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1. INTRODUCTION

Linear programming has long been used to solve linear problems of
management systems, but no effective algorithms have been developed for
solving a general nonlinear programming problem. Several methods like
the calculus of variation, dynamic programming and maximum principle have
been recently developed. However, none of these techniques are very useful
for solving complex management systems. The dynamic programming technique
[12] faces dimensionality difficulty, whereby it cannot be used to solve
problems with a large number of state variables. This is a severe limita-
tion. Although several techniques are available to overcome this difficulty,
they essentially trade computer memory for computer time. None of these
techniques are as efficient as the original dynamic programming algorithm.

It is desirable to distinguish between two classes of nonlinear pro-
graxming problems. The first class consists of nonlinear cbjective function
and linear constraints while the second has a linear or nonlinear objective
function and nonlinear constraints. The former is the less difficult of the
two. In developing techniques for solving this class of problems, much can
te gained from a knowledge of the established methods for unconstrained
optimization [1T7]. Along these lines two possible approaches can be fol-
loweG. One is to transform the constrained problem into unconstrained
maximization problems, followed by the use of known technigques to solve each
maximization problem. This type of approach is illustrated by Rosenbrock
{16]. The other theoretically more satisfying approach, is to modify and
extend methods of unconstrained maximization so that they can handle in-
equality constraints directly. The best examplé of this is Rosen's gradient

projection method [15), which is an extension of the steepest ascent technique.



Unfortunately it suffers the same drawbacks i.e. slow rate of convergernce
for a nonlinear function. The variable metric method developed by Davidon
[4] and later simplified by Fletcher and Powell [5] is a most powerful
guadratically convergent technique for unconstrained optimization.
Extension of the work of Davidon and Fletcher and Powell to the case of
maximization under linear constraints appeared to_be a promising path

of attack in the solution of management problems.

The conjugate gradient method of Goldfarb [T7,B8,9] shows a significent
improvement over existing nonlinear programming techniques in the rate of
convergence. The purpose of this report is to apply the above method to
industrial management problems characterized by linear constraints. This
method is in many ways analogous to Rosen's gradient projection technique.

The geometrical interpretation and the outline of the algorithm is
given. Two management problems are solved using this algorithm, and their
optimum results are tabulated. The computational aspects with the aid

of flow charts and computer programs are described in detail.
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2. THE CONJUGATE GRADIENT METHOD

This method is based upon Davidon's variable metric method for un-
constrained minimization. The conjugate gradient technique starts with
an initial point in the m-dimensional variable space, If the given initial
point is not feasible, a feasible one (satisfying all constraints) is ob-
tained using Rosen's technique [15] for locating a feasible point. Starting
with this feasible point a stepwise procedure is followed which gives a
new feasible point at each step with an increased value of the objective
function for a maximization problem. As the method proceeds, information
about the local curvature of the objective function is incorporated into a
matrix Eqi.

The length of the step is taken as the maximum possible without leaving
the feasible region i.e. violating the constraint. Directions of search are
determined by premultiplying the vector gradient g by the matrix Eqi. This
variable metric gqi is modified when a constraint is added to or removed
from the basis. To locate the maximum a cubic interpolation scheme of

Davidon [4] given in the Appendix B is used.

2.1 Formulztion of the problem

The conjugate gradient algorithm given below is used to obtain a local

maximum of a nonlinear objective function

f(x) = £f(x

12Xgs cernneens xug (L)

of m variables Xj’ j=1,2, «......., m subject to linear equality and in-

equality constraints of the type

.= b, =0,1=1,2, ticiaase, €
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This formulation includes as a special case non-negativity constraints

(bounds) common in both linear and nonlinear programming problems.

On normalizing the above constraints we have

m
E n..x._’b. =0, i=l,2,-|-¢--o-a----.,e

m
Y n,, x, =b, >0, imetl,et2;cs0000va00,3K

where the nij have been normalized such that

7 G, )2 = 1y AL 25 s evunesessask

It is obvious that bounds need not be normalized.

Geometrically X:s i=1,2,..40004:20..,M represents a point in an

m—-dimensional Euclidean space E'. Such a point can be represented by

an m—~dimensional column vector

T ;
The transpose of the vector X is denoted by x . Subscripts on vectors

- b, >0, i=etl,etZ2,...cuc.e.05k

(2)

(3

(14)



usually indicate components while superscripts in general differentiate
between points.

Let Ei denote the column vector
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Then equations (2) through (4) can be written as

- ®= by = 05 35le2swees s swug® (5)

> 0, imetl,et2,....,k (6)

where the n, are unit normals, such that

. =1, 1=1,2,........,k (7N

The constraints (5) and (6) represent e hyperplanes and (k-e) closed
half spaces, whose intersection in E" is a convex polyhedral region R
often called the "feasible" region. This region is assumed to be bounded
and for this to be true it is necessary that k>m+l. Any point x such
that x € R is called a "feasible'" point. The hyperplane corresponding
to a strict equality for a particular i in equation (6) is called the
"defining" hyperplane for the associated half space. The boundary B of
R is the intersection of R with the union of the (k-e) defining hyper-

planes.

W



A sct of hyperplanes is linearly independent if the set of unit normals
to these hyperplanes, is linearly independent. If ¢ are the number of
linearly independent defining hyperplanes, then the intersection of these
hyperplanes forms an (m-q) dimensional subspace Mq of E". If movement is
restricted to Mq, then these hyperplanes are referred to as the "constraint

basis". M is a gq-dimensional subspace spanned by the q unit normals to

these g hyperplanes, hence Mq is the orthogonal component to Mq i.e.

]
o

MNM
qg q

[l
=

and M Un
q q

2.2 Geometrical interpretation

It is convenient to use geometrical concepts to describe the maximi-
; ; F i, - ; : ;
zation procedure. As previously mentioned X~ is a point in the m-dimensional
. m . ; s :
Euclidean space E°. The gradient at this point is given by

. 3£ (x)
b - 22

axj
The components of this gradient can be considered as the coordinates of a
point in another m-dimensional Euclidean space. If f£(x) is differentiable
at all points E?: then each point §? in the position space has associated
with it a point g(gi) in the gradient space. In addition, if £(x) is
twice differentiable, then in the neighborhood of any point 5? in ET the
second partial derivatives of f(x) specify a linear mapping of changes in

position, dx, onto changes in gradient dg, according to the relation

dg = 6 dx



where the Hessian matrix G(x) of second partial derivatives is given by

azf(§)
SRECH

9X . 90X,
1 3

The vectors dx and dg will be directed likewise if dx is an eigenvector
of G(x). If the ratios among the corresponding eigenvalues of the matrix
G(x) are large, then for most dx there will be a considerable difference in
the directions of dx and dg.

Consider the problem of locating the point at which a strictly concave
quadratic function

f(x) = £, + E? %+

0 x' G x ®)

b

is maximized. Then the Hessian matrix is equal to the constant negative

. . m
definite matrix G over the entire space E and we have

1 i

. 4
g -g =ex T -x) 9

where 5? = gQEi)

Therefore §F+l - 5? = _fl (g?+l - g}) (10)

where gfl is the inverse of G.

In the unconstrained case, where the feasible region R is all of
Em, a necessary and sufficient condition for a global maximum is that
g(x) = 0. The point at which this maximum occurs can then be found in

one step by computing

This, of course, is just Newton's method (referred to as the second-order

gradient method), for solving the set of m equations in m unknowns,
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gy (xl, Xps eenneens xm) =0, 3=1,2, veeueve., m, resulting from the
necessary and sufficient conditions for a global maximum of a strictly
concave function.

It is obvious from the above discussion that the method of steepest
ascent (i.e. moving in the gradient direction), and the iterative
procedure based upon moving in a direction -gfl g} can lead to very dif-
ferent paths to a solution.

In the above discussion it was assumed that the objective function
f(ﬁ) was quacdratic in x. If this were true or nearly so, then Newton's
method might be the optimal maximization scheme to use. However, in
most of the management problems f(x) is not a quadratic function and this
assumption is reasonably accurate only in a small neighborhood of a point.
Therefore, evaluation of the Hessi&l matrix and inversion of it at each
step might not, therefore, be the best policy to adopt as this can be
computationally quite time consuming. In addition a serious drawhack of
second-corder gradient methods is that for non-concave functions, conver-
gence cannot be assured for starting points not close to the maximum.

Davidon's variable metric method [L] and its reformulation by Fletcher
and Powell [5], takes a more satisfactory approach for locating the maximum
of an unconstrained nonlinear function. Their method is to initially
choose an approximation to gfl, and by using the actual relationship that
exists between changes in g and in Xx improve this approximation with each
subseguent iteration. This eventually results in a technigue that incor-
porates the advantages of both Newton's and the steepest ascent methods,
wnile avoiding their major limitations. As in the former method, Davidon's

technigue is stable and generates directions of search that are always
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uphill, and does not require the computation of second partial de-
rivatives. As in the latter method, it is quadratically convergent.

Consider now the problem of locating the point at which f£(x) assuzes
its maximum in Mq starting from a point 5?. A necessary condition for
f*(EQ to be the global maximum of f(x) for x in Mq is that the gradient
g*(§) should lie in the subspace orthogonal to Mh i.e. lie in ﬁq.

Therefore,
*( ) N
xX) = o
g (X =&

where §q = [El’ Dos sosenencsnny Eq] is an (m x q) matrix and o is a

g-dimensional column vector. The columns of Eq are the unit normals to
S s e o A

the hyperplanes under consideration and lie in Mq' Substituting g 1.

qu_into equation (10) we have

I+ » o >
El l . 2[_1 - E l (N o - El) (12)
(§1+1 - E}) lies in subspace Mq. Therefore,
ﬁqT (§}+l _ 5}) oy I_qqflig--l qu-_ HqT gfl g}

Since the rank of §q is ¢ < m and that of gfl is m > q the inverse of

T -1 . .
N G N exists [3] and o is given b
(_q G _q) [3] a g y
5w N T G—l N )-l N T G-l E}
- —-q — g - -

Equation (12) can then be written as

x1+l _ Xl _ G-l(N T(N T G—l N )-l T -1 1 1
- = = -—q —q -q

Therefore,
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i+l i -1 T -1 -1 T -1 -1, i \
x = x + (G N N G N N G - 13
B g1 G _q(_q__ _q) E B G g (13)
Equation (13) can be expressed as
i+l i I I
x =x =-PG 14
¥ =x -PG7g (14)
aheze P =TI -G rnty e tnytyl
- - — —4q4—q — g -

. . ; 5 ; m
is a non-euclidean projection operator that projects E onto subspace Mq.

Equation (14) shows that to locate a maximum one should move in a

~

-1 i
direction - Eq G 5}. As in the unconstrained case, a better approach
for the nonlinear problem is one based upon Davidon's method. In the

conjugate gradient algorithm described in the next section a trial value

~

for the operator —Eq gfl at a point in Mq is initially specified. This

is the positive definite variable metric Eq.



3. OUTLINE OF THE CONJUGATE GRADIENT ALGORITHM

This algorithm is essentially an extension of Fletcher and Powell's
version of Davidon's variable metric method to the maximization of an
objective function subject to linear constraints. It closely follows
Rosen's gradient projection method; the main difference is that the
directions of search are determined by premultiplying the gradient vector
by the matrix _}_Iq rather than by the orthogonal projection matrix Eq The
algorithm is based upon the manner in which the matrix Eq is updated. In
the course of the statement of this algorithm, eqs. (2) and (4) are given
for modifying Eq when a hyperplane is either dropped from or added to the
constraint basis, while equation (5), due to Davidon [4] is used to improve

the approximation of Eq to fzq G_l. Recursion relations for obtaining the

. . T -1 . . : ,
inverse matrix (Eq Eq) on changing the constraint basis, are given in

the Appendix A.

Let g? denote the current point and let f(g?) and g(ﬁ%) the corresponding
value of the function and the gradient. The matrix operator Eq is therefore
.Eqi. The basic conjugate gradient algorithm put forward by Goldfarb [7] can
be stated as follows:

(0) 1Initially some feasible point 59 is obtained and EOO is chosen to be
any positive definite matrix, usually I, the identity matrix. If the point
59 lies in the intersection Mq of q linearly independent hyperplanes, then
these constraints are added to the constraint basis and qu is computed by
recursively using eq. (4) (given in step (iv) of this algorithm) g-times
once for each hyperplane. The e hyperplanes that correspond to the equality
constraints (eq. (5) in section 2.1), are added first. Compute the gradient

0 v
_50 =g(x").



(1)

(11)

Compute o as follows
g (1)

a = (N
- —q

If ||5?|| = 0 and aj <0, j =etlet2,...... «veesq then

g} is a global maximum, If this fails, go to (ii).

s 2 i 1
Compute ||§ql§?|| then either 2|[§qlg}|] > max (0, S dqq—E) or
j g 1
2||8 “g7]] £a_ d "2, where d__ is the qth diagonal element of
-q — 49 g9 aq

the inverse matrix (N T N )_l and where it is assumed that
) g —q
1

%q dqqﬂi i_aidii_i; i=etl, et2, cioevenns .»q-1

If the former applies proceed to (iii). If the latter holds good,

drop the gqth hyperplane from the constraint basis and compute gq-ll

from
i 3 P n n T P
i_,1i_ =199 -1
-1 H ™ + 5 (2)
T i |2 _;n |1
—q-1—g
where P =1I- (NTN )'1N T

N
—q-1 —q —g-1 —-1
Let g = g-1 and return to {(i).

i i

(iii) Let §} = Eq g and compute AT from the following formulas:

A = - (EET 5} - bj)/ EﬁT E}: 3 = gtl,gt2; sesensk

o
I

min (lj > 0) (3)

Using the scheme given in the Appendix B, interpolate cubically to



obtain Yl, 0 i_yl j_kl such that f(z? + yl E}) is maximized. Set
i+l i A i i
- _ gt Yl E} anll soupes E'1+l _ g(E':L+l)

i i

(iv) If ¥y~ = X7, add to the comstraint basis the hyperplane corresponding
to the min (kj) in (iii). Obtain E:Ii from the relation
. . EraTla gt
g Hlogt X a1 (4)
—g+l — n.TH 1n.
—J 9 —J

Set @ = g+l and i = i+l and return to (i).

(v) Otherwise set z? B 5?+1 - 5? and g} =y 5} and update qu as
follows:
§q1+l _ qu g é} +_§; (5)
i, i, T
;@)
where AT = - —,——
— i.T 1
@)y
4 i\ T, i
; H™ vy (¥ )H
and E? - = -

i.T i i
H
(¥ A 4

The constraint basis, and consequently Mq remains unchanged. Set i

= i+]1 and return to (i).

i
The above equation (5) serves two purposes. The term A improves the
- i o i :
approximation of Eq to ‘qu.l and the term E} generates mutually conjugate

direction of search.
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4. FUNCTIONAL DESCRIPTION OF THE COMPUTER LOGIC

In formulating a problem to be run on the IBM 360/50 the following
quantities had to be defined for the successful operation of the conjugate
gradient technique:

a) A set of variables, xj, J =312, seevernane,; M

Il

b) Linear constraints, Ci’ 1=1,2, teeeeneasey K
¢} The objective function, f(g), to be maximized and its gradient

g(x).

d) A initial point 59.

Description of the constraints

~The linear constraints may consist of inequalities or equalities or

both, An inequality constraint, C,, must be written in the form
z a,, X, > bi. The constraints form a convex region which is usually

bounded. The maximum of a concave nonlinear function will be found even

if the region is unbounded. However, the use of lower and upper bounds on

some or all of the variables will often speed up the convergence to the

maximum. For the techmique to operate, at least one constraint is essential.
Constraints on only ome variable are called bounds. Any constraint

which can be expressed as + xj z_bi is considered as a bound. The input

consists first of bounds, if any, which are numbered as Cl’CZ’ """""’Cb’

say, and then the constraints other than bounds, numbered as Cb+1’cb+2’ ——

§¥E S EEy Ck' Non-negativity comnstraints are not assumed by the program,

and have to be expressed as bounds. A bound requires less computation

time and should be used in place of a constraint, wherever possible.

The constraints Ci are considered as equality if they can be expressed



m

in the form z aij xj - bi = 0. The objective function f(x) to be
j=1

maximized and its gradient g(x) are computed by the subroutine FUNCT.

The program will always find a global maximum if f(ij is a concave
function (a linear function is a special case of a concave function) and
has continuous gradient. However, solutions may be obtained even if the
above two conditions are not satisfied. Generally, if f(g) is not concave,
a local maximum will be found which may depend on the initial point chosen.
Under such circumstances several widely seperated starting points should
be tried. If different results are obtained, the best that can be done is
to take the maximum value of this set of local maxima. A minimization
problem can be solved by this algorithm as maximizing the negative of the
original function, namely maximizing -£(x).

The initial point EP need not be feasible, as the program will first
obtain a feasible point, if one exists. However, this procedure can be
time consuming. The best estimate of the feasible point is preferred.
The closer the starting point is to the optimum, the lesser is the time
consumed for obtaining the correct solution.

As input, m number of variables, k total number of constraints in-
cluding bounds, b number of bounds, and e number of equality constraints,
are read first. If b # O, the b subscripts for the bounds are read next.
these are + j's, representing i_xj z_bi. If (k-b) # 0, the constraints
Ci’ i="b+l,b+2,.........,k, are read next i.e. aij and bi’ starting
first from equality constraints. The initial point §P is chosen as
described above. As in the gradient projection method, scaling of the
constraints is also essential in this technique. The scaling divisor for

a perticular equality or inequality constraint is the square root of the



sum of the coefficients of x squared. This is essentially normalization
of the constraints whereby the coefficients of x become nij and the right

hand side of the constraints become bi'.

Tolerances

The gradient tolerance, is used to determine when the norm of the

€1»
gradient is zero, and the problem has reached a maximum. The value of

€1 is harder to determine for a nonlinear function. In general, the

smaller the value of €q> the better the '"maximum" will be. But, this will

be at the cost of computation time. The value of £, is chosen to be .001.

1

The constraint tolerance, determines when a point is on a con-

€55
straint, and is essentially an acceptable error in satisfying the constraints.

52 is taken = .0001.

The linear dependence tolerance, determines when a constraint is

Eqs
linearly dependent and therefore cannot be added to the basis. The value

of €q is chosen as .005.

Linearly dependent constraints

The normal distance from the point x to a comstraint Ci is called

m

lambda A.(x) = ] n,. x, - b,'. These lambdas are tested to determine
e T i

feasibility and which constraints are satisfied as equalities. The con-
straint vectors form the columns of the constraint matrix Ek;
J =
N =1I[ns 0ps cvervennnnn, ol
The basis is the set of constraints which are active, or limiting,
at a particular point during the solution of a problem. The initial basis

consists of equalities, if any, which are, by definition, always limiting.

In the course of the sclution other constraints which are found to be



limiting are added to the basis, and some of these may be dropped from
the basis later if they are no longer limiting. The algorithm drops or
adds one constraint at a time. The number of constraints in the basis
may be less than or equal to m. Those columns of the constraint matrix
which are in the basis are represented by Eq' Corresponding to the basis
we have an inverse matrix, (N T N )_1.
4 9

The concept of linear dependence is very crucial to the overall accuracy
of the solution. Since (EqT Eq) must be non-singular, constraints which
are linearly dependent on the constraints in the basis must not be added.
Since most of the computation is based on the inverse of this matrix, it
is also necessary to exclude those constraints which are almost linearly
dependent in order to retain a reasonable amount of accuracy. The pro-
cedure given in Appendix A, in addition to computing the inverse matrix,
results in a convenient test for linear dependence, since a constraint is
linearly dependent if its projection is zero. This test is actually made

against a non zero tolerance, £,. Lf |[§_Ei|l < €q, then C, is linearly

3
dependent and is not added to the basis.

As previously mentioned any point satisfying the equality and in-
equality constraints is a feasible point. When a comstraint is added to
the basis, it is considered as an equality when testing feasibility. Since
x should remain on the constraints in the basis, this gives a good criterion
for detecting round-off errors and preventing x from going astray. A
linearly dependent comstraint should theoretically be satisfied along with
the constraints in the basis, so, to be feasible, x must also be on the
linearly dependent constraint. If x is not feasible with respect to a

particular -constraint, then that comstraint is said to be violated. The

test for feasibility at any x is: If Aiﬁg)_i ~€45 all Ci’ and



| A e e
i}\i(i)i — 9>

all Ci in the basis, x is feasible. The z-correction pro-
cedure given in Section 5.2 corrects X to the constraints in the basis,
whereby it finds an x for which Ili(z)[ 3_62 for 211 Ci in the basis.

The gradient, g(x), gives the direction of increasing f(x). Steps
are taken along Eq g to increase f£(x) while staying feasible. If
lipgli < e;» and ri//E;;_i e, where i is an inequality comstraint in the
basis, then this is the maximum. The quantity T, is as defined in Appendiz
A and dii is the ith element of the inverse matrix. It is possible to take
a step which requires no changes in the basis. Such a step is called an
interior step. That is, iflﬁl lies on the same intersection as EP: then
the step to z} was interior. When a step is interior, a test is made for
a constraint to be dropped even if the gradient is not zero. This speeds

up the convergence of a nonlinear problem, since a zexrc projected gradient

does not have to be found with a basis that is not optimal.

Forming 2 Basis and Re—inverting

If the problem contains equalities, the initial basis consists of these
equalities. The increase of this initial basis is computed when and only

when new constraint data is read. When computing this initial inverse,

the equalities are added in order of maximum ][E_EJ . After the first
equality is added, the remaining equalities are projected, and the one with
the maximum 1]2_3}] (most linearly independent) is added next. This process
is repeated until a linearly dependent equality is found or all equalities
have been added to the basis. Equalities which are linearly dependent, if
any, are not added to the basis, but will still be classified as equalities

rather than linearly dependent constraints.

Changes are made in the basis to find a feasible point as well as the



maximum. Briefly, the normal criteria for adding a constraint to the basis
are: 1) if x is not feasible, add the constraint with the most negative
lambda, and 2) if the gradient is non-zero, add the constraint with the
most negative E?.E g where |li| 5‘52, if any. =z is the unit vector in
direction of step i.e. z = Eq gji|§q gJ]. Constraints may be dropped from
the basis for any of the following reasons: 1) x is not feasible and the
constraint with the most negative lambda is linearly dependent; 2) the
step was interior, and 3) the gradient is zero.

MXBN, maximum number of re-inversions. The number of re-inversions
is limited to prevent the problem from re-inverting toc often thereby con-
suming extra time. The program will not re-invert twice in a row to the
same basis, but it may re-invert after only one basis change or possibly
repeat a series of re-inversions.

IMIT, maximum number of steps. The number of steps required to reach
the maximum is difficult to pre-determine since it depends om such factors
as size, type of function and number of comstraints in the basis. The
choice of maximum number of steps should be such that results are not re-
peated unnecessarily after the maximum is attained.

Subroutine CLASS classifies the constraints into categories v and w.

In the program u = linearly dependent constraints ]|2_Ei | < E

3

v = constraints not in the basis with A = 0
w = constraint not in the basis with A > 0

q = number of constraints in the basis

*
q = constraints added to the initial basis

Subroutine REINV essentially computes the inverse matrix, whereas sub-

routine COMP1 and COMPZ do the matrix computations required by the conjugate



gradient algorithm.

In the light of the above descriptiom, the computational procedure
followed for the method under consideration is briefly described.

The main program is divided into three parts: input, starting pro-
cedure and the iteration procedure. The first section reads the input and
obtains the initial conditions for the problem, When the constraints are
read, they are normalized and stored. If equality constraints are present,
then these equalities form the initial basis, and the corresponding in-
verse matrix is computed and stored.

The next section is the starting procedure, in which the program tests
for feasibility and, if necessary, obtains a feasible x. If x is not
feasible, the procedure for finding a feasible x is as follows. If one
or more constraints in the basis are viclated, i.e._|li1 > 52, one X cor-
rection is computed. All constraints in the current constraint basis
should then be satisfied. If any constraint in the basis is still violated,
this is considered as an x-correction failure, and this necessitates a re-
inversion to proceed further. If constraints which are not in the basis
are violated i.e. Ai(g) < =€, the program computes the most negative
lambda and tries to add the corresponding constraint to the basis. If this
constraint is linearly independent, only then it is added, and the procedure
is repeated starting from the x-correction. On the other hand if the con-
straint is linearly dependent, the program tests against €5 for a constraint
to be dropped. If it finds no comstraint to be dropped on the initial
iteration, there is no feasible x. On the later iterations, this is con-
sidered to be an ffcorrection failure. In either case, a re-inversion is
essential to proceed. However, in the case of no feasible x a re-inversion

will not necessarily obtain a feasible x if one does not exist. If there
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is a constrvaint to be dropped then it is dropped from the basis. tHowever,
the program trics to add the constraint with the most negative lambda.

If this comstraint is still linearly dependent, it is considered toc be an
x—correction failure and this necessitates a re-inversion to proceed.
Depending upon the number of constraints in the basis the matrix Eq is
computed according to the relation (4) in section 3.

On obtaining a feasible x at the beginning of each iteration, sub-
routine FUNCT is called upon to compute £(x) and g(x). This entitles the
program to enter the iteration procedure. An iteration includes the pro-
jection of the gradient, testing for the maximum, changes in the basis,
computation of the matrix Eq and the calculation of z. The subroutine
CLASS classifies the non-basis constraints into v and w. If ]]gj! < e
and aj <0, j=etl,et2, .......v0¢s.,q, then the point is the maximum
required,.

1f ||g|| > €; and q=0 then z is computed. If g > O and 2gi ] <€
then the program makes the necessary test as given in the flow chart
(Appendix C) for dropping a constraint from the basis. If there is no
constraint to drop, then the maximum test is satisfied, and the current
point is the optimum. On dropping the comstraint, the matrix Eq is computed
using the proper relation.

If i]EEJI > gy and (m-g) > 0, z is computed. If v > 0 and (min E? Ei)
< 0, for i in v, then the corresponding constraint if linearly independent
is added to the basis and Eq is computed. If the constraint is linearly

dependent the program repeats for (min E?Ei) < 0, iin v. When v=0, the

%
ests for basis change at this iteration. If ¢ or n = 0 the

r

program
program tests against 2||Hg|| for a constraint to be dropped (step (ii) of

the conjugate gradient algorithm). On dropping a comstraint, the program
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returns to a location where the gradient is projected and tested as given

in the flow chart. If the constraint cannot be dropped, then step {iii)

of the algorithm is followed, wherein the cubic interpolation scheme is
followed to obtain a higher value of x. If yi = Ri as in step (iv),

then the corresponding constraint of step (iii) is added to the basis and
Eq is computed. If step (iv) fails, proceed to step (iv). 1If step (iv)
fails, then step (v) is executed. At the beginning of step (iii), the
iteration counter is changed. The program stops if the number of iterations

exceeds the limit given.



5. APPLICATION O THE CONJUCATE GRADIENT METHOD TO

MANAGEMENT PROBLEMS

Faced with the increasing complexities of engineering, productiocn
and sales in a highly developed and often strongly competitive econony,
management must deal with a multitude of interlocking and often far-reaching
tasks involving many decision-making and control problems. In many in-
dustries the control of inventory is intimately related to the scheduling
of production, and in this section of the report two different producticn
scheduling and inventory models are considered.

The first one is a simple production planning model involving a single
state variable. The second is a more complex model consisting of two state
variables. Solutions were obtained by the application of the conjugate

gradient technique.

5.1 Test Problem No. 1

An inventory model with one state variable

Consider the case of a manufacturing enterprise whose sales rate is

known with certainty. The rate of change of inventory level I(t) is given

by
ar(e) _
T = B(8) - Q) (1)
where P(t) = production rate at time t
and Q(t) = sales rate at time t.

The problem is to minimize the cost function given by

T

. 3 é e, I, - 1(e))? + Cp exp By - JONSRL &)
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whoere CT is the total cost of production and inventory. CL is the cost of

carrying inventory and C, is the minimum production cost which occurs when

P
the production rate equals Pm. The quantity Pm can be considered as the
production capacity of the manufacturing plant. Since the plant is designed
for a capacity Pm, an increase in production may require additional equip—
ment and manual labor which can be very expensive. On the other hand, a
decrease in production below Pm will be equally expensive due to maintenance
of unused equipment and idle labor which cannot be decreased due to contract
agreements. The quantity Im can be considered as the capacity for storage
of inventory. In actual practice, the minimum storage cost is obtained
when the storage capacity is completely utilized. 1In addition, the cost
function given by equation (2) has the smoothing capability which is
frequently desirable for many manufacturing processes. In this case, Im
and Pm can be considered as desirable inventory and production levels. Let
us further assume that the sales forecast is known and is given by the
linear relation

Q(t) = a + bt (3)
and the initial inventory is

I(0) = ¢ (4)
where a, b and ¢ are known constants.

Substituting for Q(t) in equation (1) we have

di(t) _
dt

P(t) - a - bt (3)
In order to solve this model by the conjugate gradient algorithm, equations

(2) and (5} are approximated by difference equatioms.

Thus, equation (5) is reduced to
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I(t + Aat) = I(t) +(P(t) - a - bt)Ait (6)

To obtain the cost, equation (2) has to be evaluated over the limits

nit to (n+l)At. If At is small, this integral can be approximated by

f(n+l)At 2 2
:ét [c; (x, ~ I(e))" + C, exp(P_ - P(t))"] dt

_ 2 2
= [C, (I_ - I(e))" + C, exp(P = P(£))7] 2t (7
The following numerical values are assumed
a = 2 c, = 0.1 P = 5
I m
b = 1 CP = 0.001 ty = 0
¢ = 5 I =10 T= 1
m

The range of the control variable P is taken to be between O and 7.
These are essentially bounds on the amount of production in the method
employed. The state variable is the inventory I and eq. (6) represents
a constraint on the inventory.

The number of stages into which the process can be divided is governed
by the accuracy desired and the cost of computation incurred. A large
number of stages will give a better approximation to a continuous process
and vield more accurate results. However, this accuracy is obtained at
the cost of increased computational time. For this study, solutiomns using
the conjugate gradient technique were obtained for a 5-stage and 1l0-stage
process.

This technique can only handle constraints on the control variable, and
as such equality constraints on state variables given by eq. (6) have to be

eliminated-by obtaining the partial derivatives of the state variables with
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respect to the control variables. This differentiation is used in ob-
taining the gradient vector.

The cost function given by eq. (7) is for a time interval At, but
when the integral is evaluated over the entire time interval T, the objective

function for a 5-stage process can be written as

C.= [C (Im - I{t + At))2 + G exp(Pm - P(t))z} At + [C

T (Im -

I I

I(t+2At))2 + CP exp(Pm - P(t+At))2} e .

2 2
T 2 [CI (Im - I(t+5AtL))" + CP exp(Pm - P(t+4AE)) 7]
At

To obtain the gradient at a point we have to differentiate the above cost
function with respect to the control variables P at the various stages.

As the state variables are related to the control variables by eq. (6), the
chain rule is used for the necessary differentiation. As an example the
partial derivative of the cost function with respect to the first control

variable P(t) is given by

31l (t+AL)
3P(t)

== 2 CIAt(Im - I(t+At)) -2 C?At(Pm -

P(t)) exp(Pm - P(t))2 -2 CIAt(Im - I(t+2At)) EE%%%%%El

A s s e § B SRR § .. — 2 CIAt(Im - I(t+5AL))

5I(t+54¢)
3P (t)



Consider now the differentiation of the inventory with respect to the

production, we have for example

AL (c+321) _ oI (t+3At) . oI (t+24t) . 31(t+At)
aP(t) sl (t+2A¢) gL (t+AL) 3P(t)

This briefly indicates tﬁe manner in which the components of the gradient
vector are obtained.

This and the problem that follows were both solved on an IEM 360/50
computer., The flow chart and the computer program written in FORTRAN
language are given in the Appendices C and D respectively. The main pro-
gran includes the cubic interpolation scheme to locate the optimum. The
subroutine FUNCT when called, computed the cost function, the gradient
vector and the inventory. This problem being one of minimization was
solved by the conjugate gradient maximization algorithm by maximizing
the negative of the original objective function. The necessary changes
made can be ncticed in the subroutine FUNCT.

Three different initial peints were chosen. It was observed that the
optimal values remained the same irrespective of the choice of the initial
points. A summary of the results obtained 1s given in Tables 1 and 2. The
convergence rates for the 2 processes with different starting points is
given in Tables 3 and 4. The optimal cost was 0.940 for a 5-stage and
0.932 for a 10-stage process. As can be seen, there is no significant dif-
ference between the two optimum values. The reason is that the inventory
and cost functions are smooth functions as is obvious from Figs. 1 through
4, It is therefore concluded that, for the particular model under con-
sideration, an increase in the number of stages does not significantly

improve the value of the optimal cost. This is, however, not the general



Table 1. b5-stage process
P(t)
SE—— >
I(t) I(t + At)
T £t + At
t t + At I(t) P(t) I(t + At) cT Q(t + At)
0.0 0.2 5,000 7.000 5.960 0.420 2.200
0.2 0.4 5.960 7.000 6.880 0.867 2.400
0.4 0.6 6.880 6.947 7.749 0.840 2,600
0.6 0.8 7.749 6.771 8.554 0.913 2.800
0.8 1.0 8.544 6.432 9.230 0.940 3.000




Table 2.

10-stage process

P(t)
AP, -
I(t) I(t + At)
t t + At

t + At I(t) P(t) I(t + At) CT Q(t + At)
0.1 5.000 7.000 5.490 0.232 2.100
0.2 5.490 7.000 5.970 0.419 2.200
0.3 5.970 7.000 6.440 0.569 2.300
0.4 6.440 7.000 6.900 0.685 2.400
0.5 6.900 7.000 7.350 0.773 2.500
0.6 7.350 6.899 7.780 0.836 2.600
0.7 7.780 6.808 8.151 0.879 2.700
0.8 8,191 6.691 8.580 0.907 2.800
0.9 8.580 6.518 8.942 0.924 2.900
1.0 8.942 6.164 9.258 0.932 3.000
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Table 3. Convergence rate for the 5-stage process with

different initial points

No. of Total no. of No. of
iterations functional constraints Pl P3 PS CT
evaluations in basis

Initial point: All Pi = 1.0

0 1 0 1.000 1.000 1.000 889.395
10 11 0 6.732 5.628  4.643 1.094
20 21 3 7.000 7.000 5.255 0.951
30 33 3 7.000 7.000 5.721 0.942
44 54 2 7.000 6.947 6.432 0.940

Initial point: All Pi = 5,0

0 1 0 5.000 5.000 5.000 1.431
10 11 2 7.000 6.943 5.260 0.967
20 28 3 7.000 7.000 5.571 0.942
30 42 3 7.000 7.000 6.445 0.940
46 77 2 7.000 6.946 6.431 0.940

Initial point: All Pi = 7.0

0 1 0 7.000 7.000 7.000 0.949
5 6 2 7.000 6.910 6.612 0.940
15 16 2 7.000  6.947 6.434 0.940

25 160 2 7.000 6.947 6.432 0.940

o
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Table 4. Convergence rate for the 10 - stage process

with different initial points

No. of Total no. of No. of
iterations functional constraints P P P C.
N . . 1 5 10 T

evaluations in basis

Initial point: All Pi =1.0

0 1 0 1.000 1.000 1.000 8&889.355
20 21 3 7.000 6.680 5.148 0.955
40 56 6 7.000 7.000 5.511 0.934
60 81 5 7.000 7.000 5.685 0.9322
84 238 5 7.000 7.000 6.164 0.932

Initial point: All P, = 5.0

0 1 0 5.000 5.000 5.000 1.414
20 21 5 7.000 7.000 5.157 0.944
40 45 6 7.000 7.000 5.338 0.934
60 66 5 7.000 7.000 5.585 0.932
77 111 4 7.000 6.972 6.165 0.932

Initial point: A1l P, = 7.0
0 1 4] 7.000 7.000 7.000 0.943
20 21 4 7.000 6.961 6.319 0.932

b4 58 4 7.000 6.973 6.164 0.932
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case as will be evident in the solution of the second model discussed
Later.,

This model has been solved by Lee and Shaikh [12] using the gradient
technique and the ﬁalue of the optimal cost obtained in their case was
0.943. Thus, there is a minor difference which is reasonable. This
variation might be due to the difference in the two techniques employed

in obtaining a solution to the above model.



5.2 Test Problem No. 2

An inventory and advertising model with two state

variables
This model is an extension of a model formulated by Teichroew [1E&].
Consider a marketing situation where only a certain number of persoms in
a group possess certain information about a firm's product. Suppose that
the total number of persons in the group under consideration remains con-
stant and that diffusion of information occurs only through personal

contract. The number of "contacts"

made by an average person in an ar-
bitrary unit of time is given by a "contact coefficient”, which is a fixed
pure number and is same for allmembers of the group. In a contact, the
contactee receives information if he does not already have it; if he
already has it, the contact is wasted in so far as increasing the number
of informed persons is concerned.
Let K(0) = number of informed persons in the group at time ts
N = total number of persomns in the group
¢ = contact coefficient; the number of contacts made
by one informed person per unit time, and
K(t) = number of informed persons at time t.
Then K(t)/N = proportion of informed persons at time t
1-K(t) /N = proportion of uninformed persoms at time t, and
cK(t)dt = contacts made during an interval of time dt.

The increase in total number of informed persoms, dK(t), during a short
time interval dt is the product of the number of contacts and the proportion
of uninformed persons.

Thus .ax(t) = cx(t) dt[l - K(t)/N]
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and the process is governed by the differential equation

ﬁ%g=cuw£1-K&Nm -

Suppose that the firm can influence the number of contacts by spending
money on advertising. In particular, it can increase the number of contacts
made by the informed persons (above the ones included in ¢) by an additicnal

number A per unit of time. Equation (1) then becomes

&
—
rt
g

- = K(£) (e + A(£)) [1 - K(£)/N] (2)

rt

If each successful contact results in the sale of n units of the firm's

product and if Q(t) denotes the sale at time t, then
Q(t) = nK(t) (3)
Assuming n = 1 and substituting eq. (3) in (2) we obtain

dgle) _

It Q(t) (e + A(t)) [1 - Q(e)/N] (4)

Next, the rate of change of the firm's inventory is given by

=% PEE) = QLE) (5)

where P(t) = production rate at time t.

The production rate is given by a linear relation
P{(t) = a + bt (6)

where a and b are known comnstants. This assumption is used for the
purpose of simplifying the model by avoiding a second control variable,

The firm's objective is to maximize the profit
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Py & éL(F q(t) - C; (PI - I(t))2 -~ C, A alt)] at (1)

where PT is the total net profit, F is the revenue from sale of one unit
of the prcduct, and CI is the inventory carrying cost. PI can be con-
sidered as the available storage capacity for the inventory and CA is the
cost of advertising.

Equations (4) through (7) entirely represent the system. It has two
state variasbles I and @ and one control variable A. To solve this model
by the conjugate gradient technigue, the systems equations are spproxi-

mated by difference equations.

Thus, equation (k) is reduced to

Qlt + at) = Q) + Q(t) (c + A(t)) [1 - Q(z)/H] At (8)

If this equation is used as it is, Q(t + At) can exceed N which is
theoretically impossible. To avoid this difficulty, the term (1 - Q(t)/X)
is replaced by (1 - Q(t + At)/N). This change eventually leads to the

expression

Q(t){1 + (c + A(t))at] (9)
1+ (c+ A(t)) Qltlat/n

Q{t + 4at) =

Eguation (5) is reduced to
I(t + at) = I(t) + P(t) - Q(t)at (10)

To obtain the profit, eq. (7) has to be computed over the limits nAt to
(n + 1)at. If At is small, this integral is approximated by

(n+1)At 5
] [Falt) - C; (PI - I(t))< - c, A Qft)]at

12 - c. A Qlt)] At

= [F glt) - c (PI = Tt%) i
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he initial conditions and numerical values are given below:

a = 70 N = 150 CI = 0.15
b = 100 t0 = 0 PI = 50

c = 2 T =1 I(0) = 20

F = 10 c, = 1.5 Q(0) = 20

A

In addition, due to limited funds for advertising, the firm's management has

imposed bounds on the control variable A which should not exceed 6.
Equations (9) and (10) represent conmstraints on the sales and inventory

respectively. The method of eliminating these constraints is similar to

that in the previous problem, Due to the relation of Q with A and the

relation of I with Q and eventually with A, the chain rule is used to

obtain the necessary differentiation. For example, the differentiation

of the two state variables with respect to the control variable is given
by

3Q{t+3at) _ aQ(t+3at) 5Q(t+2at)  3Q(t+at)
3A(tL) 3Q(t+2at)  3Q(r+At) BA(L)

and

sI(t+3at) _ 3I(t+3at) , 3I(t+2At) , sQ(r+At)
3A(t) SI(t+24AL) 3Q(t+AL) 3A(E)

3I{t+30E) 3Q(t+2At) |, 3Q(e+At)
3Q(t+241%) 3Q(t+AL) JA(L)

In this way, the gradient of the function can be obtained.
In order to solve this model by the maximization conjugate gradient

algorithm, no changes had to be made in the original program, except the
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Table 5. Initial and final points for
a 5—-stage process
A1 A2 A3 A4 AS PT
Initial
point . 000 1.000 1.000 1.000 .000 442,991
Finel
point .379 2.097 1.505 0.878 .318 524.764
Initial
point .000 4.000 4.000 4,000 .000 334,882
Final
point .522 33335 1.940 0.752 .000 582.456
Initial
point .000 6.000 6.000 6,000 .000 84.199
Final
point 472 2,988 1.508 0.505 .000 584,239
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Table 6. Initial and final points for
a 10-stage process
A Aq As A Ag 410 P

Initiel

point 1.000 1.000 1.000 1.000 .000 1.000 466.693
Finzl

point 3, 892 3.080 1.949 6.650 .000 0.000 628.151
Initial

point 4,000 4,000 4,000 4,000 .000 4,000 352,134
Final

point 4,234 3.257 1.965 0.852 .189 0.000 627.885
Initial

point 6.000 6.000 6.000 6.000 .000 6.000 74.240
Final

point 4.390 3.011 1.463 0.499 .091 0.000 631.497




Table 7. Results for a 5-stage process

No. of Total no. of No. of
iterations functional constraints A A A P
- ; " 1 3 5 T
evaluations in basis
Initial point: All Ai = 1.0, 4.0, 6.0
0 & 1 2.400 2.400 2.400 447,421
1 2 1 4.029 2.424 0.728 542.021




Table 8. Results for a 10-stage process

4o
I~

No. of Total no. of No. of
iterations functional constraints A A A P
5 . : i - 5 10 T
evaluations in basis
Initial poinmt: All Ai = 1.0, 4.0, 6.0
0 1 1 2.320 2.320 2.320 480.156
1 2 1 4.633 2.641 0.000 620.792
2 8 2 4.633 2.641 0.000 620.792




Table 9. D5-stage process
A(L)
—
I(t) I(t + at)
—_— —————
Q(t) | Qe + at)
t t + At
t £+ AL I(t) Q(t) A(t) I(t+At) Q(t+at)  P(r) PT
0.0 0.2 20.000 20.000 4.029 30.000 38.005 70.000 18.078
0.2 0.4 30.000 38.005 3327 40.399 61.809 90.000 77.246
0.4 0.6 40,399 61.809 2.424 50.037 85.373 110.000 185.900
0.6 0.8 50.037 85.373 1.492 58.963 103.756 130.000 344.550
0.8 1.0 58.963 103.756 0. 728 68.212 116.427 150.000 542.021
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Table 10. 10-stage process
!
l A(t)
S — e
I(t) I(t+ t)
— ——
Q(e) Q(t+ t)
t+ t
£t tHAL I(t) Q(t) AltL) I(t+AL) Q(t+At) P(t) PT
0.0 0.1 20.000 20.000 4.633 25.000 30.563 70.000 -0.052
G.L 0.2 25.000 30.563 4,267 29.944 44,088 80.000 9.781
0.2 0.3 29,544 44,088 3.805 34.535 59.525 90.000 31.745
0.3 0.4 34.535 59,525 3.254 38.582 75.135 100.000 68.249
0.4 0.5 38.582 75.135 2.641 42.069 89.255 110.000 121.208
0.5 0.6 42,069 89.255 2.004 45,143 100,942 120,000 1981.457
0.6 0.7 45,143 100.942 1.389 48.049 110.053 130.000 278.520
0.7 0.8 48.049 110.053 0.836 51.044 116.934 140.000 380.767
0.8 0.9 51.044 116.934 0.371 54.351 122.0981 150.000 495.788
0.9 1.0 54,351 122.091 0.000 58.141 125,599 160.000 620.792
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subroutine FUNCT had to be designed to compute the function value, the
gradient at any joint, sales, inventory and advertising.

Like the previous model this model was solved for a 5-stage and a
10-stage process. 1t was however found that the problem failed to converge
to the same results with different initial points. The starting points
chosen and the results obtained in each case are given in Tables 5 and
6 for the two processes under consideration. The failure in obtaining con-
sist .t results might be due to the unstability of the problem. Tc over-
come this difficulty, an equality constraint was imposed on the sum of the
A at the various stages. The total was set equal to 12 in the case of a
5-stage process and 23.2 in the case of a 10-stage process. With such a
constraint imposed, it was found that the feasible point chosen was the
same irrespective of the initial points chosen in both the processes.
Hence, the results obtained were identical for the process considered.

The profit obtained in the case of a 5-stage process was 542.021 and in
the _0-stage process it was 620.792. These results are given in Tables

7 and 8 for the two processes. The final results are tabulated in Tables
9 and 10. The graphs of time vs. inventory, profit, sales and advertising
are given in Figs. 5 through 8.

A significant improvement in profit was noticed in the case of the
10-stage process. This was due to the fact that a 5-stage process with
two state variables is a very approximate representation of the real situ-
ation. In light of the experience gained in trying to solve this model, it
can be concluded that the calculation of the gradient was a most tedious

job as both inventory and sales were functions of the control variable.
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6. COMPUTATIONAL ASPECTS

0.1 Ceomputational Results

For many applications the number of functional evaluations is the most
critical criterion of effectiveness, especially in management problems
where each functional evaluation may consume considerable time due to
complicated relationships between various variables. Frequently, the
gradient cannot be obtained analytically and thus the evaluation of the
function and gradient at a point requires (m + 1) computatiomns. It Is
worth noting that the conjugate gradient method requires fewer functional
evaluations than does Rosen's gradient projection method. The cubic in-
terpolation scheme used in the former method requires probably fewer in-
terpolations and hence fewer functional evaluations per step to locate the
maximum of f(x) along direction E?- The efficiency of this method however
lies in the selection of the estimate of the maximum (minimum) of the
function. No such priori estimate is used in the Rosen's grédient pro-
jection method or any other first order gradient method.

A better way of obtaining the relative effectiveness of this method
in comparison with others is by taking the ratio of the number of steps
and the ratio of the number of functional evaluations. In highly nonlinear
problems this relative superiority will considerably increase. Aside from
the merits listed above, the method suffers certain disadvantages.

It necessitates the calculation of the first partial derivatives to
obtain the gradient at a point. It is frequently the case that it is
laborious or practically impossible to calculate these derivatives and there
is a definite need for optimizaticn techniques which do not require them.

Unlike other techniques, this technique is not quadratically convergent,
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but locates the optimum in a finite number of steps. This, however, is

more than compensated by the decrease in computational time.

6.2 Numerical Problems and Corrective Procedures

The major numerical difficulty which may arise in the use of the con-
jugate gradient technique is the build-up of round-off errors in the matrices

T -1
H P and (N N ) ©. After adding or removing hyperplanes to or from the
L - g g hyperp

constraint basis the search direction Eq g(x) may have small components
that do not lie in the subspace Mq. Similarly the matrices Eq and
(§qT §q)_l may be inaccurate. This difficulty is also encountered in the
gradient projection method and is especially cumbersome if the hyperplanes
in the constraint basis tend to be nearly linearly dependent.

Rosen has suggested an error squaring procedure [15], which may also
be used to advantage with the conjugate gradient method. If as a result of

rounding errors in H (similar to those that occur in (N Tx )_1), a point
—-q g g

0 . . . . . S -
% 1is obtained at which some constraint in the basis is not satisfied as an

equality, i.e. |n X xo
=] » S 2a =

; ‘ 1 - s
procedure results in a point x~ at which | |

-b | =8 and I + xo - b|| < &, following Rosen's
q 2q 2 2k =

N I xl - b|| < (62). Point

= = 2] -

1. .
x~ 1s given by

LTl oy Tt el -
EFE T, X x
T 1 T T =1 T 0O
T £ N = = (I - N X N "N N x = b).
Therefore (N~ x - Db) = (T Q )Y T x - b)

Another numerical difficulty may arise when the gradient vector must be
approximated by finite differences. Since the iterative scheme for improving

H requires the wvector 21 which is the difference of two gradient vectors
®
=



i ; ; : . " I
g and 2=, the errors in the estimation of the gradient may be compund-
ded. If the numerical variations in the finite difference estimate of the

gradient are too large, the method could, in fact, become unstable.

6.3 Extension of the algorithm to handle nonlinear constraints

The conjugate gradient technique is designed to solve only nonlinear
programming problems characterized by linear comstraints. This is often
a severe limitation. However, combinétion of this method together with
other techniques can lead to algorithms which will solve the more general
nonlinear programming problem. One approach is to linearize piecewise
all nonlinear constraints and use the conjugate gradient method to solve
the resulting problem., This approach can be most easily applied to
seperable nonlinear comstraints i.e., all nonlinear terms are functions of
one variabe [10,14]. However, even in this case the extended set of

constraints can become quite large.
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RECURSION RELATIONS FOR OBTAINING THE INVERSE MATRIX

In the course of an optimization calculation using the conjugate
i : 5 ; o B gy w =k
cradient zlgorithm the inverse matrix (N N ) is necessary at each
—q 9
iteration. Trom the outline of the algorithm in section 3, it can be seen
that either a new hyperplane is added to or one of the previous hyperplznes
is dropped from the constraint basis. For a particular set of vectors n.,

1=1,2,——————m ,q it is always possible to form the matrix N o N first
—q g
. . . I T . . .
and then invert it to obtain (N N ) 7. However, this will involve

porhibitive computations especially for large problems.
In order to overcome this difficulty Rosen {15] formulated two recursion
-1
relations which permit a hyperplane to be dropped from (§qT §q) with ap-

proximately q2 multiplications and divisions and a hyperplane to be added

to (N T x ) with approximately 2q2 + mg multiplications and divisions.

—g-1 4q—1
In particular, suppose that a (g x q)} inverse matrix (EqT Eq)-l is
partitioned as
FEI EQ
wITn)yt=za
=4 2
L4
where §1, EQ, §3 and 54 are (g-1 x g-1), (g-1 x 1), (1 x g-1) and (1 x 1)

matrices respectively.

P - : T T = ] T —
Then the required expression for (Eq—l Eq—l) in terms of the par

titions El’ B,, EG and §4 of B from the standard formulas for computing the

inverse of a matrix by partitioning (7, 10, 14) is given by
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T -1 -1

Wy B BB B, B

Thie procedure for adding a hyperpiane to the constraint basis is now

described. It is assumed that (Eq £ N )_l is known and we wish to

-1 =g-1

-1
compute (N P N) on adding the gth hyperplane.
29 g g q YPerp

Compute
8 = 12,y = l1° W
By = s Moy t e A0"1 LI £q-lT
3, = "Ao—l el
By =3B, (2)
By ™ ‘”‘o-l
where X ™ (Eq_lT Eq_l)—l (Eq_lT Eq) (3
and n - N r ‘ (&)

P n = 2
—~q-1q —4q —g-1-g-1

Thus the procedure is as follows:

1. Compute £q from (3) as two matrix multiplications

-1

2, Compute AO from (4) and (1)

3. TForm
-
B, é%
T -1
N N =
SRR | I
§3 EQJ
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where the matrices Ei’ i=1,2,—,4 are given by (2).

Another useful recursion relation is one which computes Eﬂ using

P and n and is given b
- . g y
P n n T P
N -1 —q =g -g-1 5
P P (5}
1 % n L P n
_.q ._.q__l _q

This follows from equation (2) section 3 on realizing that Eq can be

written as

_ T
By B3p1Eea

p =1 - [N n

- - [_q-l -1] T
By Byl|ng

The above Tecursion relations facilitate the formulation of the matrices

(N T N )—l and P for a set of s 1linearly independent vectors n.,
—s —= —s =i
i=1,2,—— ,8, with a minimum of computation. The procedure for obtaining
(N T N )_l is initiated with N, = n. and (N E N )_l =1 Then from
s s =1 -1 =1 -1 )
. _ T _ _ _
equations (3) and (4), r; =nm, and 21 n, =3, - I; D,s etc. The pro

cedure is applied recursively to form (§ST §s)-l which require approximately

53 -+ %—msz multiplications. The recursion relation (5) for Eq is started
with 24 = Iegiving P, =1 -1 EiT, etc. The relation is used recursively

to obtain ES which approximately takes 2m2 s multiplications.
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LOCATING THE MAXIMUM ALONG A LINE

The cubic interpolation scheme of Davidon [4] is used to locate the

maximum In the conjugate gradient algorithm. Any method for obtaining the
- I .. i I .. i i 3
value of vy~ within the limits 0 <y~ < A~ which maximizes £(x + y s7)
" r i ;

along the direction s~ could be used, but Davidon's method was preferred.

s . i i ii

Initially some point between x and X + A"s must be selected for

interpolation purposes. Since Eq is an approximation to _Eq G_l(g}) a

. . i i iid
point given by y~ = x* + n'"s~ where

p 2[£¢x) - £7]
nl = min {l, - - }

i, T i

(g7)'s

%
where £ is some predicted upper bound of f£(x) in feasible region R.
However nl may exceed Al. Therefore, a suitable choice of the point is

given by

1
[
B
s
o
rt
o3
-
b=
[
e

where

In as much as the interpolation is along a2 one-dimensional interval
it is convenient to plot the function along this direction as a simple
graph [4].

i “i i i .
The values of £{(x7), £(x"), g(x") and g(x") of the function and the
i ci ; :
gradient at the points 5} and x are known. Interpolation for locating
the maximum is obtained by choosing the "smoothest" curve satisfying the

. o 43 i i i,
boundary conditions at x~ and x~, Namely, the value of y~ is sought at

which the maximum is obtained for the curve which minimizes
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over the curve.

This results in a cubic equation and its slope at any Yl(O f_yl <A J

is given by
. I i 2
o e _ 2y () N
s, ) =8 T (g, *2) + 75 (g, + g  + 22) (1)
A (A
where z = 3/ (f(é}) - f(§é)) + g, t s,
L AJT 4
and g, = &) g
o i, T "4
s = &) g

The root of equation (1) that corresponds to a maximum lies between O and

~ ~

1 in virtue of the fact that &g > 0 and either gy < Q0 or z > g, + g

It can be expressed as

voo= {1l - 4)
w-g +z
whezre d = 5
g, — &, T 2w
and w = Vﬁz - (g )(é )
s s

It is necessary to check that f(g}) - f(g}) and g, are not both positive

before interpolating so as to ensure that f(g) attains a maximum between
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P

£ . i . n

x and x . 1If any one of these quantities is positive, the procedure

suggested by Davidon [4] is used. Interpolation with the help of the

- . i ; . i i .

above formulas may yield a vy~ and a corresponding point x + ¥y s  at which
; ; : ; T -

the value of the objective function is less than equal to max{f(x),

e T - . <
£(x")1. If such is the case interpolation must be repeated over a small

range,
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10
€c
W2
L3
L4
L5
L6
L1
18
L9
Y
2l
rZ
23
24
25
26
27
28
29
3C
il
32
33
34
35
36
31
38
39

41
42
43
G4
45
46
47
48
49
50
51
52

$
C

Jos

1{00
1C01

1C20
1C40

GS91

SLPE

1C30

10

21
20

25

COMPUTER PROGRAN

ETIM,RUN=CHECK,TIME=3,PAGES=100,LINES=60
COMPUTER PROGRAM FOR THE CONJUGATE GRADIENT METHOD
DIMENSION X(10)4,XO(10)4XH{10)4X1(10)+G{101,GR(10),Y(10)4PG(10]),
1JXBL20), IHI(10), IUCLO) 4 IVL10), IW{20),B(20),S0{20)4P(10),VI10),
1IR({10)4RR(101,2(1CY4HI10,10}),HG{10) ,AMBDA(20),0(10,10),

10N{10,410)4A(10,10)

COMMON NSIGP,NEXIT,MEXIT,EPSI2,.EPSI3,KQ,KEQ.KV,KW,NB,
LK KMNB g TNV g MXRNy PNy My IHyLDCsF o X9 Y4 AMBDA, G4 P,y

1D,¥V4sA,JXB, IH[’ [Us IVyTWsByDNgRyH
COMMON/ INCL/NFUNC
COMMON/ INDL /7 KOUNT

EQUIVALENCE!Z4HG) 4 (SDyAMBDA) y (PN, PGNURM) 4, (Y4 PG)

FORMAT(4(15))
FORMAT{? STAGE 1
1TAGE 51)

FORMATI(1015)

FORMAT(6(FL12.6))

TORMAT(1IH 4'Wl = ",F1l8.6)

FORMATI1H ,5HERROR)

READ 1C00,M,K.NB,NE

PRINT 1000,MysKyNB,NE

IFINB .EQ. 0)R0 TO 1030

READ 1C20,(JIXR(1},I=1,NB)

PRINT 1020, (JXB(I},[=1,NB)

KMNB=K-4B

IF(KMNB LEQ. D}GO TG 8

READ 1C40, [(A{I4J)4J=14M),1=1,KMNB)
PRINT 1640+ (ALl 4J)4d=14M)yT=1,KMNB])
CONTINUE

READ 1040,{B(I)

* 1K)
PRINT 1C4C,(B(T1)
T
).

1
=1+K)
LeM)
=1'H)

READ 1C40,(X(1)
PRINT 1040, (X(1
NMFUMC=0
EPSI1=.001
EPS12=.0001
EPST13=.005
LIMIT=50
ESTF=5C0.
MXRAN=13

KQ=0

KEQ=0

LDC=0

INv=1

KOUNT=0
NBP1=AB+1
IF(KMNB .EQ. 01GO TC 25

DO 20 I=1,KMNP

SD(T)=C.

DO 10 J=1l.M

SDIT)=SDII)+ATT,J)*%2
SDIT)=SQRTISD(I))

DO 21 J=1.M

AlT,0)=A11,01/5D(1)
BI+NB)Y=B(I+NR)}/SD(I)

PRINT 1040+ (A{I,3)yJ=1,M),[=1,KMNB)
PRINT 1040, (B(1)[=1,K)

CONTINUE

PRINT 1001

IF(NE -.EQ. 0)1GO TO 30

I ]

I
I

STAGE 2

STAGE 3

STAGE &4



53
54
55
56
57
58
59
60
61
62
63
64
€5
66
67
68
69
70
Tl
12
73
14
15
16
77
78
79
80
81
g2
83
B4
85
86
87
88
89
30
91
g2
93
94
95
56
97
98
59
100
101
102
103
104
105
106
107
108
109
110
111
112

610
30

605
606

611

615

620

625

630
635

640

645

650
655
€60

675

676
€61
€62

617
678

680
681

53
54
65

TH=NEPI1

DO 610 I=1,NE
IWtiI)=g0

GO TG 611

DO 606 I=1,M

GO 605 J=1,¥

H‘ l 'J):DI

Hi{I,I)=1.

GO TO 681

CALL COMP1{1)
ITHI{1)=1IH
IFINE-KQ)6T54 675,620
N=1

INDEX=0

DELTA=EPSI3

N=N+1
[F{IW{N))6E30,630,650
DO 635 J=1,.M
VI{Jd)=4(N,J)

CALL COmMPlt(2)

PN=0.

DO 640 J=1.M

PN=PN+Y (J)**
PN=SQRTIPN)
IF{PN-DCELTA)650,6504645
DELTA=PN

INDEX=N
IF{N-NE)H25,655,655
IF{INCEX)ETS,675,660
IH=INCEX+NB

CALL CCmPLI(1)
ITW{INCEX)=T7T7
IHI{kC)=1H

GO 7O 615

KEQ=KC

DO 662 1=1,M

DO 661 J=1,KEQ
DN(I,J)=0.

DO 676 N=1,KEQ
KK=THI{(NM)-NB
DNIT4J)=DN(I,J)+A(KKy[)*D(N,J)
CONTINUE

CONT INUE

DO 678 I=1.,M

DO 677 J=1,M
H(l,J)=0,

DU 677 N=1,KED
KK=THI(N)-NB
H{TIsJ)=H{T3J)-AIKK, 1)*DN{JsN)
Hi{l, I }=H(I,I)+1.

DO 680 I=1,KQ

DO 68C J=1.KQ
DNI{T,d)}=D(I,4)

CALL AMDA

IF(NB .EQ. 0)GO TO 54
DO 53 [=1,NB
IF{AMBCA{I)+EPSI2158,53,53
CONTINLE
IFINBP1-K)165,465,130
DO 57 J=NBP1l,K

82



113 IF{J-NBPL-NE)S55,56,56

114 55 TF(ABS(AMBDA(J)I-EPSI2)57,57,58
115 56 TF(AMBCA(J)+EPSI2)58,457,57
116 57 CONTINUE

117 GO TCO 130

118 58 IF(KQ .EQ. 0)GO TO 80

119 59 DO 60 I=1,KQ

120 J=IHI(1)}

121 IF(ABS(AMBDA(J))-EPSI2)60,60,70
122 60 CONTINUE

123 GO TO 80

124 70 DO 71 J=1,M

125 71 vJ)=x(J)

126 CALL CCMP1(3)

127 DO 72 J=1,M

128 72 X(J)=Y{J)

129 CALL AMDA

130 IF(KQ .EQ. 0)GO TO 80

131 DD 73 I=1,KQ

132 J=IHI(I)

133 IF(ABS(AMBDA(J))—-EPSI2)73,73,105
134 73 CONTINUE

135 80 DO 81 I=14+K

136 IF{AMBCA(I)+EPSI21)82,81,81
137 81 CONTINUE

138 GO TO 130

139 82 N=1

140 SIGMA=AMBDA(1)

141 IF(K-2)86,83,83

142 83 DO 85 I[=24K

143 IF{AMBCA(I)-SIGMA)B84,85,85
144 84 N=I

145 SIGMA=AMBDAI(T)

146 85 CONTINUE

147 86 SIGMA=C.

148 IH=N

149 87 CALL COMPL1(5)

150 GO TO (100,100490),NEXIT
151 90 KQM1l=K@g-1

152 IF(KQM1)97,974+95

153 95 DO 96 I=1,KQM1

154 96 AMBDA{(I)}=0.

155 97 INV=1

156 GO TO 70

157 100 IF(SIGMA)L05,101,105

158 101 CALL CCMP2LEPSI3)

159 GO TO (105,103),MEXIT

160 103 SIGMA=1.

161 INV=1

162 [H=N

163 GO TO 87

164 105 CALL REINV

165 IFINEXIT)}59,59,460

166 130 CALL FUNCTI(X,F+GsKQ)

167 IF{KOUNT .GT. 0)GO TO 140
168 IF(KQC .LT. KEQ)IGO TO 9999
169 NETA=0

170 140 CALL CLASS

171 INV=1

172 GNORM=0.



173 DO 141 J=1,M

174 141 GNORM=GNORM+G(J)**2

175 GNORM=SQRT (GNORM)

176 [FIGNCRM-EPSTI1) 142,142,150
177 142 HGNORM=GNORM

178 KQ=0

179 GO TU 460

180 150 SIGMA=C.

181 160 IF({KQ .GT. 01RO TO 170
182 HGNORM=0.

183 DO 162 J=1.M

184 HGlJ)=0.

185 DO 161 I=1.M

186 161 HGUJ)I=HG(JI)+HIJ, T)%G( )
187 162 HGNORM=HGNORM+HG(J} **2
188 HGNORM=SQRT [HGNORM)

189 GO TO 180

190 170 DO 163 J=1.M

191 163 viJ)=G(J)

192 CALL COMPLl(2)

193 HGNORM=0.

194 PGNORM=0.

195 DO 171 J=14M

196 HG(J)=0.

197 DO 164 I=1,M

198 164 HG{J)I=HG(J)I+H{J, 1 )*G(])
199 HGNORM=HGNORM+HG(J ) **2
200 171 PGNORM=PGNORM+PG(J)*%2
201 HGNORM=SQRT {HGNORM)

202 PGNORM=SQRT (PGNORM)

203 IF{PGNCRM-EPSIL)1T75,175,172
204 172 IF{M-KQ}9999,173,180
205 173 CALL REINV

206 IFINEXIT)174,174,+460
207 174 CALL CLASS

208 GO TO 150

209 175 TIF(SIGMA  NE. 0.1GO TO 173
210 IF(KQ-KEQ)9999,460,178
211 178 CALL COMP2(EPSIL)

212 GO TO (460,179),MEXIT
213 179 INV=1

214 SIGMA=5,

215 GO TO 160

216 180 LDC=0

217 IF(KV)S$999,200,190

218 190 KEQP1=KEQ+1

219 IF(KECP1-KQ)1903,1903,1902
220 1903 CONTINUE

221 DO 1901 J=KEQP1,KQ

222 1901 RR{J)I=R(J)

223 1902 L=0

224 INDEX=0

225 DELTA=C.

226 191 L=L+1

227 [F{IVIL)I-NB}1912,1912,1915
228 1912 KK=IVI(L)

229 J=JXB (KK)

230 IFtJ .GT. 0IGN TO 1914
231 IN=-Z(-J)

232 GO TO 1925



233
234
235
236
237
238
239
240
241
242
243
244

245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
2190
271
272
273
274
275
276
271
218
219
280
281
282
283
284
285
286
287
288
289
290
291
292

1914

1915

192

1925
193

1935
194
135
198
199

1695
196
197

1697

1698

1699
200
201
202
203

204

205

231

232

233

234

235

236
2365

IN=Z(J)

GO TO 1925
KK=IV(L)-NB

IN=0.

DO 192 J=1.,M
IN=ZIN+Z(J)*A{KK,J)
IF(ZN-DELTA)193,1935,1935
INDEX=1IV(L)

LiL=L

DELTA=IN
IFIKV-L)194,194,191
IF(INCEX)9999,200+195
KV=KV-1
ITF(KV-LL)1995,198,198
DO 199 I=LL,.KV
IVITD)=IV(I+1)
ITH=INDEX

CALL COMP1I(5)

GO TO (197419741960 ,NEXIT
INV=1

G0 TO 150
IFIKV)9999,1997,190
IF(KEGPL-KQ)1998,1998,200
DO 1999 J=KEQP1,KQ
R{JI=RR{J)
IF(NETA)201,204,201
IF(KGQG-KEQ) 20242044202
CALL COMP21{2.*HGNORM)
GO TO {204,203),MEXITY
INV=1

GO TO 160

KQS=KQ-KEQ

FX=F

1GX=0,

DO 205 I=1.+M
IGX=ZGX+Z{I1)*G(]I)
GRITI)=GI(T}

X0{I)=X{1)

NETA=C

NETA=NETA+]
KOUNT=KOUNT+1

L=0

TAU=AMINLI 1.+ {2.%[ESTF=FX)/IGX})

IF{KW)5999,240,231

DU 239 I=1,KW

J=IW(I])
[F{J-NB)232,232,235
KK=JXB81J)
IFIKK}233,9999,234%
IN=—Z (-KK)

GO TO 2365

IN=Z (KK)

GO TO 2365

KK=J-NB

IN=0.

DO 236 N=1,M
IN=IN+Z (NI ®A(KK,N)
IF(IN .GE. 0.)GO TO 239
PIT=—AMBDA(J)}/IN

IF(PIT .GE. TAUIGO TO 239

85



293
234
295
296
267
298
299
300
301
302
303
304
305
306
307
308
3C9
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

239
240

241
250

251

253
254
255
256

257
260

$590

5¢92

261

262

263

264
266

265

267

268

269
270

TAU=PIT &6
L=J

CONTINUE

DO 241 J=1.M
X{J)=XC(N)+TAU*Z(J)

CONT INUE

CALL FUNCT(X4F4G4KQ)
FXH=F

ZG’-O-

DO 251 J=1l,.M
1G=2G+1(J)*G(J)
XH(JI=X(1J)

IGY=1G
IF{2GY)260,260,4253
IF(FX-FXH)254,260,260
IF(TAL-1.)257+255,255

DD 256 I=1.,M

DO 256 J=1,M
HUIJ)=HIT )Y+ (Z(T)*Z2(J)*TAU)/ZGX
GO TG 280
7Z7=(3.%(FX-FXH)/TAU)-ZIGX-IGY
WLl=21%%2-7GX*7GY
IF(-.0005 LE. Wl <AND. Wl .LE. 0.)GO TO 9992
CONT INUE

[FIW]l LT, 0.,YGO0 TO 9990
GO TO 261

CONTINUE

PRINT S991,W1

Wl=0.

GO TO S997

W=SQRT{Wl)
DLI={—2GY4+W—-2IV/(—2IGY+IGK+2.%NW)
GAM=TAU%(1.-D1)

DO 262 J=14M
RIJI=GAMEZ ()
X1J)=X0{J)+R(J)

CALL FUNCTI{XsFG+KQ)
FX1=F

IGI=0.

DO 263 J=1.M

XL(J)=xX(J)
IGZI=IGZ+2(J)*G(J)
T1=AMAX1(FX,FXH)}
IF(TLI-FX1)2694269+26%
IFIFX-FXH)26T7+266,266
CONTINUE

DO 265 J=1.M

XH(J)=X1(J)
TAU=TAU*({1.-D1)

I1GY=12G1

FXH=FX1

GO TO 260

TAU=TAU*D1

FX=FX1

1GX=1G1?

DO 268 J=1,M

XolJ2Y=%X1(J)

GO TO 260

CONT INUE

DO 271 J=1.M



353 271 Y(JI=G(J)-GRLJ)

354 SIGY=C.

355 YHY=0.

356 DO 273 I=14+M

357 RR{T1)=C.

358 DO 272 J=1.M

359 272 RRUD)=RR(II+Y(J)*H{J, 1)
360 SIGY=SIGY+RIT[)*YI(I)

361 273 YHY=YHY+RR{TI)*Y(1)

362 IF(YHY EQ. 04)YHY=.00001
363 CONTINUE

364 IF(SIGY .EQ. 0.)SIGY=.0C001
365 CONT INUE

366 DO 275 I=1+M

367 DO 275 J=1.+M

368 275 HIT2J)=HIT4J)=(ROI)I*R{J)II/SIGY=(RRILI)I*RR{J))/YHY
369 280 SIGMA=0.

370 290 CALL AMDA

371 IF(KQ .EQ. 0)GO TO 28B4

372 DO 281 I=1.KQ

373 J=IHI(T)

374 IF{ABS(AMBDA(J)) .GT. EPSI2)GO TO 3CO
375 281 CONTINUE

376 284 DO 282 I=1,.K

3717 IF(AMBCA(I)+EPS12)292,282,282
378 282 CONTINUE

379 GO TO 320

380 292 TF(SIGMA .GT. 1.)GO TO 105
341 L=1

382 RHO=AMBDAI(l1)

383 TF(K-2)298,299,299

384 299 DO 295 1=2,K

385 IFI{AMBCAUTI)-RHO) 294,295,295
386 294 L=1

387 RHO=AMBDA(T)

388 295 CONTINUE

389 298 1H=L

390 CALL COMPLI(5)

391 GO TO (300,300,296} yNEXIT
392 296 NETA=0

393 INV=1

394 GO TO 310

395 300 IF(SIGMA .NE. 0.)GD TO 105
336 310 SIGMA=SIGMA+]l.

397 DO 311 J=1l.M

398 311 v(J)=x{J)

399 CALL CCMPL(3)

400 DO 312 J=1.M

401 312 X(Jy=vy{J)

402 INV=1

403 GO 1O 290

404 320 IFISIGMA)3214+3254321

405 321 CALL FUNCTI{X,F,G+KQ)

406 IF(F-FX11322,325,325

407 322 CONTINUE

4C8 3333 FORMAT(1H ,'F DECREASE')
409 PRINT 2333

410 CALL REINV

411 IFINEXIT)325,3254,460

412 325 IF{{KCUNT-LIMIT) .GE. 0)GO TG 460



413
414
415
416
417
418
419
420

460

96939

5697

GO TO 140
CALL CLASS
GO TO 6997
CONTINUE
PRINT 9998
CONTINUE
STOP

END

88



421 SUBROUTINE CGMPL(NENTER) 89

422 DIMENSION X{10),X0{10)9sXH{10)4XL(10)4G(10),GR{10),Y(10)+4PG(1C),
1JXB(2C), THI(10),TUT10),IV(10),1W(20},8(20),50020),P(10),V(10},
IR{10),RR{10),7(10)4H(10,10),HG(10),AMBDA(20),4D(10,10),
IDN{10410)4A{10,10)

423 DIMENSICN TT(10)

424 COMMON NSIGP,NEXIT,MEXIT,EPSI2,EPSI3,KQsKEQ)KV,KW,NB,
1K g KMNB s INVyMXRNyPNyMy IH,LDCoF e Xy Yo AMBDA,G, P,y
1Dy VA JXBy IHI s TUs IV, IWy By DNyRyH

425 GG TU(20,75+4100,25,20) +NENTER
426 20 NSIGP=1

427 IF{KQ .GT. 0Q)}GO TO 30
428 D(l,1)=1.

429 PN=1.

430 GO TO 260

431 25 NSIGP=2

432 30 IF(IH .LE. NB)IGO TO 40
433 =[H-NB

434 DO 35 J=1,M

435 35 V{JI1=A(1,J)

436 GO TO B8O

437 40 DO 50 I=1,M

438 50 V(L}=0.

439 JK=JXB(IH)

4540 IF(JK .GT. 0)GO TO 70
441 Vi-JK)=-1,

442 GO Tu 80

443 70 VIJK)I=1.

G444 GO TC 0

445 75 NSIGP=2

446 80 IF{KQ .GT. 0)G0O TO 90
447 DG 85 J=1,M

448 85 Y(J)=v(J)

449G RETURN

450 90 DO 95 I=1,KQ

451 KK=THI(TI)-NE

452 IF{KK)9F1,91,93

453 91 JBD=IHI(I)

454 JK=JXB(JBD)

455 IF{JK .LT. 0)}GO TO 92
456 PII)=v(JK)

457 GO TO 35

458 92 P{I)==V(-JK)

459 GO T4 95

460 393 P{I1)=0.

461 DO 94 J=1.M

462 94 PLI)=P(I)}+A(KK,,J)*V(J)
463 95 CONTINUE

464 Gu 10 120

465 100 NSIGP=2

466 DT 110 I=1,KQ

467 KK=THI(I}

468 116 PII)=AMBDA(KK)

469 120 CONTINUF

470 DO 131 I=1.K@Q

471 R(I)=C.

472 DO 13C J=1,KQ

473 130 R{I)=R{IM+0(I,4}*P(J)
474 131 CONTINUE

475 DO L70 J=1.M



476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
458
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

135

140
145

150
160
170

180

185

130

195

200
230

240
250

260

270
290
300

310

315
320

325

Y{4)=C.

DO 150 I=1,KQ
KK=THI{I)-NB

[FIKK .GT. 0)GO TO 150
JBD=IHII{I)

JK=JXB(JBD}

IF{JK .5T. 0)GO TO 140
[F{J+JK)160,135,160
Y{JI=Y(J4)=-RI(I)

GO TG 1690
IF{J-JK)1160,145,160
Y{J)=Y{J)+RI(]I)

GO TGO 160
Y{J)I=Y(JI+A(KK,J)*R(I)
CONTINUE
Y{JI=v(d)-¥{J)
IF{NSIGP .EG. 1)GO TO 180
NEXIT =1

RETURN

PN=0.

DD 185 J=1,M
PN=PN+Y{J)*%x2
PN=SQRT{PN)
[F(PN-EPST3)190,195,195
LDC=LCC+1

[IUCLEGC)=1H

NEXIT=2

RETURN

J=KQ+1

[=J

DILyJ)=1la/(PN%kx2)
IF(1-J)240,240,230
[=1-1
D(T4J)=D(1,J)+(REJYER(])/PN%%2)
D(J11,=D(IiJ)

G0 TG 200
[F{J-1)260,260,250
J=J-1

[=KQ+1
D{IyJ)=—R{J}/ONx*2
D(Js1)=DII,J)

GO TO 200

KU=KG@+1

NEXIT=3

IHI(KG)=IH
IF(NENTER-3)2704270,290
RETURN
IF(IH-NB)300,300, 325
JK=JXBlIH)

TF(JK LT. Q)GD TO 315
00 310 J=1.M
TT(J)I=HIJK.J)

Hl=H{ JK,JK)

GO TC 340

DO 322G J=1.,M
TT{J)=—H(-JK,J)
Hl=H(=JK,—-JK)

GO TU 340

KK=[H-NR

H1=0.

g0



536
537
538
539
540
541
542
543
544
545

230
235
340

345

00 335 [=1,.,M

T1T1{1)=0C.

DO 33C J=1.M
TT(I)=TTUI)+AIKKyJ)*H{J, 1)
HiI=H1+TTII)+A{KK, 1)

DO 345 I=1,M

DO 345 J=1,.M

HIT 2 J)=HII,J)—ATT(II*TT{J)/HL)
RETURN

END

91



546
547

548

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
512
573
574
575
516
5T7
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
534
595
536
567
598
599
600

10
11

12

13
14

15
16

17
18

19

20

21
22

23
24

25

26

27

28
29

30

31

32

33

SUBROULTINE COMP2(DEL) o

DIMENSION X(10)4X0(10)4XH{10)+X1{10),G(10),GR(10},Y{10}4PG(10),
1dX8(20) s THI(10), TULL10) 4 IV{10), IW(20),B(20),SD(2C1,P(10},VI(10C},
12(10)42R(10)472(10),H{10,10),HG(10),AMBDA(20),D(10,10),
IDN(1C+10),A(10,10)

COMMON NSTIGP NEXIT MEXIT,EPSI2,EPSI3KGQGsKEQsKVKKW,NB,y
1K KMNE , TNV MX2N, PNy My IH; LDC o Fy Xy Yy AMBDA, G4 Py
1De Ve A X8 IHI»TU IV IWsBsONsRyH

DELTA=CEL

NZI=0

L=KEQ+1

IF{R(L))I13,13,11

RO=R{L)/SQRT(N{L,L1})

IF{RC-CELTAYL2,12,12

DELTA=RD

NZ=L

IF{L-KC)1l4,15,15

L=tL+1

Gg TC 10O

IFINZ)ILG416,417

MEXIT=1

RETURN

DO 18 I=1,+KQ

V{I)=C{I,N2Z)

IH=IHIINT)

KQ@=KC-1

NZMi=NI-1

IF(NZ-KQ)20,20419

YNI=VINZ]}

GO TO 26

DO 24 [=NZ.KQ

IHI(I)=THI{I+1)

IFINZIM1)23,23,21

DO 22 J=1,NIM1

D(I,Jd)=D(1+1,J)

O(Jds 1)=DI(I+d)

DO 24 J=%NZ,KQ

DIT,J)=0(1+1,J+1)

YNZ=VINZ)

DO 295 I=NZ.KQ

VI{[)I=vIii+l)

DD 29 I=1,K0Q

0DQ 29 J=1,KQ

IFII-J)2T7+,27428

Dil4Jd)=DIT, )=VII)XV(J)/UNL

Gu To 29

DlI.Jd)=00Jd,1)

CONTINUE

IFILDCY1324,32,30

DO 31 I=1,LDC

J=KV+]

1IViJ)=1ull)

KV=KV+LDC

LOC=0

MEXIT=2

CALL COmMPL(4)

PN=0.

DO 33 J=1,M

PN=PN+Y(J)®%*2

00 34 [=1.M



601
602
603
604

34 HUL,J)=H{I,J)+(Y(L)*Y(J)/PN)
RETURN
END

83



605
606

607

608
6C9
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631

632
633
634

635
636
637
638
639
640
641

642
643
644
645
646
641
648
643
650
651

652
653
654
655
656
657
658
659

10

20
15

30
35

40
50
51

52
53

54

55
45
46

56
57

58
59

60

695

70

94
SUBRGCUTINE REINV

DIMENSTICN XU10) o XO(10) o XH{L1O0) ¢X1L{10)4G(10)4GRI10),Y(10),PG(10),
LIXE(2C)  IHI{10),TUCLO)YIVI10),IW(20),B(20),5D(20),P(10),VI(10),
1R{10)3RR(10)4Z(10)4H{1G,10),HG(10),AMBDA(20),D{10410)},
IDN{10,1C)4A({1C,10)

COMMEON MSIGPNEXIT,MEXITLEPSIZ2HEPSI3 KQsKEQsKVeKWsNB,
L g KMNB y TNV MXRN g PNyMy [H, LDy Fp X3 Y AMBDA,G, P,
1D'V'A1JXB’IHI'IU!IV!IHfBlDNfR’H

IFIMXRN .GT. 0)GO TG 10
NEXIT=1
RETURN
NEXIT=C

MXRN=MXRN-1

IF(MXRN .LE. 01GO TC 26
GO TO 40

IFIKEC .EQ. 0150 TO 35

DO 30 I=1,KEQ

DO 30 J=1,KEQ
DUT,J)=0UNIT,J)

LDC=0
KQ=KECQ

INV=0
RETURN

IF{INY)9+9,450

[FIKR-KEQ)15,15,51
L=KOQ-KEc@

IFIKEC «GT« 0)GO TO 54
DD 53 [=1,M
DO 52 J=1l.,M
Hi{l,J)=0.

H{If[‘=1l
GO 1O 59
DO 46 [=1.M
DO 45 J=1,KEQ
D(I44)=0.

DO 55 N=1,KEQ
KK=THI(N)-NB

DII,J)=D(IsJ)+A(KK,I}+DN{N,J)
CONTINUE
CONTINUE
DO 57 I=1.M
DO 56 J=1.M
H(l,J)=0.

DO 56 N=1,KEQ
KK=THI{N)-NB
HIL o JI=H{TI s J)-A(KK, [)%D(JsN)
H(Ili)zHII'I)+1-

DO 58 I=1,KEQ
DO S8 J=1,KEQ
DIIyJ)=DN{T,J)

LDC=0
KQ=KEQ

INV=0

IH=THI(KQ+1)

CALL CCMPLI(5)

IF(L .LE. L)GD TO 70O

L=t-1
GO TC &0

NEXIT=C

RETURN



660 EAND



66l
662

6E3

664
6€5
666
667
668
669
670
671
672
673
674
675
676
6771
678
679
680

10

20
30
40
50

60
70
80

SUBROLUTIME AMDA i
DIMENSION X(101,X0{10)+XH(10),X1(10),G(10),GR{10),Y{10),PGL10),
LIXBLZC) o IHI{10) 2, TULL0)»IVILO)IW(20},B(20),SD{(20),P(10),V(10},
IR{10},RR(I103+2(10),H{10,10),HG110),AMBDA(20),0(10,10),
1DN{10,41C),A(10,10)

COMMON NSIGP NEXIT MEXIT,EPSI2,EPSI3,KQKEQeKV KW oNB,
1Ky KMNB,y [NV MXRNyPNyMy IHyLDCyFy Xy Yo AMBDA,G,P,
104VeApJXBy IHI, U, IV,IW,ByDN,R,H

IFINE .EQ. 0)GO TO 40

D0 30 I=1.NE

J=JXBI(T)

IF{J .LT. 0)GO TO 20

AMBDA(T)=X(J)-B(1)

GO TO 30

AMBDA(T)==X{-J)-B(1)

CONTINUE

IF(KMNB}B0,80,50

DO 70 I=1,KMNR

TOTA=0.

KK=NB+I1

DO 60 J=1,M

TOTA=TCTA+A{T,J¥*X1J)

AMBDA(KK)=TOTA-B{KK)

RETURN

END



681
682

683

684
685
686
687
688
689
630
691
692
693
694
695
696
657
668
699

10
20
30
40

50

6G

SUBRULTINE CLASS 7t
DIMENSTION X{10),X0U{10)+XHIL10)4XL(10),G(10),GR{10),Y(10),PG(10),
LIXBE{20), IHI{10),TU(10)4IVI10},1W{20),B120),50(2C),P(10),4V(10]),
LR{10),RR(10)+Z(10)4H(10,101,HG(LO),AMBDA(20),0(10,10},
108(10,10),A(10,10)

COMMON NSIGPNEXIT,MEXIT,EPSIZ2,EPSI3,KQsKEQeKV 4Kk ,NE,
LK g KMNB, INV,MXRN,PN,yM, JHyLDCyFo XY, AMBDA,G,P,
104 VeAs XBoIHI yTUIV4TWsBONsRsH

KW=0

Kv=0

DO 60 I=1,K

IF(KQ .EQ. 0RO TO 30

DO 20 J=14+KQ

IF{I-1IHI{J))20,60,20

CONTINUE

IFIABS{AMBDA(TII-EPSTIZ2140,40,50

KV=KV+l

IVIKVI=1

GO TO &0

KW=Kn+l

IW(KW)I=1

CUNTINUE

RETURN

END
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SUBROUTIME FUNCT(X:FsGoKQ)
SUBROUTINE FUNCT FOR A 5 STAGE INVCNTORY CONTROL MODEL WITH ONE
STATE VARIABLE
DIMENSION X(10),G(10),VI(20),Q(20)4P{20),5(20),U(20),4W(20),CT(20)
COMMUN/ INDL /KDUNT
COMMON/ INCL /NFUNC
100 FORMAT(! ITERATION # = ',13," # OF FUNCTIONAL EVALUATIONS
1= *,13," # OF CONSTRAINTS IN BASIS = ',13,/)
101 FORMAT({"® PRODUCTION = ' ,5F9.3,/! INVENTORY = *4,5F9.3,/"
1 SALES = ',5F9.3,/" COST = %,5F9.3,//7)
NFUNC=NFUNC+1
M=5
MP1=M+1
A=2.
B=1.
C=5.
Cvi=.1
CX=.001
DT=.2
DS=—CVI*(DT*%*2)
viM=1C.
XM=5,
vi{i)=C
Qi1)=4A
DO 10 I=2,.MP1
QUI)=A+B*(1-1)*DT
VI(D)=VI(I-1)+{X(I-1)=-Q(I))*DT
PlI)=2.%VIM-3.%vI{I)/2.
10 S{I)=2.%VIM=2.%VI(I)
DO 20 I=1,#M
UGT ) ==2.%CXR(XM=X{ T} )XEXP((XM=X{1))*%2)%DT
20 WlI)=VIM=VI(I)/2.
RP=2.¥VIM=3,%VI(M)/2.-VI(MP1)
RS=2.¥VIM-2.%VI(M)-VI(MPL)
RU=VIM=VI(M)/?2.-VI(MPL)/2.
CTIL)=(CVIX(VIM-VI(1)/2.-VI(2)/2)%%¥2+CX*EXP{ (XM=X(1))}**2))*DT
DO 30 [=2.M
30 CTUI)=CT(I-1)+{CVIX(VIM=VIII)/2.=VI{I+1)/2.)%%24CX*¥EXP{(XM=X(1))
1%%2) ) *DT
PRINT 100, KOUNT,NFUNC,KQ
PRINT 1014 (X{T)al=1yM)o(VILI)yI=24MPL)(QIT)sI=24MPL),(CT(I),1=1,M
1)
40 F=-CT(M)
GUL)=—(U(L1)+DSE(W(1}+P(2)1+S(3)+S{4)+RS))
Gl2)=—(Ul2)+DSE(W(2)+P(3)+S514) +RS))
G(3)==(U(3)+DS*®{HW{3)+P(4)+RS))
Gla)=—(Ul4)+D*(W(4)+RP))
G{5)=—(U(5)+DS*RU)
RETURN
END
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SUBROUTINE FUNCT(X,F,G,KQ) 22
SUBROUTINE FUNCT FOR A 10 STAGE INVENTORY CONTROL MODEL WITH ONE
STATE VARIABLE

DIMENSION X{10),G{(10),VI(20),Q{20),4P{20),5(20),U(20),W{20),CT{20)
COMMON/IND1/KOUNT

COMMODN/ INCL/NFUNC

FORMAT(® ITERATION # = ",13," # OF FUNCTIONAL EVALUATIONS
= 1,13,? # OF CONSTRAINTS IN BASIS = ',13,/)

FORMAT({"® PRODUCTION = *,10F9.3,/" INVENTORY = *,10F9.3,/?
1 SALES = v,10F9.3,/" CcOoST = *,10F9.3,//)
NFUNC=NFUNC+1

M=10

MP1l=M+1

A=2.

B=1I

C=5o

CVi=.1

CXx=.001

DT'_'.l

DS=-CVI*{(DT%%2)

XH=50

vi(l)=C

Qll)=A

DO 10 I=2.MP1

QUIVY=A+B*{[-1)%DT

VI(I)=VI(I-1}+(X(I-1)-Q{I))*DT

p{ I’=2-*VIH-3.*VI‘I)/Z.

S(T)=2.%VIM=2.%V]I{])

DO 20 I=1.M

ULI)==2. %CXE(XM=X{I))XEXP{{XM=X{1))*+2)%DT

WII)=VIM-VI(I)/2.

RP=2,%VIM=-3,. %V (M) /2.-VI(MP1)

RS=2.*¥VIM=-2.%VI{M)-VI{(MP]l)

RU=VIM-VI(M)/2.-VII(MP1)/2.
CT{L)=(CVIR(VIM=-VI{1)/2.-VI{2)/72.)%¥2+CXXEXP{{XM-X(1) ) *%2)})%DT
DO 30 I=2,M
CTLI)=CT{I=-1)#(CVIX{VIM-VI{I)/2.-VI{I+1)/2)%%2+CXXEXP{(XM=-X(T))
1%%2) ) %DT

CONT INUE

PRINT 100,KOUNTNFUNC,KQ

PRINT 101 4(X{I)eI=1 M) o(VI(I)eI=2,MPL)(QUI)yI=2,MPL),I(CT(I)yI=1,M
1)

F=-CT (M)
GILY==(ULL)+DS®(WIL)+PI2)+S(3)+5(4)1+5(5)1+S5(6)+S(T)+S{B)+S5{9)+RS))
G(2)=—(UT12)+DS*(WI{2)+P{3)+4S{4)+S{5)+S(6)+S{T)+S(8)+S{(T9])+RS))
GI3)=—(UI3)+DS*(W(3)+P(4)}+5(5)+S{6)+S5({T)+S5(8)+5(9)+RS))
Gla)=—(Ul4)+DSE(W{4)+P(5)+4S(6)+S{T)+S(B)+S(9)+RS))
GIS)=—1(UI5)+DSE(WI(S)+P{6)+S(T7)+S{8)+S(9)+RS))

Gl =—(ULE)+DSE(NI6)+P(T)I+5(8)+SI9)+RS))
GIT)==(U{T)+DS*(W(T)+P(B)+S{TF)+RS))
GIB8)=—(UI{B)+DS*x(WI(B8)+P(9)+RS))

Gl I=—(UL9)+DS:{W{9)+RP))

G(10)=—(U(10)+DS*RU)

RETURN

END
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SUBROUTINE FUNCTIX,F,G.KQ) 100
SUBROUTINE FUNCT FOR A 5 STAGE INVENTDRY CONTROL WITH ADVERTISING
MODEL WITH TWO STATE VARIABLES

DIMENSION X(10),G6(10),P(20),Q(20),Y1I(20),S(20),U(20),PR(20),VI(20),
1E(20),4W(20)

COMMON/IND1/KOUNT

COMMON/ INCL /NFUNC

FORMAT(? ITERATION # = ",13,"* # OF FUNCTIONAL EVALUATIONS
1= ",13,° # OF CONSTRAINTS IN BASIS = ',13,/)

FORMAT(® CON. INC. = ',5F9.3,/" INVENTORY = '",5F9.3,/"
1 PRODUCTION = '45F9.3,/" SALES = 1,5F9.3,/" PRO
1FIT = "5':9.3’”,

NFUNC=NFUNC+1

M=5

MPl=M+1

A=70.

B=100.

C=2.

QN=150C.

F1=10.

PI_=500

Cvi=.15

CA=1.5

DT=.2

DS=-2.*CVI*DT

VI{1)=20.

Pil)=A

DO 10 I=2,MP1

P{I)=A+B*{I-1)%*DT

QUI)=(Q{I-1)* {1+ {C+X(I-1))*DT )}/ {1 +(C+X{I-1))*Q(I-1)*DT/QN)

VI(D)=VI{I-1)+(P(I-1)-Q(I-1))*DT

S{I)=—CA*Q(I)*DT

UCI)=PI-VIII)

PRUL)=(FL1*Q(2)-CVI®(PI-VI(2))*%2-CA*X{1)*Q(2))*DT

DO 20 I=2,M

PRUII=PRUI-1I+(FL1*Q(I+1)-CVI*{(PI-VI{I+1))%%2-CA:X{(TI)*Q(I+1))*DT

F=PR{M}

PRINT 100, KOUNT,NFUNC,KQ

PRINT 1014(X(T)yI=14M)s(VI(I)sI=2,MP1)(P(I),I=2,MP1),4{Q(I)sI=2,MP
11),{PR(I)yI=1,M)

DO 30 I=1.M
VIT)={QUI)*(DT*%2)%(1.-QUI)/QN) ) /{{1.+(C+X(T))*Q(I)*DT/QN)**2)

E{I)=F1-CA*X(T)

WD) =(1+(C+X(D))=DT)/((L+{C+X{I) I *QUI)*DT/QN) *%2)

DO 35 I=MP1,20

Wil)=0.

L=1
CONTINUE

Wl=WIlL+1)*W(L+2)

W2=W1l*W(L+3)

W3=WZ2*H(L+4)

W10=1+W(L+1)

Wll=W10+W1

Wi2=W1l+W2

GO TO(41:42,43+44445)9L

41 GL1)=S(21+VIL)*(E(L)+E(2)*W(2)+E(3)*WI+E(4)*W2+E(5)*W3+DS*{U(3)+

1UT4)*W10+U(5)*W11+U(6)*W12))
L=2
GO TO 40



101
752 42 G(2)=S(3)1+V(2YR(E(2)+E(3)*W(3)+E(4)*WL+E(S5)*W2+DS*(U(4)+U{5)*W10+

1Ul6)*KW11))
753 L=3
154 GO TO 40
155 43 GUII=SIH)+VIBV*(E(3)+E(4)*W(4)+E(S)*W1+DS={U(5)+Ul6)*W10))
756 L=4
57 G0 TO 40
758 44 Gl4)=S5{5)+VI4)*(E(4)+EI(S5)*H(5)+DS*U(6))
759 L=5
760 GO TO 40
761 45 GI(5)=51(6)+VI(5)*E(5)
762 RETURN

763 END
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SUBROUTINE FUNCTI(X,FsGsKQ) 102
SUBROUTINE FUNCT FOR A 10 STAGE INVENTORY CCNTROL WITH ADVERTISING
MODEL WITH TwWn STATE VARIABLES

DIMENSION X{(10),G{(10),P(20),Q{20),VI(20),5{20),U(20),PR(20),V(20),
1E1{20),%W(20)

COMMON/IND1/KDUNT

COMMON/ INCL/NFUNC

FORMAT(? TTERATION # = ",13," # OF FUNCTIONAL EVALUATIONS

= T,13,° # OF CONSTRAINTS IN BASIS = %,13,/)

FORMAT(? CONs INCse = ",10F9.3,/" INVENTORY = ?',10F9,.3,/*
1 PRODUCTION = '",10F9.3,/" SALES = 1,10F9.3,/" PRO
IFIT = 1,10F%.3,//)

NFUNC=NFUNC+1

M=10

MP1=M+1

A=T0.

B=100.

C=2.

QN=150.

F1=10.

PI=50.

CVI=.15
CA=1.5
DT=.1
DS=-2.%CVI*DT
VI{l)=20C.

Qi1)=20.

Pll)=A
DD 10 I=2,MPl

P(I)=A+B*{]I-1)*DT

QUIN=(QUI-1)1 % (1. #{C+X{I-1))*DT))/{ L+ (C+X{I-1) ) *Q(I-1)*DT/QN)
VI(I)=VI{I-1}¥(P(I-1)-Q(I-1))%*DT

S{I)=—CA*Q{I}*DT
UulII=rPI-vIi(I1)

PRIL)=(F1*Q(2)-CVI*{(PI-VI(2) }*#2-CA*X{(1)1*Q(2))*DT
DO 20 I=2,M

PRII)=PRII-1)+{FL*QII+1)=CVI*(PI-VI{I+1))**2-CA=X(I)*Q(I+1))*DT
F=PR{M)

PRINT 100,KOUNT,NFUNC,KQ
PRINT 1019(X{T)I=14M)4(VI({I),I=2,MPL1),{P(I)},1=2,MP1),(Q(I),I=2,MP

11){PR{I),1I=14M)

D0 30 I=1,M

VII)=(QUI )% (DT%%2)%{1.-Q{I)/ON) )/ {{1.+{C+X{ D)) *Q(T)*DT/QN)**2)
ELI)=F1-CA*X{1I)

WD =1L+ CH+XTTII*DTIZ L+ (C+X{T) )xQL{I)*DT/QN) *%2)
DO 35 I=MP1,20

HWil)=0.

L=1

CONTINUE

Hl=W{L+1)*W{L+2)

W2=W1ZWIiL+3)

W3=W2*H{L+4)

Wa=W3%*W({L+5)

Wo=WakWiL+6)

WO=WOSEWIL+T)

Wi=Wo*W{L+8)

W8=WT*HWI{L+9)

W10=1+W{L+1)

Wll=W1lO+¥1

Wl2=W1ll+W2
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103
Wi3=W12+W3

Wl4=W13+W4
W15=W14+W5
W16=W15+HW6
WIT=W1l6+WT7
GO TO(41:42:4334494594644T7+48949950),L

41 GIL)=SH2)+VILI*(E{L)+E(2)XW(2)+E(3 )WL +E(4) *W2+E(S)*WI+E(6)*Wa+E(T
LY *WS5+E{B) *WH+E(9)*WTH+ELL10) ¥ W8+DS*(UI3)+Ul4)*W10+UIS)*HL1+U(E)*W12+
TIULTI*WI3+U(8)*W14+U{9)*W15+U(10) *W1l6+U(L1)*H1T7))

L=2
GO TO &0

42 GL2)=S{3)+VI2)=(E{2)+EI3)*NI3)+E(4)*¥WI+E(S) ¥ W2+E(6)*WI+E(T)*W4+E(8
1)%WS+E(9):WE+FE({10) *WTH+DS*(UI4)+U(S)I*W10+U(6)*WL1+ULT)*W12+U(B)*W13
1+U{9) *W14+ULL10)*H154+U{11)*W16))

L=3
GO TO 40 _

43 G{3)=S{4)+VI3)*(E(3)+E(&)XWI{4)+E(S)EHI+E(O) XW2+ELTI*WIHE(8) *W4+E(D
L)*WS+E{10) *Wo+DSE{UIS)I+UT6) *W10+U(T)*WLL+U(B)*WI2+U(9)*W13+U(10)*
1W14+U{111%*KW15))

L=4
GO TO 40

44 Gl4)=S{5)+VI4)*(E{4)+E(S)*WI{S)+E(O)*WI+E(T)*W2+E(B)*WI+E(9)*W4+E(1]

10)#W5+DS*{ULE)+ULTI*W10+U (81 XWLL+U(9)*W12+U(10)*WI3+U(11)*WL4))
L=5
GO TO 40
45 G(5)=S16)+VISIZ(E(S)+E(6)*WI6)+E(TI*WI+E(8)*W2+E(9)*W3+E(10)*W4+DS
1% {UITI+U(B ) *HI0+U{9)*W11+U(10)*W124U(11)*W13))
L=6
GO TO 40
46 GL6)=SITI+VIBI*{ELO)+E(TI*W(TI+E(B)*HWI+E(9)*W2+E(L1O)*W3+D5*(U(8)
1+U{9)*W10+U(10)*WL1+U(11)*W12))
L=7
GO TO 40

47 GIT)=S{B)+V{TIX(E(T)I+E(B)*W{B)+E(I)*WLI+ELL0)*W2+DS*(U(I)+U(10)*HW10

14Ul 11)*W11))
L=8
GO0 70 40

48 GI8)=S{9)+VI(BY*{E(B)+E(9)*W(I)+E(10)*W1+DS*(U(10}+U{11)*W10))
L=9
GO TO 40

49 G(9)=S(10)+V(9)*(E(9)+E(10)*W{10)+DS*U(11))

L=10
GO 71O 40
50 G(10)=S{11)+VI10)*E{1Q)
RETURN
END
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In 1966, Goldfarb developed a new method by the combination of the
gradient projection method and the conjugate gradient method. This method
appears to be a powerful tool for solving a subclass of nonlinear pro-
gramming problems characterized by linear constraints. The advantage of
this technique is its ability to use the local quadratic properties of the
general nonlinear objective function effectively and continually without
the need of computing the second partial derivatives. This method is
approximately quadratically convergent.

The purpose of this report is to apply this technique to industrial
management systems and critically analyze the results obtained and the
effectiveness of the computational procedure used.

The method is first described in some detail. The versatility of
this method is illustrated by considering two production and inventory
control models. In the first model, the costs of production and inventory
are minimized. In the second model a process involving production and
inventory control with advertising is considered. The merits and demerits
of the method are analyzed from a nonlinear programming problem solutiocn

point of view.



