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Abstract 

This thesis discusses the background and methodologies necessary for constructing 

features in order to discover hidden links in relational data. Specifically, we consider the 

problems of predicting, classifying and annotating friends relations in friends networks, based 

upon features constructed from network structure and user profile data. I first document a data 

model for the blog service LiveJournal, and define a set of machine learning problems such as 

predicting existing links and estimating inter-pair distance. Next, I explain how the problem of 

classifying a user pair in a social networks, as directly connected or not, poses the problem of 

selecting and constructing relevant features. In order to construct these features, a genetic 

programming approach is used to construct multiple symbol trees with base features as their 

leaves; in this manner, the genetic program selects and constructs features that many not have 

been considered, but possess better predictive properties than the base features. In order to 

extract certain graph features from the relatively large social network, a new shortest path search 

algorithm is presented which computes and operates on a Euclidean embedding of the network. 

Finally, I present classification results and discuss the properties of the frequently constructed 

features in order to gain insight on hidden relations that exists in this domain. 
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CHAPTER 1 - Introduction 

Traditional data mining tasks such as association rule mining or market basket analysis 

attempt to find patterns in a dataset. According to Getoor, “This is consistent with the classical 

statistical inference problem of trying to identify a model given a random sample from a 

common underlying distribution” [Get03]. However, it is important to also data mine datasets 

that are relational, semi-structured or otherwise consist of links between various entities. These 

links can be explicit, such as an anchor tag in a web page, or implied such as a join operation in a 

relational database. As shown by the PageRank algorithm used by the popular search engine 

Google, link existence can be exploited to improve the predictive accuracy of learned models. 

[Bri98] Intuitively, attributes of linked objects are often more closely related than those of 

unlinked objects, and links are more likely to exist between objects that share common attributes. 

[Get03] 

Feature construction in the multi-relational setting is also possible. Traditionally, the 

attributes of an object provide the basic description of the object. However, by leveraging the 

information contained in the relationships of objects, more information about the object can be 

gleaned providing the learning algorithm an appropriate context for a better induction model. 
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This thesis focuses mainly on link discovery, i.e., predicting the existence of links 

between objects. In order to discover links not previously known to exist, a genetic programming 

approach is used to construct features that appropriately leverage the knowledge contained in the 

presence or absence of links. One computational challenge is that the graph that is studied is 

prohibitively large for traditional graph analysis algorithms to operate effectively. Therefore 

efficient memory-management techniques are devised to manage the underlying data structure. 

This introductory chapter contains necessary information for readers who are unfamiliar 

with one or more of the following topics: constructive induction, genetic and evolutionary 

computation, social networks, and link mining, as well as a brief background study of the earlier 

work this thesis builds upon. This chapter is not intended to be a complete introduction to the 

topic; I refer the interested reader to Mitchell’s book on machine learning [Mit97], Han and 

Kamber’s book on data mining [Han06], Koza’s book on genetic programming [Koz98], 

Wasserman and Faust’s book on social networks [Was07], and Lise Getoor’s paper on link 

mining [Get03]. In the final section of this chapter the principal claims of this thesis are stated. 

These claims are defended in the proceeding chapters. 

Chapter 2 contains a brief overview of the related research. The first section describes an 

alternative approach called meta-learning while the next two sections on Krawiec’s GP-based 

construction of features and Hsu’s link mining approaches serve as motivations for this thesis. 

Chapter 3 discusses the methodology of my approach. The first section describes how a 

large social network is crawled and locally stored as a graph. Subsequent sections describe the 

setup and execution of the experiments to be performed and the means by which results are 

gathered and presented. 

Chapter 4 presents four sets of results for each of the four experiments described in 

Chapter 3. The standard results metrics will often-times be accompanied by a more descriptive 

analysis of the results. The final section of this chapter will present the results in a comparative 

context leading towards the final chapter and its coverage of conclusions that can be drawn from 

these experiments. 
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Chapter 5 contains discussion about and interpretations of the results by systematically 

demonstrating how well the experiments support the principal claims of this thesis. Finally, this 

chapter presents possibilities for future research and concludes the thesis. 

1.1 Inductive Learning 

Inductive learning, as an active research area of machine learning, explores algorithms 

that reason from external examples (also known as instances or cases) to produce general 

theories (or hypotheses), which then inductively make predictions about more examples. 

Examples, in this sense, are representations of concrete knowledge about individuals, including 

specific characteristics of the set of individuals, as well as an assessment of the individuals. For 

instance, the medical records and current symptoms of a patient is an example and the doctors’ 

diagnosis of that patient is a theory because of the doctor’s experience with previous patients. 

Externally supplied examples used for generating theories are typically known as training 

examples. Created theories should be more general then the specific examples from which they 

are derived because theories can make predictions about not only trained examples but also 

previously unseen examples. This generalization is at the core of inductive reasoning. Of course, 

there is no guarantee that the results induced by an inductive learner are completely correct even 

if all of the training examples are correct. Therefore, gauging the validity of a particular learning 

algorithm is often determined by the accuracy or error rates of the learned theories on previously 

unseen examples. 

In the medical example provided above, if the training examples are provided with 

known labels such as the diagnoses of an illness for the patients then the inductive learning 

algorithm is called supervised learning. [Mit83] [Qui86] Supervised learning can solve two types 

of problems: classification problems, in which labels are categorical and regression problems, in 

which labels are continuous. [Wei95] This is in contrast to unsupervised learning, in which 

training examples are unlabeled or their labels are unknown. [Fis87] For classification problems, 

labels are referred to as classes and the induced theories are collectively called a classifier. In the 

likely instance that a problem involves only two classes, inductive learners typically consider 

examples to be either positive or negative examples of a concept [Qui86] [Mic83], in this case, 

the supervised learning task can be viewed as that of generating a definition of a concept. 
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Generally, these types of problems can be viewed as search problems [Mit82] involving a 

large hypothesis space, that is, the space consisting of all possible theories (hypotheses) under 

consideration. The goal of the search is to find the best theory with respect to the available 

training examples. 

For each learning problem (domain), the set of attributes that is used to represent the 

examples is fixed and every example is represented using the same set of attributes. Moreover, 

all possible classes are fixed and mutually exclusive. A set of training examples is called the 

training set, and this set is usually a subset of all the examples in the domain. Examples that are 

used to test the learned theories are called test examples and they are typically different from the 

training examples. The most commonly used attributes are one of three types: continuous 

(numeric), nominal or binary. Continuous attributes have ordered values. An example of a 

continuous attribute is age. Nominal attributes have a fixed set of discrete values. Cardinal 

directions such as north, south, east, west, etc. are examples of nominal attributes. Binary 

attributes are a special case of nominal attributes where there are only two distinct values. An 

example of a binary attribute is a logical variable with values that can be either true or false.  

Learned theories are often evaluated using two measurements: generalization 

performance (accuracy) and theory complexity. Generalization performance is the expected 

prediction accuracy of a theory when tested against unseen examples [Wol92]. To estimate the 

generalization performance prediction counts are made by tallying the four indicators: 

1. True Positives: the number of correctly identified positively-labeled examples 

2. True Negatives: the number of correctly identified negatively-labeled examples 

3. False Positives: the number of incorrectly identified positively-labeled examples, 

e.g., false alarm 

4. False Negatives: the number of incorrectly identified negatively-labeled examples 

e.g., miss 

Furthermore, several generalization performance indicators are employed to determine the 

validity of a learned theory: 
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1. Accuracy: ሺܶܲ ൅ ܶܰሻ ሺܶܲ ൅ ܶܰ ൅ ܲܨ ൅ ⁄ሻܰܨ , number correctly identified over 

total number. 

2. Precision: ܶܲ ሺܶܲ ൅ ⁄ሻܲܨ , aka Positive prediction value 

3. Recall: ܶܲ ሺܶܲ ൅ ⁄ሻܰܨ , aka True positive rate, hit rate, sensitivity 

4. F-Measure: 2 כ ሺܲ݊݋݅ݏ݅ܿ݁ݎ כ ܴ݈݈݁ܿܽሻ ሺܲ݊݋݅ݏ݅ܿ݁ݎ ൅ ܴ݈݈݁ܿܽሻ⁄ , harmonic mean 

5. Receiver Operating Characteristic (ROC), trade off in true positive rate and false 

positive rate 

6. Area Under ROC, aka Area Under Curve (AUC)  

The theory complexity refers to the size of the description of the theory. For instance, a theory 

with many complex rules has a higher theory complexity than a theory with a single linear rule. 

 To learn a theory from a given set of training examples an induction algorithm needs to 

make some assumptions about the nature of theory that is being learned. In this context, these 

assumptions are called biases. The inclusion of a bias is necessary because the number of 

potential theories that are consistent with the training examples is usually prohibitively large. 

Furthermore, the training data does not necessarily indicate which theory is correct. [Mit80] In 

the same work, Mitchell comments that, “an unbiased learning system’s ability to classify new 

instances is no better than if it simply stored all the training instances and performed a lookup 

when asked to classify a subsequent instance” [Mit80]. In other words, biases are used to reduce 

the hypothesis search space in order to make learning possible. 

 There are, essentially, two types of biases: absolute and relative. Absolute bias, otherwise 

known as language bias, assumes that the target theory belongs to some restricted set in the 

hypothesis space. This type of bias restricts the domain of theories that can be expressed and thus 

can be learned by the system because it is defined in terms of the description language of the 

learning system. For example, a decision tree model can only represent finite rules, whereas a 

neural network can represent a network of probabilities. Relative bias, otherwise known as 

preference bias or search bias, assumes that the theory to be learned is more likely to be from 

one set of hypothesis than from another. It places a preference ordering on hypothesis by 

directing the search through the hypothesis space.  As an example, consider the following 

question: “How many marbles are in the jar?” To begin to formulate an answer to this question 
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one should consider all of the answers available. This set of potential answers is effectively a 

hypothesis space, and this hypothesis space would include meaningless answers, such as 

negative numbers, words that do not denote counting numbers, objects, or the plethora of 

conceivable hypothesis that would exist to answer any and all questions, ever. When venturing a 

guess at how many marbles are in the jar, valid answers can only be positive integers. Therefore, 

the bias applied to this example is that answers may only be positive integers. Learning 

algorithms that employ relative bias often cite Occam’s Razor principle, which states that, “all 

other things being equal, the simplest solution is the best” [Blu87]. Occam’s Razor is also known 

as lex parsimoniae or the law of parsimony. [Wik08a] 

As stated above, every inductive learning algorithm uses some degree of bias. Therefore, 

there exist some domains in which a particular bias will perform well and some domains where 

the bias will cause the classifier to perform poorly. The Conservation Law of Generalization 

Performance explains this by stating, “total generalization performance over all learning 

situations is null” [Sch94]. In other words, no single learning algorithm can be superior to all 

other algorithms across all domains. Watanabe’s Ugly Duckling Theorem similarly states that it 

is impossible to perform classification without some sort of bias. [Wat69] Fortunately, 

researchers in machine learning focus mainly on problems of a relatively limited domain. 

Because of the Conservation Law of Generalization Performance, when this thesis states that one 

learning algorithm is superior to another, the statement rather means that the former learning 

algorithm is superior to another in the particular domain being discussed. Upon further review of 

Schaffer’s conservation law, Rao et al. find that the conservation law is only applicable to a 

uniformly random universe. However, it is highly unlikely that common problems in machine 

learning are uniformly random therefore we measure performance taking into account the 

probability that each concept occurs. Using this understanding it is possible that one learning 

algorithm can be superior to another in our universe [Rao95]. 

1.1.1 Feature Extraction 

Feature extraction is the process of extracting a set of new features from an original set of 

features through some mapping. [Wys80] Assuming there are ݊ features ܣଵ, ଶܣ … ,  ௡ afterܣ

feature extraction there exists another set of features ܤଵ, ଶܤ … , ݉ ௠ whereܤ ൏ ݊ and ܤ௜ ൌ
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,ଵܣ௜ሺܨ ଶܣ … ,  ௜ is a mapping function. Long searches are typically required to find goodܨ ௡ሻ, andܣ

transformations, but the goal of feature extraction is to find a minimum set of new features via 

some transformation function to optimize some performance measure. 

The reason for performing feature extraction is that when analyzing complex data one of 

the major problems encountered is that learning with a large number of variables generally 

requires a large amount of memory and computation power. Moreover, supervised learning 

algorithms alone may overfit the training sample and generalize poorly to new samples. Feature 

extraction is a general term for methods of constructing combinations of the variables to get 

around these problems while still describing the data with sufficient accuracy.  

Several general feature extraction techniques are available. For example, principal 

components analysis (PCA) is a standard technique in which the original ݊ features are replaced 

and a set of ݉ new features are generated by linear combinations of the original features. The 

basic idea is to form an ݉-dimensional projection (where 1 ൑ ݉ ൑ ݊ െ 1) by the linear 

projections that maximize the sample variance subject to being uncorrelated with all of the 

already selected linear combinations. The number of new features ݉ is determined by the ݉ 

principal components that capture a variance greater than some pre-determined threshold. 

Finding ݉ principal components can be otherwise thought of as finding the ݉ eigenvectors with 

the largest eigenvalues that correspond to the dimensions that have the strongest correlation in 

the data set. [Dan01] Similarly, a feedforward neural network approach can be used to realize a 

functional mapping and extract new features. The basic idea of this approach is to use the hidden 

units in the neural network as newly extracted features. The prediction accuracy is used as the 

performance metric; of course, this requires that the data must be labeled with classes, and, 

contrary to PCA, the transformation from input units to hidden units is nonlinear. Two types of 

algorithms have been developed to extract the minimum number of hidden units (and their 

corresponding features) from neural networks: the network construction algorithm iteratively 

adds hidden units to improve prediction accuracy, and the networks pruning algorithm removes 

redundant connections between the input and hidden layers so long as the prediction accuracy 

does not decrease. [Set01] 
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1.1.2 Selective Induction 

Selective induction, also known as feature selection, is a process that chooses a subset of 

ܯ features from the original set of ܰ features, where ܯ ك ܰ, for the purpose of reducing ܯ 

according to some criterion [Blu97]. The goal of selective induction in machine learning is to: 

1. Reduce the dimensionality of a feature space. 

2. Increase the speed of the learning algorithm. 

3. Improve the accuracy of the classification algorithm. 

4. Improve the comprehensibility of classification results. 

Studies have also shown that the reduction in feature spaces provided by feature selection can 

improve the prediction accuracy in unsupervised clustering algorithms. [Tal99] [Tal99a] [Das00] 

[DyJ00] 

Intuitive, though naïve, ways to generate feature subsets exist. For instance, starting with 

an empty set we could sequentially add features one at a time and test the efficacy for each 

subset. If we start with a full set then sequentially we can remove one feature at a time similar to 

the first scheme. Alternatively, we can randomly generate sets so that each candidate feature has 

an equal probability of being chosen (from 2|ே| possible subsets). Finally, we could exhaustively 

enumerate all 2|ே| possible subsets. With each scheme a best score is kept, and after the selection 

process is complete the best feature set is chosen. In all cases, the best score is always relevant to 

a certain evaluation criterion. “Best” can thus be defined as the optimal feature subset for a given 

criterion.  

Evaluation criteria can be categorized into two distinct groups based on their 

independence from the learning algorithm. A filter evaluates the optimality/goodness of a feature 

subset independent of the learning algorithm by calculating a distance measure, information 

measure (i.e., entropy), dependency measure, consistency measure, etc. [Liu98]. A wrapper 

evaluates the optimality/goodness of a feature subset by evaluating the performance of the 

learning algorithm applied on the selected feature subset. For supervised learning, the main goal 

is to maximize classification/predictive accuracy. While for unsupervised learning many 
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measures exist for estimating the quality of clustering results, such as cluster compactness, 

scatter separability, and maximum likelihood. [Tal99a] [DyJ00] [Kim00] 

Many feature selection algorithms exist. Using the model described above, we can use 

one or more types of algorithms to generate a feature subset better suited for classification tasks. 

Exhaustive approaches 

 Starting with an empty or complete feature set we can sequentially add or remove 

features as described above. Search algorithms, such as branch and bound, evaluate estimated 

accuracy by starting with a full feature set and running until a preset bound is reached. 

Heuristic approaches 

 Sequential forward search and sequential backward search, described above, can be 

implemented using many different univariate heuristics. The simplest version of a wrapper 

model is to run a decision tree learning algorithm and apply only those features that are used, this 

is effectively using the entropy heuristic because decision trees operate mainly on the entropy 

score of features. [Car93] 

Nondeterministic approaches 

The Las Vegas Filter randomly generates and tests feature subsets with an inconsistency 

measure. [Liu96] Genetic algorithms and simulated annealing are also used in feature selection, 

but are essentially nondeterministic versions on the heuristic and exhaustive approaches 

described above. 

Instance-based approaches 

Relief [Kir92] is a typical example of an instance-based approach. There is no explicit 

feature subset generation in this approach, rather many small data samples are sampled from the 

training data and features are ranked based on how well they differentiate instances of different 

classes for a data sample. Features with a higher score are selected. 
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As discussed in the above section on biases, if the initial training features are appropriate 

for the representing the target theories then selective induction works very well in terms of 

theory complexity and prediction accuracy. However, if the initial training features are not 

appropriate for describing target theories, then the prediction accuracy and theory complexity 

performance can quickly deteriorate. This is the fundamental limitation of selection induction 

algorithms and is one main focuses of this thesis. 

In practice, it is very common that domain experts only supply low-level features. An 

example of a low-level feature for a checkers game domain is the contents of a square on the 

board. [Sam59] These low level features might contain some information on the state of the 

game, but there is no direct information simply in the contents of the squares that represents 

whether or not the game has been won. Even worse, some low-level features might be irrelevant 

to the target theory, and irrelevant features can often result in worse performance. [Lan94] 

There are several other limitations of selective induction, see [Ren90a] [Ren88] [Car94], 

but the fundamental limitation is that the training features are not always appropriate for learning 

the target theory. One method for overcoming these limitations is constructive induction. 

Constructive induction algorithms construct new features from among the initial training features 

and then build theories based on those newly constructed features, sometimes together with the 

initial training features. In this context, initial training features are known as primitive features. 

The newly constructed features are expected to be more appropriate for learning the target 

theories than the primitive features from which the new features are constructed. 

1.1.3 Constructive Induction 

Constructive induction is the process of improving the attribute vector of a learning 

algorithm in order to make the problem more easily learned for a particular learning algorithm. 

[Mat89] Constructive induction is often used when the explicitly selected features do not 

effectively represent the stated problem. For instance, given a machine learning algorithm (ܮ), 

constructive induction would be appropriate if the training set contains all of the relevant 

information for the induction of the target function but this information cannot be extracted by ܮ. 

[Ren90] Moreover, constructive induction is used to deal with learning algorithms, such as feed 

forward neural networks trained with back propagation and classification and regression tree 
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(CART) algorithms. [Ben96] [Bre84] Constructive induction generally consists of two parts: one 

for the construction of new features, and the other for generating theories. After being 

constructed, new features are treated the same way as the initial, primitive features that were 

used to construct the new features.  

The construction of new features is essentially the application of a set of constructive 

operators to the set of existing features; this results in the combination, and therefore the 

construction, of one or more new features. [Mat89] For common learning problems the number 

of possible constructive operators, such as mathematical operators, set operators, logical 

operators, etc. and the number of possible constructive operands for each operator is very large, 

so it is not feasible to search through all possible combinations. This thesis will present an 

algorithm that does not need to search through all possible combinations. 

Common operators include conjunction (ר), disjunction (ש) and negation (-). As an 

example of their use consider the following features: ܣଵ (binary), ܣଶ (nominal with values ܽ, ܾ, 

and ܿ), and ܣଷ (continuous), new features ൫ሺܣଵ ൌ ሻ݁ݏ݈݂ܽ ר ሺܣଶ ൌ ܾሻ ר ሺܣଷ ൐ 5ሻ൯ and ቀሺܣଵ ൌ

ሻ݁ݑݎݐ ש ሺܣଶ ൌ ܾሻതതതതതതതതതതതത ש ሺܣଷ ൑ 5ሻቁ can be constructed. Notice that the first new feature is simply the 

negation of the second new feature; ሺܣଵ ൌ ଵܣሻ is simply the negation of ሺ݁ݏ݈݂ܽ ൌ   .ሻ݁ݑݎݐ

Take, for example, the decision tree depicted in Figure 1.1. This decision tree shows a 

fundamental limitation of the selective induction procedure involved in the creation of decision 

trees called the replication problem. [Pag90] Because a decision tree divides each feature space 

into mutually exclusive regions it is possible to derive duplicate subtrees, such as those shown in 

the grey regions. If a subtree is replicated many times then many more training examples are 

needed in order to grow the size of the tree. This often leads to either an overly complex final 

decision tree, inaccurate pruning of the decision tree, or a premature termination of the learning 

algorithm. In other words, the replication of subtrees degrades the prediction accuracy of a 

decision tree learning algorithm. 
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Figure 1.1: An example decision tree for ൫ሺܣ ש ሻܤ ר ሺܥ ש  ሻ൯ܦ

Because the structure of the theory language is fixed, theory learning in the new feature 

space is expected to be easier than in the original feature space. By constructing new attributes 

ሺܣ ש ܥሻ and ሺܤ ש ܣሻ, a decision tree can be built for the constructed features ൫ሺܦ ש ሻܤ ר

ሺܥ ש  ሻ൯ whose representation, shown in Figure 1.2: , is dramatically simplified making moreܦ

complex concepts easier to learn. Therefore, from this point of view, the newly constructed 

features are more representationally powerful than the primitive features. 

 
Figure 1.2: Decision tree from Figure 1.1 with two newly constructed features 

 

Motoda and Liu [Mot02] recognize four categories in the constructive induction field. 

How to construct new features 

Various approaches can be categorized into: data-driven, hypothesis-driven, knowledge-

based, and hybrid. The data-driven approach is used to construct new features based on some 

analysis of the primitive data by applying the available operators. The hypothesis-driven 
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approach constructs new features based on previously generated hypothesis. The knowledge-

based approach constructs new features by applying existing domain knowledge to the set of 

primitive features. The hybrid approach is a combination of the other three. 

How to choose and design operators for feature construction 

There are many operators to choose from when combining features. As mentioned above, 

construction, disjunction and negation are commonly used operators for nominal features. Other 

operators include ܯ-of-ܰ and ܺ-of-ܰ. [Zhe98] ܯ-of-ܰ is true ݂݂݅ ܯ out of ܰ conditions are 

true; ܺ-of-ܰ is similar to ܯ-of-ܰ in that ܺ-of-ܰ consists of a set of conditions, but ܺ-of-ܰ states 

how many conditions in the set are true. ܺ-of-ܰ has ordered discrete values. 

How to use operators to construct new features efficiently 

The number of possible combinations of all operators and primary features, even in a 

relatively simple problem, is too large to exhaustively explore every possible combination. It is 

necessary to find intelligent methods to avoid an exhaustive search. In later chapters, this thesis 

will show one solution to this problem. 

How to measure and select useful new features 

Intuitively, not all constructed features are good. In fact, most of the possible 

combinations of features very poorly represent the target theory. It is thus necessary to be 

selective when chosing candidate features and operators. One option is to select features by 

applying the features selection techniques from Subsection 1.1.2 to remove irrelevant or 

redundant features. If the number of current features is very large it is sensible to make these 

decisions when a new compound feature is generated to avoid too many features. This requires 

some indicator as to the validity of the newly constructed feature, some examples measure 

consistency and distance as used in feature selection. 

Constructive induction can be realized in several ways. One commonly used algorithm is 

greedy search. Greedy search is easily applied to constructive induction tasks on decision trees; 

the algorithm generates new feature at each decision node based on original features or 

previously constructed features. To construct a new feature, the algorithm searches greedily 
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through the instance space using a pre-specified set of constructive operators. Starting from an 

empty set of decision nodes, the algorithm systematically adds and/or deletes decision nodes 

until the instance space has been searched or the algorithm is forced to terminate (greedy search 

is an anytime algorithm, meaning it can be stopped at any time and still return valid, although 

possibly incomplete, results). To evaluate candidate decision trees standard decision tree metrics, 

such as class entropy and model complexity, can be considered in lieu of test date, or 

classification accuracy can be used to evaluate the performance of the candidate decision tree in 

the presence of test data. In the event that all features are numeric, Gama shows that it is useful 

to search for the best linear discriminant function instead of using standard decision tree metrics. 

[Gam98] 

Finally, constructive induction can be achieved using evolutionary computation 

approaches such as genetic algorithms or genetic programming. Evolutionary computation 

algorithms are adaptive search techniques based on the simulation of Darwinian natural 

selection. This thesis explores the application of the evolutionary computation approach to 

constructive induction, and will therefore describe the approach in greater depth in Section 1.2. 

1.2 Evolutionary Computation 

Evolutionary computation is the set of search procedures based on the mechanics of 

natural selection and natural genetics. That is, they base their approach on Darwin’s theory of the 

survival of the fittest. More specifically, evolutionary algorithms contain some data structure that 

computationally represents the genes of a candidate theory. Operations, based on naturally 

occurring phenomenon, are applied to the data structure to effectively evolve the theory. At the 

end of each iteration, all of the offspring are evaluated according to a fitness function to 

determine whether the offspring lives or dies. If the offspring dies then it is effectively deleted 

from the population, otherwise, if the offspring lives then it remains in the population where it 

can reproduce offspring of its own. This basic approach is repeated until the algorithm stabilizes 

(stop evolving) or until a threshold fitness is reached. Evolutionary algorithms are an anytime 

algorithm, that is they can be stopped at any time and the best, current result can be returned. 

Although evolutionary algorithms are randomized, they are not merely random walk. They 



 15

efficiently exploit historical information contained within the population to produce a new 

generation of the population with a higher fitness. [Gol89] 

The main advantage in evolutionary computation is its robustness. That is, evolutionary 

algorithms leverage the natural ability of species to repair, regulate and reproduce themselves 

according to natural pressures. This makes evolutionary algorithms far more robust than 

traditional search methods. 

1.2.1 Traditional Search Methods and Local Maxima 

When discussing evolutionary algorithms it is important to note the common alternatives. 

Calculus-based search methods are the most common alternative. Hill climbing is a simple way 

to find a simple solution. Hill climbing works by starting with an initial structure in the search 

space (a point) and testing the fitness of several alternative structures that are adjacent to the 

initial point. The adjacent point with the best fitness is always picked and the algorithm repeats 

itself until it cannot find a better next point. Hill climbing can be easily conceptualized as a 

stubborn hiker climbing a mountain that refuses to ever decline in elevation. The problem with 

this approach is that the hiker will never reach the top of the mountain because smaller hills are 

in the way, and if the hiker can never travel down in elevation then he will become stuck at the 

top of some small hill. This example accurately describes the problem of local maxima. Greedy 

search algorithms such as hill climbing are destined to be caught in local minima. [Rus03] 

Visually, Figure 1.3 shows an example search space gradient for which the hill climbing 

algorithm would perform very poorly. Starting on the far left of the search space, the hill 

climbing algorithm would return a theory represented by peak ܣ with a fitness score of 20. A 

more robust searching algorithm would be able to recognize that peaks ܣ and ܤ are not globally 

optimal and would instead return the best possible theory represented by peak ܥ. 
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in Subsection 1.2.2. It is important to remember that randomized search does not necessarily 

imply directionless (or blind) search. 

Because of the stated deficiencies of traditional search methods, especially in the realm of 

constructive induction where the search space is very large, evolutionary algorithms are 

considered more robust.   

1.2.2 Genetic Algorithms 

The genetic algorithm (GA) is a computational technique that models the evolutionary 

process in order to solve problems. In GAs, each possible point in the search space of a problem 

is encoded as a fixed-length bit string (i.e., as a gene). The genetic algorithm attempts to find the 

best solution to the problem by genetically breeding the population of individuals over a number 

of generations. According to [Koz98], there are four major preparatory steps required to use the 

conventional GA: 

1. Determine the representation scheme. 

2. Determine the fitness measure. 

3. Determine the parameters for controlling the algorithm. 

4. Determine when to terminate the algorithm. 

The representation scheme is essentially what separates GAs from other types of 

evolutionary algorithms. In a GA, the individuals of a population are usually represented by a 

fixed-length sequence of bits patterned after biological chromosome strings. In most cases the 

bits in the sequence are binary making the alphabet size equal to 2. Arguably the most important 

part of the representation scheme is the mapping that expresses each bit-sequence as a point in 

the search space. This mapping is a fundamental limitation of GAs that is discussed in 

Subsection 1.2.3.  

Even though the representation may be the most important facet of the GA, the fitness 

function is what drives the evolutionary process. The fitness function evaluates every individual 

in the population and assigns each individual a score. It is important that a fitness function be 

able to properly evaluate every possible individual capable of being encountered in the search 
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space. The fitness function varies widely among GAs, but in most GAs an individual’s fitness 

score is directly proportional to its absolute fitness. 

The primary parameters required for controlling the GA are the population size (ܯ) and 

the maximum number of generations to be run (ܰ). Population sizes can range from a few dozen 

individuals up to several thousand individuals. The number of possible generations need not be 

limited; setting a maximum merely stops the GA before the termination criterion is met. Other 

parameters include probabilities for mutation and crossover, etc. 

Termination criteria are necessary for deciding when to terminate and what to do upon 

termination. An example termination criterion is a fitness threshold or a maximum number of 

generations (ܰ). The final result (or theory) of the GA is usually the individual in the final 

generation with the highest fitness. 

Once the four preparatory steps are completed the GA is ready to be run. According to 

[Koz98] there are essentially three execution steps of a GA: 

1. Randomly create an initial population of size ܯ with randomly generated bit-

sequences. 

2. Iteratively perform the following steps until termination criteria is satisfied: 

a. Find the fitness of each individual using the predetermined fitness function. 

b. Create a new population of bit-sequences by applying one or more genetic 

operations from Subsection 1.2.2.1. 

3. Upon termination, find the individual to be designated the final result and return it. 

Because the GA is a probabilistic algorithm probabilistic steps are used to determine 

nearly every step of the algorithm. “Thus, anything can happen and nothing is guaranteed in the 

genetic algorithm” [Koz98]. Also, due to the nondeterministic nature of GAs, multiple runs are 

necessary in order to obtain a reliable result. 

1.2.2.1 Genetic Operations 

There are four biologically recognized genetic operations that contribute to the 

evolutionary process: reproduction, mutation, crossover and death. Genetic algorithms (GAs) 
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model these biological processes by applying similar transformation to bit-sequences that 

digitally represent a chromosome. For every individual the sum of the probabilities for all four 

genetic operations is 1. 

Reproduction 

Reproduction happens when an individual is probabilistically selected from among the 

population on the basis of fitness and then copied, without change, into the next generation of the 

population. The selection is done in such a way that the higher the individuals’ fitness the more 

likely it is to appear in the next generation. As an example of reproduction, consider the bit-

sequences from Figure 1.4. The original bit-sequence is simply copied from Gଵ to Gଶ. [Koz98] 

 
Figure 1.4: Example of reproduction when applied on bit-sequence 100101. 

Mutation 

Mutation happens when an individual is probabilistically selected from among the 

population on the basis of fitness. From that individual bit-sequence a mutation point is chosen at 

random and the bit at that location is changed with some mutation probability. The altered 

individual is then copied into the next generation of the population. Mutation is useful in 

cultivating diversity among individuals in a population and helps avoid becoming stuck in a local 

optimum as discussed in Subsection 1.2.1. As an example of mutation, consider the bit-

sequences from Figure 1.5. The individual in Gଵ is probabilistically selected from among the 

population and then the mutation point is selected at random to be the third bit in the sequence. 

Next bit, #3 is randomly changed (in this binary alphabet the probability for a bit flip is .5), and 

the final bit-sequence is copied into Gଶ. [Koz98] 

 



 

F

Crossove

T

individua

parent-in

In

to produc

replacem

next gene

possibly 

are more 

A

crossove

remainde

remainde

the bit-se

point is r

then sepa

 

Figure 1.5: E

er 

The crossove

als in order t

ndividuals ar

ndividuals ca

ce in reprodu

ment, meanin

eration the o

be selection

 likely to pro

After parents 

r points, one

er. The cross

er from ଶܲ an

equence from

randomly cho

arated and re

Example of m

r operation a

to test new p

re probabilist

an be selecte

uction and cr

ng that after t

original paren

n again. Repl

oduce offspr

( ଵܲ and ଶܲ) 

e from each p

sover operat

nd vice versa

m Figure 1.6

osen to occu

ecombined to

mutation occ

allows two n

points in the 

tically select

ed, and usua

rossover. W

the individua

nt-individua

lacement mo

ring. 

are chosen, 

parent. Each

ion then com

a to create tw

. The parent

ur after the fo

o form offsp

20

curring on bi

new individu

search space

ted from the

ally are selec

When this hap

al is operate

al(s) are plac

odels the bio

crossover b

h parent is th

mbines the cr

wo offspring

t-individuals

ourth bit. Th

pring that are

it #3 in the b

uals to be cre

e. The crosso

e population 

ted, multiple

ppens the GA

d on and chi

ed back into

logical notio

egins by ran

hen split into

rossover frag

g. As an exam

s in Gଵ are se

he fragment a

e copied into

 
bit-sequence 

eated from tw

over step sta

on the basis

e times durin

A is said to b

ildren are pr

o the initial p

on that more

ndomly selec

o a crossover

gment from 

mple of cros

elected and t

and remaind

o Gଶ. 

 100101. 

wo parent 

arts when tw

 of their fitn

ng a generati

be operating 

roduced for t

population to

e fit individu

cting two 

r fragment an

ଵܲ with the 

ssover, consi

then a crosso

der pieces are

wo 

ness.  

ion 

with 

the 

o 

uals 

nd a 

ider 

over 

e 



 21

 
Figure 1.6: Example crossover of the bit-sequences 100100 and 001111. 

The two children are usually different from their two parents and from each other. Notice 

that the child individuals are produced entirely of genetic material from their parents. Therefore, 

if a bit-sequence representing a relatively fit parent is crossed with another relatively fit parent 

then it is possible, even likely, that more highly-fit child individuals will emerge as a result of the 

interaction. When GAs begin to converge on a possible solution, a highly-fit individual begins to 

dominate the population and crossover operations may involve identical parent-individuals. In 

this special case, the two child individuals will be identical to each other and identical to their 

parents. Premature convergence occurs when an individual dominates the population but the 

dominant individual does not represent the globally-best possible individual. [Koz98] 

Death 

Death occurs when an individual from the initial population is not selected from 

reproduction, mutation or crossover and therefore does not get included into the next 

generation’s population. That genetic bit-sequence then ceases to exist in the population, 

although it can be produced again by another genetic operator described above. 

1.2.2.2 Probabilistic Selection 

Darwin’s theory of natural selection is at the heart of evolutionary computation. The 

ability to select individuals to participate in crossover, mutation and/or reproduction based on 

their fitness allows the algorithm to keep the good genes and eliminate the bad genes. 

Probabilistic selection is ability that GAs (and other evolutionary algorithms) employ to give 
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every individual in the population a chance of being selected to participate in one or more 

genetic operations. Individuals with a higher fitness score duly receive a higher probability of 

being selected. In this sense GAs are not merely a greedy hill climbing algorithms. Instead, GAs 

more closely resemble the nondeterministic nature of simulated annealing [Kir83] because 

individuals with poor fitness still have a certain, although relatively low, probability of being 

selected.  

As an example of probabilistic selection consider a population described in Table 1.1. 

The population consists of four individuals with their bit-sequences listed in the second column. 

Each individual’s absolute fitness is listed in the third column with a total absolute fitness score 

of 1079. The corresponding normalized fitness scores are shown in the fourth column as the 

percentage of the total fitness. 

Table 1.1: Example problem individuals with fitness values and 

corresponding selection probabilities 

No. Individual Fitness % of Total 
1 011100 150 13.9 
2 110011 524 48.6 
3 101101 320 29.7 
4 100011 85 7.8 
Total  1079 100.0 

When probabilistically selecting individuals for genetic operations each individual’s 

normalized fitness is conceptually placed on a roulette wheel, as shown in Figure 1.7, the result 

is a weighted roulette wheel, where the probability of selection for an individual is conceptually 

equal to the probability of the corresponding individual being chosen from the roulette wheel. To 

reproduce, simply spin the weighted roulette wheel and select the resulting individual. In the case 

of crossover operations, two individuals are required and so two spins are required. [Gol89] 

Selection without replacement occurs if the selected individual is removed from the 

selectable population and the remaining individuals are reweighted. Selection with replacement 

occurs when the selected individual is not removed from the selectable population and 

probabilities remain the same. Intuitively, evolutionary systems that perform selection with 
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replacement can operate on the same individual multiple times, while evolutionary systems that 

perform without replacement cannot select the same individual more than once. 

 
Figure 1.7: Roulette wheel visualization for normalized fitness 

From the above content the genetic algorithm according to Perry is shown in Figure 1.8. [Per03] 

 

1. generate initial population; 
2. do{ 
3. evaluate fitness for all individuals; 
4. select best individuals; 
5. perform genetic operations to create next generation; 
6. increment currentGeneration; 
7. } until (currentGeneration = maxGenerations); 

Figure 1.8: Pseudocode for a genetic algorithm. 

1.2.3 Genetic Programming 

Genetic programming (GP) is an extension of the genetic algorithm (GA) described in 

Subsection 1.2.2 in which the structures that are operated upon vary in size and shape, and have 

expression tree semantics. The goal of a GP is the same as that of a GA in that GPs non-

deterministically search for a solution to a problem using the principles of Darwinian natural 
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selection. Therefore this section will focus only on the issues that are distinctly related to GP; for 

a broader survey on evolutionary computation see Subsection 1.2.2. 

Before a GP can begin five preparations must be made. These involve determining: 

1. The set of terminals 

2. The set of primitive function 

3. The fitness measure 

4. The parameters for controlling the algorithm 

5. When to terminate the algorithm 

Notice that steps 3, 4 and 5 are identical to steps 2, 3 and 4 from the genetic algorithm set 

up from Subsection 1.2.2. Therefore this subsection will only address steps 1 and 2. 

The first major step in preparing a GP is to identify the terminal set for the problem. 

Terminals correspond to the features from the search space. 

The second major step in preparing a GP is to identify the function set for the problem. 

The functions are typically arithmetic operators such as ൅, െ, etc., logical operators such as ש ,ר, 

etc., set operators such as ׫ ,ת, etc., domain specific operators, or any combination of one or 

more types of operators. These functions should be able to accept any terminal presented to them 

during computation, and, furthermore, each function should be able to recursively accept every 

possible function containing any number of possible sub-functions containing any defined 

terminals, etc. A function set and a terminal set that together satisfy this requirement are said to 

have closure. [Koz98] 

1.2.3.1 Representation 

As previously stated, the main difference between GAs and GPs is the representation of 

the feature space. Because of the combination of functions and terminals involved GPs are 

typically represented as trees where functions are always found at branch nodes and terminals are 

always found in the leaves. 
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As an example, consider the following random equation: ሺܼ െ 4ሻܺ ൅ ܻሺܹ ൅ 9ሻ.  As an 

individual in a GP this example equation would be represented as a tree where the functional 

operators ሼכ, െ,൅ሽ are branch (i.e., non-leaf) nodes in the tree and the variables and literals 

ሼZ, 4, X, Y,W, 9ሽ are leaf nodes, and therefore terminals, as shown in Figure 1.9.  

 

Figure 1.9: Tree representation of the equation ሺܼ െ 4ሻܺ ൅

ܻሺܹ ൅ 9ሻ for an individual in a genetic program. 

1.2.3.2 Genetic Operations 

As previously illustrated in Subsection 1.2.2.1, there are four primary genetic operations 

that can be performed. They are reproduction, mutation, crossover and death. Reproduction 

occurs when one individual from the current generation is copied to the next, and death occurs 

when an individual is not operated on at all. These simple genetic operations behave the same in 

GAs as they do in GPs so no further explanation is required. However, mutation and crossover 

operations behave differently because of the different representation semantics. 

Mutation 

When an individual is probabilistically selected for mutation a node (branch or leaf) is 

selected at random and is replaced by another random subtree. As an example, suppose the 

individual from Figure 1.9 is selected for mutation. As shown in Figure 1.10, the node 

representing the ൅ operator is randomly chosen from tree A. Tree B shows that the selected node 

and all children-nodes are deleted. Tree C is randomly generated and appended to the original 
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tree to form tree D. The final tree represents the newly formed equation: ൫ሺZ െ 4ሻX൯ ൅

ቀY൫Yሺ4 െ Xሻ൯ቁ. [Koz98] 

 

Figure 1.10: Example of GP mutation where the individual from 

Figure 1.9 is mutated to form a new individual. 

Crossover 

As in GAs, crossover in GPs requires two parent individuals to donate a part of 

themselves to be crossed with the other. Also as in GAs, two parents are probabilistically 

selected. Then each parent randomly selects a crossover node. The resulting crossover fragments 

are sub-trees where the selected crossover node is the root of the fragment. The remainders are 

the original individuals with the selected fragment removed. The fragments are crossed and 

rejoined with the remainders in the empty spot to form two offspring that are copied into the next 

generation. For example, Figure 1.11 shows two probabilistically selected parent-individuals 

(Parent 1 and Parent 2) which have each had crossover points identified. Then the individuals are 

split into remainder and fragment pieces. Finally, the fragments are crossed and reattached to the 

opposing remainder piece to form two new offspring. Specifically, this example crosses the 

parent-equation ሺZ െ 4ሻX ൅ YሺW ൅ 9ሻ with the parent-equation ሺ4 െ XሻY to form offspring 

equations ሺZ െ 4ሻX ൅ Yሺ4 െ Xሻ and ሺW ൅ 9ሻY. This effectively crosses the term W൅ 9 from the 

first parent with the term 4 െ ܺ from the second parent. 

As in GAs, it is possible for a GP to select the same individual as both parents. One 

difference between GPs and GAs is that the crossover points are selected at random 
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independently of one another. In other words, the crossover point for Parent 1 is not necessarily 

the same as the crossover point for Parent 2. Therefore, in GPs it is not necessarily the case that 

crossover between twin individuals will result in twin children. Because the crossover operation 

results in children that contain only genes (i.e., data) from their parents the crossover operation 

always produces syntactically valid individuals [Koz98]. 

 

Figure 1.11: Example of GP crossover where two parent 

individuals are split and recombined to form two new individuals. 
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1.3.1 Directed Graphs 

Many relations are directional, which means that the ties are oriented from one vertex to 

another and the relation is not necessarily reciprocated. The import and export of goods from one 

nation to another is an example of a directional relation while the more simple relationship of 

trade is undirected. This thesis deals only with directional relations that are presented in directed 

graphs, or digraphs.  

As in the case of the graph discussed in Section 1.3, the digraph ࣡ௗሺࣨ, ࣦሻ consists of two 

sets: a set of nodes ࣨ ൌ  ൛݊ଵ, ݊ଶ, … , ݊௚ൟ with a size of ݃, and a set of directed edges or arcs 

ࣦ ൌ   ሼ݈ଵ, ݈ଶ, … , ݈௅ሽ with a size of ܮ. Each arc is an ordered pair of vertices such that ݈௞ ൌ   ,௜݊ۃ ௝݊ۄ. 

The arc ݊ۃ௜, ௝݊ۄ is directed from ݊௜ (the origin) to ௝݊ (the sink or receiver). 

In a digraph, a vertex can be either adjacent to or adjacent from another node depending 

on the direction of the arc. Therefore the indegree of a vertex, ݀ூሺ݊௜ሻ is the number of vertices 

that are adjacent to ݊௜. The indegree of node ݊௜ is equal to the number of arcs where ݈௞ ൌ

ۃ  ௝݊, ݊௜ۄ for all ݈௞ א ࣦ and all ௝݊ א ࣨ. The outdegree of a vertex, ݀ைሺ݊௜ሻ is the number of 

vertices that are adjacent from ݊௜. The outdegree of node ݊௜ is equal to the number of arcs where 

݈௞ ൌ   ,௜݊ۃ ௝݊ۄ for all ݈௞ א ࣦ and all ௝݊ א ࣨ [Was07]. 

As an example, consider the digraph shown in Figure 1.13. Mathematically, the digraph 

is represented by ࣡ௗሺࣨ, ࣦሻ with ࣨ ൌ  ሼ݊ଵ, ݊ଶ, ݊ଷ, ݊ସ, ݊ହሽ and 

ࣦ ൌ   ሼ݊ۃଵ, ݊ଶۄ, ,ଶ݊ۃ ݊ସۄ, ,ସ݊ۃ ݊ଷۄ, ,ଷ݊ۃ ݊ସۄ, ,ହ݊ۃ ݊ଷۄሽ. In the same example, ݀ூሺ݊ଵሻ ൌ 0, ݀ூሺ݊ଷሻ ൌ

 3, ݀ைሺ݊ଵሻ ൌ 2, and ݀ைሺ݊ଷሻ ൌ 1. 

 
Figure 1.13: Example digraph with five vertices and six arcs. 
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Moreover, in this directed graph there is no path from ݊ଵ to ݊ହ because ݊ହ has no 

incoming arcs. Likewise there is no path from ݊ହ to ݊ଵ.  

1.3.2 Social Networks 

Interest in social networks has grown rapidly in recent years. This growth can be 

attributed to an increasing sophistication in the technical tools available to users. Web sites such 

as, Facebook, MySpace, LiveJournal and others have each in their own way contributed to the 

popularity of social networks. The use of these social networking sites has drawn attention from 

researchers who look to study social networks because these sites provide a means for explicitly 

stating the relationships between people. Before the advent of social networking sites, 

researchers relied upon surveys of relatively small groups of people to develop their theories. 

As collections of explicit social network information began to grow, so did the scale of 

social network research. Epidemiologists realized that epidemics do not progress uniformly 

through populations [Mor93], biologists began to use methodologies from social networks to 

analyze protein interactions [Par07], counterterrorist organizations began model terrorist 

networks [Kre02], and so on [Was05]. 

The analysis of social networks is one perspective methodology that is based on the idea 

that society can be modeled as a group of relationships between people. Therefore, every social 

phenomenon can be described in relational and social terms with the condition that the structure 

of the phenomenon can be expressed in terms of persons and relationships of varying nature 

between those persons. [Dam08] 

Social network services such as MySpace and Facebook allow users to list interests and 

link to friends, sometimes annotating these links by designating trust levels or qualitative ratings 

for selected friends. Some such services, such as Google’s Orkut, are community-centric; others, 

such as the video blogging service YouTube and the photo service Flickr, emphasize social 

media; while some, such as Six Apart’s LiveJournal and Vox, are organized around text-and-

image weblogs. LiveJournal and its derivative services, such as InsaneJournal, DeadJournal, 

and JournalFen, are based on the same open-source server code. In 2008, there are over 17.5 

million LiveJournal accounts, 1.9 million of them active. This thesis studies the friends network 
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of LiveJournal, which has two varieties of accounts: users and communities (omitting RSS 

feeds). One advantageous property of its data model, stemming from a common schema for the 

two account types (which could originally be converted from user to community), is that it 

provides a simple, flexible representation for entities and relations. 

Table 1.2: Types of link in the blog service LiveJournal 

Start End Link Denotes 
User User Trust or friendship 
User Community Readership or subscribership 
Community User Membership, posting access, maintainer 
Community Community Obsolete 

Table 1.2 shows the types of links in LiveJournal and their constituent attributes. 

Friendship is an asymmetric relation between two accounts, each represented by a vertex in a 

directed graph. The type of the start and endpoint defines the relationship set attributes of the 

link. For example, a user ݑ who adds another user ݒ to his or her friends list can specify the 

membership in any of up to 30 groups. These serve the dual purpose of blog aggregation (posts 

from each group’s members are filtered into its aggregator page, which ݑ can read or make 

public) and groups-based security (each group denotes a read/comment access control list). 

Access control lists for communities are associated with memberships (community-to-user 

links), while content is controlled by posters or subscribers. Acquisition of privileges is a 

community property, of which only membership may be acquired solely by user action 

(“joining” a community), if the moderator has specified open membership. 

Thus, a reciprocal link between a user and a community means that the user both 

subscribes to the community and is an approved member. Links from user ݑ to ݒ are listed in the 

“Friends” list of ݑ and in an optionally displayed “Friends Of” list of ݒ. This list can be 

partitioned into reciprocal and non-reciprocal sublists for a user ݑ: 

Mutual Friends: ሼݒۃ|ݒ, ۄݑ א ࣦ ר ,ݑۃ ۄݒ א ࣦሽ 

Also Friend Of: ሼݒۃ|ݒ, ۄݑ א ࣦ ר ,ݑۃ ۄݒ ב ࣦሽ 

The community analogue of the “Friends Of” list is the “Watched By” (subscriber) list, 

whose members have the community name listed in the “Friends: Communities” sections of their 
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individual user profile pages. The community analogue of the “Friends” list is the “Members” 

list.  

The friends network for LiveJournal consists of a very large central connected 

component and many small islands, most of which are singleton users. There are a few source 

vertices, corresponding to accounts that link to others but have no reciprocated friendships; these 

are usually RSS or blog aggregator accounts owned by individuals. Additionally, there are sink 

vertices corresponding to accounts watched by others, but which have named no friends. Some 

of these are channels for announcement or dissemination of creative work. [Hsu07] 

1.3.3 Link Mining 

Analysis of friends networks provides a basis for understanding the web of influence 

[Kol01] in social media. In particular, the problems of determining the existence of links and of 

classifying and annotating known links are first steps toward identifying potential relationships. 

This inferred information can in turn be used to introduce new potential friends to one another, 

make basic recommendations such as community recruits or moderator candidates, or identify 

whole cliques and communities. 

In 2006, Hsu et al. introduced a link prediction problem for LiveJournal: given a graph in 

which the existence of a candidate link is hidden (elided if it exists), classify it as present or 

absent given all other attributes of the graph and of the endpoints. Hsu’s initial approach to link 

identification consisted of dividing friends network features into graph features and interest-

based features. [Hsu06] 

Graph features could be computed simply by scanning the graph, in the case of pair-

distance metrics, performing all-pairs shortest path (APSP) search: 

1. Indegree of ݑ, i.e., ݀ூሺݑሻ: popularity of the user 

2. Indegree of ݒ, i.e., ݀ூሺݒሻ: popularity of the candidate 

3. Outdegree of ݑ, i.e., ݀ைሺݑሻ: number of other friends besides the candidate; saturation 

of friends list 
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4. Outdegree of ݒ, i.e., ݀ைሺݒሻ: number of existing friends of the candidate besides the 

user; correlates loosely with likelihood of a reciprocal link 

5. Number of mutual friends ݓ s.t. ݑۃ, ۄݓ א ࣦ ר ,ݓۃ ۄݒ א ࣦ 

6. “Forward deleted distance“: minimum alternative distance from ݑ to ݒ in ࣡ௗ without 

the edge ݑۃ,  ۄݒ

7. Backward distance from ݒ to ݑ in ࣡ௗ 

These were supplemented by interest-based features: 

8. Number of mutual interests between ݑ and ݒ, i.e., |ࣣ௨  |௩ࣣ ת

9. Number of interests listed by ݑ, i.e., |ࣣ௨| 

10. Number of interests listed by ݒ, i.e., |ࣣ௩| 

11. Ratio of the number of mutual interests to the number listed by ݑ, i.e., |ࣣೠת ࣣೡ||ࣣೠ|
 

12. Ratio of the number of mutual interests to the number listed by ݒ, i.e., |ࣣೠת ࣣೡ||ࣣೡ|
 

1.4 Principal Claims 

In this thesis, I consider the problem of discovering links in a large, incomplete graph. 

This thesis presents an approach to link prediction that is based on the combinations of graph 

feature analysis and intrinsic attributes of entities. Therefore the principal claims of this thesis 

are: 

1. By crawling the social network service LiveJournal an appropriately large graph can 

be realized and learnable features can be ascertained. 

2. Feature analysis can be achieved on a very large graph by the efficient management 

of the underlying data structure. 

3. Operators within the genetic programming approach can be used to construct new 

features from primitive features that provide a more learnable description of the 

graph. 

4. Features constructed from a genetic program will improve the performance of 

learning algorithms for link mining. 
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Therefore, this thesis asserts that link discovery in very large graphs by constructive 

induction using genetic programming achieves better results than previous attempts that do not 

consider the entire graph and/or do not employ genetic programming. 
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CHAPTER 2 - Related Research 

In the previous chapter I introduced the four broad concepts that encompass this thesis, as 

well as stated the principal claims of this work. This chapter will discuss current and continuing 

research in link discovery and constructive induction in order to give a context for my original 

work which is described in the following chapters. 

2.1 Meta Learning 

Meta learning studies how learning algorithms and other systems can increase in 

efficiency with experience. The goal of meta-learning is to understand how learning occurs and 

then use that information to improve the learner. [Vil02] The traditional learning algorithm, 

discussed in Section 1.1, differs from meta-learning in that a meta-learner discovers the learning 

bias dynamically by searching for the best learning strategy as the algorithm progresses. [Thr98] 

The proper meta-learning system would begin with a certain base learner, i.e., a 

traditional learning algorithm with a fixed bias. Once the system is started and meta-information 

about the state of the learner begins to accumulate, the meta-learner is able to change its bias by 
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switching to another base learner [Wol92]. A more “granular” [Vil02] approach consists of 

selecting a learning algorithm for each individual training example. That is, if meta-data is 

gathered that can be applied to discriminate different classes of examples then the best base-

learner can be chosen and applied to each particular example [Mer95]. The algorithm selection is 

done based on its performance on each class of examples. 

Meta-learning is similar to constructive induction using genetic programming because 

they both leverage information about the current state/progress of the system in order to make 

adjustments to the learning process. Meta-learning does this in the manner described above, 

while genetic programming does this by constructing new features based on previous features 

recursively. 

Despite the current research efforts and promising results thereof, meta-learning is not a 

candidate for this thesis because it will not necessarily result in a generalized theory. This is 

because the different base learners will all individually construct their own theories based on 

their inherent biases. While meta-learning is useful in leveraging those biases, I seek a single, 

generalized theory about my examples.  

The following subsections describe three popular meta-learning approaches that are used 

for comparison in this thesis. 

2.1.1 Bagging 

Bagging [Bre96] is an iterative approach that creates a set of classifiers such that each 

classifier is trained by a random redistribution of the original training set (with replacement) and 

each random redistribution has the same number of examples. For example, a set of training 

examples ܺ ൌ   ሼݔଵ, ,ଶݔ ,ଷݔ ௜ܦ ସሽ can have redistributions such asݔ ൌ   ሼݔଵ, ,ଵݔ ,ଶݔ ௝ܦ ଷሽ orݔ ൌ

 ሼݔସ, ,ସݔ ,ସݔ  ௜ will have 63.2% of the originalܦ ,is always equal to|ܺ|. On average |ܦ| ସሽ, butݔ

training data in it because each feature has a 1 െ ቀ1 െ ଵ
ே
ቁ
ே

 probability of being selected for 

inclusion in ܦ௜. Iteratively, all test examples are evaluated on all classifiers and in each instance 

the classifier with the highest performance on that specific test example is used. 
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Bagging, essentially, improves generalization error by reducing the variance of the base 

learner. That is, if the base learner is unstable then bagging can help reduce the errors associated 

with random fluctuations in the training data. However, if the base learner is already stable then 

bagging can actually degrade performance because the base learner is using only 63.2% of the 

total training data. [Tan06] 

2.1.2 Boosting 

Boosting [Fre96] is a specific, formally proven approach to meta-learning that is based on 

the observation that finding many low quality hypotheses can be a lot easier than finding a 

single, highly accurate hypothesis. The boosting algorithm works by training a base learner 

repeatedly, each time feeding it a different subset of the training examples. Each time the base 

learner is called a new, weak hypothesis is produced. After many iterations, the boosting 

algorithm combines the weak hypothesis into a single hypothesis that is hopefully more accurate 

than any of the weak hypotheses. 

To make this approach work two questions must be answered: (1) how should the 

training examples be chosen each round, and (2) how should the weak hypotheses be combined 

into a single strong hypothesis? Regarding question one, generally boosting algorithms choose 

examples that are most often misclassified by preceding attempts. In effect, this forces the base 

learner to focus most on the difficult examples. Regarding question two, the final or combined 

classifier is a weighted majority vote of the base classifiers where the weights are an inverse 

function of the base classifiers’ error. [Sch02] 

2.1.3 Random Forests 

Finally, Random Forests [Bre01] is a meta-learning approach which constructs many 

classifier trees (i.e., a forest) and combines them into a single decision tree. The algorithm is as 

follows. Let the number of training cases be ܰ, and the number of features be ܯ. The number of 

decisions ݉ at each node of the tree is explicitly given; ݉ ا  Next a training set is chosen by .ܯ

choosing ܰ times with replacement from all ܰ training cases, exactly as in bagging (see 

Subsection 2.1.1). For each node in the tree, ݉ features are randomly chosen and the best split on 

these features is calculated. This split calculation is usually based on entropy. 
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According to a website on random forests by its creator, Leo Breiman’s [Bre02], 

“[random forests] is unexcelled in accuracy among current algorithms.” Empirical studies 

[Tan06], [Cha08] show that random forests typically provide better performance accuracy and 

the algorithm is much faster than bagging alone or boosting. 

2.2 Krawiec’s Feature Construction with Genetic Programs Approach 

In Krawiec’s work [Kra02], a genetic program (GP) is used to change the representation 

of the input data (i.e., training and test examples) for machine learning algorithms. Specifically, 

the author first proposes the general framework for GP-based feature construction. The author 

also proposes an extended approach that preserves useful features from being evolved as 

opposed to the standard approach where valuable features can be lost during search. Figure 2.1 

shows Krawiec’s feature construction model graphically.  

Krawiec uses the ECJ software package [Luk01], and the function set included ൅, 

െ, ൈ,%, log ൏,൐,ൌ, and an approximate equality operator. The terminal set contained the 

original features. Individuals’ fitness was evaluated by running 5 independent 2-fold cross 

validation runs on the training set. The WEKA [Wit99] implementation of the decision tree 

inducer C4.5 [Qui92] is the learner used from training and testing. 

 

Figure 2.1: Taken with permission from the feature construction Genetic programming-based 

framework for [Kra02]. 
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Results of Krawiec’s experiments show “remarkable” gains in predictive accuracy. The 

GP-constructed features always resulted in an accuracy which was better than or equal to the 

original, unconstructed features. Despite the success of his methods, the extended approach did 

not outperform his unextended approach. Krawiec concludes that GP-based construction of 

features is a promising endeavor, but more research is necessary “to get rid of some weak points 

of the method” [Kra02]. 

2.3 Hsu’s Feature Selection for Link Mining Approach 

Hsu et al. propose an approach for link mining that effectively recommends relationships 

(e.g., friendship) where none currently exists, or predicts the existence of relationships if and 

when they are hidden. [Hsu06], [Hsu07] The approach uses graph features, such as indegree and 

outdegree, pair-dependent features, such as the number of mutual friends and the distance 

between users, and user-only features, such as number of interests, number of friends, etc. A 

941-node graph was computed from a short crawl of LiveJournal and the appropriate features 

were computed. To train a classifier, links were explicitly cut between candidate pairs so that a 

distance of 1 does not automatically reveal the friendship and the features were fed to three 

learning algorithms. 

Hsu et al.’s approach obtained a very high test-set accuracy of 98.2% using the J48 

classifier on their graph. More interestingly, when distance features were removed the prediction 

accuracy dropped severely to 94.8%. Furthermore, when only interest features were used the 

prediction accuracy dropped even further to 88.5%. This shows that the inclusion of graph 

features and pair-dependent features significantly improves the prediction accuracy. The authors 

conclude that their feature selection methods coupled with a good inducer can effectively predict 

relationships. 

  



 40

 

CHAPTER 3 - Methodology 

This chapter presents my approach for link discovery in very large graphs by constructive 

induction using genetic programming. This is done in several parts. First, I present a web crawler 

that gathers semi-structured user information from LiveJournal and constructs a large directed 

graph representing that data. Second, I select base features from the gathered data. Third, I 

generated 3 sets of candidate pairs. Fourth, I developed genetic program which takes as input the 

aforementioned base-features and constructs new features. Fifth, I developed algorithms that 

compute those newly-constructed features for each candidate pair. Finally, I discuss the 

experimental design for this research with descriptions of the standard evaluation metrics. 

3.1 Crawling a social network 

Before learning can begin an appropriately sized and realistically distributed example set 

needs to be obtained. For this thesis, I choose to crawl the social network LiveJournal for user 

information and relationships. Toward that end, the fourth generation of the LJCrawler 

application was developed and executed. LJCrawler has essentially five modules: (1) Multi-

threaded downloader, (2) text extraction, (3) Storage, (4) URL Queue, and (5) Scheduler. This 
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section will discuss my implementation of these parts before presenting some of the crawl 

results. 

Proper web crawlers need to be able to handle multiple requests at once. This is because 

the bandwidth usage of a single web-document download does not fully utilize most systems’ 

capabilities. Any software system that is capable of spawning sub-processes to handle 

simultaneous tasks is said to be multi-threaded. In the web crawling domain individual threads 

simultaneously request web pages so a higher throughput can be achieved. LJCrawler uses the 

multi-threaded approach by keeping a thread pool which maintains the threads. Due to the terms 

of LiveJournal’s bot policy1, a crawler may not request more than 5 pages per second (pps). 

Therefore, the thread pool is initially given a maximum of 7 threads. During execution the thread 

controller monitors the download rate and dynamically adjusts the maximum number of threads. 

For example, if the thread controller finds that the crawler is retrieving pages at 3pps then the 

controller will increment the maximum size of the thread pool by 1. Inversely, if the thread 

controller finds that the crawler is retrieving pages at 7pps then the controller will decrement the 

maximum size of the thread pool by 1 effectively throttling the system. The dynamic multi-

threading property of LJCrawler keeps the system crawling as fast as LiveJournal’s terms allow 

regardless of the wide fluctuations often seen in Internet bandwidth and latency. The dynamic 

thread controller algorithm is shown in Figure 3.1. 

1. int MAX_RATE = 5; 
2. int maxThreads = 7; 
3. ThreadPool pool = new ThreadPool(maxThreads); 
4. while (stillCrawling)  
5. float rate = determineCrawlRate(); 
6. if (rate.isBetween(MAX_RATE-1, MAX_RATE) ) 
7. //do nothing 
8. else if (rate > MAX_RATE)  //too fast 
9. maxThreads--; 
10. else  //too slow 
11. maxThreads++; 
12. pool.setMaxThreads(maxThreads); 

Figure 3.1: Pseudocode for dynamic thread control in LJCrawler 

                                                 
1 LiveJournal’s bot policy is available at http://www.livejournal.com/bots/ 
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User information is kept in two forms on LiveJournal: in HTML profile pages and in 

friend of a friend (FOAF) files. Profile pages are available from 

http://username.livejournal.com/profile?mode=full. FOAF pages are available as 

XML documents from http://username.livejournal.com/data/foaf. Earlier versions of 

LJCrawler attempted to extract content from the profile pages, but that proved to be difficult and 

time consuming because it is difficult to automatically extract structured content from within 

messy HTML pages. The current version of LJCrawler downloads the structured FOAF pages 

and uses a visitor pattern to extract the content from the XML. This is much easier to do because 

the FOAF schema2 is readily available and rarely changes. 

Once the data is extracted from the FOAF document it is sent to storage. In order to store 

the vast amounts of data being gathered by LJCrawler, a data model is needed to be able to 

express to graph-nature of LiveJournal while accurately storing and retrieving the previously 

extracted data quickly. After several attempts at alternative storage approaches, e.g., Lucene 

[Gos05], and the Berkeley Database [Ols99], the relational database MySQL was chosen to store 

user-data and the corresponding structure.  

Because a social network is essentially a graph of users, the database schema, shown in 

Figure 3.2 has a VERTICES table and an ARCS table. The VERTICES table stores the user-

independent information while the ARCS table essentially stores a pair of users representing a 

directed edge in the graph. The PERSON_INTERESTS and INTERESTS tables are a normalization of 

the interest content from the VERTICES table.  

A seed user ݑ௦ is given when LJCrawler is first started. That user’s FOAF page is the first 

to be accessed and downloaded. ݑ௦ is added to VERTICES and VERTICES.CRAWLED is set to TRUE 

because ݑ௦ is being crawled. Once ݑ௦ is downloaded, user information is extracted including 

friends information. The friends ௦ܸ of ݑ௦ are then added to VERTICES and 

 ௏ೞሺVERTICES.CRAWLED = FALSEሻ to indicate that they have not yet been crawled. Threads areא௩೔׊

now able to query the VERTICES table to get uncrawled users. As soon as a thread retrieves the 

first of the uncrawled users, it takes control of it by setting VERTICES.CRAWLED to TRUE so that 

another thread does not crawl it. Also note that VERTICES.NICK is an index and is therefore 
                                                 
2 FOAF schema is available at http://xmlns.com/foaf/0.1/ 
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5.77 unique interests per user. From the users crawled, 2,992,607 directed links were found, 

giving a mean of 76.69 links per user.  

3.2 Base Feature Selection  

Base feature selection is an essential part of the overall approach. Without a broad set of 

base features, the constructed features may not adequately represent the search space. If the 

constructed features under represent the problem space then the classifier’s performance will 

suffer as a result. As discussed in Chapter 1, base features are typically gathered from a domain 

expert and from among the available data. [Hsu06], [Hsu07] and [Dam08] all study a similar link 

mining problem and use a similar feature set. This feature set includes features that are (1) user-

dependent, (2) pair-dependent, and (3) graph-dependent. From among the available features I 

chose the features that I believe best captured the breadth of the problem. They are discussed in 

the following subsections. 

3.2.1 User-dependent Base Features 

User dependent features are those features that are based solely on a single individual. 

For example, the age of a person is a user-dependent features, whereas the difference ages is a 

pair-dependent feature. There are relatively few user-dependent features because I believe that 

they do not sufficiently address of link mining problem. Nevertheless, I include  

1. Number of interests listed by ݑ. 

2. Number of interests listed by ݒ. 

in the list of all features. 

3.2.2 Pair-dependent Base Features 

Pair dependent features are those features that are based on a pair of individuals. For 

example, the size of the intersection of each individual’s listed interests is a pair-dependent 

feature, whereas the size of an individual’s interest list alone would be considered a user-

dependent feature. Pair dependent features are very important to consider when performing link 

mining. Intuitively, the greater the intersection of interests the more likely the individuals are 

alike and therefore are friends. Inversely, if a pair has a large difference in interests the more 
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likely that they have little in common and are consequently not friends. For this study I include 

features based on 

1. Interests of ݑ and ݒ. 

2. Friends of ݑ and ݒ. 

3. Location of ݑ and ݒ. 

in the list of all features. 

3.2.3 Graph Base Features 

Graph features are those features that are based on the relative locations of a pair of 

individuals. For example, if ݑ is a friend of ݒ then ݑ and ݒ are likely to be very close to one 

another in the graph, not considering the actual friendship link between ݑ and ݒ. Inversely, if ݑ 

and ݒ are not friends and do not share any friends then they will likely be very far apart in the 

graph. For this study I include graph features based on 

1. The indegree of ݑ: the popularity of ݑ 

2. The indegree of ݒ: the popularity of ݒ 

3. The outdegree of ݑ: the number of friends of ݑ 

4. The outdegree of ݒ: the number of friends of ݒ 

5. Shortest path length between ݑ and ݒ 

6. Shortest path length between ݒ and ݑ: backward distance 

in the list of all features. 

This list of features is by no means exhaustive. Rather it is a sample of features from 

other works that I find useful for this particular problem. More features have been crawled and 

gathered, but in the interest of brevity and maintaining a reasonable scope they are omitted. 

3.3 Candidate Pair Generation 

Generating candidate pairs for link mining operations is an important task. Because the 

ultimate goal is to predict the existence of a link between two nodes a method for generating a 

candidate pair ݑۃ,  is needed.  Randomly picking two nodes to form a pair initially seems to be ۄݒ

a sound method, however Subsection 3.3.1 shows that the graph density of the corpus is too 
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sparse to give testable pairs. Therefore a less random method for generating candidate pairs is 

necessary. 

3.3.1 Graph Density 

Graph density is the number of edges relative to the number of vertices. For instance, a 

dense graph is a graph in which the total number of edges is close to the maximal number of 

edges. Symmetrically, the sparse graph has a relatively small number of edges. Chartrand shows 

that the maximal number of edges ܭ௡where ݊ ൌ |ܸ| is ܭ௡ ൌ
௡ሺ௡ିଵሻ

ଶ
. [Cha85] By this definition, a 

graph with ݊ vertices is sparse if |ܧ| ا  .௡ and dense otherwiseܭ

By applying this definition to the crawl results in Subsection 3.1.1 it is seen that ݊ ൌ

39,024 and therefore ܭ௡ ൌ 2.96 ൈ 10ଵଵ. Because |ܧ| ൌ 2,992,607, which is sufficiently less 

than ܭ௡, the graph used in this thesis is considered sparse. 

Sparse graphs such as the social networks graph used in this work do provide poor 

candidate-pair generation because pairs are selected at random. This is because the odds of 

randomly generating a pair that is connected is |ா|
௄೙
ൌ 0.00393. Therefore, this method would 

need to generate about 300 negative pairs for every 1 positive pair. The poor odds of generating a 

positive candidate pair would lead to inaccurate and unstable results. [Kub97] 

3.3.2 Forced Parity Candidate Generation 

In order for the learning model to be accurate, the training set must contain a sufficient 

number of both positive and negative examples. While the ratio of positive examples to negative 

examples does not need to necessarily be 1, a sufficient number of both should exist. [Kub97] To 

resolve the problem that a random approach presents I force the example set to have 50% 

positive examples and 50% negative examples.  

Caution should be observed when transforming the distribution of the example set. 

Performing this redistribution on the training data given to the machine learning algorithm may 

provide an inaccurate representation of the original distribution, therefore if the learned classifier 

is tested against data from the original distribution the traditional accuracy, precision and recall 
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metrics will not accurately describe the validity of the classifier. For example, consider a training 

set with 1000 total examples where 950 examples are negative and only 50 are positive. A poorly 

trained classifier might simply assign no to all of the examples and would still receive a cross 

validation accuracy of 95% (950/1000). These results are misleading because a poorly-trained 

classifier can still give good results. Subsection 3.4.1, therefore, outlines metrics that are better 

suited for judging the performance of classifiers trained with imbalanced data.  

3.4 Genetic Feature Construction 

Evolutionary algorithms can be used to change the representation of the inputs for 

machine learners. In this work I use a widely known genetic programming technique called 

symbolic regression which was described in Subsection 1.2.3, as well as an unexplored approach 

which uses multiple symbolic regression trees to construct multiple features. 

3.4.1 Symbolic Regression 

In the symbolic regression approach, an optimal prediction function can be obtained by 

means of a genetic program. With this approach, a single mapping function can be learned by 

constructing a symbol tree with a single base feature as the leaves. For example, in a training set 

with examples containing 7 features, including a class feature (yes/no), a single tree would be 

learned and applied to each of the 7 features. In this way, a feature set from the original dataset 

would be transformed into a feature set where all of the features have been mapped with the 

regressed function. Table 3.1 shows this example where 2 instances with their 7 features are 

mapped to a new set of instances from the symbol tree: (% (* (% x x) (* x x) ) (+ x x)), 

which is in prefix-notation and where % represents protected division (not the modulus operator). 
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Table 3.1: Example Symbolic Regression Interpretation 

Features ID of ݑ ID of ݒ Forward Deleted 
Distance 

Intersection 
of Interests 

Intersection 
of Friends 

Outdegree 
of ݑ 

Friends 

Instance 1 150 254 3 15 63 151 yes 
Instance 2 64 125 6 19 14 25 no 
Symbol 
Tree 

(% (* (% x x) (* x x) ) (+ x x)) n/a 

Instance 1 
Result 

75 127.0 1.5 
 

7.5 31.5 
 

75.5 
 

yes 

Instance 2 
Result 

32 62.5 3 
 

9.5 7 12.5 no 

 

This symbol tree can be represented graphically, as in Chapter 1, by the tree shown in 

Figure 3.3. 

 

 
Figure 3.3: Example symbol tree used in Table 3.1 

 

As Figure 3.3 shows, the simple regression tree approach is limited because it attempts to 

apply the same symbol tree on distinct features. This is problematic because different features 

ought to be optimized individually. Subsection 3.4.2 is formulated to solve this specific 

shortcoming. 

3.4.2 Feature Construction via Multiple Regression Trees 

To optimize individual symbol trees per feature, 10 regression trees were genetically 

computed on the 108 base features. Afterwards, the newly constructed features were used to train 
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and cross validate a classifier. The major difference between this method and that of a single 

symbol tree is that the symbol trees’ leaves represent different features rather than a having a 

single tree applied to all features. For example, consider the features and trees from Table 3.2 

where each of the 10 features are constructed solely from a symbol trees with base features as the 

leaves. Note that unlike in the previous section, the features in Table 3.2 are distinct. That is, F1 

represents forward deleted distance, and F7 represents Euclidean distance, etc. 

 

Table 3.2: Example of features constructed with 

multiple regression trees 

Constructed 
Feature Symbol Tree 

1 (* F1 F7) 

2 (* (% F9 F54) ) 

3 (+ (* F6 F8) (- F67 F87) 

4 F2 

5 (+ F15 F16) 

6 (- (* F4 F6) F46) 

7 F5 

8 (% (% F45 F39) (* F70 F3) 

9 (- F7 F91) 

10 (* F1 F1) 

 

In many cases the constructed features might not make any logical sense and an 

inappropriate conclusion may be drawn from the intricate details of the specific sampling. 

Therefore, I ran this experiment several times, each time with a different seed. Finally, I 

examined the commonalities from among the different executions in order to draw appropriate 

conclusions about the data set. 

In all symbolic regression experiments, only four symbols are used: addition, subtraction, 

multiplication and protected division (where a division by 0 returns 1). [Koz92] 

3.5 Feature Computation 

After the genetic program constructs new features, their values need to be computed 

before any learning can begin. Set computation is algorithmically easy, but its theoretical 
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complexity can be problematic for sufficiently large sets. For example, if the genetic program 

constructs a feature composed of the intersection of ݑ’s interest set ܫ௨ with the interest set ܫ௩ of ݒ 

then the computation time is ߠሺ|ܫ௨| ൈ  ሺ݊ଶሻ in the expected caseߠ ௩|ሻ, which is expected to beܫ|

where ݊ is the average number of user interests. Section 3.1 shows that the average number of 

interests per user is about 55. Although 55ଶ ൌ 3,025 comparisons in the expected case are not of 

too much concern, it is important if scalability is considered. Set union and difference operations 

are performed in a similar fashion and can be shown to have the same computational complexity. 

Set computation is shown above to not be of much concern because of the relatively 

small size of the sets. However, computation of the graph features is a difficult problem because 

of the relatively large size of the graph. Consider the crawled graph with 770,595 vertices and 

2,992,607 edges, in order to compute the distance between ݑ and ݒ a shortest path algorithm is 

needed. Currently, the fastest shortest path algorithm is Dijkstra’s Shortest Path Algorithm which 

operates in ߍሺ|E| ൅ |ܸ|ଶሻ, or simply ߍሺ|ܸ|ଶሻ. Because our graph’s edges are all of equal 

weight/distance a small adaptation on Dijkstra’s algorithm becomes Breadth First Search (BFS) 

which operates in ߍሺ|E| ൅ |ܸ|ሻ. The computational complexity of even the fastest known 

algorithm is unacceptable for such a large graph. Therefore I propose the following 

approximation to find the shortest path between two nodes in a graph. 

3.5.1 Shortest Path Approximation 

To find the shortest path in a very large graph I considered how humans are able to 

quickly approximate the shortest path between two points on a street map. For instance, when 

humans look at a street map we are able to very quickly determine the general direction from 

start to destination (e.g., left is East, up is North). Without any background information 

concerning speed limits or traffic conditions, we pick a route that provides the clearest path 

towards the destination. I hypothesize that by treating a graph as a street map and 

computationally approximating path decisions, I will be able to quickly find an approximate 

shortest path between two arbitrarily connected vertices. To do this, I need to create an accurate 

Cartesian embedding of the graph, and then I will be able to navigate the graph according to the 

Cartesian directions and distances gained from the embedding. 
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3.5.1.1 Graph Embedding 

Graph embedding, otherwise known as graph drawing, is the standard means for the 

visualization of relational information. Its usefulness depends on the readability of the resulting 

layout; that is, the drawing algorithm’s ability to convey the meaning of the graph. Many graph 

drawing algorithms have been developed [DiB99] [Kau01]. However, these approaches can be 

prohibitively slow for sufficiently large graphs. Harel and Koren observed that laying out a graph 

in a high dimension is much easier to do than drawing it in 2-dimensions [Har02]. Therefore they 

propose an approach that initially lays out the graph in a very high dimensional space (e.g., in 

50-100 dimensions) and then projecting that layout into a more visually appealing 2-dimensions. 

To do this the authors use principal components analysis (PCA) which is described in Subsection 

1.1.1.  

The result is an extremely fast, simple algorithm that was able to draw the 770,595-vertex 

graph in about 3 hours. By laying out the graph I was able to ascertain 2-dimensional Cartesian 

points. These points were stored in the VERTICES table in the database. 

3.5.1.2 Finding the Approximate Shortest Path 

Once Cartesian coordinates are assigned to vertices the shortest path problem becomes a 

matter of directed search. Therefore I adopted the popular A*-search algorithm to suit this 

problem. This approach allows me to specify three cost functions: ݃ሺݔሻ, which is the actual 

shortest path distance traveled from the initial vertex to the current vertex; ݄ሺݔሻ, which is the 

estimated or heuristic distance from the current node to the goal; and ݂ሺݔሻ, which is the sum of 

݃ሺݔሻ and ݄ሺݔሻ, i.e., the heuristic shortest path distance. To find ݃ሺݔሻ I need to simply keep track 

of the distance that I have searched, and because the edges are un-weighted this is simply the 

sum of the Cartesian distances between all vertices in the current path. To find ݄ሺݔሻ I look at the 

straight-line distance between the current vertex and the destination vertex. This is possible 

because the algorithm is given the location of the destination vertex. For more general search 

problems where the location of the destination is not known this approach would not work. By 

knowing ݃ሺݔሻ and ݄ሺݔሻ I can keep an open-set of candidate vertices ranked by ݂ሺݔሻ and picking 

paths based on the candidates with the lowest ݂ሺݔሻ score until the destination is reached.  
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By applying these two approaches I was able to find an accurate Cartesian layout of the 

graph with a one-time computation time of about 3 hours. By using the Cartesian coordinates 

gleaned from the layout I was able to use an A*-search with a Cartesian distance heuristic to 

quickly find the shortest path between two vertices4. 

3.6 Experiment Design 

This thesis aims to test the ability of a genetic program to construct features which 

improve the accuracy of current link mining algorithms. In order to do so, different sets of 

experiments were performed on identical training data, namely the social networks data 

described in Section 3.1.  

First, as a baseline, the original features were used to train and cross-validate three types 

of learning algorithms: J48, which is a tree learning algorithm based on ID3, NaïveBayes, which 

is a probabilistic learning algorithm which uses Bayes’ theories of probability, and Logistic, 

which is a function finding method similar to symbolic regression, and OneR, which simply 

picks the best possible single rule. [Wit99] 

Second, the genetic program was invoked to learn a classifier based on the application of 

a single symbolic regression tree as described in Subsection 3.4.1. The fitness function of the 

genetic program was determined based on the area under the receiver operating characteristic 

(AUC) metric of the classifier. Because of the random nature of evolutionary algorithms, the 

symbolic regression experiment was run 5 times. 

Third, the genetic program was invoked to learn a classifier based on the application of 

multiple symbolic regression trees as described in Subsection 3.4.2. The fitness function of the 

genetic program was determined by the AUC metric of the classifier. Because of the random 

nature of evolutionary algorithms, the multiple symbolic regression experiment was run 5 times 

for each classifier. Appendix B contains the ECJ parameter file used in the configuration of the 

genetic program. Because the test hold out data was used to reinforce the genetic program, it can 

                                                 
4 Early analytical results show that for a graph size of 50,000 the mean time to find the shortest path 

between random vertices is 5.44 milliseconds with the approach described in this section compared to a mean time 
of 229.88 milliseconds for Dijsktra’s algorithm. Although this is an approximation the algorithm generally achieves 
100% accuracy. 
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be argued that the test hold out data is an inconclusive indicator of the algorithm performance. 

Therefore, validation holdout data with 2000 examples of the original distribution was used to 

validate the performance of the various learning algorithms. 

Finally, the genetic program performance results were compared to those of the meta-

learning algorithms such as bagging, boosting, etc. described in Section 2.1. 

3.6.1 Evaluation Metrics 

The Receiver Operating Characteristic (ROC) curve is an alternative to accuracy for the 

evaluation of classifiers. The ROC curve is a curve and not a single number statistic. In 

particular, this means that the comparison of two algorithms on a dataset does not always 

produce an obvious order. Accuracy, on the other hand, is 1 – error rate, and is the standard 

method used to evaluate learning algorithms. Accuracy is a single-number evaluation of 

performance. [Pro05] 

According to Wikipedia [Wik08]: 

 A ROC space is defined by the false positive rate (FPR) and the true positive rate 

(TPR) as ݔ and ݕ axes respectively, which depicts relative trade-offs between true 

positive (benefits) and false positive (costs). Since TPR is equivalent with sensitivity and 

FPR is equal to 1 - specificity, the ROC graph is sometimes called the sensitivity vs (1 - 

specificity) plot. Each prediction result or one instance of a confusion matrix represents 

one point in the ROC space. 

 The best possible prediction method would yield a point in the upper left corner or 

coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and 

100% specificity (no false positives). The (0,1) point is also called a perfect 

classification. A completely random guess would give a point along a diagonal line (the 

so-called line of no-discrimination) from the left bottom to the top right corners. An 

intuitive example of random guessing is a decision by flipping coins (head or tail). 

The area under the ROC curve (AUC) is a single-number statistic often used to rank ROC 

curves. More importantly, for these experiments the AUC can handle the problems that were 
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described at the end of Section 3.4 regarding accuracy, precision and recall statistics. Most 

results in this thesis will be evaluated using the Area under the ROC Curve (or AUC). 
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CHAPTER 4 - Results 

This chapter presents four sets of results for each of the four experiments described in 

Section 3.6. The standard metrics used will often be accompanied by a more descriptive analysis 

of the results. The final section in this chapter will view the results in a comparative paradigm 

setting up the final chapter containing the conclusions that can be drawn from these experiments. 

The implementations of all algorithms are from WEKA 3.5.75.  

4.1 Results from Traditional Learning using Base Features 

This section looks at the performance of traditional machine learning techniques using 

the base features. For these experiments the 2000 instances were calculated each with 108 

features annotated in Appendix 1. The training data has 50% positive examples and 50% 

negative examples.  

As described in Chapter 1, many learning algorithms, especially tree algorithms such as 

J48, C4.5, etc., use entropy as the means for ranking and dividing attributes. Therefore, it is 

                                                 
5 WEKA 3.5.7 is available at http://www.cs.waikato.ac.nz/ml/weka/ 
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helpful to look at the ranking of the attributes in terms of information gain (i.e., entropy). Table 

4.1 shows that intersectionfriendsidcount (the count of the intersection of friends) is the 

highest ranking feature followed by other statistics based on the intersection of friends followed 

by fdd (forward deleted distance) and bdd (backward deleted distance. These findings differ 

slightly from previous research in which bdd and fdd were consistently the features with the 

highest entropy. 

 

Table 4.1: Attribute Ranking in terms of  

Information Gain [Mit97] 

Ranking ID Feature Name 
0.39492 22 intersectionfriendsidcount 

0.39492 27 intersectionfriendsagecount 

0.38747 18 intersectionfriendsidsum 

0.38298 19 intersectionfriendsidavg 

0.26334 83 firstfriendsagesum 

0.24935 23 intersectionfriendsagesum 

0.24732 24 intersectionfriendsageavg 

0.22317 1 fdd 

0.20616 2 bdd 

0.20546 3 indegreeu 

0.17388 43 unionfriendsagesum 

0.15208 84 firstfriendsageavg 

0.14285 79 firstfriendsidavg 

0.13935 4 outdegreeu 

0.13935 82 firstfriendsidcount 

0.13935 87 firstfriendsagecount 

0.11199 71 firstinterestsidmax 

0.09812 69 firstinterestsidavg 

0.08678 44 unionfriendsageavg 

0.08443 15 intersectioninterestspopularitymin 

0.07647 78 firstfriendsidsum 

0.07029 39 unionfriendsidavg 

0.06293 7 euclidDist 

0.06171 8 intersectioninterestsidsum 

  Next, the same data was used to train a classifier using several traditional learning 

algorithms. In each experiment the classifier was trained on the 2000 instances and a holdout 
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data set with a 1.5% positive example rate (roughly matching that of the original distribution) 

was applied to test the performance of the classifier. For the purposes of this research, the 

learning algorithm which produces a classifier that maximizes area under the ROC (AUC) was 

declared the winner. Table 4.2 presents results from the various learning algorithms including the 

AUC, confusion matrix breakdown and the accuracy, precision and recall statistics. Other 

performance metrics can be calculated based on the confusion matrix breakdown as needed, but 

are not needed for this work. Note that the precision and recall statistics give two percentages: 

the first for the positively labeled instances, and the second for the negatively labeled instances. 

 

Table 4.2: Results for classifiers trained on base features, tested with  

10-fold cross validation. 

Learning 
algorithm AUC Confusion Matrix Accuracy Precision Recall 

OneR 82.7 703 298 82.65 93.5/76.1 70.2/95.1 49 950 

J48 89.5 903 98 90.4 90.6/90.2 90.2/90.6 94 905 

IB1 74.3 695 306 74.25 76.9/72.1 69.4/79.1 209 790 

Logistic 95.4 891 110 91.2 93.1/89.5 89/93.4 66 933 

NaiveBayes 92.1 786 215 85.1 90.4/81 78.5/91.7 83 916 

 

  These results correspond with results from earlier experiments on smaller data sets 

wherein the J48 learning algorithm performed the best at maximizing the accuracy. However, in 

these results the Logistic learning algorithm outperformed all other algorithms. Again, these 

results are not conclusive because testing must be done on examples from the original 

distribution. 

In order to more deeply understand the results of the J48 learning algorithm it helps to 

visualize the generated decision tree. This decision tree shown in Figure 4.1 has 59 leaves and 

117 total nodes. The distance from the root of each decision node largely coincides with the 

information gain rankings from Table 4.1. That is, the higher the information gain ranking, the 

higher the corresponding node is in the decision tree.  
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Figure 4.1: Decision tree for J48 classifier trained on base features. 

 

Judging from the size of the decision tree (58 decision points) relative to the total number 

of features, the induced classifier does not seem to overfit, but in order to empirically test that 

assumption, the same classifier is tested against data that it did not train on. This test data again 

contains 2000 instances with 29 positive and 1,971 negative examples or about 1.5% positive 

examples. 

Table 4.3 shows the results of training and testing on two independent data sets (i.e., no 

cross validation). The performance does not decrease, and in some cases the classification 

performance actually increases. These results show that the classifiers being constructed do not 

overfit and are good representatives for the larger distribution. 
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Table 4.3: Results for classifiers trained on base features, tested  

with hold out data with original distribution. 

Learning 
algorithm AUC Confusion Matrix Accuracy Precision Recall 

OneR 86.7 
23 6 

93.95 16.7/99.7 79.3/94.2 
115 1856 

J48 88.7 27 2 90.05 12.1/99.9 93.1/90.0 197 1774 

IB1 77.4 21 8 82.15 5.7/99.5 72.4/82.3 349 1622 

Logistic 98.0 28 1 94.05 19.2/99.9 96.6/94.0 118 1853 

NaiveBayes 91.4 22 7 91.7 12.2/99.6 75.9/91.9 159 1812 
 

As a final test of performance, ROC curves are generated in order to visualize the overall 

performance of the learning algorithms. Figure 4.2 shows the ROCs for the various learning 

algorithms (IB1 could not generate a ROC). Logistic performed best with an AUC of 98%. 

 
Figure 4.2: ROC curves for learning algorithms trained and cross-

validated 
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4.2 Results of Feature Construction using a Single Symbol Tree 

In an initial test of the genetic programming approach to feature construction, a symbolic 

regression tree was genetically grown according to the specifications in Subsection 3.4.1. 

Because this was an initial test of the capabilities of the genetic program, the results in this 

section are much less robust than in other sections. Nevertheless, these results are reported to 

highlight the shortcomings in a simple symbolic regression approach. 

Figure 4.3 shows the result of applying a single symbol tree to each of the features. The 

fitness is in terms of AUC (87.129% in this result) of a J48 classifier. As the flat fitness curve 

shows, the results do not improve regardless of the symbol tree that is used to modify the feature 

values. 

 
Figure 4.3: Progression of the fitness of the best individual 

through 4 generations. Higher is better. 

 

Table 4.5 shows the symbol trees which were generated by the genetic program and the 

corresponding fitness of the symbol trees. The reasons for these results are discussed as a 

conclusion in Chapter 5. 
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Table 4.4: Symbol trees and corresponding fitness for 4 generations of single 

symbolic regression 

Generation Symbol Tree Fitness
1 (* x x) 87.129 
2 (sin (- (exp (% x x)) (% (exp x) (sin x)))) 87.129 

3 
(rlog (- (exp (- (exp (* (cos x) (% x x))) 
     (+ (sin (sin x)) (cos (+ x x))))) (+ (sin 
     (sin x)) (cos (+ x x))))) 

87.129 

4 (sin (- (exp (% x x)) (% (exp x) (sin x)))) 87.129 

4.3 Results of Feature Construction using Multiple Symbol Trees 

The results of the major contributions of this work are presented in this section. I first 

present the results of several iterations of feature construction experiments. In each experiment 

the total number of constructed features was exactly 10, and the genetic program’s population 

was exactly 100 individuals. As explained in the previous chapter, the learning algorithm was 

trained with 2000 examples of a 50/50 distribution and tested on an independent set of 2000 

examples of the original distribution; because of this “wrapper” approach, the test examples 

influenced the learning algorithm, therefore another independent validation set of 2000 examples 

of the original distribution was used to rate the final performance of each algorithm. The scores 

reported in this section are from the holdout validation data. 

4.3.1 OneR  

First, the genetic program was executed using the OneR learning algorithm in order to 

train a classifier which was then tested on test hold out data of the original 1.5%-positive 

distribution, results are computed by validating the resulting classifier on validation hold out data 

of the original 1.5%-positive distribution. 1 minus the AUC of the classifier was used as the 

fitness function. In total, five independent executions were tried each with a random starting 

seed. Figure 4.4 shows the fitness of the best individual from each generation of these 

executions, wherein “Base” is the non-GP result from Section 4.1, and “Avg” is the mean of the 

five runs. The “Avg” fitness (1 – AUC) remains relatively consistent at 13.16%. 

As Figure 4.4 illustrates, the genetic program was unable to genetically construct features 

to improve the AUC over the five generations. Exploratory repetitions show that the results 



 62

remain steady up to 50 generations. 

 

 
Figure 4.4: Best individuals per generation with OneR for 5 GP runs. 

Lower is better. 

 

Despite these flat results the population does become more specialized as shown in 

Figure 4.5, where the mean validation score over the entire population increases (error 

decreases). Specifically, the “Avg” AUC begins at 27.88% in the first generation and decreases 

to 13.37% in the tenth generation.  

 

 
Figure 4.5: Average validation score over the entire population per 

generation with OneR for 5 GP runs. Lower is better. 
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4.3.2 Logistic  

In the same manner as above, the genetic program was executed again using the Logistic 

learning algorithm in order to train a classifier which was tested on test hold out data of the 

original 1.5%-positive distribution, results are computed by validating the resulting classifier on 

validation holdout data of the original 1.5%-positive distribution. 

1 minus the AUC from the classifier was used as the fitness function. In total, five 

independent executions were tried each with a random starting seed. Figure 4.6 shows the fitness 

of the best individual from each generation of these executions, where “Base” is the non-GP 

result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg” validation score (1 – 

AUC) begins at 2.5% in the first generation and decreases to 1.77% in the tenth generation. 

 
Figure 4.6: Best individuals per generation with Logistic for 5 GP 

runs. Lower is better.  

 

The results from the experiment using the Logistic learning algorithm show a 0.78% 

average decrease in the validation score of the classifier (i.e., 0.78% increase in AUC). 

Furthermore, the mean validation score of the entire population decreases dramatically from 

17.80% in the first generation to 1.77% in the tenth generation as shown in Figure 4.7. 
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Figure 4.7: Average validation score over the entire population per 

generation with Logistic for 5 GP runs. Lower is better. 

4.3.3 J48 

Again, the genetic program was executed using the J48 decision tree learning algorithm 

in order to train a classifier which was tested on test hold out data of the original 1.5%-positive 

distribution, results are computed by validating the resulting classifier on validation hold out data 

of the original 1.5%-positive distribution. 

1 minus the AUC from the classifier was used as the fitness function. In total, five 

independent executions were tried each with a random starting seed. Figure 4.8 shows the 

validation score of the best individual from each generation of these executions, where “Base” is 

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg” 

validation score (1 – AUC) begins at 3.69% in the first generation and decreases to 2.21% in the 

tenth generation. 

 

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

V
al

id
at

io
n 

Sc
or

e 
(1

 -
A

U
C

)

Generations

Run 1

Run 2

Run 3

Run 4

Run 5

Base

Avg



 65

 
Figure 4.8: Best individuals per generation with J48 for 5 GP runs. 

Lower is better. 

 

The results from the experiment using the J48 learning algorithm show a 1.48% average 

decrease in the validation score of the classifier (i.e., 1.48% increase in AUC). Furthermore, the 

mean validation score of the entire population decreases dramatically from 17.34% in the first 

generation to 2.23% in the tenth generation as shown in Figure 4.9. 

 

 
Figure 4.9: Average validation score over the entire population per 

generation with J48 for 5 GP runs. Lower is better. 
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4.3.4 NaiveBayes 

Again, the genetic program was executed using the NaiveBayes learning algorithm in 

order to train a classifier which was tested on test hold out data of the original 1.5%-positive 

distribution, results are computed by validating the resulting classifier on validation hold out data 

of the original 1.5%-positive distribution. 

1 minus the AUC from the classifier was used as the fitness function. In total, five 

independent executions were tried each with a random starting seed. Figure 4.10 shows the 

validation score of the best individual from each generation of these executions, where “Base” is 

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg” 

validation score (1 – AUC) begins at 3.32% in the first generation and decreases to 2.40% in the 

tenth generation. 

 
Figure 4.10: Best individuals per generation with NaiveBayes for 5 

GP runs. Lower is better. 

 

The results from the experiment using the NaiveBayes learning algorithm show a 0.75% 

average decrease in the validation score of the classifier (i.e., 0.75% increase in AUC). 

Furthermore, the mean validation score of the entire population decreases dramatically from 

22.66% in the first generation to 2.34% in the tenth generation as shown in Figure 4.11. 
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Figure 4.11: Average validation score over the entire population per 

generation with NaiveBayes for 5 GP runs. Lower is better. 

4.3.5 IB1 

Again, the genetic program was executed using the IB1 learning algorithm in order to 

train a classifier which was tested on test hold out data of the original 1.5%-positive distribution, 

results are computed by validating the resulting classifier on validation hold out data of the 

original 1.5%-positive distribution. 

1 minus the AUC from the classifier was used as the fitness function. In total, five 

independent executions were tried each with a random starting seed. Figure 4.10 shows the 

validation score of the best individual from each generation of these executions, where “Base” is 

the non-GP result from Section 4.1, and “Avg” is the mean of the five runs. The “Avg” 

validation score (1 – AUC) begins at 13.20% in the first generation and decreases to 8.42% in 

the tenth generation. 
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Figure 4.12: Best individuals per generation with IB1 for 4 GP runs. 

Lower is better. 

 

The results from the experiment using the IB1 learning algorithm show a 4.79% average 

decrease in the validation score of the classifier (i.e., 4.79% increase in AUC). Furthermore, the 

mean validation score of the entire population decreases dramatically from 30.94% in the first 

generation to 8.62% in the tenth generation as shown in Figure 4.13. 

 

 
Figure 4.13: Average validation score over the entire population per 

generation with IB1 for 4 GP runs. Lower is better. 
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4.3.6 Comparative Analysis 

Now that the individual learning algorithms’ results have been presented in Subsections 

4.3.1 through 4.3.5, a comparative analysis can be performed on the averages from each learning 

algorithm’s results. Figure 4.14 shows the average validation scores for the best individuals for 

all generations. Note all experiments ran for an equal number of generations, and each run had 

converged after by at least the tenth generation. A single execution was deemed to have a 

sufficient likelihood of having converged when the best individual’s fitness (i.e., 1 – AUC) was 

identical three generations in a row.  

 

 
Figure 4.14: Average validation scores for the best individuals for all generations. 

Lower is better. 

 

With one exception in OneR, all results effectively converged to an relative optima in 

which the fitness was lower than that of the base classifier. Depending on how Figure 4.14 is 

interpreted one algorithm might be said to outperform another. The absolute performance of the 

specific learning algorithm is not important to the outcome of this thesis; rather, the success or 

failure lies in the ability of the genetic program to construct features that, if provided to any 

learning algorithm will decrease the error (i.e., increase the fitness). 
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Table 4.5: Classifier results in terms of AUC (1 – 

fitness) compared to base results. Higher is better. 

Learning Algorithm GP-Results Base-Results Increase 
OneR 86.96 86.7 0.26 

Logistic 98.50 98.0 0.50 
J48 98.47 88.7 9.77 

NaiveBayes 98.22 91.4 6.82 
IB1 92.46 77.4 15.06 

 

4.3.7 Constructed Feature Trees 

In order to gain a better understanding of the general underlying structure of the features 

that are being genetically constructed this subsection enumerate the features from the symbol 

tree of the best individuals for each run of each learning algorithm. Each symbol tree will have 

10 trees of 1 or more symbols as shown in Figure 4.15, this is done 5 times for each of 5 learning 

algorithms. Therefore, this enumeration will result in at least 250 attributes. Appendix C contains 

the complete list of the best individuals’ symbol trees. 

  

 
Figure 4.15: An example genetically-constructed condensed symbol tree. 

 

 By expanding the condensed view of the symbol tree a more thorough view of the 

features which were constructed becomes available. Figure 4.16 shows the expanded version of 

the symbol tree wherein all constructed features (i.e., X93, X7, etc) are expanded. 
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Including forwardDeletedDistance, there are 7 constructed features that appear 5 

times, 8 features that appear 4 times, 14 features that appear 3 times, 17 features that appear 

twice, 25 features that appear only once, and 28 features that do not appear at all. 

4.4 Meta Learning Results 

Chapter 3 describes meta-learning as learning from the learning process. This section 

presents results similar in style to Section 4.1, where the dataset contains 2000 instances which 

are distributed with 50% positive and 50% negative examples. First, three meta-learning 

algorithms (AdaBoost, Bagging, and RandomForest) are trained on the dataset and tested on the 

hold out dataset with 1.5%-positive example distribution. Table 4.7 shows the results of these 

meta-learning algorithms trained with the base features only. 

 

Table 4.7: Results for meta-learning algorithms trained on base features,  

tested on hold out data with original distribution 

Learning 
algorithm AUC Confusion Matrix Accuracy Precision Recall 

AdaBoost 97.6 
28 1 

92.8 16.4/99.9 96.6/92.7 
143 1828 

Bagging 95.7 28 1 92.95 16.7/99.9 96.6/92.9 140 1831 

RandomForest 97.8 28 1 91.7 14.5/99.9 96.6/91.6 165 1806 

 

As a final test of performance, an ROC curve is generated in order to gauge the overall 

performance of the learning algorithms. Figure 4.17 shows the ROCs for the various learning 

algorithms. 
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Figure 4.17: ROC curves for learning algorithms trained and cross validated on 

feature data set. 

 

The area under the curve (AUC) is often used to gauge performance, where the higher the 

AUC the better the performance. An AUC of 1 is perfect whereas an AUC of 50% is random 

guess. Table 4.7 shows the AUC values for the ROCs in Figure 4.17. By this metric, the 
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CHAPTER 5 - Conclusions and Future Work 

In this thesis, I considered the problem of discovering links in a large, incomplete graph. 

This thesis presented an approach to link prediction that is based on the combination of graph 

feature analysis and intrinsic attributes of entities. Therefore, the principal claims of this thesis 

were: 

1. By crawling the social network service LiveJournal an appropriately large graph can 

be realized and learnable features can be ascertained. 

2. Feature analysis can be achieved on a very large graph by the efficient management 

of the underlying data structure. 

3. Operators within the genetic programming approach can be used to construct new 

features from primitive features that provide a more learnable description of the 

graph. 

4. Features constructed from a genetic program will improve the performance of 

learning algorithms for link mining. 
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By learning from the material in Chapters 1 and 2 and following the methodologies 

prescribed in Chapter 3 the results presented in Chapter 4 lead to several conclusions. This 

chapter presents an interpretation of the results and reviews the principal claims of this work in 

consecutive sections before discussing future directions of this work. 

5.1 Large Graph Crawling and Feature Extraction 

The structure and results of a large web crawl of a social networks graph was presented in 

Section 3.1. The aptly named LJCrawler crawled 39.024 users, scheduled 770,595 total users, 

and discovered 2,151,090 interests and 2,992,607 relationships. All of this was accomplished 

within a time span of about 2½ hours, which equates to 4.09 users per second and 313.69 

relations per second. The total uncompressed size of the database is 383.6 MB. 

By crawling the social network graph friend of a friend (FOAF) data was retrieved. The 

FOAF data included the birth-date, location, age, friends, interests, etc., which was efficiently 

packaged into computable database tuples and stored. Furthermore, from this data 6,000 total 

candidate pairs were generated (2000 for training, 2000 for testing, and 2000 for validation); 

these pairs included 108 potential features each giving a total of 648,000 feature computations. 

These computations were further computed by the genetic program by the methods described in 

Section 3.3. 

Because the pairs were selected at random the entire database was considered by the 

candidate pair generator. Furthermore, paths between candidate pairs frequently contain 

unqueried vertices therefore the feature constructor needed to be able to efficiently retrieve and 

process several data pieces.  

Although timing and benchmarking data was not kept for the pair generation and feature 

construction phases, the 648,000 feature computations did not consume too much wall time 

(approximately 10 minutes for each set of 2000 pairs). Section 5.2 discusses specific graph 

feature computation results. 
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Having demonstrated the ability to quickly and efficiently retrieve vast amounts of social 

network user information, as well as the ability to ascertain relevant features, I conclude that the 

necessary requirements have been met to satisfy principal claim 1.   

5.2 Efficient Feature Computation on Large Graphs 

The efficient computation of features is extremely important because evolutionary 

algorithms operate by spawning and growing a set of hundreds of unique individuals, and each 

individual had at least 10 constructed features. Section 3.5 demonstrated that the running time of 

many of these operations was in ߠሺ݊ଶሻ where ݊ was the size of a user’s list of friends or 

interests, which mostly resulted in an insignificant computation cost. However, the running time 

of the forward deleted distance and backward deleted distance features were bounded by the size 

of the graph. The magnitude of the graph made traditional search algorithms, such as Dijkstra’s 

Shortest Path algorithm impractical by incurring an unbearably long average case execution 

time. This problem was largely relieved with the inclusion of the shortest path approximation 

algorithm described in Subsection 3.5.1. 

Although the theoretical running times have not been annotated, early empirical results 

show that for a graph size of 50,000 the mean time to find the shortest path between random 

vertices is 5.44 milliseconds with the approach described in this section compared to a mean time 

of 229.88 milliseconds for Dijkstra’s algorithm. Although this is an approximation the algorithm 

generally achieves 100% accuracy.  

When applied to the feature computation task within this work the shortest path 

approximation again performed well. Although timing and benchmarking data was not kept for 

the pair generation and feature construction phases, the 432,000 feature computations did not 

consume too much wall clock time (approximately 10 minutes for each set of 2000 pairs).  

The proportion of computation time for the forward and backward deleted distances 

relative to the other 108 features is not known. However, extrapolating the result of Dijkstra’s 

algorithm on the 50,000-vertex test graph to the full 770,595-vertex graph shows yields a 3.5 

second average execution time. If all other computations were negligible, the execution time for 



 77

6000 candidate pairs’ forward and backward deleted distances would be approximately 11 hours 

and 40 minutes (3.5 ൈ 2 ൈ 6000 ൌ 42,000 seconds ~ 11. 6ത hours). 

Having demonstrated the ability to quickly and efficiently compute critical graph features 

from a large graph through use of an approximate shortest path algorithm, I conclude that the 

necessary requirements have been met to satisfy principal claim 2. 

5.3 Analysis of Genetically-Constructed Features 

This work was mainly involved with the ability of genetic programs to construct new 

features from primitive features. These newly constructed features were then used to build a 

classifier. The ultimate goal is to gain insight into the domain by examining these features and 

their relative performance.  

Subsection 4.3.7 illustrates that the genetic programming approach constructed a vast 

amount of new features. Moreover, the multiple tree symbolic regression approach extended the 

feature construction approach by incorporating the use of mathematical operators in a symbol 

tree. I originally expected the features that were to be generated to be very large and complex. 

For example, I expected a most of the constructed features to contain several layers of set 

operations on a variety of attributes. However, I was mildly surprised to find out that most of the 

genetically constructed features were simple set operations of common features. I was further 

surprised to find that the graph features which were very prevalent in earlier experiments 

[Hsu06] [Hsu07] [Hsu08] were less prevalent through these experiments. Specifically, Table 4.7, 

from Chapter 4, shows that the most commonly constructed feature among best individuals was 

the sum of ݑ’s friends’ ages, whereas the first graph feature, forward deleted distance, was 10th 

on the list.  

Overall some interesting patterns emerged from these results. First, the intersection set 

operation played a large role in the fitness of individuals, while the union set operation played a 

minor role and the difference set operator was not identified in the top 10. Intuitively, this shows 

that what friends have in common is more telling than what they do not have in common. 

Second, the use of the friends attribute exists in all but 2 of the top 10 constructed features. This 

evidence, coupled with the prevalence of the intersection set operator, shows that common 
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friends are a good indicator of a relationship. Third, the sub-attributes age and id are the only 

two sub-attributes identified for the friendship attribute and because they occur equally their 

relative prevalence is moot. Finally, only a single feature containing interest data made the top 

10; this fact falls in line with earlier observations that show interest data alone is a relatively poor 

predictor of friendship. 

Having demonstrated the ability for a genetic program to construct features from a large 

and complex graph-dataset, I conclude that the necessary requirements have been met to satisfy 

principal claim 3. 

5.4 Prediction Performance of Genetically-Constructed Features 

The final claim of this thesis is that if the genetically-constructed features are used to 

train classifiers from various learning algorithms then the performance of these classifiers will be 

better than the classifiers training on base features alone. Chapter 4 presented the results of 

several classifiers. First, classifiers were trained using the base features only. Second, features 

were constructed from a genetic program using a single symbol tree, and these features were 

used to train and test a classifier. Third, features were constructed from a genetic program using 

multiple symbol trees, and these features were similarly used to train and test a classifier. Finally, 

meta-learning methods were trained and tested on the base features.  

The classifiers trained using base features only exhibited performance similar to that in 

previous work [Hsu06] [Hsu07]. These results are used as the baseline prediction performance.  

Unlike in the genetic programs with multiple regression trees, the single regression tree 

method did not converge. Rather, the results maintained a steady error rate. I believe this is 

because the single symbol tree equally modified the distribution of all of the learning algorithm’s 

inputs thereby making the symbol trees modifications meaningless. For example, if two training 

tuples ݐଵ and ݐଶ each contained data ݐଵ ൌ ,2,3,5ۃ ଶݐ and ,ۄݏ݁ݕ ൌ ,10,13,11ۃ  then a simple ۄ݋݊

classifier would say all future tuples with values greater than 7 should be labeled ݊݋ otherwise 

they should be labeled ݏ݁ݕ. To complete this example, consider a single symbol tree (+ x x) 

which transforms ݐଵ into 4,6,10ۃ, ,20,26,22ۃ and ۄݏ݁ݕ  Again, a simple classifier would .ۄݏ݁ݕ
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label all future tuples with values greater than (7 ൅ 7 ൌ) 14 to be ݊݋, otherwise, they would be 

labeled ݏ݁ݕ. 

Feature construction from multiple symbol trees alleviates this problem because with 

multiple symbol trees the data is not all altered in exactly the same way. This causes a clear 

discrimination among classes to emerge and prediction performance to increase.  

Figure 5.1 shows a comparison between the performance of traditional learning 

algorithms with and without genetically constructed features and the newer meta-learning 

algorithms, which were training on base features. The leftmost 5 columns represent the 

traditional learning algorithms, and the rightmost 3 columns represent the meta learning 

algorithms. The genetically-constructed features results shown here are the average, best and 

final individuals from earlier experiments (i.e., from Tables 4.6 and 4.8).  

 

 
Figure 5.1: Comparison of results from classifiers trained by (1) 

genetically-constructed features (2) base features and (3) meta-learning 

algorithms. 

The final performance of classifiers trained by genetically-constructed features 

outperforms classifiers trained by base features in every instance, and the top 3 genetic results 

outperform even the best meta-learning algorithm tested. Therefore, I conclude that the necessary 

requirements have been met to satisfy principal claim 4. 
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5.5 Future Work 

Link mining is situated at the intersection of graph theory, machine learning, and web 

mining. This research is potentially useful in a wide range of application areas including bio-

informatics, bibliographic analysis, financial analysis, national security, social network analysis, 

and internet search to name a few. While my research is focused more on the theoretical aspects 

of this topic than in the applicative possibilities, a positive outcome of my work is that it has 

already been adapted to the bioinformatics domain to study the interactions of proteins. [Par07] 

Other promising research includes ontology engineering for interest intersections [Bah08], and 

market basket analysis for interest and community membership [Alj08]. 

In the immediate future the approximate shortest path algorithm should be finalized and 

theoretically examined. I believe that this approach to searching through graphs has implications 

in many fields. Similar work on link mining on the web [Wen08] [Wen08a] has yielded 

promising results, and previous work in genetic and evolutionary computation [Hsu06a] 

[Hsu07a] provides some direction for future work. 

Finally, one limitation of this work was the expressiveness of the constructed features. 

One avenue for future research is to allow the genetic program more degrees of freedom in its 

construction of features. This could be done by adjusting the evolution parameters in system, or 

by using alternative fitness measures. 

A final criticism of this work originates from a potential bias implicit in the network 

methodology. One might argue that the removal of a friendship link to compute alternate paths 

and then the immediate re-addition of that link creates a favorable bias. With that in mind, 

alternative studies from Taskar, Getoor and Koller remove all the links they wish to predict 

without any re-addition [Tas02], [Tas01], [Get01]. I understand the potential bias inherent in this 

approach, but I decided to expand on my previous published work for continuity-sake. 

The research field of link mining is still in its infancy, and there are undoubtedly many 

exciting breakthroughs to be made in the search, retrieval, annotation and explanation of 

relationships in all types of datasets.  
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Appendix A - Complete Feature Set 

1. @RELATION  linkmining 
2. @ATTRIBUTE  fdd        NUMERIC  
3. @ATTRIBUTE  bdd        NUMERIC  
4. @ATTRIBUTE  indegreeu       NUMERIC  
5. @ATTRIBUTE  outdegreeu       NUMERIC  
6. @ATTRIBUTE  indegreev       NUMERIC  
7. @ATTRIBUTE  outdegreev       NUMERIC  
8. @ATTRIBUTE  euclidDist       NUMERIC  
9. @ATTRIBUTE  intersectioninterestsidsum    NUMERIC  
10. @ATTRIBUTE  intersectioninterestsidavg    NUMERIC  
11. @ATTRIBUTE  intersectioninterestsidmin    NUMERIC  
12. @ATTRIBUTE  intersectioninterestsidmax    NUMERIC  
13. @ATTRIBUTE  intersectioninterestsidcount    NUMERIC  
14. @ATTRIBUTE  intersectioninterestspopularitysum   NUMERIC  
15. @ATTRIBUTE  intersectioninterestspopularityavg   NUMERIC  
16. @ATTRIBUTE  intersectioninterestspopularitymin   NUMERIC  
17. @ATTRIBUTE  intersectioninterestspopularitymax   NUMERIC  
18. @ATTRIBUTE  intersectioninterestspopularitycount NUMERIC  
19. @ATTRIBUTE  intersectionfriendsidsum    NUMERIC  
20. @ATTRIBUTE  intersectionfriendsidavg    NUMERIC  
21. @ATTRIBUTE  intersectionfriendsidmin    NUMERIC  
22. @ATTRIBUTE  intersectionfriendsidmax    NUMERIC  
23. @ATTRIBUTE  intersectionfriendsidcount    NUMERIC  
24. @ATTRIBUTE  intersectionfriendsagesum    NUMERIC  
25. @ATTRIBUTE  intersectionfriendsageavg    NUMERIC  
26. @ATTRIBUTE  intersectionfriendsagemin    NUMERIC  
27. @ATTRIBUTE  intersectionfriendsagemax    NUMERIC  
28. @ATTRIBUTE  intersectionfriendsagecount    NUMERIC  
29. @ATTRIBUTE  unioninterestsidsum     NUMERIC  
30. @ATTRIBUTE  unioninterestsidavg     NUMERIC  
31. @ATTRIBUTE  unioninterestsidmin     NUMERIC  
32. @ATTRIBUTE  unioninterestsidmax     NUMERIC  
33. @ATTRIBUTE  unioninterestsidcount     NUMERIC  
34. @ATTRIBUTE  unioninterestspopularitysum   NUMERIC  
35. @ATTRIBUTE  unioninterestspopularityavg    NUMERIC  
36. @ATTRIBUTE  unioninterestspopularitymin    NUMERIC  
37. @ATTRIBUTE  unioninterestspopularitymax    NUMERIC  
38. @ATTRIBUTE  unioninterestspopularitycount   NUMERIC  
39. @ATTRIBUTE  unionfriendsidsum     NUMERIC  
40. @ATTRIBUTE  unionfriendsidavg     NUMERIC  
41. @ATTRIBUTE  unionfriendsidmin     NUMERIC  
42. @ATTRIBUTE  unionfriendsidmax     NUMERIC  
43. @ATTRIBUTE  unionfriendsidcount     NUMERIC  
44. @ATTRIBUTE  unionfriendsagesum     NUMERIC  
45. @ATTRIBUTE  unionfriendsageavg     NUMERIC  
46. @ATTRIBUTE  unionfriendsagemin     NUMERIC  
47. @ATTRIBUTE  unionfriendsagemax     NUMERIC  
48. @ATTRIBUTE  unionfriendsagecount     NUMERIC  
49. @ATTRIBUTE  differenceinterestsidsum    NUMERIC  
50. @ATTRIBUTE  differenceinterestsidavg    NUMERIC  
51. @ATTRIBUTE  differenceinterestsidmin    NUMERIC  
52. @ATTRIBUTE  differenceinterestsidmax    NUMERIC  
53. @ATTRIBUTE  differenceinterestsidcount    NUMERIC  
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54. @ATTRIBUTE  differenceinterestspopularitysum   NUMERIC  
55. @ATTRIBUTE  differenceinterestspopularityavg   NUMERIC  
56. @ATTRIBUTE  differenceinterestspopularitymin   NUMERIC  
57. @ATTRIBUTE  differenceinterestspopularitymax   NUMERIC  
58. @ATTRIBUTE  differenceinterestspopularitycount   NUMERIC  
59. @ATTRIBUTE  differencefriendsidsum     NUMERIC  
60. @ATTRIBUTE  differencefriendsidavg     NUMERIC  
61. @ATTRIBUTE  differencefriendsidmin     NUMERIC  
62. @ATTRIBUTE  differencefriendsidmax     NUMERIC  
63. @ATTRIBUTE  differencefriendsidcount    NUMERIC  
64. @ATTRIBUTE  differencefriendsagesum    NUMERIC  
65. @ATTRIBUTE  differencefriendsageavg    NUMERIC  
66. @ATTRIBUTE  differencefriendsagemin    NUMERIC  
67. @ATTRIBUTE  differencefriendsagemax    NUMERIC  
68. @ATTRIBUTE  differencefriendsagecount    NUMERIC  
69. @ATTRIBUTE  firstinterestsidsum     NUMERIC  
70. @ATTRIBUTE  firstinterestsidavg     NUMERIC  
71. @ATTRIBUTE  firstinterestsidmin     NUMERIC  
72. @ATTRIBUTE  firstinterestsidmax     NUMERIC  
73. @ATTRIBUTE  firstinterestsidcount     NUMERIC  
74. @ATTRIBUTE  firstinterestspopularitysum    NUMERIC  
75. @ATTRIBUTE  firstinterestspopularityavg    NUMERIC  
76. @ATTRIBUTE  firstinterestspopularitymin    NUMERIC  
77. @ATTRIBUTE  firstinterestspopularitymax    NUMERIC  
78. @ATTRIBUTE  firstinterestspopularitycount   NUMERIC  
79. @ATTRIBUTE  firstfriendsidsum     NUMERIC  
80. @ATTRIBUTE  firstfriendsidavg     NUMERIC  
81. @ATTRIBUTE  firstfriendsidmin     NUMERIC  
82. @ATTRIBUTE  firstfriendsidmax     NUMERIC  
83. @ATTRIBUTE  firstfriendsidcount     NUMERIC  
84. @ATTRIBUTE  firstfriendsagesum     NUMERIC  
85. @ATTRIBUTE  firstfriendsageavg     NUMERIC  
86. @ATTRIBUTE  firstfriendsagemin     NUMERIC  
87. @ATTRIBUTE  firstfriendsagemax     NUMERIC  
88. @ATTRIBUTE  firstfriendsagecount     NUMERIC  
89. @ATTRIBUTE  secondinterestsidsum     NUMERIC  
90. @ATTRIBUTE  secondinterestsidavg     NUMERIC  
91. @ATTRIBUTE  secondinterestsidmin     NUMERIC  
92. @ATTRIBUTE  secondinterestsidmax     NUMERIC  
93. @ATTRIBUTE  secondinterestsidcount     NUMERIC  
94. @ATTRIBUTE  secondinterestspopularitysum    NUMERIC  
95. @ATTRIBUTE  secondinterestspopularityavg    NUMERIC  
96. @ATTRIBUTE  secondinterestspopularitymin    NUMERIC  
97. @ATTRIBUTE  secondinterestspopularitymax    NUMERIC  
98. @ATTRIBUTE  secondinterestspopularitycount   NUMERIC  
99. @ATTRIBUTE  secondfriendsidsum     NUMERIC  
100. @ATTRIBUTE  secondfriendsidavg     NUMERIC  
101. @ATTRIBUTE  secondfriendsidmin     NUMERIC  
102. @ATTRIBUTE  secondfriendsidmax     NUMERIC  
103. @ATTRIBUTE  secondfriendsidcount     NUMERIC  
104. @ATTRIBUTE  secondfriendsagesum     NUMERIC  
105. @ATTRIBUTE  secondfriendsageavg     NUMERIC  
106. @ATTRIBUTE  secondfriendsagemin     NUMERIC  
107. @ATTRIBUTE  secondfriendsagemax     NUMERIC  
108. @ATTRIBUTE  secondfriendsagecount     NUMERIC  
109. @ATTRIBUTE  friend       {yes,no}  
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Appendix B - ECJ Parameters File 

 
parent.0 = ../../../gp/koza/koza.params 
 
pop.subpop.0.species.ind.numtrees = 10 
 
# "The result-producing branch" (the "third" tree in Koza-I p. 538) 
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.0.tc = tc0 
# "ADF0 body" (the "first" tree in Koza-I p. 538) 
pop.subpop.0.species.ind.tree.1 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.1.tc = tc1 
# "ADF1 body" (the "second" tree in Koza-I p. 538) 
pop.subpop.0.species.ind.tree.2 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.2.tc = tc2 
 
pop.subpop.0.species.ind.tree.3 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.3.tc = tc3 
 
pop.subpop.0.species.ind.tree.4 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.4.tc = tc4 
 
pop.subpop.0.species.ind.tree.5 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.5.tc = tc5 
 
pop.subpop.0.species.ind.tree.6 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.6.tc = tc6 
 
pop.subpop.0.species.ind.tree.7 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.7.tc = tc7 
 
pop.subpop.0.species.ind.tree.8 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.8.tc = tc8 
 
pop.subpop.0.species.ind.tree.9 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.9.tc = tc9 
 
pop.subpop.0.species.ind.tree.10 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.10.tc = tc10 
 
# Now, let's define what tc0, tc1, and tc2 are. 
# Each has a different function set, f0, f1, and f2 
 
gp.tc.size = 11 
 
gp.tc.0 = ec.gp.GPTreeConstraints 
gp.tc.0.name = tc0 
gp.tc.0.fset = f0 
gp.tc.0.returns = nil 
gp.tc.0.init = ec.gp.koza.GrowBuilder 
gp.tc.0.init.growp = 0.5 
gp.tc.0.init.min = 2 
gp.tc.0.init.max = 6 
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gp.tc.1 = ec.gp.GPTreeConstraints 
gp.tc.1.name = tc1 
gp.tc.1.fset = f0 
gp.tc.1.returns = nil 
gp.tc.1.init = ec.gp.koza.GrowBuilder 
gp.tc.1.init.growp = 0.5 
gp.tc.1.init.min = 2 
gp.tc.1.init.max = 6 
 
gp.tc.2 = ec.gp.GPTreeConstraints 
gp.tc.2.name = tc2 
gp.tc.2.fset = f0 
gp.tc.2.returns = nil 
gp.tc.2.init = ec.gp.koza.GrowBuilder 
gp.tc.2.init.growp = 0.5 
gp.tc.2.init.min = 2 
gp.tc.2.init.max = 6 
 
gp.tc.3 = ec.gp.GPTreeConstraints 
gp.tc.3.name = tc3 
gp.tc.3.fset = f0 
gp.tc.3.returns = nil 
gp.tc.3.init = ec.gp.koza.GrowBuilder 
gp.tc.3.init.growp = 0.5 
gp.tc.3.init.min = 2 
gp.tc.3.init.max = 6 
 
gp.tc.4 = ec.gp.GPTreeConstraints 
gp.tc.4.name = tc4 
gp.tc.4.fset = f0 
gp.tc.4.returns = nil 
gp.tc.4.init = ec.gp.koza.GrowBuilder 
gp.tc.4.init.growp = 0.5 
gp.tc.4.init.min = 2 
gp.tc.4.init.max = 6 
 
gp.tc.5 = ec.gp.GPTreeConstraints 
gp.tc.5.name = tc5 
gp.tc.5.fset = f0 
gp.tc.5.returns = nil 
gp.tc.5.init = ec.gp.koza.GrowBuilder 
gp.tc.5.init.growp = 0.5 
gp.tc.5.init.min = 2 
gp.tc.5.init.max = 6 
 
gp.tc.6 = ec.gp.GPTreeConstraints 
gp.tc.6.name = tc6 
gp.tc.6.fset = f0 
gp.tc.6.returns = nil 
gp.tc.6.init = ec.gp.koza.GrowBuilder 
gp.tc.6.init.growp = 0.5 
gp.tc.6.init.min = 2 
gp.tc.6.init.max = 6 
 
gp.tc.7 = ec.gp.GPTreeConstraints 
gp.tc.7.name = tc7 
gp.tc.7.fset = f0 
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gp.tc.7.returns = nil 
gp.tc.7.init = ec.gp.koza.GrowBuilder 
gp.tc.7.init.growp = 0.5 
gp.tc.7.init.min = 2 
gp.tc.7.init.max = 6 
 
gp.tc.8 = ec.gp.GPTreeConstraints 
gp.tc.8.name = tc8 
gp.tc.8.fset = f0 
gp.tc.8.returns = nil 
gp.tc.8.init = ec.gp.koza.GrowBuilder 
gp.tc.8.init.growp = 0.5 
gp.tc.8.init.min = 2 
gp.tc.8.init.max = 6 
 
gp.tc.9 = ec.gp.GPTreeConstraints 
gp.tc.9.name = tc9 
gp.tc.9.fset = f0 
gp.tc.9.returns = nil 
gp.tc.9.init = ec.gp.koza.GrowBuilder 
gp.tc.9.init.growp = 0.5 
gp.tc.9.init.min = 2 
gp.tc.9.init.max = 6 
 
gp.tc.10 = ec.gp.GPTreeConstraints 
gp.tc.10.name = tc10 
gp.tc.10.fset = f0 
gp.tc.10.returns = nil 
gp.tc.10.init = ec.gp.koza.GrowBuilder 
gp.tc.10.init.growp = 0.5 
gp.tc.10.init.min = 2 
gp.tc.10.init.max = 6 
 
gp.fs.size = 1 
gp.fs.0.name = f0 
gp.fs.0.info = ec.gp.GPFuncInfo 
gp.fs.0.size = 109 
gp.fs.0.func.0 = ec.app.linkmining.regression.func.Add 
gp.fs.0.func.0.nc = nc2 
gp.fs.0.func.1 = ec.app.linkmining.regression.func.Mul 
gp.fs.0.func.1.nc = nc2 
gp.fs.0.func.2 = ec.app.linkmining.regression.func.Sub 
gp.fs.0.func.2.nc = nc2 
gp.fs.0.func.3 = ec.app.linkmining.regression.func.Div 
gp.fs.0.func.3.nc = nc2 
 
gp.fs.0.func.4 = ec.app.linkmining.regression.func.X0 
gp.fs.0.func.4.nc = nc0 
gp.fs.0.func.5 = ec.app.linkmining.regression.func.X1 
gp.fs.0.func.5.nc = nc0 
gp.fs.0.func.6 = ec.app.linkmining.regression.func.X2 
gp.fs.0.func.6.nc = nc0 
gp.fs.0.func.7 = ec.app.linkmining.regression.func.X3 
gp.fs.0.func.7.nc = nc0 
gp.fs.0.func.8 = ec.app.linkmining.regression.func.X4 
gp.fs.0.func.8.nc = nc0 
gp.fs.0.func.9 = ec.app.linkmining.regression.func.X5 
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gp.fs.0.func.9.nc = nc0 
gp.fs.0.func.10 = ec.app.linkmining.regression.func.X6 
gp.fs.0.func.10.nc = nc0 
gp.fs.0.func.11 = ec.app.linkmining.regression.func.X7 
gp.fs.0.func.11.nc = nc0 
gp.fs.0.func.12 = ec.app.linkmining.regression.func.X8 
gp.fs.0.func.12.nc = nc0 
gp.fs.0.func.13 = ec.app.linkmining.regression.func.X9 
gp.fs.0.func.13.nc = nc0 
gp.fs.0.func.14 = ec.app.linkmining.regression.func.X10 
gp.fs.0.func.14.nc = nc0 
gp.fs.0.func.15 = ec.app.linkmining.regression.func.X11 
gp.fs.0.func.15.nc = nc0 
gp.fs.0.func.16 = ec.app.linkmining.regression.func.X12 
gp.fs.0.func.16.nc = nc0 
gp.fs.0.func.17 = ec.app.linkmining.regression.func.X13 
gp.fs.0.func.17.nc = nc0 
gp.fs.0.func.18 = ec.app.linkmining.regression.func.X14 
gp.fs.0.func.18.nc = nc0 
gp.fs.0.func.19 = ec.app.linkmining.regression.func.X15 
gp.fs.0.func.19.nc = nc0 
gp.fs.0.func.20 = ec.app.linkmining.regression.func.X16 
gp.fs.0.func.20.nc = nc0 
gp.fs.0.func.21 = ec.app.linkmining.regression.func.X17 
gp.fs.0.func.21.nc = nc0 
gp.fs.0.func.22 = ec.app.linkmining.regression.func.X18 
gp.fs.0.func.22.nc = nc0 
gp.fs.0.func.23 = ec.app.linkmining.regression.func.X19 
gp.fs.0.func.23.nc = nc0 
gp.fs.0.func.24 = ec.app.linkmining.regression.func.X20 
gp.fs.0.func.24.nc = nc0 
gp.fs.0.func.25 = ec.app.linkmining.regression.func.X21 
gp.fs.0.func.25.nc = nc0 
gp.fs.0.func.26 = ec.app.linkmining.regression.func.X22 
gp.fs.0.func.26.nc = nc0 
gp.fs.0.func.27 = ec.app.linkmining.regression.func.X23 
gp.fs.0.func.27.nc = nc0 
gp.fs.0.func.28 = ec.app.linkmining.regression.func.X24 
gp.fs.0.func.28.nc = nc0 
gp.fs.0.func.29 = ec.app.linkmining.regression.func.X25 
gp.fs.0.func.29.nc = nc0 
gp.fs.0.func.30 = ec.app.linkmining.regression.func.X26 
gp.fs.0.func.30.nc = nc0 
gp.fs.0.func.31 = ec.app.linkmining.regression.func.X27 
gp.fs.0.func.31.nc = nc0 
gp.fs.0.func.32 = ec.app.linkmining.regression.func.X28 
gp.fs.0.func.32.nc = nc0 
gp.fs.0.func.33 = ec.app.linkmining.regression.func.X29 
gp.fs.0.func.33.nc = nc0 
gp.fs.0.func.34 = ec.app.linkmining.regression.func.X30 
gp.fs.0.func.34.nc = nc0 
gp.fs.0.func.35 = ec.app.linkmining.regression.func.X31 
gp.fs.0.func.35.nc = nc0 
gp.fs.0.func.36 = ec.app.linkmining.regression.func.X32 
gp.fs.0.func.36.nc = nc0 
gp.fs.0.func.37 = ec.app.linkmining.regression.func.X33 
gp.fs.0.func.37.nc = nc0 
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gp.fs.0.func.38 = ec.app.linkmining.regression.func.X34 
gp.fs.0.func.38.nc = nc0 
gp.fs.0.func.39 = ec.app.linkmining.regression.func.X35 
gp.fs.0.func.39.nc = nc0 
gp.fs.0.func.40 = ec.app.linkmining.regression.func.X36 
gp.fs.0.func.40.nc = nc0 
gp.fs.0.func.41 = ec.app.linkmining.regression.func.X37 
gp.fs.0.func.41.nc = nc0 
gp.fs.0.func.42 = ec.app.linkmining.regression.func.X38 
gp.fs.0.func.42.nc = nc0 
gp.fs.0.func.43 = ec.app.linkmining.regression.func.X39 
gp.fs.0.func.43.nc = nc0 
gp.fs.0.func.44 = ec.app.linkmining.regression.func.X40 
gp.fs.0.func.44.nc = nc0 
gp.fs.0.func.45 = ec.app.linkmining.regression.func.X41 
gp.fs.0.func.45.nc = nc0 
gp.fs.0.func.46 = ec.app.linkmining.regression.func.X42 
gp.fs.0.func.46.nc = nc0 
gp.fs.0.func.47 = ec.app.linkmining.regression.func.X43 
gp.fs.0.func.47.nc = nc0 
gp.fs.0.func.48 = ec.app.linkmining.regression.func.X44 
gp.fs.0.func.48.nc = nc0 
gp.fs.0.func.49 = ec.app.linkmining.regression.func.X45 
gp.fs.0.func.49.nc = nc0 
gp.fs.0.func.50 = ec.app.linkmining.regression.func.X46 
gp.fs.0.func.50.nc = nc0 
gp.fs.0.func.51 = ec.app.linkmining.regression.func.X47 
gp.fs.0.func.51.nc = nc0 
gp.fs.0.func.52 = ec.app.linkmining.regression.func.X48 
gp.fs.0.func.52.nc = nc0 
gp.fs.0.func.53 = ec.app.linkmining.regression.func.X49 
gp.fs.0.func.53.nc = nc0 
gp.fs.0.func.54 = ec.app.linkmining.regression.func.X50 
gp.fs.0.func.54.nc = nc0 
gp.fs.0.func.55 = ec.app.linkmining.regression.func.X51 
gp.fs.0.func.55.nc = nc0 
gp.fs.0.func.56 = ec.app.linkmining.regression.func.X52 
gp.fs.0.func.56.nc = nc0 
gp.fs.0.func.57 = ec.app.linkmining.regression.func.X53 
gp.fs.0.func.57.nc = nc0 
gp.fs.0.func.58 = ec.app.linkmining.regression.func.X54 
gp.fs.0.func.58.nc = nc0 
gp.fs.0.func.59 = ec.app.linkmining.regression.func.X55 
gp.fs.0.func.59.nc = nc0 
gp.fs.0.func.60 = ec.app.linkmining.regression.func.X56 
gp.fs.0.func.60.nc = nc0 
gp.fs.0.func.61 = ec.app.linkmining.regression.func.X57 
gp.fs.0.func.61.nc = nc0 
gp.fs.0.func.62 = ec.app.linkmining.regression.func.X58 
gp.fs.0.func.62.nc = nc0 
gp.fs.0.func.63 = ec.app.linkmining.regression.func.X59 
gp.fs.0.func.63.nc = nc0 
gp.fs.0.func.64 = ec.app.linkmining.regression.func.X60 
gp.fs.0.func.64.nc = nc0 
gp.fs.0.func.65 = ec.app.linkmining.regression.func.X61 
gp.fs.0.func.65.nc = nc0 
gp.fs.0.func.66 = ec.app.linkmining.regression.func.X62 
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gp.fs.0.func.66.nc = nc0 
gp.fs.0.func.67 = ec.app.linkmining.regression.func.X63 
gp.fs.0.func.67.nc = nc0 
gp.fs.0.func.68 = ec.app.linkmining.regression.func.X64 
gp.fs.0.func.68.nc = nc0 
gp.fs.0.func.69 = ec.app.linkmining.regression.func.X65 
gp.fs.0.func.69.nc = nc0 
gp.fs.0.func.70 = ec.app.linkmining.regression.func.X66 
gp.fs.0.func.70.nc = nc0 
gp.fs.0.func.71 = ec.app.linkmining.regression.func.X67 
gp.fs.0.func.71.nc = nc0 
gp.fs.0.func.72 = ec.app.linkmining.regression.func.X68 
gp.fs.0.func.72.nc = nc0 
gp.fs.0.func.73 = ec.app.linkmining.regression.func.X69 
gp.fs.0.func.73.nc = nc0 
gp.fs.0.func.74 = ec.app.linkmining.regression.func.X70 
gp.fs.0.func.74.nc = nc0 
gp.fs.0.func.75 = ec.app.linkmining.regression.func.X71 
gp.fs.0.func.75.nc = nc0 
gp.fs.0.func.76 = ec.app.linkmining.regression.func.X72 
gp.fs.0.func.76.nc = nc0 
gp.fs.0.func.77 = ec.app.linkmining.regression.func.X73 
gp.fs.0.func.77.nc = nc0 
gp.fs.0.func.78 = ec.app.linkmining.regression.func.X74 
gp.fs.0.func.78.nc = nc0 
gp.fs.0.func.79 = ec.app.linkmining.regression.func.X75 
gp.fs.0.func.79.nc = nc0 
gp.fs.0.func.80 = ec.app.linkmining.regression.func.X76 
gp.fs.0.func.80.nc = nc0 
gp.fs.0.func.81 = ec.app.linkmining.regression.func.X77 
gp.fs.0.func.81.nc = nc0 
gp.fs.0.func.82 = ec.app.linkmining.regression.func.X78 
gp.fs.0.func.82.nc = nc0 
gp.fs.0.func.83 = ec.app.linkmining.regression.func.X79 
gp.fs.0.func.83.nc = nc0 
gp.fs.0.func.84 = ec.app.linkmining.regression.func.X80 
gp.fs.0.func.84.nc = nc0 
gp.fs.0.func.85 = ec.app.linkmining.regression.func.X81 
gp.fs.0.func.85.nc = nc0 
gp.fs.0.func.86 = ec.app.linkmining.regression.func.X82 
gp.fs.0.func.86.nc = nc0 
gp.fs.0.func.87 = ec.app.linkmining.regression.func.X83 
gp.fs.0.func.87.nc = nc0 
gp.fs.0.func.88 = ec.app.linkmining.regression.func.X84 
gp.fs.0.func.88.nc = nc0 
gp.fs.0.func.89 = ec.app.linkmining.regression.func.X85 
gp.fs.0.func.89.nc = nc0 
gp.fs.0.func.90 = ec.app.linkmining.regression.func.X86 
gp.fs.0.func.90.nc = nc0 
gp.fs.0.func.91 = ec.app.linkmining.regression.func.X87 
gp.fs.0.func.91.nc = nc0 
gp.fs.0.func.92 = ec.app.linkmining.regression.func.X88 
gp.fs.0.func.92.nc = nc0 
gp.fs.0.func.93 = ec.app.linkmining.regression.func.X89 
gp.fs.0.func.93.nc = nc0 
gp.fs.0.func.94 = ec.app.linkmining.regression.func.X90 
gp.fs.0.func.94.nc = nc0 
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gp.fs.0.func.95 = ec.app.linkmining.regression.func.X91 
gp.fs.0.func.95.nc = nc0 
gp.fs.0.func.96 = ec.app.linkmining.regression.func.X92 
gp.fs.0.func.96.nc = nc0 
gp.fs.0.func.97 = ec.app.linkmining.regression.func.X93 
gp.fs.0.func.97.nc = nc0 
gp.fs.0.func.98 = ec.app.linkmining.regression.func.X94 
gp.fs.0.func.98.nc = nc0 
gp.fs.0.func.99 = ec.app.linkmining.regression.func.X95 
gp.fs.0.func.99.nc = nc0 
gp.fs.0.func.100 = ec.app.linkmining.regression.func.X96 
gp.fs.0.func.100.nc = nc0 
gp.fs.0.func.101 = ec.app.linkmining.regression.func.X97 
gp.fs.0.func.101.nc = nc0 
gp.fs.0.func.102 = ec.app.linkmining.regression.func.X98 
gp.fs.0.func.102.nc = nc0 
gp.fs.0.func.103 = ec.app.linkmining.regression.func.X99 
gp.fs.0.func.103.nc = nc0 
gp.fs.0.func.104 = ec.app.linkmining.regression.func.X100 
gp.fs.0.func.104.nc = nc0 
gp.fs.0.func.105 = ec.app.linkmining.regression.func.X101 
gp.fs.0.func.105.nc = nc0 
gp.fs.0.func.106 = ec.app.linkmining.regression.func.X102 
gp.fs.0.func.106.nc = nc0 
gp.fs.0.func.107 = ec.app.linkmining.regression.func.X103 
gp.fs.0.func.107.nc = nc0 
gp.fs.0.func.108 = ec.app.linkmining.regression.func.X104 
gp.fs.0.func.108.nc = nc0 
 
 
 
%gp.fs.0.func.5 = ec.app.linkmining.regression.func.Sin 
%gp.fs.0.func.5.nc = nc1 
%gp.fs.0.func.6 = ec.app.linkmining.regression.func.Cos 
%gp.fs.0.func.6.nc = nc1 
%gp.fs.0.func.7 = ec.app.linkmining.regression.func.Exp 
%gp.fs.0.func.7.nc = nc1 
%gp.fs.0.func.8 = ec.app.linkmining.regression.func.Log 
%gp.fs.0.func.8.nc = nc1 
 
 
# 
# We specify our problem here 
# 
 
eval.problem = ec.app.linkmining.regression.Regression 
eval.problem.data = ec.app.linkmining.regression.RegressionData 
# ADFs use the same data type typically -- we need to include 
# this even if we're not implementing ADFs 
eval.problem.stack.context.data = ec.app.linkmining.regression.RegressionData 
 
# The size of our training set, by default, is 20 
eval.problem.size = 10 
 
pop.subpop.0.size =   100 
 
stat.file    $out.stat 
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Appendix C - Symbol Trees for Best Individuals 

OneR 
1 2 3 4 5 

X30 X56 X21 X4 X74 
(- X80 X18) X26 X103 X85 (- X65 X17) 

X30 X32 X15 X60 X1 
X12 X70 X89 (- X71 X68) X92 

(- X1 X57) X102 X19 X22 X19 
(* X93 X93) X98 X71 X2 (* X102 X70) 

X7 X48 X14 X17 X74 
X78 X7 X30 X93 X79 
X49 X7 X80 X87 X82 
X17 X1 X80 X68 X62 

Logistic 
1 2 3 4 5 

X82 X67 X84 X11 X21 
X83 X82 X2 X62 X21 

(* X27 X30) X7 X82 X26 X32 
X82 X37 X0 X57 X16 
X21 X26 X62 X70 X42 

(% X59 X97) X43 X35 X12 X27 
X18 X57 X10 X42 X68 

X101 X22 X26 X45 X75 
(- X0 X79) X26 X38 X62 X82 

X64 X82 X40 X46 X46 

J48 
1 2 3 4 5 

X37 X18 X27 X78 X78 
X21 X101 X57 X86 X94 
X84 X21 X28 X5 X21 
X92 X58 X86 X7 X97 
X4 X68 X42 X18 X43 
X5 X82 X82 X46 X0 

X78 X91 X21 X48 X9 
X46 X42 X78 X23 X31 

X103 X21 (* X43 X21) X102 X3 
X27 X75 X48 X78 X4 
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NaiveBayes 
1 2 3 4 5 

X70 X23 (% (+ X71 X60) X23) X4 X14 
X82 X18 X92 X11 X23 
X19 X82 X43 X43 X82 
X26 X0 X21 X25 X12 
X38 X21 X2 X21 X75 
X82 X51 X60 X22 X18 

(% X21 X18) X43 X18 X26 X26 
X38 X54 X34 X82 X0 
X47 X104 X42 X30 X44 
X28 X95 X79 X81 X73 

IB1 
1 2 3 4 5 

X59 X82 X3 X18 X3 
X83 X57 X10 X82 X18 

(* X48 X39) X18 X45 X3 X81 
X23 X18 X18 X23 X23 
X18 X26 X82 X23 X44 

X102 X23 X22 X102 X18 
X42 X82 X102 X33 X26 
X85 X58 X21 X7 X70 
X7 X44 X22 X26 X2 

X68 X17 X103 X64 X74 
 
 


