical three generations in a row.

Figure 4.14: Average validation scores for the best individuals for all generations.

Lower is better.

With one exception in OneR, all results effectively converged to an relative optima in

which the fitness was lower than that of the base classifier. Depending on how Figure 4.14 is

interpreted one algorithm might be said to outperform another. The absolute performance of the

specific learning algorithm is not important to the outcome of this thesis; rather, the success or

failure lies in the ability of the genetic program to construct features that, if provided to any

learning algorithm will decrease the error (i.e., increase the fitness).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

V
al

id
at

io
n

Sc
or

e
(1

 -
A

U
C

)

Generation

OneR Avg

Logistic Avg

J48 Avg

NaiveBayes Avg

IB1 Avg

 70

Table 4.5: Classifier results in terms of AUC (1 –

fitness) compared to base results. Higher is better.

Learning Algorithm GP-Results Base-Results Increase
OneR 86.96 86.7 0.26

Logistic 98.50 98.0 0.50
J48 98.47 88.7 9.77

NaiveBayes 98.22 91.4 6.82
IB1 92.46 77.4 15.06

4.3.7 Constructed Feature Trees

In order to gain a better understanding of the general underlying structure of the features

that are being genetically constructed this subsection enumerate the features from the symbol

tree of the best individuals for each run of each learning algorithm. Each symbol tree will have

10 trees of 1 or more symbols as shown in Figure 4.15, this is done 5 times for each of 5 learning

algorithms. Therefore, this enumeration will result in at least 250 attributes. Appendix C contains

the complete list of the best individuals’ symbol trees.

Figure 4.15: An example genetically-constructed condensed symbol tree.

 By expanding the condensed view of the symbol tree a more thorough view of the

features which were constructed becomes available. Figure 4.16 shows the expanded version of

the symbol tree wherein all constructed features (i.e., X93, X7, etc) are expanded.

T

mnemoni

firstFr

friends, a

mean of t

friends.

Figur

Table 4.7 pre

ic, and the fe

riendsAge

and inters

the IDs in th

T

i
int
int

in
int

re 4.16: An e

sents a parti

feature name

Sum describe

ectionFri

he intersectio

Table 4.6: T

Featur

firs
ntersecti
ersection
ersection

tersectio
ersection

unio
unio
fir

forwardD

example gen

constructed

al list of the

. Feature nam

es the featur

iendsIdCou

on of ݑ and ݒ

Top 10 featur

individua

re Name

stFriendsA
ionFriends
nFriendsId
nFriendsAg

onFriendsA
nInterests
onFriendsA
onFriendsA
rstFriends
DeletedDis

71

netically con

d features exp

 most comm

mes are desc

re constructe

unt describe

s friends w’ݒ

res ordered b

als’ symbol

F
M

AgeSum
sIdAvg
dCount
geCoun

t
AgeAvg
sIdSum
AgeSum
AgeAvg
sIdAvg
stance

nstructed sym

panded.

monly constru

criptively tit

ed by taking

es the feature

where ݑ and

by their prev

trees

Feature
Mnemonic A

X82
X18
X21

X26

X23
X7

X42
X43
X78
X0

mbol tree wit

ucted feature

led. For exam

the sum of t

e constructed

are the tw ݒ

valence in

Number o
Appearance

17
15
15

11

9
7
6
6
6
5

th

es, their cod

mple,

the ages of ݑ

d by finding

wo candidate

f
es

e

 s’ݑ

g the

 72

Including forwardDeletedDistance, there are 7 constructed features that appear 5

times, 8 features that appear 4 times, 14 features that appear 3 times, 17 features that appear

twice, 25 features that appear only once, and 28 features that do not appear at all.

4.4 Meta Learning Results

Chapter 3 describes meta-learning as learning from the learning process. This section

presents results similar in style to Section 4.1, where the dataset contains 2000 instances which

are distributed with 50% positive and 50% negative examples. First, three meta-learning

algorithms (AdaBoost, Bagging, and RandomForest) are trained on the dataset and tested on the

hold out dataset with 1.5%-positive example distribution. Table 4.7 shows the results of these

meta-learning algorithms trained with the base features only.

Table 4.7: Results for meta-learning algorithms trained on base features,

tested on hold out data with original distribution

Learning
algorithm AUC Confusion Matrix Accuracy Precision Recall

AdaBoost 97.6
28 1

92.8 16.4/99.9 96.6/92.7
143 1828

Bagging 95.7 28 1 92.95 16.7/99.9 96.6/92.9 140 1831

RandomForest 97.8 28 1 91.7 14.5/99.9 96.6/91.6 165 1806

As a final test of performance, an ROC curve is generated in order to gauge the overall

performance of the learning algorithms. Figure 4.17 shows the ROCs for the various learning

algorithms.

 73

Figure 4.17: ROC curves for learning algorithms trained and cross validated on

feature data set.

The area under the curve (AUC) is often used to gauge performance, where the higher the

AUC the better the performance. An AUC of 1 is perfect whereas an AUC of 50% is random

guess. Table 4.7 shows the AUC values for the ROCs in Figure 4.17. By this metric, the

RandomForest meta-learning algorithm performed the best.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
Po

si
tiv

e
R

at
e

False Positive Rate

AdaBoost

Bagging

RandomForest

 74

CHAPTER 5 - Conclusions and Future Work

In this thesis, I considered the problem of discovering links in a large, incomplete graph.

This thesis presented an approach to link prediction that is based on the combination of graph

feature analysis and intrinsic attributes of entities. Therefore, the principal claims of this thesis

were:

1. By crawling the social network service LiveJournal an appropriately large graph can

be realized and learnable features can be ascertained.

2. Feature analysis can be achieved on a very large graph by the efficient management

of the underlying data structure.

3. Operators within the genetic programming approach can be used to construct new

features from primitive features that provide a more learnable description of the

graph.

4. Features constructed from a genetic program will improve the performance of

learning algorithms for link mining.

 75

By learning from the material in Chapters 1 and 2 and following the methodologies

prescribed in Chapter 3 the results presented in Chapter 4 lead to several conclusions. This

chapter presents an interpretation of the results and reviews the principal claims of this work in

consecutive sections before discussing future directions of this work.

5.1 Large Graph Crawling and Feature Extraction

The structure and results of a large web crawl of a social networks graph was presented in

Section 3.1. The aptly named LJCrawler crawled 39.024 users, scheduled 770,595 total users,

and discovered 2,151,090 interests and 2,992,607 relationships. All of this was accomplished

within a time span of about 2½ hours, which equates to 4.09 users per second and 313.69

relations per second. The total uncompressed size of the database is 383.6 MB.

By crawling the social network graph friend of a friend (FOAF) data was retrieved. The

FOAF data included the birth-date, location, age, friends, interests, etc., which was efficiently

packaged into computable database tuples and stored. Furthermore, from this data 6,000 total

candidate pairs were generated (2000 for training, 2000 for testing, and 2000 for validation);

these pairs included 108 potential features each giving a total of 648,000 feature computations.

These computations were further computed by the genetic program by the methods described in

Section 3.3.

Because the pairs were selected at random the entire database was considered by the

candidate pair generator. Furthermore, paths between candidate pairs frequently contain

unqueried vertices therefore the feature constructor needed to be able to efficiently retrieve and

process several data pieces.

Although timing and benchmarking data was not kept for the pair generation and feature

construction phases, the 648,000 feature computations did not consume too much wall time

(approximately 10 minutes for each set of 2000 pairs). Section 5.2 discusses specific graph

feature computation results.

 76

Having demonstrated the ability to quickly and efficiently retrieve vast amounts of social

network user information, as well as the ability to ascertain relevant features, I conclude that the

necessary requirements have been met to satisfy principal claim 1.

5.2 Efficient Feature Computation on Large Graphs

The efficient computation of features is extremely important because evolutionary

algorithms operate by spawning and growing a set of hundreds of unique individuals, and each

individual had at least 10 constructed features. Section 3.5 demonstrated that the running time of

many of these operations was in ߠሺ݊ଶሻ where ݊ was the size of a user’s list of friends or

interests, which mostly resulted in an insignificant computation cost. However, the running time

of the forward deleted distance and backward deleted distance features were bounded by the size

of the graph. The magnitude of the graph made traditional search algorithms, such as Dijkstra’s

Shortest Path algorithm impractical by incurring an unbearably long average case execution

time. This problem was largely relieved with the inclusion of the shortest path approximation

algorithm described in Subsection 3.5.1.

Although the theoretical running times have not been annotated, early empirical results

show that for a graph size of 50,000 the mean time to find the shortest path between random

vertices is 5.44 milliseconds with the approach described in this section compared to a mean time

of 229.88 milliseconds for Dijkstra’s algorithm. Although this is an approximation the algorithm

generally achieves 100% accuracy.

When applied to the feature computation task within this work the shortest path

approximation again performed well. Although timing and benchmarking data was not kept for

the pair generation and feature construction phases, the 432,000 feature computations did not

consume too much wall clock time (approximately 10 minutes for each set of 2000 pairs).

The proportion of computation time for the forward and backward deleted distances

relative to the other 108 features is not known. However, extrapolating the result of Dijkstra’s

algorithm on the 50,000-vertex test graph to the full 770,595-vertex graph shows yields a 3.5

second average execution time. If all other computations were negligible, the execution time for

 77

6000 candidate pairs’ forward and backward deleted distances would be approximately 11 hours

and 40 minutes (3.5 ൈ 2 ൈ 6000 ൌ 42,000 seconds ~ 11. 6ത hours).

Having demonstrated the ability to quickly and efficiently compute critical graph features

from a large graph through use of an approximate shortest path algorithm, I conclude that the

necessary requirements have been met to satisfy principal claim 2.

5.3 Analysis of Genetically-Constructed Features

This work was mainly involved with the ability of genetic programs to construct new

features from primitive features. These newly constructed features were then used to build a

classifier. The ultimate goal is to gain insight into the domain by examining these features and

their relative performance.

Subsection 4.3.7 illustrates that the genetic programming approach constructed a vast

amount of new features. Moreover, the multiple tree symbolic regression approach extended the

feature construction approach by incorporating the use of mathematical operators in a symbol

tree. I originally expected the features that were to be generated to be very large and complex.

For example, I expected a most of the constructed features to contain several layers of set

operations on a variety of attributes. However, I was mildly surprised to find out that most of the

genetically constructed features were simple set operations of common features. I was further

surprised to find that the graph features which were very prevalent in earlier experiments

[Hsu06] [Hsu07] [Hsu08] were less prevalent through these experiments. Specifically, Table 4.7,

from Chapter 4, shows that the most commonly constructed feature among best individuals was

the sum of ݑ’s friends’ ages, whereas the first graph feature, forward deleted distance, was 10th

on the list.

Overall some interesting patterns emerged from these results. First, the intersection set

operation played a large role in the fitness of individuals, while the union set operation played a

minor role and the difference set operator was not identified in the top 10. Intuitively, this shows

that what friends have in common is more telling than what they do not have in common.

Second, the use of the friends attribute exists in all but 2 of the top 10 constructed features. This

evidence, coupled with the prevalence of the intersection set operator, shows that common

 78

friends are a good indicator of a relationship. Third, the sub-attributes age and id are the only

two sub-attributes identified for the friendship attribute and because they occur equally their

relative prevalence is moot. Finally, only a single feature containing interest data made the top

10; this fact falls in line with earlier observations that show interest data alone is a relatively poor

predictor of friendship.

Having demonstrated the ability for a genetic program to construct features from a large

and complex graph-dataset, I conclude that the necessary requirements have been met to satisfy

principal claim 3.

5.4 Prediction Performance of Genetically-Constructed Features

The final claim of this thesis is that if the genetically-constructed features are used to

train classifiers from various learning algorithms then the performance of these classifiers will be

better than the classifiers training on base features alone. Chapter 4 presented the results of

several classifiers. First, classifiers were trained using the base features only. Second, features

were constructed from a genetic program using a single symbol tree, and these features were

used to train and test a classifier. Third, features were constructed from a genetic program using

multiple symbol trees, and these features were similarly used to train and test a classifier. Finally,

meta-learning methods were trained and tested on the base features.

The classifiers trained using base features only exhibited performance similar to that in

previous work [Hsu06] [Hsu07]. These results are used as the baseline prediction performance.

Unlike in the genetic programs with multiple regression trees, the single regression tree

method did not converge. Rather, the results maintained a steady error rate. I believe this is

because the single symbol tree equally modified the distribution of all of the learning algorithm’s

inputs thereby making the symbol trees modifications meaningless. For example, if two training

tuples ݐଵ and ݐଶ each contained data ݐଵ ൌ ,2,3,5ۃ ଶݐ and ,ۄݏ݁ݕ ൌ ,10,13,11ۃ then a simple ۄ݋݊

classifier would say all future tuples with values greater than 7 should be labeled ݊݋ otherwise

they should be labeled ݏ݁ݕ. To complete this example, consider a single symbol tree (+ x x)

which transforms ݐଵ into 4,6,10ۃ, ,20,26,22ۃ and ۄݏ݁ݕ Again, a simple classifier would .ۄݏ݁ݕ

 79

label all future tuples with values greater than (7 ൅ 7 ൌ) 14 to be ݊݋, otherwise, they would be

labeled ݏ݁ݕ.

Feature construction from multiple symbol trees alleviates this problem because with

multiple symbol trees the data is not all altered in exactly the same way. This causes a clear

discrimination among classes to emerge and prediction performance to increase.

Figure 5.1 shows a comparison between the performance of traditional learning

algorithms with and without genetically constructed features and the newer meta-learning

algorithms, which were training on base features. The leftmost 5 columns represent the

traditional learning algorithms, and the rightmost 3 columns represent the meta learning

algorithms. The genetically-constructed features results shown here are the average, best and

final individuals from earlier experiments (i.e., from Tables 4.6 and 4.8).

Figure 5.1: Comparison of results from classifiers trained by (1)

genetically-constructed features (2) base features and (3) meta-learning

algorithms.

The final performance of classifiers trained by genetically-constructed features

outperforms classifiers trained by base features in every instance, and the top 3 genetic results

outperform even the best meta-learning algorithm tested. Therefore, I conclude that the necessary

requirements have been met to satisfy principal claim 4.

0.75

0.8

0.85

0.9

0.95

1

A
U

C

Learning Algorithm

GP Features

Base Features

Meta-Learning

 80

5.5 Future Work

Link mining is situated at the intersection of graph theory, machine learning, and web

mining. This research is potentially useful in a wide range of application areas including bio-

informatics, bibliographic analysis, financial analysis, national security, social network analysis,

and internet search to name a few. While my research is focused more on the theoretical aspects

of this topic than in the applicative possibilities, a positive outcome of my work is that it has

already been adapted to the bioinformatics domain to study the interactions of proteins. [Par07]

Other promising research includes ontology engineering for interest intersections [Bah08], and

market basket analysis for interest and community membership [Alj08].

In the immediate future the approximate shortest path algorithm should be finalized and

theoretically examined. I believe that this approach to searching through graphs has implications

in many fields. Similar work on link mining on the web [Wen08] [Wen08a] has yielded

promising results, and previous work in genetic and evolutionary computation [Hsu06a]

[Hsu07a] provides some direction for future work.

Finally, one limitation of this work was the expressiveness of the constructed features.

One avenue for future research is to allow the genetic program more degrees of freedom in its

construction of features. This could be done by adjusting the evolution parameters in system, or

by using alternative fitness measures.

A final criticism of this work originates from a potential bias implicit in the network

methodology. One might argue that the removal of a friendship link to compute alternate paths

and then the immediate re-addition of that link creates a favorable bias. With that in mind,

alternative studies from Taskar, Getoor and Koller remove all the links they wish to predict

without any re-addition [Tas02], [Tas01], [Get01]. I understand the potential bias inherent in this

approach, but I decided to expand on my previous published work for continuity-sake.

The research field of link mining is still in its infancy, and there are undoubtedly many

exciting breakthroughs to be made in the search, retrieval, annotation and explanation of

relationships in all types of datasets.

 81

Bibliography

[Alj08] W. Aljandal, V. Bahirwani, D. Caragea, W. H. Hsu, and T. Weninger, "Validation-
based normalization and selection of interestingness measures for association rules,"
in Artificial Neural Networks In Engineering, St. Louis, MO, 2008.

[Bah08] V. Bahirwani, D. Caragea, W. Aljandal, and W. H. Hsu, "Ontology Engineering and
Feature Construction for Predicting Friendship Links in the Live Journal Social
Network," in Proceedings of the KDD 2008 Second Workshop on Social Network
Mining and Analysis, Las Vegas, NV, 2008.

[Bel61] R. Bellman, Adaptive control processes: A guided tour. Princeton, NJ: Princeton
University Press, 1961.

[Ben96] H. Bensusan and I. Kuscu, "Constructive Induction using Genetic Programming," in
International Conference on Machine Learning (ICML) Evolutionary computing and
Machine Learning Workshop, 1996.

[Blu87] A. Blumer, J. Blumer, D. Haussler, R. Mcconnell, and A. Ehrenfeucht, "Complete
inverted files for efficient text retrieval and analysis," vol. 34, pp. 578-595, 1987.

[Blu97] A. L. Blum and P. Langley, "Selection of Relevant Features and Examples in Machine
Learning," Artificial Intelligence, pp. 245-271, 1997.

[Bre01] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
[Bre02] L. Breiman and A. Cutler. (2002) Random Forests. [Online]. http://stat-

www.berkeley.edu/users/breiman/RandomForests/cc_home.htm
[Bre84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression

Trees. Belmont, CA: Wadsworth International Group, 1984.
[Bre96] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123-140,

1996.
[Bri98] S. Brin and L. Page, "The anatomy of a large-scale hypertextual Web search engine,"

Computer Networks and ISDN Systems, vol. 30, no. 1-7, pp. 107-117, Apr. 1998.
[Car93] C. Cardie, "Using Decision Trees to Improve Case-Based Learning," in International

Conference on Machine Learning (ICML), 1993, pp. 25-32.
[Car94] R. Caruna and D. Freitag, "How Useful is Relevance?," in AAAI Fall Symposium on

Relevance, New Orleans, 1994.
[Cha08] J. C.-W. Chan and D. Paelinckx, "Evaluation of Random Forest and Adaboost tree-

based ensemble classification and spectral band selection for ecotope mapping using
airborne hyperspectral imagery," Remote Sensing of Environment, vol. 112, no. 6, pp.
2999-2011, Jun. 2008.

[Cha85] G. Chartrand, Introductory Graph Theory. New York: Dover, 1985.
[Col92] W. J. Collins, Data Structures: An Object-Oriented Approach. Addison-Wesley, 1992.
[Dam08] M. Damo, "The Social Net of Digg: Structural Analysis and Prediction," Milan

Polytechnic Thesis, 2008.
[Dan01] D. Dand, H. Mannila, and P. Smyth, Principles of Data Mining. MIT Press, 2001.

 82

[Das00] M. Dash and H. Liu, "Feature Selection for Clustering," in Pacific Asia Conference on
Knowledge Discovery in Data Mining (PAKDD), 2000, pp. 110-121.

[DiB99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for the
Visualization of Graphs. Prentice-Hall, 1999.

[DyJ00] J. G. Dy and C. E. Brodley, "Feature Subset Selection and Order Identification for
Unsupervised Leaderning," in International Conference on Machine Learning
(ICML), 2000, pp. 247-254.

[Fis87] D. H. Fisher, "Knowledge acquisition via incremental conceptual clustering," Machine
Learning, vol. 2, no. 2, pp. 139-172, Sep. 1987.

[Fre96] Y. Freund and R. Schapire, "Experiments with a new boosting algorithm," in
International Conference on Machine Learning (ICML), 1996, pp. 148-156.

[Gam98] J. Gama and P. Brazdil, "Constructive Induction on Continuous Spaces," in Feature
Extraction, Construction and Selection: A Data Mining Perspective, H. Motoda and
H. Liu, Eds. Boston: Kluwer Academic Publishers, 1998, ch. 18, pp. 289-303.

[Get01] L. Getoor, N. Friedman, D. Koller, and B. Taskar, "Learning Probabilistic Models of
Relational Structure," in International Conference on Machine Learning, 2001.

[Get03] L. Getoor, "Link Mining: A New Data Mining Challenge," SIGKDD Explorations,
vol. 4, no. 2, pp. 1-6, 2003.

[Gol89] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, 1989.

[Gos05] O. Gospodnetic and E. Hatcher, Lucene in Action. Greenwich, CT: Manning, 2005.
[Han06] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed., J. Gray, Ed.

San Francisco, CA: Morgan Kauffman, 2006.
[Har02] D. Harel and Y. Koren, "Graph drawing by high-dimensional embedding," LNCS, pp.

207-219, 2002.
[Hsu06] W. H. Hsu, A. King, M. S. R. Paradesi, T. Pydimarri, and T. Weninger, "Collaborative

and Structural Recommendation of Friends using Weblog-based Social Network
Analysis," in AAAI Spring Symposium on Computatational Approaches to Analyzing
Weblogs (CAAW), 2006.

[Hsu06a] W. H. Hsu, A. L. King, M. S. R. Paradesi, T. Pydimarri, and T. Weninger,
"Evolutionary Data Mining For Link Analysis: Preliminary Experiments On A Social
Network Test Bed," in Genetic and Evolutionary Computation Conference, Seattle,
WA, 2006.

[Hsu07] W. H. Hsu, J. Lancaster, M. S. R. Paradesi, and T. Weninger, "Structural Link
Analysis from User Profiles and Friends Networks: A Feature Construction
Approach," in International Conference on Weblogs and Social Media (ICWSM),
Boulder, CO, 2007, pp. 75-80.

[Hsu07a] W. H. Hsu, J. Lancaster, M. S. R. Paradesi, and T. Weninger, "Collaborative and
Structural Recommendation of Friends using Weblog-Based Social Network
Analysis," in Genetic and Evolutionary Computation Conference, London, UK, 2007.

[Hsu08] W. H. Hsu, T. Weninger, and M. S. R. Paradesi, "Predicting links and link change in
friends networks: Supervised time series learning with imbalanced data," in Artificial
Neural Networks in Engineering, St. Louis, MO, 2008.

 83

[Kau01] "Drawing Graphs: Methods and Models," LNCS, vol. 2025, 2001.
[Kim00] Y. Kim, W. Street, and F. Menczer, "Feature Selection for Unzupervised Learning via

Evolutionary Search," in International Conference on Knowledge Discovery and Data
Mining (ACM SIGKDD), 2000, pp. 365-369.

[Kir83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.

[Kir92] K. Kira and L. Rendell, "The feature selection problem: Traditional methods and a
new algorithm," in National Conference on Artificial Intelligence, 1992, pp. 129-134.

[Kol01] D. Koller, "Representation, Reasoning and Learning," IJCAI Computers and Thought
Award Lecture, 2001.

[Koz92] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[Koz98] J. R. Koza, Genetic Programming II. Cambridge, MA: MIT Press, 1998.
[Kra02] K. Krawiec, "Genetic Programming-based Construction of Features for Machine

Learning and Knowledge Discovery Tasks," Genetic Programming and Evolvable
Machines, vol. 3, pp. 329-343, 2002.

[Kre02] V. E. Krebs, "Mapping Networks of Terrorist Cells," Connections, 2002.
[Kub97] M. Kubat, R. Holte, and S. Matwin, "Learning when negative examples abound," in

ECML, Lecture Notes in Artificial Intelligence. Springer Verlag, 1997.
[Lan94] P. Langley, "Selection of relevant features in machine learning," in AAAI Fall

symposium on relevance, 1994, pp. 140-144.
[Liu96] H. Liu and R. Setiono, "Feature Selection and Classification - A Probabilistic Wrapper

Approach," in International Conference on Industrial and Engineering Applciations,
1996, pp. 419-424.

[Liu98] H. Liu and H. Motoda, Eds., Feature Extraction, Construction and Selection: A Data
Mining Perspective. Boston: Kluwer Academic Publishing, 1998.

[Luk01] S. Luke. (2001) ECJ 7: An EC and GP system in Java. [Online].
http://www.cs.umd.edu/projects/plus/ec/ecj/

[Mat89] C. J. Matheus and L. A. Rendell, "Constructive Induction On Decision Trees," in
International Joint Conference on Artificial Intelligence (IJCAI), 1989, pp. 645-650.

[Mer95] C. J. Merz, "Dynamical Selection of Learning Algorithms," in Learning from Data:
Artificial Intelligence and Statistics, D. Fisher and H. J. Lenz, Eds. Springer-Verlag,
1995.

[Mic83] R. S. Michalski, A Theory and Methodology of Inductive Learning, R. S. Michalski, J.
G. Carbonell, and T. M. Mitchell, Eds. Morgan Kaufmann, 1983.

[Mit80] T. M. Mitchell, "The Need for Biases in Learning Generalizations," Technical Report
CBM-TR-117, 1980.

[Mit82] T. M. Mitchell, "Generalization as Search," Artificial Intelligence, vol. 18, no. 2,
1982.

[Mit83] T. Mitchell, "Learning and Problem-Solving," in International Joint Conference on
Artificial Intelligence (IJCAI), Karlsruhe, Germany, 1983.

[Mit97] T. Mitchell, Machine Learning. McGraw Hill, 1997.

 84

[Mor93] M. Morris, "Epidemiology and Social Networks," Sociological Methods and
Research, vol. 22, no. 1, pp. 99-126, 1993.

[Mot02] H. Motodo and H. Liu, "Feature Selection, Extraction and Construction," in Pacific-
Asia Conference for Advances in Knowledge Discovery and Data Mining, Taipei,
Taiwan, 2002.

[Ols99] M. A. Olson, K. Bostic, and M. Seltzer, "Berkeley DB," in USENIX Annual Technical
Conference, Monterey, CA, 1999, pp. 183-194.

[Pag90] G. Pagallo and D. Haussler, "Boolean Feature Discovery in Empirical Learning,"
Machine Learning, vol. 5, no. 1, pp. 71-99, Mar. 1990.

[Par07] M. S. R. Paradesi, D. Caragea, and W. H. Hsu, "Structural Prediction of Protein-
Protein Interactions in Saccharomyces cerevisiae," in IEEE 7th International
Symposium on BioInformatics and BioEngineering, Boston, MA, 2007, pp. 1270-
1274.

[Per03] B. B. Perry, "A Genetic Algorithm for Learning Bayesian Network Adjacency
Matrices from Data," Kansas State University Thesis, 2003.

[Pre98] B. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in
C++. John Wiley & Sons, 1998.

[Pro05] F. Provost and J. Langford. (2005, Feb.) Machine Learning (Theory). [Online].
http://hunch.net/?p=21

[Qui86] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, pp. 81-106, 1986.
[Qui92] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann, 1992.
[Rao95] R. B. Rao, D. Gordon, and W. Spears, "For every generalization action, is there really

an equal and opposite reaction? Analysis of the conservation law for generalization
performance," in International Conference on Machine Learning, 1995, pp. 471-479.

[Ren88] L. Rendell, "Learning Hard Concepts," in European Working Session on Learning,
Turing Institute, Glasgow, 1988.

[Ren90] L. A. Rendell and R. Seshu, "Learning hard concepts through constructive induction:
framework," Computational Intelligence, vol. 6, no. 4, pp. 247-270, 1990.

[Ren90a] L. A. Rendell and H. Cho, "Empirical Learning as a Function of Concept Character,"
Machine Learning, vol. 5, pp. 267-298, 1990.

[Rus03] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Upper
Saddle River, NJ: Pearson Education, Inc., 2003.

[Sam59] A. Samuel, "Some Studies in Machine Learning Using the Game of Checkers,"
Computation and Intelligence, 1959.

[Sch02] R. E. Schapire, "The Boosting Approach to Machine Learning: An Overview," in
Mathematical Sciences Research Institute (MSRI) Workshop on Nonlinear Estimation
and Classification, 2002.

[Sch94] C. Schaffer, "A Conservation Law for Generalization Performance," in International
Conference on Machine Learning (ICML), 1994, pp. 259-265.

[Set01] R. Setiono and H. Liu, "Feature Extraction via Neural Networks," in Feature
Extraction Construction and Selection: A Data Mining Perspective. Kluwer Academic

 85

Publishing, 2001.
[Tal99] L. Talavera, "Feature Selection as a Preprocessing Step for Hierarchical Clustering,"

in International Conference on Machine Learning (ICML), 1999, pp. 389-397.
[Tal99a] L. Talavera, "Feature Selection as Retrospective Pruning in Hierarchical Clustering,"

in Symposium on Intelligent Data Analysis (IDA), 1999, pp. 75-86.
[Tan06] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Addison-

Wesley, 2006.
[Tas01] B. Taskar, E. Segal, and D. Koller, "Probabilistic Classification and Clustering in

Relational Data," in International Joint Conference on Artificial Intelligence, Seattle,
WA, 2001, pp. 870-876.

[Tas02] B. Taskar, P. Abbeel, and D. Koller, "Discriminative probabilistic models for
relational data," in Uncertainty in Artificial Intelligence, 2002.

[Thr98] S. Thrun, "Lifelong Learning Algorithms," Learning to Learn, vol. 8, pp. 181-209,
1998.

[Vil02] R. Vilalta and Y. Drissi, "A Perspective View and Survey of Meta-Learning,"
Artificial Intelligence Review, vol. 18, no. 2, pp. 77-95, 2002.

[Was05] S. Wasserman, J. Scott, and P. J. Carrinton, "Introduction," in Models and Methods in
Social Network Analysis, M. Granovetter, Ed. Cambridge, NY: Cambridge University
Press, 2005, ch. 1, pp. 1-5.

[Was07] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, M.
Granovetter, Ed. Cambridge, NY: Cambridge University Press, 2007.

[Wat69] S. Watanabe, Knowing and Guessing: A Quantitative Study of Inference and
Information. New York: Wiley, 1969.

[Wei95] S. M. Weiss and N. Indurkhya, "Rule-based Machine Learning Methods for
Functional Prediction," Journal of Artificial Intelligence Research, vol. 3, pp. 383-
403, 1995.

[Wen08] T. Weninger and W. H. Hsu, "Web Content Extraction Through Histogram
Clustering," in Artificial Neural Networks in Engineering, St. Louis, MO, 2008.

[Wen08a] T. Weninger and W. H. Hsu, "Text Extraction from the Web via Text-To-Tag Ratio,"
in Database and Expert Systems Applications Workshop on Text-based Information
Retrieval, Turin, Italy, 2008.

[Wik08] Wikipedia. (2008, Nov.) Wikipedia. [Online].
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

[Wik08a] Wikipedia. (2008) Occom's Razor. [Online]. en.wikipedia.org/wiki/Occam's_razor
[Wit99] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. San Francisco, CA: Morgan Kaufmann, 1999.
[Wol92] D. H. Wolpert, "Stacked Generalization," Neural Networks, vol. 5, pp. 241-259, 1992.
[Wys80] N. Wyse, R. Dubes, and A. K. Jain, "A critical evaluation of intrinsic dimensionality

algorithms," in Pattern Recognition in Practice, E. S. Gelsema and L. N. Kanal, Eds.
Morgan Kaufmann, 1980, pp. 415-425.

[Zhe98] Z. Zheng, "A Comparision of Constructing Different Types of New Features for
Decision Tree Learning," in Feature Extraction, Construction and Selection: A Data

 86

Mining Perspective, H. Liu and H. Motoda, Eds. Boston, MA: Kluwer Academic
Publishing, 1998, ch. 15, pp. 239-255.

 87

Appendix A - Complete Feature Set

1. @RELATION linkmining
2. @ATTRIBUTE fdd NUMERIC
3. @ATTRIBUTE bdd NUMERIC
4. @ATTRIBUTE indegreeu NUMERIC
5. @ATTRIBUTE outdegreeu NUMERIC
6. @ATTRIBUTE indegreev NUMERIC
7. @ATTRIBUTE outdegreev NUMERIC
8. @ATTRIBUTE euclidDist NUMERIC
9. @ATTRIBUTE intersectioninterestsidsum NUMERIC
10. @ATTRIBUTE intersectioninterestsidavg NUMERIC
11. @ATTRIBUTE intersectioninterestsidmin NUMERIC
12. @ATTRIBUTE intersectioninterestsidmax NUMERIC
13. @ATTRIBUTE intersectioninterestsidcount NUMERIC
14. @ATTRIBUTE intersectioninterestspopularitysum NUMERIC
15. @ATTRIBUTE intersectioninterestspopularityavg NUMERIC
16. @ATTRIBUTE intersectioninterestspopularitymin NUMERIC
17. @ATTRIBUTE intersectioninterestspopularitymax NUMERIC
18. @ATTRIBUTE intersectioninterestspopularitycount NUMERIC
19. @ATTRIBUTE intersectionfriendsidsum NUMERIC
20. @ATTRIBUTE intersectionfriendsidavg NUMERIC
21. @ATTRIBUTE intersectionfriendsidmin NUMERIC
22. @ATTRIBUTE intersectionfriendsidmax NUMERIC
23. @ATTRIBUTE intersectionfriendsidcount NUMERIC
24. @ATTRIBUTE intersectionfriendsagesum NUMERIC
25. @ATTRIBUTE intersectionfriendsageavg NUMERIC
26. @ATTRIBUTE intersectionfriendsagemin NUMERIC
27. @ATTRIBUTE intersectionfriendsagemax NUMERIC
28. @ATTRIBUTE intersectionfriendsagecount NUMERIC
29. @ATTRIBUTE unioninterestsidsum NUMERIC
30. @ATTRIBUTE unioninterestsidavg NUMERIC
31. @ATTRIBUTE unioninterestsidmin NUMERIC
32. @ATTRIBUTE unioninterestsidmax NUMERIC
33. @ATTRIBUTE unioninterestsidcount NUMERIC
34. @ATTRIBUTE unioninterestspopularitysum NUMERIC
35. @ATTRIBUTE unioninterestspopularityavg NUMERIC
36. @ATTRIBUTE unioninterestspopularitymin NUMERIC
37. @ATTRIBUTE unioninterestspopularitymax NUMERIC
38. @ATTRIBUTE unioninterestspopularitycount NUMERIC
39. @ATTRIBUTE unionfriendsidsum NUMERIC
40. @ATTRIBUTE unionfriendsidavg NUMERIC
41. @ATTRIBUTE unionfriendsidmin NUMERIC
42. @ATTRIBUTE unionfriendsidmax NUMERIC
43. @ATTRIBUTE unionfriendsidcount NUMERIC
44. @ATTRIBUTE unionfriendsagesum NUMERIC
45. @ATTRIBUTE unionfriendsageavg NUMERIC
46. @ATTRIBUTE unionfriendsagemin NUMERIC
47. @ATTRIBUTE unionfriendsagemax NUMERIC
48. @ATTRIBUTE unionfriendsagecount NUMERIC
49. @ATTRIBUTE differenceinterestsidsum NUMERIC
50. @ATTRIBUTE differenceinterestsidavg NUMERIC
51. @ATTRIBUTE differenceinterestsidmin NUMERIC
52. @ATTRIBUTE differenceinterestsidmax NUMERIC
53. @ATTRIBUTE differenceinterestsidcount NUMERIC

 88

54. @ATTRIBUTE differenceinterestspopularitysum NUMERIC
55. @ATTRIBUTE differenceinterestspopularityavg NUMERIC
56. @ATTRIBUTE differenceinterestspopularitymin NUMERIC
57. @ATTRIBUTE differenceinterestspopularitymax NUMERIC
58. @ATTRIBUTE differenceinterestspopularitycount NUMERIC
59. @ATTRIBUTE differencefriendsidsum NUMERIC
60. @ATTRIBUTE differencefriendsidavg NUMERIC
61. @ATTRIBUTE differencefriendsidmin NUMERIC
62. @ATTRIBUTE differencefriendsidmax NUMERIC
63. @ATTRIBUTE differencefriendsidcount NUMERIC
64. @ATTRIBUTE differencefriendsagesum NUMERIC
65. @ATTRIBUTE differencefriendsageavg NUMERIC
66. @ATTRIBUTE differencefriendsagemin NUMERIC
67. @ATTRIBUTE differencefriendsagemax NUMERIC
68. @ATTRIBUTE differencefriendsagecount NUMERIC
69. @ATTRIBUTE firstinterestsidsum NUMERIC
70. @ATTRIBUTE firstinterestsidavg NUMERIC
71. @ATTRIBUTE firstinterestsidmin NUMERIC
72. @ATTRIBUTE firstinterestsidmax NUMERIC
73. @ATTRIBUTE firstinterestsidcount NUMERIC
74. @ATTRIBUTE firstinterestspopularitysum NUMERIC
75. @ATTRIBUTE firstinterestspopularityavg NUMERIC
76. @ATTRIBUTE firstinterestspopularitymin NUMERIC
77. @ATTRIBUTE firstinterestspopularitymax NUMERIC
78. @ATTRIBUTE firstinterestspopularitycount NUMERIC
79. @ATTRIBUTE firstfriendsidsum NUMERIC
80. @ATTRIBUTE firstfriendsidavg NUMERIC
81. @ATTRIBUTE firstfriendsidmin NUMERIC
82. @ATTRIBUTE firstfriendsidmax NUMERIC
83. @ATTRIBUTE firstfriendsidcount NUMERIC
84. @ATTRIBUTE firstfriendsagesum NUMERIC
85. @ATTRIBUTE firstfriendsageavg NUMERIC
86. @ATTRIBUTE firstfriendsagemin NUMERIC
87. @ATTRIBUTE firstfriendsagemax NUMERIC
88. @ATTRIBUTE firstfriendsagecount NUMERIC
89. @ATTRIBUTE secondinterestsidsum NUMERIC
90. @ATTRIBUTE secondinterestsidavg NUMERIC
91. @ATTRIBUTE secondinterestsidmin NUMERIC
92. @ATTRIBUTE secondinterestsidmax NUMERIC
93. @ATTRIBUTE secondinterestsidcount NUMERIC
94. @ATTRIBUTE secondinterestspopularitysum NUMERIC
95. @ATTRIBUTE secondinterestspopularityavg NUMERIC
96. @ATTRIBUTE secondinterestspopularitymin NUMERIC
97. @ATTRIBUTE secondinterestspopularitymax NUMERIC
98. @ATTRIBUTE secondinterestspopularitycount NUMERIC
99. @ATTRIBUTE secondfriendsidsum NUMERIC
100. @ATTRIBUTE secondfriendsidavg NUMERIC
101. @ATTRIBUTE secondfriendsidmin NUMERIC
102. @ATTRIBUTE secondfriendsidmax NUMERIC
103. @ATTRIBUTE secondfriendsidcount NUMERIC
104. @ATTRIBUTE secondfriendsagesum NUMERIC
105. @ATTRIBUTE secondfriendsageavg NUMERIC
106. @ATTRIBUTE secondfriendsagemin NUMERIC
107. @ATTRIBUTE secondfriendsagemax NUMERIC
108. @ATTRIBUTE secondfriendsagecount NUMERIC
109. @ATTRIBUTE friend {yes,no}

 89

Appendix B - ECJ Parameters File

parent.0 = ../../../gp/koza/koza.params

pop.subpop.0.species.ind.numtrees = 10

"The result-producing branch" (the "third" tree in Koza-I p. 538)
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.0.tc = tc0
"ADF0 body" (the "first" tree in Koza-I p. 538)
pop.subpop.0.species.ind.tree.1 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.1.tc = tc1
"ADF1 body" (the "second" tree in Koza-I p. 538)
pop.subpop.0.species.ind.tree.2 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.2.tc = tc2

pop.subpop.0.species.ind.tree.3 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.3.tc = tc3

pop.subpop.0.species.ind.tree.4 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.4.tc = tc4

pop.subpop.0.species.ind.tree.5 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.5.tc = tc5

pop.subpop.0.species.ind.tree.6 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.6.tc = tc6

pop.subpop.0.species.ind.tree.7 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.7.tc = tc7

pop.subpop.0.species.ind.tree.8 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.8.tc = tc8

pop.subpop.0.species.ind.tree.9 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.9.tc = tc9

pop.subpop.0.species.ind.tree.10 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.10.tc = tc10

Now, let's define what tc0, tc1, and tc2 are.
Each has a different function set, f0, f1, and f2

gp.tc.size = 11

gp.tc.0 = ec.gp.GPTreeConstraints
gp.tc.0.name = tc0
gp.tc.0.fset = f0
gp.tc.0.returns = nil
gp.tc.0.init = ec.gp.koza.GrowBuilder
gp.tc.0.init.growp = 0.5
gp.tc.0.init.min = 2
gp.tc.0.init.max = 6

 90

gp.tc.1 = ec.gp.GPTreeConstraints
gp.tc.1.name = tc1
gp.tc.1.fset = f0
gp.tc.1.returns = nil
gp.tc.1.init = ec.gp.koza.GrowBuilder
gp.tc.1.init.growp = 0.5
gp.tc.1.init.min = 2
gp.tc.1.init.max = 6

gp.tc.2 = ec.gp.GPTreeConstraints
gp.tc.2.name = tc2
gp.tc.2.fset = f0
gp.tc.2.returns = nil
gp.tc.2.init = ec.gp.koza.GrowBuilder
gp.tc.2.init.growp = 0.5
gp.tc.2.init.min = 2
gp.tc.2.init.max = 6

gp.tc.3 = ec.gp.GPTreeConstraints
gp.tc.3.name = tc3
gp.tc.3.fset = f0
gp.tc.3.returns = nil
gp.tc.3.init = ec.gp.koza.GrowBuilder
gp.tc.3.init.growp = 0.5
gp.tc.3.init.min = 2
gp.tc.3.init.max = 6

gp.tc.4 = ec.gp.GPTreeConstraints
gp.tc.4.name = tc4
gp.tc.4.fset = f0
gp.tc.4.returns = nil
gp.tc.4.init = ec.gp.koza.GrowBuilder
gp.tc.4.init.growp = 0.5
gp.tc.4.init.min = 2
gp.tc.4.init.max = 6

gp.tc.5 = ec.gp.GPTreeConstraints
gp.tc.5.name = tc5
gp.tc.5.fset = f0
gp.tc.5.returns = nil
gp.tc.5.init = ec.gp.koza.GrowBuilder
gp.tc.5.init.growp = 0.5
gp.tc.5.init.min = 2
gp.tc.5.init.max = 6

gp.tc.6 = ec.gp.GPTreeConstraints
gp.tc.6.name = tc6
gp.tc.6.fset = f0
gp.tc.6.returns = nil
gp.tc.6.init = ec.gp.koza.GrowBuilder
gp.tc.6.init.growp = 0.5
gp.tc.6.init.min = 2
gp.tc.6.init.max = 6

gp.tc.7 = ec.gp.GPTreeConstraints
gp.tc.7.name = tc7
gp.tc.7.fset = f0

 91

gp.tc.7.returns = nil
gp.tc.7.init = ec.gp.koza.GrowBuilder
gp.tc.7.init.growp = 0.5
gp.tc.7.init.min = 2
gp.tc.7.init.max = 6

gp.tc.8 = ec.gp.GPTreeConstraints
gp.tc.8.name = tc8
gp.tc.8.fset = f0
gp.tc.8.returns = nil
gp.tc.8.init = ec.gp.koza.GrowBuilder
gp.tc.8.init.growp = 0.5
gp.tc.8.init.min = 2
gp.tc.8.init.max = 6

gp.tc.9 = ec.gp.GPTreeConstraints
gp.tc.9.name = tc9
gp.tc.9.fset = f0
gp.tc.9.returns = nil
gp.tc.9.init = ec.gp.koza.GrowBuilder
gp.tc.9.init.growp = 0.5
gp.tc.9.init.min = 2
gp.tc.9.init.max = 6

gp.tc.10 = ec.gp.GPTreeConstraints
gp.tc.10.name = tc10
gp.tc.10.fset = f0
gp.tc.10.returns = nil
gp.tc.10.init = ec.gp.koza.GrowBuilder
gp.tc.10.init.growp = 0.5
gp.tc.10.init.min = 2
gp.tc.10.init.max = 6

gp.fs.size = 1
gp.fs.0.name = f0
gp.fs.0.info = ec.gp.GPFuncInfo
gp.fs.0.size = 109
gp.fs.0.func.0 = ec.app.linkmining.regression.func.Add
gp.fs.0.func.0.nc = nc2
gp.fs.0.func.1 = ec.app.linkmining.regression.func.Mul
gp.fs.0.func.1.nc = nc2
gp.fs.0.func.2 = ec.app.linkmining.regression.func.Sub
gp.fs.0.func.2.nc = nc2
gp.fs.0.func.3 = ec.app.linkmining.regression.func.Div
gp.fs.0.func.3.nc = nc2

gp.fs.0.func.4 = ec.app.linkmining.regression.func.X0
gp.fs.0.func.4.nc = nc0
gp.fs.0.func.5 = ec.app.linkmining.regression.func.X1
gp.fs.0.func.5.nc = nc0
gp.fs.0.func.6 = ec.app.linkmining.regression.func.X2
gp.fs.0.func.6.nc = nc0
gp.fs.0.func.7 = ec.app.linkmining.regression.func.X3
gp.fs.0.func.7.nc = nc0
gp.fs.0.func.8 = ec.app.linkmining.regression.func.X4
gp.fs.0.func.8.nc = nc0
gp.fs.0.func.9 = ec.app.linkmining.regression.func.X5

 92

gp.fs.0.func.9.nc = nc0
gp.fs.0.func.10 = ec.app.linkmining.regression.func.X6
gp.fs.0.func.10.nc = nc0
gp.fs.0.func.11 = ec.app.linkmining.regression.func.X7
gp.fs.0.func.11.nc = nc0
gp.fs.0.func.12 = ec.app.linkmining.regression.func.X8
gp.fs.0.func.12.nc = nc0
gp.fs.0.func.13 = ec.app.linkmining.regression.func.X9
gp.fs.0.func.13.nc = nc0
gp.fs.0.func.14 = ec.app.linkmining.regression.func.X10
gp.fs.0.func.14.nc = nc0
gp.fs.0.func.15 = ec.app.linkmining.regression.func.X11
gp.fs.0.func.15.nc = nc0
gp.fs.0.func.16 = ec.app.linkmining.regression.func.X12
gp.fs.0.func.16.nc = nc0
gp.fs.0.func.17 = ec.app.linkmining.regression.func.X13
gp.fs.0.func.17.nc = nc0
gp.fs.0.func.18 = ec.app.linkmining.regression.func.X14
gp.fs.0.func.18.nc = nc0
gp.fs.0.func.19 = ec.app.linkmining.regression.func.X15
gp.fs.0.func.19.nc = nc0
gp.fs.0.func.20 = ec.app.linkmining.regression.func.X16
gp.fs.0.func.20.nc = nc0
gp.fs.0.func.21 = ec.app.linkmining.regression.func.X17
gp.fs.0.func.21.nc = nc0
gp.fs.0.func.22 = ec.app.linkmining.regression.func.X18
gp.fs.0.func.22.nc = nc0
gp.fs.0.func.23 = ec.app.linkmining.regression.func.X19
gp.fs.0.func.23.nc = nc0
gp.fs.0.func.24 = ec.app.linkmining.regression.func.X20
gp.fs.0.func.24.nc = nc0
gp.fs.0.func.25 = ec.app.linkmining.regression.func.X21
gp.fs.0.func.25.nc = nc0
gp.fs.0.func.26 = ec.app.linkmining.regression.func.X22
gp.fs.0.func.26.nc = nc0
gp.fs.0.func.27 = ec.app.linkmining.regression.func.X23
gp.fs.0.func.27.nc = nc0
gp.fs.0.func.28 = ec.app.linkmining.regression.func.X24
gp.fs.0.func.28.nc = nc0
gp.fs.0.func.29 = ec.app.linkmining.regression.func.X25
gp.fs.0.func.29.nc = nc0
gp.fs.0.func.30 = ec.app.linkmining.regression.func.X26
gp.fs.0.func.30.nc = nc0
gp.fs.0.func.31 = ec.app.linkmining.regression.func.X27
gp.fs.0.func.31.nc = nc0
gp.fs.0.func.32 = ec.app.linkmining.regression.func.X28
gp.fs.0.func.32.nc = nc0
gp.fs.0.func.33 = ec.app.linkmining.regression.func.X29
gp.fs.0.func.33.nc = nc0
gp.fs.0.func.34 = ec.app.linkmining.regression.func.X30
gp.fs.0.func.34.nc = nc0
gp.fs.0.func.35 = ec.app.linkmining.regression.func.X31
gp.fs.0.func.35.nc = nc0
gp.fs.0.func.36 = ec.app.linkmining.regression.func.X32
gp.fs.0.func.36.nc = nc0
gp.fs.0.func.37 = ec.app.linkmining.regression.func.X33
gp.fs.0.func.37.nc = nc0

 93

gp.fs.0.func.38 = ec.app.linkmining.regression.func.X34
gp.fs.0.func.38.nc = nc0
gp.fs.0.func.39 = ec.app.linkmining.regression.func.X35
gp.fs.0.func.39.nc = nc0
gp.fs.0.func.40 = ec.app.linkmining.regression.func.X36
gp.fs.0.func.40.nc = nc0
gp.fs.0.func.41 = ec.app.linkmining.regression.func.X37
gp.fs.0.func.41.nc = nc0
gp.fs.0.func.42 = ec.app.linkmining.regression.func.X38
gp.fs.0.func.42.nc = nc0
gp.fs.0.func.43 = ec.app.linkmining.regression.func.X39
gp.fs.0.func.43.nc = nc0
gp.fs.0.func.44 = ec.app.linkmining.regression.func.X40
gp.fs.0.func.44.nc = nc0
gp.fs.0.func.45 = ec.app.linkmining.regression.func.X41
gp.fs.0.func.45.nc = nc0
gp.fs.0.func.46 = ec.app.linkmining.regression.func.X42
gp.fs.0.func.46.nc = nc0
gp.fs.0.func.47 = ec.app.linkmining.regression.func.X43
gp.fs.0.func.47.nc = nc0
gp.fs.0.func.48 = ec.app.linkmining.regression.func.X44
gp.fs.0.func.48.nc = nc0
gp.fs.0.func.49 = ec.app.linkmining.regression.func.X45
gp.fs.0.func.49.nc = nc0
gp.fs.0.func.50 = ec.app.linkmining.regression.func.X46
gp.fs.0.func.50.nc = nc0
gp.fs.0.func.51 = ec.app.linkmining.regression.func.X47
gp.fs.0.func.51.nc = nc0
gp.fs.0.func.52 = ec.app.linkmining.regression.func.X48
gp.fs.0.func.52.nc = nc0
gp.fs.0.func.53 = ec.app.linkmining.regression.func.X49
gp.fs.0.func.53.nc = nc0
gp.fs.0.func.54 = ec.app.linkmining.regression.func.X50
gp.fs.0.func.54.nc = nc0
gp.fs.0.func.55 = ec.app.linkmining.regression.func.X51
gp.fs.0.func.55.nc = nc0
gp.fs.0.func.56 = ec.app.linkmining.regression.func.X52
gp.fs.0.func.56.nc = nc0
gp.fs.0.func.57 = ec.app.linkmining.regression.func.X53
gp.fs.0.func.57.nc = nc0
gp.fs.0.func.58 = ec.app.linkmining.regression.func.X54
gp.fs.0.func.58.nc = nc0
gp.fs.0.func.59 = ec.app.linkmining.regression.func.X55
gp.fs.0.func.59.nc = nc0
gp.fs.0.func.60 = ec.app.linkmining.regression.func.X56
gp.fs.0.func.60.nc = nc0
gp.fs.0.func.61 = ec.app.linkmining.regression.func.X57
gp.fs.0.func.61.nc = nc0
gp.fs.0.func.62 = ec.app.linkmining.regression.func.X58
gp.fs.0.func.62.nc = nc0
gp.fs.0.func.63 = ec.app.linkmining.regression.func.X59
gp.fs.0.func.63.nc = nc0
gp.fs.0.func.64 = ec.app.linkmining.regression.func.X60
gp.fs.0.func.64.nc = nc0
gp.fs.0.func.65 = ec.app.linkmining.regression.func.X61
gp.fs.0.func.65.nc = nc0
gp.fs.0.func.66 = ec.app.linkmining.regression.func.X62

 94

gp.fs.0.func.66.nc = nc0
gp.fs.0.func.67 = ec.app.linkmining.regression.func.X63
gp.fs.0.func.67.nc = nc0
gp.fs.0.func.68 = ec.app.linkmining.regression.func.X64
gp.fs.0.func.68.nc = nc0
gp.fs.0.func.69 = ec.app.linkmining.regression.func.X65
gp.fs.0.func.69.nc = nc0
gp.fs.0.func.70 = ec.app.linkmining.regression.func.X66
gp.fs.0.func.70.nc = nc0
gp.fs.0.func.71 = ec.app.linkmining.regression.func.X67
gp.fs.0.func.71.nc = nc0
gp.fs.0.func.72 = ec.app.linkmining.regression.func.X68
gp.fs.0.func.72.nc = nc0
gp.fs.0.func.73 = ec.app.linkmining.regression.func.X69
gp.fs.0.func.73.nc = nc0
gp.fs.0.func.74 = ec.app.linkmining.regression.func.X70
gp.fs.0.func.74.nc = nc0
gp.fs.0.func.75 = ec.app.linkmining.regression.func.X71
gp.fs.0.func.75.nc = nc0
gp.fs.0.func.76 = ec.app.linkmining.regression.func.X72
gp.fs.0.func.76.nc = nc0
gp.fs.0.func.77 = ec.app.linkmining.regression.func.X73
gp.fs.0.func.77.nc = nc0
gp.fs.0.func.78 = ec.app.linkmining.regression.func.X74
gp.fs.0.func.78.nc = nc0
gp.fs.0.func.79 = ec.app.linkmining.regression.func.X75
gp.fs.0.func.79.nc = nc0
gp.fs.0.func.80 = ec.app.linkmining.regression.func.X76
gp.fs.0.func.80.nc = nc0
gp.fs.0.func.81 = ec.app.linkmining.regression.func.X77
gp.fs.0.func.81.nc = nc0
gp.fs.0.func.82 = ec.app.linkmining.regression.func.X78
gp.fs.0.func.82.nc = nc0
gp.fs.0.func.83 = ec.app.linkmining.regression.func.X79
gp.fs.0.func.83.nc = nc0
gp.fs.0.func.84 = ec.app.linkmining.regression.func.X80
gp.fs.0.func.84.nc = nc0
gp.fs.0.func.85 = ec.app.linkmining.regression.func.X81
gp.fs.0.func.85.nc = nc0
gp.fs.0.func.86 = ec.app.linkmining.regression.func.X82
gp.fs.0.func.86.nc = nc0
gp.fs.0.func.87 = ec.app.linkmining.regression.func.X83
gp.fs.0.func.87.nc = nc0
gp.fs.0.func.88 = ec.app.linkmining.regression.func.X84
gp.fs.0.func.88.nc = nc0
gp.fs.0.func.89 = ec.app.linkmining.regression.func.X85
gp.fs.0.func.89.nc = nc0
gp.fs.0.func.90 = ec.app.linkmining.regression.func.X86
gp.fs.0.func.90.nc = nc0
gp.fs.0.func.91 = ec.app.linkmining.regression.func.X87
gp.fs.0.func.91.nc = nc0
gp.fs.0.func.92 = ec.app.linkmining.regression.func.X88
gp.fs.0.func.92.nc = nc0
gp.fs.0.func.93 = ec.app.linkmining.regression.func.X89
gp.fs.0.func.93.nc = nc0
gp.fs.0.func.94 = ec.app.linkmining.regression.func.X90
gp.fs.0.func.94.nc = nc0

 95

gp.fs.0.func.95 = ec.app.linkmining.regression.func.X91
gp.fs.0.func.95.nc = nc0
gp.fs.0.func.96 = ec.app.linkmining.regression.func.X92
gp.fs.0.func.96.nc = nc0
gp.fs.0.func.97 = ec.app.linkmining.regression.func.X93
gp.fs.0.func.97.nc = nc0
gp.fs.0.func.98 = ec.app.linkmining.regression.func.X94
gp.fs.0.func.98.nc = nc0
gp.fs.0.func.99 = ec.app.linkmining.regression.func.X95
gp.fs.0.func.99.nc = nc0
gp.fs.0.func.100 = ec.app.linkmining.regression.func.X96
gp.fs.0.func.100.nc = nc0
gp.fs.0.func.101 = ec.app.linkmining.regression.func.X97
gp.fs.0.func.101.nc = nc0
gp.fs.0.func.102 = ec.app.linkmining.regression.func.X98
gp.fs.0.func.102.nc = nc0
gp.fs.0.func.103 = ec.app.linkmining.regression.func.X99
gp.fs.0.func.103.nc = nc0
gp.fs.0.func.104 = ec.app.linkmining.regression.func.X100
gp.fs.0.func.104.nc = nc0
gp.fs.0.func.105 = ec.app.linkmining.regression.func.X101
gp.fs.0.func.105.nc = nc0
gp.fs.0.func.106 = ec.app.linkmining.regression.func.X102
gp.fs.0.func.106.nc = nc0
gp.fs.0.func.107 = ec.app.linkmining.regression.func.X103
gp.fs.0.func.107.nc = nc0
gp.fs.0.func.108 = ec.app.linkmining.regression.func.X104
gp.fs.0.func.108.nc = nc0

%gp.fs.0.func.5 = ec.app.linkmining.regression.func.Sin
%gp.fs.0.func.5.nc = nc1
%gp.fs.0.func.6 = ec.app.linkmining.regression.func.Cos
%gp.fs.0.func.6.nc = nc1
%gp.fs.0.func.7 = ec.app.linkmining.regression.func.Exp
%gp.fs.0.func.7.nc = nc1
%gp.fs.0.func.8 = ec.app.linkmining.regression.func.Log
%gp.fs.0.func.8.nc = nc1

We specify our problem here

eval.problem = ec.app.linkmining.regression.Regression
eval.problem.data = ec.app.linkmining.regression.RegressionData
ADFs use the same data type typically -- we need to include
this even if we're not implementing ADFs
eval.problem.stack.context.data = ec.app.linkmining.regression.RegressionData

The size of our training set, by default, is 20
eval.problem.size = 10

pop.subpop.0.size = 100

stat.file $out.stat

 96

Appendix C - Symbol Trees for Best Individuals

OneR
1 2 3 4 5

X30 X56 X21 X4 X74
(- X80 X18) X26 X103 X85 (- X65 X17)

X30 X32 X15 X60 X1
X12 X70 X89 (- X71 X68) X92

(- X1 X57) X102 X19 X22 X19
(* X93 X93) X98 X71 X2 (* X102 X70)

X7 X48 X14 X17 X74
X78 X7 X30 X93 X79
X49 X7 X80 X87 X82
X17 X1 X80 X68 X62

Logistic
1 2 3 4 5

X82 X67 X84 X11 X21
X83 X82 X2 X62 X21

(* X27 X30) X7 X82 X26 X32
X82 X37 X0 X57 X16
X21 X26 X62 X70 X42

(% X59 X97) X43 X35 X12 X27
X18 X57 X10 X42 X68

X101 X22 X26 X45 X75
(- X0 X79) X26 X38 X62 X82

X64 X82 X40 X46 X46

J48
1 2 3 4 5

X37 X18 X27 X78 X78
X21 X101 X57 X86 X94
X84 X21 X28 X5 X21
X92 X58 X86 X7 X97
X4 X68 X42 X18 X43
X5 X82 X82 X46 X0

X78 X91 X21 X48 X9
X46 X42 X78 X23 X31

X103 X21 (* X43 X21) X102 X3
X27 X75 X48 X78 X4

 97

NaiveBayes
1 2 3 4 5

X70 X23 (% (+ X71 X60) X23) X4 X14
X82 X18 X92 X11 X23
X19 X82 X43 X43 X82
X26 X0 X21 X25 X12
X38 X21 X2 X21 X75
X82 X51 X60 X22 X18

(% X21 X18) X43 X18 X26 X26
X38 X54 X34 X82 X0
X47 X104 X42 X30 X44
X28 X95 X79 X81 X73

IB1
1 2 3 4 5

X59 X82 X3 X18 X3
X83 X57 X10 X82 X18

(* X48 X39) X18 X45 X3 X81
X23 X18 X18 X23 X23
X18 X26 X82 X23 X44

X102 X23 X22 X102 X18
X42 X82 X102 X33 X26
X85 X58 X21 X7 X70
X7 X44 X22 X26 X2

X68 X17 X103 X64 X74

