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Electric power-systems are one of the most important critical infrastructures. In recent years, they have been
exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy
sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt
breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing
customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real,
realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more
abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first
order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with
increasing network size is an effect that should be considered in the current projects aiming to integrate
national power-grids into ‘‘super-grids’’.

O
ur society depends on critical infrastructures which deploy us essential goods and services1. Most of such
infrastructures have a network structure. In the last decade, stemming from the availability of large data
and based on the statistical physicist perspective of the graph theory, a new paradigm to describe large

networks has blossomed: the field of Complex Networks2,3. The Complex Network approach is a powerful and
unifying tool that enables to treat on the same footing widely different networked systems, ranging from biology
to sociology to power grids to Internet and the World Wide Web. In fact, such an approach is not tailored to
reproduce the detailed behaviour of a system, but to highlight the possible occurrence of collective (systemic).
Hence, the statistical tools of Complex Network Analysis may be of great use to understand salient properties of
complex human engineered systems that go beyond the single component behaviour.

Among critical infrastructures, the electrical power grid is perhaps the most crucial one as many other facilities
like telecommunications, banking systems, oil and gas pumping, and even water depend on the electric power
system (EPS)4. EPSs have a long history and since their first appearance in 1881 at Godalming in England they
have evolved into one of the most well engineered and robust network infrastructures; nowadays, higher stan-
dards for the reliability of interconnected EPS are being developed both in Europe and the US by councils and
associations of EPS operators5,6. Nevertheless, not only power outages do occur, but also large outages are more
likely than what would be naively expected; in fact, the analysis of historical data reveals that their occurrence has
fat tails7,8, implying a significant risk of system-wide failures. Given the disruption and economic damages caused
by major outages, understanding the nature of such occurrences is a major problem to be addressed.

An important general question is whether EPSs are subject to emergent behaviour or not. In fact, EPSs are
aggregations of large number of simple units and can be analysed as a complex network9. It therefore makes sense
to ask if EPSs, as a whole, exhibit additional complexity beyond what is dictated by the simple sum of its parts. To
this aim, we investigate if an abrupt breakdown transition could emerge in a simple yet realistic complex network
model of power grids focused on cascade failures.

In the context of power systems, a cascading outage is a sequence of failures and automatic disconnections
consequent to an initiating event; a system-wide outage is also called ‘‘black-out’’. The rapid succession of
automatic reactions in an EPS happens in a time-scale that is typically too short to stop the process by human
intervention. Reactions following an initiating event or events include sequential tripping (disconnection) of
transmission lines and generators. Initiating events can be due to natural causes (like a line sagging into vegeta-
tion, or high wind or lightning shorting a line) but also to human actions (or inaction) or due to imbalances
between load and generation.

While no two cascading outages are the same10, we will study a class of possible outages and analyse their
characteristics. In particular, we will consider the fragility of EPSs with respect to outages due to cascades of line

OPEN

SUBJECT AREAS:
ELECTRICAL AND

ELECTRONIC
ENGINEERING

COMPLEX NETWORKS

Received
27 September 2013

Accepted
11 December 2013

Published
15 January 2014

Correspondence and
requests for materials

should be addressed to
A.S. (antonio.scala@

phys.uniroma1.it)

SCIENTIFIC REPORTS | 4 : 3694 | DOI: 10.1038/srep03694 1



overloads causing lines to trip. To this end, we will put under stress
both model and realistic EPSs to understand the nature of systemic
outages. The nature of the stress will be twofold: first, we will consider
the case in which an increasing demand on a fixed infrastructure
leads to line overloads and subsequent outages. This would corre-
spond to the case of EPS that are operated to the limit of their
capacities in order to maximize profits. Second, we will consider
the important case of fluctuations in demands and generation; this
is a particularly relevant case since the steady penetrations of renew-
able sources is introducing in the grids new erratic sources whose
effects and consequences on existing power grids have not yet been
fully understood.

Results
Model. A particular source of stress to EPS comes to the fact that
adjustments in power generation are not real-time but follow fixed
time schedules; for example, in Europe the production is fixed in
advance the day before and periodic adjustments happen every 15
minutes; therefore, the reaction time (apart from automatic controls/
tripping) is generally much higher than the time of propagation of
electrical perturbation in the system.

The tripping of lines and generators above their operating limits
induced by automatic protective equipments is common to all kinds
of cascading outages; while this process is intended to protect costly
equipments from damage, it can potentially widen cascade failures10.

Most of the cascade model for power grids are purely topological
models based on the local redistribution of power loads upon fail-
ure11–14 and disregard the long range nature of electricity. On one
hand, a clear signature of the non-locality of power outages can be
found in real data: this is, for example, the case of the tripping
sequence of the Western Interconnection WSCC system distur-
bances in July 2–3, 199615, where the occurrence of subsequent fail-
ures in far away lines can be observed. On the other hand, it is
possible to have simple yet realistic models respecting Kirchoff laws,
like the one introduced by Carreras et al16. In this paper, we will
consider a very similar model introduced by Pahwa et al17.

In Pahwa’s model, the power grid is modelled as a complex net-
work where nodes represent buses and links represent electrical
branches; the initial distribution of loads and sources represents
the stress imposed to the grid. The initial power flows on lines are
calculated using the DC power flow model (see Materials). If the load
on a line goes beyond its capacity, the line trips (disconnects) and
power flows are recalculated on the new topology (i.e. the grid
MINUS the tripped lines). Such procedure is repeated until conver-
gence (fig. 1). We will refer to such a model as the Overload Cascade
Model (OCM).

Our model does not account for the whole complexity of an EPS;
in particular, it disregards both transients and the dynamics of phase
angles. Nevertheless, it allows to sort out the role of a class of events
always present in any black-out, i.e. line overloads. Another import-
ant property of the OCM is that, due to the long-range nature of the
interaction, it is amenable to analytic approximations that lead to
predict the universal behaviour of the system (see Methods).

To analyze cascades, we will use both IEEE model grids18,19 and the
Polish Grid19. Notice that IEEE grids are always employed as a real-
istic test-bed and are often used as sub-units in the design of real
power grids18.

Load growth. A very effective way to understand the breakdown of a
system is to stress it up to the rupture point. To such a scope, we
consider a growth in the power demand while keeping the network
fixed. Such mechanism is not so far from reality, since in recent years
the economic competition and deregulation has led the power
systems to be operating fairly close to their limits: as an example,
the number of daily transactions in the US has grown by roughly
400% since 199820. We model such growth of the demand as a

simultaneous increase of all the loads by a factor a and record the
fraction f of branches that fail at the end of a cascade.

Due to the long-range nature of electric interaction, mean-field
arguments (see Methods) predict the occurrence of a first order
transition in the system. Fig. 2 shows the results of the increase of
load in four IEEE model grids. Indeed, we observe that a steep break-
down of the grids occurs; unfortunately, data sets for only few real
(istic) networks are available.

To further investigate the possibility of a first order transition, we
generate model networks of increasing sizes using the scheme of
Pahwa et al21 (see Materials). We observe that each realization of a
network, due to the randomness, shows a sharp jump in the final
fraction f of failures at a different value ac of the load increase.
Therefore, we calculate f by averaging over different networks at fixed
a 2 ac. The result for synthetic networks (fig. 3) indeed confirms that
the transition is first-order.

Load fluctuations. Another important source of stress in power
grids are flow fluctuations22; as an example, customer behaviour
introduces fluctuations that present both cyclic and stochastic
components. The introduction of renewable energy sources has
introduced further erratic fluctuations whose size can even invert
power flow directions. Such a situation can be troublesome in grids
that have been engineered for a top-down distribution of the power
and where the flow directions are assumed fixed. In particular,
fluctuations beyond the operator’s predictions can lead to condi-
tions where power flows exceed the line ratings significantly; in
general, distributed generation could compromise the stability of
the grid23.

We parametrize the size of fluctuation by allowing the initial loads
to fluctuate by a fraction s and calculate the final fraction of cascaded
links by averaging over load fluctuations. Fig. 4 shows the results of
the increase of the fluctuations’ size s in four IEEE model grids.

Figure 1 | Algorithm for the Overload Cascade Model (OCM). According

to the initial distribution of loads and sources (representing the stress

imposed to the power grid), initial power flows are calculated. If the load

on a line goes beyond its capacity, the line trips (disconnects) and power

flows are recalculated on the new topology (i.e. the grid MINUS the tripped

lines). Such procedure is repeated until convergence. Notice that, while in

this paper we employ the DC power flow model31 (see Materials), the OCM

algorithm is independent from the power-flow model applied to compute

line loads.
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Figure 2 | Effects of load growth for IEEE grids. Plot of the fraction f of tripped lines versus the relative load increase a mimicking the growth in power

demand. The results show an abrupt jump in f that is consistent with the mean-field predictions for the model (see Methods).

Figure 3 | Effects of load growth in synthetic networks. Plot of the fraction f of tripped lines versus the relative load increase a mimicking the growth in

power demand. Results are averaged over several (100) realizations of the networks for each size. Since each generated network experiences such a jump at

a different critical value ac, the resulting fs are averaged as a function of a 2 ac. Error bars are of the order of the size of the symbols. Our results

show that also in synthetic networks f has an abrupt jump consistent with the mean-field predictions for the model (see Methods).
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Compared to the load increase case, we observe that the breakdown
of the grids happens in a smoother fashion but becomes steeper with
increasing system size, indicating the possibility of a first order trans-
ition in the limit of large networks. Moreover, we observe that a finite
fraction of the power lines survives past the transition region, i.e. the
system fragments in ‘‘islands’’.

To better explore such an effect, we again analyse the behaviour of
model networks generated according to the scheme of Pahwa et al21

(see Materials) and average the results over both fluctuations and
different networks of ths same size. The results for synthetic net-
works (fig. 5) indicate that in the case of fluctuating sources there
are strong finite size effects smoothening the transition; nevertheless,
the transition becomes steeper with growing system sizes, indicating
the possibility of a first order transition. Nevertheless, also in this case
the breakdown due to fluctuations is less severe since a finite fraction
of power lines survives and the system is in an ‘‘islanded’’ state.

Polish grid. We now consider a bigger network of 2746 nodes, the
Polish grid (available in19). This network is a snapshot of the national
high-voltage Polish power grid obtained from the data collected and
used by Polish transmission system operators. Such a network is
realistic and, thanks to its size, helps us to further confirm the
increasing abruptness of the breakdowns with the size. The upper
panel of fig. 6 shows that – as expected – by increasing all the loads in

such a grid, the breakdown is abrupt as in a first order transition. The
situation is more complicated in the case of random loads. The lower
panel of fig. 6 shows the un-averaged results for different realization
of the noise (fluctuations). For such a big network we find that for a
given realization of the noise the system is either in a safe state (the
fraction of tripped links is ,0) or in a systemic failure state (the
fraction of tripped links is ,1). At difference with the case of
uniform load increase, the transition does not happens at a given
s, but can happen in a whole range of values. In particular, for the
Polish grid we find that the grid stays essentially intact when the loads
are allowed to fluctuate less than ,6% and that the system comes in a
black-out state when loads are allowed to fluctuate more than ,12%
of their nominal values. For intermediate values, the system can
either be in a safe state or in a black-out state depending on the
realization of the disorder. Notice that for such a large network the
breakdown is systemic (the fraction of failed links f is either ,0 or
,1) and no ‘‘islanding’’ is present even in the fluctuating case.

Discussion
Our analysis of real, realistic and model systems indicates that black-
outs due purely to line overloads are intrinsically a first order phe-
nomenon as predicted by a simple mean-field modelling of the
complex network (see Materials). In particular, stressing the system

Figure 4 | Effects of load fluctuations for IEEE grids. Plot of the fraction f of tripped lines versus the relative strength of fluctuations s. Comparing with

the case of increasing load of fig. 1, we see that randomness smoothens the transition; yet, the transition becomes steeper with size, indicating the

possibility of a firts order transition in the limit of large networks. Results are averaged over 100 realizations of the noise. Error bars are of the order of the

size of the symbols.
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by uniformly increasing the power dispatched in the grid causes a
systemic failure of the lines.

On the other hand, when the breakdown is fluctuation-driven,
such a transition is smoothed at finite sizes: this means that bigger
systems are more fragile, since their breakdown happens in a more
abrupt fashion. On the other hand, in the case of fluctuation-driven
breakdowns, small system are seen to survive in a fragmented state
where separate ‘‘islands’’ survive: such an effect is not predictable by
our mean-field approach and is possibly due to the planar nature of
real and realistic grids.

Hence, our results indicate that the realization of the foreseen
super-grid projects24,25 could introduce an intrinsic source of sys-
temic risk: in fact, since joining together more networks increases
the size of the global grid, it could also enhance its fragility.

By considering static power flow models, we contribute only on a
single aspect of power grid vulnerability, i.e. the ‘‘static security
assessment’’26. Hence, we disregard other important phenomena like
line tripping due to frequency imbalances generated by the mismatch
between demand and generation27. Recent studies hint that tuning
the parameters of a grid using a complex network approach could
stabilize its dynamics mitigating the impact of such transients28; in
general, changing the topology of a network could improve its res-
ponse to attacks and failures29.

In conclusion, while we have not meant to fully address the whole
phenomenology of blackouts and outages in power grids, we have
isolated one of the key factor that concur to such phenomena, show-
ing by simulations and the means of a simple mean-field model that
overload failures are intrinsically a first order phenomenon where

increasing the size of the system enhances its vulnerability to sys-
temic cascades.

Methods
Power Flow models. Power flow models aim to obtain complete information on
voltage angles and magnitudes at each bus of a power system at given loads and
generation. For an AC (alternate current) system, the power balance equations can be
written for each bus (nodes of the network); real and reactive power flow on each
branch (edges of the network) and the generator reactive power output can be
analytically determined, but due to the non-linear character of the system numerical
methods are employed to obtain a solution30. A bus of the system is either classified as
Load Bus if there are no generators connected or as a Generator Bus if one or more
generators are connected. It is assumed that the real power PD and the reactive power
QD at each Load Bus are given, while for Generator Buses the real generated power PG

and the voltage magnitude jVj are given. A particular Generator Bus, called the Slack
Bus, is assumed as a reference and its voltage magnitude jVj and voltage phase H are
fixed. The branches of the electrical system are described by the bus admittance
matrix Y.

DC power flow. A simplification of the AC power flow equations is obtained by
linearising the equations by requiring that bus voltages Vi are fixed and that phase
differences hij 5 Hi 2 Hj along the branches are small. The resulting linear system of
equations constitutes the DC power-flow model31

P~LH ð1Þ

where Pi is the total power (generation minus load) at the i-th bus, L~K{Y is the
Laplacian matrix with K diagonal degree matrix Kii~

X
j
Yij ; the sign of Pi deter-

mines if a node is a generator, a load or even a transit node (Pi 5 0). Notice that we are
neglecting phase shifts of the transformers that would add an extra term in eq.(1):
P~LHzPw .

For the purposes of EPSs operators, the DC approximation matches fairly enough
with the full AC solution32; in fact, DC power flow is on average wrong by a few

Figure 5 | Effects of fluctuations in synthetic networks. Plot of the fraction f of tripped lines versus the relative strength of fluctuations s. Comparing with

the case of increasing load in synthetic of fig. 2, we see that randomness smoothens the transition; yet, the transition becomes steeper with size, indicating

the possibility of a firts order transition in the limit of large networks. Results are averaged over 10 networks and over 10 realizations of the noise

for each network. Error bars are of the order of the size of the symbols.

www.nature.com/scientificreports
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percent33 with respect to the more computationally intensive AC power flow. Another
important characteristic is that the probability distribution of the line loads looks
statistically equivalent for the AC as well as the DC approximation34. Neglecting line
resistances is a justified assumption because they are very small as compared to their
inductive reactances31.

Synthetic power grids. The topology of a network determines the arrangement of
nodes in the network and how they are connected to each other. A small change in the
network topology, such as removal or addition of nodes and/or links, may lead to
changes in the network properties. These changes, in turn, may affect the robustness
of the network. With the increasing penetration of distributed sources, the network
structure would play a very important role in deciding the threshold beyond which
any increase in distributed generation could cause a cascade failure in the system.

There is limited real data available for power grids. In order to have more networks
and also to study the effect of different topologies on the robustness of the power grid
due to increasing amount of distributed generation, it is necessary to have model
topologies, i.e a network generation algorithm to generate synthetic power grid
networks.

The Erdos-Renyi model35 and the network generation algorithm of Molloy and
Reed36 are the simplest network models that include stochasticity as an essential

element in the construction of the network. In these two models the connection of the
nodes is completely random and lacks knowledge of the principles that guide the
creation of links between nodes. Thus, links in these models are created randomly
with a given connection probability p. Another model for creation of random graphs
is the Generalized Random Graph model37–39 which still keeps the assignment of links
random but specifies a predefined degree sequence. Thus, the Generalized model can
produce graphs with degree distributions which are not necessarily Poisson. The
Generalized Random Graph model was first proposed in 1978 in40 and is also known
as the Configuration model.

We notice that, although some steps in the directions of generating realistic power
grid topologies have been done41,42, there is not yet a consensus on the networks to
employ as model EPSs; for example, in their studies of inter-dependent power grids,
Brummit et al. use generalized random regular graphs to generate their model
networks43.

Network generation. Our model networks are generated using a variation of the
Generalized Random Graph Model and imposing certain constraints on the
statistics21. Such constraints come in the form of specifying the desired average
degree, the desired maximum degree of the network under construction, the
fraction of generation nodes, the fraction of load nodes and the generation/load
statistics. For each size N, we generated statistically independent configurations
with the same number of links. This was maintained by considering a constant
average degree for each of the configurations. The average node degree is given by
,k. 5 2 M/N where M is the number of links and N is the number of nodes. As
an example, for a network of size N 5 50, if the average node degree, ,k. is
considered as 2.8, the number of links M is 70. The impedances, the initial loads
and the generators are generated by selecting samples from distributions derived
from the impedance, load and generation data of the available real power grid
networks18.

In addition, since the generated networks should be as close to realistic networks as
possible, we also match the maximum node degree of the generated networks with the
corresponding test networks. Extra care has been taken to ensure that we obtain a
connected network with no self loops. In fig. 7 we show the topologies of some of the
synthetic networks.

Simulations. We stress real and synthetic networks according to the two protocols of
increasing loads or fluctuations. In the first case, loads are uniformly increased

Li að Þ~ 1zað ÞL0
i ð2Þ

where L0
i are the initial values of the loads and a parametrises the strength of the stress.

In the case of synthetic networks, results are averaged over 100 samples for each
system size.

In the second case, fluctuations are mimicked by using a random variable ji uni-
formly distributed in [21, 1]:

Figure 6 | Cascade results for the 2746 bus Polish grid. This network is a

snapshot of the national high-voltage Polish power grid obtained from the

data collected and used by Polish transmission system operators. In the

upper panel we show that the fraction f of tripped lines versus the relative

load increase a shows and abrupt jump typical of first order transitions;

moreover, breakdowns in such a network are systemic, i.e either all the

lines have failed (f , 1) or the grid is safe (f , 0). In the lower panel, by

varying s, we show the effects of the fluctuations in the loads. Data point

corresponds to 10 different realizations of the noise. At difference with the

case of uniform load increase, the transition does not happens at a given s,

but can happen in a whole range of values. In particular, we find that the

grid stays essentially intact (f , 0) when the loads fluctuate less than ,6%

and that the system suffers a black-out (f , 1) when loads fluctuate more

than ,12% of their nominal values. For intermediate values (shaded

region), the system can either be in a safe state or in a systemic black-out

state depending on the realization of the disorder.

Figure 7 | Synthetic networks of different sizes. Our model networks are

generated using a variation of the Generalized Random Graph Model that

imposes constraints on the statistics such that the average degree, the

maximum degree of the network under construction, the fraction of

generation nodes, the fraction of load nodes and the generation/load

statistics are consistent with the ones found in the empirical IEEE test

networks.

www.nature.com/scientificreports
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Li sð Þ~ 1zsjið ÞL0
i ð3Þ

i.e. Li(s) g [(1 2 s)Li, (1 1 s)Li]. Here s parametrises the strength of the stress. In
the case of the IEEE networks and of the Polish grid, averages are obtained over 100
realizations of the noise. In the case of synthetic networks, averages are obtained over
10 realizations of the noise for each of 10 separate network samples.

Mean field analysis. Flows in power grids have complex dynamics even in the DC
approximation: if a single line gets overloaded or breaks, its power is immediately
distributed, not to a single different branch, but in the whole system, due to the long-
range nature of Kirchoff’s laws. The redistribution of power after a component failure
is dependent on the electrical characteristics (such as impedances) of the lines; if the

redistribution of power leads to subsequent overloadings, the consequence could be a
cascade of overloading failures. In general, after an initial failure, some of the lines
could get overloaded and fail: this represents the first stage of cascade. First stage
could possibly lead to further overloading and collapses, constituting the second stage
and so on. In this way, the system goes through multiple stages of cascades until it
finally stabilizes and there are no more failures.

We indicate the final stable configuration of the OCM by {y}, where

yij~
0 if branch i,jð Þ is broken

Yij otherwise

�
ð4Þ

and jyijhijj, Cij, where hij is the phase angle difference among nodes i,j and Cij is the
threshold flow (the capacity) beyond which a branch becomes overloaded and fails.

Following Zapperi et al.44, the stable configuration of the OCM can be obtained
from a double minimization of an objective function

H yf gð Þ~
X

ij

y2
ij h2

ij{c2
ij

h i
ð5Þ

where cij 5 Cij/Yij and yij g {0, Yij}. Here H is minimized both with respect to the
global variables hij at fixed yij (notice that DC power flow implicitly minimizes the
‘‘dissipations’’ y2

ijh
2
ij) and with respect to the local variables yij at fixed hij (notice that

this term corresponds to the breakdown of overloaded links). In such a form, the
OCM can be mapped in the model for the breakdown of a disordered media of
reference44, indicating that the cascade transition in power grids is a first order
transition, i.e. consists of an abrupt failure of the system.

The first-order nature of such a transition stems from the interplay of the long
range nature of Kirchoff’s laws and the distribution of failure thresholds45. Long-
range interactions allow to apply mean field analysis to the model; in particular, it is
possible to assume that when a line is tripped, its load could re-distribute equally
among all other lines. Subsequently, the lines above their threshold would trip again,
their loads would be re-distributed and so on up to convergence: such a model
corresponds to the so called democratic fiber-bundle model (DFBM)46,47. Depending
from the distributions of threshold, the DFBM can have at the same time an abrupt
breakdown of the system and a power-law distribution of cascade sizes45; such
behaviour resembles the hybrid transition for multiplex networks48.

The DFBM model shares the same mean-field spirit of the CASCADE model for
black-outs49; notice that while DFBM assumes a starting situation in which loads are
the same and thresholds are randomly distributed, CASCADE assumes that loads are
randomly distributed and thresholds are the same. While the CASCADE model
predicts a self-organised second order critical point, our OCM predicts a first order
transition; a recent analysis on black-outs’ sizes in several countries indicates that
causal factors other than self-organization or a critical state might be significantly
ruling the system dynamics8.
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Finally, we recall that, by identifying phase differences with voltage drops, the DC
power flow equations are equivalent to the equations for DC currents on a resistor
network; therefore, our model can also be mapped in the so-called random-fuse
model50.

In the following, we analise the case of increasing loads and of random fluctuations
in a simple DFBM-like model for the power grid, showing that mean-field predicts a
first order transition both in the case of increasing loads and increasing fluctuations.

DFBM with increasing loads. We consider M lines where each link i is characterised by
its capacity Ci (maximum amount of flow) and assume that capacities are charac-
terised by a probability distribution r(C). When the load of a link surpasses its
capacity, the link breaks and its load gets redistributed ‘‘democratically’’ among the
remaining surviving links.

We first consider a uniform stress situation, where the system is subject to a load L
and all the links are initially subject to the same load l 5 L/M. Let’s consider a cascade

of failures in a mean field approach: a fraction of links f 1~

ðL=M

0
p Cð ÞdC immediately

fails since their thresholds are less than the load l they sustain. Hence, after the first
stage of a cascade, there are M1 5 (1 2 f1)M surviving links and the new load per link
is l1 5 L/M1. The cascade’s stages follow analogously; we can thus write the mean field
equations for the (t 1 1)-th stage of the cascade:

ltz1~L=Mt ; l0~L=M

f tz1~P ltz1ð Þ; f 0~1

Mtz1~ 1{f tz1ð ÞM; M0~M

8><
>: ð6Þ

where P xð Þ~
ðx

0
p Cð ÞdC is the cumulative distribution function associated to p(C).

Eq. 6 can be simplified in a single equation for the fraction f of failed links

f tz1~P
L

1{f tð ÞM

� �
~F f tð Þ ; f 0~1 ð7Þ

Hence, the fixpoint f* 5 F(f*) of eq. 7 represents the fraction of links survived to the
failure cascade. The behaviour of f* depends on the functional form of p(C)45 and is
known to present a first order transition for a wide family of curves. Thus, it is
important to understand the functional form of the distribution for the thresholds C
in the case of realistic power networks. In fig. 8 we show the histograms of the
normalised line capacities c 5 C/Cmax where Cmax is the maximum line capacity of the
network. For all the networks we find that such histograms can be approximated by
p’s of the form

p cð Þ*c{ for cminvcv1

where cmin , 0.02 for all the networks and the exponent increases according to the
size.

To highlight the effects of the shape of p(c), we plot in fig. 9 the results for the MF
model (the fixpoint of equation 7) for the extreme cases of a flat distribution ( 5 0)
and of a sharp decrease in the distribution ( 5 2). We find in both cases that the
transition is first order. Moreover, the height of the jump increases for bigger ,
indicating that the size behaviour of cascade in power networks could be mainly due
to the change in shape of the capacities’ distribution with size.

DFBM with increasing fluctuations in loads. To account for the fluctuations in the
initial loads, we can generalise the DFBM model to the case where the initial loads on
the links are not uniform. Hence, we consider a model in which M links with capa-
cities Ci extracted with probability p(C) have initial random loads l0

i and where the
loads of failed links get redistributed equally among the remaining links. The fraction
f of unbroken links can be solved numerically by iterating the algorithm of fig. 10.

The average initial load is �l~M{1
X

li ; for simplicity, we will consider the case

where the initial loads l0
i are uniformly distributed among 0 and 2�l, i.e. between

�l{D,�lzD
� �

with D~�l. By solving numerically such system at finite M for different
values of the noise D~�l and several realizations of the initial loads, we find that the
transition does not happen anymore at a critical value of�l but can occurr in a region
around the mean-field prediction. As an example, we show in fig. 11 the results for 10
realizations of the initial loads in a system of M 5 1000 links.
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