
/TUTOR : A Computer-Aided Tutorial in PROLOG/

BY

LISA MARIE WYLIE

B. S., Worcester Polytechnic Institute, 1980

A MASTER'S THESIS

submitted in partial f ulfxllment of the

requirements for t. e degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Major Professor
fd&*



\1f5
ujqtl CONTENTSW '< A115D5 IfibDOT
c*.

1. Introduction 1

2

.

Requirements 3
2 . 1 Purpose 3
2 .

2

Intended Users 3
2 .

3

Content 5
2 .

4

Implementation Constraints 7

3. Design 9
3 .

1

Teaching Approach 9
3 .

2

General System Features 11
3 .

3

Screen Design 13

4

.

Implementation 14
4 .

1

Tool Structure and Files 14
4 .

2

Program Layout 16
4 .

3

Memory 17
4 .

4

Library Functions 18
4 .

5

General Control Functions 22
4.6 Portability 26
4 .

7

Assumptions 2 6
4.8 Limitations 27

5

.

Testing 2 8
5.1 Ongoing Unit Tests 28
5.2 Integration Testing 29
5.3 Overall System Testing 31
5.4 Evaluation 31

6. Other Tutorials 33
6 .

1

The LISP TUTOR 33
6.2 Clyde : A UNIX TUTOR 35
6.3 Comparisons 36

7

.

Conclusions 38

8. Extensions 39
Bibliography 40
Appendix 1 - TUTOR manual page 42
Appendix 2 - TUTOR : User's Guide 49
Appendix 3 - Source code 62



1 -

1. Introduction

TUTOR evolved as an exercise in PROLOG; to study its

characteristics, learn its structure and then apply it in

the development of an interactive software tool. It was

developed to provide an independent, self-paced means to

learn the C-PROLOG version of PROLOG. It is a tutorial

designed for both new and experienced users and contains a

comprehensive set of lessons, summaries and exercises to

explain each basic area of the language.

TUTOR is written in C-PROLOG. It presents C-PROLOG in the

same structural manner used by Clocksin and Mellish [5] in

their book which describes standard PROLOG. The tool mast

be invoked from within the C-PROLOG interpreter (version

1.4) which is available on the VAX 11/780, Perkin Elmer 8/32

and 3220 or the PLEXUS systems at Kansas State University.

Each requirement for this tool; its intent, why it was

developed, who is expected to use it and which topics

are/are not covered is described in Chapter 2

.

Chapter 3 defines the teaching approach used in the system,

the general system features and the particulars of the

screen design.



- 2

The actual implementation of the system is explained in

Chapter 4. Machine portability, file structure, memory

restrictions and error handling capabilities are included

here along with some of the problems encountered during this

stage of the project.

Chapter 5 discusses the testing and evaluation involved in

proving the reliability and robustness of the system. How

the tool reacts to unexpected input and protects the user

from internal difficulties is crucial. User feedback about

the features and bugs in the system have helped to improve

it and make TUTOR a more effective tool.

Many computer-aided instruction (CAI) tutorials are

available today. Chapter 6 examines two of these and

compares them to TUTOR. Major similarities and differences

found between each tool are described here.

An evaluation of Prolog for this type of application and

conclusions drawn from the work done to create a tutorial

like TUTOR are discussed in Chapter 7. Extensions to the

project are proposed in Chapter 8.

Appendix 1 contains the manual page which is available on

each system to briefly describe TUTOR. The "TUTOR: Users

Manual" can be found in Appendix 2. The source code that

makes up this tool is in Appendix 3.



- 3 -

2. Requirements

Each of the requirements in this chapter was identified and

agreed upon during the proposal stage of the project. Tney

were determined by examining the need at Kansas State for a

tool of this type and served as the basis for the design.

2.1 Purpose

Presently, the PROLOG language is taught, in conjunction

with other programming languages, through formal coursework.

A student may also choose to learn PROLOG independently

using only a textbook or users guide. The idea of a PROLOG

tutorial was conceived to bridge these two modes of

learning.

TUTOR is a software tool that provides its users with the

necessary guid&noe and feedback found in a classroom

environment. But, unlike in a classroom, the student can

control the time ai.d irequency of its use, the duration of

each session and the pace at which the material is

presented.

2.2 Intended Users

This tool is designed for three types of PROLOG users: the

beginner, the intermediate and the experienced. Upon entry

into the tool, the user is asked for a skill level. This

determines which capabilities the user gets and also the



- 4

sequence in whicn lessonj ate presented. Figure 1 - Basic

System Flow, shows how TUTOR handles each of the skill

levels described below.

A beginner is assumed to have no previous knowledge of

PROLOG. The first lesson gives the user some background

about the language. Its origin, history, purpose and

various applications are described. The availablity and

usage of C-PROLOG in the Kansas State environment are then

explained. Once these areas are covered, the user begins

learning the language itself. TUTOR automatically guides a

beginner through a logical sequence of lessons, summaries

and exercises for each major area or topic of the language.

An intermediate user is assumed to have some experience in

using PROLOG. By choosing this level, the user is given the

choice to continue from any point in a previous session

using the tool, or to select a particular topic for review.

Essentially, the intermediate level gives the user the

ability to start anywhere in the automatic sequence of

lessons, setup for the beginner (referred to as

"beginner/ intermediate") , or to use the tool at the

experienced level (referred to as

"intermediate/experienced") and choose only desired topics.

An experienced user obviously knows most or all of the

language but can use the tool to review any particular



WELCOriE

SKILL LEVEL ?

4a

BEGINNER flNTERIIEDIflTE
]

^EXPERIENCED

* V

HISTORY OF

PROLOG

V

C-PROLOG

AT KSU

V

TOPIC 3

TOPIC 4

TOPIC 5

T

TOPIC 19

SELECT

MENU

.

WHICH TOPIC ?

CONTINUE

FROH WHICH

LESSON ?

1

V

TUTOR HflLlS.

TOPIC N

FIGURE 1. BASIC SYSTEM FLOW



- 5

topic. A menu is given to the experienced user or the

intermediate user who chooses the experienced route, so a

topic can be easily chosen. The experienced user is allowed

to skip the summary and/or exercise portion of any topic

presented.

At the end of every lesson (except the first one) , summary

and exercise, a beginner or beginner/intermediate user has

the option to repeat an earlier topic. When that has been

completed, the tutorial will automatically bring the user

back to where the repeat was requested. All users are able

to leave the tool easily at any time. Before the tutorial

and the interpreter are exited, the user is given the chance

to change skill levels and continue to use the tool.

2.3 Content

when deciding which copies would make TUTOR a comprehensive

tool that would give its user a basic understanding of the

C-Prolog language, the table of contents in the Clocks in and

Mellisn textbook [5] seemed like an appropriate place to

start. The first two lessons of this tutorial describe the

history of the PROLOG language and the use of C-PROLOG at

Kansas State.



Topics 3 through 20 came directly from the table of contents

without further investigation at this time.

1) history of PROLOG
2) C-PROLOG at KSU
3) facts
4) questions
5) variables
6) conjunctions

7) rules
8) syntax
9) characters
10) operators
11) equality
12) arithmetic

13) structures
14) lists
15) backtracking
16) cut

17) reading/writing characters 19) accessing files
18) reading/writing terms 20) declaring operators

To gain a complete understanding of basic C-PROLOG, it is

also necessary to know each of the "core" built-in

predicates listed below.

atom()
atomic ()
consult ()
fail

integer ()
member (

)

nl
nonvar()

reconsult()
tab()
true
var()

A basic explanation of what each predicate does is given

even though some of them are also mentioned when describing

the basic features of the language.



It is not the intention for TUTOR to cover every area of

PROLOG. The following topics are excluded because they are

considered to be too advanced for the purposes of this

tutorial

.

debugging facilities sets
altering stack/memory sizes nested executions
other builtin predicates internal database
pre-processing state file

2.4 Implementation Constraints

TUTOR is written in C-PROLOG and can be used on each machine

( VAX 11/780, Perkin Elmer 8/32, 3220 and PLEXUS 1 and 2 )

that supports Version 1.4 of the language. Its size is

purposely small so the tool will run within the interpreter.

The software for this tool is composed of many small files.

Each lesson, summary, <*nu exercise is contained in a

separate file. The general purpose library, a main routine

for each skill level, a routine to ask questions and various

other control functions are each contained in a separate

file.



8 -

Documentation for TUTOR is available in two forms. For each

system, there is an on-line manual page which contains most

of the "TUTOR: User's Guide". The "TUTOR:Users Guide" is also

available in a booklet. It explains how to run the system,

what to do when having problems, and supports an extensive

glossary of all the PROLOG terminology used in the tutorial.



- 9

3. Design

Once the proposal and requirements were complete, the design

of TUTOR began. Each requirement was researched and

expanded and some were even changed. This chapter

describes, in much more detail, what further decisions were

made, how the system would work and how C-PROLOG would be

taught

.

3.1 Teaching Approach

When the design of TUTOR began, it became necessary to

define a teaching method or approach to be used throughout

the development of the system. Many human factors came into

play when deciding how each concept of tue language should

be conveyed to the user. The system had to be easy to use,

robust, and consistent in the way it behaved.

One of the most important qualities of this tutorial is that

the pace at which it runs is completely user-controlled.

There are no imposed time constraints to read a screen of

information or to answer a question. To make it easier to

teach PROLOG, the language is broken down into many smaller

topics, so each concept is easier to grasp and takes little

time to cover.



10 -

Each session with the tool can be as short or long as the

user chooses. TUTOR can always be invoked at a later date

for continuation or review.

Whenever possible, concepts are taught by example - not

formalism. It is much easier to understand something if it

can be seen. Many examples are displayed throughout the

lessons to show the user exactly how the PROLOG interpreter

converses with a user.

Almost every PROLOG topic is presented in a

lesson/ ummary/exercise format. The lesson describes the

topic, explains its value and gives examples of how it is

used. Each of the highlights in the lesson is reviewed in

the summary. The exercise has the user repeat what was

learned by asking various questions.

During an exercise, the user is asked one-line or multiple-

choice questions. This provides a little more variety, but

the underlying reasons for using multiple choice questions

are twofold. First, questions whose answers are more

difficult for the tutorial to interpret, are better handled

by a letter choice. There is also less chance for human

error when the answer is only a single letter.

For simplicity, the list of choices on a multiple choice

question is limited to three. When the user responds with

the wrong answer, an explanation is given as to why the



11

answer is wrong and the question with its choices are

repeated. One retry is always given if any question is

answered wrong the first time. A single-line question is

reworded the second time around in case it was

misinterpretted originally. Whatever the outcome, the

reason for the answer is always supplied.

3.2 General System Features

TUTOR is an interactive system in that it creates a dialog

between itself and the user. At the end of every screen and

after each question, it expects input. When it receives a

complete answer, one ending with a period, the system will

interpret the answer and then react. Otherwise, it waits

patiently until an answer is entered.

Upon entry into the tool, the initial screen generated is

the welcome screen. k brief description of the tool and

each of the available skill levels is given. To choose a

level, the user must enter 'b. ' for beginner, 'i.' for

intermediate or 'e.' for experienced. With any other

answer, except 'q.' for quit, the system assumes the

beginner level and the next screen is printed.

Whenever the next 'n. ' option is included in the commands at

the bottom of a screen, and the user responds with a command

or input not in that set, TUTOR continues to the next

screen.



- 12 -

The intermediate level starts off with a menu screen of all

the PROLOG topics and a question to find out the desired

mode of operation. The beginner/ intermediate mode is

initiated by asking the tutorial to continue 'c.' from a

certain lesson. The interaiediate/exj erienced mode will

start when the user types 's. ' to review a selected topic.

An answer other than 'c. ', 's. ' or 'q. ' , again assumes

a continue. The user is then asked to choose the lesson

number to review or continue from.

Each time a menu appears on the screen and asks the user to

choose a topic, the system expects to read an integer value.

Anything except an integer or a 'q.', will repeat the menu.

Another feature for beginner/ intermediate users is the

repeat 'r. 1 command. It allows any topic, previous to the

current topic being worked on, to be repeated. Repeat is an

available command, beginning with the second lesson in the

tutorial, at the end of every lesson, summary and exercise.

Anytime the tutorial pauses for input, the commands ' q.
'

,

•quit.', 'exit.' and 'halt. 1 initiate a departure from the

system. Before the session stops, the user has the chance

to change skill levels and resume. If a new level is not

desired, an 'n.', meaning "no" will stop TUTOR and exit

PROLOG completely.



13

3.3 Screen Design

The medium utilized in teaching PROLOG is the CRT or

terminal screen. Every input and output of TUTOR is

screen-oriented. To ensure ease in learning, each screen is

designed to be simple. The entire width is used for

efficiency, but each line of text is double spaced for

readibility.

The basis of every screen is from a common outline. A title

is always printed in the upper left-hand corner so the user

is always aware of which topic is being presented. The quit

command appears in the lower right-hand corner of every

screen to allow an exit at any time. Continue and repeat

commands occupy the bottom line of the screen when they are

used.

A common design such as this avoids the problem of having to

figure out a new screen each time. More time can be spent

concentrating on the material being presented. Instructions

of what to do next are always visible.

Menus are used when a beginner chooses to repeat a topic and

during the intermediate/experienced and the experienced

levels to list the available PROLOG topics for review. If

any part of a menu advances off the screen before the user

can choose a topic, the system will automatically repeat the

entire menu.



-. 14 -

4. Implementation

Most of the effort in this project was focused on the

implementation phase. This chapter describes each area of

the code, the decisions and assumptions that were made and

the multiple roadblocks that had to be overcome.

4.1 Tool Structure and Files

The structure of TUTOR consists of many small files.

Decided early on, this approach made the programming task

much simpler and easier to debug because everything was on a

much smaller scale. With limited experience in PROLOG

programming, it was easier to study, prepare and program

each topic on an individual basis.

Two of the original topics defined during the requirements

stage have been removed from the tutorial. They were

"structures" and "declaring operators". The subject of

structures doesn't contain enough material to warrant

inclusion and the process to declare an operator is too

advanced for the purposes of TUTOR. It was decided at this

time to include the builtin predicates in one lesson at the

end of the tutorial. But, like the topics "The History of

Prolog" and "C-Prolog at Kansas State", they are only

included as extra information for the user and thus do not

need a summary and exercise. The predicate "member" is not

mentioned in this lesson because it is not part of C-Prolog,



15 -

only standard Prolog.

The following is a list of each lesson file.

accfile — Lesson #18 - Accessing Files
arith — Lesson #12 - Arithmetic
backtr — Lesson #14 - Backtracking
builtin — Lesson #19 - Built-in Predicates
chars — Lesson #9 - Characters
conj — Lesson #6 - Conjunctions
cpro — Lesson #2 - C-PROLOG at KSU
cutt — Lesson #15 - Cut
equal — Lesson #11 - Equality
facts — Lesson #3 - Facts
hist — Lesson #1 - PROLOG'S history
lists — Lesson #13 - Lists
oper — Lesson #10 - Operators
quest — Lesson #4 - Questions
rules — Lesson #7 - Rules
rwchar — Lesson #17 - Reading/Writing Characters
rwterm — Lesson #16 - Reading/Writing Terms
syntax — Lesson #8 - Syntax
vars — Lesson #5 - Variables

For each lesson except hist, cpro and builtin, there are

corresponding summary and exercise files. All summary file

names begin ,rith "s_" and all exercise file names begin with

"e_". Each lesson, summary and exercise rule has the same

name as the file its contained in.

Other files that essentially control the tutorial are listed

below.



16 -

ask - procedure to ask one-line questions
exper - experienced level screen
get_it - procedure to present a certain topic
interm - intermediate level screen
intro - help screen file
lib - general purpose library
mult - procedure for muliple choice questions
redo - procedure to repeat a topic
repeatt - allows user to repeat a previous topic
start - welcome screen
tutor - file that does initial consulting
Tutor - executable file to print help screen

4.2 Program Layout

To provide clear and easy-to-read source code, certain

guidelines for laying out programs, including some of those

suggested by Clocksin and Mellish, were followed.

A group of clauses for a given predicate is called a

procedure. Within every file, each procedure begins on a

new line and is separated from the next procedure or clause

by a blank line. When an entire clause cannot fit on one

line, the head of the clause and the first goal are put on

the first line and each subsequent goal is indented on a

separate line after that.

Each file begins with a comment description of its contents.

Whenever a goal is executed and its predicate is defined in

clauses outside the file, a comment is added to specify

which file the clauses are defined in. This scenario

happens in only a few cases.



17

White space is used consistently to make each file look

similar and to make the code more readable.

4.3 Memory

In order for this tool to run on the VAX, 8/32, 3220 and

PLEXUS machines, memory constraints were always a

consideration. C-PROLOG loaded on the VAX is setup with the

following memory sizes:

atom space: 128K (17524 bytes used)
aux. stack: 8K (0 bytes used)
trail: 64K (48 bytes used)
heap: 256K (36876 bytes used)
global stack: 256K (0 bytes used)
local stack: 128K (300 bytes used)

Memory allocated on the Perkin Elmer 8/32 machine when

Prolog is loaded is much more limited as shown below.

atom space: 72K (17524 bytes used)
aux. stack: 8K (0 bytes used)
trail: 32K (48 bytes used)
heap: 72K (40056 bytes used)
global stack: 72K (0 bytes used)
local stack: 'IK (300 bytes used)

Allocated memory on the PLEXUS machines is alt-o different.

atom space: 72K (16892 bytes used)
aux. stack: 8K (0 bytes used)
trail: 32K (48 byte.3 used)
heap: 72K (36876 bytes used)
global stack: 72K (0 bytes used)
local stack: 72K (300 bytes used)



18

At the beginning of the implementation, the code size

reached 4 OK bytes after only a few topics and general

purpose procedures were developed. Originally, all files

were consulted into the database when the tool was invoked.

A new approach was developed to conserve memory. Only those

files which contain clauses needed to do the next few

operations are consulted. As soon as a procedure completes

and is not needed, it is retracted from the database to make

room for another. This method eliminates the initial waiting

time, after typing •
[ '/usr/prolog/tutor' ]

.

' , for every file

to be read in. Throughout a session, the user will see

periodic messages printed each time a new file is consulted,

but will not experience a noticeable time delay.

4.4 Library Functions

A set of common clauses and procedures was developed and is

located in a file called "lib". These procedures are used

for three basic types of operations: checking, control and

output. The library file is consulted each time TUTOR is

loaded and each of the procedures it contains remain in the

PROLOG database for use by other clauses.

The only checking procedure in the library is called

"not_var". When not_var(X,Y) is a goal in the body of a

clause, its first argument is instantiated to the immediate

user response and the second argument is left a variable.



19

The not_var procedure then checks the first argument. If it

is a variable, the second argument is instantiated to

"bad_reply" and control returns to the originating clause.

When the user responds with a constant, not_var returns the

same constant in the second argument.

Of the six control procedures, "topic" and "repeat_topic"

are the simplest. The first one, topic, is used to consult

the file that contains the PROLOG topic, invoke the clause

that presents the topic and then abolish the clause from the

database. Its first argument is instantiated to the name of

the topic clause and the second, to the arity of the clause.

Repeat_topic is used each time a dialog procedure prints the

"r."epeat command at the bottom of a screen. User input is

checked by not_var and then by repeat_topic. If "r." is

input, repeat_topic invokes the dialog procedure "repeatt".

A procedure called "seq" has two arguments that define the

range i f topic numbers to be covered by the utorial. As

long as the arguments remain unequal, the first rule will

recursively call "get_it", which presents the next topic.

If the arguments become equal, but the tutorial is currently

running in the experienced mode, nothing happens. A rule

like this allows the intermediate/experienced user to

continue using the tutorial after one topic is finished.

Otherwise, equal lesson numbers cause the third "seq" rule



20

to print a farewell message and leave the tutorial. The

last rule is used to end the beginner or

intermediate/beginner sequence.

At the end of every screen, the user must em.er input in

order to proceed. The clauses "mid_input" and "end_input"

were written to check this input, but more importantly, to

prevent syntax errors from disrupting TUTOR.

Previously, all input was handled by the "read" predicate.

When a syntax error occurred, "read" failed and Prolog

dropped out of the rule it was executing. Sometimes it

started up another rule or caused the tutorial to abort.

These clauses contain a second rule that will always pass if

the first rule fails from a syntax error.

The last part of the control category consists of two

procedures and a clause that, together, handle the exit

feature of this tutorial. As mentioned before, each time

TUTOR pauses for input, one option is to quit. The "quit"

procedure in the library checks its argument for a "halt" ,

"q"
, "quit" or "exit" entered by the user. If true, "quit"

executes the clause "level_stop" which writes 'Do you want

to cry a new skill level?' to the scre«n, reads in the

answer and executes the procedure "new_lev". If the user

answered "y.", new_lev writes a choice of skill levels onto

the screen, reads the lavel chosen, retracts the previous



21

lev from the database and restarts the tutorial at the new

level. An "n." or any other answer results in a complete

exit from the tutorial and PROLOG.

Lastly, there are eight output clauses that also reside in

the library. To make TUTOR screen-oriented, the "newpg"

clause was written. It contains 22 calls to the built-in

function "nl", or newline, which force the cursor to advance

to the top of the screen before the next screen of text is

output

.

The "bad_inp" clause is us^d during the intermediate mode

when TUTOR expects an integer lesson number, but instead

receives a constant. This clause writes the message

"INVALID INPUT - TRY AGAIN" to the screen.

During the design, it was decided to always provide the user

with visible instructions. With this in idind, the other

three output clauses, "nextl", "next2" and "next3" were

implemented. Respectively, these clauses write out a set of

one, two or three commands to the bottom of every screen:

TO QUIT - type "q."
NEXT SCREEN - type "n."
TO REPEAT A TOPIC - type "r."

Many of the questions in the exercises require a database

for the user to work with. The clause "new_db" allows a

separate database of four facts to be created at any time.



22 -

The facts are asserted into the Prolog database as arguments

to the predicates dbl, db2, db3 and db4 , after the facts

from the last pseudo database are abolished. The fact

"show_db", with no arguments, is assserted and used as a

flag by the other routines that ask questions.

Whenever a question routine finds the fact »show_db" in

Prolog's database, the goal "print_db" outputs the four-fact

database before the question is asked. The database is

repeated with the question if a retry is needed. The

"show_db" fact is retracted when the question is finished.

Lastly, the "menu" clause prints out a menu of all C-Prolog

topics, by number, onto the screen. It is used during the

intermediate and experienced levels to give the user a

selection to choose from.

4.5 General Control Functions

There are eight control functions that are used to run this

entire tutorial. The first one, "tutor", is the only file

that must be consulted to load the initial files of TUTOR.

Negative clauses, those with empty heads, are used in this

file to tell Prolog to start proving the goals in its body.



23 -

Seven files are consulted as a result and the sentences

To begin, type start. {RETURN}

To quit, type halt. (RETURN)

are printed on the screen.

A "halt. {RETURN}" will immediately exit the interpreter.

If the user types "start. {RETURN}", the "start" clause is

invoked. A welcome screen is printed, each of the skill

levels is explained and the user is asked to choose one.

When a skill is chosen, a fact whose predicate is "c_level"

and argument is either "b" or "e" is asserted into the

database to keep track of the current skill level the

tutorial is running. A rule defining the intermediate skill

level is not saved because of the short time that elapses

until another mode, equivalent to a beginner or experienced

user is chosen. Whenever a skill level changes, this fact

is retracted and another put in. pending on the respective

skill level, TUTOR will begin the lesson sequence via

"control", go to the "interm" rule or use the "exper" rule.

The "interm" rule guides the intermediate level. A menu of

topics are presented. If the user chooses to continue from

a certain point, the tutorial runs in the beginner mode and

the lessons resume with the number chosen. Selecting one

topic is also an option, after which TUTOR jumps to the



24 -

experienced mode. One topic or a set of topics are accessed

using the "control" rule in the library. When "intena"

receives a non-integer lesson number, it outputs an error

message using the "bad_inp" library routine and regenerates

a new screen, menu and the question again.

The experienced skill level starts off with the "exper"

rule. It outputs the same menu as "interm". Being a

recursive rule, "exper" allows the user to select topic

numbers until the "q." is received. A single lesson is

accessed directly through "get_it" because it is easier and

quicker than going through "control". An invalid input will

repeat the menu immediately.

In a file called "get_it", there are nineteen "get_it" rules

and a "get_it" fact. The rules correspond to the topic

number seen in the menu. Each is accessed directly or by

the library function "control". The purpose of these

"get_it" rules is to: assert a fact containing the current

topic number; call the "topic" rule with the name of the

lesson, summary or exercise and its arity; and then retract

the current topic fact, "c_topic", from the database. The

last line in this file contains a "get_it" fact with the

anonymous variable as its argument. It succeeds for lesson

numbers greater than 19

.

All of the exercises use the "ask" or "mult" rules for



25

questions. Single line questions are done using "ask".

When this rule starts up, it saves the reworded question

(Q2) , the answer to the question (Ans) and the reason for

the answer (Reas) in the database using "asserta". This

predicate was chosen over "assert" because it inserts a fact

at the beginning of the database making it quicker to

access. Q2 is only used if the first answer is wrong. Once

the answer and reason are printed, they are removed from the

database. Q2 is also retracted.

Multiple choice questions are output by "mult" . The

question (Q) , the three choices (A, B and C) , each reason

(RA, RB and RC) and the answer (Ans) are asserted into the

database. Whenever one of these is needed, a goal with a

variable is used. For example, Ans is put into the database

with the goal "asserta (ans(Ans) ) ". Before it is output, the

goal "ans(R)" must be satisfied and R gets instantiated to

whatever the variable "Ans" was when asserted. Then "R" is

used with the "write" predicate. If an answer other than

"a,b or c" is given, it is counted as a wrong answer.

The "repeatt" rule is mispelled because its correct spelling

is a predicate of Prolog. This rule handles requests to

repeat a previous topic. A "r."epeat option is only given

to beginners. It uses the "c_topic(X) M fact in the database

to determine where the user is in the tutorial. All of the

topics that precede "X" appear in a menu. After the topic



26

is chosen and repeated by "get_it", the session picks up

from where the user left off.

4.6 Portability

TUTOR was developed on a VAX 11/780 running under System 5

of the UNIX* operating system. It was then ported to the

VAX 11/780 (ksuvaxl) at Kansas State that runs under 4.2 BSD

UNIX. From there, it was copied onto the PLEXUS systems

(ksuplxl and ksuplx2) which run under UNIX System 5, the

Perkin Elmer 8/32 (ksu832) , and the Perkin Elmer 3220

(ksu3220) . Each of these systems contains version 1.4 of

the C-Prolog interpreter.

4.7 Assumptions

Appendix 2 of this report contains the TUTOR: Users Guide.

It is assumed that this document will be made available by

the Computer Science Department to any person who wants to

use TUTOR. The manual page will also be on-line on every

machine that supports TUTOR.

* Trademark of Bell Laboratories



- 27

4.8 Limitations

One of the capabilities originally intended for the

experienced user was to allow the summary or exercise of a

topic to be skipped. This feature could not be implemented

in the time allowed.



28 -

5. Testing

TUTOR has undergone a series of testing phases throughout

its development. As each small piece of the tutorial was

coded, its syntax and functionality as a single module was

proven. Multiple modules were then brought into the Prolog

database for a more integrated series of tests. TUTOR was

also tested as a complete system, which includes its

documentation, by people with various backgrounds.

5.1 Ongoing Unit Tests

Each function of TUTOR and also every lesson, summary and

exercise can be thought of as a single unit. During the

implementation phase of this tutorial, every unit was tested

for syntax and logic errors as soon as it was written. The

Prolog interpreter made this task relatively simple.

Correct syntax of a module was proven if the file could

successfully be "consulf'ed into the Prolog database. If

not, the error was pointed to by the interpreter. After it

was corrected, another attempt was made to cons t the file.

Once in the database, some functions were tested by using

them in questions, varying their arguments and watching the

results. Those that contained goals in the library were

tested after "lib" was consulted. When an error in the

logic was not obvious, the "trace" feature of the debugger

was used to do an instruction-by-instruction analysis of the



29

function to see exactly where and how it was failing.

Errors found during unit testing could be avoided in writing

the next module. Duplication was also eliminated in many

areas by creating general library functions that could be

accessed by every module.

5.2 Integration Testing

As development progressed, testing was done on a much

broader basis. More and more of the system was tested

together and its operation was much more visible.

During this stage, major problems were uncovered. The

memory problem, described in section 4.3, made it necessary

to "consult" only those files immediately needed by the

tutorial and "retract" clauses once they were no longer

needed.

A problem with the local stack also appeared. During

execution of a larger lesson, the stack ran out of memory

because of the method used to write text to the screen.

Originally, a recursive clause called "out" was developed to

handle an output string. It looked like this:

out([]):-nl.
out([ H

|
[]]):- put (H), nl.

out([ H
|
T ]):- put(H) ,out(T)



- 30

The problem was, each letter of text required another call

to "out". With every call, the return address was pushed

onto the stack and the stack was not cleared until the

entire lesson finished, thus causing an overflow condition.

To overcome this problem, each "out" and its string in

double quotes is replaced with the builtin predicate "write"

and the same string in single quotes. The local stack is no

longer needed to store return addresses because each "write"

completes immediately.

The capabilities of each skill level were examined to make

sure each type of user could get to the topics necessary.

For the beginner level, the predefined sequence of topics

from "Lesson 1 - The History of Prolog" to "Lesson 19 -

Builtin Predicates" was verified. TUTOR automatically led

the beginner through each of the lessons, summaries and

exercises necessary to learn basic Prolog. After the first

lesson, the user was always given the option to repeat a

previous topic before proceeding to the next section.

A menu is provided to the intermediate and experienced level

users. The former can choose to continue from a certain

point in the beginner sequence or to select a single topic

at a time. Each single topic was accessible from the menu.



31 -

5.3 Overall System Testing

When TUTOR was completed, the last phase of testing began.

Every section of the tutorial was executed and checked for

correctness and completeness. Examples contained in the

lessons were tested independently with Prolog.

Expected as well as unexpected responses were tried whenever

the system was waiting for input. Some of the unexpected are

handled by the code. For instance, whenever a variable is

input, it is changed to the constant "bad_reply" and then

tested as if it were the answer originally typed in. Some

input causes the system to jump into the debugger or output

an unfamiliar prompt. When symptoms like these were found,

a procedure of what to do was documented in the User's

Guide.

The quit "q.", continue "c." and repeat "r." commands were

invoked at each place they appear. Changing to a new skill

level is allowed at any time by any type of user.

5.4 Evaluation

During all three testing phases, TUTOR was being evaluated.

Many types of people saw the system, used it, tested it and

shared their opinions. Each requirement was also appraised

by the developer.



32

Overall, the system has consistent external behavior. It is

easy to use and always provides the user with prompt and

informative responses. The lessons are clear and concise

and the exercises test the important points of the topics

presented. Explanations are always given for right and

wrong answers.



33

6. Other Tutorials

This chapter describes two other computer-assisted

tutorials, "The LISP TUTOR" from Carnegie-Mellon University

and "CLYDE: A UNIX TUTOR" developed at Brown University.

Comparisons between each of these tools and this PROLOG

TUTOR are discussed.

6.1 The LISP TUTOR

Still under development, the LISP TUTOR [1] was written to

answer the high demand for courses in LISP, but more

importantly, to create a tool that would be as effective as

a private tutor. As an alternative or supplement to

classroom lectures, it provides intelligent guidance to the

student who spends most of the time designing and writing

LISP programs.

The LISP TUTOR is designed to run in a transparent mode

until the user requests guidance or until it sees a mistake

has been made. When difficulties arise during a coding

session, it automatically moves the student into a design or

planning session and walks them through the algorithm,

step-by-step, using an example. The student can then return

to writing code with the correct approach still fresh in

their mind.

In some cases, the tutor provides hints and reminders or



34

asks questions to get the user back on the right track. It

can even go as far as writing a piece of code so the student

can proceed. This is only done on request or if the tool

decides too many mistakes have been made. This feature

prevents wasted time, avoids frustration and leaves little

reason for the student to give up, as might have happened if

working on the problem alone.

A structured editor provides the tutoring interface for

entering code. It automatically balances parentheses and

sets up templates for each function. If the student types

"(defun" the tutorial will automatically generate

(defun <NAME> <PARAMETERS>
<PROCESS>

)

onto the screen. Each area in brackets must be coded. The

tutor moves the cursor to the next field that the user is

expected to fill in.

Each lesson in the curriculum takes from 1-4 hours to

complete. The student uses an instruction booklet with each

topic and goes through each of the problems. During a

session with the tutor, the display screen is broken up into

3 horizontal windows: a "code window" where the actual code

is typed, a "tutoring window" where the tutorial writes its

feedback and a "goals window" where the problem definition,



35

reminders or examples are displayed.

The LISP TUTOR is generally accepted by students, but they

do complain about the excessive number of menus and its slow

response time (actual numbers were not given) . It runs

under FRANZ LISP, currently on a VAX 725 and requires 3

megabytes of memory for a single user.

6.2 Clyde : A UNIX TUTOR

Clyde [10] is a knowledge-based system that teaches the UNIX

operating system to new users. "It is a program which

simulates the command level of the operating system,

monitoring the session and interrupting the user to offer

advice only when warranted." It does its teaching by

example.

Like the LISP TUTOR, Clyde remains transparent until the

user needs help. It keeps a permanent profile of each

user's progress to avoid repetition in a single session and

in multiple sessions, just as a human tutor would do.

The tutor covers a variety of topics such as the "history"

facility in Berkeley UNIX CShell, the directory heirarchy in

UNIX, wildcards and some of the commands in UNIX that can be

dangerous to use. It watches each command the user enters

and, if possible, suggests a more efficient way to

accomplish the same multiple command sequence.



- 36

Clyde maintains a wide vocabulary of commands used in other

operating systems. It can suggest the appropriate UNIX

command to a user who may have typed a command learned on

another system.

This tutorial is also implemented in FRANZ LISP and runs

under Berkeley 4.1a UNIX. It uses a knowledge

representation system called "Frail" to represent it

database. As far as performance, it is said to be

reasonable, but like any other large LISP application on a

timesharing machine, the overhead involved poses problems.

6.3 Comparisons

The C-PROLOG TUTOR uses preprogrammed sequences to create

each scenario, while the LISP TUTOR creates instructional

interactions depending on the progress of its user.

Unlike the other two, the Prolog system does not watch every

character the user types. It does not provide hints or

suggestions before an answer is input, but it does reword

questions, give an explanation for each wrong answer, and

always explains the correct answer. Explanations are

purposely worded so as not to give away the entire answer

before a retry.

This tutorial is much smaller in size than the LISP TUTOR,

and judging from the capabilities of CLYDE, it, too, is



37 -

probably larger. Each tool covers a wide variety of topics

about the particular subject area being taught and gives the

user the opportunity to learn each topic by doing.

The C-PROLOG TUTOR allows the user to leave the tutorial in

a variety of ways. If someone is used to ending a program

by typing "exit", "quit", or "q", TUTOR interprets it as a

"halt", which is the correct way to leave PROLOG. This

feature was designed purposely, in the same way CLYDE

recognizes commands from other systems, so the user would

have one less obstacle to overcome.



- 38

7. Conclusions

Overall, the development of TUTOR proved to be a very

fruitful and worthwhile project. It was beneficial not only

from the viewpoint of learning the Prolog language better,

but the experience and knowledge necessary to accomplish

such a task was gained.

This particular application was not well-suited for Prolog,

but in doing it, many features of the language, such as

backtracking and the use of its database, were learned and

often utilized. It took time to learn how to think in terms

of how Prolog works, which is not like any other algorithmic

language. Prolog is definitely better used in applications

like expert systems and relational databases where facts,

rules and questions are constantly needed. Most of the goals

in TUTOR simply print text to the screen.

Each of the major requirements established in the beginning

of this project was implemented. The system operates as

intended and contains a complete set of material for someone

to learn basic Prolog. Every decision and problem

encountered during this project has been described. TUTOR

was written with simplicity and structure in mind. Its

operation is well documented. The code is composed of many

small files which should make additions fairly simple to

implement.



- 39

8. Extensions

There are many other areas of Prolog that are not taught by

this tutorial. Any of those could be added to this system.

Described here are some of the more important and useful

areas that could be considered.

One area of PROLOG never mentioned in this project is the

debugger. Throughout this entire effort, the debugger was in

constant use. To learn how a predicate works, to see which

goals are resatisfied by backtracking, to watch where a rule

was failing, and to examine the contents of different

variables, are all prime examples of how it was used. The

Prolog debugger is a very useful mechanism that is a must

for developing a program of any reasonable size. Without

it, this package would have been very difficult to develop.

Improvements could be added to benefit the experienced user.

Perhaps a wider range of topics, only accessible by that

level, would attract someone who already has a Prolog

background. The option to skip a summary or exercise may

also be attractive. Exercises that give the user more

chances to actually program would help someone experienced

as well as users in the other levels.



40 -

Bibliography

[1] Anderson, John R. and Reiser, Brian J., "The LISP
TUTOR", Byte, April, 1985.

[2] Bailey, Robert W. , "Human Performance Engineering: a
Guide for System Designers", Prentice-Hall, 1982.

[3] Barr, Avron and Feigenbaum, Edward, "The Handbook of
Artificial Intelligence", Department of Computer
Science, Stanford University, William Kaufmann, Inc.

,

1982.

[4] Clark, K.L. and Tarnlund, S.A., "Logic Programming",
Academic Press, 1982.

[5] Clocksin, W.F. and Mellish, C.S. , "Programming in
Prolog", Springer-Verleg, Berlin Heidelberg, 1981.

[6] Dean, M. , "How a computer should talk to people.", IBM
Systems Journal, Vol. 21, No. 4, 1982.

[7] Hebditch, D. , "Dialogue Design for user-friendly
systems", User-Friendly Systems, Infotech State of the
Art Report, Series 9, Number 4, Pergamon Infotech
Limited, Berkshire, England, 1981.

[8] Hogger, Christopher John, "Introduction to Logic
Programming", Academic Press, 1984.

[9] IEEE Computer Society, "The First Conference on
Artificial Intelligence Applications", IEEE Computer
Society Press, Los Angeles, CA. , 1984.

[10] Irgon, Adam E. and Martin, John C. , "Clyde: A UNIX
Tutor", Human-Computer Interaction, Elsevier Science
Publishers, Amsterdam, 1984.

[11] Kowalski, R. , "Logic as the Fifth Generation Computer
Language", The Fifth Generation Computer Project,
State of the Art Report, 11:1, Pergamon Infotech
Limited, 1983.

[12] Meredith, J. C. , "The CAI Author/Instructor",
Educational Technology Publications, Englewood Cliffs,
NJ, 1971.

[13] Pereira, Fernando, editor, "C-Prolog User's Manual",
SRI International, Menlo Park, California, 1984.



41

[14] Rubinstein, Richard, and Hersh, Harry, M. , "The Human
Factor - Designing Computer Systems for People"

,

Digital Press, 1984.

[15] Sleeman,D. and Brown, J. S., "Intelligent Tutoring
Systems", Academic Press, New York, 1982.

[16] Warren, D.H.D., "A View of the Fifth Generation and
its Impact", The Fifth Generation Computer Project,
State of the Art Report, 11:1, Pergamon Infotech
Limited, 1983.



- 42

APPENDIX 1

TUTOR manual page



43

TUTOR(l) UNIX 5.0 (local) TUTOR(l)

NAME
TUTOR - a tutorial in C-Prolog

SYNOPSIS
S prolog (RETURN)

c-Prolog version 1.4

yas
I
?- [ '/usr/prolog/tutor' ] • (RETURN)

DESCRIPTION
This manual paga describes how to usa a Prolog tutorial
called TUTOR. TUTOR la an interactive, instructional tool
that teachea a version of Prolog called C-Prolog. It is
written in C-Prolog and is available on the VAX 11/780,
Parkin Elmer 8/32 and the PLEXUS systems at Kansas State
University.

GETTING STARTED
TUTOR accommodates users of three skill levels. The history
of Prolog and an overview of C-Prolog are described in the
first two lessons. The major areas of the language are
covered in the next sixteen lesson/summary/exercise
sections. The last lesson briefly describes the core set of
builtin predicates of C-Prolog.

TUTOR is supported on the following five machines at Kansas
State.

VAX 11/780 (KSUVAX1)
Parkin Elmer 8/32 (KSU832)
Parkin Elmer 3220 (KSU3220)
Plexus 1 (KSUPLX1)
Plexus 2 (KSUPLX2)

Each of these machines has Version 1.4 of the C-Prolog
interpreter available. In all cases, to invoke the
tutorial, you must first get into the interpreter by typing

S prolog (RETURN)

The convention (RETURN) means you should type a carriage
return. It is uaed throughout this manual page and the
tutorial. When TUTOR is loaded, you will see the following
response and prompt.

Pa9a 1 (printed 11/10/85)



44

TUTOR(l) UNIX 5.0 (local) TUTOR(l)

C-Prolog version 1.4

I

1-

At this time, C-Prolog ia ready for user input. If you have
problems with the tutorial from this point on, consult the
"HAVING PROBLEMS" section. It describes various symptoms
and what to do if you see them.

To load the tutorial, the file "tutor" must be consulted
(read in). After the prompt shown above, type the following

I
?- ['/usr/prolog/tutor']- (RETURN)

By consulting this file, all the other files necessary tostart up TUTOR will be consulted automatically. As eachfile is read into the database, its Bize in bytes is printedalong with the amount of time it took to be read in (thesetimes may vary, depending on the machine) . Instructions arealso given to start up the tutorial or leave the
interpreter. You can expect the following output.

/usr/prolog/lib consulted 3456 bytes 1.03333 sec.
/usr/prolog/start consulted 1184 bytes 0.4 sec.
/usr/prolog/ask consulted 1160 bytes 0.233335 sec.
/usr/prolog/mult consulted 2216 bytes 0.533335 sec.
/usr/prolog/repeatt consulted 1676 bytes 0.633334 sec.
/usr/prolog/get_it consulted 2904 bytes 1.11667 sec.

•a********************* ******* »»«***.»***»*»» t »
*** To begin, type start. (RETURN) ***
*** »„*
*** ***
*»* To quit, type halt. (RETURN) **»
*** —»— *»»
ttmt.Jitttt.MtMtu,,,,,,,,,,,,,,,,,,,,,,,,,

/usr/prolog/tutor consulted 12596 bytes 4.3 sec.

r?-

RUNNING TUTOR
Now that TUTOR is loaded, you will see the prompt "7-"
which tells you that Prolog is ready for a command. At thispoint, follow the instructions to either start up or leave
the tutorial.

REMEMBER THIS:
Prolog must see a period after every answer.
But, don't worry if you type the answer and

pag# 2 (printed n/io/85)



45

TOTQR(l) UNIX 5.0 (local, TOTOR,!,

^2 &' * a?™™ without the period. You can
' £*1!J£2 period at the next prompt followed bya RETURN and Prolog won't know the difference?

with°a cSiti? ?.??
r
i
ab1' at thla tima

'a word beginning
„}? 5.S

a
?
ltal lafcter or an underscore) , Prolog will resnond

again.
Mnt *' * v«i4bl <"

" *nd then the -
1
?-« promp?

When TUTOR is started, a welcome screen will aoDear I*describes each of the skill levels SSuSkU STSin^Sh.

Beginner - Assumes no prior knowledge
of PROLOG

- Automatically guides you through
every topic *

Intermediate - Allows you to resume from where
you left off during last session,

Erae-rf^™* ?f

,

t0 chooaa °n« topic at a timeExperienced - Allows you to pick one particular
topic at a time

1) history of PROLOG 7) rules 13) lists

ZIS™ " "„ ch
8\°V»"* "\ barracking

gSes'ion.
9) °h

o
a°

OD" *»> cut

5) 3;;
S
;i?2

a 10) °P»ratorsvariables u) equality
«) conjunctions "' "^ arithmetic

i?i sms«!s ass— mtJBrewBa.
?
aC
a\so

e
?nc

S
ud°r.

r
su»ma

n
r; SSTSSoiX:

8" T°Pi" ' ""»">
TO REPEAT A TOPIC

Page 3 , .

(printed 11/10/85)



46

TUTOR(l) UNIX 5.0 (local) TUTOR(l)

TO REPEAT A TOPIC - type "r."

When you type »r.", TUTOR telle you it will take you back towhere you started after the topic is repeated. A menu oftopics will appear on the ecreen, but it will contain onlythose topics that precede the topic you are currently
53F. ?! S: „J

f
,

you ara workin9 on Lesson 5, for instance,tnis is the dialog and menu you would see.

After the topic you choose is repeated, TUTOR willcontinue from where you left off. These are thetopics preceding the lesson you are currently working

1) History of Prolog 2) c-PROLOG at KSU
J) facts 4) questions

Vou would then be asked,

Which topic do you want to repeat? (ie "2. (RETURN)")

If the topic you chose contains a lesson, summary andexercise, that is what you'll see. When the entire topic

tKoSs sssi&ir " starts up the next secti °n °< &
LEAVING TUTOR

the
r
message

""**"' °* "**' t0 leaVe thl* **•**•* Whenever

TO QUIT - type "q.»

SS«?*fS
°n

»
hV™~aan

i, y
°u hava the option to leave TUTOR.Besides »q.», TUTOR will also recognize "quit." , "exit "

?" „„
halt -" aa termination commands. Before the sessionis over, you are first asked

Do you want to try a new skill level? ("y.» / »n.»)

!"f"; X?,?
u
f
ren

? }
aval ls to° *"* or too difficult, if

question?
V* y°Ur cnoica

'
vou wil1 8ea this next

Which new level do you want?
Beginner — type "b. (RETURN)"
Intermediate — type "i. (RETURN)"
Experienced — type "e. (RETURN)"

«5*2J£S
an

K"
n-

r !"1U cause tna following message to be
?h. ™?v l

ike you oonlPletely out of Prolog and back totna uhix prompt.

Page 4 (printed 11/10/85)



47

TUTOR (1) UNIX 5.0 (local) TUTOR(l)

You have reached the end of the PROLOG tutorial.Feel free to use it again anytime for a refresheror to continue from where you left off.

f Prolog execution halted ]

cS„£?n„« 2i??" Bod* ?
r th* intermediate mode where the

Sh"^
lnua

.
°Ption »" chosen, TUTOR will stop automatically

2«S it: haa "ached tha ena ot the t L sequence? At this
sc?e4n

y°U "U1 alS° "" tha above Baa"*a ap£« on the "

HAVING PROBLEMS ??
SYMPTOM WHAT TO DO

no
I

1-

The prompt " I

"

keeps repeating

The prompt " I
:

»

keeps repeating

Prolog did not understand
your input. Try again.

Prolog is probably waiting
for a period . Type " . " { RETURN )

.

Prolog is waiting for a response.
Type in one of the commands at the
bottom of the screen or a response
to the last question, followed by
a period.

I : Action (h for help)

$ (Unix prompt)

Type »a» (RETURN) and you will see
execution aborted]" and the prompt

"I ?-" on the screen. To start up
the tutorial again, type "start." and
a (RETURN), if you were using the
beginner level, you may want to start
up in the intermediate level so you
don't have to repeat previous topics.

The tutorial and Prolog were exited.
You must re-enter Prolog and reload
"tutor" to use the tutorial.

TUTOR gets stuck
somewhere . No
input works.

Hit BREAK or DEL and follow
directions on previous page
for the symptom
" | : Action (h for help)

Page 5
(printed 11/10/85)



48

TOT0R(1) OIHX S.o (local) TOT0Ra)

FILES
/usr/prolog/*

SEE ALSO

^?inie?:v^r.g?
n
L?iii

1

^ida
c
i^«;f

r
!fir

in9 in pro1^"-

Page 6 , .

(printed 11/10/85)



19 -

APPENDIX 2

TUTOR: User's Guide



50

TUTOR USER'S GUIDE

A Tutorial that teaches

C-PROLOG

on the

VAX 11/780,

Perkin Elmer 8/32

and

Plexus

Machines

Kansas State University

Computer Science Department

November 1, 1985



51

CONTENTS

1. Introduction 52

2

.

Getting Started 52

3

.

Running TUTOR 54

4. To Repeat a Topic 56

5

.

Leaving TUTOR 57

6

.

Having Problems ?? 59

7

.

Glossary of Terms 60



- 52 -

1. Introduction

TUTOR evolved as an exercise in PROLOG; to study its

characteristics, learn its structure and then apply it in

the development of an interactive software tool . It was

developed to provide an independent, self-paced means to

learn the C-PROLOG version of PROLOG. It is a tutorial

designed for both new and experienced users and contains a

comprehensive set of lessons, summaries and exercises to

explain each basic area of the language.

TUTOR is written in C-PROLOG. It presents C-PROLOG in the

same structural manner used by Clocksin and Mellish in their

book which describes standard PROLOG.

2. Getting Started

TUTOR is supported on the following five machines at Kansas

State.

VAX 11/780 (KSUVAX1)
Perkin Elmer 8/32 (KSU832)
Perkin Elmer 3220 (KSU3220)
Plexus 1 (KSUPLX1)
Plexus 2 (KSUPLX2)

Each of these machines has Version 1.4 of the C-Prolog

interpreter available.



53

In all cases, to invoke the tutorial, you must first get

into the interpreter by typing

$ prolog {RETURN}

The convention {RETURN} means you should type a carriage

return. It is used throughout this manual and the tutorial.

When prolog is loaded, you will see the following response

and prompt.

C-Prolog version 1.4

I

?-

At this time, C-Prolog is ready for user input. If ou have

problems with the tutorial from this point on, consult

section 6 of this manual entitled "Having Problems ?". It

describes various symptoms and what to do if you see them.

To load the tutorial, the file "tutor" must be consulted.

After the prompt shown above, type the following

|
?-[ '/"sr/prolog/tutor' ] . {RETURN}

By consulting this file, all the other files necessary to

start up TUTOR will be consulted automatically. As each

file is read into the database, its size in bytes is printed

along with the amount of time it took to be read in.



54

Instructions are also given to start up the tutorial or

leave the interpreter. The following output can be

expected, but the numbers don't have to be exact.

/usr/prolog/lib consulted 3456 bytes 1.03333 sec.
/usr/prolog/start consulted 1184 bytes 0.4 sec.
/usr/prolog/ask consulted 1160 bytes 0.233335 sec.
/usr/prolog/mult consulted 2216 bytes 0.533335 sec.
/usr/prolog/repeatt consulted 1676 bytes 0.633334 sec.
/usr/prolog/get_it consulted 2904 bytes 1.11667 sec.

***********************************************
*** to begin, type start. {RETURN} ***
*** ***
*** ***
*** to quit, type halt. {RETURN} ***
*** _____ ***
***********************************************

/usr/prolog/tutor consulted 12596 bytes 4.3 sec.
yes

I

1-

3 . Running TUTOR

Now that TUTOR is loaded, you will see the prompt "?-",

which tells you that Prolog is ready for a command. At this

point, follow the instructions to either start up or leave

the tutorial.

REMEMBER THIS:

Prolog must see a period after every answer. But,

don't worry if you type the answer and then hit a

RETURN without the period. You can type the period

at the next prompt followed by a RETURN and Prolog

won't know the difference.



- 55

If you type in a variable at this time, a word beginning

with a capital letter or an underscore, Prolog will respond

with "Statement is a variable!" and then the "| ?-" prompt

again.

When TUTOR is started, a welcome screen will appear. It

describes each of the skill levels available for using the

tool.

Beginner - Assumes no prior knowledge
of PROLOG

- Automatically guides you through
every topic

Intermediate - Allows you to resume from where
you left off during last session,
or to choose one topic at a time

Experienced - Allows you to pick one particular
topic at a time

A beginner will sequentially be taken through each of the 19

Prolog topics listed below. Intermediate users can choose

to continue from a certain topic or like the experienced

user, can select one topic at a time.

1) history of PROLOG 7) rules 13) lists
2) C-PROLOG at KSU 8) syntax 14) backtracking
3) facts 9) characters 15) cut
4) questions 10) operators
5) variables 11) equality
6) conjunctions 12) arithmetic

16) reading/writing characters 18) accessing files
17) reading/writing terms 19) built-in predicates

Each item is covered in a separate lesson. Topics 3 through



56

18 also include a summary and exercise.

4 . To Repeat a Topic

Many lessons refer back to previous topics. TUTOR allows

the beginner or beginner/intermediate user to go back and

review a topic covered in an earlier lesson. If you see a

topic you want to review, wait until the end of the current

lesson, summary or exercise and the repeat command will

appear as one of the choices across the bottom of the

screen.

TO REPEAT A TOPIC - type "r."

When you type "r." , TUTOR tells you it will take you back to

where you started after the topic is repeated. A menu of

topics will appear on the screen, but it will contain only

those topics that precede the topic you are currently

working on. If you are working on Lesson 5, for instance,

this is the dialog and menu you would see.

After the topic you choose is repeated, TUTOR will
continue from where you left off. These are the
topics preceding the lesson you are currently working
on:

1) History of Prolog 2) C-PROLOG at KSU
3) facts 4) questions

You would then be asked,



57 -

Which topic do you want to repeat? (ie. "2. {RETURN}")

If the topic you chose contains a lesson, summary and

exercise, that is what you'll see. When the entire topic

has been repeated, TUTOR starts up the next section of the

tutorial immediately.

5. Leaving TUTOR

There are a number of ways to leave this tutorial. Whenever

the message

TO QUIT - type "q."

appears on the screen, you have the option to leave TUTOR.

Besides "q.", TUTOR will also recognize "quit." , "exit."

and "halt." as termination commands. Before the session

is over, you are first asked

Do you want to try a new skill level? ("y." / "n.")

in case the current level is too easy or too difficult. If

another skill level is your choice, you will see this next

question.

Which new level do you want?
Beginner — type "b. {RETURN}"
Intermediate — type "i. {RETURN}"
Experienced — type "e. {RETURN}"



58

If not, an "n." will cause the following message to be

printed, then take you completely out of Prolog and back to

the UNIX prompt.

You have reached the end of the PROLOG tutorial.
Feel free to use it again anytime for a refresher
or to continue from where you left off.

[ Prolog execution halted ]

$

In the beginner mode or the intermediate mode where the

continue option was chosen, TUTOR will stop automatically

when it has reached the end of the topic sequence. At this

time, you will also see the above message appear on the

screen.



6. Having Problems ??

59

SYMPTOM WHAT TO DO

no
I

?-
Prolog did not understand
your input. Try again.

The prompt "

keeps repeating
Prolog is probably waiting
for a period. Type "." {RETURN}.

The prompt " I

:

"

keeps repeating
Prolog is waiting for a response.
Type in one of the commands at the
bottom of the screen or a response
to the last question, followed by
a period.

| : Action (h for help) Type "a" {RETURN} and you will see
"[execution aborted]" and the prompt
"| ?-" on the screen. To start up
the tutorial again, type "start." and
a {RETURN}. If you were using the
beginner level, you may want to start
up in the intermediate level so you
don't have to repeat previous topics.

$ (Unix prompt) The tutorial and Prolog were exited.
You must re-enter Prolog and reload
"tutor" to use the tutorial.

TUTOR gets stuck
somewhere . No
input works.

Hit BREAK or DEL and follow
directions above for the symptom
" | : Action (h for help)



60 -

7. Glossary of Terms

arity - the number of arguments associated with a

particular predicate. For example, in the fact

"dances(jane,fast) .", dances has an arity of two.

builtin - a builtin predicate is one that has been

previously defined by Prolog. It is a available to every

Prolog user.

fail - a goal will fail if it does not match at least one

clause in the database.

Fifth-generation - computer systems for the 1990's.

Knowledge information processing done while incorporating

new technologies of VLSI architecture, parallel

processing, logic programming, knowledge based systems,

artificial intelligence and pattern processing.

functor - another name for a predicate. It defines the

relationship between arguments.

instantiated - a variable becomes instantiated when it

assumes a value.

interpreter - a software package that translates a

program to executable form by translating and executing

each line in turn without waiting to translate the

program as a whole.



- 61

placemarker - a mechanism used to mark the spot in the

database of where the last match for a given goal occurs.

A separate placemarker is kept for each goal.

resatisfy - to resatisfy a goal, backtracking must occur.

Every variable of the goal becomes uninstantiated.

Beginning at the placemarker, the database is searched

for another match. If a match is found, the goal is

resatisfied.

succeeds - a goal succeeds if it matches a clause in the

database.

unification - the process of substituting a value in

place of a variable.

uninstantiated - a variable is uninstantiated whenever it

has no value.

Von Neumann architecture - an architecture where programs

are stored in the computer along with the data.

Instructions could now be changed without rewiring

hardware. Since instructions are stored as numbers, they

could be processed as data.



- 62

APPENDIX 3

Source Code



/* Lesson 18 - ACCESSING FILES */

accfile:- newpg,
wrileCLesson 18 - ACCESSING FILES'), nt.nl.nl,
writeCNormally, the current input and current output stream in PROLOG is your 1 ), nl.nl,
writeC terminal. These are handled by a built-in file called "user.". If instead, ), nl.nl,
writeCyou want to read data from or write data to another file, you can use '), nl.nl,
writeCthe PROLOG predicates "see" and "tell". '), nl.nl,
writeCThe goal "see(A)" switches the current input stream from the terminal to'). nl.nl,
writeCfile "A", if A was instantiated to an atom which specified the f ilename. '), nl.nl,
writeCIt opens the file for input and points to the top of the file. The contents' ), nl.nl,
writeCof the file can now be read using the "get", "getO" and "read" predicates. '),nl,nl,nl,
next2,
mid_input(_),
newpg,
writeC 'ACCESSING FILES - continued' ),nl ,nl ,nl,

writeCUhen you want to close the file and switch back to standard terminal input, '), nl.nl,
writeCuse the goal "seen", with no arguments.'), nl.nl,
writeCTo find out what the current input stream is set to. the goal "seeing(B) 1" ),nl,nl,
writeCwill instantiate B to that name, providing 8 was not already set to'), nl.nl,
writeCsomething else. '),nl,nl,nl,
writeCTo change the current output stream to file D, you need the goal "telt(D)". '),nl,nL,
writeCIt will open the file and direct all subsequent writing by predicates like '), nl.nl,
writeC'put" and "write", into the file until it is closed. If file D already 1 ), nl.nl,
writeCexists, it will be overwritten. Otherwise a new file will be created. '), nl.nl,
next2,
mid_input(_),
newpg,
writeCACCESSING FILES • continued 4 ), nl.nl.nl,
writeCThe predicate "told" will close the file and switch the current output'), nl.nl,
writeCstream back to "user". Like "seeing", there is a predicate called "telling" 1 ), nl.nl,
writeCthat will instantiate its argument to the name of the current output stream. ), nl.nl, nt,
writeCBoth "see" and "tell" can only be satisfied once. Backtracking over them 1 ),nl,nt,
writeCwill not change the current input or output stream back to its previous value. '),nl, nl.nl, nl,
next2,
mid_input<_),
newpg,
writeCACCESSING FILES • continued' ), nl.nl.nl,
uriteCUntil now, we have discussed methods for reading data from a file into'),nl,nl,
writeCa program and also writing data from a program into a file. A much more 1 ),nl,nl,
writeCcommon use of files in PROLOG is to store programs. All of the facts and rules'), nl.nt,
writeCthat make up a program can become part of the database with one command, '), nl.nl,
writeC'consult". C-PROLOG uses the square bracket notation or the consult predicate 1 ), nl.nl,
writeCread in files. The goal "['), put(39),
writeC/usr/prolog/tutor'), put (39),
writeC]." that you typed at the'),nl,nl,
writeCbeginning of this session, brought in all the files needed to start up the'), nl.nl,
writeCtutoriat. To consult multiple files, a goal like "[main, subl, sub2, sub3]"'), nl.nl,
writeCwould read the contents of all four files into the database. '), nl.nl.nl,
(c_level<e) -> next2; next3),
end_input.



/* Lesson 12 - ARITHMETIC */

arith:- newpg,
writeCLesson 12 • ARITHMETIC ),nl, nl.nl

,

writeCAlthough PROLOG is not the type of language heavily used for mathematics, '), nl.nl,
writeCit does have operators for doing comparisons and calculations. There are 1 ), nl.nl,
wrtteCsix built-in predicates, in the form of infix operators that allow you'),nl,nl,
writeCto compare numbers. They are contained in the following examples. ' ),nl, nl.nl,
writeC A = I. "A equals B"'),nl,
writeC A \= B. "A is not equal to B"'),nl,
writeC A < B. "A is less than B"'),nl,
writeC A > B. "A is greater than B'"),nl,
writeC A =< B. "A is less than or equal to B'"),nl,
writeC A >= B. "A is greater than or equal to B'"),nl,nl,nl,
next2,
mid_input(_),
newpg,
writeCARITHMETIC • continued' ), nl.nl,
wr it e( 'Assume the database contains these facts and a rule.'), nl.nl,
writeC born< frank, 1925). '),nl,
writeC born(william,193B). '),nl,
writeC born(judy, 1932).'), nl.nl,
writeC child(X.Y.Z):- born(X,A), '),nl,
writeC A > Y.'J.nl,
writeC A < 2.'), nl.nl,
writeCA conversation with PROLOG might then proceed as follows:'), nl.nl,
writeC ?- child(X, 1920, 1935). (RETURN}'), nl,
writeC '),nl,
writeC X = frank ; {RETURN}'), nl,
writeC '),nl,
writeC X * judy ; {RETURN}'), nl,
writeC '),nl,
writeC no '), nl.nl,
next2,

mid_input(_),
newpg,
writeCARITHMETIC - continued' ),nl ,nl ,nl,
writeCOperators like "+•», "-", "*" and "/" are very common but are not evaluated 1 ), nl.nl,
writeCin PROLOG, unless the "is" operator is part of the same goal. The "is"' ),nl ,nl

,

writeCoperator is infix like the other operators above. It expects an unknown' ), nl.nl,
writeCvariable on its left and an arithmetic expression on its right. It will' ), nl.nl,
writeCevaluate the expression and instantiate the left side to the result. '), nl.nl,
writeCSome examples: '), nl.nl,
writeC Pay is (hours**. 50)'), nl.nl,
writeC X is Y/2 '),nl,nl,
writeC Abe is (3"m+2/p+1)' ), nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCARITHMETIC • continued' ),nl, nl.nl

,

writeCThe divide operator "/", denotes integer division. An expression'), nl.nl,
writeCcontaining this operator will only return the integer portion of the'),nl,nl,
writeC quotient. '), nl.nl,
writeC "Y is 9/2." instantiates Y to 4 '),nl,nl,
writeC "Dozen is 144/12." instantiates Dozen to 12 '), nl.nl,
writeCTo produce a remainder, the operator "mod", short for modulo, should' ), nl.nl,
writeCbe used. ONLY the remainder is returned. ), nl.nl,
writeC "2 is 9 mod 2." instantiates 2 to 1 '),nl,nl,
writeC "U is 3 mod 1." instantiates W to '), nl.nl.nl,
(c level(e) -> next2; next3),
end_ input.



/* Routine that asks the user a question, interprets his reply,
allows a retry and if necessary, explains the correct answer. V

ask(Ql, Q2, Ans, Reas):- asserta(q2(Q2>),
asserta(ans(Ans)),
asserta(reas(Reas)),
a_out(Ql,1),
retract(reas(Reas)),
retract(ans(Ans)),
retract(q2{02)).

aout(Q.H):- nl.nl, write(O), nl.nl,
nextl,
mid_input(Rl),
check(RI.N).

check(X,_):- ans(X),
write(X),
writeC is the correct answer. '), nl.nl,
reas(R),
write(R),nl,nl,nl,nl.

check(X,0):- write(X),
writeC is incorrect.'), nl.nl,
reas(R),
write(R), nl.nl, nl.nl.

check(X.Y):- Z is Y-1,
write(X).
write<' is incorrect. ), nl.nl.nl,
q2(Q3),
a_out(Q3,Z).



/* Lesson H BACKTRACKING */

backtr:- newpg,
writeCLesson 14 - BACKTRACKING' ),nl ,nl,nl,
writeCUhen attempting to satisfy a goal, two things can happen. If a (natch') ( nL,nl,
writeCis found, the database is marked, variables are instantiated, and PROLOG 1 ), nl.nl,
write( 'moves to the next goal on the right. If no match is found, that particular 1 ), nl.nl,
writeCgoal fails, and PROLOG "goes back" to the previous goal and tries to'), nl.nl,
writeCresatisfy it. '),nl, nl.nl,
urite('This is the whole idea behind BACKTRACKING and it is all done'), nl.nl,
write( 'automatically by PROLOG. '), nl.nl ,nl,

next2,
mid_input(_),
newpg,
writeC 'BACKTRACKING - continued' ), nl.nl.nl,
write< 'Assume the following facts are in the database. '), nl.nl,
writeC person(peter).'),nl,
writeC person(paul).'),nl,
writeC

'

personCmary). ' ),nl ,nl,

writeCThe question "?-person(X)." would produce X = peter ; {RETURN}'), nl,
writeC ').ni.
writeC X = paul ; (RETURN) 1 ),nl

,

writeC '),nl,
writeC X = mary ; {RETURNS ),nl

,

writeC '),nl,
writeC no 1 ), nl.nl,
writeCif we told it to resatisfy the goal, or BACKTRACK, after each answer was'),nl,nl,
writeCprinted. Ue force BACKTRACKING here with the ";" symbol .'), nl.nl, nl,
next2,
mid_input(_),
newpg,
writeCBACKTRACKING - continued' ),nl , nl.nl,
writeCEach time BACKTRACKING occurs, PROLOG will undo what was accomplished by the'), nl.nl,
uri te( 'previous goal. Any variables, in that goal, that were instantiated Lose their'), nl,nl,
writeCvalue. A separate place-marker is kept for each goal that the database is'),nl,nt,
writeCsearched for. PROLOG will begin at the marker, not at the top of the'), nl.nl,
writeCdatabase, each time it tries to resatisfy the goal. If the goal is 1

), nl.nl,
writeCsatisf ied again, the place-marker is moved. '),nl,nl,nl, nl.nl, nl.nl,
(c level(e) -> next2; next3),
end_input.



/* lesson 19 • BUILTIN PREDICATES */

bull tin:- newpg,

writeCLesson 19 - BUILTIN PREDICATES'), nl.nl.nl,
writeCThere are many functions already defined by PROLOG called builtin predicates. ' ),nl ,nl

,

writeCThis lesson will give you a basic understanding of those in the "core" set. ' ),nl ,ni

,

writeC It does not explain how they work, but what they do and what they are used' ), nl.nl,

writeCfor. Some of these may look familiar from earlier lessons.'), nl.nl,
wri te( ' atom( ) integer( > reconsul t(

)
' ) , nl

,

writeC atomicO memberO tab()'),nl,
writeC consul t() nl true'),nl,
writeC fail nonvar() var()'), nl.nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCBUlLTIN PREDICATES - continued 1 ), nl.nl,
writeCatom(A)' ),nl,

wri teC ======= '),nl,

writeCThis goal succeeds if A is a Prolog atom. Remember, an atom consists of either'), nl.nl,
writeC - tower case letters and digits and begins with a lower case letter 1 ), nl,

writeC • all symbols or '),nl,

writeC - a combination of letters (upper and lower case), digits, and symbols'), nl,

writeC all enclosed in single quotes. '), nl.nl,
writeCHere are some examples: '), nl.nl,
writeC 7- atom(kitten). {RETURN}'), nl,

writeC '),nl,
writeC yes'),nl,
writeC ?• atomC), put(39), writeCKite 1

), put<39), write('). {RETURN}'), nl,
writeC '

) , nl

,

wri teC yes'),nl,
writeC 7- atom("hello"). {RETURN}'), nl,
writeC ' ).nt,
writeC no'),nl,
next2,
mid_input(_),
newpg,
writeCBUlLTIN PREDICATES - continued' ), nl.nl.nl,
writeCatomic(H)'),nl,
wr i te( ' =========

' ) , nl , nl

,

writeCVery similar to "atom", the "atomic" goal tests its argument for either an'),nl,nl,
writeC integer or an atom. Any argument that succeeds with "atom", also succeeds'), nl.nl,
writeCwith "atomic". For instance, •), nl.nl.nl,
writeC 7- atom(1234). {RETURN} will fail'),nl,
writeC *)»nl,

writeC no'),nl,
writeC 7- atomic(1234). {RETURN} will pass'),nt,
writeC ')#ni,
writeC yes'), nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCBUlLTIN PREDICATES - continued 1 ), nl.nl.nl,
writeCconsulUff le).'),nl,
write( '=============' ), nl.nl,

^

writeCProlog programs can be stored in files. The files can then be read into 1 ), nl.nl,

writeCthe database using the "consult" goal. It reads the file, while checking 1 ), nl.nl.
writeCsyntax character by character. Then to start the program, you just have to'), nl.nl,

writeC invoke the appropriate clause. '),nl,nl,
writeCThere is no limit to the number of files consulted by one "consult" fact. '), nl.nl,

wri teC It is easier though, to consult one file that contains the rest of the'), nl.nl,
writeC'consult" goals for the files you want read in. 1 ), nl.nt.nl,
next2,
mid_input<_),
newpg.



writeCBUILTIN PREDICATES continued' ),nl, nl.nl,
wrtteC'fail'),nl,
writeC===='), nl.nl,
writeC Whenever you want to cause backtracking within a rule, the "fail" goal should 1 ), nl.nl,
writeCbe used. It has no arguments and it will never succeed. As you know, when'),nl,nl,
writeC a goal in Prolog fails, it automatically tries to resatisfy the preceding goal. '). nl.nl,
writeCA rule containing this goal may look like this:' ),nl, nl.nl,
writeC intemew(X):- citizen(X), '),nl,
writeC experience(X), '),nl,
writeC eriminalCX), fail. '), nl.nl, nl,
next2,
mid_inputC_),
newpg,

writeCBUILTIN PREDICATES - continued 1 ), nl.nl.nl,
write( integer(G) ' ),nl

,

wri te( ' ==========
' ) ,nl , nl

,

writeCIf G is instantiated to a whole number, "integerCG)" will succeed. This goal'), nl.nl,
writeC'is used by TUTOR to make sure the topic lesson numbers input by the users'), nl.nl,
writeC'are really integers. '),nl,nl,
writeC ?- integer(7.5). {RETURN} fails'J.nl,
writeC '),nl,
write( ' no'),nl,
writeC ?- integer(1032). {RETURN} succeeds 1 ),nl,
writeC '),nl,
writeC yes'), nl.nl, nl.nl,
next2,
mid_input(_), v

newpg,
writeCBUILTIN PREDICATES - continued' ), nl.nl.nl,
writeCnl'),nt,
writeC =='),nl,
writeCThis goal means "newline". It moves ths cursor to the beginning of the next 1 ), nl.nl,
writeCline. If backtracking occurs, it cannot be resatisfied. In other words, '),nl,nl,
writeCanother newline is not output. '), nl.nl.nl,
writeCnonvar(P)'),nl,
wr i te( ' =========

' ) , nl

,

writeCIf P is instantiated, it is no longer a variable. When the argument of), nl.nl,
writeC'nonvar" is not a variable, the goal will succeed. This predicate can be'), nl.nl,
writeChandy for checking user input before passing it to another clause or'), nl.nl,
writeCasserting it into the database.'), nl.nl,
next2,
mid_input(_),
newpg,
writeCBUILTIN PREDICATES - continued 1 ),nl, nl.nl,
wr i te( ' reconsul t ( f i leb) ' ) ,nl

,

writeC ================ ) ,nl

,

writeCLike consult, "reconsult" reads the facts and rules from a file into the'), nl.nl,
writeCProlog database. But, while doing this, if it finds any existing clauses'), nl.nl,
writeCwhose predicate matches the predicate it is reading, they are overwritten. '), nl.nl,
urite( 'Its main use is to correct programming errors. '), nl.nl.nl,
writeC tab(Q)'),nl,
writeC=«==='),nl,
wn'teCTo output 10 spaces, you would use the goal "tab(10)". Like "nl", it succeeds'), nl.nl,
writeConly once. It should not be confused with the tab key on the terminal or a'), nl.nl,
writeC typewriter. It will only print the number of spaces you tell it to.'), nl.nl.
next2.

mid_input{_),
newpg,
writeCBUILTIN PREDICATES - continued' ), nl.nl.nl,
write('true'),nl,
write('"=='), nl.nl,
writeCOpposite of "fail", this goal always succeeds. It is not needed in most'),nl,nl,
writeCcases, but exists for convenience. The clause "charlie(male):- true." can'), nl.nl,
writeCbe written as the fact "charlie(male)." The "true" goal is not necessary. '),nl,nl,nL,
writeCvar(L)'),nl,
write< '======' ), nl.nl,
writeCUhen L is uninstantiated, it is a variable. Uith no value, '),nl,nl,
writeC"?-varCL)." will succeed and return "yes". '),nl, nt.nl.nl,
Cc_levelCe) -> next2; next3),
end_ input

.



/* Lesson 9 CHARACTERS V
chars:- newpg,

writeCLesson 9 - CHARACTERS' ),nl, nl.nl,
writeCThere are two types of CHARACTERS in PROLOG: printing and non-printing. ' ),nl ,nl

,

writeCThese are all the available printing CHARACTtRS: • ),nl ,nl

,

writeC ABCOEFGH I JKLMNOPQRSTUVUXYZ '), nl.nl,
writeC abcdefghijklmnopqrstuvwxyz '),nl,nl,
writeC 0123456789 '),nl,nl,
writeC I #*%»<>»-- A |\>]{[_*+; :<>, .?/'),
put(39), fxit(32), put(64), nl.nl,
wri te( 'CHARACTERS are considered integers with values between and 127. These' ), nl.nl,
writeCvalues are assigned to each character by a standard ASCII code. Printing 1 ), nl.nl,
writeCcharacters are greater than ASCII 32 and non-printing are from to 32. '),nl, nl.nl,
next2,
mid_input<_),
newpg,

writeCCHARACTERS - continued' ),nl , nl.nl,
writeC Common non-printing characters are: '), nl.nl,
writeC CHARACTER ASCII VALUE 1 ), nl,
writeC '),nl,

writeC space 32 ' ),nl,
writeC CTRL C (interrupt) 3 '),nl,
writeC CTRL Z (end-of - 1 ine) 26 ), nl.nl,
writeCSome ASCII values for non-printing CHARACTERS are machine dependent. These are'), nl.nl,

writeCthe printing characters, their ASCII values and associated meanings: '), nl.nl,
writeC ASCII Code CHARACTER MEANING' ),nl,
writeC '),nl,
writeC 33 I exclamation mark: the "cut" symbol '),nl,
writeC 34 " double quote: delimits strings '),nl,
writeC 35 # sharp sign'),nl,
writeC 36 $ dollar sign'), nl.nl,
nwtZf
mid_input(_),
newpg,
writeCCHARACTERS - continued 1 ), nl.nl.nl,
writeC ASCII Code CHARACTER MEANING' ),nl,
writeC "*• '),nl,
writeC 37 X percent sign'J.nl,
writeC 38 & ampersand'),nl,
writeC 39 '),

put (39),
writeC single quote: surrounds argument of write'), nl,
writeC 40 ( parenthesis: for grouping and structures' ),nl,
writeC 41 ) closing parenthesis'), nl,
writeC 42 * asterisk: "multiply" in "is" goals'), nl,
writeC 43 + plus: "add" in "is" goals'). nl,
writeC 44 , comma: conjunction of goals and '),nl,
writeC separates arguments '),nl,
writeC 45 - minus: "subtract" in "is" goals'), nl,
writeC 46 . period: ends clauses'), nl,
writeC 47 / backslash: "division" in "is" clauses'), nl,
writeC 48-57 0-9 digits' ),nl,
writeC 58 : colon'),nl,
writeC 59 ; semicolon: disjunction of goals'), nl,
writeC 60 < less than: "less than" in "is" goals'), nL.nl,
next2,
mid_input(_),
newpg,



61

62 >

63 7

64 '),

"at" sign' ).nl.
65-90 A-Z
91 [

92 \

93
I

94
95
96

~

97-122 a-z
123 (

124
I

125 }

126 -

MEANING'), nl,
'),nl,

equals: equal ity predicate' ),nl,

greater than: "greater than" in "

question mark'),nl,
goals'), nl,

writeCCHARACTERS - continued' ), nl.nl,
writeC ASCII Code CHARACTER
writeC '

write(

'

writeC
writeC
writeC
put<64),
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
writeC
next2,
mid_input(_),
newpg,
writeCCHARACTERS continued' ), nl.nl, nl,
writeCYou might ask, why would you use an ASCII code? When using the'), nl.nl,
writeC'write" predicate to output a sentence, for instance, it expects its argument 1 ),nl,nL,
writeC surrounded by single quotes. If you want to output a single quote as part 1 ), nl.nl,
writeC of the sentence, you cannot just type the quote mark because "write" wi ll 1 ),nL,nl,
writeCthink it sees the end of its argument. To output a sentence like: '), nl.nl,
writeC "That'), put(39), writeCs his new car.'"), nl.nl,
writeCyou will need three goals. '), nl.nl,
writeC write('), put (39), write('That'), put(39),
writeC), put<39), wrtte('), put(39),
wrfteCs his new car.'), put (39), wri teC), '), nl.nl,
writeCto handle the apostrophe in the first word. ' ),nl,nl,nl,
(c_level(e) -> next2; next3),
end_input.

upper-case A through Z'),nl,
square bracket: starts a list'),nl,
backslash'), nl,

closing square bracket: ends a list'),nl,
caret or up-Brrow'),nl,
underscore: anonymous variable 1 ),nl,nl,
accent'), nl,
lower-case a through z '),nl,

curly bracket'), nl,

bar: separates "head" and "tail" in a list'),nl,
closing curly bracket

' ),nl,

tilde 1

), nl.nl.



/" Lesson 6 • CONJUNCTIONS */

conj:- newpg,
writeCLesson 6 • CONJUNCTIONS' ),nl, nl.nl,
writeCIn earlier lessons, a question was a goal about one relationship. The'), nl.nl,
writeCquestion "Does Susan like swimming and running?" is more complicated in'), nl.nl,
writeC that it involves multiple relationships. One way to answer it would be'), nl.nl,
writeCto ask PROLOG if Susan Likes swimming and if a "yes" was returned, then'), nl.nl.
writeCask if Susan likes running. When both goals are satisfied, the answer'), nl.nl,
writeCto the whole question is "yes".'), nl.nl.nl,
writeCA CONJUNCTION in PROLOG combines multiple goals, separated by coronas. ), nl.nl,
writeCinto one question. '), nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCCONJUNCTIONS - continued' ), nl.nl.nl,
writeC'Does Susan like swimming and running?" is written like: '), nl.nl,
write< ' ?• I ikes(susan, swimming), I ikes(susan, running). '), nl.nl.nl,
writeC The comma is pronounced "and". When PROLOG sees a CONJUNCTION it attempts* ), nl.nl,
writeCto satisfy one goal at a time, from left to right. If every goal is'),nl,nl,
writeCsatisfied, PROLOG returns a "yes". As soon as one fails, PROLOG goes back'), nl.nl,
writeCto the previous goal and tries to resatisfy it. In this particular case, '), nl.nl,
writeCthe whole CONJUNCTION would fail because it does not contain any variables'), nl.nl,
writeCto resatisfy. Only one answer is given by PROLOG for each conjunction. It'), nl.nl,
writeCdoes not produce an external answer for each goal. ' ),nl,nl,
next2,
mid_input(_),
newpg,
writeCCONJUNCTIONS - continued'),nl,nl,nl,
writeCExamples of CONJUNCTIONS: '), nl.nl,
writeC'Uill Harry eat fish and chips?" translates to'), nl.nl,
writeC ?• eat(harry,f ish), eat(harry, chips). '), nl.nl,
writeCDo Judy and Hark love each other?" translates to'), nl.nl,
writeC ?- love(judy,mark), love(mark, Judy). '), nl.nl.nl,
write< 'CONJUNCTIONS like these contain only constants and thus are much less' ),nl,nl,
writeCwork for PROLOG. To ask "Do Thomas and Rosemary sing the same kind of), nl.nl,
writeCmusic?", a variable is involved. We do not know what kind of music either 1 ),nl,nl,
writeCperson sings, if any at all. •), nl.nl,
next2,
mid_input(_),
newpg,
writeCCONJUNCTIONS • continued' ), nl.nl.nl,
writeCThe CONJUNCTION "?* sings(thomas,X), sings(rosemary.X)." is really'), nl.nl,
writeCasking two things. Ooes Thomas sing X type of music AND does Rosemary'), nl.nl,
writeCalso sing X type of music?' ), nl.nl,
writeCPROLOG tries to find a match for the first goal. Lets say it found'). nl.nl,
writeC"sings(thomas, blues)." in the database. It would mark that place in the'), nl.nl,
writeCdatabase and X would be instantiated to "blues". Because the second'), nl.nl,
writeCgoal also contains an X, it is also instantiated to "blues". Now the 1 ), nl.nl,
writeCsecond goal, "sings(rosemary, blues)." must be found. Since it is a'), nl.nl,
writeCdifferent goal, PROLOG begins searching from the top of the database. '),nl,nt,
next2,
mid_input(_),
newpg,
writeCCONJUNCTIONS - continued' ),nl,nl,nl,
writeCIf a match is found, that place is also marked and the CONJUNCTION is'), nl.nl,
writeCsolved. Other solutions may exist. They are found the same way another' ),nl,nl,
writeCanswer to a question is found; entering a semi-colon and a RETURN after'), nl.nl,
writeCthe answer is given. If "sings(rosemary, blues)." was not found, PROLOG'), nl.nl,
writeCwould automatically go back and try to re-satisfy the first goal. The'), nl.nl,
writeCsearch would begin at the place that was marked for that particular goal. ), nl.nl,
write< 'Whenever PROLOG has to re-satisfy a goal, it is called BACKTRACKING. '), nl.nl,
writeCThat topic will be covered in a later lesson. '), nl.nl, nl.nl,
(c level(e) -> next2; next3),
en3_input.



/* Lesson 2 - C-Prolog information */

cpro:- newpg,
uriteCLesson 2 C-PROLOG at Kansas State' ), nl.nl, nl,

write('C-PROLOG is a version of PROLOG written in C language for 32 bit machine;.. ' ),nl ,nl,

writeC It was developed at the University of Edinburgh in Scotland. The system 1 ), nl.nl,
write('consists of a PROLOG interpreter and a number of built in, or system defined 1 ), nl.nl,
writeC procedures. It offers an interactive programming environment with tools to'),nl,nl,
write( ' incremental ly build programs, debug them by following their executions, and'),nl,nl,
writeCmodify parts of them without having to start over from scratch.'), nl, nl.nl,
writeCThe text of a program is normally contained in a number of files created by 1 ), nl.nl,
writeCa text editor. Each of these files can then be read in or "consulted" '), nl.nl,
writeCby C- OLOG.'),nl,
next2,
mid_input(_),
newpg,
write('C-PROLOG at Kansas State - continued 1 ),nl .nl.nl,
writeC'When you typed "['), put(39),
write('/usr/prolog/tutor' ), put (39),
writeC']." at the beginning of this tutorial, you'),nl,nl,
writeCtold C-PROLOG to consult the file, tutor, which essentially read in all the 1 ), nl.nl,
write('files necessary to start up this tutorial. Each time a file is consulted, the 1 ), nl.nl,
write( ' interpreter prints the number of bytes in that file and the time it took to 1 ), nl.nl,
writeCread it in. As you proceed, you will notice various other files being '), nl.nl,
write('consulted as they are needed. '),nl,nl,nl,
writeCPROLOG and TUTOR are available on the VAX 11/780, Perkin Elmer 8/32 '), nl.nl,
writeC and on the PLEXUS machines on campus. '), nl.nl,
next2,
mid_input(_),
newpg,

write( 'C-PROLOG at Kansas State continued' ), nl.nl ,nl

,

writeCOne of the best textbooks available on PROLOG is called "Programming'), nt.nl,
write('in PROLOG" by Clocksin and Hellish. Its basic structure was used as'), nl.nl,
writeCas a model in the development of this tutorial. The "C-PROLOG Users Manual'"), nl.nl,
writeCts also available on campus.'), nl.nl.nl, nl.nl, nl.nl,
(c level(e) -> next2; next3),
end_ input.



/* Lesson 15 - CUT V
CUttt* newpg,

writeCLesson 15 • CUT'), nl.nl.nl,
writeCThere is a special function in PROLOG called CUT, which is used to control'), nl.nl,
writeCbacktracking. CUT itself is a goal. Its predicate is "I", the exclamation'), nl.nl,
writeCpoint, and it has no arguments. It always succeeds once, but can never'), nl,nl f

writeC be resatisfied. Backtracking over a CUT always fails and therefore prevents' ),nl,nl,
write<'any goal before it from ever being resatisfied.'), nl.nl,
writeCIt is a mechanism used to tell PROLOG that any decisions made, within that'), nl.nl,
writeCruLe, before the CUT, cannot be changed. When PROLOG sees a rule that contains'), nL.nl,
writeC a CUT, it knows that for all goals up to the CUT, including the goal in the'), nl.nl,
writeChead of the rule, it should not save a place-marker in the database. '). nl.nl,
next2,
mid_input(_),
newpg,
writeC'CUT - continued' ), nl.nl, nl,
writeC'Suppose you are going to buy a new car. You know exactly what kind you'), nl.nl,
writeCwant and which options you cannot do without. The color does not matter.'), nl.nl,
writeC If you walk into a Nissan showroom and say, '), nl.nl,
writeC "I want to buy the FIRST Maxima you can find that is an automatic, '),nl,
writer with a sunroof and does not have leather seats. The color and'),nl,
writeC other options are not important. Call me as soon as you find it.'"), nl.nl,
writeCA rule like this will find your car if it is available.'), nl.nl,
writeC car(X.Y.Z):- model (X, maxima), '),nl,
writeC transmission(X.automatic), *) fnl,
writeC sunroof (X, yes),' ),nl,
writeC leather_seats<X,no),l , '),nl,
writeC color(X.Y), '),nl,
writeC roof_rack(X,Z).'), nl.nl,
next2,
mid_input(_),
newpg,
writeC'CUT - continued'), nl.nl.nl,
writeCThe previous example showed CUT being used to produce one answer and 1 ), nl.nl,
writeCprevent PROLOG from searching for alternative solutions.'), nl.nl, nl.nl,
writeCCUT is also commonly used in conjunction with the predicate "fail".'), nl.nl,
writeCThere might be times when you want PROLOG to fail a particular goal 1 ), nl.nl,
writeCwithout looking for other solutions. The sequence " I, ail " wi 11'), nl.nl,
writeCaccomplish this because the goal "fail" will always fail and the CUT'), nl.nl,
wrtteCwill prevent further backtracking from occurring. '),nl, nl.nl.nl,
(c_level(e) -> next2; next3),
end_input.



/* Exercise 18 - ACCESSING FILES */

e_accf ile:-newpg,
write( 'Exercise 18 - ACCESSING FILES' ),nl, nl.nl,

askCUhat file does Prolog use for terminal input and output ?',
'Terminal 1/0 uses a specific filename in Prolog. What is it ?',

user, 'The file "user" is another name for terminal I/O .'),

ask('To begin reading from a file, which predicate is used ?',
what predicate will let you start reading from a file ?',

see, 'The goal "see(filea)" will change the input stream from "user" to "filea".'),

multCUhich goal will tell you the current input stream ?',

'seen'

,

'seeing(X)',
'put(Y)',
'No, this predicate closes the current input file.',
'This goal will instantiate X to the name of the current input file.',
'No, "put" will send a character to the current output stream.', b),

next2,
mid_input(_),

multCUhen would "tell(XYZ)" create AND open a file for output ?',

'If "XYZ" was instantiated to a filename that did not already exist. ',

'always',
'If "XYZ" was uninstantiated'

,

'If the file already existed, it would be overwritten.'

,

'No, a new file would is not always created by the "tell" predicate. 1

,

'No, if "XYZ" was uninstantiated, the goal "tell(XYZ)" would fail.', a),
next2,
mid_input(_),

asx('How any arguments do "seen" and "told" each have ? <enter a number)',
'The predicates "seen" and "told" require how many arguments ? (enter a number}',
0, 'Both "seen" and "told" have zero arguments. 1

),

multCUhich goal reads the contents of two files into the database? 1
,

'read(filea, fileb) 1

,

'[tutor, lib].',
seeing(sub1, sub2)',
'No, "read" only has one argument and reads in terms from the input stream.',
'Either square bracket "11" notation or the predicate "consult" can be used.',
'No, "seeing" has one argument which is instantiated to the current input stream.', b),

(c level(e) -> next2; next3),
end_input.



/* Exercise 12 ARITHMETIC */

e_arith:-newpg,
writeCExercise 12 - arithmli IC ),ni ,nl

,

askCUhat operator must be present before any arithmetic operators are evaluated?',
'Which operator will allow an expression like 3+2 to be evaluated?',
is, 'An "is" assigns the value on its right to the variable on its left.'),

multCUhich Prolog expression will produce the value "6" ?',
'3+3',

'X is 5+2',

'X is 2+12/3',
'No, 3+3 is not evaluated. The expression is missing an "is".',
'No, this is evaluated, but equals "7".',
'12/3 = 4+2 is 6. X will be instantiated to "6". 1

, c),
next2,

mid_input(_),

askCWhich operator will produce a remainder?',
•The remainder of a division is returned by what operator?',
mod, 'The "mod" operator does an integer division and returns the remainder. 1

),

ask('ln "Y is 21/5", what is Y instantiated to?',
What value is assigned to Y as a result of "Y is 21/5" ?',

4, 'Integer division with the backslash does not return a remainder.'),

multt'If "P=7" and "0=23", which expression will succeed?',
'P \= u 1

,

P >= Q 1

,

'7 is NOT equal to 27 so this expression will succeed.',
No, 7 and 27 are not the same.',
'No, 7 is not greater than or equal to 27.', a),

<c level(e) -> next2; next3),
en3_input.



/" Exercise 14 - BACKTRACKING */

e_backtr:-newpg,
write( 'Exercise 14 - BACKTRACKING'), nl,nl,nl,

multCWhat can you do to force backtracking ?',

hit a RETURN 1

,

•type a ";" then a RETURN',
'nothing 1

,

'No, just a RETURN will stop the search and never cause backtracking.',
'The variables in the current goat lose their value and backtracking begins.',
'No, there is a way to get Prolog to backtrack.', b),

next2,
mid_input(_),

multCUhen will Prolog AUTOMATICALLY backtrack ?',

when a goal fails',
'when a match is found',
•when you hit a RETURN',
'As soon as a goal fails, Prolog will BACKTRACK automatically. ',

'No, Prolog will try to satisfy the next goal if it finds a match.',
'No, if Prolog prints a value, RETURN will stop it from resatisfying the goal.', a),

next2,
mid_input(_),

neu_db('actor(hoffman).
'

, 'actor(wayne).',
'actor(bogart). ', 'actor(eastuood).'),

muUCIf "?-actor(G>" gave you "G=bogart", what would "; RETURN" generate?',
G=hoffman',
'yes'

,

G=eastwood'

,

'No, the place-marker is not at the top of the database.',
'No, assuming G was uninstantiated, it will print a value for G.',

'The fact "actor(eastwood)." is the next match in the database.', c),
next2,
mid_input(_),

new_db( 'actress(keaton) .

'
, 'actress(minel I i )

.
'

,

'actress(fonda). ', 'actress(monroe). '),
multCIf X is instantiated to "keeton", the question "?-actress(X)." returns',

'X=keaton',
'X^minelli',
' yes

'

,

'No, it is trying to match the fact "actress(keaton)." in the database.',
'No, you are not trying to re- instantiate X.',
'It successfully matched the fact "actress(keaton)."', O,

(c_level(e) -> next2; next3),
end_input.



77

/* Exercise 9 - CHARACTERS */

e_chars:-newpg,
uriteCExercise 9 • CHARACTERS' ), nl.nl,

ask('In Prolog, is it possible to have a non-printing character? ("y." or "n.")',
Ms there such a thing as a non-printing character? ("y." or "n.")',

y, 'A space or end-of -file marker are examples of non-printing characters. '),

NiultCA CHARACTER can also be thought of as 1

,

'an integer 1

,

a variable 1

,

'a term 1

,

'Every character, printing and non-printing, has an integer value. 1

,

'No, a variable name is made up of characters, but a character is constant.',
'No, each part of a TERM is made up of CHARACTERS.', a),

next2,

mid_input(_),

multC'What is the name of the standard code used to represent characters in Prolog?'
'SYNTAX',

'ASCII',
'TERM',
'No, syntax is the set of rules for defining terms in Prolog.',
•It stands for the American Standard Code for Information Interchange.',
'No, a TERM is a CONSTANT, VARIABLE or STRUCTURE.', b),

next2,
mid_input(_),

multCUhich character is used in the conjunction of goals or to separate arguments?"

'the comma',
'the exclamation mark 1

,

'the asterisk 1

,

'A comma separates the arguments of a predicate or ANDs goals in a rule.',

'No, the exclamation mark is the "CUT" symbol in Prolog.',
'No, the asterisk is the multiplication operator.', a),

(c_level(e) -> next2; next3),
end_ input.



/* Exercise 6 - CONJUNCTIONS */

e_conj:-newpg,
writeCExercise 6 - CONJUNCTIONS' ),nl,nl,nl,

iwUt'Uhy would you use a CONJUNCTION ?',
'to ask a question with multiple goals',
'to define a fact*,
'to do an arithmetic operation',
'A conjunction is a question with multiple goals separated by commas.',
'No, a fact is stored in the database and defines a known relationship.',
'No, an arithmetic operation is done by the "is" predicate. *, a),

next2,
mid_input(_),

multCUhat symbol is used to join each of the goals in a conjunction?',
1 a pe r i od

'

,

a question mark',
'a comma',
•No, a period is at the end of the conjunction.',
'No, a conjunction always starts with a question mark. 1

,

A comma between each goal of a conjunction is used to mean "AND".', c),
next2,
mid_input(_),

mulU'How would you write "Is Charlie tall and thin ?',
'?- taU(X), thin(X).',
'7* tall(charlie), thin(charlie).',
tall (char lie):- thin(charlie). ',

'No, this conjunction says "Who is tall and thin? 1",
'Ue just want to see if "tall(charlie)" and "thin(charlie)" are defined.',
'No, this is a rule, not a conjunction. ', b),

next 2,
mid_input(_),

new_db{'chops( joe, wood). ', 'irons(mary, clothes).',
' toves( joe.mary).', ' loves(mary, joe).'),

multCHou would Prolog respond to "?-loves(joe,E), loves(mary.F). ',

'E=wood F=clothes ',

' yes
'

,

'E=mary F=joe',
'No, both goals begin with the predicate "loves". 1

,

'No, the answer "yes" is only returned when a fact is found in the database.',
'Prolog will find "loves(joe,mary)." and "loves(mary, joe)." in the database.', c),

(c_level(e) •> next2; next3),
end_input.



/* Exercise 15 • CUT */

e_cutt:-newpg,
writet'Exercise 15 • CUT'),nl,nl,nl,

mult ('Does CUT represent a ',

' 90a I
'

,

variable, or',

'structure 1

,

'CUT is a goal that always succeeds once and can never be resatif ied. ',

'No, CUT is represented by an exclamation point and is not a variable.',
'No, a structure is a term as is a constant or variable. Cut is none of these.', a),

next2,
mid_input(_),

mult ('What happens if you backtrack over a CUT?',
'The previous goal is resatisf ied.',
'It fails.',
'Prolog starts searching from the top of the database. 1

,

'No, the previous goal is never reached because you cannot resatify CUT. 1

,

An attempt to backtrack over a CUT will always fail.',
'No, Prolog only starts at the top of the database for every new goal it sees.', b),

next2,
mid_input(_),

multCUhich goals in a rule containing a CUT is a place-marker kept for ?',

'all of them 1

,

'none of them',

'the rules after the CUT',
'No, there is no need to keep track of the goals that cannot be resatisf ied. ',

No, unless the CUT is the last goal in the rule.',
The rules after a CUT can be resatisf ied again if necessary. 1

, c),

next2,
mid_input(_),

multCTo denote the CUT goal in a rule, which symbol is used ?',

'an exclamation point',
'a backslash',
'Cut',

'The exclamation point is the CUT goal. 1

,

'No, a backslash is used as the integer division operator.',
'No, "Cut" is a variable. Ue only say CUT but we write "I".', a),

(c level(e) •> next2; next3),
end_input.



/* Exercise 11 - EQUALITY */

e_equal:-newpg,
writeCExercise 11 - EQUALITY'), nt.nl,

askCUill the goal "dog cat" succeed? ("y." or "n.")',
•Will prolog return "yes" for the goal "dog=cat" ? ("y." or "n.")',
n, 'It will not succeed, "dog" and "cat" are both constants but are not equal.'),

mult ('What type of operator is the "=" ?',
'prefix',
'infix',
'postfix',
'No, it always appears between two terms. ',
'The equal sign is an infix operator.',
'No, an equal sign is not used after one argument.', b),

next2,

mid_input(_),

multfTwo structures are NOT equal if,
'they have the same number of arguments',
'each corresponding argument is equal',
'they have different predicates',
'No, this is one of three requirements two equal structures must meet.',
'No, this is another requirement two equal structures must meet.',
'They must have the same predicate and meet the requirements in a) and b).', c),

next2,
mid_input(_),

askCUill the goal "fish(tuna, large) = fish( G, H )" succeed? ("y." or "n.")',
'Will prolog return "yes" for that goal ? ("y." or "n. M )',

y, 'It will succeed because ell the requirements for two equal structures are met.'),

mult ('What is G in "fish(tuna, large) = fish( G, H )" instantiated to ?',
•fish',
'tuna'

,

•large',

'No, fish is the predicate.',
'G becomes "tuna" because it and "tuna" are the first argument of each goal.',
'No, H is instantiated to "large".', b),

next2,
mid_input(_),

multCIf the goals "Child=Kid" and "Child=tony" succeed, what happens to "Kid"?',
'it will also be instantiated to "tony 1",
'it will remain a variable 1

,

'it will be instantiated to "child 1",
'The first goal causes "Child" and "Kid" to share values.',
'No, Kid does become instantiated. 1

,

'No, the constant "child" is not even mentioned here.', a),

(c level(e) -> next2; next3),
en3_ input.



/* Exercise 3 - FACTS */

e_facts:-newpg,
wr»te('Exercise 3 - FACTS'), nl,nl,

ask('In the sentence "Jack Likes Jill." what is the predicate? 1

,

'Which word describes a relationship between the objects? 1

, li

'"likes" describes the relationship between the objects, "jack
ikes,

and "ji ll" 1

),

askCHow many objects are in the sentence "Jack likes Jill."? (enter a number) 1

,

'The predicate "likes" has how many arguments? (enter a number)', 2,

'"Jack" and "Jilt" are the TUO objects or arguments in the sentence.'),

multCHow would "Jack likes Jill." be written in Prolog?',
'likes(jack,JUl).<,
'jackdikes.jill)',
' likes(jack, jill).',
'No, remember that each part of a FACT must start with a lower case letter.',
'No, each FACT begins with a predicate, and also ends with a period.',
The predicate is "likes" and its arguments are "jack" and "jill".', c),

next2,
mid_input(_),

askCAre "likes( jack, jill)." and "Ukes(jiU, jack)." the same? ("y." or "n.")'
Do they mean the same thing? ("y." or "n.")', n,

'The arguments of each fact are in a different order.'),

(c level(e) -> next2; next3),
end_input.



/* Exercise 13 - LISTS */

e_Lists:-newpg,
writeCExercise 13 - LISTS'), nl t nl t

multCUhat is the correct way to represent a LIST with 3 arguments?',
'(a,b,c)\
'[1] [21 [3]',

•Hi 2, 3]',
'Mo, a list is shown in square brackets.',
'No, this is three separate Lists. 1

,

'A list is in a set of square brackets, each argument separated by a carina. 1

, c),

next2,
mid_input(_),

mult ('The "head" of the list [g, h, i, j, k) is',
1

[gJ

,

'9',

'th, i, j, W,
'No, this would only be true if the list were [[g], h, i, j, k].',
'The first element of this list is "g".',
'No, that is the "tail" of the List.', b),

next2,
mid_input(_),

multCThe list [) is the tail of which list?',
' [a]

'

,

'[]',

'[a, []]',

'The "head" is "a", which Leaves the "tail" to be the empty list.',
'No, the tail of the empty list will fail. 1

,

'No, the "tail" here is equal to "[[]]".', a),
next2,
mid_input(_),

new_db('cooks( [bacon, eggs, toast]).', 'cooks( [lobster] , [steamers] ).',
cooks( [dinner] ).

' , 'cooks( [breakfast] ) .
' ),

multCUhat is Z instantiated to in the question "?-cooks[Y | Z]." 1

,

'bacon',

'[toast] 1

,

1 [eggs, toast] ',

No, Y will be instantiated to "bacon" because it is the head of the list. 1

,

'No, [toast] is only part of the tail.',
'Z is the tail, instantiated to a List containing everything but the "head".', c),

(c level(e) -> next,?; next3),
en3_input.



/• Exercise 10 - OPERATORS */

e_oper:- newpg,
writeCExercise 10 - OPERATORS'), nl.nl,

askCUhat word describes an operator that is written between its arguments?',

'What type of operator is surrounded by its arguments?',

infix, 'An INFIX operator, like a "+", is written between two arguments.'),

askCUhere is a prefix operator in relation to its argument? ("before" or "after")'

Does a prefix operator come "before" or "after" its argument?',

before, 'A PREFIX operator is written before its arguement, like "-3".'),

multfUhich statement is TRUE ?',

'addition has a higher precedence than subtraction',
division and multiplication have the same precedence 1

,

division has a lower precedence than subtraction',
'No, addition and subtraction have the same precedence. 1

,

'According to the precedence rules in Prolog, this is true.',

'No, division has a HIGHER precedence than subtraction.', b),

next2,
mid_input(_),

multCIf you have three operators with the same precedence, how are they evaluated?'
'right-to-left',
'at the same time',
1 left-to-right',
'No, not in Prolog. ',

'No, they are not done at the same time.',
'Operators with the same precedence are done left to right.', c),

next2,
mid_input(_),

multCUhat would be evaluated first in the term x+y*2/3+2-7 ?',

•y*a\
'x+y',
'2/3',

'Multiplication is the leftmost operator with the highest precedence.',
'No, multiplication and division have a higher precedence.',
'No, it is to the right of an operator with the same precedence.', a),

(c_level(e) •> next2; next3),
endinput.



/* Exercise 4 QUESTIONS */

e_quest:-newpg,
writeCExercise 4 - QUESTIONS' ),nl,nl,

mult('Uhich one of these is a valid QUESTION ?',
'?- eats(harry, lunch). ',
'?- <mary, John, cousins) 1

,

'? knits(irene, sweaters).'

,

'ThTs is a valid question. It is a FACT that begins with the "?*" symbols. ',

'No, there are 3 arguments but no predicate.',
'No, it does not begin with "?-" and the predicate "knits" is a variable.',

next2,
mid_input(_),

new_db('brown(pants).', 'white(shirt).', 'yell ow( tie). ', 'tan( jacket). '),

multCUhtch question would PROLOG answer "yes" to ?',
'?- red(socks).',
'?• brown(pants). ',
'7- white(jacket). ',

No, the fact "red<socks)." is not in the database.',
The fact "brown(pants)." is in the database. 1

,

'No, the fact "white( jacket)." is not in the database.', b),
next2,
mid_input(_),

multC'How would you ask PROLOG "Did John paint the house ?"',
'?-

( John), paint (house).
'

,

'?- John(paint,house).',
•7- paint( john,house).',
'No, it has an incorrect QUESTION format.',
'No, the predicate "John" is a variable.',
'The predicate is "paint" and its objects are "John" and "house".', c),

next2,
mid_input(_),

multCUhich of these would NOT be found in a Prolog database?',
1 s I eepsCbaby, soundly) .

*

,

'?• queen(elizabeth,england). ',

brother. ',

'No, facts are stored in the database.',
'This is a question and they are used to query the database.',
'No, this is a fact made up of a predicate and no arguments.', b),

(c_level(e) -> next2; next3),
end_input.



/* Exercise 7 - RULES */

e_rules:-newpg,
write( 'Exercise 7 - RULES'), nl.nl,

askC'Are RULES stored in the database? <*'y." or "n.")',
'Can you consult a file that contains rules ? ("y." or "n.")', y,
'Rules, like facts, are stored in the database. 1

),

multCHow many goals must be satisfied before the whole rule is proven true ?'

'none of them',
'all of them 1

,

'half of them',
'No, each time a goal fails something in the rule is not true. ',

'Every goal in a rule must be true to make the whole rule true.',
'No, only some true goals do not prove anything. ', b),

next2,
mid_input(_),

multC'What do the symbols ":-"
, between the head and body, stand for ?',

'IF',

'equals',
'AND',
'The head of a rule is true, IF alt the goals in the body are true.',
'No, an equal sign is written "=" .',

'No, a comma is used to represent AND in Prolog.', a),
next2,
mid_input(_),

multCUhen is the head of a rule proven true 7"',

' never
'

,

'when its variable arguments are all instantiated',
'after the subgoals in the body of the rule are satisfied 1

,

'No, the head of a rule is true when its subgoals are proven true.',
'No, its truth depends on the subgoals, not its arguments.',
IF every goal in the body is matched, the parent goal is true.', c),

(c level(e) -> next2; next3),
en3_ input.



86

/* Exercise 17 - READING/WRITING CHARACTERS V
e_rwchar:-newpg,

writet'Exercise 17 - READING/WRITING CHARACTERS' ),nt, nl.nl,

multCUhich predicate will read a space (ASCII 32) ?',

'get',

'read 1

,

'getO 1

,

'Mo, "get" skips non-printing characters. 1

,

'No, "read" is always looking for a period before a space.',
'The predicate "getO" will read both printing and non-printing characters. 1

, c),

next2,
mid_input(_),

multCIf A is instantiated to "b", in which case will "get(A)" succeed?',
'the next character is a space',
'the next character is a "b 1",
'the next character is an "a" 1

,

'No, "get" will not see the space.',
'No, since A is set to "b", it is looking for it, this will pass. 1

,

'It will fail here because "get" wants to find a "b" in the next character.', c),

next2,

mid_input(_),

multC'What will NOT happen if you backtrack over a "put" ?',

'it will pass',
it will reprint its character again',
'it will fail',
Mt will NOT pass during backtracking. 1

,

'No, a side effect of trying to resatisfy a "put" is just this.',
'No, a failure will definitely occur.', a),

next2,
mid_input(_),

multCWhat is the predicate "tab" used for ?',

'to print spaces',
'to output tabs',
'to cause backtracking',
The goal "tab(20)" will print out 20 spaces.',
'Mo, Prolog does not have an actual "tabbing" function.',
'No, only the "fail" goal, input "; {RETURN}" or a "no match" condition will.', a),

next2,
mid_input(_).

askCWill "tab(two)" pass? ("y." or "n.")',
'would the goal "tab(two)" succeed ("y-" or "n.")',
n, 'The argument of "tab" must be an integer. 1

),

multCUhere will "skip(p)" stop in the input stream " a.cpom12 " ?'

'at the end-of- input character',
'at the "o"',
•after the period',
'No, "skip(p)" is looking for the character "p".',

After "skip" finds the "p", it stops at the next character.',
'No, not unless the goal were "skip(.).'" ( b).

(c level(e) -> next2; next3),
en3_input.



/* Exercise 16 - READING/WRITING TERMS */

e_rwterm:-newpg,
writeCExercise 16 - READING/WRITING TERMS' ), nl.nl ,nl

,

multCThe initial and most common input/output stream is ',

'the Prolog database',
•a file',
'the terminal ',

'Ho, the database is used to store facts and rules. I/O is not done there.',
'No, files can be used for input and output, but another means is more common.
'Most of your input and output will probably be done with a terminal.', c),

next2,
mid_input(_),

multCThe goal "read(Next)" and terminal input "good, morning." would set Next to',
'good',

'good morning',
'morning 1

,

'It would take another "read" to pick up "morning".',
'No, "read" stops when it sees the period and space.',
'No, Prolog sees "good" first.', a),

next2,
mid_input(_),

ask('If you backtrack over a "read", is the next term read ? ("y." or "n.")',
'Can "read" be re-satisfied 7 ("y." or "n.")',
n, 'The "read" goal will not reinstantiate its argument more than once.'),

multCAfter the goal "X=20", what would "write(X)" output ?',
' 321\
'20',

X=20\
'No, X is instantiated so an internal representation would not be shown.',
A "20" is output because X was set to that value in the previous goal.',
•No, just the value of X is written.', b),

next2,
mid_input(_),

multCUhich goal would output GOOD HORNING onto the screen ?',

writeC GOOD MORNING )',

outC" GOOD MORNING ")',

'neither goal would work',
No, write needs its arguments in quotes.',
'No, Prolog does not have an "out" predicate.',
'"write" expects it argument in single quotes.'

O,
(c level(e) •> next2; next3),
en3_input.



/* Exercise 8 - SYNTAX */

I syntax: -newpg,
wrfteC'Exercise S - SYNTAX'), nl.nl,

askCIs a FACT with correct syntax considered to be a STRUCTURE? ("y." or "n.")',
'Is a FACT a STRUCTURE as opposed to being an ATOM or INTEGER? ("y." or "n.") 1

,

y, 'STRUCTURES consist of a predicate and arguments as do FACTS.'),

mulK'Uhich of these is NOT considered to be a CONSTANT ?',

an atom',

'an integer',

'a structure',
'No, an atom is a CONSTANT. ',

'No, integers are CONSTANTS. 1

,

'A structure can contain variables, thus it is not CONSTANT.', c),

next2,
m»d_input<_),

multCAre the symbols "?" and ":" considered to be 1

,

'variables 1

,

'structures, or',
'atoms',
'No, they do not begin with a capital letter or an underscore.',
'No, they are not structures because they do not have a predicate or arguments'
'These symbols and others like the comma, colon and semi-colon are atoms.', c),

next2,
mid_input(_),

mult<'Uhich of the following is NOT an ATOM ?"',
'!&()',

'123abc',
«def05482',
No, a string of all symbols is considered to be an ATOM.',
A string beginning with a number, must be in single quotes to be an ATOM.',
'No, it starts with a small tetter and contains only Letters and numbers.', b),

next2,
mid_input(_), %

mult( 'Every TERM in Prolog is a sequence of,
'variables',
'characters',
'integers',
'No, a variable is a TERM.',
'Everything in Prolog is a TERM that consists of CHARACTERS. 1

,

'No, an integer is a CONSTANT which is really a TERM.', b),

next2,
mid_input(_),

multCUhat does the symbol "_"
, by itself, mean in Prolog?',

'IF',

'the anonymous variable 1
,

'OR',

'No, IF is written as ":•" within a rule.',
'The anonymous variable can be used as one of the arguments of a predicate.',
'No, the symbol ";" means OR in Prolog. 1

, b),
(c_level(e) •> nextZ; next3),
end_input.



/* Exercise 5 - VARIABLES */

e_vars:-newpg,
writeCExercise 5 • VARIABLES' ),nl, nl.nl,

mult ('How can you tell if something is a VARIABLE in Prolog ?',

It begins with a question murk. 1

,

'It starts with a capital Letter.',
'It ends with a period.',
'No, a QUESTION always begins with a question mark and hyphen. 1

,

'A VARIABLE always begins with a capital letter or an underscore.',
'No, every FACT or RULE in Prolog must end with a period.', b),

next2,
mid_input(_),

multcuhat does it mean when a VARIABLE is INSTANTIATED?',
'It loses its value.',
1

1 t has no value.
'

,

'It is set equal to a new value. 1

,

'No, a VARIABLE loses its value when you try to resatisfy the goal it is in.',

'No, initially every variable has no value or is UNINSTANTIATED.'

,

'A VARIABLE is INSTANTIATED each time it takes on a new value.', c),

next2,
mid_input(_),

new_db('sister_of(julie,dennis).' , 'brother_of (dermis, torn).',

'8ister_of(julie,toni).', 'sister_of(mary,tom). '),
multCHow would Prolog respond to "?- sister_of( julie.Y).'",

' yes
'

,

'Y=dermis',

'Y*toa*,
'No, since the variable is named Y, Prolog will tell you what Y equals. 1

,

'The first "sister of" rule in the database is a match for this question. 1

,

•No, Prolog would 7ind the first "sisterof" rule before this one.', b),
next2,
mid_input(_),

new_db('sister_of( Julie, dermis). ', 'brotherof (dermis, torn). ',

' si ster_of( julie, torn). ', 'sister_of (mary,tom).') f

multCFor "?• sister_of( julie.Y).", you get "Y=dennis". Typing a "; (RETURN)" gives'
•Y-tom',
Y=dennis',
•no',
'"sister_of( Julie, torn) is the next match found. Y is instantiated to "torn".',
'No, the place marker starts the search after this fact.',
'No, Prolog can find a second match.', a),

(c level(e) •> next2; next3),
en3_ input.



/* Lesson 11 - EQUALITY */

equa I
:

- newpg

,

writeCLesson 11 • EGUALITYM.nl.nt.nt,
writeCEQUALITY is a built-in predicate of PROLOG that is represented by the'),nl,nl,
writeC'infix operator "=". Every variable is assumed to equal itself. when'), nl.nl,
writeCwe write car(X):- has_four_wheel(X), '),nl,

writeC has_engine(X),'),nl,
writeC has_body<X). '), nl.nl,

writeCthere is no need to write "X=X.", it is already assumed by PROLOG. Each X in'), nl.nl,
writeCin this rule is the same and if any occurence of it becomes instantiated, each'), nl.nl,
writeCX will be set to that value. Integers and atoms are always equal to themselves.'), nl.nl,
writeC "flowers=f lowers" will succeed' ),nl,

writeC "hamburger = hotdog" will fail'),nl,
writeC "123456 * 123456" will succeed'), nl.nl,
next 2,
mid_input(_),
newpg,
writeCEQUALITY continued' ), nl.nl.nl,
uriteCIf A is any object and B is an uninstantiated variable, "A=8." will succeed'), nl.nl,
writeCand B will be instantiated to whatever A is. For example, the goal '), nl.nl,
writeC"likes(john, skydiving) = B." will succeed and B gets instantiated to'), nl.nl,
writeC the string "likes( John, skydiving)". '), nl.nl,
writeCTwo structures are EQUAL if all of the following are true :'), nl.nl,
writeC * they both have the same predicate'),nl,
writeC they both have the same number of arguments, and'),nl,
writeC - each corresponding argument is equal. '),nt,nl f

writeCThe goal "rakesCdave, leaves) = rakes(X.Y)" will succeed. X and Y are'), nl.nl,
writeCinstantiated to "dave" and "leaves", respectively. '), nl.nl,
next2,
mid_input(_),
newpg,
writeCEQUALITY - continued' ), nl.nl, nl,

writeCUith two uninstantiated variables, a goal tike "Alpha - Beta." will succeed'), nl.nl,
writeCand cause the variables to SHARE. Uhen either one is instantiated to a 1 ), nl.nl,
writeCvalue, the other one will also get instantiated. '), nl.nl.nl,
writeCAnother predicate, NOT EQUAL, is represented with the symbols "\=".'), nl.nl,
writeClf the goal "ABC \= DEF." succeeds, then "ABC = OEF." will fail and if), nt.nl,
writeCthe goal "ABC * DEF." succeeds, then "ABC \= DEF." will fail. '), nt.nl, nl.nl,
<c_level(e) -> next2; next3),
end_input.



/* Experienced level Menu screen and dialog */

exper:-neupg,
write(' You are in the experienced level of TUTOR. If the menu repeats immediately,
writeC an INVALID INPUT was received. The PROLOG topics are:'),nl,nl,nl,nl,
menu.nl,
writeCChoose a topic by typing its number followed '), nl.nl,
writeCby a period and a RETURN (It. "6." <RETURN) )'), nl.nl,
nextl,
mid_j"nput(Num1),
(integer(Numl) -> get_it(Num1); exper),
exper.



92

/• Lesson 3 - FACTS */

newpg,
writeCLesson 3 - FACTS'), nl, nl.nl,
writeCThe sentence "Kids like candy", would be written as "like(kids, candy)."'), nl.nl,
writeCin PROLOG. A declarative statement like this is called a FACT. A FACT is'), nl.nl,
writefmade up of one predicate and zero or more objects. This particular FACT '),nl,nl,
writeC consists of two objects, "kids" and "candy" and a predicate "like", '),nl,nl,
writefwhich is the relationship between the objects.' ),nl,nt,
writeCEach element of a FACT is a constant and must begin with a lower-case '), nl.nl,
write( ' letter. The predicate, also called a functor, is always written first.'), nl.nl,
writeCThe objects, also called arguments, are separated by commas and enclosed '), nl.nl,
writeCin a pair of parentheses. A FACT is always terminated by a period. '), nl.nl

,

next2,
mid_input(_),
newpg,
writeCFACTS continued' ),nl ,nl ,nl

,

writeCHere are some examples of FACTS and their English equivalents: '),nl, nl.nl,
writeC dangerous( tornados). "Tornados are dangerous" '), nl.nl,
writeC plays( John, soccer, well). "John plays soccer well" '), nl.nl,

writeC male(charlie). "Charlie is a male" '), ra.nl,

writeC greek(susan). "Susan is Greek" '), nl.nl,
writeC joined(harold.army). "Harold joined the Army" '),nl,nl,
write( ( father_of(maurice,leslie). "Maurice is the father of Leslie" '),nl,nl,nl,
writeCEach FACT entered into PROLOG becomes part of the current database. ' ),nl, nl.nl

,

next 2,
mid_input<_).
newpg,
writeCFACTS - continued' ),nl ,nl,nl,
writeCUhen creating FACTS, the ordering of the arguments can be very important. '), nl.nl,
writeCThese FACTS were written to describe different vegetables. '), nl.nl,
writeC vegetableC lettuce, green). ' ),nl

,

wri te( ' vegetableCcarrot .orange) .
' ) ,nl

,

writeC vegetable{beet,red).'),nl,nt,
wri te( 'Notice that the first argument is used for the vegetable name and the'), nl.nl,
writeCsecond for its color. The FACT "vegetableCred, radish)." does not foUow'),nl,nL,
writeCthe same conventions. If the database was searched for all'), nl.nl,

uriteCred vegetables, each FACT with "red" as its second argument, this fact 1 ),nl ,nl

,

writeCwould not be found. '),nl,nl,nl,
(c level (e) •> next2; next3),
end_input.



/* Clauses that choose a particular Prolog topic */

get_it(1):- asserta(c_toptc(1))
(

topicC/usr/prolog/hist', hist, 0),
retract<c_topfc(l)>.

get_it(2):- asserta(c_topfc(2)),
topicC/usr/prolog/cpro 1

, cpro, 0),
retract(c_topic(2)).

get_it(3):- asserta(c_topic(3)),
topic('/usr/prolog/facts', facts, 0),
topic('/usr/prolog/s_facts ,

f s_facts, 0),
topic('/usr/prolog/e~facts', e_facts, 0),
retract(c_topic(3)).

get_it(4):- asserta(c_topic(4)),
topicC/usr/prolog/quest', quest, 0),
topic('/usr/prolog/s_quest', s_quest, 0),
topic('/usr/prolog/e_quest', equest, 0),
retract(c_topic(4)).

get_it(5):- asserta<c_topic(5)),
topicC/usr/prolog/vars', vara, 0),
topic('/usr/prolog/s_vars', s_vars, 0),
topic('/usr/prolog/e_vars', e_vars, 0),
retract<c_topic(5)).

get_it(6):- asserta(c_topic(6)>,
topic('/usr/prolog/conj', conj, 0),
topicC/usr/prolog/sconj', s_conj, 0),
topicC/usr/prolog/e^onj', e_conj, 0),
retract(c_topic(6)).

get_it(7):- asserta(c_topic(7)),
topicC/usr/prolog/rules', rules, 0),
topic< Vusr/prolog/s_rules', s_rules, 0),
topici'/usr/prolog/erules', e_rules, 0),
retract(c_topic(7)).

get_it{8):- asserta(c_topic(8)),
topicC/usr/prolog/syntax', syntax, 0),
topic( '/usr/prolog/s_syntax', s_syntax, 0),
topic('/usr/prolog/e_syntax', e_syntax, 0),
retract(c_topic(8)).

get_it(9):- asserta(c_topic(9)),
topicC/usr/prolog/chars', chars, 0),
topic( '/usr/prolog/schars', s_chars, 0),
topic('/usr/prolog/e_char6', e_chars, 0),
retract (c_topic<9)).



get_it(10):

get_it(11):

get_it<12):

set_it(13):

get_1t(H):

get_it(15):

get_it(16):

get_it(18):

get_it(19):

get_it(_).

asserta
topic(
topic(
topic(
retract
asserta
topicC
topicC

topicC
retract
asserta
topicC
topicC

topic<
retract
asserta
topic(
topic(
topic(
retract
asserta
topicC
topicC
topicc
retract
asserta
topicC
topicC
topicC
retrac
assert
topicC
topicC
topicC
retrac
assert
topicC
topicC
topicC
retract
asserta
topicC
topicC
topicC
retract
asserta
topicC
retract

c_topicC10)),
usr/prolog/oper', oper, 0),
usr/prolog/s_oper' , s_oper, 0)
usr/prolog/e~oper', eoper, 0)

c_topicC10)).
c_topic(11)),
us r/pro log/equal' , equal, 0)
usr/prolog/s_equal

'
, sequal

usr/prolog/eequal ', eequal
c_topic(11)).
c_topicC12)),
usr/prolog/arith 1

, arith, 0)
usr/prolog/sarith', sarith
usr/prolog/e_arith' , e_arith
c_topic<12)).
c_topicCl3))

;

usr/prolog/lists', lists, 0)
usr/prolog/s_lists', slists
usr/prolog/e_lists', e_lists
c_topic<13)).
c_topicCH)),
usr/prolog/backtr', backtr, 0),
usr/prolog/s_backtr', s_backtr,
usr/prolog/e_backtr', e_backtr,
c_topicCK>).
c_topicC15)),
usr/protog/cutt' , cutt, 0),
usr/prolog/s_cutt', s^cutt, 0),
usr/prolog/e_cutt', e_cutt, 0),
c_topic{15))7
c_topic(16>),
usr/prolog/rwterm' , rwterm, 0),
usr/prolog/6_rwterm' , s_rwterm,
usr/prolog/e_rwterm' , e_rwterm,
c_top1c(16)).
c_topic(17)),
usr/prolog/rwchar*, ruchar, 0),
usr/prolog/s_rHchar', s_rwchar,

0),

0),

0),

0),

0),
usr/prolog/e_rwchar'

(
e_rwchar, 0)

c_topic(17)).
c_topic(18))

(

usr/prolog/accf ile 1

, accfile, 0),
usr/prolog/s_accf ile' , s_accfile, 0),
usr/prolog/e_accf f le', e_accfile, 0),
c_topic(18)).
c_topic(19)),
usr/prolog/builtin', builtin, 0),
c_topicC19)).



I* Lesson 1 some History on PROLOG */

hist:* newpg,
writeCLesson 1 - The History of PROLOG' ),nl ,nl ,nl

,

writeCPROLOG was originally developed in 1972 by Colmerauer and Roussel at the '), nl.nl,
writeCUniversity of Marseilles as a practical tool for PROgramming in LOGic. ' ),nl ,nL

,

wrtteCIt was the first interpreter of its kind and was created about the same time'), nl.nl,
writeCpeople were discovering that logic sentences could be expressed as program'), nl.nl,
wri te( 'statements and that controlled inference was analogous to the execution of), nl.nl,
wri te( 'these statements. ' ),nl,nl,
writeCSince its creation, there has been a considerable proliferation of PROLOG'), nl.nl,
wri teC implementations that cover a wide range of design philosophies, host machines, '), nl.nl,
writeC and application environments. '),nl,nl,nt,
next2,
mid_input{_),
not_var(R1,R2),
quit(R2),
newpg,
writeCBrief Overview of PROLOG' ),nl, nl.nl,
writeCA program written in PROLOG describes known facts and relationships about 1 ), nl.nl,
uriteCa problem, whereas, in other languages, a program prescribes a sequence 1 ), nl.nl,
write('of steps that must be taken by the computer to solve a problem. ' ), nl.nl,
writeC'Programming in PROLOG can be thought of as three basic steps:'), nl.nl,
writeC Declaring FACTS '),nl,

writeC Defining RULES and'),nl,
writeC Asking QUESTIONS '), nl.nl,
writeCProlog is an interpreter with a database that you populate, depending' ),nl ,nl,

writeC'on your application. Implementations of PROLOG on conventional computers'), nl.nl,
writefhave reached efficiency comparable to pure LISP. '),nl,nl,

next2,
mid_input(_),
newpg,
write('Overview of PROLOG - continued 1 ), nl.nl, nl,

writeCProlog is used in many different fields. Areas like'), nl.nl,
writeC ARTIFICIAL INTELLIGENCE' ),nl,

writeC COMPILER CONSTRUCTION' ),nl

,

writeC RELATIONAL DATABASES' ),nl,

WriteC MATHEMATICAL L0GlO.nl,
writeC NATURAL LANGUAGE PROCESSING' ),nl

,

writeC ABSTRACT PROBLEM SOLVING and'),nl,
WriteC EXPERT SYSTEMS'), nl.nl,
writeCare common applications. The Japanese have chosen to use Prolog as'), nl.nl,
writeCthe kernel language in the Fifth-generation computers. One reason is'), nl.nl,

write( 'because it does not presuppose a Von Neumann architecture like most other 1 ), nl.nl,

wri te( 'programming languages. '),nl,nl,
next2,
mid_input(_),
newpg,

writeCOverview of PROLOG - continued'), nl.nl, nl,
writeCOne of the major attractions to PROLOG is its ease of programming. PROLOG'), nl.nl,

writeCprograms consist of clauses, in first-order logic and a theorem to be proven.' ),nl,nl,

writeCLogic programming is based on clauses of the form, "M if P and 0".'), nl.nl,

writeCThese are called "Horn clauses". Problem "M" can be reduced to subproblems'), nl.nl,

writeC'P" and "Q". Prolog has many advantages as an application language primari ly' ), nl.nl

,

writeCbecause of its powerful pattern-matching capabilities that come from'), nl.nl,
writeCunif ication and automatic backtracking. A main criticism of PROLOG though, '), nl.nl,
writeC is. that its left- to- right, depth-first search strategy is too rigid. It can'), nl.nl,

writeCbe inefficient and incomplete for certain applications. 1 ), nt.nl,
next2,
end_input.



/* Intermediate level choice of lesson or menu */

interm:- newpg,
write('This level assumes you are familiar with PROLOG or have used this tool'),nl,nl,
writeCbefore. The lessons are presented in the following order: '), nl.nl.nl,
menu,
writeCOo you want to continue from a certain point OR do you want to select '), nl.nl,
write('a particular topic? ("c. "Continue) / "s. "(elect))'), nl.nl,
nextl,
midinput(Ansl),
c_or_s(Ans1 )

.

c_or_s(s):- writeCEnter the number of the lesson you want to review, '), nl.nl,
writeCfollowed by a period and a RETURN (ie. "6." (RETURN) )'),nl,
nextl,
mid_input(Lnum4),
(integer(LnumA) -> asserta(c_level(e)),

Lnum5 is Lnum4 + 1,

seq(Lnum4,Lnum5) ; newpg,
bad_inp,
menu,

c_or_s(s)),
topic(exper.O).

c_or_s(_):- writeCType in the lesson number you want to start at, followed by a'), nl.nl,
writeCperiod and a RETURN (ie. "6." <RETURN> )'),nl,nl,
nextl,
mid_input(Lnum2),
(integer(Lnum2) -> asserta(c_level(b)),

max(M), /* from "start" */

seq(Lnum2,H); newpg,
bad_inp,
menu,
c or s(c)).



/* Library of common routines */

/* If Replyl is a variable, "badreply" is

returned. Else, Replyl is untouched •/

not_var<Replyt,bad reply):- var(Replyl).
not_var<Reply1 , RepTyl )

.

topic( X, Y, Z ):- consult(X), Y, abolishCY.Z).

repeat_topic(r):- repeatt. /* To repeat a topic */
repeat_topic(_).

seq(X,Y>:- X \«- Y,

get it(x),

xi Ts x + 1,

seq(X1,Y).

seq<_,_):- c_level(e).

seq(_,_):- new_lev(n).

/* Handles input between screens of a lesson,
summary or exercise. Also input to skill
level questions "/

mid_Jnput(R2) :- read(RI),
not_var(Rl,R2),
quit(R2).

raid_input(R2) :- R2 = 'SAO SYNTAX - Answer'

/* Handles input after the last screen of

a lesson, summary or exercise. */

endinput:- read(R3),
not_var(R3,R4),
repeattopic(RA),
quit(R4).

endinput.

quit(halt):- level_stop.
quit{q):- level_stop.
quit<quit):- level_stop.
quit(exit):- level_stop.
quit(_).

/* Rules to leave TUTOR */



9d

level_stop:- nl,nl,

writeCDo you want to try i

nl, nl.nl,
mid_input(Ans1),
new_lev(Ans1).

new_lev(y):- abolish(show_db,0),
mii te( 'Which new level do
write< ' Beginner

new skill level? ("y." / "n.")'),

iiiierineuidie

Experienced

write<
write(
write{
next!,
mid_input(Ll),
c_level(C),
retract(c_level(C))
tevelU1)7

. _j you want?'). nl.nl,
Beginner -- type "b. {RETURN}" '),nl,
Intermediate •- type "i. {RETURN}"'), nl,

type "e. {RETURN}'"), nl.nl.nl,

/* level defined in start file */

new_lev(_):- newpg,
writeCThis session of the PROLOG tutorial has ended. '), nl.nl,
writeCFeel free to use it again anytime for a refresher'), nl.nl,
writeCor to continue from where you left off .'), nl.nl, nl.nl.nl,
halt.

new_db(l, J. K, L):- abolish(dbl.l),
abolish(db2,1),
abolish(db3,1),
abolish(db4,1),
asserta(show_db),
asserta(dbKl)),
asserta(db2(J)),
asserta(db3(K)),
ut«rta(db4(L)).

print db:- writeCGiven the following database: •),

db1<01), write(D1),nl,
db2(02), teb(30), write<D2),nl,
db3(D3), tab(30), write(D3),nl,
dW(D4), tab<30), write(M), nl.nl.

bad_inp:- nl.writeC'INVALID INPUT - TRY AGAIN' ),nl, nl.nl ,nl

.

newpg:- nl, nl, nl, nl, nl, nl, nl, nl, nl, nl, nl,
nl, nl, nl, nl, nl, nl. nl, nl, nl, nl, nl.

/* Menu screen */

writeC 1) history of PROLOG
writeC 2) C-PROLOG at KSU
writeC 3) facts
writeC 4) questions
writeC 5) variables
writeC 6) conjunctions 12) arithmetic'),nl,nl
writeC 16) reading/writing characters
writeC 17) reading/writing terms

7) rules

8) syntax
9) characters
10) operators '),nl,
11) equal ity'),nl.

13) lists'), nl,

14) backtracking '),nl,

15) cut'),nl,

18) accessing files'), nl,

19) built-in predicates'), nl, nl.nl.

nextl:- writeC '

next2:- writeC
next3:- writeCTO REPEAT A TOPIC

NEXT SCREEN - type "n."
type "r." NEXT SCREEN • type '

TO QUIT - type "q.'"),nl.
TO QUIT - type "q."'),nt.

i." TO QUIT - type "q."'),nl.



/* Lesson 13 - LISTS •/

lists:- newpg,
writeCLesson 13 • LISTS'), nl.nl, nl,
writeCA LIST is an ordered sequence of elements that can be of any length. The'), nl.nl,
writeCelements can be atoms, structures or any other term including other lists. '), nl.nl,
writeCA LIST is either EMPTY, containing no elements, or it is a structu '), nl.nl,
writeCwith two parts: a "head" and a "tail". The EMPTY list is written "[J".' ),nl,nl,
writeCThe easiest notation for writing LISTS is shown in these examples. '), nl.nl.nl,
writeC [J 11,2,3] [a, b,c, [d,el,F,G] '), nl.nl.nl,
writeCEvery element is separated by a comma and the entire list is enclosed in'), nl.nl,
writeC 'square brackets. Each list inside a list follows the same conventions. ' ), nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCLISTS - continued 1 ), nl.nl.nl,
writeCEech of the elements in a LIST are accessible when the list is split up 1 ), nl.nl,
writeC into a "head" and "tail". The head is the first argument of the list and'), nl.nl,
writeCthe tail is the rest of the list. This is very similar to the way LISP 1 ), nl.nl,
writeChandles lists. Notice the examples below. '), nl.nl.nl.
writeC LIST HEAD TAIL'),nl,
writeC •••'),nl.
writeC tl.2, 3. 4] 1 [2,3,4]'),nl,
writeC [] (fails) <faHs)'),nl,
writeC [la.bl.c] Ca,b] tc]').nl,
writeC [x,[a]] X Ctall'j.nl,
write(

'

[Ml la) [] ), nl.nl , nl.nl
next2,
mid_input(_),
newpg.
writeC LISTS continued 1

), nl,nl,nl,
writeCTo represent a LIST with a head X and a tail Y, you would write "[X|Y]". '), nl.nl,
writeCThe separator is a verticle bar. This notation instantiates X to the'), nl.nl,
writefhead of the LIST and Y to the tail as shown in the example. '), nl.nl.nl,
writeC DATABASE: eats( Ipopcorn, peanuts, candy] ). '),nl,
writeC eat s( [dinner, [meat, potatoes]] ).'), nl.nl.nl,
writeCin PROLOG: ?- eats( [A|B] ). <RETURN}'),nl,
writeC ' ).nl«

writeC A - popcorn B [peanuts, candy] ; {RETURN}'), nl,

writeC ').nl,

writeC A * dinner Bs [[meat, potatoes]] '), nl.nl, nl.nl,
next2,
mid_input(_),
newpg,
writeCLISTS • continued' ),nl ,nl,nl,

writeCTo search an entire LIST for a particular atom, each element in the list'),nl,nl,
writeCwould have to be examined. This can be done using a recursive algorithm.' ), nl.nl,

writeC 1) Look at the head of the list'),nl,nl,
writeC 2) Is this the atom? If YES • STOP'),nl,
writeC If NO - continue'), nt,nl,
writeC 3) The tail becomes the new list'),nl,nl,
writeC 4) REPEAT'), nl.nl,
writeCPROLOG has a built-in function called "member" that will execute this'), nl.nl,

writeC sequence for you. "Member" is covered in the lesson on built-in predicates. '), nl.nl, nl.nl,
(c level(e) -> next2; next3),
end_input.



/* Multiple-choice routine that asks a question, then gives
choices to pick the correct answer from. */

mult(Q, A, B, C, RA, RU, RC, Ans):- asserta(quest(Q)),
asserta(ra(RA)>,
asserta(rb(RB)),
asserta(rc(RC)),
asserta(ans(Ans)),
m_out(A, B, C, 1),
retractCans(Ans)),
retract(rc(RC)),
retract(rb(RB)),
retract<ra(RA)),
retract(quest(Q)),
abolish(show_db,Q).

m_out(A, 8, C, X):- (show_db -> nl, print_db, quest(Q); quest(O)),
nl.nl, write<Q),nl,nl,~
tab(5),write('a) '),write(A),nl,nt,
tab<5),write('b) '),write(B), nl.nl,
tab(5),wrtte('c) '),write(C),nl,nt,
writeC Choose an answer by its letter (ie. "a.")'),nl,nL,
nextl,
mid_input(R1),nl,
answer(R1, X, A, B, C).

answer(R, _):- ans<R),
writeCYes, '), reas(R).

answer(R,0,_,_,_):- reas(R),
ans(Y), writeCThe answer is '), write(Y), put(46),nt,
reas(Y).

enswer(R,0, _,_,_):- ens(Y), writeCThe answer is •), urite(Y), put(46),nl,
reas(Y>.

answer(R,Z,A,B,C>:- 21 is 2 • 1,

reas(R),
m_out<A, B, C, 21).

answer(R,22,A,8,C):- write( 'Please choose "a.", "b." or "c."'), nl.nl,
23 is 22 - 1,

m_out<A, B, C, 23).

reas(a):- ra(RA),
write(RA),nl,nl,nl.

reas(b):- rb(RB),
write(RB),nl, nl.nl.

reas(c):* rc(RC),
write(RC),nl, nl.nl.



/* Lesson 10 - OPERATORS */

oper:- newpg,
writeCLesson 10 - OPERATORS'), nt.nl.nl,
uriteCEvery OPERATOR in PROLOG has three properties: its position, precedence 1 ), nl.nl,
writeCand its associativity. '),nl,nl,nl,
writeCThe OPERATORS plus "+", minus "-", multiply "*" and divide "/" are written 1 ), nl.nl,
writefbetween their arguments and thus called "infix" OPERATORS. Uhen a minus "•"'), nl,nl,
writeCsign is put before its argument to denote a negative number, it is called'), nl.nl,
writeC'a "prefix" OPERATOR. An OPERATOR written after its argument is catted' ),nt,nl,
write('"postfix". The position of an OPERATOR, therefore, is where it is written'), nl.nl,
writeCin relation to its arguments. '), nl.nl.nl,
next2,
mid_input(_),
newpg,
writeCOPERATORS continued' ),nl , nl.nl

.

write<'Uhen PROLOG evaluates an expression like "x+y*2/3-z", it must use OPERATOR' ), nl.nl,
writeCprecedence and associativity. Each OPERATOR has a precedence class assigned' ), nl.nl,
writet'to it, and the one with the highest precedence is always evaluated f irst. '), nl.nl,
write('Multiptication and division have a higher precedence than addition and'), nl.nl,
writeCsubtraction. All four operations are left-associative which means OPERATORS'), nl.nl,
writeCwith the same precedence are evaluated left-to-right. Parentheses are of ten'), nl.nl,
writeCused for clarity or to override an automatic precedence. '),nl, nl.nl, nl,
next2,
mid_input<_),
newpg,
writeCOPERATORS • continued' ),nl, nl.nl

,

writeC'Rewriting the expression "x+y*2/3-z" with parentheses would look like: '), nl.nl,
writeC <(x +((y * 2)/3))- z)'),nl,nl,
writeCand would read: "Multiply y by 2 first, then divide that result by 3, then'), nl.nl,
writeCadd that result to x. Then subtract z from that result."'), nl.nt.nl,
writeCAny term containing an arithmetic operator is NOT evaluated unless it is'), nl.nl,
writeCthe argument to the predicate "is". This is covered in the ARITHMETIC lesson. '),nl, nt.nl, nl.nl,
<c level(e) -> next2; next3),
end"_ input.



/* Lesson 4 QUESTIONS */

quest:- newpg,

writeC Lesson 4 - QUESTIONS' ),nl,nl,nl,
write( 'QUESTIONS in Prolog look very similar to FACTS, but they are not stored'), nl.nl,
writeCin the database. Every QUESTION begins with a "?•" . For example, '), nl.nl, nl,
uriteC "John eats peas." is written "eats< John, peas)." 1 ), nl.nl,
writeC "Does John eat peas?" is written "?-eats( John, peas).'"), nl.nl.nl,
write( 'Whenever PROLOG sees a QUESTION, it searches the current database, from '), nl.nl,
write( 'the top, for a FACT to match. A match only occurs when the predicate and'), nl.nl,
writeC'every argument of the QUESTION is identical to a FACT in the database. '), nl.nl,
writeCIf a match is found, PROLOG returns a "yes". Otherwise, it returns a "no". '), nl.nl,
next2,

mid_input(_),
newpg,
write( 'QUESTIONS - continued' ), nl.nl.nl,
write{ 'Suppose the current database contains the following FACTS: '), nl.nl,
writeC vegetable(squash, yellow). '),nl,
writeC vegetable(radish,red). ' ),nl

,

writeC vegetable(cukes). '), nl.nl,
writeCAssuming certain user inputs (those underlined), PROLOG will react as follows; '), nl.nl,
writeC

|
? vegetable(squash). (RETURN)'), nl,

writeC ' ),nl,
writeC no '),nl,
writeC |

?• vegetable( squash, yellow). (RETURN)' ),nl,
writeC '),nl,
writeC yes '),nl,
writeC

|
?- vegetable(radish, white). (RETURN)'), nl,

writeC '),nl,

writeC no »), nl.nt.nl,
(c level(e) •> next 2; next3),
en3_input.



/* Allows the user to repeat any previously presented topic in the tutorial. */

repeatt:- newpg,
writeCAfter the topic you choose is repeated, TUTOR will continue '),nl,
writeCfrom where you left off. These are the topics preceding the '),nl,
writeC lesson you are currently working on:').nl,nl,
c_topic(X),
revi ew_menu( 1 , X) ,nl

,

writeCUhich topic do you want to repeat? (ie "2. (RETURN}") 1 ), nl.nl,
mid_input(T2),
(integer(T2) > get_it(T2); newpg, bad_inp. repeatt).

reviewjnenu(B.C):- B == C.

review_menu(B,C):- line(B),

B1 is B + 1,

review_menu(B1,C).

ine(1):- write{'1) History of PROLOG').
ine<2):- tab(20), urlte( a 2) C-PROLOG at KSU'),nl.
ine(3):- write{'3) facts ').

ine(4):- tab(20), write('4) questions'),nl.
ine(5):- write('5) variables ').

ine(6):- tab<20), write('6) conjunctions'), nl.
ine(7):- write('7) rules ').

ine<8):- tab(20), write('B) syntax 1 ), nl.
ine(9):- write('9) characters ').

ine(10):- tab(20), write(MO) operators'), nl.
ine(ll):- write('H) equality ').

ine(12):- tab(20), write('12) arithmetic'), nl.
ine(13):- write(M3) lists ').

ine(K):- tab(20), write('U) backtracking'),^.
ine<15):- write(M5) cut ').

ine(16):- tab(20), write('16) reading/writing terms'), nl.
ine{17):- write('17) reading/writing characters ').

ine(18):- tab{9), write(MB) accessing files'),nl.
ine(19):- write(M9) built-in predicates '), nl.nl.nl.



104

/* Lesson 7 - RULES */

rules:- newpg,
wrtteCLesson 7 RULES' ), nt.nl,
writeCGerry is an avid reader and reads all types of books.'), nl.nl,
writeCUe could define facts like reads(gerry, novels). '),nl,
wlttC reads(gerry, mysteries). l ),nl,
writer reads(gerry, classics). •), nl.nl,
urite('in PROLOG for every type of book he reads. '),nl,nl,
writeCAn easier approach would be to write a RULE like "Gerry reads anything provided'),nl,nl,
writeCit is a book." Anytime one fact depends on other facts, a RULE is written. 1 ), nl.nl,
writeC'The first fact is true IF all those it epends on are true. A RULE '), nl.nl,
writeCdescribing Gerrys hobby, "reads(gerry.X):- book(X)." could be put in'), nl.nl,
writer the database. To find out which books Gerry reads, you could now ask the'), nl.nl,
uriteCquestion, "?• reads(gerry,X)" and the rule would be used to find the answers. 1 ). nl.nl,
next2,
mid_input(_)

(

newpg,
writeCRULES • continued 1 ), nl.nl,
writeCDefinitions are also expressed using RULES, for example, '), nl.nl,
writer X is the daughter of Y and Z if: '),nl,
writer X is a female, '),nl,
writer Y is the parent of X and *),nl,
writer Z is the parent of X. '), nl.nl,
writeCln PROLOG, this RULE would be written, '), nl.nl

,

writer daughters, Y,Z) :- female(X), '),nl,
writer parent_of(Y,X),'),nl,
writer parent_of(Z,X).'), nl.nl,
writeCYou could then ask a question like, ?• daughter( joan.X.Y)." to find out'),nl,nl,
writeCwhich X and Y have a daughter named Joan. Every X is instantiated to "joan". ' ),nl,nl,
writer and each goal to the right of the ":-" is searched for in the database. '), nl.nl, nl,
next2,
midjnput(_),
newpg,
writeCRULES - continued'), nl.nl,
wrtteCEvery RULE consists of a "head" and a "body". The head contains the'), nl.nl,
writeCoverall fact the RULE is trying to prove. It is never satisfied because it'), nl.nl,
writeCis not a goal. If the predicate and arguments are matched PROLOG proceeds'), nl.nl,
writeCinto the body of clauses. The body describes the conjunction of goals' ), nl.nl,
writer each separated by a comma, that must be satisfied to prove the head is true. 1 ), nl.nl,
writeCThe head and body are always separated by a ":•", which means IF, and'),nl,nl,
writeC'each comma in the body s an AND. As with all other inputs to PROLOG,

' ), nl.nl,
writeCa rule always end with a period.'), nl.nl, nl.nl.nl,
<c_level(e) > next2; next3),
erxMnput.



/• Lesson 17 - READING/URITIMG CHARACTERS V
rwchar:- newpg,

writeCLesson 17 - reading/writing CHARACTERS'), nl, nl.nl,
write('The "getO(X>" and "get(X)" goals are used to read a character from the 1 ), nl.nl,

writeCinput stream. If X is uninstantiated, they will always succeed, but like'), nl.nl,

writeCall other input/output operators, they cannot be resatisf ied. '), nl.nl,

writeCThe first goal "getO(X)" will instantiate X to the next character it sees. '), nl.nl,

writedt will pick up any printing or non-printing character that is typed in'), nl.nl,

writeCwhile it is waiting for input. In the case where X is already instantiated, '), nl.nl,

writeCit checks to see if the next character is equal to X. If they are equal, '), nl.nl,

write<"'getO(X)" passes, otherwise it fails.'), nl.nl.nl,

next2,
mid_input(_),
newpg,
writeCREADING/URlTING CHARACTERS - continued' ),nl , nl.nl,

write( 'Non-printing characters like space (32 in ASCII) and carriage return'), nl.nl,

writeCare skipped by "get(X)". It will instantiate X to the first printing'), nl.nl,

write( 'character it sees. If X is already instantiated. "get(X)" will compare 1 ), nl.nl,

writeCthe next printing character it sees to the value of X. It tests the two'), nl.nl,

writeC 'characters for equality and succeeds or fails appropriately. '), nl.nl, nl,

writeCTo write out one character, you would use the "put" predicate. '), nl.nl,

writeCX must be instantiated to the ASCII equivalent of the character, and '), nl.nl,

writeCthe goal "put(X)" will print the character out. (ASCII codes are'), nl.nl,

write( 'covered in Lesson #9 • CHARACTERS)' ),nl ,nl,

next2,
mid_input(_),
newpg,
write('READING/URITING CHARACTERS - continued 1 ), nl.nl, nl,

writeCThe predicate "put" will always succeed the first time, but cannot be '), nl.nl,

writeCresatisfied. Backtracking over a "put" will fail, but as a side-effect '), nl.nl,

writeC it will output its character again. '),nl, nl.nl,

writet'To control the format of your output, PROLOG has the predicates "nl" and 1 ), nl.nl,

write( '"tab". A newline "nl" goal will always succeed and move the cursor to'),nl,nl,

writeCthe next line. The "tab(X)" goal will print out X number of spaces. X must' ),nl,nL,

writeCbe instantiated to an integer or the goal will fail.'), nl.nl, nl.nl,

next2,
mid_input(_),
newpg,

writet 'READING/WRITING CHARACTERS • continued 1 ),nl .nl.nl,

writeCThere is one other PROLOG predicate involved in character input'), nl.nl,

writeCcalled "skip". The goal "skip(H)" will skip to the character right after'), nl.nl,

writeCthe next ASCII character H it sees. M can be any ASCII character or an'),nl,nl,

writeC integer expression. If the character M is not found and "skip(H)" goes'), nl.nl,

writeCpast the end-of-file marker (CTRL-Z or 26 in ASCII), an error '), nl.nl,

writeC will occur. '), nl.nl, nl.nl,
(c_level(e) -> next2; next3),
endinput.



/* Lesson 16 - READING/WRITING TERMS */

rwterm: newpg,
writeCLesson 16 • READING/WRITING TERMS' ), nl.nl, nl,
writeC If you want your program to read in the next term from the current 1 ),nl,nt,
writeC input stream, which is usually the terminal, you would use the "read 1"), nl.nl,
writec 'predicate. The term must end with a period and a RETURN or space. '). nl.nl,
write( 'Assuming the variable "Reply" is uninstantiated, "read(Reply)" will'), nl.nl,
uriteCread in the next term. "Reply" will be instantiated to everything'), nl.nl,
writectyped in up until the period and carriage return. '), nl.nl.nl,
writeCThe predicate "read" only succeeds once. It will be skipped when '), nl.nl,
write( 'backtracking occurs. '),nl,nl,nl,
next2,
mid_input(_),
newpg,
writeCREADING/URITING TERMS continued' ),nl ,nl, nl.nl,
writeCOne of the easiest ways to display a term to the current output stream' ), nl.nl,
writeCis to use the "write" predicate. Like "read", "write" succeeds once.'), nl.nl.
writeCThe title on this screen is a result of the goal'), nl.nl,
writeC write('), put(39), writeCREAOING/URlTING TERMS • continued' ),put(39),put<41 ), nl.nl

,

writeCThe argument of "write" can also be a variable. If the variable, "X", is'), nl.nl,
writeC instantiated prior to the "write(X)" goal, its value will be dispalyed. '), nl.nl,
writeCOtherwise, a numbered variable like "_375" will be printed. This is'), nl.nl,
writeCthe internal representation for the variable "X" in this instance.'), nl.nl.nl,
next2,
mid_input(_),
newpg,

writeCREADING/wRITING TERMS - continued' ),nl,nl,nl,
writeCThe "write" predicate knows what operator declarations have been made'), nl.nl,
wri te( 'before it prints a term. The goal '),nl,nl,
writeC write(a+b*c)'), nl.nl,
writeCit will print the string "a+b*c" exactly on the screen. The "+" and'), nl.nl,
writeC"*" are infix operators, so their arguments will be output around them 1 ), nl.nl,
writeCjust as they were given to "write".'), nl.nl.nl, nl.nl,
<c level(e) •> next2; next3),
end_input.



/* Sumnary 18 - ACCESSING FILES */

s_accfile:- newpg,
writeCSummary 18 - ACCESSING FILES' ),nl , nl.nl,
writeCA file called "user" is the initial input and output stream of Prolog. '), nl.nl,
writeCTo begin reading input from file "abc", use "see(abc)". '), nl.nl,
writeCThe goal "seen" will close the current input file and switch the input'), nl,
writeCstream back to "user". '), nl.nl,
writeCIf you want to find out what the current input stream is, use "seeing(U)."'),nl,
writeC'U" will be set to the current input file name. '), nl.nl,
writeCThe output stream is handled the same way, with the predicates "tell". '),nl,
writeC'told" and "telling", respectively. '), nl.nl,
writeCA predicate "consult" will read the contents of a file into the database. '),nl,
writeCThe convention "[ftlea]" is often used to consult "f i lea". '), nl.nl, nl.nl,
(c_level(e) -> next2 ; next3),
end_ input.

/• Summary 12 • ARITHMETIC V
s_arith:- newpg,

writeCSummary 12 - ARITHMETIC 1 ), nl.nl.nl,
writeCProlog has 6 infix operators to compare numbers. They are:'),nl,
writeC "s"

,
"\=" ,

"<"
,

">"
,
"=<»

t and ">=" .'), nl.nl.nl.
writeCThe calculation operators are "+". "-", "*" and "/" . '), nl.nl,
writeCA calculation will only occur if the goal contains '),nl.

writeCthe "is" operator. '), nl.nl,
writeCAn "is" must have a variable on its left, and an expression '),nl,
writeCcontaining a calculation operator on its right. '), nl.nl,
writeCDivide "/" does integer division. Its result is always '),nl.

writeCa whole number. 1 ), nl.nl,
writeCThe "mod" operator returns only the remainder of an '),nl,
writeC integer division. '), nl.nl.nl,
(c_level(e) •> next2 ; next3),
end_input.

/* Surmary 14 - BACKTRACKING */

s_backtr:- newpg.
writeCSummary U - BACKTRACKING 1 ), nl.nl.nl,
writeCBacktracking happens automatically, if a goal fails. '), nl.nl,
writeCIf a goal fails, Prolog "goes back" to the previous goal. '), nl.nl,
writeCVariables lose their value if backtracked over. Prolog tries to'),nt,
writeC resatisfy them. •), nl.nl,
writeCThe placemarker is moved each time an attempt is made to resatisfy'),nl,
writeCa goal.'), nl.nl,
writeCTo force Prolog to backtrack, type "; {RETURN) after Prolog 1 ), nl,
writeCoutputs an answer. '),nl,nt, nl.nl.nl,
(c_level(e) •> next2 ; next3),
end_input.



/* Summary 9 CHARACTERS */

schars:- newpg,
writeC Summary 9 - CHARACTERS'), nl.nl.nl,
writel'Prolog has printing and non-printing characters.'), nl.nl,
writeCEach has an ASCII (integer) value.'), nl.nl,
writeCNon-printing characters range from to 32, but their'), nl,
writeCvalues are machine dependent. '), nl.nl,
writeCPrinting characters have values between 33 and 127.'), nl.nl,
writeCHany characters, like the exclamation mark, have a special 1 ), nl,
uriteC 'meaning in Prolog. '),nl,nl,
writeCASCII values are also used to check character input. '),nl, nl.nl, nl.nl,
<c_level(e) -> next2 ; next3),
end_ input.

/* Summary 6 - CONJUNCTIONS V
s conj:- newpg,

writeC Summary 6 - CONJUNCTIONS' ), nl.nl, nl.nl,
writeCA CONJUNCTION combines multiple goals. '), nl.nl.nl,
writeCEach goal is joined by a comma, which means AND. 1 ), nl.nl.nl,
writeCGoals are satisfied from left to right. '), nl.nl, nl,
writeCA variable is SHARED by every goal in a CONJUNCTION. •), nl.nl.nl,
writeCA placemarker is kept in the database for each goal. '), nl.nl, nl,
write('CONJUNCT10NS can be resatisfied in the same way as a question. '), nl.nl, nl.nl,
(c level(e) -> next2; next3),
en3_ input.

/* Summary 15 - CUT */

s_eutt:* newpg,

writeCSummary 15 • CUT'), nl, nl.nl,
write( 'There is a goal called CUT. '), nl.nl,
uriteClts predicate is "1", the exclamation point. '), nl.nl,
writeCCUT has no arguments and always succeeds once. 1 ), nl.nl,
writeClt is used to prevent backtracking. '), nt.nl,
write( 'Backtracking over a CUT always fai Is. '),nl,nl,
writeCA placemarker is NOT kept for any goal that preceeds a CUT.'),nl,
writeC'They can never be resatisf ied. '), nl.nt.nl, nl,
(c_level(e) -> next2; next3),
end_input.



/* Summary 11 - EQUALITY */

sequal:- newpg,
writeCSummary 11 • EQUALITY'), nl.nl.nl,
writeCThe infix operator "*" means equality in Prolog. ), nl.nl,
uriteCAn integer or atom is always equal to itself .'), nl.nl,
writeCUhen two uninstantiated variables are equal, they'),nl,
writeCwill share the same value.'), nl.nl,
writeCA variable set equal to an object will assume the value '),nl,
nriteCof the object.'), nl.nl,
writeCTwo structures are EQUAL if:'),nl,
writeC they both have the same predicate AND'),nl,
writeC • they both have the same number of arguments AND'),nl,
writeC each corresponding argument is equal. '),nl,nl,
writeCThe opposite of "=" is "/=". '),nl, nl.nl,
<c level(e) •> next2; next3),
en3_input.

/* Summary 3 - FACTS */

s_facts:Tiewpg,
writeC Summary 3 FACTS'), nl.nl.nl,
writeC The relationship is always written f irst. '), nl.nl,
writeC Names of relationships and objects must begin with a'),nl,
writeC lower-case letter.'), nl.nl,
writeC The objects are enclosed in a set of parentheses and'),nl,
writeC separated by commas. '), nl.nl,
writeC Each FACT ends with a period. '),nl,nl,
writeC 1 Every object within the parentheses is called an ARGUMENT. '), nl.nl,
writeC The relationship between objects is called a PREDICATE. '), nl.nl,
writeC A collection of FACTS is called a DATABASE. '), nl.nl, nl.nl.nl,
(clevel(e) -> next2; next3),
end_ input.

/* Summary 13 LISTS */

slists:- newpg,

wrfteCSummary 13 - LISTS'), nl, nl.nl,
writeCA LIST is an ordered sequence of elements. It can be of any length. '), nl.nl,
writeCThe elements are enclosed in square brackets and separated by commas. '), nl.nl,
writeCAn empty list is written "I]".'), nl.nl,
writeCThe elements can be atoms, structures or other lists. '),nl,nl,
writeCThe HEAD of a list is the first element. '), nl.nl,
writeCThe TAIL is the list without its HEAD. '), nl.nl,
writeCBe careful not to confuse the HEAD of a list with the HEA0'),nl,
writeC'of a rule. The two are totally different.'), nl.nl, nl.nl,
(c_level(e) -> next2; next3),
end_input.



/* Summary 10 - OPERATORS */

s oper:- newpg,
writeC'Summary 10 - OPERATORS'), nl.nl.nl,
writeCAn INFIX operator is written between its arguments.'), nl.nl.nl,
writeCPREFIX operators come before their argument. '), nl.nl.nl,
writeCAn operator written after its argument is called POSTFIX. '), nl.nl, nl,
writeCThe operator with the highest PRECEDENCE is evaluated first.'), nl.nl.nl,
writeCOperators with the same precedence are evaluated left-to-right. '),nl, nl.nl, nl.nl,
(c level(e) -> next 2; next3),
end_input.

/* Summary 4 • QUESTIONS */

s quest: -newpg,
writeCSummary A QUESTIONS'), nl.nl.nl,
write< 'QUESTIONS always begin with the 2 symbols " ?- ".'), nl.nl,
writeCThe format of a QUESTION is very similar to that of a FACT. '), nl.nl,
writeCA QUESTION always ends with a period. '), nl.nl,
writeCWhen the PROLOG interpreter receives a QUESTION, it searches the current'), nl,
writeCdatabase for a possible match. If a match is found, it returns a "yes".'),nl,
writeCIf no match is found, PROLOG returns a "no". '), nl.nl,
writeCQUESTIONS are not kept in PROLOCs database like FACTS. '), nl.nl,
wrtteCDO NOT confuse "?-" with the symbols "| ?-". The latter set of symbols'), nl,
writeCwiU appear when the PROLOG interpreter is waiting for a command. 1 ), nl.nl, nl.nl,
<c_level(e) -> next2; next3),
end_ input.

/* Summary 7 - RULES */

srules:- newpg,
writeCSummary 7 • RULES' ),nl , nl.nl,
writeCA RULE defines a FACT that depends on other FACTS. '), nl.nl,
writeCRULES are stored in the database, like FACTS. ' ),nl,nl,
writeCThe HEAD of a RULE defines a general FACT. '), nl.nl,
writeCThe BODY is made up of goals that must all be proven'), nt,
writeCbefore the HEAD is true. '), nl.nl,
writeCTo separate the HEAD from the BODY, the symbols ":•" are used. ), nl.nl, nl.nl,
<c_level(e) -> next2; next3),
end_input.

/* Summary 17 - READING/WRITING CHARACTERS •/

s_rwchar:- newpg,
writeCSummary 17 READING/URITING CHARACTERS' >, nl.nl.nl,
writeCIf X is uninstantiated: '), nl.nl,
writeC "BetO(X)" reads in the next printing or non-printing character. '), nl.nl,
writeC "get(X)" reads in the next printing character. '), nl.nl,
writeCIf X is instantiated:'), nl,nl,
writeC "getO(X)" checks to see if the next character equals X.'),nl,
writeC If so, it succeeds. ' ), nl.nl,
writeC "get(X)" checks the next printing character. '), nl.nl,
writeCThe "put" predicate will output one character at a time. 1 ), nl.nl,
writeCSpaces are output using "tab" and a newline is done with "nl". •), nl.nl.nl,
(c_level(e) -> next2; next3),
end_input.



/* Summary 16 • READING/URITING TERMS V
s_rwterm:- newpg,

writeCSumnary 16 - READING/WRITING TERMS' ),nl ,nl ,nt,
writeCThe predicate "read" will read in a term from the current' ),nl

,

writeC input stream. '), nl.nl,
uriteCThe TERM must end with a period and a RETURN or a space. '), nl.nl.nl,
writeC'read" only succeeds once. '), nl.nl.nl,
writeCTo output a TERM you can use the "write" predicate. '),nl,nl,
writeC Its argument must be enclosed in single quotes if it'),nl,
writeC is a string.'), nl.nl, nl.nl,
(c_level(e) •> next2; next3),
end_input.

/* Summary 8 - SYNTAX */

s_syntax:- newpg,
writeCSumnary 8 - SYNTAX' ), nl.nl.nl,
writeCProlog checks each character of input for syntax errors. '), nl.nl,
writeCA Prolog program is a set of TERMS. '), nl.nl,
uriteCTerms are CONSTANTS, VARIABLES or STRUCTURES made up of CHARACTERS. '), nl.nl,
writeCAn ATOM is a CONSTANT and '),nl,
writeC - starts with a lower-case letter and contains'), nl,
writeC lower-case letters and digits. OR'),nl,
writer • is made up of all symbols. OR'),nl,
writeC * contains any letter, but is enclosed in single quotes.'), nl.nl,
writeCAn INTEGER is a CONSTANT and must be a whole number. '), nl.nl,
writeCVARIABLES begin with a capital letter or an underscore. '), nl.nl,
writeCA STRUCTURE is made up of a predicate and arguments. ' ),nl, nl.nl,
(c level(e) •> next2; next3),
end_input.

/* Summary 5 - VARIABLES */

s_vars: -newpg,
writeCSummary 5 - VARIABLES'), nl.nl.nl,
writeCA VARIABLE always begins with a capital letter.'), nl.nl.nl,
writeCVARIABLES always start out UNINSTANTIATED, in other words, '),nl,
writeCwithout a value. '),nl, nl.nl,
writeCwhen a match is found, the VARIABLE becomes INSTANTIATED, or bound'), nl,
writeC to the value of the argument it matched. ' ),nl ,nl,nl,
writeCThe predicate of a clause cannot be a VARIABLE. For example, '),nl,
writeCXYZ(a, b, c). is a syntax error because XYZ is a VARIABLE. '),nl, nl.nl, nl,
(c level(e) -> next2; next3),
end_input.



/* Uelcome screen to the TUTOR tool. First it asserts the maximum topic
number (+1) so it can control the beginner and beginner/intermediate mode */

start:- asserta(max(20)),
newpg,
writeC Uelcome to TUTOR •• a C-PROLOG tutorial '), nl.nl

,

writeCThis tool will teach you C-Prolog. It will guide you through the language, ' ),nl,
write( 'according to your skill level, by presenting topics and then asking questions.

'
J.nl.nl,

uriteCThe following topics are covered: '), nl.nl,
menu,
wn'teC'It is strongly suggested that you obtain the "TUTOR Users Guide" from'), nl.nl,
writeC'the Computer Science Department before proceeding with the tutorial. '), nl.nl,
next2,
midjnput<_),
newpg,
write( 'WHENEVER you type in a response, ALWAYS end it with a period and a '), nl.nl,
writeCcarriage return (RETURN). This way, Prolog will know when you are done. '), nl.nl.nl,
uriteCYou can leave TUTOR at any time by typing "halt." "q." "quit." or "exit."' ), nl.nl,
writeCWhat is your skill level 7'), nl.nl,
writeC Beginner - Type "b. (RETURN)"' ),nl,
writeC Assumes no prior knowledge of PROLOG - automatically' ),nl,
writeC guides you through every topic. '),nl,nl,
writeC Intermediate - Type "i. (RETURN)" 1 ),nl,
writeC Allows you to resume from where you left off during'),nl,
writeC 1 last session, or to choose one topic at a time.'),nl,nl,
writeC Experienced - Type "e. (RETURN)"'), nl,
writeC Allows you to pick one particular topic at a time. '), nl.nl,
nextl,

mid_input(Sk1),
level (Sk1).

level(i):- asserta(c_level(i)), topicC/usr/prolog/interm', interm, 0).

level(e):- at.serta(c_level(e)), topicC/usr/prolog/exper', exper, 0).

level(_):- max(H), asserta(c_level(b)), seq(1,M), halt.



/* Lesson 8 SYNTAX */

newpg,
writeCLesson 8 - SYNTAX'), nl, nl.nl,
writeC'ln order to correctly represent data in PROLOG or any other language, '), nl.nl,
writeCthe SYNTAX rules must be followed. As PROLOG reads in each CHARACTER, '), nl.nl,
writeC it is constantly checking the SYNTAX rules. '), nl.nl.nl,
writeCA program in PROLOG is really a set of TERMS. A TERM is a CONSTANT, '), nl.nl,
writeCVARIABLE or a STRUCTURE. Each TERM is written as a sequence of CHARACTERS. '), nl.nl

,

writeCA CHARACTER is either UPPER-CASE, LOWER-CASE, a DIGIT or a SYMBOL. ),nl,nt,
writeCThere are SYNTAX rules defined for how each type of TERM uses CHARACTERS'), nl.nl,
write('to form names. '), nl.nl.nl,
next2,

mid_input(_),
newpg,
writeCSYNTAX • continued'), nl, nl.nl,
writeCA specific object or relationship is represented by a CONSTANT. '), nl.nl,
uriteCCONSTANTS are divided into two categories: ATOMS and INTEGERS. '), nl.nl,
writeCEarlier lessons were full of atoms like: '), nl.nl,
writeC reads, John, fish, rosemary, music, soccer, dangerous'), nl.nl.nl,
writeCSymbols like "7-" and ":-" are also atoms. Normally, an atom consists' ), nl.nl,
writeCof lower-case letters and digits and begins with a lower-case letter, OR 1 ), nl.nl,
writeCis made up of all symbols. To define an atom that combines these or 1 ), nl.nl,
writeCuses a capital letter. It must be enclosed in single quotes. '), nl.nl.nl,
next 2,
mid_input(_),
newpg.
writeCSYNTAX - continued' ), nl.nl.nl,
writeCThe other type of CONSTANT is an INTEGER. They are mostly used to '), nl.nl,
write( 'represent numbers in arithmetic operations. An INTEGER is a whole number'), nl.nl,
writeCand must not contain a decimal point.'), nl.nl.nl,
writeCVARlABLES are like ATOMS but begin with a capital letter or the underscore'), nl.nl,
write('"_" symbol. They usually represent unknown objects. The name of a'), nl.nl,
writeCVARIABLE can be practically any length. The ANONYMOUS VARIABLE, "J', '), nl.nl,
writeCis used, for example, when we want to know if John plays a sport but it'), nl.nl,
writeCdoes not matter what the sport is. The question "?- playsC john,_)." wi 1

1
' ), nl.nl,

writeCreturn a "yes" or "no" instead of the variable and its value. '), nl.nl,
next 2,
mid_input<_),
newpg,

writeCSYNTAX - continued'), nl.nl.nl,
writeCThe third kind of TERM is the STRUCTURE. A STRUCTURE consists of a'), nt.nl,
writeCpredicate, which is an ATOM, and its arguments, which are TERMS. The'), nl.nl,
writeC arguments are enclosed in parentheses and separated by commas. ' ),nl ,nl

,

writeCThese are all STRUCTURES: •), nl.nl,
writeC ownsfmary, bookC a_tale of_two_cities, dickens)). '),nl,nt,
writeC looks( John, tired). '), nT.nl,
writeC ?- read(mary, plays(X, Shakespeare)). '), nl.nl.nl,
writeCAnything that is not a CONSTANT or VARIABLE, by default, is a STRUCTURE. '), nl.nl, nl.nl,
(c leveUe) -> next2; next3),
end_ input.



/* Main file that consults all necessary files */

-U

]).
:-nl.
:-nrite(
:-write(

:-wn'te(
:-write(
:-write(
:-write(
:-write(
:-nt.

'/usr/prolog/lib 1

,

'/usr/prolog/start
'

,

'/usr/prolog/ask'

,

'/usr/prolog/mult',
1 /usr/prol og/repeatt

'

'/usr/prolog/getit'

X library

To begin, type

To quit, type

*******************

start. (RETURN) ***'

halt. {RETURN) ***'

************************

i

•),nl.
•>,nl.

'),nl.

'),nl.

'),nl.
>,nl.
),nt.



/* Lesson 5 • VARIABLES */

vars:- newpg,
writeCLesson 5 - VARIABLES' ),nl, nl.nl,
write('VARIABLES begin with an upper-case letter or an underscore. The arguments of ), nl.nl,

writeCa QUESTION can be VARIABLES as well as constants. Uith a database like, '), nl.nl,
writer equipment (helmet, football). '),nl,
writer equipment ( javelin, track). ' ),nl,

writer equipment (discus, track). '), nl.nl,
writeCyou could ask PROLOG, "Is a helmet track equipment?", "Is a javelin track'), nl,nl,
wri te( 'equipment?" and " Is a discus track equipment?" to figure out which items' ),nl,nl,

writeCin the database were track equipment.'), nl.nl.nl,
wn"te( 'Using a VARIABLE makes this job a tot easier. You can ask one question, '), nl.nl

,

wn'teC'Which items are track equipment?" or "?-equipment(X, track)."'), nl.nl,
next2,
mid_input(_),
newpg,
write( 'VARIABLES • continued' ),nl .nl.nl,
wrtteCUith that QUESTION, PROLOG would start a top-down search of the current' ), nl.nl,

wri te( 'database to find every FACT with 2 arguments, whose functor is "equipment", '), nl.nl,

uriteCand second argument is "track". Until a match is found, X is UNINSTANTIATED, '), nl.nl,

wri te( 'meaning, it has no value. *), nl.nt,
writer If and when a match is found, X becomes INSTANTIATED to the value of the'), nl.nl,

wri te(' argument it matched, PROLOG marks the location in the database where the '). nl.nl,

writeCmatch was found and it prints out the VARIABLE name and its value.'), nl.nl,

writeCAt this point, you can have PROLOG continue to search the database for more'), nl.nl,
write( 'matches or stop the search. PROLOG will wait for further instructions. '), nl.nl.nl,

next2,
mid_input(_),
newpg,
wri te( 'VARIABLES - continued' ), nl.nl, nl

,

writeCTo terminate the search, you have to press the RETURN key. To continue' ), nl.nt,

writeCthe search, type a semicolon and then the RETURN key. PROLOG forces X to'), nl.nl,

write( 'become UNINSTANTIATED again and resumes its search from the place it marked' ),nl ,nl,

wrtteCin the database. If no more matches are found, PROLOG returns a "no". ' ), nl.nl , nl.nl,

next2,
mid_input(_),
newpg,
writeCVARIABLES - continued' ),nl,nl,
writeCGiven the current database, if the user types each item underlined, he wilt'), nl.nl,
writeCsee the following: '), nl.nl, nl,

writer CURRENT DATABASE PROLOG INTERPRETER' ), nl.nl,

writer vegetable( lettuce, green). | ?- vegetables, green). {RETURN}'), nl,

wr i te<

'

' > . n I

,

writer vegetable(beans, green). X lettuce ; i RETURN >'),nl,

writer ').nl,

writer vegetable(radish,red). X = beans ; < RETURN >'),nl,

writer '>#nl,

writer vegetable(peppers, green). X peppers ; ( RETURN >'),nt,

writer '>.nt,

writer no '), nl.nl.nl,

<c level(e) -> next2; next3),
end_input.



TUTOR : A Computer-Aided Tutorial in PROLOG

BY

LISA MARIE WYLIE

B. S., Worcester Polytechnic Institute, 1980

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985



ABSTRACT

Prolog is an interpretive language for PROgramming in
LOGic. A program written in Prolog contains facts
and rules which describe characteristics of an
application. These are stored in the Prolog
database. To solve a problem, the database is
queried.

This work presents an interactive, instructional tool
called TUTOR that teaches a version of Prolog called
C-Prolog. It is written in C-Prolog and is available
on the VAX 11/780, Perkin Elmer 8/32 and the PLEXUS
systems at Kansas State University. Code size of the
tutorial is approximately 80K bytes.

TUTOR accommodates users of three skill levels. The
history of Prolog and an overview of C-Prolog are
described in the first two lessons. The major areas
of the language are covered in the next sixteen
lesson/summary/exercise sections. The last lesson
briefly describes the core set of builtin predicates
of C-Prolog.


