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1. INTRODUCTION

Optimization techniques can be divided into two classes, single stage

and multistage. In multistage optimization techniques, a certain relation-

ship is used to isolate the interconnections between the various stages.

Thus one stage is searched at a time instead of all the N stages simul-

taneously. In this way, an N-dimensional problem is converted into N one-

dimensional problems if the problem has only one control variable. The
«

multistage optimization techniques can be classified into classical tech-

niques (calculus of variation) and dynamic programming.

In case of calculus of variation, the resulting equations form a two-

point boundary value problem (2,15). The differential equations encountered

in practical applications are generally nonlinear and cannot be solved an-

alytically. Finding numerical answers for this nonlinear boundary value

problem is very tedious especially if there is a large number of equations

with a large number of initial values missing. This has limited the use

of the calculus of variation.

The maximum principle is a very powerful tool for obtaining analytical

solutions of linear optimization problems with inequality constraints on

control variable (7) . But when the problem is nonlinear and an analytical

solution cannot be obtained, the maximum principle gives rise to similar

boundary value difficulties.

Dynamic programming, although free from the boundary value difficulty,

has a serious drawback because of its storage requirements on the computer.

Instead of solving any individual process, the dynamic programming technique

solves a family of related processes (20). In here, as in the other multi-

stage techniques, the problem of an N dimensional search is reduced to N



.sional search problems if the problem has only one control vari-

However, in Investigating one stage at a time, all possible combin-

ations of the stage variables for the previously calculated stage must

be stored in the memory of the computer.

This storage requirement, often referred to as the "curse of di-

mensionality," becomes too excessive to permit the use of dynamic program-

ming for a problem in which more than three state variables are involved.

Thus, if a three-dimensional problem, i.e. involving three state variables,

is to be solved and if it is decided to have each state variable dis-

cretized into 50 values, then because of the interpolation required in the

3
dynamic programming approach, (50) values have to be stored. Thus it is

frequently impossible to handle even a three-state variable problem with

straight forward dynamic programming.

Thus it is seen that the dimensionality difficulty in dynamic program-

ming and the boundary value problem in the classical methods limit the

number of state variables in a problem that can be treated by these tech-

niques. It should be noted, however, that these two difficulties are

totally different from each other. The dimensionality difficulty requires

more computer memory while the boundary value demands more computer time.

Also, the classical boundary value problem approach represents an iterative

procedure to obtain the numerical solution while dynamic programming

represents an expansion of the original problem.



2. GRADIENT TECHNIQUES

The methods of gradients seem to remove the difficulties experienced

in dynamic programming and the classical multistage techniques. Although

there are various approaches with these methods, the basic philosophy

remains the same. When use of the gradient methods is contemplated, the

problem is formulated as a final value problem. In other words, the per-

formance index or the objective function is selected as the value of some

function at the end of the process. This is not a serious restriction.

Thus if the performance index is

C
f

J = / f(x)dt

Then

f= f«

Introducing an additional state variable x _

dx +nn+1 _, .

Tt
— = f(n)

and X
n+l

(t }
= °-

The original integral performance criterion is replaced by a criterion

which calls for extremizing the final value of an element of the state

vector. Philosophically at least, extremization of any performance cri-

terion should be possible by using the following approach underlying the

methods of gradients.

First a sequence of values of control vector is taken. Then a compu-

tation is made of the gradient of the performance index with respect to each



control vector. Next each control vector is improved by moving it in the

itc direction alon>; the individual gradients. This improved

[uence oi" control vectors then becomes the basis for the next iteration.

In the following sections, the first variation method, a technique

suitable for optimizing nonlinear complex problems, is summarized. Then

the second variation method, which is more sophisticated than the first

variation method, is discussed. Three applications of this method in the

field of production planning and control illustrate the advantages and

disadvantages of this method.



2.1 The First Variation Method

Because of its computational appeal, various versions of the gradient

methods have been developed for optimization calculations. A gradient

technique for the numerical solution of dynamic optimization problems is

generally known as the functional or serial gradient technique. This

technique has been applied successfully to solve problems in aerospace,

control and chemical engineering systems (5,6,10,16,17,20,21). The con-

tinuous version of the functional gradient technique was developed inde-

pendently by Kelley(lO) and by Brayson and his coworkers (5) . A compre-

hensive treatment of this technique and of the gradient methods in general

can be found in the article by Kelley(21)

.

In this method, the convergence is generally independent of the initial

guess used in the iterative procedure, although the rate of convergence or,

alternatively, the computer time, is affected by the initial guess. The

number of equations to be integrated in the forward direction is (n+1)

;

i.e. these equations are integrated from t=0 to t=t
f

. There are (n+1)

recursive equations. There are, however, no equations to be integrated

in the backward direction from t=t to t=0. The first variation equations

are simpler than those of the second variation method.

The main drawback of the first variation method is that a very large

number of iterations must be made in order to approach the optimal tra-

jectory. More important is the fact that the trajectory approaches the

optimum but does not actually reach it within a finite number of iterations.

In some cases, the trajectory is far from the optimum after a large number

of iterations and the rate of convergence becomes too slow to permit further

iterations. This method cannot conveniently handle the problems with in-

equality constraints on the state variables.



ond Variation Method

The pioneer work in the area of second variation method has been

d out by Hryson and his coworkers (4,5), Kelley and his coworkers

(10,11), Merriam (25) and Jaswinski (9). Mitter (26) and Breakwell and

Ho (8) have also added to the work in this field.

This method is a natural evolution of the first order linearizations

used in the first variation method in which the equations are linearized

by truncating after all linear terms. The second order and higher order

terms are thus ignored. It is well-known that the use of a linear ap-

proximation in a gradient search procedure is an excellent means for ar-

riving near the optimum point quickly and from almost and stationary

starting point. Near the optimum, however, the linear approximation

becomes deficient and it is necessary to turn to a second order approxi-

mation to achieve the optimum. A useful optimization procedure is to

initially use the first variation to get near the optimum trajectory and

then to switch to the second order method for refinement.



2.3 Derivation of the Second Variation Method

Consider a process which can be represented by

^- f[x(t), 8(t)] (1)

where x is n dimensional state vector, is r dimensional control vector

and x(Q) is prescribed. No terminal constraints are to be imposed on

_x(t, ) } although the final time, t
f , may be specified. •

Suppose it is desired to minimize the following performance index:

t

1 = T = i

f

l[x(0),t
f ] = I = ! J(x,9_,t)dt (2)

From Equation 2, this equation results

^ » J(x,£,t) (2A)

Since the performance index as given by Equation 2 is subject to the

system constraints of Equation 1, consider the minimization of the un-

constrained performance index as

*
tf d*

1=1 + / z'(f - -7")dt (3)

o
dt

where z is a vector of n Lagrangin multipliers. Substituting Equation 2

into Equation 3 results in

*
tf d2L

I = / [J(x,6_,t) + z'(f - ^]dt (4)

In order to minimize I , an iteration algorithm can be constructed

such that



t
f

(j+1)

x*(j+D _
i

[jCj+D + z
,(J+i)

ff
(j+i)

(

I " dt
dt (5)

converges in a desirable way. The superscript (j+1) is used to indicate

the number of iteration, and it is desired to have

i*
(0)

> i*
(1)

> ... > i*«> > i*"+1)
> ... (6)

To construct the desired iterative algorithm, the values of the

functions at iteration (j+1) can be expressed in terms of the j iteration

by means of Taylor's series expansion. Retaining only the terms up to the

second order gives

3x
Cj;

39
U;

+
i

6x(:)'lVil+
2

6^ (j)2 "-
oX

6x

36
(J)

. 3x
(j) "

+ i6e (^'^• x, a 2 T (j)

2 -
36

(jT2
6^

(j)
(7)

where,

6x<J> = x" +1
> - ,0)

66 (j)
: fl

(j+ 1 ) _ fl(J)

(8)



afj

3x
2

a3i

3x ?

3
2
J

8
2
J

ax
l
3x

2

3x Sx.,
n 1

3
2
J

3x..3x
1 n

3
2
J

3x
n

a*3_
36 3x

,
2
j

dQ dx

3
2
J

36 3x.
r 1

3
2
J

39., 3x
1 n

3
2
J

39 3x
r n

(9)

The superscript (j) has been omitted in Equation (9) for clarity,

Thus it is seen that

6' J^-6x =

n r
3
2
J

- 3 9 3x
69. 6x.

/. 38,3x, i i
i=l j=l j i

(10)

Next, define the Hamiltonian

H = z* f (ID

and expand H at the (j+1) iteration up to the second order terms as a

function of H at the j iteration. Note that H is a function of x, 9_,



and _z and that —r

3z

10

3z 3x
(12)

(j)2 -
e
(j) 3x (:i) "

39

2r7 (j) i ,2-(j)
+ {e o)

, 4H^
5z (J) +^ , 4

e
(j)

3z
(j) "

3x (j)
. 3z

( J }

6z (j)

Now consider the nonlinear performance equations. If these equations

are linearized by Taylor-series expansions and by retaining only the first

order terms, the, result is

i
Xi)\

V=—7- (5f
Cj)

'/3x (j) )' 6x (j)
+ (M^'/M. ')' «i

0) d3)

with 6x_(0) = 0^ since the initial conditions are constant. This last

equation may be rearranged by noting that

dx

dT

(J+l) dx (i)

= 6(-^-) + f
(j) (14)
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Thus Equation 13 can be rewritten as

dxP(j+D

dt
(j) + 3

2
H (j)

3z
(j) 3x

(^ 6x
(^> +

3
2
H ( J>

a«<J>ae<J>
6i

(j)
(15)

Furthermore,

,(J+i) „ z (i) + p(J) 6x (J)

so that 6z (j) = P (:j) 6x (j)
(16)

where the matrix P is defined by

P =

3z.

3x!

3z
i

3x.

!5
3x

3z
2

3x

3z' '

(17)

It is a symmetrical matrix,

i.e.

3z . 3z

.

i = _J.
3x. 3x

Clearly P_ is unknown explicitly at this point. For the sake of

clarity, the superscript (j) is omitted in the subsequent derivation.

If now the normal Hamiltonian function is defined as H = J + z ' f_,

then the above expressions can be substituted into Equation 4 to yield
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C
f

1 - I + / {feJ ^x + (-) 60. + ^ «x» -j fix

*" — — ^v3x

2 2 9f

'

+ «!•^ fii + i «i
f

^i «I+ fie' 3^- p fix (18)

91'
h

dX
-

+ fix' t— P fix - z'fi ^*- - fix' P 6 3- 1-dt— 8x — — — dt — — dt

To further simplify Equation 18, use of the adjoint equation is

made. Thus

This is easily obtained by defining

M = min [J (x,_9,t) + z'f] (20)

9

where the adjoint variable z_ is defined by

*
=
lx"

(21)
ox

But from the principle of optimality in dynamic programming, it

follows that for

C
f

I°(x, t) = min / J(x,9_,X) dX (22)

6

that



1 (x,t) nun
L+At f

/ J(>£,0_,A)dA + / J(x,_0,A)dA

t t+At

t+At
= min / J(x,0_,A)dA + 1°

6 t

dx
x + — At, t + At)— at

As At approaches zero

SI
o dx

31
I°(x,t) = min J(x,6_,t) At + J°(x,t) + (|j-) dt

At +
ft

At

1T° '
dX 5T°

i.e. A*,e°.t> + (§-) £ + {§r-o
"7

which may be written as

M + |f =0 (23)

The partial differentiation of Equation 23 w.r.t. x yields

Sx 3x-3t —

or

3x 3t — (24)

However, the total time derivative of z is

dz

dt

oZ
, , dx

. j= + gq -
3t ^x ; dt

3J°
3(^' f)

,3z«- '

d^
dX )x <-3x j dt

(25)
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ice

If
+ 3£ <£'D - (26)

due to the optimality condition. Expanding Equation 25 gives Equation

19 , namely

T o 3f

'

dz 3J

so that partially differentiating w.r.t. x gives

»2, .2, Ql n 3
2
f. n 3

2
f.

(27)dt 3jc 82c —

Similarly

,

2

3x 1= 1 3x * — — ;

where

se_*

£ - te- (29)

and

a
2 n 3

2
f.

— 39_- dx 39_ — .£. 1 3_9_ 3x_

To evaluate K it may be noted from Equation 17 that

3J 3f*— + —— z =
39 39 - -

^ ~2 +
^TTsT

+ feH A zi~r + I z
i 3iT^ +

3x~ tsT-J
=
^'-

3e
- — - "- i=1 -

3 Q
-

i= i
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i.e.

30' ,2
T

n
r
i

^ 3e
2

i=i
1
39

2

and K =
a
2_ n 3

2
f.

_1

39 i=l 39

(32)

3
2
J

Therefore it is possible to solve for —j , namely
3x

„2 T dP n 3*f. r 3f ' 3f

3x i=l 3x v — —
(33)

Now, substituting Equations 27 and 33 into Equation 18 yields

2 T n 3 f

l 39 i=l 39

69

r si •
n 3f

-,- 'i

k _ !=1 _ J

+ 69_' R <Sx + 2" 6-' - - &-\ (34)

In order that the performance index will converge to a minimum, the

integral in Equation 34 must be less than zero, i.e.
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t 2

few 1 (H +
i *i-T-)*± + m * I ^ «£

^ 86 i=l 80 <• - 1=1
X - J

+ 60.' • R • 6x + y 6
2L'

' K • R • 6x^ dt < (35)

In addition, the convergence idealy should be as fast as possible

so the minimization of the integral is considered:

f h 3
2

T
n 9 f

<

(fix, t) - / I 66/ (li + J « _t)
59.

t ^ 36 l-i ae

r si •
n sf

-

f

i

66

+ 69 ' R 6x + y 5x' • K • R 6x dA (36)

Through the proper choice of 66_ and denoting the minimum by

V (6x, t) , since V(6x, t) as given by Equation 36 is quadratic in 6x,

the minimum of V(6x, t) may be written as a quadratic expression, as

V (6x, t) = q(t) + (£(t))' 6x + 6x' Q(t) 6x (37)

where q(t) = scalar function of t

c^(t) = (nxl) vector function of t

Q(t) = (nxm) matrix function of t (symmetric)

and q(t
f
) = £ (t

f
) = £(t

f
) - .



From Equation 37

17

3V (6x, t) d£(t) dq_(t)
'

3t
" jl + h ) <Sx + 6x f -

dt Mt ' — — d

dQ(t)

dt
6x (38)

and

3V
u
(6x, t)

3x
- £(t) + 2£(t) 6x (39)

Minimization of V(6x, t) as given by Equation 36 gives

^•69°' [3^J
+ J z

.

ie
2

i=i
x

3e
2
1 56° +

— 1=1 — J

+ 66° R • 6x + -| 6x » K R 6x

dx

+ £a
1

(t) + 24x'a<t))«(53 + ^iO
dt' dt

d£(t) ' d£(t)
+ (- } 6x' + 5x* -: 6x =

v dx ' — — dt — (40)

where

2 T n 3
2
f.

-1
t ._

J v i\ \ c3J-
(^\L^ ItM*^

3f'

+ R 6
2L

+ far) k(t) + ^(t) 6 *)36 (41)

and
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6dx
1

6f'

f-(~) «* + (^) 66. . (42)

When the optimal control as given by Equation 41 is substituted into

Equation 40 and the coefficients of 6x and 6x* • 6x_ along with the terms

not containing 6x are all put equal to zero (to satisfy the identify for

any 6x) the following results:

St^fs.^s + s.T-^lfwCtf)!-
1
*

, r 3f \ ' -1
r 3f S (43)

d£ _ 3f_' 3f_'
'

-R' T^S + R' T"
1 (—h- (—) adt

3f '
' 3f ' 3f

'

! fei-) I"
1

s + k=-) t"
1
(^)a

I
81

(44)

and

dQ

dt

3f 3f '
» 3f_' 3f' '

(45)

where S^ and T are introduced to condense the notation and are given by

n 3f

I
1-1

(46)

a
2
j

3 £

i-1 30

(47)

36 i-1
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At this point it is noted that the matrix (£ contributes only in-

significantly to the control. Furthermore ^ appears as a second order

term itself. Therefore, to facilitate programming on the digital

computer these —=—- equations shall be discarded and ^ shall be put

equal to zero. Equation 43 is not required for the evaluation of control;

therefore Equation 44 will take the form

| - R- I"
1

S + r i
1

(|f) i-f) a (48)

and the change in the control simplifies to

-l
8i'

6^ = -1 (l + R 62i + -39- Sl)
• < 49 )

To prevent overstepping in control adjustment, Memiam [23] has

suggested the introduction of a constant e where < e <_ 1 in Equation

49 to give

66_ = -eT
_1

[s + ||- oj - T
_1

R 6x . (50)

Thus it is now worthwhile to detail the application of the second variation

method equations developed above.

(1) Assume a set of initial value for 9.

(2) Equations 1 and 2A are integrated forward from t = to t = t
f ;

i.e. (n+1) equations are integrated forward in time, namely

dx

j£ = J(x, 6, t)
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(3) While the integration is carried out, the values of x are retained

in the computer memory at small time intervals to approximate the

continuous system.

(4) The adjoint Equation 19 plus the additional Equations 28 and 48

are integrated backwards, i.e., 2n+ ^^—- equations are integrated

backwards in time from t
f

to 0, namely

jz jy_ (ill)
dt 3x " ^3x > -

dP
a
2. n 9

2
f. r

, 3f» ^

3x i=l 3x ^ — — '

^--T-i-'T-ffk-dfja.

(5) During the backward integration, the values of T_, S^, £ and R are

stored in computer memory.

(6) The new value of control is calculated from Equation 50, i.e.

,a+« .,«> - leT-^ + g^^-Vv^x^ -x<J>)

and steps 2-6 are carried out again.

(7) This iteration is continued until no further change in 6_ is noticed

or until the performance index does not change. The former is more

sensitive [12].

If the performance index increases during some iteration, the parameter

e is halved and the iteration is continued.
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For maximization problems, the derivation can be followed on the

same lines and it will be seen that the resulting equations are the

same.
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2.4 Advantages and Disadvantages of the Second Variation Method.

The foremost advantage of the second variation method lies in its

rapid convergence. Also, unlike the first variation, the optimum can

be reached with reasonably high accuracy.

The theoretical attractiveness of this method, however, is more than

offset by its disadvantages. First, and most important, the initially

assumed trajectory of the control variable must be sufficiently close to^

the optimal trajectory for convergence to be obtained. Second, the

number of equations to be integrated is considerably greater than required

for the first variation method. In the second variation method, (n+1)

equations are integrated in the forward direction, i.e. from t=0 to t=t
f ,

and (2n+n(n+l)/2) equations are integrated backwards where n is the number

of state variables in the problem under consideration. The first vari-

ation method requires only (n+1) equations to be integrated in the forward

direction and there are (n+1) recursive equations in the backward direction,

Not only is the number of equations involved in the second variation method

high but the equations themselves are more complicated. The main reason

for this is that the calculations of all derivatives, both first and second

order, becomes more and more tedious with the increasing number of state

and control variables. All the multiplications are in terms of matrices.

Again, the inverse of T has to be computed at each integration step in

the backward integration. Hence the programming of the iteration scheme

with the required equations can be quite complicated. Instability can

arise from bad starting values, i.e. from an insufficiently good guess

for the starting trajectory of the control variable. The values for the

parameter e have to be established by trial and error for the particular
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problem. The higher the value the faster the convergence. Finally, this

technique cannot handle problems involving inequality constraints.
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3. APPLICATIONS

To illustrate the use of the second variation method, three numerical

problems in the field of production planning and control are solved in

the following sections.
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3.1 An Inventory Model

The Model

The following is a simple problem in the field of production

scheduling and inventory control. Assume that the rate of sales Q(t) is

known with certainty and that the rate of change of the inventory level

I(t) is given by

«

jfi&-
= P(t) - Q(t) (51)

where P(t) is the production rate at time t. The problem is to minimize

the cost function.

T

C
T

= / {CjC^ - Kt))
2
+ C

p
exp (P

M
- P(t))

2
} dt (52)

where C is the total cost of inventory and production and C is the min-

imum production cost which occurs when the production rate equals P . The

quantity P can be considered as the capacity of the manufacturing plant.

Since the plant is designed for a capacity P , an increase in capacity

may require additional equipment and manpower which, due to contract

agreements cannot be reduced easily. I can be considered as the capacity

for the storage of inventory and C is the inventory carrying cost. In

many practical situations, the minimum storage cost is obtained when the

storage capacity is completely filled. Furthermore, the cost function,

Equation (2) , has the smoothing capability which is frequently desirable

for many manufacturing processes. In this case, I and P can be con-

sidered as the desirable inventory and production levels. It is further

assumed that the sales forecast is known and is given by the linear re-

lation
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Q(t) = a+bt (53)

and the initial inventory is

KO) c (54)

Recursive Relations

This optimum production planning problem can be rewritten into the

form required for the second variation method as

Let xl(t) = I(t)

6(t) = P(t) .

Equations (51) and (54) become

dxl(t)
dt

= 6(t) - a - b(t) (55)

and xl(0) = c (56)

Let

x2(t) = / C
I
(I
M

- HOT + C
p

exp (P
M

- 6(t))
Z
}dt (57)

Then

x2(t) = C
T

(58)

^
2U)

= CjC^ - xl(t))
2
+ C

p
exp (P

M
- G(t))

2
(59)

x2(0) = (60)

Thus, in this problem there is one state variable, namely inventory xl.

The control variable is the production rate 9(t). The numerical values
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used for this problem are:

a = 2 b = l c = 5

C T - 0.1 I„ = 10 C„ = 0.001 .IMP
PM - 5 T - 1
M

The various derivatives required for obtaining the second variational

equations are:

£-lt=- 2C
I ^M" Xl(t))

&- 2 C

ax
2

*

|f
= -2 c

p
exp (p

m
- e(t))

2
• (p

m
- e(t))

^=2C exp (P - 6(t))
2 {1+2 (P - 6(t))

2
}

36

^L-= o
36 3x

3f
! 3

2
f-

-
3x 3x36

3
2
f

71" ° aT" ° 3^
= 1

3x — —
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The expression!* for the terms R, s_, T_ are:

R «= P_ = P P_ being 1 dimensional

8 = -2 C
p

exp (P
M

- 0(t))
2

(P
M

- G(t)) + %

T = 2 C
p

exp (p
m

- e(t))
2

• {1 + 2 (p
m

- e(t))
2

}

The second variational equations (19, 28, 48) become

dF-f =2C
I
tln-x^t)] (61)

f£
- £ = - 2 C

z
+ P

2
[2 C

p
exp (P

M
- 6(t))

2
{1 + 2 (P

M
-6(t))

2
}]

(62)

d£F dQF P{-2C exp(P - 9(t))
2
(PM - 6(t)) + z + QF}

JT = JT = "
f 5- <

63 >

2C • exp[P - e(t)T {1 + 2[P -6(t)]
Z
}

and

6<J+1 > . e
(J> -

[ E (. + QF)]
(^ - [P^Cx/^ - , <*>»

.

Thus Equations (61) , (62) and (63) are the second variational equations

and Equation (6A) is the equation for finding the new value of the control.



Table 1

Effect of c on the Rate of Convergence,

of Inventory, 0(t) - 7, x (t) - 5, CKt<t
f
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Iteration E = 0.1 e - 0.3 e - 0.5 e 0.7 e = 1.0

1 9.49995 9.49995 9.49995 9.49995 9.49995

5 9.38148 9.39033 9.37763 9.36130 9.34562

10 9.39130 9.36100 9.33515 9.32687 9.32586

15 9.38672 9.33859 9.32642 9.32586 9.32586

20 9.32649 9.32585 9.32588 9.32586 9.32586

25 9.32597 9.32585 9.32586 9.32586

30 9.32587

35 9.32585

40 ii

45 ii

50
ti

55 it
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Fig. 2. Convergence rate of Inventory.
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Table 1A

Starting Trajectories

33

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21

0.22
0.23

0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43

0(t)

7.189250000
7.187477000
7.079871000
7.077939000
7.104925000
7.132057000
7.149645000
7.157608000
7.158973000
7.156805000
7.153052000
7.148717000
7.144282000
7.140039000
7.135867000
7.131478000
7.127013000
7.122532000
7.118021000
7.113436000
7.108769000
7.104050000
7.099350000
7.094633000
7.089814000
7.084888000
7.079880000
7.074810000
7.069685000
7.064513000
7.059288000
7.054013000
7.048672000
7.043266000
7.037783000
7.032225000
7.026593000
7.020878000
7.015089000
7.009217000
7.003265000
6.997230000
6.991116000
6.984918000

x^t)

5.000000000
5.051840000
5.103566000
5.154113000
5.204544000
5.255143000
5.305912000
5.356759000
5.407584000
5.458322000
5.508939000
5.559419000
5.609757000
5.659949000
5.709999000
5.759905000
5.809671000
5.859291000
5.908764000
5.958094000
6.007279000
6.056316000
6.105205000
6.153948000
6.202545000
6.250991000
6.299290000
6.347438000
6.395437000
6.443284000
6.490978000
6.538519000
6.585909000
6.633147000
6.680229000
6.727155000
6.773927000
6.820544000
6.867001000
6.913302000
6.959444000
7.005426000
7.051247000
7.096908000



Table 1A (continued)
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0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92

6.9 78632000
6.972250000
6.965771000
6.959211000
6.952615000
6.946091000
6.939800000
6.933926000
6.928563000
6.923484000
6.917935000
6.910558000
6.899575000
6.883111000
6.859521000
6.827771000
6.787430000
6.738802000
6.682859000
6.620663000
6.553533000
6.482723000
6.409090000
6.333541000
6.256731000
6.179157000
6.101206000
6.023172000
5.945170000
5.867554000
5.790261000
5.713470000
5.637252000
5.561565000
5.486539000
5.412208000
5.338596000
5.265617000
5.193286000
5.121719000
5.050916000
4.980895000
4.911464000
4.842929000
4.775110000
4.708012000
4.641857000
4.576363000
4.511854000

142408000
187744000
2329 J 4000
27 7921000
322764000
367 440000
411951000
456297000
500487000
544522000

7.588405000
7.632135000
7.675689000
7.719036000
7.762116000
7.804861000
7.847187000
7.889011000
7.930249000
7.970827000
8.010683000
8.049766000
8.088044000
8.125484000
8.162069000
8.197786000
8.232625000
8.266588000
8.299669000
8.331870000
8.363195000
8.393647000
8.423231000
8.451951000
8.479818000
8.506833000
8.533003000
8.558340000
8.582844000
8.606528000
8.629393000
8.651453000
8.672711000
8.693175000
8.712854000
8.731755000
8.749883000
8.767251000
8.783864000



35

Table 1A (continued)

0.93 4.448162000 8.799734000
0.94 4.385418000 8.814865000
0.95 4.323664000 8.829268000
0.96 4.262953000 8.842953000
0.97 4.203338000 8.855934000
0.98 4.144891000 8.868217000
0.99 4.087779000 8.879816000
1.00 4.087779000 8.890743000



Table 2

Effect of e on the Rate of Convergence

of Cost Function x , 0(t) 7, x (t) =- 5, 0<t<t-

36

Iteration c = 0.1 e = 0.3 e = 0.5 E = 0.7 e = 1.0

1 0.95957 0.95957 0.95956 0.95956 0.95957

5 0.95232 0.94536 0.94392 0.94356 0.94342

10 0.94694 0.94360 0.94337 0.94335 0.94335

15 0.94498 0.94339 0.94335

20 0.94415 0.94336 M

25 0.94376 0.94335 it

30 0.94356 ii n

35 0.94347 it ii

40 0.94342 ii M

45 0.94339 ii n

50 0.94339 ii M n

55 0.94336 ii n ii
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Fig. 4 Convergence rate of Cost Function.
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Table 3

Effect of e on Rate of Convergence of the

Production Rate 8, 8(t) - 7, x (t) 5, CKt<_t

40

Iteration c = 0.1 e = 0.3 e = 0.5 c = 0.7 E = 1.0

1

B(t 3 7.03101 7.09304 7.15507 7.21709 7.31013

e(t
f

) 6.97778 6.93333 6.88889 6.84444 6.77778

5

e(t 3 7.10105 7.17094 7.18717 7.18952 7.18934
•

e(t
f

: 6.88690 6.64770 6.38816 6.10440 5.62812

10

e(t
Q

: 7.14225 7.18636 7.18927 7.18933 7.18933

e(t
f

: 6.76850 6.23612 5.58561 5.06248 5.0000

15

8(t ] 7.16293 7.18884 7.18933 7.18933 7.18933

e(t
f

) 6.64410 5.74570 5.03792 5.00015 5.00000

20

e(t
Q

) 7.17416 7.18925 7.18933 7.18933 7.18933

6(t
f

) 6.51294 5.25530 5.00119 5.00000 5.00000

25

e(t : 7.18051 7.18932 7.18933 7.18933 7.18933

e(t
f

) 6.37410 5.04754 5.00004 5.00000 5.00000

30

8(t ] 7.18416 7.18933 7.18933 7.18933 7.18933

e(t
f

: 6.22667 5.00802 5.00000 5.00000 5.00000

35

e(t : 7.18629 7.18933 7.18932 7.18933 7.18933

e(t
f

: 6.06984 5.00135 5.00000 5.00000 5.00000

40

e(t : 7.18754 7.18933 7.18933 7.18933 7.18933

e(t
f

;
I 5.90348 5.00023 5.00000 5.00000 5.00000

45

e(t : 7.18828 7.18932 7.18933 7.18933 7.18933

e(t
f

;1
5.72933 5.00003 5.00000 5.00000 5.00000

50
8(t ;)

7.18871 7.18932 7.18933 7.18933 7.18933

e(t
f

"

) 5.55353 5.00000 5.00000 5.00000 5.00000

55

6(t
o

7.18896 7.18932 7.18933 7.18933 7.18933

6(t
f

> 5.38931 5.00000 5.00000 5.00000 5.00000



41

a -

2 7
O

6

§

£• Ol

zfcRoeTH

TST

•

ft 1

OPT. -' \

i

Q<1 04- C6 O.S 9*0

Fig, 7 Convergence rate of Production Rate.



42

Fig. 8 Convergence rate of Production Rate.
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NufflPI I Cl\\ lllH

This problem was solved by two approaches. In the first, the

second variation method was used in combination with the first variation

method. The same problem is solved by Lee and Shaikh (20). The values

of the state and control variables (at all grid points) were taken from

the results of the first variation. In particular, the values of Xl(t)

and 6(t) were taken from the 21st iteration of the first variation and

fed as good starting values for the second variation. These values are

listed in Table 1A. In the second approach, the second variation was

tried directly by itself. For this, a guess was made for the starting

values of the state variable and the control variables.

An interesting parameter in the computation is the step size e which

determines the magnitude of the step taken in each iteration. In the

solution of this problem, a series of values of e were selected and the

computation was carried out for each. Tables 1, 2 and 3 show the con-

vergence rate of inventory xl, cost function x2 and the production rate

6(t), respectively. These tables are for a constant starting value of

the control variable, namely 6(t) = 7, <_ t < t. and a constant starting

value of the state variable, namely xl(t) = 5, <_ t <_ t
f

. It is seen

that for e = 1, the fastest convergence rate is obtained while the con-

vergence rate slows down when its value is decreased. Figures 1 through

9 show the rate of convergence of the inventory, production rate and the

cost function for different values of e .

Regarding the starting trajectory of the control variable, it was

found that only the constant trajectories between 6(t) 7 and 6(t) = 8

would lead to convergence. For all other control variable values, the
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the problem would not converge. These other values were:

0(t) 1,2,3,4,5,6 and 0(t) = 9,10,11, 0_Stlt
f

Also, the combination of the first and the second variation required about

50 iterations to reach the optimal with e 0.3. A higher value of e could

not be used as it led to overstepping in this situation.
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3.2 An Inventory and Advertising Model

The Model

This model is an extension of the one formulated by Teichroew (27).

Consider a marketing situation where only a certain number of possible

customers possess certain information about a firm's product. Suppose

that the total number of such possible customers remains constant and

that the diffusion of information occurs only through personal contact.

The number of contacts made by an informed person in a unit time is known

as contact coefficient. In a contact, the contactee receives information

if he does not already have it; if he already has it, the contact is

wasted insofar as increasing the number of informed persons is concerned.

Let K(0) = K„ = number of informed persons at time t
n

N = total number of persons

c = contact coefficient, the number of contacts made by

one informed person per unit time

K(t)= number of informed persons at time t.

Then K(t)/N = proportion of informed persons at time t

1 - K(t)/N = proportion of uninformed persons at time t

c.K(t).dt = contacts made during a time interval dt.

Clearly dK(t) = c.K(t) .dt . (l-K(t) /N)

Thus the equation governing the process is

^^- = c.K(t).(l-K(t)/N) (65)
at

Suppose next that the firm can influence the number of contacts by

spending money on advertising. In particular it can increase the number
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of contacts made by the informed persons (above the ones included in c)

by an additional number A per unit time.

Equation (65) now becomes

|p-}- = K(t).(c+A(t)).(l-K(t)/N) (66)

If each successful contact results in the sale of n units of the

firm's product and if Q(t) represents the sale at time t, then

Q(t) = n K(t)

Letting n=l and substituting Q(t) for K(t) in Equation (66), then

f^ = Q(t).(c+A(t)).(l-Q(t)/N) (67)

The rate of change of the firm's inventory is given by

dX(t)
dt

= P(t) - Q(t) (68)

where P(t) = production rate at time t.

The production rate is assumed to be a linear function of time

P(t) = a+bt (69)

where a and b are constants.

This assumption is made to simplify the model by avoiding a second

control variable.

The firm's management wishes to maximize the profit

T

S
T

= / [F.Q(t) - C
x

(P
x

- x(t))
2

- C
A

A
2
(t) Q(t)]dt (70)

where S is the total net profit.
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F is the revenue from Lhe .sale of one unit of the product. C is

the inventory carrying cost and has the same significance as in the

model descrihed in Section 3.1. P_ can be considered as the capacity for

the storage of inventory. C is the cost of advertising.

Equations (67) through (70) represent the system under consideration.

The system has two state variables, inventory X(t) and sales Q(t), and

there is one control variable, advertising A(t).
*

The initial conditions and the numerical values used are:

a = 0.7 b = 1.0 c = 2.0 N = 1.5 F = 10.0

C = 0.15 P - 1.0 C
A

= 1.0 X(0) = 0.2 Q(0) = 0.2

Recursive Relation

The necessary relations for the second variation can be obtained in

the following manner. Note that in these derivations x(t) denotes the

state variable vector while x(t) denotes the inventory. From Equation 70,

then,

J = Q.F - C
I
(P

]
.
- x(t))

2
- C

A
QA

2
(t).

The various derivatives required for obtaining the second variation equations

are:

r

3J
ox

*1
3x

3Q

2C
I
(P

I
- x(t))

F - C
A
A*(t)
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3*
2

_3_

3x

3 J

3x

3_
3Q

fajl

. 3x,
V. J

3

3x
fajl

3_
3Q

3J

[3Q

-2C

If - set
"2c

a « (c) A(t >

^f = -^- - -2 c q(t)
38"' 3A (t)

A

3
2
J

36 3x 3A(t)

3J

3x

M
3Q

- [0 -2C
A

A(t)]

3x

ch
3x 36

= [0 , 0]

3f.

3x~

C+A(t) 1 - 2Q(t)

N

3
2
£.

3x 36_
o, (i-^I)
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30~
-

DO
2

3f.

Tq
Q(t) i _aui

N

S
2
£.

39'

Ml
3x

3x L
1

J

— [f 1

3Q
L

1
J

— [f ]
3x l

2
J

-2- ff 1

3Q
L

2
J

-1 [C+A(t)]jl-^

3
2
f.

3x

- 2 f

3x

^ (C + A(t))

3f '

36 3A(t)
[f. f

2
] Q(0 1 - Q(t)

N



Expressions for the terms R, s_, T_ from Equation 30 result in

51

R = [0 -2C
A

A(t) ] + Q(t)
N

P Pr
ll 12

P P
12 22

z
2
(l

2Q(t)

[0 2C
A

A(t) ] P
12

Q(t)(l
Q(t)
N ) , P

22
Q(t)(l

Q(t)
N

z
2

(1
2Q(t)

N

Let R = [R
1

, R
2

]

where

\ = P
12

Q(t) 1 - Q(t)

N

R
2

= " 2 C
A

A(t) + P
22

Q(t) i .asa.
N

+ z. 1 - 2Q(t)

Equation 46 gives

S = -2C
A

Q(t) A(t) + z
2

Q(t)
N

and Equation 47 gives,



T - -2C
A

Q(t).

It is now possible to determine the 2n + — i.e. (2+2+3) or

seven equations to be integrated backwards. Equation (19) becomes

52

dt

-2C
X

(Pj - x(t))

-F + C
A
A (t) -1 [C+A(t)] \ 2Q(t)^

N

1

r v

i

Z
2

-2^ (Pj - x(t)

-F + C A (t) -Z
x
+ z

2
[C + A(t)] 1 - 2Q(t)

N

dz— =-2
Cl [P

x
-x(t)] (71)

dz

d^ - -F + C
A
A
2
(t) + z

±
- z

2
[C + A(t)]|l - ^9ili (72)

Thus Equations (71) and (72) correspond to Equation (19). Equation (28)

in this case becomes
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2C, (

dP

dt 2z,

~n"
[C + A(t)]

P
ll

+ P
12

[C + A(t)]

1 -Mil
N

P
ll

+ P
12

[C + A(t)] 1 - 2Q(t)

N
- 2P

12
+ 2P

22
[C + A(t)]

1 . Mil
N

Hence Equation (28) is represented by the following three equations:

dP
ll 2— " 2C

I
+ R

1
T (73)

dP
12

-P.- - P 10 [C + A(t)]
dt 11 12 1-^1 + RlR2T

I
N

i
1 2

(7A)

dP
22

2.

dt
jj— [C + A(t)] + 2P

12
2P

22
[C + A(t)

2Q(t))
N

+ R
2
T

(75)

To avoid confusion, the £ in the derivation of the method given in Equation

(48) is denoted by QF here. Thus Q still represents the sales for this



problem.

Equation (48) is given by

54

42,

dt

I

R
l

V J

(f)
s +

f
\ /

h
(|)

l

R
2, V

Q(t) . 2iO

'

QF,

. ,

QF
2.

-1

[C + A(t)] 1 - 2Q(t)

QF

QF,

f
1

f

R s

H
-

R
2
s

T
*>

.

R
l~ • QF

2
• Q(t)

N

QF, • QCt) - (l - *tf
I

- QF,

QF
2

[C + A(t)] 1 . MEi
N

dQF. R,s R
- -=- + — • QF„ • Q(t)

dt T T w
2

wv ' 1 - Q(t)
+ QF, (76)
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Table 4

Starting Trajectories

C Kt) Q(t)

0.00 0.200 0.200
0.01 0.203 0.200
0.02 0.205 0.201
0.03 . 0.208 0.208
0.04 0.210 0.212
0.05 0.211 0.220
0.06 0.212 0.228
0.07 0.217 0.230
0.08 0.220 0.238
0.09 0.222 0.245
0.10 0.226 0.250
0.11 0.228 0.261
0.12 0.230 0.272
0.13 0.233 0.283
0.14 0.238 0.300
0.15 0.242 0.317
0.16 0.250 0.339
0.17 0.252 0.410
0.18 0.260 0.430
0.19 0.264 0.450
0.20 0.270 0.460
0.21 0.274 0.483
0.22 0.280 0.503
0.23 0.284 0.520
0.24 0.290 0.540
0.25 0.293 0.560
0.26 0.300 0.580
0.27 0.301 0.600
0.28 0.306 0.620
0.29 0.310 0.648
0.30 0.318 0.665
0.31 0.320 0.690
0.32 0.324 0.702
0.33 0.330 0.724
0.34 0.336 0.745
0.35 0.340 0.760
0.36 0.342 0.785
0.37 0.346 0.800
0.38 0.350 0.814
0.39 0.351 0.830
0.40 0.355 0.842
0.41 0.359 0.857
0.42 0.360 0.870
0.43 0.362 0.880
0.44 0.368 0.890
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0.45

Table 4 (continued)

0.46 .371
0.47 .372

0.370 .900

0.910

°' 54 0.389
°' 55 0.390
0.56 0.391
0.57 0.392

0.72
0.73 .422
°- 74 0.426
°- 75 0.430
°' 76 0.435
°- 77 0.438
°- 78 0.440
°- 7 9 0.441
0.80 .447
°- 81 0.450
°- 82 0.451
°- 83 0.453
°- 84 0.460
°- 8 5 0.461
°- 86 0.462
°- 87 0.468
°- 88 0.470
°- 89 0.473
°-90 0.475
°-91 0.480
0.92
°-93 0.488

0.920
0.923o'f

°- 373

o'ln
°' 378 0.930

0*5? °' 380 0.936

Q\ ?
°- 381 0.940

0*53 n'
382 0-945

°- 3 0.950
0.951
0.958
0.962
0.970

o'll
°* 393

0.971
0.398 n q7 o

°- 60 o Ann
n A1

°- 400 0.982

olo
°- 40°

0-990
? O' 401 99S
0- 63 n Am
n (,l

3 i-OOO

0*65
O' 408 1.0020- 65 0.410

0.66 0.411
1.010
1.015

0- 412 1.020
1.028

0.67
0- 68 0.416
0-69 0.417
°- 7 ° 0.419 i*03?

0- 421 '

1.045
1.050
1.051
1.056
1.060
1.065
1.070
1.071
1.078
1.081
1.090
1.092
1.100
1.101
1.110
1.112
1.120
1.130
1.135
1.140

0.482 lel43
1.150
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Table 4 (continued)

0.94 0.490 1.160

0.95 0.496 1.165
0.96 0.500 1.170
0.97 0.503 1.173
0.98 0.510 1.180
0.99 0.513 1.190
1.00 0.519 1.200
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dt T T Q
2

Q(t) 1 - Q(0

- QF
2
[C 4- A(t)] • 1 _ Mil (77)

Thus Equations (76) and (77), represent Equation (48). The equation for

improving the control variable becomes

A(t) (J+1) -A(t)^+f s + QF_ • Q(t) 1 .act*

i{R
1
(x

(J+1) .x^) + R
2
(Q<J+1>.Q^>)}

Equation (78) represents Equation (50) (78)

This problem illustrates how tedious the calculations become when the

number of variables increases.

Numerical Results

In here, the starting trajectories of the two state variables,

inventory I(t) and the sales Q(t), were fed from the results of the solution

of the same problem by dynamic programming. These values are listed in

Table 4. Actually these values are obtained after dividing the original

results by 100. This was required to prevent the exponential overflow of

the system of equations. The starting trajectory of the control variable

was tried in the range of 0.001 to 6.0. It was found that all these values

would work; however, the best value was found to be 0(t) - 0.5, 0<t<t. a
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Table 5

Effect of e on the Rate of Convergence

of I(t
f
) with A

Q
(t) - 0.5.

Iteration E = 0.1 E = 0.3 e = 0.5 E = 0.7

1 0.8524 0.8524 0.8524 0.8524 .

5 0.7137 0.6274 0.6076 0.6277

10 0.6546 0.5990 0.5939 0.5929

14 0.6307 0.5948 0.5935 0.5934

16 0.6227 0.5941 M 0.5935

17 0.6194 0.5939 H ii

21 0.6096 0.5936 ii ii

The Values of I
Q
(t) & QQ

(t) are obtained from Table 4.
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Fig. 10 Convergence rate of Inventory.
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Fig. 12 Convergence rate of Inventory.
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Table 6

Effect of g on the Rate of Convergence

of Q(t ) , with A (t) = 0.5.

Iteration c = 0.1 e = 0.3 e = 0.5 e = 0.7

1 0.9781 0.9781 0.9781 0.9781

5 1.135 1.198 1.206 1.172

10 1.179 1.218 1.222 1.223

14 1.197 1.221 ii ii

16 1.202 1.222 ii ii

17 1.205 n ii ii

21 1.211 ti ii ii

The Values of I
Q
(t) & Q (t) are obtained from Table 4.
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Table 7

Effect of e on the Rate of Convergence

of Total Profit, with A
Q
(t) - 0.5.

1 teration E = 0.1 e - 0.3 e = 0.5 e = 0.7

1 5.298 5.298 5.298 5.298 .

5 6.260 6.596 6.621 6.571

10 6.527 6.626 6.626 6.626

14 6.589 ti ii ii

16 6.604 ii ii ii

17 6.609 it ii M

21 6.620 ii ii ii

The Values of I
Q
(t) & Q Q

(t) are obtained from Table 4.
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Fig. 17 Convergence rate of Profit,
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Table 8

Effect of e on the Rate of Convergence

of A(t ) , with A (t) = 0.5.

Iteration e = .01 e = 0.3 e = 0.5 e - 0.7

1 1.320 2.960 4.599 6.239

5 3.088 4.841 5.218 5.269

10 4.091 5.174 5.222 5.221

14 4.525 5.213 5.221 ii

16 4.672 5.217 ii ii

17 4.733 5.219 M ii

21 4.917 5.220 ii ii

The Values of I
Q
(t) & QQ

(t) are obtained from Table 4.
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Table 9

Starting Trajectories for Inventory, Sales

and Advertisement, 0^t<_t
f

.

I (t) - 0.2 2 I
Q
(t) «= 0.5

Q (t) - 0.2 Q
Q
(t) = 0.5

A
Q
(t) = 0.5 A

Q
(t) = 2.0

I
Q
(t) = 0.5 4 I

Q
(t) = 0.6

Q (t) = 1.0 Q
Q
(t) = 1.3

A
Q
(t) = 2.0 A

Q
(t) = 2.0

I
Q
(t) = 0.6

Q (t) = 1.3

A
Q
(t) = 5.0
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Table 10

Effect of e on Rate of Convergence of

I(t
f

) with I
Q
(t) = Q

Q
(t) = 0.2, A

Q
(t) = 0.5, 0<t<t

f<

Iterat:.on c = 0.1 c = 0.3 e = 0.5 e = 0.7

1 0.852U 0.852U 0.852U 0.852U

5 0.726U 0.63^3 0.611U 0.6322

10 0.662U 0.5999 0.59^0 0.5928

15 0.6309 0.59^5 0.5935 0.5935

20 O.61U2 0.5936

25 0.6051 0.5935
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Table 11

Effect of e on Rate of Convergence of

Q(t
f
), I

Q
(t) = Q

Q
(t) - 0.2, A

Q
(t) - 0.5, 0^t£t

f
.

79

Iteration e = 0.1 e = 0.3 £ = 0.5 e « 0.7

1 0.9781 0.9781 0.9781 0.9781
.

5 1.083 1.178 1.198 1.165

10 1.153 1.215 1.222 1.223

15 1.185 1.221 ii 1.222

20 1.202 1.222 ii ii

25 1.211 ii ii ii
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Table 12

Effect of e on Rate of Convergence of

Total Profit, I
Q
(t) - Q (t) «= 0.2, A

Q
(t) - 0.5, 0<t<t

f
.

Iteration e = o.i E = 0.3 e = 0.5 e = 0.7

1 5.298 5.298 5.298 5.298 .

5 6.246 6.586 6.614 6.554

10 6.518 6.626 6.626 6.626

15 6.595 it ii ii

20 6.617 M H ii

25 6.624 ii ii n
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Table 13

Effect of e on Rate of Convergence of

A(t
Q
), I

Q
(t) QQ

(t) = 0.2, A
Q
(t) = 0.5, 0<t<t

f

85

Iteration E = 0.1 E = 0.3 e = 0.5 e = 0.7

1 1.320 2.960 4.599 6.239 .

5 2.973 4.804 5.223 5.284

10 4.005 5.169 5.223 5.220

15 4.549 5.215 5.221 5.221

20 4.847 5.220 it it

25 5.012 5.221 it ti
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Table 14

Effect of Different Starting Trajectories

on I(t
f

) with E = 0.4.

I
Q
(t) = 0.5 I

Q
(t) = 0.5 I

Q
(t) = 0.6 I

Q
(t) = 0.6

Iteration Q
Q
(t) = 0.5 Q

Q
(t) = 1.0 Q

Q
(t) = 1.3 Q

Q
(t) = 1.3

A
Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 5.0

1 0.6134 0.6134 0.6134 0.3305

5 0.6024 0.5922 0.5876 0.5356

10 0.5945 0.5939 0.5936 0.5887

15 0.5936 0.5936 0.5935 0.5932

20 0.5935 0.5935 ii 0.5934



Table 15

Effect of Different Starting Trajectories on

Rate of Convergence of Q(t
f
) with e = 0.4.

89

Iteration

I
Q
(t) = 0.5

Q (t) = 0.5

A
Q
(t) = 2.0

I (t) = 0.5

Q (t) = 1.0

A
Q
(t) = 2.0

I
Q
(t) = 0.6

Q (t) = 1.3

A
Q
(t) = 2.0

I
Q
(t) = 0.6

Q (t) = 1.3

A
Q
(t) = 5.0

1 1.340 1.340 1.340 1.491

5 1.219 1.243 1.255 1.316

10 1.222 1.224 1.225 1.232

15 it 1.222 1.222 1.223

20 it ii it 1.222
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Table 16

Effect of Different Starting Trajectories on

Rate of Convergence of Total Profit with e = 0.4,

I
Q
(t) = 0.5 I

Q
(t) = 0.5 I

Q
(t) = 0.6 I

Q
(t) = 0.6

Iteration Q
Q
(t) = 0.5 Q

Q
(t) = 1.0 Q

Q
(t) = 1.3 Q

Q
(t) = 1.3

A
Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 5.0

1 4.668 4.668 4.668 -16.120

5 6.621 6.588 6.551 6.249

10 6.626 6.625 6.625 6.621

15 it 6.626 6.626 6.626

20
ii M ii it
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Table 17

Effect of Different Starting Trajectories on

Rate of Convergence of A(t~) with e = 0.4.

I
Q
(t) = 0.5 I

Q
(t) = 0.5 I

Q
(t) = 0.6 I

Q
(t) = 0.6

Iteration .Q
Q
(t) = 0.5 Q

Q
(t) = 1.0 Q

Q
(t) = 1.3 Q

Q
(t) = 1.3

A
Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 2.0 A

Q
(t) = 5.0

1 2.330 1.442 -1.176 1.823

5 4.910 4.677 4.556 4.476

10 5.210 5.182 5.173 5.151

15 5.220 5.218 5.217 5.215

20 5.221 5.221 5.221 5.220
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The results Starting with this trajectory were explored in detail with

different value of c . Tables 5 through 8 show the convergence rate of

inventory, sales, profit function and advertisement, respectively, for the

different values of c.

Figures 10 through 12 show the convergence rate of inventory for dif-

ferent values of e . Similarly, Figs. 13 through 15 show the convergence

rate of sales, Figs. 16 through 18 of profit function and Figs. 19 through

21 of advertisement for different values of e . The maximum value of e that

would lead to convergence in this case was found to be 0.7. c =1.0 would

lead to exponential overflow in this situation. Another interesting point

noted was that almost the same convergence rate was obtained with e = 0.5

and with e = 0.7. Thus a higher £ did not increase the convergence rate.

In an another approach to this problem, a number of different starting

trajectories for inventory, sales and advertisement were used. These are

listed in Table 9. Set (1) of the various trajectories listed in Table 9

was explored in detail with different values of c .

Tables 10 through 13 show the convergence rate of inventory, sales,

profit function and advertisement respectively, for different values of z .

Figures 22 and 23 show the convergence rate of inventory for different

values of c . Similarly Figs. 24 and 25 show the convergence rate of

sales, Figs. 26 and 27 of profit function and Figs. 28 and 29 of advertise-

ment for different values of e .

The remaining starting trajectories from Table 9, namely sets (1)

through (5) were tried with e = 0.4. Tables 14 through 17 list the con-

vergence rate of advertisement for these trajectories. Figs. 30 through

33 show the convergence rate of advertisement for these different tra-

jectories.
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The starting trajectories (1) through (5) from Table 9 led to con-

vergence almost in the same number of iterations. The maximum value of

e that would lead to convergence was found to be 0.7 in this case also.

Thus it is seen that the problem is very stable and that the optimum

can be reached almost with any reasonable values of the starting tra-

jectories.

Another computational feature that was encountered in the solution

of this problem was regarding the numerical solution of the differential'

equations. As their number increased it was found advisible to use the

IBM subroutine "RKGS" for their numerical solution. However, this sub-

routine imposed the problem of accuracy which has to be specified by the

user. This is the accuracy against which the results are checked after

each integration step. If the accuracy is too low, the integration step

size is halved and this continues until the specified accuracy is obtained.

Thus, if the accuracy is not appropriate, the grid points may not be the

ones desired by the user. The calculations of R,S_, and T_ should be done

both in subroutine "FCT" and "OUTP". (See appendix 7.2) Also, to test

the fact that this method would lead to convergence at the nearest stationary

point regardless of whether it is a maximization or a minimization problem,

the objective function was made negative and the same problem solved again.

The results agree in both the cases. Thus whether a maximum or minimum

will be reached all depends on the nature of the curve of the objective

function.
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3.3 A Chemical Manufacturing Problem with Advertisement

The >'.o..;ol

Figure 34 represents a chemical manufacturing process and stages 1

and 2 represent two reactors. The raw material entering the first reactor

is a mixture of A and B. After the second stage, the product A and product

B are separated, as is the remaining raw material, product C. Product B

is the more valuable of the three products and, to enhance its sale, it '

has to be advertised. Also, to meet the fluctuations in its demand, a

certain amount of inventory has to be kept. It shall be assumed that the

demands for products A and C are unlimited.

A(t)

SALES

V A,C

Fig. 3A
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Let x~, and y~ represent the concentration of A and B in the original

raw material before it enters the first stage or reactor. Similarly,

let x
, y and x

, y represent the concentrations of A and B before and

after the second stage, respectively. To bring about this reaction,

temperatures T.. and T_ have to be applied to the two reactors. The re-

actions in the reactor can be represented by the following equations:

Let q = flow rate

v = volume of the first reactor

v~ = volume of the second reactor.

Then,

dx
l

V
l dT~

= q(x ' X
l) " v

i
Ka

i
x
i

(79)

dy
l

v
i dT"

= q(yo " y i
} " v

i
Kb

i y i
+ v

i
Ka

i
x
i

C80)

dx
2

V
2 dT

= q(x
l " X

2
} "

V
2
Ka

2
X
2

(81)

dy
2

V
2 dT

= q(y l " y
2
} " V

2
Kb

2
y
2
+ V

2
Ka

2
X
2

(82)

wnere

Ka
n

= G exp (-Ea/RTj
i a 1

Ka
2

= G exp (-Ea/RT )

Kb
1

= G exp (-Eb/RT )

Kb
2

= G
b

exp (-Eb/RT
2
).
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This completes the production part of the system. Now consider the

;;tory. The rate of change of inventory is the difference between

rate of production of B and its rate of sale. If I(t) represents the

inventory at time t, then

dl(t) „ „, N

JT2-
= ^2 " C

a
K(t) (83)

The sales equation is assumed similar to the problem in Para. 3.2.

dK(t)

dt
= [C + A(t)] • K(t) 1 - K(t)

N
(84)

Equations (79) through (84) represents the performance equations of the

whole system under consideration.

This problem has six state variables, namely x, , y, , x
, y„, I(t).

K(t) and three control variables namely T. , T~ and A(t)

.

The profit function can be formulated as:

Profit = (sales revenue from A,B,C)-(cost of holding the inventory for

B) - (cost of advertising for B) - (cost of production)

Sales revenue from A, B and C is = C,C K(t) + C
?
qx + CLq (1 - x - y )

where, C. , C_, C, represent the unit sales prices for A, B, C respectively,

2
Cost of holding the inventory of B = C T (Iw - I(t)) where I__ is the

I M M

capacity of the warehouse and C = inventory carrying cost.

2 2
Cost of advertising = C A (t) K (t)

.

A

Cost of production comes from the fact that the two reactors have to

be supplied with heat energy in order to obtain the desired temperature.

Let C represent the cost of raising the reactor temperature by a unit

degree. Then the cost of production becomes



" C
T{(

T
lm " ^ +

(
Tl- T

2 )

2

}

where T.. is the temperature of the entering raw material. Thus the

function to be maximized is
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J = / C..C K(t) + C qx.
U 1 q 2 2

C
3
q(l-x

2
-y

2
) C

T
[I -I(t)]

I m

- C
A
A
2
(t)K

2
(t) - CyCT^-T^ 2

+ (T^T^ 2
]}-

£ - ClC
q
K(t) + C

2
qx

2
+ C

3
q(l-x

2
-y

2
) - C^-lCt)] 2

- C
A
A
2
(t)K

2
(t) - QjKT^) 2

- (TrT
2

)

2
] . (85)

Recursive Relations

The necessary relations for the second variation can be obtained

in the following manner. The various derivatives can be obtained as

follows

3x

3x.

3y-

3J

3x,

3J

3y
2

3J

31

3J

[ 3K
,

q(C
2
-C

3
)

"C
3 q

2C
T
(I -I(t))

1 m

C
1
Cg-CA

A (t).2.K(t)
q a
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3x - 2C
I

-2C
A
A
2
(t)

a J

363x

_3J

36

2C
T
(T

lm
-T

1
) + IC^I^T^

2C
T
(T

1
-T

2
)

-2C
A
A(t)K (t)

36'

-2C„

2C,

-2C.

-2C.K (t)
A
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3f f

3x

BM Ga-EAT

BM,

(q/V,

BM,

q/V
2

Ga-EAT,

BM,

-C BM C
q 5

where,

BM
1

= - (q/V
x

) - Ga-EAT.^ EAT
1 «P<" W?

BM
2

= - (q/V
1

) - Gb-EBT , EAT
2

" «*<" W?

BM
3

= - (q/V
2
) - Ga-EAT

2
, . EBT

1 " ***<- W?

BM
4

= - (q/V ) - Gb-EBT^
EB

EBT
2

- «p(-—

)

BM
5

= (C+A(t)) - Gb-EBT
2
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L 3x J

BM,

Ga-EAT BM

q/V, BM,

q/V
2

Ga-EAT
2

BM^

-C

BM
5 J

af

'

36

FT. FT

FT- FT^

FT
5 J

vhere

FT, = - Ea „
RT

1

~~T
G
a
X
l
e

RT^

Eb

FT =
2

Eb
RT

GJ^
RT

2 b*
7
!

1 Ea _
+
5*

G^e

Ea
RT,

Ea
Ea

FT, = - —-r G x e RT?3 RT^
a2 2
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FT^ = Eb

RT

Eb

RT.

2 °by2
e

Ea
RT.

FT
5

= K(t) [1 - ^|i]

8
2
f.

3x

3"f,

8x

3
2
f.

8x

2 2

til lis.

3x 3x

'0

'

3
2
f3 f
6

3x
2

- | [C+A(t)]



106

3x

r

BM
1

.

Oj

3
2
£.

3x 80

3x

r

3a. EAT.

BM
2

3
2
f.

8x de

-G

3f.

3x

q/V,

-q/V
2
-Ga.EAT

2

3
2
f.

ix 3(



107

3f

q/V.

Ga-EAT,

BM,
9x 36

o

-G.

af,

3x" q

o

-c

3
2
f.

3x 86

'

'

3x

[i -^-Hc-fA(t)]

2 r
r o

f.
6

3x 36

[1
2K(t)

N



where,

108

°l"
EA - . EA«—- Ga exp(- —

)

RT?
OT

1

EA

RT'

G_ = - —g Ga exP("
—

2

EA

EB _ , EB >
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Hi
30

K(t)(l - ^-)

3
2
f,
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P =
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21

31
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51

61
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32
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52

62
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53

63
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U3

UU

5^

6U

51

52

53

5U

55

65

61

62

63

6k

65

66

Now the expressions for R_, S_, T which are required for obtaining the

second variational Equations (19), (28) and (U8) may be determined.

Thus
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where
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From Equation hj
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3G i=l 30
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DTU = 2C
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The equations for — , i.e. Equation (19), take the following form:
CL \f

dz—- = - z.BMl - z_G EAT1 - (q/V.) z, (86)
dt l d a ^ o

dz^= - z
2
BM2 - z

u
(q/V

2
) (87)

dz

^2. = - q(C
2
-C

3
) - z BM3 - G

&
EAT2 z^ (88)

dzi

-rr=- = C_q - BMl+ z, - z c q (89)
dt 3 ^5
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^=2Cl (I
M
-Kt)) (90)

az
6 ?~~- = - C,C + C A (t) 2K(t) + z cC - z,BM5 (91)

dt 1 q a 5 q o
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R'TR

RTR1 RTR2 RTR3 RTR4 RTR5 RTR6

RTR2 RTR7 RTR8 RTR9 RTRIO RTR11

RTR3 RTR8 RTR12 RTR13 RTR14 RTR15

RTR4 RTR9 RTR13 RTR16 RTR17 RTR18

RTR5 RTR10 RTR14 RTR17 TRT19 RTR18

RTR6 RTR11 RTR15 RTR18 RTR20 RTR21

Equation (28) now becomes
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at 11 21 61 2.

(92)

dP
21
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21
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22
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32
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2
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dP
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Equation (^8) is given by

dt
= R' T"

1
S + R' T"

1 (~-) & - (j|4 £

where ^ is six dimensional. Here all the terms were obtained by the

matrix multiplication. The new control is calculated as given by

Equation (50), i.e.

'
-'_

|

T
2

.
A(t)

.

(J+l)

x
2

I
A(t),

(J)

- ^-36c T "(S + £- &)

(J)
- (T^RjJ • (x

( J +1-x
( ^)
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Numerical Values of the Constants
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Set h
1

1

q - 60

c
q

= 1.0

Im = 20.0

C
2

= 0.0

C
A

= 0.0002

E
A

= 18000.0

y
i

= 0.430

Set //

1

2
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c
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C
2
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C
A

= 0.01

E
A
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v
l

= 12.0

c » 1.0
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" 340.

C
3

= 0.0

C
T
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E
B
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Ga - 0.535x10
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= 0.43

v
l
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C
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C
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= 0.001
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C
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C
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c
i

=

R =
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I

=
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1.0
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0.53
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18

Set // 3

Same as Set // 2

except Im = 20.

' C
T

= 0.0005

and K(t
o
)

= lt0
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Discussion

This particular problem reveals how the theoretical attractiveness

the second variation method is more than offset by both the complexity

and by the number of equations to be integrated.

In this problem (6+1) or seven equations are to be integrated in the

forward direction and (6+6(7) /2+6) or 33 equations in the backward

direction. In addition, the calculations of R, S, and T_ are in terms of

matrix multiplications and T has to be calculated at each step of the

integration in Equations (28) and (48)

.

This program was tried with three different sets of numerical values

which are shown in Table 18. These values were taken from the solution

of the same problem first by variation and quasilinearization respectively,

This problem was found to be unstable as far as its solution by

the second variation is concerned. With all the various values tried,

the program could make a complete iteration. However, it fails in the

backward integration of the second variational equations because of

exponential overflow.
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U. CONCLUSION

The second variation method has been shown to be a fairly useful

tool for attacking the complex practical optimization problems involving

a fairly large number of variables. The convergence is very fast, pro-

vided the initial or starting guess is sufficiently close to the optimal

trajectory. This, however, becomes more and more difficult when more

than one control variable are involved. In that case, the number of combin-

ations that could be used as the starting trajectory is quite large and

makes the initial guess a difficult task. This can be overcome by using

the first variation method for the first few iterations and then switching

to the second variation method. This combination provides rapid conver-

gence to the optimum from almost any realistic starting trajectory. The

theoretical attractiveness of this method is removed by its disadvantages

like the guess of the initial trajectory for the state variables in ad-

dition to that of control variables. Also the number of equations and

their complexity make the use of this technique tedious.

The first variation method, of which the second variation method

is a natural evolution, should be used in combination with the second vari-

ation. The first variation method, unlike the second variation, will

approach optimum from almost any realistic starting trajectory. The re-

sults of the first variation method could then be used as the starting

trajectories for the second variation. In this way, the convergence problem

of the second variation can be partly overcome. This combination provides

a rapid convergence from almost any realistic starting trajectory for

most engineering problems. While evaluating the merits and demerits of

this technique, it should be borne in mind that no single optimization
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technique is suitable for all classes of problems that will be encountered.

Each technique will be most efficient only for a particular type or types

of problems. It is left to the decision of the engineer to select any

one or a combination of these techniques for the problem he is facing.
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7. APPENDIX

7.1 Computer Program for the Inventory Model

7.2 Computer Program for the Inventory and Advertising Model

7.3 Computer Program for the Chemical Manufacturing Problem with
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1C

11

12

12

14

15

16

17

1F

i<;

2C
21
22
23
24
25

26
27

26

2S
3C

31

32

2 2

34

35

36

fJCB RANGNEKAR,K0N=CHECK,TtME=30,PAGES=4C0,LlNES=5u
FXIFRNAL FCT,OUTP 128

DIMENSION PRMT(iO),CERY(lO) , AUX(8, 12 ) , YO ( 2 , 10 1 ) , Y 1 ( 9 , 10 1 ) , Y ( 10 ) , AT
KlOU ,ATNFW( 101)
COMMCN Yl,/\T,ATNEhtYn f A l B,C,AN,F l CI|P[,CA,K f NK,FP,Rl f R2ib,T,J,*

C THIS PROBLEM HAS 2 STATE VARIABLES AND 1 CONTROL VARIABLE
C — THL STATE VARIABLES ARE THE INVENTORY AND THE SALFS
C -- THE CCNTROL VARIABLE IS THE ADVERTISEMNT MACE
C

C —
ICO

101

102
103

104

105

C VA
2C0

201

2C3

2C2

FORPA
REAC
FO.tMA
REAC
FORMA
FORM
l=',FE
FORMA

1=* ,F8
FORMA
PRINT
PUNT
PRINT
PRINT

LUES C

FORMA
101 GR
PRINT
FORMA
REAC
REAC
REAC
FORMA
PKINT
FORMA
PRINT

T (9F
100,

A

T (21
101,

N

T C
T CO
.3)
T (

'0

.3)
T (

«0

102
103,
104,
105,

F THF
T CO
ID PO
200

T (12
201, (

201, (

201, (

T ( '0

203
T ( IH

202,

RCA0 THE VARIOUS CONSTANTS
8.3)
,B,C,AN,F,CI,PI,CA,EP
4)
K f ITMAX
FOLLOWING VALUES OF THE VARIOUS CONSTANTS ARE READ tN« )

B=« ,F8. J,

•

F=»,F8. U CI=' ,F8.3,

•

NK=« , 14, '

C=» ,F8. 3,

PI= f ,F8. ),

'

AN

CA

ITMAX=« ,14)

A,B,C,AN
F,CI,PI,CA
EP,NK, ITMAX
STATE ANC CONTROL VARIABLES AT 101 GRID POINTS

THE FOLLOWING VALUES OF STATE AND CONTROL VARIABLES AT 1

INTS ARE READ IN' )

F6.3)
Y0( 1,NM) ,NM=1,NK)
YC(2,NM) ,NM=1,NK)
AT(NM) ,NM=1,NK)
NO. INVENTORY SALES ADVT. •

)

C VA

DO 2

FORMA
I NO.
PRINT

RICUS
PRMT (

PRMT(
PRMT(
PRMT(
NUlf =

DERY (

DERY (

00 4

-, ( IH , I3,4X,3(F6.3,5X) )/)
(NM f Y0( 1,NM),Y0(2,NM) ,AT(NM) ,NM=1,NK)

^A IN cn LOOP FOR ITERATIONS
IJ=l, ITMAX
j (iQ********************************************* ITERATION
^14,* ************************************* •)

J, IJ

PARAMETERS FOR FORWARC INTEGRATION
l)=0.
2) = l.

3) = .0
4)=.0
3

1)=ND
11*1.
1=2,

N

1

1

IM
/DFRY( 1

)

IDIM



37

3e
3S
4C
41

42

A3
44

46
41
4€
4<5

5C
51
52
53

54

55
56
57
56
5S

6C
61
62

DERY( I )=DERY( 1)

Y ( I ) = . ?

Y(2)=.2
Y( 3)=C.
K=i

129

CALL RKGS FOR THE FORWARD INTEGRATION
CALL RKGS(PRPT,Y,DERY,NDIM, IHLF , FCT , CU TP , AUX

)

VARIOUS PARAMETERS FOR THE PACKWARC INTEGRATION
PRMTd ) = 1.

PRMT(2)=0,
PRMT(3)=-.01
PRMT(4)=.01
NDIM=7
DERYU )=NDIM
DERY( l) = l./DERY( 1

)

DO 5 I=2,NDiy
5 DERYI I) = DERY( I)

DO 6 1=1,7
6 Y( I )=0.

K = 2
— CALL RKGS FOR BACKWARD INTEGRATION

CALL RKGS(PRMT,Y, DERY,NDIM, IHLF f FCT ,CU TP , AUX

)

DO 7 L-lfNK
YO( 1,L)=Y1( 1,L)
YO(2,L) =YH2,L)
AT(L)=ATNEW(L)
CONTINUE
STOP
END



6<;

7C
71

12

72

74

11
It

77
76

7S

ec

81

ei

82

84
85

ee

67

c

c

c

c

c

c

SUt RC
DIMEN

l(l< 1 )

CCM^C
CEPFNI3IN
CF THIS
INTEGRA!

IF (K— THIS
IF ( X

J=L
Y( 1 } ,Y(2)
INUCPt M
PROGRAM

il DERYl
OERYI
DE
RETLR

SE
10 IF(X.

N=NK
1? Rl = Y<

R2=-2
IN)
S=-2.
T =-2.
DERYI
DERYI

UTINIE FCTIX, Y, CFKY) 130
SIQN PRMT I 10),DERY( 10), AUX( 8,12),Yn(2,lCi»,Yl(9,lOl),YlU ), J
,ATNEW( 10L)
N Yl,AT,ATNE*,YC,A f B,C,AN,F t CI,PI,CA,K,NK,FP f Rl,R2,S,T,J,N
G ON THE VALUE OF K,CITHFR THE FIRST PART OR THE bECOND PART

'OUTINE IS USED FOR THE FOKWARD AND THE BACKW/.
ION RESPECTIVELY.
.EQ.2) GO TO 1C
PART OF SUBROUTINE IS FOR FORWARD INTEGRATION ONLY
.NE.O) GO TO 11

DENOTE X ANC G IN THE PROBLL."-

ENT VARIABLE T IN THE ORIGINAL CCNS. IS UENCTED BY X IN THE

1 ) = A*B*X-Y( 2

)

2)=Y(2)*(C+AT(J))*(1.-Y(2)/AN)
H«YI 2)*F-CI*( (PI-YI I) )**2)-CA*YI2)*( ATIJ)**2)
N

FIRST PART FOR FORWARD INTEGRATION ENDS

COND PART FOR EACKwARD INTEGRATION
NE.l) GO TO 12

4)*YK2,N)*( l.-YK2,N)/AN)
.*CA*AT(N)+Y(5)*Yl(2,N)*(l.-Yl(2 f N)/ANUY(2)*(l.-2.*YH2,M/A

*CA*Y1(2,N)*AI (N)+Y(2)*Y1(2,N)*{1.-Y1(2,N)/AN)

C

c

c

c

DERYl
UFRYI
DERYI

1 (2,N )

DAC
TF

CF IN TF

THIS PR
DERYI
DERY I

l)*l 1.

REILM

*CA*Y1(2,N)
1 )=-2.*CI*lPI-Yl I 1,N) )

2)=-F + CA*(AT(N)**2)+Y( 1 )-Y I 2 ) * I C + AT I N ) ) * I 1 .-2 . *Y 1 I 2 , N ) / AN

)

BACKWARD INTEGRATION OF DP/DT 3 EQUATIONS
3)=2.*CI+(R1**2)*T
4)=Y(3)-Y14)*IC + AT(N))*U.-2.*Y1 I 2 , \ ) / AN ) +R 1 *K2* T

5)=(2.*Y(2)/AN)*(C+AT(N))*2.*YU)-2.*Y(5)*(C+AT(N»»*(l.-2.*Yl 1

/AN)+(R2**2 )*T
KWARD INTEGRATION OF DGF/DT 1

F SCALAR FUNCTION Q IN THE ORIGINAL DERIVATION IS DENOTFD BY
IS PROBLEM AND IS DENOTED BY Y(6) AND YI7) RESP., IN
CORAM
6) = (R1*S)/T«-(K1/T)*Y(7)*Y1(2,N)*(1.-YI(2,N)/AN)+Y(7)
7)=(R2*S)/T+(R2/T)*Y(7)*Y1(2,N)*(1.-Y1(2,N)/AN)-Y(7)*(C+AT(N) I

-2.*Y1(2,N)/AN) I

N 1

SFCOND PART ENDS
END



ee subroutine outp(x,y,dery, ihlf,ndim,prmt) 131
8<5 DIMENSION PRMT(l0) t CERY(10)fAUX(8fl2)tY0(2tl01),Yl(9,101) f Y(l()) f .-.r

1(101 ) ,ATNEW( 101)
<5C COMMCN Yl,AT,ATNEW,YC,A t B,C,AN,F,CIfPI,CA,K f NK,EP,»U,R2,S,l,J,
SI IFIK.EC.2) GO TO 2C

C THIS PART OF THE SUBROUTINE IS FOR THE FORWARD INTEGRATION ONLY
S2 IF (X.NE.O) GO TO 21
<52 J =

<94 23 FORMAT (•- NO. GRIC.PT. INVENTORY SALES
1 PROFIT ADVT.')

95 PRIM 23
S6 21 J=J+1

C STERING THE VALUES OF STATE VARIABLES AT EACH GRID POINT,!
C USED IN THE SE CND PART OF THIS SUBROUTINE FOR THE CALCULATION OF
C THE NEW VALUES OF THE CONTROL VARIABLE AT 1C1 GRID POINTS

97 DO 22 M=l,2
96 22 Yi(M,J)=Y(M)
99 ABC=-Y(3)

ICC 24 FORMAT (IH , I A, AX , F6. 2 , 5X, A ( E 1 2 . A , 7X ) )

1C1 PRINT 2A, J,X,Y( 1), Y ( 2 ) , ABC , AT U

)

1C2 IF (J. EC. 101) PRMT(5)=1.
1C3 RETURN

C FIRST PART FOR FORWARD INTEGRATION ENDS
C

C SECOND PART FOR BACKWARD INTEGRATION ONLY
1C4 20 IF IX.NE.l ) GO TO 25
1C5 306 FORMAT {'-NO. GRID PT. Zl Z2 Pll PI

12 P22 QF1 GF2 S I'

2)
1C6 PRINT 306
1C7 N=NK+l
1C6 2 5 N=N-1
1C9 R1=Y(4)*Y1 (2,N)*( 1 .-Y 1 ( 2 , N ) / AN

)

IK R2=-2.*CA*AT(N)+Y(5)*Yl(2,N)*( l.-Yl(2,N)/AN)+Y(2)*(l.-2.*Yl(?,\)/A
IN)

111 S=-2.*CA*Y1 (2,N)*AT(N)+Y(2)*Y1(2,N)*( 1 .-Y

1

(

2

, N ) /AN

)

112 T=-2.*CA*Y1(2,N)
C BACKWARD INTEGRATION OF DZ/DT 2 EQUATIONS
C CALCULATION OF THE NEW VALUE OF THE CONTROL VARIABLE AT
C N TF GRID POINT -

112 3C XXI=Y1(1,N)-Y0( I ,N)
114 XX2=Yl(2,N)-Y0(2,N)
115 ATNEW (N)=AT(N)-(EP/T)*(S+Y(7)*Yl(2,N)*(l.-Yl(2,N)/AN))-(Rl*XXl+Ri?*

1XX2J/T
116 308 FORMAT ( IH , I A, LX , F 5. 2 , IX, 9 ( E12.

A

f IX ) )

117 PRINT 308, N, X, (Y( II*), IM=1,7), S,T
11£ IF (N.EO.l) PRMT(5)=1.
US 310 RETURN

C SECOND PART FOR THE BACKWARD INTEGRATION ENDS
12C END



c

c

SUBMri. [ INT RKGS(PRMT,Y,DERY,NDIM, I HLF, FCT , OUTP , AUX

)

132

CIMENSIDN
X=P«^T( 1

)

H=PRNT ( n

Y ( 1 ) f DERY( 1), AUX( R,l),A(4),BU),C(<»),PRMT(l)

PRMT (5)=P.
CALL FCT (X,Y,DERY)

U
c

c PREPARATIONS
A{ l) = .5

FOR RUNGE-KUTTA METHOD

A(2)=. 292893?
M i)=l. 707107
A( 4)=. 1666667
B( l) = 2,

B(2) = l,

! ( i) = l,

B ( ' ) = 2 .

C( l)=.5
C(2I=. 2928932
C(3)=l. 707107
C(4)=.5

l_

P-tEPARATIONS OF
DO 3 I=l,NDIM
AUX( 1,1 )=Y(I )

FI'tST RUNGE-KUTTA STEP

AUX(2, I ) = DERY( I

)

AUX( 3,1 )=0.
i AUX(f , I ) = 0.

C

c RECORDING OF INITIAL VALUES OF THIS STEP
7 CALL CUTP( X,Y, DERY, IR EC , NDI M, PRMT

)

C

c

IF{P"MT( 5) )40,8,40

START OF INNERMOST RUNGE-KUTTA LOOP
8 J=L

10 AJ=A(J)
pj=e( j)
CJ=C( J)

DO 11 I=l,NDIM L
Ri=E*DEKY( I

)

R2=AJ*(R1-BJ*AUX(6, I )

)

Y( I )=Y( I )+R2
R2=R2+R2+R2

II AUX(6, I )=AUX(6, I )*R2-CJ«"U
IFU-4) 12, 15,15 L_

12 J = J I

IF( J-3) 13, 14, 13



15S
16C
It 1

13 X=X+.5*H
14 CALL FCT(X f Y,DERY)

GOTO 10

133

C

C

C

END CF INNERMOST RUNGE-KUTTA LOOP

15 DO 2<3 I=1,NDIM
AUX{ 1, I )=Y( I

)

AUX( 2,1 )=DERY( I

)

29 AUX(6, I )=AUX(3, I

)

CALL CUTP(X,Y,DERY, IHLF , NIC I M , PRMT )

IF(PRMT(5) )40,30,40
30 DO 31 I=1,NDIM

Y(

I

)=AUX(1, T

)

31 DERY( I )=AUX(2,I )

171
172
172

GO Tf f-

40 RETURN
END



36

AC
Al

A2
A3
AA

A5
A6

A7
A6

, (AT( I ) , I = l,NK)
DO 515 JK«1 , 101

515 y , ) -Y ( h, JKJ /ICO.
Arc FOLI VALUES OF

READ IN'

)

1 6 J

135

6 * l

1 y/AR

i ! <r*

P < I
v

LT2( 1

THE 6 STAff" WMAuLFS AND 3 CONTRf'L

61
1 63
/H (IH , ( IH , I3,1X,9(F10.5,IX) )/)
I 61,(1 ,Y0(

L

t I )tY0(2, I ),Y0(3,I ),YO(A,I ),Y0<5, I) ,Y0(6, I),
) ,AT( I ) ,I = 1,NK)

T 1 ( I

nn loop for i r- at ionsMAIN
on ico u=i f rrMAx

AI (• ************************************ iTFP.a if ••

1 '.lA,' ***********************************»)
[NT 200 i

U

PRMT ( 1)=0.0
AS

51

PKMT
PRMT

I

?) = l.

3 ) = . 1

A) = .l

52
*>3

5A

NDI^=7
DERY ( I )=MD IM

DC^Y( I )=1.E0/DERY( 1

)

55
56
S7

DO I

I DEKY
Yd)

l=?,NDIM
( I ) = DFKY( 1)

5S

6C

Y(2)
Y( 3)

Y(A)

.A3

.5 I

.A3
61 Y(^)=R.
62 Y ( 6 ) = . 1

6 3 Y( 7)=0
6A KSL=1
65 Al CALL «KGS(PRMT,Y,DERY,NDIM, IHLF , FC I" ,OUTP , AUX )

66 PRM ( 1 ) = l .

67 T(2)=0. |~

66 PRMT( n^-.oi
6S PRMT(A)=10.
7C NDIM=33
71 :Y( 1 JsNDIM
72 0ERY(1)=1.E0/DERY(1)
73 DO 3 l=?,NDIM
7A 3 DERY ( I )=UFRY ( 1 )

75 DO A 1=1,33
76 A Y( I) = 0.
77 KSL=?
76 A6 CALL Rt ,,( PRMT, Y, DERY, NDIM, IHLF,FCT,OUTP,AUX)
7S DG 120 L=l ,NK
ec Y'U 1,L)=Y1 ( 1,L)
81 l2 t L )=Y1 (2,L)
82 YU( 3,L )=Y1 ( 1,L)
83 YMA,L)=Y1(A,L)

L



84
85
86

Y0(5 fU=Yl (5, L)
YIM6,L)=YI (6,L)
r KL) = TINEW(L)

87 T2(L)=T2NEW(L)
£8 120 Ar(L)=ATNEW(L)
8S 100 C0M1 IMUh
9C
91

STOP
END

136



92
93

SUBROUTINE FCT (X,Y,DERY)
, RMT(10),Y(42) ,DERY(42),AUX(8,43),YU40,202),tWeW(202)

II ( I ,ATNEW(2 u 2) ,T1 (202) , T2(202) , AT ( 202 ) , YU ( 6, 202 ) , A( 10) t L( 1-
^

2),M(10)
J

2),N(1C)
S4 COMMON YlfTl »T2NEWtATNEW v Tl v T2f AT 9 NKtXXltXX2f XX3 v XX4 f XX5»XX6»

Y

L,FTl,FT2tFT3tFT4,FT5 > Sli i jj ' L ,
J / t

' ), R4 , R5 , R6 1 R7, R8 , R9 t RlU R 1 1 *
-

;i/,KM,Kl4,R15,Kl6,Rl7,Rl8 f A,J,N f EP,KSL,R,DIS,Vl,\/2,CQ,C f AN,AIN< f T

»CltC2tC3fCIffCA«CTtl •. iXI , YI « GA,GB,RTR1, RTR2 f RTR3 f RTR4,R1 >tRT
<>6tRTR7 > RTR8tRTR9,RTRl , 1

L

,RTRI2 > RTRI3 > RTRI4 t RTR15,RTR16 t Rr«17 J
9 5 MCN RTR18 V RTR19,RTR20 V R1 12 Li U r

> 1 ,
i: TS2 , RTS3, RTS4, RTS5, R rS6,:<TFU~

L f RTFC2 t R1 tTFQ4 f RTFQ5,RTFQ6,FQl,FQ2tFQ3,FQ4 t FQ5,FQ6, ? ,

1 II,'
'
r2,KMl,BM2,B M3 t BM4tBM5t GlrG2tG3tG4 -

[I IKSL-EQ.2I GO TO 2 5

97 [f (X.NE.OJ GO TO 42
Sfc J=l -
9S A 2 DERY(1)=(DIS/V1 )*(XI-Y(i) )-GA*EXP (-EA/ (

R * T L ( J) ) )*Y( 1)

ICC DERY(2)=<DIS/V1)*<YI-Y{2))-GB*EXP(-EB/«R*T1(J)))*Y(2)+GA*EXP(-EA/I
LR*T1(J) ) )*Y( 1)

DERY(3)=(DIS/V2)*(Y(1)-Y(J))-GA*EXP(-EA/(R*T2(J)))*Y(3)
UE*Y(4) = (DIS/V2)*(Y(2)-YK) ) -GB*EXP ( -EB/ (R*T2 ( J ) ) )*Y (4 )+GA*EXP(-

1 /(R*T2( J) ) )*Y(3) -
(S)=hIS*Y(4)-CQ*Y(6)

DERY(6)=(C+AT( J) )*(Y(6)-( (Y(6)**2)/AN) )

DERY ( 7)=CQ*C1*Y(<S)+L 2*DIS* Y( 3 )

+

C3*U I S* ( 1-Y ( 3 ) -Y ( 4 )
) -C I * ( (AIM-YC5) }

-

1**2 ) -C A* ( AH J)**2)*( Y(6)**2)-CT*( ( T LM- T 1 ( J ) ) **2+ ( TL ( J ) -T 2 ( J )
) **2

)

RETURN
2b IE ( X.NE.l ) GO TO W

N=NK
*7 CALL CALCL (X,Y, DERY )

INTEGRATION OF DZ/DT
CF«Y( 1 )=-BMl*Y( 1 )-Y(2)*GA*EATl-(DIS/V2)*Y( 3)

Y(2)=-RW2*Y(2)-Y(4)*(0IS/V2)
'Y( U=DIS*(C3-C2)-HM3*Y( 3 )-Y ( 4 ) * G A*E AT 2

DERY<4)=C3«DIS-Y(4)*BM4-DIS*Y(5)
DERY(5)=2.*CI*(YK5,N)-AIM)
DERY ( 6 ) =-C 1 *C0+2 . *C A* ( A T ( N ) **2 ) * Y 1 ( 6, N ) +Y ( 6 ) *CQ*(C + AT (N) ) *l l.-2.*V
LK6,N)/AN)

INTEGRATION OF DP/DT
UERY(7)=-2.*Y(7)*BM1-2.*Y(8)*GA*EAT1-2.*Y(9)*(DI S/V2)+RTH1
DERY(R)=-Y(8)*(BM1+BNV)-Y( I 3 ) *GA*b AT I - ( Y ( I 't ) +Y ( 1 ) ) * ( D I S/ V/' ) +RTR 2

DERY(9)=-Y(9)*(BM1+BM3)-Y< 10) *GA*EA T2-Y ( L4)*GA*EAT1-YU8 )*(0I S/V2)
UR1
DERYI 10)=-Y( 10)*(BMI+BM4)-Y(15)*GA*EAT1-Y( 19)*(UIS/V2)-Y( 11 )*DIS+R
1TR4
DERY( ll)=-Y(ll)*BMl-Y( !6)*GA*EAri-Y(20)*(DIS/V2)+RrRS
DERYI 12)=Y( 1 1 )*CQ-Y( 1 2 ) * ( BM 1 +BM5 ) - Y (

1

7) *GA*C AT 1- Y ( 2 1 ) * ( D I S/V2 ) R T

P

16

(YllO=-2.*Y( 13)*BM2-2.*Y ( 1 5 ) * ( D I

S

/ V2 ) +RTR7
Y(l^)=-Y(1A)*(BM2*BM3)-Y( 15 ) *GA*EAT2-Y

(

19)*(DIS/V2)+RTR8
DERY( 15)=-Y( 15)*(BM2 + BNA)-Y (22 )*(UIS/V2)-Y( 16)*0IS + RTR *



125
126
127
12E
129
13C

:Y( 16 )=-Y( 16) *BM2-Y( 23 )*(DIS/V2)+RT,UO
DERY(17)=Y ( 16)*CQ-Y (17)*(BM2+BM5)-Y(24)*(DIS/72)+Rl ,

l!

DERY(18)=-2.*Y< 1 8

)

*BM 3-2 . *Y

(

19)*GA*EAT2+RTR12

138

DERY( 19)=-Y{ 19)*(BM3+BM4)-Y(22)*GA*EAT2-Y(20)*DlS-MTRl3
DERY(20)=-Y(20)*By3-Y(23)*GA*EAT2+RTR14
nEKY(21)=Y(20)*CQ-Y(21)*(BMi+BM5)-Y(?4)*GA*EAT2*RTRlS

131
132
133

DERY(22)=-2.*Y(22)*BM4-2.*Y( 23)*DIS+RTR16
DERY(23»=-Y(23>*BM4-Y(25)*DIS+RTR I 1

DERY(24)=Y(23)*CQ-Y(24)*(BM4+BM5)-Y(26)*DIS+RTR18
134
135
136

DERY(25)=RTR19+2.*CI
DERY(26)=Y(25)*CQ-Y(26)*BM5+RTR20
DERY(27)=2.*Y(6)*(C+AT(N) )/ AN+2. *CA*( AT < N

)

**2 ) +2 . *Y ( 26 ) *CQ-2. *Y<

2

137

l)*BN5+RTR2l
INTEGRATION OF DQ/DT

DERY(28)=RTS1+RTFQ1-FQ1
136
13S
14C

0ERY(29)=RTS2+RTFQ2-FQ2
D£RY(30)=RTS3+RTFQ3-FQ3
DERY(3l )=RTS4+RTFQ4-FQ4

141
142
143
144

DERY« 32
OERY{ 3 3

RETURN
END

)=RTS5+RTFQ5-FQ5
)=RTS6+RTFQ6-FQ6



su
(I

1 I 2

UTINI
:

(202)
14 /

L.FT1,

^,Ll ,

A6, '
1 R

146 4MC

1 . MFC
i r i v e

14S ir (k

15C II (X

151 J =

152 U J = J*

l

DOTiM X, Y

PRMT (1 ) ,

,ATNEH 120
, T 2N

r 3 « F T4 9 F T

, '1>. U6,l
ItCIfCAtCT

, tTR9, tTI

18,RTR1 )_i

-. >, <TFQ4,
Ml

,

HM2.BM

V ( 42 1

2 ) , T 1

[W.AF
5,i>l,

R 1 7 , R

, IHLFi Ji)IM,PKMT)
'Y('.2),AUX(8,

(2 02 ) , \2 (202) ,AT
« n iYiC40*202) , ri?8 . i

2 ) ,Y0(6, 2 02), A( lu)
»T1,

t S3 * R
18, A, J,

.2)
I 60 Tl I

tEA,E
K 1 U , R

RTR20

3, BM4
36

BfXI«Yl

,RTR21,

T2,AT
LtR2,
NtEP,

,RTI
,BM5,G1

,GA,G
R12,R
RTSl,

) , AT (202) ,Y0(6,202), A( lu)
,NK,XX1,XX2,XX3,XX4,XX5,XX6,

, (4 v R5ffR6tR7, R8, R9, R10.R11
KSL,",M S,V1,V2,CQ,C,AN, A I .

, ITR1 »RTR2tRTR3 v RTR4 v RTR5,R
TR13,RTR14,RTR15,RTR16,RTR17
RTS2,RTS3, RTS4.RTS5.KTS6.RTF

)

1

FQl.F
,G2,G

Q2,F
3,G4

R1,RTR2,RT 13 V RTR4« tl 15 ,R

,RTR14,RTRi5,RTRl6,RT tl7

t RTS3,RTS4,RTS5,RTS6,.<TF',
Q3,FQ4,FQ5,FQ6,FAT1,EA1

1

32
15

DO 52

Yl(K r

K=l,6
J)=Y(K )

f (1H , I3,3X,F6.3,2X,7(C12.4, iX)

)

16 PRINT 15, J,X, ( Y( I ) , 1 = 1, 7)

IF U.EQ.NK1 PRMT(5) = 1.

17 RFTURN
36 IF ( x

!K +

33 N= ,-1

.NE.l ) GO TO
I

33

CALCL(X,Y,DERY
T ( 1 H , 15 , L X ,

F

20,N,X, (Y( I )

,

L

20
CALL
FORM
PRINT

20 f N,X, (Y( I),
20, N, X, (Y( I )

,

20,N,X, ( Yd),

)

5. 5, 1X,8(E12
1=1,8)

.4, 3X) )

P UNT
PRINT
PRINT

1=9, 16)
1=17,^4)
1=25,32)

(DF'/DTHETA). (Q) 7T

91
DO 91
Yl( 14

1=1,33
7,N)=Y( I

)

75 FOUl = FTi*Yl( 35,N) +

FD1 C2=FT3*Y1 (37,N)+
FOTQ « = FT5*Y1U0,N)

FT2*Yi(36 f N)

FT4*Y1 (38, N)

S+(DF'/DTHrTA).Q
SFDla
SF02 =

Sl+FDTQl
S2+FDT02

18L
181
182
183

SF03=S3+FDT03
T( INVERSE

TISFCL=A( 1 )*SFD1+A(4)*SFD2+A(7)
) . (b+(OF«/OTHETA) .Q)
*SFI,3

I ISFC
TlbFC
f-P = .l

2=A(2)*SF01+A(
3=A( 3)*SFD1+A(

5)*SF02+A( 8)*SF03
6)*SFD2+A(9)*SFb3

TIKU
T I <4 =

r i

I i < i c

T( INVERSE
A( i)*Rl+A(4)*K2*A( 7)*R3
A( i )*R4+A(4)*K5+A(7)*R6

).R

A( l)*R7 + A( A)*R8 + A( /)*K(
= A(1)*R10 + A(4)*R1H-A(7)*RI,



184
185
186

TI-U3 = A(l)**13 + AU)*R14«-M7)*R15
riU6=A(l)*R16+A(4)*Rl7+A(7)*R18
TIR2=A(2)*R1+A(5)*R2+A(8)*R3

1U0

187
i e e

189
19C
IS 1

192

T IR5=A(2)*R4+A(5)*R5+AC8)*R6
TI 18=AC2)*R7+A(5)*R6+A(8)*
1 Ull = A(2)*R10+AC 5)*Rll+AC8)*Rl2
TIR14=A(2)*R13+A( 5)*R14+A(8)*R15
TI U7 = A(?)*R16 + AC 5)*R17+AC8)*R13
TIR3=AC3)*R1+A{6)*R2+AC9)*R3

193
194
195

riR6=Am*R4 + At6)*«5 + AC9)*R6
TIR9=A(})*R7+AC6)*R8+A(9)*R9
r Ml 2 = AC 3)*R10 + A(6)*RiHvA(9)*Rl2

196
197

TIR15=AC3)*R13+A(6)*R14+A(9)*R15
TIR1P=A(3)*R16+A(6)*R17+A(9)*R18

X I J + l )-X ( J )

196
199
2CC

XXl=Yl ( l,N)-YO( i, N)
XX2=Yi(2,N)-YOC2,N)
XX3=Y1( 3,N)-YQ(3,N)

2C1
2C2
2C3

XX4=Y1(4,N)-Y014,N)
XX3 = Y1(5,NJ)-Y0C5,N)
X X6=Y 1

(

6,N)-Y0(6iN)
2C4
2C5
2C6

r UX1 = XX1*TIR1 + XX2*
TIRX2=XXI*TIR2+XX2*
TI vX}=XXl*TIR3+XX2*

TIR4+XX3*TIR7+XX4*TIR10+XX5*TIR13+XX6*IIR16
TIRS + XX3*TIR8 + XX4*TI !U1 + XX5*TIR14 + XX6*TIR17
TIR6+XX3*TIR9+XX4*TIR12+XX5*TIR15+XX6*TI

2C7
2C8

TINEWCN)=T1 (N)-EP*T
rZHEM CN)=T2 (N)-EP*T

IMPROVED VALUES
ISFQ1-TIRX1
1SF02-TIRX2

OF CONTROL VARIABLES

2C9
21C
211

ATNEW (N)=AT(N)-EP*f
21 FORMAT (1H ,I3,3X,F

PRINT 21,N,X f YC33),

ISF03-TIRX3
5.2,2X,4CE12.4,2X)

>

T1NEMN) t T2NEW(N)tATNEW(N)
212
213
214

19
IF (N

RETLR
.EO.l )

N

PRMTC5)=L.



2 15

216

217

218

219
22C
2/1
222
223
224
22*
22t
221

DI

11 ,

2) ,

rui I 'si

NSION
v 1202

\Li.l. (X,Y, DERY ) lUl
4T(l0),Y(42),DERY(42),AUX<8,43) f Y1(40,202),T1I

>,UNFW(2u2),ri(2(v2>,T2<2c2)tAT<2C2),Y0(6,2C2),/WlC) ,L( It

10)
CM Yl

I ,i
I t »FT2,

1 3,Rl
,C2.C
R7,RT

2 12

1

3M,C1

, T 1 NEW,
r i >,FT4
4, tl5 v R

3, CI »CA
,RTR9

T2Nt
,FT5

X6,Yf
R 1 1 ,

1

Chmp
l.KIF
111,

ton

rN RT
C2.RT

= PXP(
= FXP(
= EXP(

R1R,RTR
FQ3.RTF
BM1,
- F A / ( I *

-FA/ (R*
-EB/(R*

I .

BM2 =

= FXP(
-(DIS
-(OIS

-EB/(R*
/ v i ) - G a

/Vl )-GB

T2(N
*EAT
*EBT

) ) )

1

1

BM5=

-(CIS
- (IMS
I C + M

/V2)-3A
/V2 )-GB
(N) )*(

1

EAT
*EBT
.-2.

2

2

*Yi (6,M)/AN)
226
22S
23C

51= <

G2=(
-CA/(
-FB/(
-E/\/(

R*( TKM
R* C T 1 (

N

R * ( T 2 ( "i

) **2
)**2
)**2

) ) )*

) ) )*

) ) )*

GA*3ATl
GB*EBT1
GA*FAT2

231
232
211

G4=(-EB/(R*(T2(N)**2)) )*GB* C BT2
FTI=Y1 ( 1,N)*G1
Fr2=Yl(2,N)*G2-FTl

234
235
236

FT 3=

F T4>=

FT5-

Yl( 3,

Yl(4,
Yl(6i

N)*G3
N)*G4-F
N)*(l.-

T3
Y1(6,N)/AN)

237

ALL MATRICES TREATED AS VECTORS , CfLUMNWlSE
MATRIX R (3X6)

R1=Y(7)*FTI+Y(8)*FT2+Y(1)*G1-Y(2)*G1
236
2 3S

24C

R2 = Y

R 3=Y
R4 = Y

(9)*F
(12)*
(8)*F

T3 + Y( 10
FT5
ri+Y( 13

)*FT4

)*FT2+Y(2)*G2
241
242
243

R5 = Y

R6=Y
R7 = Y

( 14)*
(17)*
m*F

FT3+Y( 1

FT5
Tl + Y( 14

5)*FT4

)*FT2
244
245
246

R8=Y
R > = Y

'

! =

(IB)*
(21)*
V(iOJ

F T3 + Y(

1

FT5
*FTl+Y(

9)*FT4-G3*Y(4)+G3*Y( 3)

15)*FT2
247
246
24S
25C
251
252
253
254

Rlis
R12^
Rl 3^

Y(IS)
Y(24)
Y( 11)

*FT3+Y(
*FT5
*FTl+Y(

22)*FT4+G4*Y(4)

16)*FT2
R14:
RIO:

Y(20)*FT3+Y(23)*FT4
Y(26)*FT5
Y( 12)*FT1+Y( 1 H*FT2

*ir Y(21 )*FT3 + Y( 24)*FT4
Y(27)*FT5 + Y(6)*(l.-2.*Yl(6,N)/AN)-4.*CA*AT(N)*Yl(<s,,



25 Si=2.*CT*(
12*Y(2)-Y1

(

MATRIX S ( 1X1)

riM-TKN) )+2.*CT«(TKN)-T2(N))*Yl(l t N)*Gl*YI
L,N)*G1*Y(2)

£1*2
1) +f L(

2

.

256

257

258

261
262

265
266

S2=2.*CT*(
1*Y{4)
S3=-2.*CA*

T1(N)-T2(N))*Y1(3,N)*G3*YM)+YL ( 4 , N ) *G4*Y ( 4 ) - Y 1 ( ,

AT (N)*( Yl (6,N)**2 )+Y(6) *( Yl (

6

t N )- ( Y 1 ( 6 , N ) **2 ) / AN

)

DT1=-2.*(Y
U-2. »Y1(2,

MATRIX T (3X4)
1 ( l,N)/Tl (N) )*G1*Y{ l) + ( Y( 1 )*G1*
N)*G2*Y(2)/Tl (N)+EB*Y1 (2,M)*G2*

EA*Y1 (l,N))/(
Y ( 2 ) / ( R * ( F 1 ( i

R*(Tl(N
)**2 I ) +

)*<V )

(2.*'

21 ( l,N)*Gl*Y(2) )/Tl(N)-FA*Yl U t N)*Gl*Y (2 ) / (R*( Tl (N)**2) )

259 DT2=-2.*CT
26C DT3=C.

DT4=2.*CT
UT5=-2.*CT

L2) )-?.*Yl(
-2.*Y1(3,N)*G3*Y(3)/T2(N)+FA*YI
4»N)*G4*YU)/T2tN)+EB*Yl U,N)*G

( 3,N)*G3*Y( 3)

4*Y(4)/ (R*(T2
/«R*(T2
( 1)**2 )

I I

»+2.
2YH3iN)*G3«Y(4)/T2(N)-EA*Yl(3iN>*Y(4>*G3/(R*<T2«N)**2))

262 DT6=0.
264 or7=c.

DT8=C.
0T9=-2.*CA*( Yl(6 t N)**2)

MATRIX R'T (6X3)
267
266
269

RT1=R1*DTI+R2*DT2+R3*DT3
RT2 = R4*DTl + R5*DT2 + r

,v6*ur3
Rr3=R7*0Tl+R8*DT2+R9*DT3

27C
271
272

RT4=Rlu*nTl+Rli*DT2+R12*DT3
RT5=R13*DT1+R14*DT2+R15*DT3
Rro=Rl6*DTl+R17*0T2+R18*0T3

273
274
275

RT7 = R1*DT4 + R2*DJ"5 +R3*DT6
RT8=R4*0T4+R5*QT5+R6*DT6
RT9=R7*DT4+R8*0T5+K9*DT6

276
277
276

RT10=R10*DT4+Rll*DT5+R12*DT6
RT11=R13*DT4+R14*DT5+R15*DT6
Rri2=R16*0TA+R17*Dr5+R18*DT6

279
28C
281

RT13 =

RTI^h
RT15'

R1*DT
R4*DT
R7*DT

7 +R2
7 + R5
7 + R8

*DT8
*DT8
*DT8

+R3*0I9
*R6*DT9
+R9*DI )

282
283
284

RT16=R10*DT7+R11*DT8+R12*DT9
RT17=R13*DT7+R14*DT8+R15*DT9
RT18=R16*DT7+R17*DT8+R18*DT9

285
286
287
268
289
29C
291
292
293

M MR I

RTR1
X DP/
=R1*RT

RTR2=
RTR3;

Ri*RT
R1*RT
R1*RT

DT E

1+R2
2+R2
i + R2
4 + R2

MATRIX R'TR
EING SYMMETRICAL ONLY
*RT7+R3*RT13

(6X6)
HALF THE MATRIX R'TR lb fAKEN

*RT8
*RT9
*^T1

+R3*Rr 14

R J*RT15
0+R3*RT16

I I '-

RTR6^
RfR7^

R1*RT
R1*RT
R4*RT

5 + R2
6 +R2
2+R5

*RT1
*RT1
*RT8

1+R3*RT17
2+R3*RTl8
+R6*RT14

RTR8^
RTR9^

R^*RT
R4*RT

3 + R5
4+R5

*RT9
*RT1

+R6*RT15
0+R6*RTl6



254 'i i t4*RT5-*-R5*RTlH-R6*RT17 II13

255 RTKl l=R4*RT6*R5*Rr 1?*K6*KT18
I 'l?=R7*M 1 >+R8*R f94R >*R I I '»

2S7 'I f*kT'»4Ra*RTl(J *R9*RTl6
2<5E f*RT5+R8*RTll*R9*RTl7
2SS LI : l

r =R7*RT6+R3*RTl2+R9*RT [M

3CC 10*RT4 + 'U L* R T 10*R 12*RT 16
501 I ' 1 7 = R10*RT C

> + RL l*!< ri L+R12*RT1 7

3C2 RrRiP=RiO*RT6*Rll*RT12*Kl2*RTi8
3C3 !U9 = Rl3*RT ,i+Rl4*RTlH-Ri5*RrW
3C4 Rr ,R2C = R13*«T6 + ^l^*RTl2 + '<l

,>*RT18
i-C

c
i / 1 - ;16*RT6*R17*RT12*.n1«*RT18

C CALCULATION OF T-INVERbF:
3ce Ml)=DTl
3C7 A(2)=DT2
j oe a ( n = d t 3

3CC A(4)=DT4
3 1 C A (

',
) = Q T S

311 MG)=DT6
3 12 A( 7) =01

7

313 A{8)=DT8



-iWr-
341 RTF1=RTI l*FTl
342 RTF2=RTI2*FT1
343 RTF3=RT13*FTl
344 RrF4=RTI4*FTl
345 RTF5=RTI5*FT1
346 RTF6=RTI6*FT1
347 RrF7=Rn i*f r?

346 RTF8=RT12*FT2
34S UF9 = RTI3*FT2
35C RrFlC=Rri4*FT2
351 RTFli=RTl5*FT2
352 RrF12=RTI6*FF2
353 ri.rF13=«ri7*FT3
354 RTF14=RTt8*FT3
35 5 RTF15=RTI9*FT3
356 ^TF16=RTI10*FT3
357 RTF17=RTU1*FT3
356 RTF18=RTI12*FT3
35<; RTF19=RTI7*FT4
36C RTF2C=RTI8*FT4
361 KrF2l=RTl9*FT4
362 RTF22=RTT10*FT4
363 RFF23=RTlll*FT4
364 RTF24=RTI12*FT4
365 RTF25=0.
366 RFF26=0.
367 RFF27=0.
366 RTF2P=0.
36S RTF29=0.
37C RTF3C=0.
371 RrF31=RTI 13*FT5
372 RrF32=RTI14*FT5
373 RrF33=RTll5*FT5
374 RTF34 =RU 16*FT5
375 RTF35=RTU7*FT5
376 RTF36 =RTU8*FT5

c

377 RrFCl = Y(28)*RTFl + Y( 29 ) *RTF 7+Y { 30

)

*RTF 1 3+ Y ( J 1 ) *,<TF 1 9 + Y ( 3? )*RTF25+Y
L33)*RTF31

376 RrFQ?=Y(28)*RTF2+Y(29)*RTF8+Y( 30)*RTF14+Y< 31)*RTF20+Y1 J2)*RTF26+Y
I 1 3)*RTF32

37S RTFQ3=Y(28)*RTF3+Y(29)*RTF9+Y(30)*RTF15+Y(31)*RTF2H-Y(32)*RrF27*Y
133)*RTF33

38C RTFC4=Y(28)*RTF4+Y(29)*RTFl0+Y(30)*RrF16+Y(Jl)*RrF2 2+Y(32 )*R1 \ 28+'

1

(

33)*RTF34
381 RrFC5=Y(2P)*RrF5+Y(2 9)*RTFll+Y(30)*RTF17+Y(31)*RTF23+Y(.V)^TF29+

1< 3 3) * RTF 35
382 RTFQ6=Y(28)*RTF6+Y(29)*RTF12+Y(30)*RTF13+Y(3l)*RTF2 4+Y(32)*RTT

1(33)*RTF36



L

3e? )1»Y(28)*BM1
384 -Y (.M)*GA*EATl«-Yt2'J)*dM2
385 i

. J Y(,> OMDIS/V2 ) +Y( iO)*H(-13

386 v (,>9)*<DIS/V2) +Y( iO)*GA*FAT2*Y( 51 )*

387 FQ5=Y(3l)*DIS
388 FQ< -Y(iJ)MC + AT(N))*(l.-2.*Yl(6,N)/AN)
38<5 RFIuMN
39C JD

C

C

c

C SUBROUTINE MINV
C

C IRPOSE
C INVERT A MATRIX
C

C USAGE
C CALL MINVI A,N,D,L,M)
C

C DESCRIPTION OF PARAMET
C A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED \

C R^SULTANI INVERSE.
C N - ORDER OF MATRIX A

C D - RESULTANT DETERMINANT
C L - WORK VECTOR OF LENGTH N

C M - WORK VECTOR OF LENGTH N

C

C REMARKS
C IRIX A MUST BE A GENERAL MATRIX
C

C SUBROUTINES AND FUNCTION SUBPROGRAMS RE^UlRtD
C 'ME

C

C METHOD
C THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
C IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
C THE MATRIX IS SINGULAR.
_C

c
c



391 SUBROUTINE MINV ( A, N,D,L , M

)

1U6
3 92 DIMENSION A ( 1 ) , L ( 1 ) r M ( 1 )

c

c
c

C IF A DOUBLE PRECISION VERSION OF THIS RUUTINE IS DESIRED, THE
C C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
C STATEMENT WHICH FOLLOWS.
C

C DOUBLE PRECISION A , D, B I GA, HOLD
C

C THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
C APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
C RCUTINE.
C
C THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUSI ALSO
C CCNIAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN SI I

C IC MUST PE CHANGED TO DABS.
C
c

c

C SEARCH FOR LARGEST ELEMENT
C

393 D=l.

C

394 NK=-\
395 DO 8C K=1,N
396 NK=NK+N
397 L(K)=K
396 M(K)^K
399 KK=NK+K
4CC dI~;A=A(KK)
4C1 DO 20 J = K,N
402 IZ=N*(J-l)
403 DO 20 I=K,N
404 IJ=I7+1
4C5 10 IF( ABS(BIGA)- ABS(A(IJ))) 15,20,20
406 15 BIGA = A( IJ)
407 L(K)=I
406 M(K)=J
4C9 20 CONTINUE

C

C INTFRCHANGE ROWS

41C J=L(K)
411 IF(J-K) 35,35,25
412 25 KI=K-N
413 DO 30 1=1 f N
414 KI=KI+N
415 HOLD=-A(KI)
416 JI=KI-K+J



41 1 [)=A( JI ) ll|7
A ( J I )

c

C INTERCHANGE CULUf-

C

Ms )

42C IF( I-KI 4S,45, 38
42 1 38 JP=N*( 1-1 )

A2 2 DO 4C J=1,N
42 2 Jn-NK + J

42 * JI=JP*J
425 HOLC=-A(JK)
426 A { J i\ ) = A ( J I )

427 4(, A( JI ) = HOLU

C CIVIDF COLUMN BY MINUS PIVOT (VALUE OF P I VC I ELEMEN1 IS
C CCNTAINED IN *IGA)
C

4 26 4 5 IF(BIGA) 48,46,4 8

425 46 C = O.C
4JC RETURN
431 48 DO 55 1=1,

N

432 IF(I-K) 50,55,50
4 \ i 50 I 1

1

4*4 A( IK)=A( IK)/(-HI3A)
435 55 CONTINUE

C REDUCE MATRIX
C

4 36 DU 65 I = 1,N
437 Its = NK + I

436 HOLD=A(IK)
435 IJ=I-N
44C DO 65 J=1,N
441 IJ=IJ+N
442 IMI-K ) 60,65,60
443 60 IF(J-K) 62,65,62
444 62 KJ=IJ-I+K
445 A( IJ)=MOLD*A(KJ) +A( IJ)
446 65 COHINUE

C

C IVIDE ROW BY PIVOT

447 KJ=K-N
44 6 DU 75 J=I,N
4 45 KJ=KJ+N
45C IF(J-K) 70,75,70
451 70 A(KJ)=A(KJ )/BIGA
452 75 CONTINUE



C PRODUCT OF PIVOTS lU8
C

452 D=D*fHGA
C

C

c

PLACE PIVOT BY RECIPROCAL

454
455

c

80
A(KK)=1.0/BIGA
CONTINUE

456

c

c

1 TNAL ROW AND COLUMN INTERCHANGE

457
458
45S

100

105
IE(K) l

r>0,150,L05
I=L(K)

46C
461
462

108
IF(I-K) 120,120,108
JQ=N*(K-1)
JR=N*(I-i )

463
464
465

DO 110 J=1,N
JK=JG+J
HOLD=A(JK)

466
467
466 110

Jl=JR+J
A( JK)=-A( JI )

A(JI) =HOLD
46<5

47C
471

120

125

J = M(K )

IE(J-K) LOO, 100, 125
KI=K-N

472
473
474

DO 130 I=1,N
KI=KI+N
HOLD=A(KI )

475
476
477 130

JI=KI-K+J
AIM )=-A( J I )

A(JI) =HOLD
476
47S
48C

150
GO TC 100
<ETURN
END



481 II RKGSIPRM1 ,Y, DFRY.NDl*, INLF.FCT.CUTP.AUX) 1U9

482
482
484
485

DIM . > ( 1 ) ,DERY ( 1 ) ,AUX( c, 1) ,A(4) , B ( 4 ) ,C (4) ,PRMT ( 1 )

X = .'
: f 1(1)

H*PRKT( i)

I
0.

CALL FCT(X, Y, ULRY)

487
486
489
4SC

C

c PREPARATIONS FOR RUNCL-KUTTA METHOO
2 All)..
Am = .29?R<> 32
M \) =1. 707107
A(4) = .16^>6667

491
492 (2>=l.

( 11*1.
494
495
496

• )-2.
C ( I ) = . 5

C(2) = .2 92 8S)32

497
498

C( i)=l. 707107
C(4)=.5

499
5CC

PARATIONS OF
DU 5 I=1,NDIM
AUX( 1,1 )=Y( I

)

FIRST RUNGE-KUTTA STFP

5C1
5C2
5C2

AUX12, I )=DERY( I

)

MJX(3,I )=< .

3 AUX(6,1 )=0.

5C4
RECORDING OF INITIAL VALUES OF THIb STEP

7 CALL OUTP(X,Y,DERY, IREC, NDIM, PRMT

)

5C
C

c

IF( PRMT( 5) )40,8,40
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ABSTRACT

There are many difficulties in using either the classical multistage

optimization techniques or dynamic programming for solving nonlinear

complex problems involving a fairly large number of variables. The

former gives boundary value difficulties while the latter has the dif-

ficulty of dimensionality. The methods of gradients and other techniques

such as quasilinearization partially overcome these difficulties.

The basic philosophy of the methods of gradients is fairly simple.

First a sequence of values of the control vector is selected. Then the

gradient of the performance index with respect to each of the control

vector is calculated. Finally each control vector is improved by moving

it in the direction of the gradient. This improved sequence of control

vectors then becomes the basis for the next iteration.

The functional gradient technique, one of the many versions of the

gradient methods, has been developed for optimal control problems. The

second variation method overcomes certain difficulties of the functional

gradient technique. The convergence rate of the second variation method,

provided the method converges, is very fast. However, the initial guess

of the trajectory for the control variable has to be near the optimal tra-

jectory in order to obtain convergence. Too, the number of equations to

be integrated and their complexity tend to suppress its advantage of rapid

convergence.

First, the method of second variation is discussed in detail. Then

the method is applied to three problems in the field of production and

inventory control to illustrate the approach.



The first application is a simple inventory model involving one state

and one control variable. The objective function is the cost

function, which is to be minimized. The second application is an in-

Qtory and advertising model where it is desired to maximize the profit

function. This problem has two state variables and one control variable.

The last application is that of a chemical manufacturing problem with ad-

vertisement. It has six state variables and three control variables.

These examples suggest that the first variation method, of which the

second variation method is a natural evolution, should be used in combin-

ation with the second variation. The first variation method, unlike the

second variation, will approach optimum from almost any realistic starting

trajectory. The results of the first variation method could then be

used as the starting trajectories for the second variation. In this way,

the convergence problem of the second variation can be partly overcome.

Furthermore, this combination provides a rapid convergence from almost

any realistic starting trajectory for most engineering problems.


