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NONPARAMETRIC ANALOGUES OF ANALYSIS OF VARIANCE

1. Introduction

J. V. Bradley (I960) proposes that the history of statistics can

be divided into four major stages. The first or one parameter stage was

when statistics were merely thought of as averages or in some instances

ratios. The second or two parameter stage was when the concept of

variance was introduced. Every population was thought to have a normal

distribution which could be completely described with the mean and vari-

ance. In the third or multiparameter stage the discovery of many new

distributions took place and with this the concept of using moments to

identify the distribution. The fourth or no parameter stage is the area of

this report. The first nonparametric statistics, sometimes called distri-

bution free statistics, can be traced back as far as 1710. However,

Savage (1953) places the "true beginning" of nonparametric statistics in

1936. From this point there has been rapid growth in this field.

There are several reasons for the rapid growth of nonparametric

statistics. One of these reasons is the simplicity of derivation of most

of the nonparametric tests in comparison to similar parametric tests.

This has made the nonparametric test easier to understand for the average

researcher.



In most cases, the ease and speed of calculation of the nonparametric

tests make them very attractive to organizations not having a computer.

In general, the nonparametric tests are nearly as efficient as the

parametric tests even under the assumptions of the parametric tests.

When the assumptions of the parametric test are violated to a large de-

gree, it is generally thought that the nonparametric tests are more power-

ful than the parametric tests (Bradley, I960).

Siegel (1956) and Bradley (I960) have written books on nonpara-

metric statistics that cover only the simplest analogues of analysis of

variance. The purpose of this report is to provide nonparametric ana-

logues for many basic parametric designs and new nonparametric pro-

cedures for the designs covered by Siegel (1956) and Bradley (I960).

In many areas of research, parametric analysis of variance de-

signs are used extensively even when the assumptions are violated. This

is usually done because the researcher is unfamiliar with the proper non-

parametric procedure. Therefore, it is hoped that this paper will provide

a reference for researchers interested in using nonparametric analysis

of their data.

The first design discussed is the completely randomized design.

The most popular and probably the most powerful of these analogues is

the Kruskal-Wallis analysis of variance by ranks. There is also a dis-

cussion of two possible approaches to a k-sample slippage test. These

two tests have the advantage of being quick and simple. The next analogue



of this section involves a k-sample Kolmogorov-Smirnov test that makes

a test of significance on k cumulative distributions. Last is the well known

2
contingency x test for k independent samples.

The second analogue is of the randomized complete block design.

The first test considered is the Cochran Q test. This is used for only-

special types of data, usually of the + or - type. Next is the Friedman

two-way analysis of variance by ranks. This is the most widely known

test of this section (Siegel, 1956).

The third major area includes procedures that extend over several

designs. These procedures are quite useful because an experimenter

needs only to be acquainted with one process and then can generalize over

several designs. A large part of this section is devoted to median tests

which are analogues to several analysis of variance designs. The first

of these procedures was developed by Mood (1950). Wilson (1956) revised

Mood's method but Alluisi (1956) was responsible for developing the com-

putational formulae which make this procedure very useable. Alluisi ex-

tends this procedure to three factors which is very similar to the three

factor analysis of variance design. The last two tests of this section are

recently developed tests involving rank analysis. These tests have pro-

cedures for completely randomized and randomized complete block ana-

logues. These two tests appear to have considerable power and could be

the most important part of this paper.



Section 5 includes two procedures for a balanced incomplete block

analogue. These two tests are valuable when the data consist of small-

scale comparisons.

The only nonparametric factorial experiment found was a 2x2

factorial with paired comparisons. This test is of little use due to the

extreme complexity of computations.

The last major section is concerned with partially balanced in-

complete block designs. This test by Giri (1965) gives procedures for a

reasonable approximation to the randomization test using the F statistic.

The final section is a short summary of other related tests and

papers that might be of considerable help to other persons doing research

in this area.

2. Completely Randomized Design

For this design the experiment units or observations are ran-

domly chosen for each treatment. It is not necessary for the treatments

to have an equal number of observations; although, it usually simplifies

computations. There are several nonparametric analogues of this design.

Some of these will be discussed in this section and the remainder in

section 4.

2. 1 The Kruskal-Wallis One-way Analysis of Variance by Ranks.

The Kruskal-Wallis test is the most popular test of this section.



This popularity could be due to the fact that the Kruskal-Wallis test is

nearly an exact analogue of the completely randomized design. Also,

Bradley (I960) states that the asymptotic efficiency of the Kruskal-Wallis

test compared to the completely randomized design is . 955 or 3/tt .

The Kruskal-Wallis technique tests the null hypothesis that the k

samples come from the same population or from identical populations

against the alternative that they are from different populations.

The only assumptions required are that the random variables are

from a continuous distribution and that the variables can at least be

ordered (Siegel, 1956).

The scores from all of the k samples are placed in an ordered

array. The observations are then ranked giving the rank of 1 to the

smallest observation, to the next smallest 2, etc. The original observa-

tions are now identified only by their proper rank. These ranks are then

replaced in their proper column and the columns or treatments are summed.

It has been shown by Kruskal-Wallis (1952) that if the k samples

actually are from the same population, then H is distributed approxi-

mately as chi square with k-1 degrees of freedom (df) for sample sizes

sufficiently large, where

(2 - 1 - 1) H 'wkr \ £ - 3(N+1) -

and



k = number of samples.

tv>
n = number of observations in the j sample.

J

N = En = number of observations in all samples combined.
J

R = sum of ranks in the j sample (column).
J

When all the k samples have n>_5, then a chi square table

(Siegel, 1956) with df = k - 1 may be used to test significance. When

k = 3 and n <_5 there are special tables available (Kruskal and Wallis,

1952).

When ties occur between two or more scores, each score is given

the mean of the ranks for which it is tied. Since the value of H is some-

what influenced by ties, one may wish to correct for ties in computing H.

To correct for the effect of ties, H is computed and then divided by

•-1
T

-

(2. 1.2) 1 - J-J^ L

N -N

3
Where T = t - t ,

j j J

tb
t. = the number of tied observations in the j tied group

of scores,

a = the number of different groups of tied observations.

If the number of ties is relatively small, the correction for ties

makes very little difference in H.



2. 2 Mosteller's k-sample Slippage Test.

A slippage test is concerned with the amount the location parameter

of one distribution has slipped with respect to the other distributions.

Exact probabilities can be computed for Mosteller's test without

difficulty and the test is easy to perform. However, it would appear that

the power of this slippage test is low. The loss in power would be due to

the fact that evenly spaced sample differences would not show significance;

although, there could be high significance between the largest and smallest

sample.

The null hypothesis is that all populations have the same locations

against the alternative that one population has a larger location parameter

than the rest.

It is assumed that the populations are continuous and are identically

distributed. It is also assumed that the samples are independent and ran-

domly chosen.

The slippage test is only concerned with the largest observations;

therefore, this test is extremely sensitive to both shape and location of

the upper tail of the distribution. This should be taken into consideration

when conducting this test.

To make this test, the sample containing the largest observation

is determined and in it the experimenter counts the number, r, of obser-

vations which exceed all observations in all other samples. If n . is the
1

size of the i^ sample and N is the total number of observations in all



samples, then there are n. (n. -l)...(n. -r+1) or n.!/(n. -r)! waysr 111 11
tY\

in which the r largest observations could have been placed in the i

sample and N(N - 1). . . (N - r + 1 ) or N! /(N - r)! ways in which they

could have been located in different samples. The probability that the r

largest observation will all be in a preselected sample is therefore

n.! /(n. - r)!

—
T7~ , and the probability that they will all be in some one of

N! /(N - r)

!

the k samples is

k n.! /(n. - r)

!

(2. 2. 1) Pr(r) = I
N! /(N - r)!

Since in the derivation, it was not required that the (r - l)
st largest

observation be located in a different sample, the above probability is the

probability that r or more of the largest observations will be located in

a single sample {Bradley, I960). This computation is not extremely com-

plicated with tables of factorials (Siegel, 1956). However, exact tables

have been published by Mosteller (1948) for the case of equal sized sam-

ples n = 3, 5, 7, 10, 15, 20, 25, with 2<_k<_6 and 2<_r<_5.

2.3 Conover's k-sample Slippage Test.

The main advantage of Conover's k-sample slippage test is the

ease of computation. This test can be used where a quick and easy statis

tical test is desired to support the rejection of H when it is obviously



wrong. Another advantage of this test is the ease of making multiple

comparisons to find nonsignificant groupings of treatment means. It

appears that Conover's k-sample slippage test is more versatile than

Mosteller's k-sample slippage test and would be more powerful in most

cases.

The data are arranged in k random samples with each containing

n observations. The samples are ordered among themselves on the basis

of the greatest value within each sample; these values being called the ex-

treme values. The samples are then ranked according to their extreme

values giving the sample with the largest extreme value the rank of one.

The null hypothesis is that all of the distribution functions of the

samples are equal. This is to be tested against the alternative that at

least two of the distribution functions differ by a shift in location parameter

The distribution functions are all considered to be continuous and

differ only by a location parameter.

The test statistic m equals the number of values from the sample

of rank 1 exceeding the extreme value from the sample of rank j = k.

Using the tables by Conover (1966) for the appropriate values of

k and n, and the desired level of significance, a, let j = k and reject

H if the value of m is greater than or equal to the value in the table.

If significance is found, then multiple comparisons maybe made.

There are two possible procedures suggested by Conover (1966).

A possible third method, analogous to Duncan's new multiple range

test would give all of the nonsignificant groupings of treatments in the
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experiment. First, let m equal the number of observations from the

sample of rank 1 that exceed the largest observation of the sample of

rank 2 and enter the table as before except that now j = 2. If m does

not exceed the critical value from the table, repeat the procedure for

j = 3, 4, and so on until a significant reading is found. This would yield

the first nonsignificant grouping.

Now take the sample of rank 2 and consider it to be the largest

sample and repeat the process mentioned before with k' = k - 1. This

procedure could produce a new group of nonsignificant treatments or just

a subgroup of the first group. If a subgroup is produced, the procedure

would again be followed for the sample of rank 3 and with a k" = k - 2.

This would continue until a second nonsignificant group of treatments is

produced. This process would be continued for sample of rank 4, ... k- 1.

From this all of the nonsignificant groups of treatments could be found.

In case of ties, the method of determining m described previously

will yield conservative results (Conover, 1966). If there is difficulty in

determining the ranks of the samples because of ties in their extremes,

it is suggested by Conover (1966) that these ties be resolved by comparing

the next highest values from the samples in question, and assigning ranks

correspondingly. This procedure may be continued until the tie is broken.

There is also a test for k samples of unequal size presented.

However, this test is more of an analogue of a multiple comparison which

does not require a previous analysis of variance.
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The power of Conover's k-sample slippage test has not been com-

puted but it seems possible that the power of this test must be greater

than or equal to the power of Mosteller's test.

There are tables of significant values for k_< 20 and for selected

values of n given by Conover (1966).

2.4 A k-sample Kolmogorov-Smirnov Test.

The Kolmogorov-Smirnov test has one big advantage that is not

present in most of the other nonparametric analogues of the completely

randomized design. This advantage is that the scale of the distribution

may be tested as well as the location.

The null hypothesis is that all of the samples come from the same

distribution, with the alternative that at least some of the samples come

from different distributions.

To make this test, the samples must first be ordered within them-

selves. Then the samples themselves are ordered according to their

smallest observation. Now let Y.. denote the observation where the

number i is called the rank of Y.. within the sample, and the number

j is called the rank of the sample. S is the set of ordered samples from

Y... Conover (1965a) defines the empirical distribution function of the

sample with rank j as:

S. (y) =0 if y<Y..
J ij

S (y) = m/n if Y . <y <Y ,

j mj- - m+l,j

S. (y) =1 if Y .<y,
J nj
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where k is the number of equal random samples and n is the number

of observations per sample.

To make this test, the experimenter may first graph all k sam-

ples on the same graph as discrete cumulative distribution functions or

just look at the cumulative frequencies. Then the maximum vertical dis

tance or the maximum difference is the test statistic

(2.4.1) D
+

. (k,n) = sup [S. (y) - S. (y)]
J

1
J 2 y J

l
J 2

where j <j and j = 1, 2,...k- 1; j - 2, 3,..., k.

To test the null hypothesis, one could use D (k,n). D (k,n)
I , K 1 , K

will attain some value c/n. Thus Pr(D , (k, n) < c/n) will give the
1, k —

probability of D (k, n) being less than or equal to c/n under the null
1 , k

hypothesis so a decision may be reached, using

q-'or:::) .

J
1
»J

2

V
' ' - n

' /k -
j

i

- (c+l)/n\ /2n - 2\
(2.4.2) P(D

+
. (k.n) < ~) =

h'h /v nl

j,-j,-l ,- „ t^, , „J
2
J 1'°

2
J
l (n-D^c+l^.j^-l) (k-j

1

-a-l)(k-j
l

-a)(nk-nj
1

-c-l-na)

a ' (u-i,-! -01 )! (nk-ni ,+n-l -na)
a = J

2
J
l

J
l c

where (A) represents the falling factorial A(A-l) (A-2). . . (A-c+1).
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The D may be also used to make multiple comparisons of the

treatments and Conover (1965a) gives a D which can be used to test for

homogeniety of the scales of the distributions. These tests require long

and difficult computations if done by hand; however, they could easily be

put on a computer.

2
2.5 The Contingency x Test.

2
The contingency X is a well known test to any student of statis-

tical methods. When frequencies in discrete categories constitute the data

2
of research, the X test may be used to determine the significance of the

differences among k independent groups.

2
To apply the x test, one first arranges the frequencies in a k

by r table. The null hypothesis is that the k samples of frequencies

have come from the same population or from identical populations. This

hypothesis may be tested by

r k (O - E..)
2

(2.5.1) x
Z

= I Z % U

1-1 J-l 1J

where

O.. = observed number of cases categorized in i*-
n row of

j*-n column,

E = number of cases expected under H to be categorized

in the i"1 row of the j^n column,
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k = the number of columns,

r = the number of rows.

To find the expected frequency for each cell (E..), multiply the

two marginal totals common to a particular cell, and then divide this pro-

2
duct by the total number of observations. The x test requires that the

expected frequencies in each cell should not be too small. When this re-

quirement is violated, the results of the test are meaningless. It is

recommended that fewer than 20 per cent of the cells should have an ex-

pected frequency of less than 5, and no cell should have an expected fre-

quency of less than 1 (Cochran, 1954). If these requirements are not met

by the data in the form in which they were originally collected, the re-

searcher may combine adjacent categories so as to increase the E..'s

in the various cells. Only after these conditions are met can one be sure

of the level of significance. Tests of significance can be made by using

the chi square distribution with df = (k-1) (r-1).

3. Randomized Complete Block

The randomized complete block design has the experimental units

divided into homogeneous groups called blocks. The treatments are then

assigned randomly within each block. This is sometimes called the two-

way analysis of variance. There are only two analogues in this section;

however, there are several others in section 4.
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3. 1 Cochran Q Test

The Cochran Q test is a k sample extension of the McNemar

test (Cochran, 1950). This extension provides a method for testing

whether three or more matched sets of frequencies differ significantly

among themselves. The Cochran test is particularly suitable for yes -no

or pass -fail type of data. The exact power of this test is not known but it

is considered to be less than that of Friedman's test (Siegel, 1956).

If the data are arranged in a two-way table consisting of N rows

and k columns, where the rows are the blocks, it is possible to test the

null hypothesis that the proportion or frequency of responses of a particu-

lar kind is the same in each column, except for chance differences.

Cochran (1950) has shown that if the number of rows is not too small, then

k k

(k - 1) [k z G. - ( £ G.) ]

1=1 J 1=1
J

(3.1.1) Q = !-* J-J-

where

N N
k z L. - E L.

i=l
X

i=l *

G. = total number of "successes" in i column,
J

L. = total number of "successes" in i"1 row.

Q is approximately distributed as a chi square random variable with

df = k - 1 . Therefore, tests for significance can be made from any chi

square tables.
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3.2 Friedman's Two-way Analysis of Variance by Ranks.

The Friedman test is one of the most popular two-way tests. This

popularity is due to its high asymptotic efficiency of .91 when compared

to analysis of variance and also due to the fact that the Friedman two-way

analysis of variance by ranks is a very good analogue to the parametric

randomized complete block design of analysis of variance (Bradley, I960).

The data of the tests are ranks. The scores in each row are ranked sep-

arately. That is, with k conditions being studied, the ranks in any row

or block range from 1 to k. The Friedman test determines whether it

is likely that the different columns of ranks came from the same popula-

tion. If the treatment scores were independent of the conditions, the set

of ranks in each column would represent a random sample and the rank

totals for the various columns would be about equal. If the treatment

scores were dependent on the conditions, then the rank totals would vary

from one column to another.

The Friedman test determines whether the rank totals differ signifi-

cantly. To make this test, we compute the value of a statistic which

Friedman denotes X •

r

Friedman (193 7) has shown that when the number of rows and

2columns is not too small, x is distributed approximately as chi square

random variable with df = k - 1 , where
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(3 - 2 - 1) 4 ' Nk(H 1) \ (R -'- 3N(k + l),

J
=1

and

N = the number of rows,

k = number of columns,

R. = sum of ranks in i column.
J

When N and k are smaller than 4 the exact probability tables are

available (Siegel, 1956).

4. Procedures Which Generalize to Several Designs

All of these procedures include analogues of completely randomized

and randomized complete block. However, the median test is extended

to a three factor experiment with k observations per cell. A three factor

experiment has three main effects instead of the two main effects of the

randomized complete block. A good example would be an experiment in-

volving varieties of wheat, kinds of fertilizer and amounts of irrigations.

In a three factor experiment the experimenter could test the main effects

of wheat, fertilizer and irrigation; the two-way interaction of wheat with

fertilizer, wheat with irrigation and fertilizer with irrigation; and the

three-way interaction of wheat with fertilizer with irrigation.
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4. 1 Mood's Median Test.

The median test is a very useable test because of the way it can

be used for several designs. However, the median test only has an asymp'

totic efficiency of . 65 when compared to similar parametric tests.

4. 1. 1 The Median Test Analogue of the Completely Randomized Design.

The assumptions under H for the median test procedures are
o

that the data are continuous and that each of the C samples has the same

distribution.

To apply the median test, one must first determine the median

score for the combined C samples of scores. Then replace each score

by a plus if the score is larger than the common median and by a minus

if it is smaller than or equal to the common median.

The resulting sets of scores maybe put into a C by 2 table.

The first row table represents the frequencies of pluses in each of the C

groups and the second row represents the minuses.

En E
!2

E
13 E

ic

11 12 °13 °1C

E
21

°21

E
22

°22

E
23

°23

. . .

E
2C

°2C
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To test the null hypothesis that the C samples have come from

2
the same population with respect to medians, the value of x is com-

puted, using

R C (O.. - E..)
2

(4.1.1) X = I I U U
.

i=l j=l
E

ij

where

O.. = observed number of cases categorized in the i"1 row

and the y column,

E = number of cases expected under H to be categorized
ij

P
o

*

in the V-"- row of the j column,

R = number of rows in the table which will always be 2

in this procedure,

C = the number of different samples being tested.

2
It has been shown by Mood (1950) that X is an approximate chi

square random variable with df = (C - 1) (R - 1). However, in this design

R is always 2, so the df will always be (C - 1).

Once the data have been categorized as plus and minus with respect

to the common median and the resulting frequencies have been cast in a

C by 2 table, the computation procedures for this test are exactly the

2
same as those for the x test for C independent samples, presented

previously.
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4. 1. 2 The Median Test Analogue of the Randomized Complete Block

Design.

The observations are denoted by X.. with i = 1, 2, . . .R and

j = 1, 2, . . .C. Where R is the number of rows and C is the number

of columns.

The null hypothesis is that the row effects are zero. This test is

made by finding the median of each column and then by putting a plus sign

if the observation is above the median of that column and a minus sign if

it is below. This produces an R by C table of plus and minus signs.

Let a. be the number of plus signs in the r- row. If there is no row

effect, we would expect each row to have C/2 plus signs. The null

hypothesis is therefore tested by testing whether the signs are divided

evenly in rows. In fact, we may construct a 2 x R contingency table.

Table (4. 1. 2)

Totals

a
l

a
2

. . . a
R

c
a

C - a
1

C-a
2

. . . C " a
R

C(R - a)

Where a = R/2 if R is even or (R - l)/2 if r is odd. It turns out that

the a. do not have the ordinary contingency-table distribution (Mood, 1950),

However, this X table is approximately distributed as a chi square ran-

dom variable with R - 1 degrees of freedom for large samples. So this
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table may be tested like an ordinary contingency table with all marginal

totals fixed.

The null hypothesis that the row effects are zero may therefore

be tested by

ia i 71 Y 2 R(R-D R
,

Ca,
(4 - U2) X " Ca(R-a) J

(ai"~'

For practical purposes, the large -sample distribution is satisfactory if

C is as large as 5 provided RC_^20. For smaller values, the exact

probability can be computed by a complicated formula in Mood (1950). To

test column effects, one would, of course, simply reverse the roles of

rows and columns in the above test.

Mood (1950) has extended this to an analogue of the randomized

complete block design with k observations per cell. However, Wilson

has changed Mood's procedure into a much more useable procedure.

Therefore, Wilson's procedure will be discussed.

4. 2 Wilson's Median Test.

Wilson's median test procedure is as near to an exact analogue of

the analysis of variance as one can get. Even the formulae are similar

2
although the x tables are used to make the test instead of the F tables.
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4. 2. 1 The Median Test Analogue to the Randomized Complete Block

Design with K Observations Per Cell.

Assume that data have been collected in a study that used a two-

factor analysis of variance design. There were R rows, C columns,

and in all RC cells with K independent observations per cell. Now

assume that the obtained data violated some of the assumptions of analysis

of variance. Then Wilson (1954) suggests a nonparametric analysis of

the data with the chi square method.

First, divide the distribution of scores into upper and lower

halves. In one group there will be the KRC/2 highest scores in the dis-

tribution, and in the other group there will be the KRC/ 2 lowest scores

in the total distribution. If ties occur with the median, Alluisi (1956)

suggests that a coin be tossed to determine the placement of the tied

scores.

Second, tabulate the number (frequency) of the KCR/2 upper -half

scores that occurs in each of the RC cells, and prepare a summary

matrix listing these frequencies and their sums.
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Table (4. 2. 1)

Frequency Matrix of Upper -Half Scores

Rows
Columns

Row
Sums

1 2 3 ... c ... C

1 £n £
12

f., ... f.
13 lc

£
ic

£
i-

2 £
2 i

f
22 23 2c

£
2C

f
2-

3

•

f
31

f
32

•

f
33 •" f

3c
£
3C

£
3-

r f
rl Kz f ... f

r3 re
f
rC

f
r*

R £
R1

£
R2

f f
R3

'••
*Rc

£RC
£
R-

C olumn
Sums f

.!
£
-2

f ... f.
• 3 ' c

£
-c

f

The chi square values for the separate components of variation

may be computed from the data of the summary matrix. The formulae

are presented in the following table.
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Table (4. 2. 2)

Summary of a Chi-Square Components Analysis

Components df Chi-square

C olumns

Rows

Interaction

C-l

R-l

(R-D(C-l)

C
2 2

2 [c z (f r - (f ) ]

c=l *

C

R
2 2

2 [R E (f )* " (f. .) ]

r=l
r '

f_
(

Total - Rows - Columns

Total RC-1

R C
2 2

2 [RC E E f - (f ) ]

_, i
rc

r=l c=l

f
€

In the above table f means the sum of all of the column frequencies for
r»

a fixed row R or
f

and then (f )
=

,
.2

= I 'f I r- EEf)
r "

-i rc
i ii rc

c=l r=l r=l c=l

The significance levels of the obtained values of chi square are

determined by referring to tabled values of the chi square statistic with

the df indicated in the figure. Interpretation of the results is analogous
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to the interpretation given an analysis of variance, except that in the

present method the number of measurements above the median is dealt

with rather than the amount of deviation from the mean.

In building the summary frequency matrix, the KRC/2 lower -

half scores could have been tabulated instead of the upper -half- scores

without loss of validity of the method. In either case, the obtained

values of chi square are identical. The tabulation of the upper -half

scores of the distribution is recommended because of the simplicity of

interpretation of the results after the computation of the chi square val-

ues. A direct interpretation is possible with the matrix of upper -half

scores. A high entry indicates a large number of scores above the

median, and therefore, analogous to a high mean in analysis of variance.

The chi square value for the interaction component was computed

indirectly by subtraction in the formula given. It could have been com-

puted directly in the usual way that chi square is computed for a test of

independence in a contingency table. When it is computed directly from

either the summary frequency matrix of upper -half scores or from the

matrix of lower -half scores, the obtained value must be multiplies by

two to yield a chi square accounting for both halves of the total distribu-

tion of scores.

4. 2. 2 The Median Test Analogue of the Three -Factor Analysis of Variance.

The median test by Wilson has been extended to a three -factor
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analysis by Alluisi (1956). There are R rows, C columns, and B

blocks in this generalized three -factor experimental design; in all, there

are RCB cells with K independent observations per cell. The three

-

factor summary frequency matrix contains tabulations of the KRCB/2

highest or lowest scores in the total distribution of scores. Then, the

computational formulae for the several component chi square are as

follows:

Table (4. 2. 3)

Summar'yr of a Chi-square Components Analysis

Components df Chi-square

R C B
2 2

2 [RCB Z Z Z f , - f ]

i i u i
rcb

r= 1 c= 1 b=

1

Total RCB-1 2

f
. . .

R
2[R Z (f ) -tmt ]

Row R-1 r=l 2

f
. . * R

C
2 2

2[C Z (f )

c
- f ]

Column C-1 c=l
' C " " 2

f
#

X C

B
2 2

2[B Z (f. , ) -f 1
b=l

b " 2Block B-l

f
. . . ^ B
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Row by
C olumn (R-D(C-l)

R C
2 2

2[RC Z z (f . ) -f. .. 1

r=l c=l
rC

2 2 2

f
. ## ~

XR~ AC x rc

Row by-

Block (R-D(B-l)

R B
2[RB Z Z (f )

Z
- f. .. ]

r=l b=l
r

*

2 2 2— - X ~ * - A
f

# m §
R B RE

C olumn by
Block (C-1)(B-1)

C B
2[CB Z Z (f. ) - f.

. . 1

c=l b=l 2 2 2

f_. "
A
C
_A

B
XCE

Row by
C olumn
by Block

(R-1)(C-1)(B-1) 22222 2 22
Xt"

XR" XC" Xb" XRC" X RB_X CB " X RCB

The above notation is the same as that used in figure (4. 2. 2).

The interpretation is the same as it would be for a three -factor

analysis of variance.

4. 3 The Randomized Rank-Sum Test.

The randomized rank-sum test is a very useable procedure. It has

been shown by Bell and Doksum (1965) that for a two-sample test the rank-

sum test has an asymptotic efficiency of one when compared with the t

test for normally distributed data. Bell and Doksum (1965) have also
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shown that when the assumptions for that test are not met, the rank-sum

test has an asymptotic efficiency of greater than one. From this it would

be expected that the K sample test would have a very high asymptotic

efficiency when compared to the analysis of variance.

4. 3. 1 The Randomized Rank-Sum Analogue to the Completely Randomized

Design.

There are K independent random samples of size n , n , . . . , n ^

Under the null hypothesis each sample has the same distribution. It is

assumed that the distribution are continuous. The data are ranked as one

K
sample of size N = £ n.. Each observation, X.., has a specific rank,

R(X..).

Now take a random sample of size N from a normal population

with mean and variance 1,(N(0, 1)). This sample is then ranked and de-

noted by Z(R(X..)). Then replace each X. by Z(R(X..)), i.e., the Z

value with the same rank in the Z sample as X . has in the X sample.

Then the test statistic is

K _ 2
(4.3.1) V(H) = I n.(Z - Z" f

i=l
X x '

where
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1

n -

Z. = — I
1

Z(R(X..))
i- n. li

N K n.

z --
=

TT z z(i)= N E E ^V*
i=l i=l j=l J

Then V(H) is distributed as a chi square random variable with K-l df

(Bell and Doksum, 1965).

4. 3. 2 The Randomized Rank-Sum Analogue to the Randomized Complete

Block Design.

There are C columns or treatments and R rows or blocks. The

null hypothesis is that there are no effects due to treatments. It is

assumed that there are row effects and that the columns have equal con-

tinuous distributions.

The X..'s are ranked within each row and denoted R.(X ). Then

R random samples of size C are taken from a N(0, 1) population and

each of the R samples are ranked within the samples and denoted

Z.(R.(X..)). Then replace each X.. by Z.(R.(X..)), i.e., replace X..
i i ij ij i i ij ij

by the Z value of the i sample of Z's that has the same row-rank as

X... The test statistic is

C - - 2
(4.3.2) Q(H) = R I Z .

- Z f
j-i 3

"

where

1
R

Z.. = -£- £ Z. (R.(X..)
f

J R
i=1

i i ij
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1

C r

RC *, ^ Z
i
(R

i
<X

ij»

Q(H) is distributed as a chi square random variable with C-l df

(Bell and Doksum, 1965).

4.4 Rank Test for Paired-Comparison Experiments.

The rank test for paired comparisons involves more than just a

generalization of the sign test (Mehra, 1964). This test also takes into

account the magnitudes of the observed comparison difference. This test

has an asymptotic efficiency of 3/* when compared with parametric

analysis of variance designs (Mehra, 1964).

4.4. 1 Rank Test for Paired-Comparisons that is an Analogue of the

Completely Randomized Design.

Consider a paired-comparison experiment involving K treatments

and suppose that each of the N.. comparisons for a pair (i, j) of treat-

ments (1 _f.i
<

j f_ k) provides an observed comparison difference Z.. ,

J O

where g = 1, 2, . . . , N... Let G. (z) be a c.d.f. denoting the common

distribution of the comparison differences and assume that G..(z) is con-

tinuous. The hypothesis of no difference among the treatments can be ex-

pressed as H : G..(z) = G.,.,(z) for any two pairs (i,j) and (i'.j 1

).
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k

To perform the test rank all the N = I Z N.. absolute values
i-i j»i 1J

of the observed comparison differences Z , (1 < i< j < k; g = 1 , . . . , N )

ijg ~ - " ij

Let r.. = rank of Z.. I if Z.. >0, otherwise let r.. =0. Let S.. =
ijg

I
ijg

1
ijg ijg ijg

rank of I Z.. I if Z.. < 0, otherwise let S.. =0.
!Jg iJg"" ijg

N.. N..
(i i) 1J (i, i) 1J

(4.4.1) R; - 2 r.. and 3;'^= z s..
N iig N , ijg

j=l
J& g=l JS

are respectively the sums of the ranks of the positive and the negative

Z's corresponding to the (i,j) pair. The test statistic is

6
K VN ^

2

(4 ' 4 ' 2) L=
(N+l) (2N+1) K l

i .1 ~N~
1=1 J7i 1J

where

N = the total number of comparisons in the experiment,

and

v (i» j) _ R
(i. j) _

g(i» J)

N N " N

2
When H is true, L is asymptotically distributed as a x variable,

as N+", with K-l df (Mehra, 1964).

4.4. 2 Rank Test for Paired-Comparisons that is an Analogue of the

Randomized Complete Block Design.

Let B denote the total number of blocks and N.. be the number
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of comparisons for the (i,j) pair in the t block (1 ^_i <
j ^_ k;

K B
t = 1, 2, . . . ,B). Let N = 2 En.. and N= Z N. Let X. be

t ..... lit t it
i= 1 j >i

J
t= 1

the random variable denoting the characteristic of the i treatment in

the t block and let F. (x) denote the distribution function correspond-

ing to it. If G. (x), a continuous c.d.f. , denotes the distribution func

-

tion of the difference random variable Z = X - X , then the null
ijt it jt

hypothesis is G.. (x) = G.,., ,(x). For any two treatment pairs (i, j) and
ij

'

J

(i
1

, j
1

) and the same t (1 < i< j < k; t = 1 , 2, . . . , B), let R. and S~ ~~
ijt ijt

denote the sum of ranks of positive and negative Z's respectively for the

combination (i,j,t) and let V.. = R.. - S.. .

ijt ijt ijt

If N.. = n, for all combinations (i, j,t), then to test the null

hypothesis use

(4 - 4 - 3) L% n(NHU(2NHl)KM .\
Z

}..
V

ijt '
1=1 t jfl

J

where

\ = the number of treatments compared in each block,

M = the number of blocks in which each pair (i, j),

(1 .< i<j ^ K) of treatments is compared,

h = the number of blocks in which each individual treat-

ment i appears (i = 1 , 2, . . . , K),

W = X( X - l) B/K (K - 1),
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h = (K - 1) n/(X - 1),

N' = 1/2 X(X - l)n.

L is distributed approximately as a chi square random variable with

K - 1 df (Mehra, 1964).

5. Balanced Incomplete Block.

In an incomplete block design, all of the treatments do not occur

in every block. When every pair of treatments occurs together an equal

number of times, the design is called balanced.

There are five conditions that determine a unique design. There

are t treatments in b incomplete blocks of size k with n or r repli-

cates on each treatment. In a balanced design, each pair of treatments

occur together in the incomplete blocks in equal number, \ , times. By

choosing values for three of these, one can solve for the other two by

using the following relationships:

(5.1.1) tr = kb

(5. 1.2) (t - 1)X = r(k - 1)

5. 1 Bradley's Rank Analysis of Incomplete Block Designs.

The rank analysis of incomplete block designs is a very practical

procedure when one is concerned with ranking a large number of items or
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when one wants to be sure of significance in ranking. It has been shown

by Bradley (1955) that the method of rank analysis being compared to the

analysis of variance has an asymptotic efficiency of from 1 . 5 / tt to 3/tt

depending upon the sample size. The smaller the number of treatments

the better the asymptotic efficiency.

An experiment with t treatments involving paired comparisons

will be considered. Assume that the treatment t. has a true rating

tt , where tt is a number that helps rate treatment i, (tt.> 0, Z ir. = 1)11 ii
and that the data are continuous. It is also assumed that when treatment

i appears with treatment j and is ranked with the k observations in a

block, the probability that treatment i has the higher rank is tt . / tt. + tt .

i l j

The observations within each block are ranked relative to each

other, and r... will designate the rank of the i treatment in the k L

ljk

repetition of the block in which treatment i appears with treatment j.

Estimates of tt , . . . , tt will be denoted by p , . . . , p respectively,

and n will be reserved to denote the number of repetitions of the design

where a repetition is defined to be a set of all pairs of treatments.

The likelihood function may be obtained by assuming statistical

independence between blocks or pairs of treatments (Bradley and Terry,

195 2). The likelihood function in the general form will be:

ic. i ?\ T _ tt
2n(t - 1) - E l'r ,

, -n
(5.1.3) L = II tt ijk n (tt.+ tt.) .

i
J

i<j
J
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There are two ways to analyze this experiment. The first way is

the pooled analysis. This is when the experimenter is willing to assume

that the treatments are homogeneous for every repetitions. This pooled

2
analysis is very similar to pooled analysis in a x experiment and the

same things are lost when performing the pooled analysis. The pooled

analysis has the null hypothesis that tt
.
= — for all i with the alterna-

tive that if. 4 ~~ for some i. The v . will be estimated by p. and theit i l

likelihood ratio test depends on the statistic

n

(5.1.4) B = n I log (p. + p) - ?[2n(t - 1) - Z r
iik

]log10P i'
i<j

J k=l tfi
J

Where p. is found by solving the equations

(5 1.5)
a

i -1
1 ' — -n z (p. + p. = i,j = l,...,t

P. ... i J

and

(5. 1.6) Zp. = 1

where

n

(5. 1.7) a. = 2n(t - I) - I I r.. .

j* k=l ™

For small values of n the B may be found in tables by Bradley and

Terry (1952) and Bradley, R. A. (1954). With these tables, it is not
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necessary to compute (5. 1.4). The B and the significant level can be

n

read directly by looking at the proper values of p. and £ r. which is

i=l

the sum of the ranks of treatment i. The tables will give values for a

design as large as t = 5, X = 1, b = 10, r = n = 4 and k = 2. For de-

signs larger than this, a chi square approximation must be used. Bradley

and Terry (1952) have shown that -2 In \ is an approximate chi square

random variable with t - 1 df , where

(5. 1.8) -2 In A = nt(t - 1 ) In 2 - 2B In 10.

The second way to analyze this data is with a combined analysis.

In many cases the assumption that the same true ratings exist for all

groups is not realistic. If the detection of treatment differences is the

main concern of the experimenter, a pooled analysis may be inappropriate

and even give a non-significant result, while each alone exhibits signifi-

cant treatment differences. This is particularly likely to happen where

judge preferences may prohibit the setting up of uniform ranking criteria.

The combined analysis procedure is very similar to what Fryer

2
n

(1966) calls the sum of x procedure, except the E B is used in-

u=l

2
stead of the Ix • Where the n repetitions are subdivided into g groups

of repetitions with n repetitions in the u group, u = 1, . . . , g.
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The null hypothesis for this test is that tt. = ir for all i and
1U 1

u, where u stands for the u repetition group, against the alternative

<$>. 4 <J> . for some i and u. The B, corresponds to B, of the pooled
1U 1 11

analysis for the n homogeneous repetitions of the u group and

n
c. ~u

= Z H
1

u=l
1

(5.1.9)

The exact probability of B can be read from Bradley and Terry (1952),

c
For large samples -2 In A is distributed as an approximate chi square

random variable with n(t - 1) df, where

(5. 1. 10) -2 lnA^ = nt(t - 1) In 2 - 2 B^ In 10.

Significance would be regarded as treatment difference although

some of the judges may have disagreed on the treatments.

To test if the judges have agreed or disagreed, something similar

to a treatment with judge interaction may be tested. This test can be

made by testing -2 In A which is an approximate chi square random

variable with (n - l)(t - 1) df, where

(5.1.11) -2 In A = -2(lnA^ - In A ,)
a 11

= 2(B - B^) In 10.

If -2 In A is significant, it can be concluded that the judges were
cL

in disagreement among themselves, although each judge was consistant
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throughout the experiment.

The procedure is very complicated to explain without an example.

Therefore, an example given by Bradley and Terry will be used to ex-

plain the procedure. This experiment has three groups of pigs fed three

rations and tests the taste of the resulting pork roasts.

Step 1. A competent panel of judges was selected and so instructed that

all had experience with the experimental material.

Step 2. For each judge and for each repetition, six small containers were

coded. Two samples from roasts from each of the three treatment groups

of animals were placed in the containers and the three requisite pairs

formed. Code numbers were recorded and the pairs presented to the

judges in a random order together with score cards.

Step 3. For each pair a judge tasted each sample and recorded the value

1 for the sample preferred and 2 for the other sample.

Step 4. (Analysis). The experimenter collected and decoded the data

for each judge and recorded the results as follows: C denotes the corn

ration, Cp the corn plus peanut supplement ration, and CP the corn

plus large peanut supplement ration. The treatment sums of ranks, Z r •
,

for C, Cp, CP are respectively 19, 13, 13, and 13, 15, and 17 for the

two judges.
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Table (5. 1. 1)

1 2 3 4 5

c Cp CP C Cp CP C Cp CP C Cp CP C Cp CP

Pair Judge ]

C , Cp
C, CP
Cp, CP

2

2

1

2

1

1

2

1

1 -

- 2

1 2

2 1 -

2 - 1

- 2 1

2

2

1

1

1

2

2 1 -

2 - 1

- 2 1

Judge 2

C, Cp
C, CP
Cp, CP

2

1

1

1

2

2

2

1

1 -

- 2

1 2

1 2 -

1 - 2

- 2 1

1

1

4

2

2

2

1

1 2 -

2 - 1

- 1 2

Step 5. Since it was agreed that the results of the two judges should be

combined, we enter the table A at n = 5 (Bradley and Terry, 1952, and

Bradley, R. A., 1954). Forjudge 1, Pr(C) = 0. 05, Pr(Cp)=0.47,

Pr(CP) = 0.47, B = 2.917, the significance level is 0.057; for judge

2 Pr(C)=0.53, Pr(Cp) = 0. 30, Pr(CP) = 0. 17, B =4.034 and the

significance level is 0.404.

Step 6. The combined statistic B was obtained and has the value

2. 917 + 4. 034 = 6. 951. From the table B under the two equal groups,

n = 10, the significance level for the combined test was found to be 0. 069.

It was concluded that it had not been demonstrated that ration difference

was detectable by these judges.
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Step 6a. If a decision to pool the data had been made, treatment sums of

ranks added over the judges would have been 32, 28, 30, and the table

A would have been used for n = 10. We would have found Pr(C) = 0. 24,

Pr(Cp) = 0.43, Pr(CP) = 0.32, B = 8.797 and the significance level

would have been 0. 630.

5. 2 Durbin's Rank Analysis of Incomplete Block Design.

This procedure has some distinct advantages over Bradley's rank

analysis of incomplete blocks . One of the biggest advantages is the use

of the standard F tables instead of special tables. Durbin's method of

computation is straightforward and easier to understand than Bradley's

method. However, Bradley's method is quicker for small samples, once

it is understood, and the test is more versatile.

For the balanced incomplete block experiment, the t objects or

treatments are presented in blocks of k, and each treatment is ranked

r times relative to the other treatments in that block. Then the number

of blocks is b and the number of blocks in which a particular pair of

objects occurs is X. In each experiment, the treatments within each

block are ranked. If there is no difference in the treatments, the ex-

pected value of the sum of ranks for each of the treatments would be equal.

Thus, the null hypothesis is that the preferences are random, or that the

treatment rank totals are not significantly different.
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Let X.. be the rank of the j object in the i replication and

n

X. = E X... Then Durbin (1951) shows that Kendall's coefficient of con-
J i=1

lJ

cordance is

12 E X 2
- 3t r

2
(k + l)

2

(5.2.1a) W = ] L̂
-z

;
or

\ t(t - 1)

(5.2.1b) W =
2 2

A t(t - 1)

where

S = the sum of squared deviations from the mean of the ranks

This F is distributed approximately as an F random variable

where

/ * (t+ 1) . n
* k + 1 W

(5.2.2) F = -

with

(5.2.3)

and

1 - W

(1 -
Jl±^)

rt
V

X(t + 1)
; 2(k + 1)

V
l

"

tr k X(t + 1)
(
t - 1 " k - V

/C O A\ , X(t + 1) ..
(5 ' 2 ' 4)

-Z= ( (k+1)
~ l) v

i

where v and v are the approximate degrees of freedom for the F distribution.
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The F statistic is valid for any t and r, although the compu-

2
tations are rather long. For moderate t and large r the X statistic

provides an easier test than does the F statistic.

2
For moderate t and large r, the X is approximately distributed

2
as a x random variable with t - 1 degrees of freedom, where

2

(5.2.5) X 2
=

X
.

(t

,

"
*> W.

Thus the null hypothesis can be accepted or rejected by looking in

2
the X or F tables.

To make this procedure clear, an example from Durbin (1951) is

given as follows.

Suppose it is desired to rank seven objects, A B C D E F G, in

blocks of three. The Youden square layout shown below is ideal for this

experiment (Federer, 1963).

Table (5. 2. 6)

A B C D E F G

B C D E F G A

D E F G A B C

Each column represents a block, and each row represents a single repli-

cation of the objects.
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Suppose an ice cream maufacturer wants to test the taste prefer-

ence of several people on his seven varieties of ice cream. If the above

Youden square were repeated 3 times or if 3 similar Youden squares

were used, the resulting 21 blocks could be assigned to 21 different

tasters, where each taster samples three kinds of ice cream and ranks

them from 1 to 3, giving the rank of 3 to his favorite flavor. The experi-

ment was completed and the totals of the ranks for each treatment are as

follows:

A B C D E F G

20 13 18 25 22 12 16

2 2 2 2
The mean of the rank totals is 18. Therefore, S=2 +5 +0 +7 +

2 2 2
4 +6 +2 =134. From the layout, it is known that t = 7, r = 9, k = 3,

b = 21 and X = 3, these results give W = . 532. Then the computed F =

(-^P -1M.532)

1 - .532
= 5.684.

The degrees of freedom for the tabled F are v, - 5. 5 s? 5 and

v = 27. 5^27, thus with a = . 05 the tabled value is F (5, 27) = 2. 57.

Therefore, reject the null hypothesis that the preferences were at random.

The example should clearly show that this test is straightforward

and uncomplicated.
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6. A 2 x 2 Factorial Experiment.

A 2x2 factorial experiment is designed to examine the effect

of two factors. Each factor is applied at 2 levels, with 1 or more repli-

cations, so that a difference in effect can be observed.

Abelson and Bradley (1954) have extended the Bradley and Terry

(1952) likelihood ratio test to a 2x2 factorial experiment. The Abelson

and Bradley (1954) procedure is the only paper that gives the details for

performing factorial experiments. However, Sheffield (1957) makes

some comments on a possible extension of the median test to a 3x3 fac-

torial experiment.

The Abelson and Bradley (1954) 2x2 factorial experimental has

an asymptotic efficiency of 3 / "T when compared to the parametric 2x2

factorial experiment.

This procedure has one big disadvantage; its complicated compu-

tations. This test could be useable only with the help of a computer.

The Abelson and Bradley (1954) procedure considers factors A

and B, at two levels each, with parameters representing the effects of

the levels of these factors given by a , a 8 and 8 respectively.12 1 2

It is understood that a _> 0, 8 > 0, i = 1 , 2 and the restraints

(6. 1) o + o = 1 and 8 + 8=1

The four treatment combinations are designated by T( a , 8,)» T(ol,, 8,),
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T( a , 3
?

), and T(o , 8
?

). Let Zr(a ) represent the total sum of ranks

for all comparisons and all n repetitions of the two treatment combina-

tions containing factor A at level one. Similar definitions follow for

the other sums. The likelihood function is

(6.2) Myt^'^W 2
[SW2

)(alW2)rn Ka
1
+«

2
)(B

1
+B

2
)r

2n
,

where

c = lln - E r(ot )

1 1

c = lln - I r(a )

d = lln - I r(B )

d
2

= lln - S r (B
2

)

n = the number of replications

The maximum likelihood estimates of a , a , 8 and 8 are

(6.3) 8 = d /4n &
z

= d^/An

a
i
= c

l
/4n a

2
=c

2
/4n

A summary of the test procedures will be given with an explana-

tion of the test statistic to follow the table, where the tt are the same
ij

as those defined in section 5. 1.
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Table (6. 1)

Test Procedures for the 2x2 Factorial

Test Hypotheses Statistic df

Treatment effects

assuming no inter-

action

H
o
= H

i
: a

i= V 6
i

= V
H =H • *..= a. 6.; a ^a
a 3 ij i j 1 2

or B 4 6 9
or both.

-21„X
i3

2

A-factor H = H
2

:

°1
= V B

1

n °taS_

sumed equal to $ .

H = H • ti. .= a.8.;a. 4a- or
a 3 ij i j 1 2

B 4 P or both.

-21„A
23

=

-2<lnA
13

-lnA
i2

). 1

B -factor assuming
no A-factor effect

H =H : a =a , & =3 .

1 1 2' 1 2

H
a = H

2
: WW -2 1nX

i2
1

B -factor H =H
2'

: »
1
-»

2.^ n°ta-
sumed equal to a .

H = H_: ir.. =a. 6.; a ^a or
a 3 ij i j 1 2

8 4 B or both.

-21nX
2

,

3
=

1

A-factor assuming
no B -factor effect

H
o
=H

i
: WWW VVW

-2 1nX
i2 ,

1

A X B interaction H^
= H

? : *• = a
-
6 .; a

, 4% or
3 ij i j 1 2

6 4B or both.

H = H • *..ya.&. for some
a 4 ij i

j

i and ].

-2 1nX
34

=

-2(lnXM-lnX
13

) 1

Treatment effects

admitting inter-

action

H =H ,: »..= 1/4.
1 ij

H =H : *.. possibly unequal

to a. B. for some i
1

J

and j.

-21nX
i4

3

The formulae for the above test statistics are as follows:
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(6.4) -2 In* o = 12 n In 2 + 2c, In o + 2 c In a + 2d In 8,
13 112 2 11

A A A A A A A

+ 2d
2

In 6
2

- 2n ln(o ^fa y - 2n In (a + a
2V

(6. 5) -2 In A = 2d In d + 2d In d - 8n In n - 8n In 2

(6. 6) -2 In A = 2 c In c + 2 c In c - 8n In n - 8n In 2
X i-i X X Cj Lf

(6.7) -2 InA, = 12 n In 2 + 2 2 fen - 2 r (a., 6.)] In p14 . . l J li

- 2n I In (p.. + pgh) = B .

ifjg. Jlh
1J

(i,j^g,h)

B can be found in the tables by Bradley and Terry (1952).

A rank analysis for 2x2 factorial treatments in the method of

paired comparisons has been presented. The theory could be developed

for general factorial sets of treatments but the solutions of estimating

equations present formidable difficulties (Abelson and Bradley, 1954).

The 2x2 factorial could be used in taste testing experiments, where

paired comparisons are particularly appropriate, and there may be other

applications.

7. Partially Balanced Incomplete Block

The partially balanced incomplete block (PBIB) design is a very

complex analysis of variance. There are times when such a design would

save considerable time and money in conducting an experiment, but
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generally this design has more theoretical than practical use. In the

balanced incomplete block, all pairs of treatments occur X. times; this

sometimes requires a very large number of repetitions. The partially

balanced incomplete block experiments have a set of two or more X.'s

which could change the number of replications required.

In many practical situations, the proper assumptions for the

analysis of variance of the PBIB do not hold. Therefore, Giri (1965) has

shown that a reasonable approximation of the randomization test based on

the F statistic is equivalent to modifying the normal theory test by multi-

plying both of the numbers of df of the F distribution by a factor de-

pending on the heterogenity of variance of the blocks.

The discussion is limited to 2 associate PBIB designs with X = 0,

where one PBIB is associated with X and the other with X . X =
1 2 1

was selected to make the computations less involved. For two associated

PBIB there must be two X's, X and X , and related to the X's are

n and n , where n. is the number of treatment pairs that occur together

in the same block X
, times.
i

The null hypothesis is that there are no significant treatment

effects. Giri (1965) states that an approximation to the randomization

test of the null hypothesis based on the statistic F is equivalent to modi-

fying the normal theory test by multiplying both the numbers of df by the

factor <J>, using
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(7.1)
2 b(k- 1) - (t- l)]kb

2
(k- l)

2

[(t-l)(X
2
-l)+ 2(r-l)(t-l)(k-l)+2n

1

X
2
l(l - j^j- ) - 2

Where the design parameters are the same as those defined for the BIB

design. When the block variances are homogeneous, V = 0. When they

are not homogeneous, V = b (k - 1). Giri (1965) says in practice V will

rarely be zero. However, this gives a lower bound to values of <J> . In

general <t> will deviate from unity and the adjusted test will be more

sensitive than the unadjusted normal theory test. As an example, table

(7. 2) will present the unadjusted and the adjusted values of F for some

two associated PBIB's.

Table (7. 2)

Parameters of PBIBD
(First Kind)

Upper 5 per cent

F (Unadjusted)

Value

Upper 5 per cent

F (Adjusted) Value

V = V= l/2(b-l)

t = 14, b = 16, r = 8

k = 7, n =1, n = 12

1. 78 1. 78 1. 50

t = 15, b = 50, r = 10

k = 3, n
}

= 4, n
2

= 10

V°' X
2
=2

1. 91 1. 93 1.57

t = b = 9, r = k = 3

n =2, n = 6, A =

X
2
=1

3. 07 3.58 2.47
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This discussion of the nonparametric PBIB designs by no means

gives all of the necessary information for performing a PBIB experiment.

One must be completely familiar with the parametric PBIB to be able to do

a nonparametric PBIB. This is because the computations are the same

with the only difference being in the value of F used for rejection. For

information on the analysis of the PBIB design, see Federer (1963).

8. Other Related Tests

8. 1. The Randomization Test

The randomization tests not only have practical value, but also

have value in showing the general nature of nonparametric tests.

With the randomization test, the exact probability under H can
o

be obtained without making any assumptions about normality or homo-

genity of variance. Under most conditions, randomization tests are the

most powerful of the nonparametric test (Fisher, 1935).

The randomization test can be extended to most models of analysis

of variance. However, there is one major drawback. Except for small

samples, the computations required for the rejection region are extremely

long.

Therefore, this procedure will not be discussed in detail. How-

ever, with the use of a computer, this procedure might become useable.
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8. 2. Rank Methods in Analysis of Variance.

Hodges and Lehmann (1962) have given a procedure using ranks

that is a simplification of the randomization test. They have explained

the 2 sample blocked test and say it can be extended to a randomized

complete block design. There is an example of an analysis of two latin

squares. There is also an analysis of a balanced incomplete block ex-

periment presented. The use of ranks make this test much easier to

compute than the randomization test. However, as the experiment in-

creases in size, the computations become complicated. The test is much

more useable than the randomization test although it would require the

services of a computer for large experiments.

This procedure has an asymptotic efficiency of tt/3, when com-

pared to similar normal tests.

8. 3. Multiple Comparisons

Used in conjunction with the parametric analysis of variance are

multiple comparisons. These multiple comparisons are very useful for

completing the analysis of the data.

Nemenyi (1963) has prepared his Ph.D. dissertation on distribution-

free multiple comparisons. Some of these multiple comparisons procedures

require a previous analogue to an analysis of variance; others do not. This

fact makes Nemenyi's (1963) dissertation and this report compliments to
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each other for an experimenter wishing to perform nonparametric analysis

of his data.
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ABSTRACT

The analysis of variance is one of the most important statistical

tools of research. However, many times proper assumptions do not hold

for the analysis of variance. This paper, nonparametric analogues of

analysis of variance, provides procedures which minimize the necessary

assumptions

.

The purpose of this report is to provide a useful and practical

paper on the nonparametric analogues of the analysis of variance.

The first design discussed is the completely randomized design.

The most popular and probably the most powerful of these analogues is

the Kruskal-Wallis analysis of variance by ranks. There is also a dis-

cussion of two possible approaches to a k-sample slippage test. These

two tests have the advantage of being quick and simple. The next analogue

of this section involves a k-sample Kolmogorov-Smirnov test that makes

a test of significance on k cumulative distributions. Last is the well

2
known contingency x test for k independent samples.

The second analogue is of the randomized complete block design.

The first test considered is the Cochran Q test. This is used for only

special types of data, usually of the + or - type. Next is the Friedman

two-way analysis of variance by ranks. This is the most widely known test

of this section.



The third major area includes procedures that extend over several

designs. These procedures are quite useful because an experimenter

needs only to be acquainted with one process and then can generalize over

several designs. A large part of this section is devoted to median tests

which are analogues to several analysis of variance designs. The first

of these procedures was developed by Mood (1950). Wilson (1956) revised

Mood's method but Alluisi (1956) was responsible for developing the com-

putational formulae which make this procedure very useable. Alluisi

extends this procedure to three factors which is very similar to the three

-

factor analysis of variance design. The last two tests of this section are

recently developed tests involving rank analysis. These tests have pro-

cedures for completely randomized and randomized complete block ana-

logues. These two tests appear to have considerable power and could be

the most important part of this paper.

Section 5 includes two procedures for a balanced incomplete block

analogue. These two tests are very valuable when an experimenter is

interested in having judges rank several items accurately.

The only nonparametric factorial experiment found was a 2x2

factorial with paired comparisons. This test is of little use due to the

extreme complexity of computations.

The last major section is concerned with partially balanced incom-

plete block design. This test by Giri (1965) gives procedures for a reason-

able approximation to the randomization test using the F statistic.



The final section is a short summary of other related tests and

papers that might be of considerable help to other persons doing research

in this area.




