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Abstract 

We investigated the effect of shear on the structure and aggregation kinetics of unstable 

colloids using small angle light scattering. We used an aqueous suspension of 20 nm polystyrene 

latex microspheres and MgCl2 to induce aggregation. The sample was only sheared once for 

approximately 33 sec at different times, typically 1 min, 5 min, or 15 min, after the onset of 

aggregation. The average shear rate was in the range of 0.13 - 3.56 1sec− , which was in a laminar 

regime. The unsheared sample gelled after ca. 45 min. When the sample was sheared soon after 

the onset of aggregation, the aggregation followed the diffusion limited cluster cluster 

aggregation (DLCA) kinetics to yield fD = 1.80 ± 0.04 aggregates unaffected by the shear. The 

gel time also remained the same as the unsheared gel. Shearing at later stages of aggregation 

shortened the gel time and enhanced the scattered light intensity significantly indicating rapid 

growth. Then, depending on the shear rate, there were three different behaviors. At high shear 

rates, the aggregate structure was inhomogeneous after the shear was stopped with a crossover in 

slope in the scattered light intensity versus q, to imply hybrid superaggregates with two different 

fractal dimensions. At intermediate shear rates far from the gel point, there was a similar 

crossover after the shear was stopped; however, the fractal dimension regained 1.80 ± 0.04 at the 

gel point. At low shear rates, the aggregation rate was increased, but the aggregate structure was 

uniform, and the fractal dimension remained 1.75 ± 0.05. 
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Abstract 

We investigated the effect of shear on the structure and aggregation kinetics of unstable 

colloids using small angle light scattering. We used an aqueous suspension of 20 nm polystyrene 

latex microspheres and MgCl2 to induce aggregation. The sample was only sheared once for 

approximately 33 sec at different times, typically 1 min, 5 min, or 15 min, after the onset of 

aggregation. The average shear rate was in the range of 0.13 - 3.56 1sec− , which was in a laminar 

regime. The unsheared sample gelled after ca. 45 min. When the sample was sheared soon after 

the onset of aggregation, the aggregation followed the diffusion limited cluster cluster 

aggregation (DLCA) kinetics to yield fD = 1.80 ± 0.04 aggregates unaffected by the shear. The 

gel time also remained the same as the unsheared gel. Shearing at later stages of aggregation 

shortened the gel time and enhanced the scattered light intensity significantly indicating rapid 

growth. Then, depending on the shear rate, there were three different behaviors. At high shear 

rates, the aggregate structure was inhomogeneous after the shear was stopped with a crossover in 

slope in the scattered light intensity versus q, to imply hybrid superaggregates with two different 

fractal dimensions. At intermediate shear rates far from the gel point, there was a similar 

crossover after the shear was stopped; however, the fractal dimension regained 1.80 ± 0.04 at the 

gel point. At low shear rates, the aggregation rate was increased, but the aggregate structure was 

uniform, and the fractal dimension remained 1.75 ± 0.05. 
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CHAPTER 1 Introduction 

 

Irreversible aggregation (i.e., non equilibrium growth phenomena) of small particles to 

form large clusters occurs in a wide variety of natural and technical systems such as aerosol 

growth, droplet formation, and colloidal aggregation. Aggregation phenomena have attracted a 

great deal of interest not only in pure science but also in industry where polymers, paints, and 

biological materials are formed or processed in this way.  

 

It is now well established that the complex, seemingly disordered structure of aggregates 

can be quantitatively characterized by the use of fractal geometry which has allowed 

investigators to distinguish between relatively subtle differences that can be caused by changes 

in the aggregation kinetics (Mandelbrot 1983). 

 

Aggregation of particles can occur due to their Brownian diffusion motion (random 

walk), convective fluid motion, or gravitational forces. Smoluchowski (1917) was the first to 

describe the aggregation of particles controlled by Brownian diffusion aggregation and shear-

induced aggregation (Drake 1972). Shear-induced aggregation and Brownian aggregation are 

two mechanisms that exist simultaneously in sheared systems which have been shown to be 

independent over a wide range of conditions (Swift & Friedlander 1964). 

 

In the Brownian diffusion aggregation process, there are two limiting irreversible 

aggregating regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster 

aggregation (RLCA). The first is observed when the aggregating clusters move due to pure 

Brownian motion and form a larger cluster once they collide. The latter occurs when a large 

number of collisions is needed before the clusters stick (Kolb et al 1983, Lin et al 1990b, Lin et 

al 1990c, Meakin 1983).  

 

Many experimental and theoretical studies have been carried out to investigate the effect 

of shear flow on the kinetics of aggregation, the resulting size distributions, and structures of 
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particle aggregates. It has been shown that shear can promote aggregation of colloidal particles 

(Russel et al 1999). Furthermore, it has been shown that an aggregating system subjected to 

shear may undergo shear-induced restructuring, shear-induced fragmentation, or a combination 

of both resulting in more compact aggregates (Selomulya et al 2002). 

 

The previous work has investigated the effect of shear on the structure and kinetics of 

aggregation in a continuous presence of shear where shear-induced aggregation was dominant 

over Brownian aggregation during the entire experiment (Flesch et al 1999, Kikuchi et al 2005, 

Serra & Casamitjana 1998, Serra et al 1997, Spicer et al 1996, Wang et al 2005). In previous 

shear experiments, mostly large primary particles (0.5 -10 µm) have been used. There are some 

studies in which relatively smaller particle sizes (15nm-140nm) are used; however, in these 

experiments shear rates have been relatively high, and hence, fragmentation or restructuring have 

been observed by these groups (Lin et al 1990a, Selomulya et al 2002, Sonntag & Russel 1986, 

Torres et al 1991a).  

 

In the work presented here, in situ light scattering measurements were performed to 

investigate the effect of low shear rates (0.13-3.56 1sec− ) on an aggregating colloidal system 

with small primary particles, 20 nm. The shear was applied for a short period of time (ca. 30 sec) 

and only once. The aggregating system was subjected to shear (only once) at different times after 

the onset of aggregation. The effect of shear (e.g., fractal dimension, gel time) was studied both 

in a cluster dilute regime (similar to other works) and in a cluster dense regime. A cluster dilute 

regime is defined as when the mean nearest neighbor separation nnR  is much larger than the 

aggregates characteristic size gR ; a cluster dense regime is defined as when nnR  is comparable 

with gR  in an aggregating system (Huang et al 1998). 

 

Our results have shown that shear may enhance the aggregation and gelation causing 

structural modification, not by shear destruction of aggregates (fragmentation or restructuring), 

but by shear induced growth, a new mechanism by which superaggregates form in a shear field. 
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We also performed a series of light scattering measurements to determine the 

experimental gel time of an aggregating system in a DLCA regime. Our results are then 

compared with the theoretical gel time. Our experimental results have shown good agreements 

between theoretical and experimental gel times only at low volume fractions of the polystyrene 

particles. Our results have shown that as the volume fraction of the polystyrene solution 

increases to higher values, the difference between theoretical and experimental values become 

significantly large. A scaling argument is proposed to explain this discrepancy between the 

theoretical and experimental gel times, proposing that the initial mixing time of the colloidal 

solution and the salt concentrations is essentially important in affecting the aggregation rate. 

Previous studies have shown the comparisons between the theoretical and experimental gel times 

only in a RLCA regime (Bremer et al 1995, Smith & Zukoski 2006), where the initial mixing 

time is negligible to the experimental  gel time. These groups have found good agreements 

between the theory and their experimental gel time in a RLCA regime.  

 

Relevant to our light scattering measurements, the extent and effect of multiple scattering 

on the static light scattering optical structure factor were studied. Our experimental results have 

shown that the average number of scattering events is a universal parameter to describe the 

extent of multiple scattering. This quantity can easily be measured or calculated, and hence 

provides a useful experimental indicator of multiple scattering. 

 

This work includes an introduction to the concept of fractals in Chapter 2, the principles 

of light scattering in Chapter 3, the Brownian and shear induced aggregation in Chapter 4, 

followed by the gelation. In Chapter 5, the small angle light scattering setup and the 

experimental methods are described. We then present our experimental results on studies on the 

effect of initial mixing on gel time (Chapter 6) and the shear effect on the methodology and the 

kinetics of aggregation (Chapter 7), and finally the conclusion is given in Chapter 8.  
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CHAPTER 2 Fractals 

 

 Fractals1 were first introduced and explained by Mandelbrot (Mandelbrot 1983). 

However, some of the building blocks of fractal geometry originated in the deterministic, exactly 

self-similar mathematical “monsters” (such as Koch curve and Sierpinski gasket) of the early 

1900’s (Voss 1989). It is now well established that fractal geometry can be used to describe an 

incredibly broad range of natural structures and phenomena (Mandelbrot 1983).  

 

One of the common features of fractals is self-similarity. That is, a fractal object can be 

decomposed into parts geometrically similar to the whole system (Pfeifer & Obert 1989). In 

general, fractals are self-affine if they are scaled differently in different directions (or scaled 

anisotropically). However, a self-similar (or self-affine) structure is not necessarily a fractal 

(Peitgen et al 1991, Vicsek 1992). For example, a cube and any smaller cubes cut out of it are not 

called fractal (i.e., self-similarity is satisfied in a trivial way).  

 

Fractals in physics never lead to structures with perfect symmetry, since fluctuations are 

always present in physical processes. Instead, physical fractals are more or less random with no 

high level of symmetry; in general, any object for which randomness is the basic factor 

determining the structure will turn out to be fractal over some range of length scales (Stauffer & 

Stanley 1990). In random fractals, self-similarity is true only in a statistical sense (not exactly), 

and to describe them it is more appropriate to use the term scale-invariance (i.e., the system 

looks the same at various magnifications) than self-similarity (Vicsek 1992).  

 

 
                                                 
1 Fractal is derived from the Latin word frangere which means “to break” (Peitgen et al 1991). 
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2.1   Examples of Fractals  
 

Figure 2.1 shows several examples of fractals and their self-similarity features. Figure 

2.1(a) shows an example of fractals formed via a diffusion limited cluster aggregation (DLCA) 

process. Romanesco broccoli and its scale invariance feature can be seen in Fig. 2.1(b). In Fig. 

2.1(c), an example of diffusion limited aggregation process (DLA) is shown in the breakdown of 

a dielectric due to electric discharge. Figure 2.1(d) is the familiar example of a crumpled paper 

ball.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  (a) Diffusion limited cluster-cluster aggregation of polystyrene nanoparticles, (b) 

Romanesco broccoli, (c) breakdown of a dielectric due to electric discharge2, and (d) crumpled 

paper ball on “Swiss cheese” fractals.  

                                                 
2 Figures 2.1(b) and (c) were reproduced by permission from www.wikipedia.org. 
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 Figure 2.2 demonstrates how one can construct the Sierpinski gasket using an iteration 

procedure (Stanley 1985, Stauffer & Stanley 1990). One can start with a triangular-shaped tile 

with a mass m and of edge length l . For simplicity, the density is defined as 1/ 2 =≡ lmρ . In 

the first stage, three tiles are joined together to create the structure shown in Fig. 2.2b with the 

mass of mM 3=  and the edge lL 2= . As a result, the density has decreased from unity to 4/3 . 

In the second dilation stage, three of the 4/3=ρ  structures constructed in stage one are joined 

together to build an object with 2)4/3(=ρ (Fig. 2.2(c)). This procedure is iterated up to four 

stages as shown in Fig. 2.2(e).  

 

As can be seen in Fig. 2.2, the Sierpinski gasket has holes on all length scales, and hence 

self-similarity can be directly checked in this example, whereas for random fractals, one needs 

other methods to detect and determine its fractal character that is described in section 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  The basic construction steps of the Sierpinski gasket which exhibits a fractal 

dimension of 58.1Df = . The graph on the left is the log-log plot of ρ  as a function of lL / . 
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The graph, shown on the left of Fig. 2.2, is the log-log plot of ρ  vs. lL / . It can be 

shown that the slope of the graph is dDf − , where fD is the fractal dimension, and d is the 

Euclidean dimension.  

 

In this particular case, the fractal dimension fD can be determined as follows. As can be 

seen in Fig. 2.2., three replicas of the fractal (i.e., triangle-shaped tile) are required to cover itself 

after dilation by a factor or 2, and the fractal dimension is given by 58.12log/3logDf ≈= . 

This “definition” of the fractal dimensionality is in accord with our intuitive understanding of 

dimensionality in Euclidean objects. For example, if a  d-dimensional hypercube is dilated by a 

factor of l  in all directions, it can be covered by dl  replicas of the original (undilated) 

hypercube and the (Euclidean) dimensionality is given by ll d log/)log(d = (Meakin 1988).  

 

In general, if a self-similar fractal can be covered by N  replicas of itself after an 

isotropic dilation by a factor of l , the fractal dimensionality is given by  

 

lN log/logDf = .              (2.1) 

 

As can be seen in Fig. 2.2, ρ decreases monotonically with lL / so that by iterating 

sufficiently one can achieve a fractal as low a density as possible. Furthermore, ρ decreases 

with L via a simple power law, whereas in Euclidean geometry the density is independent of the 

length scale on which it is measured (Stanley 1985). In general, the density of fractal objects 

(i.e., dDf < ) scales with their linear size as 

 

,)( dDf −=
l
LAρ               (2.2) 

 

where A is a constant. Because of their low density, fractal aggregates are often mechanically 

weak structures which can be easily distorted and collapse as a result of gravitational fields, 
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thermal fluctuations, etc. These effects limit the range of length scales over which fractal scaling 

can be maintained in real systems (Meakin 1988).  

 

For colloidal aggregates and other random fractals in real space, it is convenient to think 

of the fractal dimensionality in terms of the scaling relationship between M mass and length L.  

 

.)(~ fD

l
LM                (2.3) 

 

For non-fractal objects (Euclidean), Eqs. (2.2) and (2.3) give a trivial value for fD , coinciding 

with the embedding Euclidean dimension (spatial dimension) d (Vicsek 1992). 

2.2   Methods for Determining Fractal Dimensions 
 

There are various methods to determine the fractal dimension of aggregating structures in 

real systems depending on their feasibility and the level of precision of defining the fractal 

dimension.  

2.2.1   Light Scattering Technique  
 

One of the powerful methods (i.e., if feasible) to determine the fractal dimension of 

aggregate structures is the scattering technique which is discussed in Chapter 3. One can also 

analyze the image of the fractal structures to determine the fractal dimension as follows: 

2.2.2   Box Counting Method 
 

This method provides a very simple and efficient way to determine the fractal dimension 

of the system, independent of whether the system is a dust, curve, surface, or bulk solid (Pfeifer 

& Obert 1989). One may divide the fractal structure, with the characteristic linear size of L , 

into sufficiently fine grids with size l (i.e., Ll << ). One can then count how many of the grids 

are intersected by the curve or the surface. For a fractal object, one can show that 



 9

,)()( fD

l
LAlNbox =               (2.4) 

 

where A (i.e., shape factor) is a constant and the exponent fD  may have an integer or non-

integer value.  

 

In real systems, there is always a lower limit minl  and an upper limit maxl  where Eq. (2.4) 

holds. These limits are called inner and outer cutoff of the fractal regime. A system may be 

fractal at small length scales and Euclidean at large scales (microporous materials) or vice versa 

(colloidal aggregates with smooth primary particles) (Pfeifer & Obert 1989). In order to accept 

an experimental fD over a range maxmin lll << as well-defined fractal dimension, minl and 

maxl should span one decade of length or more. A minimal condition is that minmax / ll must 

exceed f1/D2 (Pfeifer & Obert 1989). 

2.2.3   Mass-Radius Method 
 

In this method one chooses a point belonging to the fractal (usually close to its center of 

mass) and counts the number of sites )(rN (i.e., proportional to mass of the 

cluster, ))(rM belonging to the object within a sequence of spheres of growing radius r . The 

fractal dimension fD  is then determined from the relation fD~)( rrM  from the slope of log-log 

plots of )(rM versus r (Vicsek 1992). If r is smaller than the particle size (inner cutoff) or 

larger than the linear size of the structure (outer cutoff), the power law behavior breaks down.  

2.2.4   Density-Density Correlation Function 
 

This method is an effective procedure to determine the fractal dimension of a random 

structure (Family et al 1989). The mass-radius method, described above, probes the mass within 

a given length scale. Whereas the density-density correlation function is an average over many 

points within a single cluster which is expected to improve the statistics (Vicsek 1992). Thus, in 

small-scale simulations, or in natural patterns with a limited range of length scales, these two 
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methods give slightly different values of fractal dimension (Family et al 1989). The density-

density correlation function )(rg gives the probability of finding a particle at the position 

rr ′+ , if there is one at r ′ : 

 

),()(1)( rrr
N

rg
r

rrrr ′′+= ∑
′

ρρ              (2.5) 

 

where N is the number of particles in the cluster, and )(rrρ is the local density, i.e. 1)( =rrρ  if 

the point r  belongs to the object, otherwise it is zero. Ordinary fractals are statistically isotropic 

which means that the correlation functions are not dependent on the direction (i.e., a system 

without a particular origin site); therefore, )()( rgrg =
r (Vicsek 1992).  

 

The correlation function (see section 3.5.4.2) for fractal objects can be expressed as 

 

),/()/()( dDf ξξ rhrArg −=              (2.6) 

 

where A is a normalization constant, fD/1~ Nξ  is the radius of the cluster consisting of N  

particles, and )( ξrh  is a cutoff function (Vicsek 1992).  

 

According to the scaling assumption, given in Eq. (2.6), if a structure is statistically self-

similar, the data obtained for )(rg for various values of N should collapse onto the same 

universal curve )( ξrh , when )]()[(ln fD-d rgrξ is plotted versus )/(ln ξr using the correct 

value for fD  (Vicsek 1992). Plotting )]()[(ln fD-d rgrξ versus )/(ln ξr  verifies the self-

similarity and leads to a more reliable estimate of the fractal dimension (Vicsek 1992). 

 

Many times it is the two-dimensional projection of a random fractal (i.e., three-

dimensional) which is of interest or can be experimentally studied. If the fractal dimension of the 

random fractal is less than two )2(Df < , one can apply any of the methods described above to 
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determine the projected fractal dimension sD which is the same as fD . However, if ,2Df > the 

projected fractal dimension is 2Ds = , and hence the above methods will break down.  

 

It has been shown that for sufficiently large aggregates, one might generally be able to 

extract the fractal dimension of a three-dimensional fractal aggregate by quantitatively analyzing 

the perimeter of its two-dimensional projection (Jullien et al 1994). The perimeter fractal 

dimension pD is related to fD  via the following equations 

 

⎪⎩

⎪
⎨
⎧

>=−+=

<==

.2Dfor2D,)D3(1D

,2DforDDD

fs
2/3

fp

ffsp
          (2.7) 
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CHAPTER 3 The Principles of Light Scattering  

 

3.1   Introduction 
 

The scientific study of light scattering may be said to have started with the experiments 

on aerosols by Tyndal (1869) which were followed from 1871 onwards by Lord Rayleigh’s 

theoretical work (Kerker 1969). One motivation for developing a theory of light scattering was 

the attempt to explain the blue sky which had puzzled many scientists and thinkers ever since 

Plato (Pesic 2005). 

 

Scattering is hardly restricted to the optical part of the spectrum, and the scattering laws 

apply with equal validity to all wavelengths (Kerker 1969). The study of electromagnetic 

scattering is an interdisciplinary activity. Chemists, physicists, biochemists, and various 

engineers utilize light scattering to study a whole range of materials including gases, pure 

liquids, colloidal suspensions, glasses, and polymers (Kerker 1969).   

 

Scattering of electromagnetic waves by any system is related to the heterogeneity of that 

system (Bohren & Huffman 1983, Kerker 1969, van de Hulst 1957). In other words, if light 

traverses a perfectly homogeneous medium, it is not scattered. Scattering is a result of local 

density fluctuations in a medium (Bohren & Huffman 1983, van de Hulst 1957) where the 

number of molecules in a given volume element is different compared with any other instant 

(Bohren & Huffman 1983). Bohren and Huffman emphasize in their book that the molecules are 

the scattering agents, and it would be more precise to refer to the fluctuation theory of scattering 

by molecules rather than to scattering by fluctuations (Bohren & Huffman 1983). 

 

In the presented work, we are only interested in the elastic scattering, i.e., there is no shift 

of frequency between the incident and the scattered light. Therefore, Raman scattering, 

Mandelstam-Brillouin scattering, and fluorescence are excluded. Also, we only consider single 
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scattering and independent scattering (Bohren & Huffman 1983, Mishchenko et al 2002, van de 

Hulst 1957). The first condition means that the number of scatterers is sufficiently small that the 

main contribution to the total scattered light by the sample comes from light scattered only once 

(Bohren & Huffman 1983, van de Hulst 1957). The latter condition means that the particles 

scatter independently. That is, the particles are many and their separation random so that there is 

no systematic relation among the phases of the waves scattered by the individual particles; thus, 

the total light intensity scattered by the collection is just the sum of the light intensity scattered 

by the individual particles (Bohren & Huffman 1983, van de Hulst 1957). 

 

Light scattering can be classified as static light scattering (SLS) or dynamic light 

scattering (DLS). Static and dynamic light scattering have similar, yet different aspects which is 

somehow analogous to yin and yang. In order to gain a better understanding of the light 

scattering, a brief overview on dynamic light scattering is also given in this chapter.  

3.2   Rayleigh Scattering 
 

Rayleigh scattering is the scattering of light, or electromagnetic radiation in general, by 

particles much smaller than the wavelength. Therefore, the field to which the particle is exposed 

is approximately uniform over the region occupied by the particle, Eq.(3.1a) below. Moreover, 

the field inside the particle is uniform as well (Bohren & Huffman 1983), see Eq.(3.1b). These 

conditions are satisfied only if  

 

⎩
⎨
⎧

<<

<<=

)(,1
)(,1/2

bakm
aaak λπ

             (3.1) 

 

where k is the wave vector, a is the characteristic length of the particle, λ is the wavelength of 

light in the medium, and m  is the complex refractive index of the particle relative to that of the 

surrounding medium, e.g., m  is a real constant for non-absorbing (dielectric) materials. Thus, in 

Rayleigh scattering all the elements (sub volumes) of a particle scatter in phase, and hence the 

scattering intensity would not vary much with direction. 
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Rayleigh’s original derivation is simplicity itself. He applied a very general argument and 

used a dimensional analysis to derive his main result (Pesic 2005), that is 

 

,24

6

is I
r

aI
λ

∝                (3.2) 

 

where sI and iI are, respectively, the scattered and the incident light, and r is the distance 

from the observer to the particle. Rayleigh refined his result ten years later (Pesic 2005) by 

considering the interaction of (unpolarized) light and particles according to Maxwell’s equations. 

He found 

 

,)cos1()(
2

2
2

64

is ImF
r

akNI θ+=             (3.3) 

 

where N  is the number of particles, and  

 

.
2
1)(

2
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−
=

m
mmF               (3.4) 

 

The range of validity of Eq. (3.3) is roughly when 05.0/ <aλ  (Kerker 1969). Also, the 

scattered intensity is proportional to 4/1 λ only if the quantity )(mF (i.e., the Lorentz term) is 

weakly dependent on wavelength; this is not always true, for example, for metallic particles 

(Bohren & Huffman 1983).   

 

Equation (3.3) applies to an incident unpolarized light; it is important to know that the 

angular distribution of the scattered light depends on the polarization of the incident light 

(Bohren & Huffman 1983). If the incident light is polarized perpendicular to the scattering plane 

(S-polarization), the scattered intensity is 
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,)(2

64

is ImF
r

akNI =              (3.5) 

 

and if the incident light is polarized parallel to the scattering plane (P-polarization), the scattered 

intensity then becomes 

 

.)(cos)( 2
2

64

is ImF
r

akNI θ=             (3.6) 

 

There are a number of important features for Rayleigh scattering: 

(i) The 4−λ dependence: Blue light scatters more than red. This is often associated with 

the blue sky and the red sunset. However, other factors are involved here including 

the fact that in perfectly clean air (no particles) scattering occurs from small, 

thermodynamic fluctuation in the air density (Sorensen 1997).  

(ii) The strong size dependence of 6a  is proportional to particle volume squared 2
partV . 

This feature leads to Tyndall effect which describes the increased scattering from an 

aggregating system of constant mass (Sorensen 1997).  

3.3   Rayleigh-Debye-Gans Scattering 
 

The Rayleigh scattering equations are derived under the assumption that the phase of the 

incident electromagnetic wave does not change across the particle. This is achieved by assuming 

the size of the particle to be small compared to πλ 2/ ( 1<<ka ). This condition can be relaxed 

if the phase across the particle changes only negligibly relative to the phase change in the 

surrounding medium (Sorensen 1997). Moreover, if a particle does not have a regular 

geometrical shape, then it is difficult to solve the scattering problem in its most general form. 

However, under some assumptions, it is possible to obtain relatively simple approximate 

expressions for the light scattered by these arbitrary shaped particles. These approximations, 
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which are the bases of the Rayleigh-Debye-Gans (RDG) theory3, consider the scattering system 

(e.g., aggregates, macromolecules) as a set of independent, non-interacting Rayleigh scattering 

elements (Bohren & Huffman 1983, Kerker 1969, van de Hulst 1957). The fundamental 

approximation in the Rayleigh-Debye approach is that the phase shift ρ  corresponding to any 

point in the particle be negligible, i.e., that  

 

,112 <<−= makρ               (3.7) 

 

where a  is the characteristic size of the particle. This condition allows for very large particles 

( 1>ka ) so long as m  is close enough to unity to satisfy the condition. Also, the refractive 

index is close to one, i.e., that 

 

.11 <<−m                (3.8) 

 

Below some of the important features of the Rayleigh-Debye-Gans theory is given for the 

light scattering from a uniform dielectric sphere (Berg et al 2005, Sorensen 1997, Sorensen & 

Fischbach 2000).  

 

(RDG-i) The differential scattering cross section in the scattering plane for S-polarized 

light is 

 

,
)(

)cos(3)sin(3)/()/(
2

3RayRDG ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

qa
qaqaqadddd ΩσΩσ          (3.9) 

 

                                                 
3 Rayleigh-Debye-Gans scattering is also variably called Rayleigh-Gans (Bohren, 1983;van de 

Hulst, 1957) or Rayleigh-Debye scattering (Kerker, 1969) depending on the opinion of the 

author that who has significantly contributed to developing this theory.   
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In Eq. (3.9), the subscripts RDG and Ray denote Rayleigh-Debye-Gans and 

Rayleigh, ,)()/( 64 mFakdd Ray =Ωσ and )2/sin()/4( θλπ=q (see Eq. (3.15)). For small 

1<qa , RayRDG )/()/( ΩσΩσ dddd = , and hence 0)(qaI ∝ . 

 

(RDG-ii) The RDG form is the square of the Fourier transform of the uniform sphere. 

Thus, for 1>qa  4)( −∝ qaI (i.e., Porod regime). 

(RDG-iii) The scattering is larger in the forward direction, and this anisotropy increases 

with increasing size. 

3.4   Mie-Lorentz Scattering  
 

Rayleigh’s theory was successful in explaining many things such as the blue sky or the 

red sunset. However, it cannot explain the ruby color of the colloidal gold solutions in which the 

particles are very small compared to the wavelength of light. Also, even the smallest spheres 

with ∞=m do not give Rayleigh scattering (van de Hulst 1957).  

 

In 1908, Mie developed the theory of absorption and scattering by an isotropic, 

homogeneous sphere with a finite arbitrary size and refractive index. His work was an effort to 

understand the varied colors in absorption and scattering exhibited by small colloidal particles of 

gold suspended in water (Bohren & Huffman 1983, van de Hulst 1957). It is important to note 

that Lorentz contributed significantly to developing this theory according to Kerker4 (Kerker 

1969). Although this theory is discussed very briefly in this chapter, the term “Mie-Lorentz” will 

be used rather than “Mie.” 

 

Mie-Lorentz theory is the exact solution of Maxwell’s equation for an arbitrary particle. 

This theory can provide a first-order description of optical effects in nonspherical particles; also, 

                                                 
4 Kerker notes in his book, “...coincident and consecutive discoveries are common occurrences in 

science. But certainly if this theory is to be associated with the name or names of individuals, at 

least that of Lorenz should not be omitted.” 
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it correctly describes many small-particle effects that are not intuitively obvious (Bohren & 

Huffman 1983). However, it is important to know the extent to which Mie-Lorentz theory is 

applicable to nonspherical particles; this is discussed further in Ref. (Bohren & Huffman 1983). 

In brief, nonspherical particles and area-equivalent spheres scatter similarly near the forward 

direction, but differences between the two tend to increase with increasing scattering angle 

(Bohren & Huffman 1983).  Below some of the important features of the Mie-Lorentz theory is 

given for the light scattering from a uniform dielectric sphere (Berg et al 2005, Sorensen 1997, 

Sorensen & Fischbach 2000).  

 

(ML-i) The scattering cross section reduces to the Rayleigh limit as size approaches zero 

( )0→ρ , and hence 0)(qaI ∝ .  

(ML-ii) The envelope of the Mie-Lorentz scattering curve becomes 2)( −∝ qaI  for 1>ρ  

when ρ≤qa . 

(ML-iii) Mie-Lorentz scattering has an envelope proportional to 4)( −∝ qaI  when ρ≥qa . 

(ML-iv) In the RDG limit ( 1<ρ  and 1|1| <−m ), the Mie-Lorentz solution simplifies to 

the RDG differential cross section (see Eq. (3.9)). 

(ML-v) The differential scattering cross section for the regime where θ  dependence first 

occurs is 

 

).
5
11()/(/ 22

Ray aqdddd −= ΩσΩσ          (3.10) 

 

(ML-vi) The first minimum in Mie-Lorentz scattering that occurs at 5.3≈aq  is roughly 

universal.  

 

Sorensen and Fischbach (Sorensen & Fischbach 2000) first showed that the Mie-Lorentz 

scattering evolve from the 0→ρ limit of Eq. (3.9) to the equations given above for the 

intensity in (ML-i), (ML-ii), and (ML-iii). Berg et al. (Berg et al 2005) later found a new feature 

when the scattered intensity is normalized to the Rayleigh differential cross section. Some of 

these features are briefly discussed here. 



 19

Figure 3.1 gives a schematic description of light scattering from a sphere of arbitrary 

size a and real refractive index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Schematic diagram of the Rayleigh-normalized Mie-Lorentz scattering pattern for 

uniform dielectric spheres of arbitrary size and real refractive index, plotted with green line. The 

dashed line is the RDG limit, .0→ρ  

 

In Fig. 3.1, the Rayleigh normalized Mie-Lorentz scattering intensity is plotted 

versus .qa In the RDG limit (i.e., 0=ρ ), for 1<qa the RDG curve is flat, i.e., 0)(qaI ∝  

(RDG-i); for 1>qa the intensity falls off with a negative four power law with magnitude 

4))(2/9( −qa (RDG-ii). When ρ increases above one, scattering in the Rayleigh regime 

decreases relative to true Rayleigh scattering (Berg et al 2005). The relative decrease is 

proportional to 2ρ as shown in Fig. 3.1. For 1>qa the scattering falls off as 2)( −qa until this 
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curve crosses the RDG curve for ρ=qa (ML-ii). For ρ≥qa the scattering is identical to RDG 

scattering, falling off as 4)( −qa for all sizes and refractive indices (ML-iii). 

 

One can apply 5.3≈aq to approximately estimate the size of the suspended particles in a 

medium when their size is sufficiently large compared to the wavelength of light (i.e., Mie-

Lorentz scattering). Figure 3.2 shows an example of a lunar corona caused by small cloud 

droplets (left) and a halo caused by a colloidal suspension (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  The picture5 on the left shows a lunar corona caused by the small clouds droplets. 

The right picture shows a halo caused by scattering from a suspension of 9.6 µm polystyrene 

particles in water; the white circle in the center is due to the saturation of the CCD camera. 

 

By knowing or approximately measuring the angular size of the moon (i.e., 0.5o), one can 

estimate the size of the cloud droplets. We used this approximate formula (i.e., 5.3≈aq ) to 

measure the size of the 9.6 µm polystyrene particles suspended in water. The size of the 

polystyrene particles was estimated with an error up to 30%. 

                                                 
5 With permission from http://www.atoptics.co.uk/ 
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3.5   The Structure Factor  
 

The structure factor6 describes the intensity of radiation scattered from a scattering 

system such as an aggregate or an ensemble of aggregates as a function of the scattering wave 

vector. The structure factor is both the Fourier transform of the density autocorrelation function 

of the scattering system and the square of the Fourier transform of the density distribution of the 

scattering system; thus, it is the q-space description of the structure. Experimentally it describes 

scattered intensities as a function of scattering angle. Thus, it is of prime importance in light 

scattering, and therefore, a brief description of the structure factor is given below.  

3.5.1   The Scattering Wave Vector 
 

In Fig.3.3, a scalar electromagnetic field with incident wave vector ik
r

 hits a scattering 

element (sub volume) at rr . For simplicity, we have only shown the phase information of the 

field. The incident field at rr  is 

 

)(exp)( rkirE ii
rrr
⋅∝ .            (3.11) 

 

The field scatters elastically towards the detector placed at a distance R
r

 from the origin 

and at an angle θ with respect to the incident beam. In light scattering experiments, the incident 

light field is sufficiently weak that the system can be assumed to respond linearly to it. 

Therefore, the scattered field at the detector is  

 

)]([exp)( rRkiRE ss
rrrr

−⋅∝ ,           (3.12) 

 

                                                 
6 Ref (Sorensen 2001) gives a great comprehensive review on principles of light scattering. 

Hereafter in this chapter, most of the concepts are taken from this reference unless otherwise 

noted.   
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where sk
r

 is the scattered wave vector, and its magnitude is equal to that of the incident wave 

vector. The phase at the detector is the sum of the phases of the incident and the scattered field 

which is  

 

])()([exp)( rkkiRkiRE sis
rrrrrr
⋅−+⋅∝ .         (3.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  The incident field is scattered from a scattering element at rr  toward the detector at a 

scattering angle θ . The difference of the scattering wave vectors, si kk
rr

− , qr is, scattering wave 

vector.   

 

The second term in Eq. (3.13) shows that the phase at the detector is a function of the 

position of the scattering element and si kk
rr

−  which is defined as the scattering wave vector, qr  . 

Thus Eq. (3.13) can be simplified to 

 

)(exp)( rqiREs
rrr
⋅∝ .           (3.14) 
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The magnitude of qr can simply be determined from the vector diagram as 

 

)2/sin()/4( θλπ=q .            (3.15) 

3.5.2   Fundamental Equation for the Structure Factor 
 

Before proceeding to write the general form of the structure factor, let’s consider the 

following assumptions which are the bases of this approach. 

 

(i) The scattering system is consisting of N  identical and independent scatterers (see 

above “scattering element”). 

(ii) The incident and scattered waves are scalar. This is a plausible assumption in light 

scattering experiments in which polarization of the incident beam is perpendicular to 

the scattering plane defined by ik
r

 and ,sk
r

and when multiple scattering is negligible. 

(iii) The system is an ensemble of randomly oriented scatterers, hence the structure factor is 

spherically symmetric )()( qSqS =
r . 

 

The structure factor can therefore be written as the sum of the scattered intensities by all 

scatterers (scattering elements) in this system, i.e., that  

 

,)]([exp)( ∑∑ −⋅=
N

i

N

j
ji rrqiqS rrr

          (3.16) 

 

where ir
r  and jrr  are the positions of i th and j th scatterers.  

 

In Eq. (3.16), )( ji rrq rrr
−⋅  represents the difference in phase between waves scattered at qr  

from points with separation )( ji rr rr
− . Thus, if the N  scatterers are within the region 1−q (i.e., 

1)( <−⋅ ji rrq rrr ) the phases of the N  scattered waves will be essentially the same, resulting in 

constructive interference. In this case the total scattered field amplitude will be proportional to 
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N , and hence the total scattered intensity in Eq. (3.16) will be proportional to 2N . If 

,1)( >−⋅ ji rrq rrr  the scattering is incoherent, and the total scattered field amplitude will be 

proportional to N ; therefore, the total scattered intensity will be proportional to N . For 

example, let’s consider the scattering from a fractal aggregate at a scattering angle corresponding 

to q . Scattering within regions that are smaller than 1−q  is in phase (i.e., Rayleigh scattering), 

whereas scattering beyond such regions is incoherent. Thus 1−q  represents as a probe length for 

structure of size 1−q . 

3.5.3   The Scaling Approach for the Structure Factor 
 

In order to obtain the general form of the structure factor based on a scaling approach (Oh 

& Sorensen 1999, Sorensen 2001), a system of N scatterers in a d -dimensional, spherical 

region of radius R  is considered. These scatterers are separated uniformly by a2  from one 

another. It is known that only fluctuations in density scatter waves in the nonzero scattering 

angle direction as a consequence of the Ewald-Oseen extinction theorem; thus, all the scattering 

is due to the surface scattering (Hecht 2002).  

 

The structure factor would vary depending on the length scale 1−q  of which the system is 

observed, for example, a movable detector that can be placed at variable angles θ , hence 

variable 1−q . The structure factor for three different regions is as follows: 

 

(i) Rq >−1 : In this case all the scattered waves are in phase at the detector  

 

.)( 2NqS ∝              (3.17) 

 

(ii) Rqa << −1 : In this regime all scatterers within 1−q  length scale scatter in phase, and 

hence 2
1 )( qNqS ∝ , where qN  is the number of scatterers within the 1−q  length scale. 

However, all the scatterers separated by distances greater than 1−q  scatter incoherently, 
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and hence qnqS ∝)(2 , where qn  is the number of regions of size 1−q  needed to cover 

the surface of the system. The total scattering then 

becomes .)()()( 2
21 qq NnqSqSqS ∝= one can then obtain  

 

,)()( 22 sm DDqRNqS +−∝             (3.18) 

 

where mD  and sD  are, respectively, mass and surface dimension of the system of  

scatterers(Sorensen 2001). 

(iii) aq <−1 : In this regime all scatterers scatter randomly, but only those on the surface 

contribute to the scattering, i.e., that 

 

sm DDaRNqS +−∝ 22 )()( .           (3.19) 

 

We now apply the scaling approach to a fractal aggregate, and the possibility of detecting 

the monomers is excluded for now. In a fractal aggregate, all the monomers are essentially on the 

surface. Thus, the surface and mass fractal dimension are equal, i.e., dDDD fsm <== , where 

fD  is the fractal dimension of an aggregate. We also use gR  instead of R for an aggregate, 

because R is not a proper definition for an aggregate with its indefinite perimeter. The structure 

factor for a fractal aggregate then becomes 
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In order to simplify the equation for aq <−1  regime, fD
go aRkN )(= was used. 

However, the monomers can also be observed by a detector depending on the size of the 

monomers and the technique used to detect these monomers. If we consider a solid sphere where 
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the separation between its scattering points goes to zero, then we can rewrite Eqs. (3.19) and 

(3.20) for this situation as  

 

⎪⎩
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∝

−−+−

−

,)()(

,1
)(

142

1

sphere
aqqaqa

aq
qS

sm DD
        (3.21) 

 

where 3== dDm , 21 =−= dDs , and d  is the spatial dimension. )(sphere qS  is often called the 

form factor, and in general it is the scattered intensity function from a single primary particle 

which could have an arbitrary shape. We can now write the total structure factor, or the scattered 

intensity ),(qI as the product of the structure factor for a fractal aggregate and a spherical 

monomer (or primary particle), i.e., that 

 

).()()( sphereaggregatefractal qSqSqI =           (3.22) 

 

Figure 3.4 shows the generic behavior of the scattered intensity from a fractal aggregate 

described as follows: 

 

(i) Rayleigh regime where the scattering from all parts of the aggregate is in phase at the 

detector. 

(ii) Power law (fractal regime) where S(q) versus q  functionality is proportional to 

fD
gqR −)( , and one can obtain the fractal dimension of an aggregating system based on 

this regime. 

(iii) Porod regime (monomer regime) where S(q) versus q functionality is proportional 
4)( −qa . However, based on the Rayleigh-Debye-Gans theory for light scattering from 

a sphere, there are interference ripples for ;1>qa these ripples cannot be obtained by 

the scaling approach (Sorensen 2001).   

(iv) The region shown by the dashed circle is called the Guinier regime. One can obtain the 

size of the aggregates based on the Guinier analysis given in this chapter. However, we 
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should note that the curve in this regime is not as sharp as it is predicted by the scaling 

approach (Sorensen 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.4  Generic illustration of scattering from a fractal aggregate of radius gR  with a fractal 

dimension of fD . Upper curve is for a fractal of point particles, second curve is for spherical 

monomers of radius a, lowest curve is the product of these two structure factors. 

 

3.5.4   Exact Formulation of the Structure Factor 
 

The scaling approach is mostly applicable under the assumption of independent and 

single scattering (Sorensen 2001). The complete description, however, must account for the facts 

that the wave might scatter more than once within the aggregate, and the fields across the 

individual monomers may not be uniform (Sorensen 2001). Rayleigh-Debye-Gans theory can be 

applied to obtain the structure factor for a fractal aggregate. This theory is a most viable 
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description for 2<fD (Sorensen 2001). Below the structure factor for 1<gqR  and 1>gqR  are 

given: 

 

3.5.4.1   The Guinier Regime: qRg < 1  

 

Guinier analysis (Guinier & Fournet 1955, Jullien 1992, Sorensen 2001) is a useful 

method to determine the size of the aggregates. One can show that the structure factor is the 

Fourier transform of the density autocorrelation function )(rg (Sorensen 2001), i.e., 

 

.).(exp)()( ∫= rdrqirgqS rrrrr            (3.23) 

 

Under the assumption of isotropy, i.e., )()( qSqS =
r and )()( rgrg =

r and the solid angle 

integration of Eq. (3.23) becomes 

 

∫= .sin)(4)( 2drr
qr

qrrgqS π            (3.24) 

 

Now by expanding Eq. (3.24) for small qr (Guinier regime), one can obtain7 

 

∫−≈ .)(
6

1)( 2
2

rdrgrqqS r            (3.25) 

 

It can be shown that the radius of gyration of an aggregate is (Jullien 1992, Sorensen 2001) 

 

∫= .)(
2
1 22 rdrgrRg

r             (3.26) 

Therefore, for small 1<gqR  we have 

 
                                                 
7 !3/)qr(1~qr/qrsin 3−  
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.
3
11)( 22

gRqqS −≈             (3.27) 

 

Equation (3.27) is often called the Guinier equation which is valid for 1<gqR . Guinier 

analysis is independent of the form of the structure factor; this analysis allows for the 

measurements of the aggregate size regardless of the refractive index of the aggregate. In Eq. 

(3.27), )(qS  is normalized so that 1)0( =S .  

 

One can determine the (average) radius of gyration of an ensemble of aggregates by 

plotting the inverse normalized scatterer intensity versus 2q . The plot should be linear, with a 

slope equal to 3/2
gR . This approximation is only true for 1<gqR .  

3.5.4.2   The Fractal Regime: qRg > 1 

 

In order to obtain the structure factor for the large gqR , one needs to use an exact form of 

the density autocorrelation function (Sorensen 2001) which is 

 

),/()( ξrhrArg dDf −=            (3.28) 

 

In Eq. (3.28), A is a normalization constant, d is the spatial dimension and ξ is a characteristic 

size representing the size of the aggregate, i.e., gR≈ξ . The dDfr − term is characteristic of a 

fractal. The )( ξrh  is the cutoff function describing the perimeter of the aggregate and is 

independent of the fractal nature. It is suggested by Sorensen et al. (Sorensen et al 1992) that 

structure factors derived from autocorrelation function with roughly Gaussian cutoffs 

(i.e., 2=β ) gave the best fit to their data when the effect of the aggregate polydispersity was 

included 

 

.)/( )/( βξξ rerh −=             (3.29) 
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The explicit form of the structure factor can be determined by analytically Fourier 

transform Eq. (3.28) with (3.29)(Sorensen et al 1992) that is  
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)(

;
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3,
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3

()(
2

11
/)( 2

f

fg

D
qRD

FeqS gDqR f
−

= −          (3.30) 

 

where 11 F  is the confluent hypergeometric series (Kummer function) (Sorensen et al 1992) and  

 

.4 22
gR

D f

=ξ              (3.31) 

 

Equation (3.30) can be simplified for 1>>gqR  to 

 

,)()( fD
gqRqS C −=             (3.32) 

 

where  

 

,
)

2

3
(

)2/3(2/

f
f D

DC fD
−

=
Γ

Γ            (3.33) 

 

and Γ is the gamma function.  

 

In order to determine the fractal dimension, one can fit Eq. (3.32) to the experimental 

data by constraining the fit to 5≥gqR (Sorensen et al 1992, Sorensen & Wang 1999). It is found 

that in Eq. (3.32), 05.00.1 ±=C is the best value to describes the power law regime of the 

structure factor of a single aggregate with fD in the range 1.7-2.2 (Sorensen 2001). However, 

one should be aware of the effects of polydispersity on the structure factor, especially in the large 

gqR regime, and hence the value of the power law’s coefficient. 
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Another popular expression for the structure factor is the Fisher-Burford form 

 

.)
3

21()( 2/22 fD
gRq

D
qS

f

−+=           (3.34) 

 

Fisher-Burford form is a good approximation near 2=fD , and its great advantage is its 

simplicity. It is also found that if the effects of polydispersity were not included, i.e., if the 

experimental data were fit with the single cluster structure factors, the best fit were obtained with 

the exponential (i.e., 1=β in Eq. (3.29)) and Fisher-Burford forms. This fit, however, cannot be 

correct because real systems are polydisperse (Sorensen et al 1992). 

3.6 Multiple Scattering Effects 
 

Multiple scattering can affect the polarization and angular dependency of the scattered 

light (Lattuada et al 2001, Sorensen 2001, Urban & Schurtenberger 1998). Therefore, it is 

important to be aware of how multiple scattering can affect light scattering measurements, how 

to detect it, and how one can possibly avoid it. Multiple scattering can become significant for 

systems with a strong index of refraction contrast, high volume fraction or both.  

 

Previous work has shown that multiple scattering can affect the scattered intensity 

measurements as the concentration of the dispersed particles in the solution increases for the 

same optical path length (i.e., determined by either the thickness of the cell or the detector field 

of view) (Urban & Schurtenberger 1998) or the optical path length increases for the same 

particle concentration (Lattuada et al 2001).  

 

Here we show that the effect of multiple scattering on scattered intensity as a function 

of q (or θ  ) is described by a single parameter ,>< s  i.e., the average number of scattering 

events per photon along the length of the scattering volume(Mokhtari et al 2005). We show that 
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>< s is equal to the product of the extinction turbidity and the optical path length of the 

medium; >< s can be easily determined from a measurement of the transmittivity. 

3.6.1   Light Extinction 
 

Scattering is often accompanied by absorption. Both scattering and absorption remove 

energy from a beam of light as it traverses a particulate medium, and hence the beam is 

attenuated. If multiple scattering is negligible, and the particles are randomly positioned so that 

the intensity of scattering is simply an additive property of the number of particles (Kerker 

1969), the intensity of a beam traversing a distance x  through a medium is attenuated 

exponentially from oI  to I  ,i.e., 

 

).exp()exp( xnxII extexto στ −=−=          (3.35) 

 

In Eq. (3.35), extτ  is the extinction turbidity, n  is the number of particles per unit volume, and 

extσ  is the particle extinction cross section, i.e.,  

 

,scaabsext σσσ +=             (3.36) 

 

where absσ  and scaσ  are the absorption and scattering cross sections (Bohren & Huffman 1983). 

Although scattering and absorption occur simultaneously, there are instances where one or the 

other dominates. For example, visible light passing through a fog is attenuated almost entirely by 

scattering, whereas light passing along the shaft of a coal mine might be attenuated primarily by 

absorption (Bohren & Huffman 1983). Equation (3.35) is usually referred to as the Lambert-Beer 

law (Monk 1937) although this law was empirically found for the absorption of a medium.  

 

Equation (3.35) can be derived from two complimentary points of view that we will refer 

to as the “extinction cross section approach” and the “statistical approach.” Below we use each 

approach to derive Eq. (3.35); we then compare the results to find the photon mean free path in 

terms of the scattering cross section and the particle number density. 
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3.6.1.1   Extinction Cross Section Approach 

 

Envision a volume with differential thickness dx and area A hence 

volume .AdxV = Include in this volume N particles with extinction cross-section .extσ Light 

incident on this volume, perpendicular to ,A parallel to ,dx has intensity .I The length dx can 

be made small enough so that none of the particles falls in the extinction shadow of any other. 

Then the small amount of intensity lost as the light passes through this volume is 

 

.
A

NIdI σ
−=              (3.37) 

 

Each side of Eq. (3.37) can be divided by .dx On the right hand side use is made of AdxV =  

and the particle number density ./VNn = The resulting differential equation yields 

 

).exp()0()( xnIxI extσ−=            (3.38) 

 

The simple derivation above does not include the wave nature of light. One can derive 

Eq. (3.38) starting directly from Maxwell’s equations assuming that the spherically symmetric 

particles dispersed in the medium are “independent scatterers” and are made of an optically 

isotropic material (Mishchenko 2002, Mishchenko et al 2004). Mishchenko et al. have presented 

a detailed analysis of the concept of the “independent scatterers” in their paper (Mishchenko et al 

2004). As we mentioned earlier, independent scattering means that the scattered light by each 

particle is independent of the light scattered by all other particles in the system, and this is in 

accordance with having no coherent interference between the particles. In order to have 

independent scattering, the following assumptions should be satisfied: 

 

(i) The distance from the observation point and the scatterer is much larger than any linear 

dimension of the scattering volume and the wavelength of the light. 

(ii) Particle positions within the scattering volume are completely random during the time 

interval necessary to take a measurement. 
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(iii) The mean particle separation between the particles is at least several times larger than 

the radius of the particles. The linear dimension of the scattering volume is also much 

larger than the wavelength of the light.  

(iv) The sum of the extinction cross sections of the particles filling the volume element is 

much smaller than the volume-element geometrical cross section. 

3.6.1.2   Statistical Approach 

 

Consider a long right volume (e.g., a right cylinder) of length x and cross sectional 

area A with a rate of photons per second, proportional to the light intensity ),0(I incident 

perpendicular to .A The medium inside the volume is turbid due to particles with an extinction 

cross section. At what rate, proportional to ),(xI do photons leave the other end of the volume? 

 

We will make the assumption that the photons act like classical particles. We will also 

assume that the encounters of the photons with extincting particles in the volume is a Gaussian 

random process. For such a process, we can envision photons encountering an extincting particle, 

but then continuing along the same path to possible encounters with other particles. Therefore, 

the probability that a given photon has s encounters with extincting particles during its passage 

along the entire length x is given by the Poisson distribution8, i.e., that 

 

⋅
><

><−=
!

)exp()(
s
sssP

s
           (3.39) 

 

In Eq.(3.39), >< s is the average number of photon-particle encounters for an ensemble of 

photons. The average distance traveled between photon-particle encounters (i.e., the photon 

mean free path) is  

⋅><= sxl /              (3.40) 

 
                                                 
8 Poisson distribution, i.e., the limiting case of the Binomial distribution is a discrete probability 

distribution for rare independent events. 
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In the real turbid medium situation, only photons that have no encounters (i.e., 0=s ) 

pass out of the far end of the volume. Thus, by Eq. (3.39) 

 

⋅><−= )exp()0( sP             (3.41) 

 

Then the light intensity passing through the volume, ),(xI  is equal to this probability times the 

incident intensity, ),0(I  to yield 

 

⋅><−= )exp()0()( sIxI             (3.42) 

 

Both approaches yield the Lambert-Beer Law. Comparison connects the scattering variables to 

the statistical variables as: 

 

,xns extσ>=<             (3.43) 

 

.)( 1−= extnl σ              (3.44) 

3.6.2   Measurements of the Effects of Multiple Scattering  
 

In order to determine the effect of multiple scattering in light scattering measurements, 

we performed a set of experiments in which we varied the concentrations of the particulate 

medium as well as the optical path length of the cells. The experiments were performed with 

aqueous dispersions of polystyrene latex spheres with a diameter of 9.6 µm (7.4% coefficient of 

variance), obtained from Interfacial Dynamics Corporation. The refractive index of polystyrene 

particles does not have an imaginary part in the visible spectral region. Therefore, polystyrene 

particles are nonabsorbing, and the light extinction is due to scattering alone (i.e., scaext σσ = ). 

 

We used three quartz cells with different optical path lengths of  2 mm, 4.8 mm, and 10 

mm. The small angle light scattering (SALS) experiments were performed with a vertically 

polarized argon-ion laser operating at a wavelength of .488 nmo =λ The range of angles for the 



 36

SALS experiments, which is described in Chapter 5, was oo 1.119.0 ≤≤ θ corresponding to 

wave vectors of .105.2101.2 1413 −− ×≤≤× cmqcm  

 

We prepared six aqueous dispersions of polystyrene microspheres with different volume 

fractions, each increasing by a factor of two. The range of volume fractions was 

.106.1104.5 24 −− ×≤≤× vf Volume fraction is related to particle number density n  

by ,3/4 3nRfv π= where R is the radius of the spherical particle. The colloidal suspensions 

were transferred into each cell, and the scattered light intensity was measured versus the 

scattered angle. The background intensity was measured by filling the cell with distilled water 

before each set of runs; the background intensity was then subtracted from subsequent 

measurements of solutions.  

 

The conditions of independent scattering (i.e., conditions (i) through (iv) above) for the 

different volume fractions of the polystyrene solutions were checked which were qualitatively 

satisfied. For our highest volume fraction, however, the mean particle separation was almost 6 

times larger than the particle size; this was right on the edge of having independent scatterers. 

 

We should note that a small ratio of mean particle separation to size will likely cause 

multiple scattering to occur along with a loss of independent scattering. However, multiple 

scattering also occurs when this ratio is large, and hence the scattering is independent if the 

scattering volume is sufficiently large. It is this later situation for which our results apply.  

 

Figure 3.5 shows the experimental scattered intensities )(qI versus q for the 2 mm 

optical path length cell at different volume fractions. The theoretical Mie-Lorentz scattering 

curve is also plotted which was created by using the BHMIE code integrated over a lognormal 

size distribution (Bohren & Huffman 1983). The parameters needed to input the code were the 

most probable radius R of the polystyrene particles (4.8 µm) and 7.4% coefficient of variation of 

the radius, the relative refractive index of the particles )196.1( =m , and the wavelength of light 
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(488 nm). All curves are normalized to one on the intensity scale at ,101.2 13 −×= cmq our 

smallest experimental q value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Normalized light scattering intensities (arbitrary units) plotted versus q at different 

volume fractions, vf . The solid curve is the Mie-Lorentz scattering theory for 9.6 µm polystyrene 

with a geometric size dispersion of 7.4%. The optical path length of the cell is 2 mm. The photon 

mean free path l  and the average number of scattering events >< s are calculated for each 

concentration. 

 

Figure 3.5 shows that for low volume fractions of polystyrene solutions, the scattered 

intensity is highly q (hence angle) dependent with the characteristic Mie-Lorentz ripples and 

mimics the theoretical calculation. As the volume fraction of the colloidal solution increases, the 

scattered intensity becomes more isotropic and loses its q dependence due to multiple scattering 
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effects (Lattuada et al 2001, Urban & Schurtenberger 1998). The results were similar for the 

cells with 4.8 mm and 10 mm optical path lengths. 

 

The average number of scattering events >< s (see Eq. (3.43)) and the photon mean free 

path for different volume fractions (see Eq. (3.44)) are also calculated and given in Fig. 3.5; this 

requires the total scattering cross section which can be obtained theoretically from BHMIE. The 

calculated optical cross section was 203.2 Rπ . Both the theory and the results shown in Fig. 3.5 

suggest that the simple fundamental parameter to describe the extent of multiple scattering is the 

ratio of the path length divided by the photon mean free path (i.e., the average number of 

scattering events lxs /=>< ). This is demonstrated in Figs. 3.6a, b, and c where the light 

scattering data with similar >< s but different volume fractions and optical path lengths are 

plotted together (ca. 0.7±0.06, 2.8±0.4, and 12.4±0.3, respectively). The graphs are again 

normalized to one on the intensity scale at 13101.2 −×= cmq . 

 

Figure 3.6 shows that the graphs with similar >< s overlap and show similar behavior. 

This supports our contention that the average number of scattering events is the universal 

parameter to describe the extent of multiple scattering. This extent can be quantified with the 

Poisson statistics of Eq. (3.39). For example, 2/)1(/)2( ><= sPP  would be the relative ratio 

of double scattering to single scattering. Fortunately the value of >< s can be obtained by either 

calculation or measurement.  

 

In order to measure ,>< s one needs to measure the relative amounts of incident and 

transmitted light, a ratio often called the transmittivity, to obtain )](/)0([ln xIIs =>< . 

However, we should note that extinction is easy to measure in principle but may be difficult in 

practice, especially for large particles where it becomes difficult to discriminate between incident 

and forward-scattered light (Bohren & Huffman 1983). There are various techniques to directly 

measure the absorption or the extinction (Bohren & Huffman 1983). We used a photomultiplier 

to measure the transmittivity of the sample. The agreement between the theoretical and 

experimental value of >< s had an error up to 20%. 
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Figure 3.6  Normalized light scattering intensity (arbitrary units) plotted versus q  for different 

>< s  that is the average number of photon-particle encounters. x is the optical path length of the 

cells. >< s  in Fig. 3.6a, 3.6b and 3.6c is 0.7 ± 0.06, 2.8 ± 0.4 and 12.4 ± 0.3, respectively. 
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3.7   Dynamic Light Scattering 
 

Time dependent correlation functions have been familiar for a long time in the theory of 

noise and stochastic processes. Correlation functions provide a concise method for expressing 

the degree to which two dynamical properties are correlated over a period of time (Berne & 

Pecora 2000).  

 

Dynamic Light Scattering (DLS), also known as Photon Correlation (PCS) or Quasi-

Elastic Light Scattering Spectroscopy (QELS), is a technique used to obtain information about 

particles’ movement. This technique is based on the measurements of the fluctuations in the 

scattered intensity within a given time with a monochromatic and coherent light source. The time 

dependence of the intensity will generally resemble a noise pattern (see the inset of Fig. 3.7). The 

scattered light by the particles (scatterers) can undergo either constructive or destructive 

interference; thus, within this intensity fluctuation, information is contained about particles’ 

movements. The spectral measurements in dynamic light scattering is in the range of ca. 0.1 to 

106 Hz. Hence particles in the range of a few angstroms  to micron can be detected  by this 

technique. 

 

Let’s consider Eq. (3.14) once again: if the particle moves a small distance relative 

to ,1−q there is no phase change. Whereas if the particle moves a large distance relative 

to ,1−q there is large phase change, and hence there are intensity fluctuations. The field 

correlation function )()1( τg  for a diffusing particle is 

 

,/)()()( 2)1( ><>+<= EtEtEg ττ          (3.45) 

 

where )(tE and )( τ+tE are the electric fields at time t  and τ+t , and >< ...  denotes 

statistical averages. The detector, however, can measure the scattered intensity rather than the 

electric field. Thus, the intensity correlation function )()2( τg  is defined as 

 



 41

./)()()( 2)2( ><>+<= ItItIg ττ          (3.46) 

 

The intensity autocorrelation function given in Eq. (3.46) is a stationary process meaning 

that the measurements can be performed at any time and yield the same results. Moreover, 

)()2( τg should be measured over a sufficiently long time compared with the period of 

fluctuation to yield reliable information about the dynamical properties about the system. The 

autocorrelation function )()2( τg is a measure of the similarity between two noise 

signals )(tI and )( τ+tI . When 0=τ  these two signals are completely in phase with each other, 

and >+< )()( τtItI  is large; as τ  increases, )(tI and )( τ+tI get out of phase with one another, 

and the autocorrelation function >+< )()( τtItI  is small (Berne & Pecora 2000). Thus, it would 

appear that the autocorrelation function either remains equal to its initial value for all times τ , in 

which case the intensity I is a constant of the motion, or decays from its initial value which is a 

maximum (Berne & Pecora 2000)   

 

.)()()( 2 >+<≥>< τtItItI           (3.47) 

 

For large times compared to the characteristic time for the fluctuation of Intensity, )(tI  and 

)( τ+tI  are expected to become totally uncorrelated (Berne & Pecora 2000); thus, 

 

.)()()()( 2><=>+><<=>+<
∞→

ItItItItILim
T

ττ        (3.48) 

 

Therefore, the intensity autocorrelation function decays from >< 2I  to 2>< I  (i.e., the 

background or the noise level). This is shown in Fig. 3.7 where t  is set to zero. The inset of Fig. 

3.7 shows the time dependence of the scattered intensity which generally resembles a noise 

pattern. 

 

The Siegart equation (Brown 1993) relates the second order autocorrelation function, Eq. 

(3.46), with the first order autocorrelation function, Eq. (3.45). 
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),|)(|1()( 2)1()2( τβτ gBg +=           (3.49) 

where B  is the baseline, and β  is the coherence factor which is an adjustable parameter in the 

data analysis procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  The time correlation function >< )()0( τII  versus time is plotted. >< )()0( τII  

decays initially from >< 2)0(I  to 2>< I  for times large compared to the correlation time. The 

inset graph shows the intensity fluctuations (noise pattern) in times. The time axis is divided into 

discrete time intervals t∆ . 

 

For the Siegart equation to be valid, the scattered electric field must be a Gaussian 

process (Brown 1993). The Siegart equation is violated for cases such as experiments with a 

small number of particles in the scattering volume, experiments with strongly interacting 

particles, and scattering from non-ergodic systems such as gels glasses where the time averaged 
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intensity correlation function of scattered light is different from the ensemble averaged function 

(Brown 1993). 

 

For monodisperse particles, )()2( τg is an exponential decay function, i.e.,  

 

),/exp()()( 222)2(
cIIIg τττ −><−><+>=<         (3.50) 

 

where cτ  is the correlation time of the diffusing particle in the solution. For spherical particles 

the correlation time is related to the size of particles by  

 

,
2 2c qD

1τ =              (3.51) 

 

where D  denotes the translational diffusion coefficient  

 

.
d3

TkD B

ηπ
=              (3.52) 

 

In Eq. (3.52), η  is the viscosity of the solvent, d  is the average diameter of the particles, Bk  is 

the Boltzmann constant, and T ( K ) is the temperature of the solution. Thus, by meausuring the 

autocorrelation function )()2( τg and fitting it with Eq. (3.50), the correlation time, and 

consequently, the particle size can be found. Here we only presented the simplest form; however, 

the autocorrelation function can have various forms depending on the shape of the particles, 

polydispersity, absorption, and other parameters (Berne & Pecora 2000, Brown 1993). 

 

In dynamic light scattering, the fluctuation in the intensity can be measured via 

homodyne (self-beating) or heterodyne techniques. In the heterodyne technique, which is much 

less used in practice, it is the field correlation function, ),()1( τg that is measured. This technique 

involves optical mixing of the scattered light with a ca. 100 times more intense local oscillator 

(e.g., wall glare) (Brown 1993). The field autocorrelation function can also be obtained from the 
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intensity autocorrelation function (Siegart equation). In the homodyne technique, the intensity 

autocorrelation function is measured via the scattering from the sample. 
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CHAPTER 4 Colloidal Aggregation and Gelation 

 

4.1   Colloids 
 

Colloid particles dispersed in liquids exhibit astonishing properties. Dispersions such as 

the colloidal gold sol prepared by Faraday (1791-1867) over a century ago can persist almost 

indefinitely, yet the addition of salt would cause fast, irreversible aggregation (Russel et al 

1999). The term colloid was coined by Thomas Graham (1861) for glue-like materials which 

appeared to consist of only one phase when viewed under the microscope (Evans & 

Wennerström 1999, Goodwin 2004).  

 

Colloidal systems consist of at least two phases and the dimension of the dispersed phase 

generally ranges from 1 nm to 10 µm (Goodwin 2004, Russel et al 1999). If we consider the 

three states of matter (i.e., gas, liquid, and solid), we can observe the colloidal systems in all 

possible combinations except the two gas phases which will mix on a molecular level and do not 

form a colloidal system. Various types of colloidal systems with some examples are 

demonstrated in Table 1.  

 

The partial list given in Table 4.1 makes the importance of colloidal systems seem almost 

self-evident. Nearly all industrial processes involve colloidal systems, and our ability to 

understand, use, and control colloids depend on our mastery of their properties (Evans & 

Wennerström 1999).  
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Table  4.1  Types of colloidal dispersion with some examples 

 

 

 

 

 

 

 

 

 

 

 

 

Colloids are traditionally divided into two classes called lyophilic (‘solvent loving’) and 

lyophobic (‘solvent hating’) whose general behaviors are entirely different from one another 

(Hunter 1994). When water is the medium or solvent, the terms hydrophilic or hydrophobic are 

often used (Hiemenz 1986).  

 

Lyophilic colloids can be dispersed merely by adding a suitable solvent (i.e., a dispersing 

medium) to the dry colloid (e.g. gelatin or micelles). Typical for lyophilic colloids are, for 

example, the swelling phenomena illustrating the great affinity between the gelatin and the water 

molecules (Verwey & Overbeek 1947). Lyophobic colloids, on the other hand, cannot be formed 

by spontaneous dispersion in the medium. Examples of lyophobic colloids are colloidal gold 

solutions or latex dispersions. The lyophilic and lyophobic solutions can also be distinguished 

based on the reversibility or irreversibility of the system (Verwey & Overbeek 1947). For 

example, a dry gelatin when brought into contact with water is converted spontaneously into an 

apparently homogenous gel, or, if the amount of water is sufficient and the temperature is not too 

low, into a stable colloidal solution (Verwey & Overbeek 1947). However, a gold crystal brought 

into contact with water will never generate a colloidal gold solution (Verwey & Overbeek 1947). 
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Before we proceed further, the term “stability” of a colloidal dispersion needs to be 

defined. For example, a colloidal solution can be relatively stable with respect to aggregation, 

and yet unstable with respect to sedimentation, or vice versa. In this work we use the definition 

given by Verwey and Overbeek that “a colloidal dispersion is stable in which the particles retain 

their individual independence.” Similarly, a system is called unstable in which the particles 

adhere together (Verwey & Overbeek 1947). Therefore, by the definition given above, the 

sedimentation of a colloidal solution is not considered to be unstable, or similarly, a gelatin gel is 

not a stable system, although it is thermodynamically stable (i.e., the solution has a lower Gibbs 

free energy than the separated components) (Hunter 1994).  

 

Colloidal particles in a dispersed medium are always subjected to Brownian motion 

which results in collisions between them. Stability and other characteristics of a colloidal 

dispersion9 are therefore determined by the nature of interactions between the particles during 

such collisions (Somasundaran et al 1997). The aim of this chapter is not to give a brief, yet 

comprehensive description of different kinds of stability, thus we only present a brief, general 

overview of this subject, inasmuch as it is necessary for the understanding of the colloidal 

aggregation. There are at least two mechanisms to stabilize colloidal dispersions 

 

(i) Electrostatic stabilization  

(ii) Steric stabilization 

4.1.1   Electrostatic Stabilization 
 

Electrostatics stabilization is the result of the presence of electrical double layers which, 

on approach of particles, interact, leading to repulsion. Competition between attractive van der 

Waals-Hamaker and repulsive double-layer forces determines the stability or instability of many 

colloidal systems which forms the basis of theory of colloid stability due to Derjaguin-Landau-

Verwey-Overbeek (DLVO theory) (Evans & Wennerström 1999, Tadros 2007).  

 

                                                 
9 Hereafter in this chapter, we only discuss the stability or aggregation of “lyophobic” colloids. 
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In a colloidal dispersion, several processes can be visualized to account for charging 

suspended particles such as dissociation of surface groups (e.g., OH, COOH) and adsorption of 

certain ionic species (such as surfactants) (Tadros 2007). In all cases charge separation takes 

place with some of the specifically adsorbed ions at the surface forming a surface charge which 

is compensated with unequal distribution of counter and co-ions (Tadros 2007). This is the basis 

of the diffuse double layer due to Gouy and Chapman which was later modified by Stern (Tadros 

2007). The double layer is illustrated schematically in Fig. 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.1  A Schematic representation of the electrical double layer (i.e., not drawn to scale). 

The surface charge on the particle is assumed to be positive. The schematic graph demonstrates 

the repulsion potential versus distance from the particle. The potential drops linearly through the 

Stern layer and decays exponentially in the diffuse double layer.  

 

As shown schematically by the graph in Fig. 4.1, the potential drops linearly through the 

inner, compact layer (i.e., the Stern layer) and then exponentially decays in the outer diffuse later 

Gouy (or Gouy-Chapman) layer. The zeta (ζ) potential (or electrokinetic), which is a measurable 
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quantity, is the potential at the slip plane or plane of shear10 (Hunter 1994, Tadros 2007). In 

general, the ζ-potential is smaller than the Stern potential because of the screening effect of the 

counterions within the slip plane. 

 

The extension of the double layer, referred to as diffuse double-layer thickness or Debye 

length, depends solely on the properties of the liquid and not on any property of the surface such 

as its charge or potential (Israelachvili 2006). The Debye length increases with decrease in 

electrolyte concentration and decrease in the valency of the ions. The Debye length, Dλ of 

aqueous solutions at 25oC is given below (Israelachvili 2006).  
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where […] denotes the concentration of the salt solutions in molar (M).  

4.1.1.1.  Double Layer Repulsion 

 

The origin of the repulsive forces between two similarly charged particles in a solvent 

containing counter-ions and electrolyte ions is, in fact, entropic (osmotic) and not electrostatic 

(Israelachvili 2006). In general, what maintains the diffuse double layer is the repulsive osmotic 

pressure between the counter-ions which forces them away from the surface and from each other 

so as to increase their configurational entropy. On bringing two such particles together one is 

therefore forcing the counter-ions back onto the surfaces against their preferred equilibrium state, 

i.e., against their osmotic repulsion, but favored by the electrostatic interaction. The osmotic 

pressure dominates the electrostatic interactions, and hence the net force is repulsive 

(Israelachvili 2006). 

                                                 
10 The shear plane separates the region of fluid that moves with the particle from the region that 

flows freely when an electric field is applied in order to measure the ζ-potential (Hunter)  
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The electrostatic energy, )(xVR of the repulsion between two particles of diameter σ and 

a center-to-center distance of separation r is given by the following expression (Victor & 

Hansen 1984): 

 

,)(
)1(

x
eJxV

x

R

−−

=
κ

              (4.2) 

 

where σ/rx = is the reduced distance between the centers of two particles, Dλσκ /= is the 

reduced inverse Debye length, and J is the electrostatic coupling constant related to the surface 

or  ζ-potential oψ  via  

 

.2
0ψσεεπ oJ =               (4.3) 

 

In Eq. (4.3), oε is the permittivity of free space (i.e., 8.85× 10-12 C2/N.m2), and ε is the relative 

permittivity (e.g., for water 5.78=ε ).  

4.1.1.2   Van der Waals-Hamaker (Dispersion) Attraction 

 

The van der Waals-Hamaker (dispersion) energy is always an attraction energy between 

particles of the same11 kind which may be considered to consist of three contributions: dipole-

dipole (Keesom), dipole-induced dipole (Debye) and London or dispersion interactions (Tadros 

2007).  

 

For colloidal particles, which are assemblies of atoms or molecules, only the London 

(dispersion) interactions have to be considered because large assemblies have no net dipole 

moment or polarization (Tadros 2007). The London interaction arises from charge fluctuations 

within an atom or molecule which is associated with the motion of its electrons. The dispersion 

                                                 
11 The van der Waals-Hamaker interaction between two different materials immersed in a liquid 

medium can be repulsive (Hirtzel, 1985).  
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energy of attraction between two identical spheres of diameter σ , at a distance r  (i.e., center-to-

center) in vacuum, is given by 

 

),(
12

)( xhAxV H
A −=               (4.5) 

 

where HA  is the Hamaker constant, and 
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1)( 222 xxx
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−
=             (4.6) 

 

The Hamaker constant is determined by the nature of the particles and that of the 

surrounding medium (Israelachvili 2006). The Hamaker constant in water ranges from ≤ 1 TkB  

for some hydrocarbon to ≥ 100 TkB  for metals, where Bk is the Boltzmann’s constant, and T is 

the absolute temperature. For example, the Hamaker constant of polystyrene in water is 

HA =1.3× 10-20 J or 3.16 TkB (Russel et al 1999).  

4.1.1.3   DLVO Theory 

 

The interaction between colloidal particles is modeled by the DLVO potential, which is 

the sum of the screened electrostatic repulsion between their double-layers and of the van der 

Waals-Hamaker attraction given in Eqs. (4.2) and (4.5), respectively.  

 

RAT VVV +=                 (4.7) 

 

A schematic representation of the variations of AV , RV , and TV  with x is plotted in Fig. 

4.2.  
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Figure 4.2  The van der Waals-Hamaker AV , the double layer potential RV , and the total 

potential energy TV  are plotted versus x  (i.e., σ/rx = ). The potential curves are plotted in 

TkB  units. The particle size is 500 nm, the salt molarity is 40 mM, and the ζ-potential is 80 mV. 

 

As can be seen in Fig. 4.2, RV shows an exponential decay with increase in x , 

approaching zero at large x , whereas AV  does not decay to zero at large x . The TV curve shows 

two minima and one maximum. Near the particle, there is a deep minimum in the potential 

energy produced by the van der Waals-Hamaker attraction that is referred to as the primary 

minimum. There is an energy barrier at intermediate distances which depends on the zeta 

potential and the electrolyte concentration and valency (e.g., when the electrolyte ions do not 

screen too much). Farther away, there is a shallow minimum at large x  that is referred to as 
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secondary minimum. It has theoretically been shown (Victor & Hansen 1984) that in order to 

have the secondary minimum in the potential curve, the following condition should be satisfied 

 

.7.224
>

HA
J

κ
               (4.8) 

 

The condition for the stability of colloidal dispersion is to have an energy barrier that is 

much larger than the thermal energy of the particles (Brinker & Scherer 1990, Tadros 2007). In 

general, the energy barrier should be greater than 2510− TkB (Brinker & Scherer 1990, Hiemenz 

1986, Tadros 2007). This is achieved by having a high zeta potential larger than 30-50 mV 

(Brinker & Scherer 1990, Tadros 2007). The DLVO theory will be used again later in this 

chapter in order to explain different types of aggregation. 

 

Finally, it is important to note that there are some situations that cannot be handled by the 

DLVO theory; some of these situations are given below (Peker 2007). 

 

(i) High ionic strength 

(ii) Heteroaggregation(e.g., dissimilar components in terms of shape, size, surface and other 

physical properties) 

(iii) Discrete surface charges 

(iv) Strong electrostatic interactions as in the case of multivalent counterions or low dielectric 

constant of the solvent 

(v) Specific ion effects 

(vi) Non-DLVO forces (such as steric, hydrophobic, depletion) and very short-range 

hydration forces 

4.1.2   Steric Stabilization 
 

In practice, there are many circumstances when a flexible method is needed to control the 

stability of a suspension. One of the most efficient ways to accomplish this is steric stabilization. 

Steric stabilization arises from the presence of adsorbed surfactant or polymer layers mostly of 



 54

the nonionic type which prevents the close approach of the particles; this is briefly explained 

below (Tadros 2007).  

 

When two particles approach one another, the polymer-layers of neighboring particles 

(i.e., strongly adsorbed to the particles) begin to overlap or become compressed. This results in 

the reduction of the entropy of the chains in the interaction region. At the same time, the solvent 

molecules that surround the polymer chains are also “squeezed” out from between the particles 

which would increase the free energy of the system. As a result, an osmotic pressure is created in 

the overlap region which would cause the particles to repel one another and result in a 

thermodynamically stable dispersion (Brinker & Scherer 1990, Hirtzel & Rajagopalan 1985). In 

order to have an effective steric barrier, there are a number of conditions that need to be satisfied 

(Brinker & Scherer 1990, Tadros 2007): 

 

(i) The surface of the particle should be completely covered to prevent polymer chains 

from attaching to both particles which is causing the bridging flocculation. 

(ii) The polymer should be strongly adsorbed (or ‘anchored’) to the particle surface so that 

it cannot be displaced during the Brownian collisions. The lack of this criterion would 

result in depletion flocculation.  

(iii) The adsorbed layer thickness should be sufficiently large enough (typically > 5 nm) to 

keep the point of closest approach outside the range of the attractive van der Waals-

Hamaker forces. Otherwise, weak flocculation (i.e., reversible) occurs when the 

adsorbed layer thickness is smaller than 5 nm. 

(iv) The non-anchored portion of the polymer should be highly soluble in the medium and 

strongly solvated by its molecules. Whereas, strong flocculation (i.e., irreversible) 

occurs when the solvency of the medium for the stabilizing chains becomes poor. 

 

If the condition (ii) (i.e., given above) is not satisfied, depletion flocculation can occur. 

Depletion flocculation can be achieved by addition of ‘free’, non-adsorbing polymer to a 

dispersion (Tadros 2007). The free polymer cannot approach the particle surface by a distance 

equal to twice the radius of gyration (see 4.3.1) of the polymer because when the polymer coils 

approach the surface, they loose entropy and this loss is not compensated by an adsorption 
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energy. Hence the particles will be surrounded by a depletion zone with thickness δ (free of 

polymer) (Tadros 2007). Now, when two particles approach one another to a distance less than 

2δ, the depletion zones of the two particles will overlap. At and above a critical volume fraction 

of the free polymer, the polymer become “squeezed” out from between the particles, and hence 

the osmotic pressure outside the particle surface becomes higher than in between them; this 

results in a weak flocculation which is referred to as depletion flocculation (Tadros 2007).  

4.2   Colloidal Aggregation 

 

Colloidal particles undergo Brownian motion due to their thermal energy and small sizes 

which can cause collisions between them. Collisions between particles may be caused not only 

by thermal motion but also by gravitational forces and by convective diffusion. The stability and 

other properties of colloidal dispersions depend on whether such collisions lead to aggregation 

(Sonntag & Strenge 1987).  

 

Diffusion controlled processes (i.e., particle collisions arise solely from Brownian 

diffusion of particles) are usually referred to as perikinetic aggregation. If external energy is 

applied on the system, e.g., shear, ultrasound or centrifugal, or the system is not at thermal 

equilibrium (so that convection currents arise), then the rate of particle collisions is usually 

increased, and the aggregation is referred to as orthokinetic (Tadros 2007). 

 

The aggregation12 of colloidal particles can occur in the primary or secondary minimum 

of the DLVO potential energy (see Fig. 4.2). As a result, the aggregation may be irreversible or 

reversible, respectively. In order for the particles to undergo aggregation into the primary 

minimum, they need to overcome the energy barrier. The higher the energy barrier, the lower is 

the probability of aggregation. Hence one can consider the process of aggregation as a rate 

phenomenon which increases with reduction of the energy barrier and ultimately, in the absence 

of any barrier, it becomes very fast (Tadros 2007). On the other hand, if the secondary minimum 

                                                 
12 In the literature, the term “aggregation” is also referred to as flocculation, agglomeration, and 

coagulation.  
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in the potential energy becomes deep enough (several TkB units), the system can weakly 

aggregate; this aggregation is reversible in nature, and some deaggregation may occur. The 

process of weak reversible aggregation may produce gels which on application of shear breakup, 

forming a sol. This process of sol-gel transformation produces thixotropy (i.e., reversible time 

dependence of viscosity) which can be applied in many industrial formulations, e.g., in paints 

(Tadros, 2007). 

 

Irreversible aggregation of small particle to form large clusters is one of the most 

common phenomena which can be seen in nature and many areas of science and technology such 

as aerosol and colloidal science, polymer science, phase transitions and critical phenomena 

(Mitsugu 1989).  

 

The aggregation processes can be classified variously of which one is shown in Fig. 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  The classification of the aggregation processes of which the DLCA aggregation and 

shear-induced aggregation are discussed in this work. 
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4.2.1   Brownian Diffusion Aggregation 
 

Diffusion-controlled processes can be classified based on the mechanisms by which the 

aggregation occurs which is particle-cluster aggregation or cluster-cluster aggregation. 

Furthermore, the aggregation kinetics can be either a diffusion-limited process or a reaction-

limited mechanism. These mechanisms of aggregation are explained below. 

 

In particle-cluster model, the aggregation mechanism starts from a seed particle, and the 

particles are added one after another on the aggregate. The Eden model (1961) is an example of 

this type of aggregation which has been mostly used to describe nonequilibrium biological 

processes, such as tumor expansion (Jullien & Botet 1987). Another model, which was 

associated mainly with aggregation of colloids in solution, was the DLA model (i.e., diffusion-

limited aggregation) (Witten & Sander 1981). The DLA model can explain some of the 

aggregation processes such as electrodeposition, fluid displacement, and electrical breakdown 

(see Fig. 2.1c). However, this model was not able to describe most of the regular aggregation 

processes such as those encountered in colloids and aerosols. The Fractal dimension in Witten-

Sander model in three dimension, i.e., fD = 2.5, was too large to account for the experimental 

value which is generally 1.75 or slightly more, in colloids and aerosols (Jullien & Botet 1987).  

 

In cluster-cluster aggregation model, unlike the particle-cluster aggregation model, the 

clusters are allowed to diffuse, collide, and stick together to form larger clusters (Kolb et al 1983, 

Meakin 1983). Cluster-cluster aggregation mechanism can be classified as  

 

(i) Diffusion limited cluster-cluster aggregation (DLCA) 

(ii) Reaction limited cluster-cluster aggregation (RLCA) 

(iii) Ballistic limited cluster-cluster aggregation (BLCA) 

 

In the DLCA regime, the height of the energy barrier is reduced to much less than TkB , 

so that every collision will result in the particles sticking together (i.e. the sticking probability is 

one, stickP ~1), leading to very fast aggregation. Hence the aggregation rate is limited only by the 
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diffusion (random walk) of the clusters. The fractal dimension of the aggregates formed via 

DLCA mechanism is fD = 1.75±0.05 (Lin et al 1990c). Whereas in the RLCA regime, there is a 

repulsive energy barrier which is substantially larger than TkB , but not insurmountable, and 

hence many collisions are required before two clusters actually stick. In this case, the 

aggregation rate is limited by the probability of overcoming the repulsive barrier maxφ   (i.e., 

1)/exp(~ max <<− TkP Bstick φ ) leading to much slower aggregation. Here the diffusive motion of 

any two clusters gives them the opportunity to explore many more possible mutual bonding 

configurations, resulting in somewhat higher fractal dimension than that in DLCA regime, i.e., 

fD = 2.05±0.05 (Lin et al 1989, Lin et al 1990b). Moreover, clusters produced under reaction-

limited conditions are more polydisperse in size than their diffusion limited counterparts (Fry et 

al 2004). 

 

The classical understanding of Brownian aggregation kinetics is given by the 

Smoluchowski theory (1917) which follows from the assumption that the collisions are binary 

and that fluctuations in density are sufficiently small so that the collisions occur at random 

(Sonntag 1993). For dilute dispersions with volume fractions less than 1%, only the binary 

collisions need to be considered, and the probability of three-particle collisions is small (Sonntag 

1993). 

 

The coagulation of two clusters of size (number of monomers) i  and j  is given by the 

following relation  

 

mer,mer)(mermer thththth kjiji
ijK

=++ →             (4.9) 

 

where ijK is the aggregation kernel (or collision frequency factor). The aggregation kernel is a 

constant, independent of the particles concentration (number densities). 

 

For Brownian aggregation, the collision rate, J , between two particles (or two 

aggregates) of radius ia and ja is  
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,jijiji nnKJ =             (4.10) 

 

where in and jn are the corresponding number densities. 

 

The conservation (or population balance) equation describing the temporal evolution of 

the cluster of size k is as follows  
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The first term on the right-hand side of Eq. (4.11) gives the rate of creation of clusters of 

size k by aggregation of two smaller clusters, and the second term gives the rate at which 

clusters of size k are eliminated by further aggregation (Drake 1972, Sonntag 1993).  

 

The Smoluchowski equation is a mean-field analysis because it assumes that the 

probability of two clusters meeting is simply proportional to the product of their number 

densities, i.e., there are no spatial correlations between clusters (Fry et al 2002). For realistic 

collision models the aggregation kernel is found to be a time-independent homogeneous function 

of i  and j , i.e.,    

 

),,(),(),( ijKjiKjiK λλ αααα ==          (4.12) 

 

where λ  is the degree of homogeneity, and α  is a constant.  

 

It can be shown that the Brownian aggregation kernel jiK  is 

 

),)((4 jijiji DRK π=             (4.13) 
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where jiD  is the relative diffusion coefficient associated with the particles (or aggregates), and 

jiR is the effective collision radius that is the distance at which the van der Waals-Hamaker 

attraction becomes dominant (Sonntag 1993). 

 

For spherical particles jiR equals the sum of the particle radii. In the continuum regime, 

the relative diffusion coefficient of two spherical particles of radii ia  and ja  is given by the 

Stokes-Einstein equation  
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            (4.14) 

 

where η is the viscosity of the medium. Therefore, the aggregation kernel for spherical 

symmetry equals 
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Equation (4.15) can be simplified by assuming that collisions between particles (clusters) 

of approximately equal size dominate such that for ji aa =  
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Therefore, the aggregation kernel13 simplifies to 

 

                                                 
13 Swift and Friedlander have stated that the agreement between the aggregation kernel found in 

an experiment (using polystyrene, 1.83 µm in diameter) was found to be approximately up to 

60% of 8kBT/3η. 
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It is important to note that the aggregation kernel (given in Eq. (4.15)) for unequal 

spheres is larger than 4, and hence the aggregation rate increases with increasing polydispersity. 

However, it has been shown that Smoluchowski’s approximation theory may be used with 

reasonable accuracy for initially monodisperse systems, and also for dispersions having low 

polydispersity initially (Sonntag & Strenge 1987). 

 

Equations (4.10), (4.11), and (4.17) can be combined to yield the simplified 

Smoluchowski equation, i.e.,  
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The solution to Eq. (4.18) gives the following expression for the kinetics of the decay of 

the total particle concentration, cn , i.e.,  

 

,
)/(1

)0(
)(

c

c
c tt

n
tn

+
=             (4.19) 

 

where )0(cn is the initial particle concentration (i.e., mc nn =)0( , where mn is the monomer 

number density) and ct  is given as 
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where vf  is the volume fraction of the particles in the system. Equation (4.20) is referred to as 

the characteristic time ,that is, the time required for half of the original dispersed particles to 

aggregate.  



 62

In order to solve Eq. (4.11), Smoluchowski assumed that no repulsive barrier was present 

(i.e., fast aggregation). Fuchs (1934) then extended the theory formally, allowing the collision 

probability to depend on an arbitrary interaction potential and expressing the results in terms of 

the stability ratio, BW (Hiemenz 1986), i.e., 
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where )(rV  is the potential energy of interaction of the particles, r  is the center-to-center 

distance between the particles, and a  is the particle radius assuming that the particles have equal 

size (Hiemenz 1986). Therefore, the aggregation kernel for the fast aggregation corresponds to 

that for slow aggregation through the stability ratio given in Eq. (4.21), i.e.,   
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An approximation relating BW  and the maximum potential barrier maxφ  is given for 

polystyrene particles as follows 
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          (4.23) 

 

where ∞W  is the stability ratio due to dispersion forces (van der Waals-Hamaker attraction) 

alone. In general, even at high ionic concentration, ∞W  differs from unity because of the finite 

range of the attraction and the hydrodynamic interactions omitted from Smoluchowski’s 

calculation of the collision rate. The theoretical stability ratio ∞W , for fast aggregation of 

polystyrene particles in water, is found to range approximately between 1.7-2 for polystyrene 

particles ranging between 4000 ≤≤ a nm (Russel et al 1999).  
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The theoretical stability ratio of an aqueous salt solution is related to the concentrations 

of the counter-ions c (i.e., in moles per liter) as follows  

 

,log)/(log 21 KcKWWB +−=∞           (4.24) 

 

where 1K  and 2K  are constants. For water at 25 Co , the value of 1K  has been calculated to be  
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where the proportionality constant (i.e., 91015.2 × ) has a unit of 1−m , a  is the radius of the 

particle (i.e., mentioned earlier) , and oΨ is given by  
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z  is the valency of the counter-ions, and oψ  is the zeta potential (Hiemenz 1986).  

 

Figure 4.4 shows a schematic plot of the stability ratio ∞WWB /  versus the salt 

concentration. As can be seen in this figure, the plot is linear as required by Eq. (4.24) with a 

negative slope of 1K  at low salt concentrations. In theory, 1K , hence the slope depends on the 

particle size (Eq.( 4.25)). However, Ottewill and Shaw showed that the measured stability ratio, 

for polystyrene particles ranging from 60 nm to 423 nm, varied little with the particle size 

(Ottewill & Shaw 1966). We should remind here that the horizontal asymptote at high salt 

concentration, where 1/ =∞WWB , corresponds to the fast aggregation (DLCA). Further, the 

region at lower salt concentration, where 1~/ >>∞ BB WWW , corresponds to the slow 

aggregation (RLCA).  
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Figure 4.4  Schematic plot of stability ratio, ∞WWB / versus salt concentration. The horizontal 

asymptote at high salt concentrations corresponds to fast aggregation (e.g., DLCA). The region 

at lower salt concentration, where 1>>BW  corresponds to slow aggregation (e.g., RLCA). The 

inflection point between these two regions is referred to as “critical flocculation concentration” 

(CFC). 

 

The concentration at which 1/ =∞WWB  (where the break in the curve appears) measures 

the critical flocculation point (CFC) (or “critical coagulation concentration” CCC). For 

∞WWB / >>1, the slow aggregation regime has been observed for up to 410~BW (i.e., 

corresponding to TkBm 15≈φ ). From this, one may conclude that the height of an energy barrier 

must be at least TkB15 14 to have any appreciable stability for a colloidal solution. Likewise, 

one can also assume that if the secondary minimum (see Fig. 4.2) is less than TkB15 , the 

                                                 
14 The reported value of φm (i.e., minimum potential barrier required for the stability) is found to 

have some variation in the literature, e.g., 10 kBT (Brinker 1990), 15 kBT (Heimenz 1986), and 25 

kBT  (Tadros 2007).  
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particles will be able to “escape” from it (i.e., weak aggregation resulting in deaggregation) 

(Hiemenz 1986). 

 

4.2.2   Shear Induced Aggregation 
 

The aggregation of particles in a colloidal system can be controlled by three different 

mechanisms including perikinetic aggregation due to Brownian motion (dominant for particles 

with diameters smaller than 1 µm), shear-induced orthokinetic aggregation (dominant for 

particles in the range of 1-40 µm), and differential sedimentation aggregation (typically 

important for particles larger than 40 µm) (Wang et al 2005).  

 

When colloidal particles are immersed in a shear field, aggregation is promoted by the 

fluid motion. Assuming that the (spherical) particles follow linear fluid streamlines of the 

unperturbed shear flow (i.e., no hydrodynamic, electrostatic, or van der Waals interaction), until 

they collide as if other particles did not exist, Smoluchowski derived the analytical solutions for 

the aggregation kernel in the laminar shear flow (Adachi 1995, Sonntag & Russel 1986).  

 

In Smoluchowski’s theory of shear-induced aggregation, Brownian diffusional effects are 

considered negligible and particle collisions result from a nonuniform macroscopic flow field 

applied to the dispersion. It should be reminded here that Smoluchowski’s derivation of the 

Brownian aggregation, that was discussed earlier, was under the assumptions that particle 

collisions were solely from diffusion induced by Brownian motion and macroscopic convective 

effects were ignored (Feke & Schowalter 1985). 

 

The aggregation rate ijJ  between (homogeneous) spheres of radius ia  and ja  in a 

laminar shear field is given as  
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where γ  is the shear rate (or strain rate) with dimensions of reciprocal time, and in and jn are 

the number concentrations of the corresponding particles (Feke & Schowalter 1985). 

Smoluchowski then obtained an analytical solution for the change in total number of particles n  

in a system by assuming that iji aaa 2=+ . 

 

Similar to the Brownian aggregation theory, the conservation equation (population 

balance) is given as 
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Substitution of Eq. (4.27), the assumption of equal sized spherical particles in the system (i.e., 

aaaa iji 22 ==+ ) , and nafv
3)3/4( π=  (i.e., volume fraction of the particles in the system) 

into Eq. (4.28) yields  
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Equation (4.29) shows that, unlike Brownian aggregation, the total number of particles decays 

exponentially. Also, the aggregation rate is independent of temperature and viscosity, unlike the 

case for Brownian aggregation which is sensitive to both. Moreover, this theory predicts that 

aggregation by shear flow becomes important as particle size increases (Swift & Friedlander 

1964).  

 

The characteristic time sτ for shear aggregation can be determined using Eq. (4.29), i.e.,  
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For fractals the above equation must be considered for the effective volume fraction (i.e., the 

monomer volume fraction of an individual cluster) (Sonntag & Russel 1986). 

 

In reality, the relative motion between colloidal particles immersed in a viscous liquid is 

hydrodynamically influenced by the presence of other particles, and later investigators included 

hydrodynamic interactions and colloidal forces by introducing the stability ratio sW  into 

Smoluchowski’s equations (Adachi 1995, Feke & Schowalter 1985) such that  
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However, the Smoluchowski result given in Eq. (4.27) often provides a useful estimate of the 

actual aggregation rate given in Eq. (4.31) (Torres et al 1991a); in fact, Swift and Friedlander 

have confirmed the Smoluchowski’s shear flow theory for shear rates ranging from 1-80 1sec−  

(Swift & Friedlander 1964). 

 

Shear-induced aggregation and Brownian aggregation are two mechanisms that exist 

simultaneously in sheared system. Swift and Friedlander have shown that these two aggregation 

mechanisms are independent over a wide range of conditions (Swift & Friedlander 1964). 

Therefore, the aggregation rate J (the subscripts ij are dropped to refer to equal-sized spheres) in 

a system undergoing both shear-induced aggregation and Brownian aggregation can be written as 
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where BW  is the stability ratio introduced into the Brownian aggregation due to the potential 

barrier in DLVO theory (see  Eq. (4.21)), η  is the solvent viscosity, and Pe  is referred to as 

Péclet number, i.e.,  
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The Péclet number is a dimensionless quantity that reflects the relative importance of 

shear to Brownian diffusion in a sheared colloidal dispersion (Feke & Schowalter 1985, Swift & 

Friedlander 1964). Some care is necessary in using this quantity as different authors have used 

definitions that vary by the numerical constant of π3 (e.g., π6 ) (Clarke et al 1995).  

 

The Péclet number can also be defined as Bτγ:Pe = , where Bτ  is the time scale 

characteristic of the Brownian motion defined by B
2 τ2Da = , and D is the Stokes-Einstein 

diffusion constant (West et al 1994). 

4.3   Gelation 
 

A particulate gel is a dispersion consisting of two continuous phases: the liquid and the 

particle network, with the latter determining the strength of the gel (Strenge 1993). The term 

“gel” has been used rather vaguely to describe anything with a jelly-like consistency, sometimes 

with the specification that there should be a non-zero yield stress (Evans & Wennerström 1999). 

The definition used in this work is based on the light scattering experiments. That is, when the 

scattered light does not evolve further with time, the system is called a gel which is not 

necessarily an elastic gel (e.g., gelatin gel or jelly). From this point of view a gel can be defined 

as below: 

 

As fractal aggregates grow, their mass increases less rapidly with size than would be the 

case for homogenously close packed clusters. In nondilute dispersions, the space occupied by the 

growing fractal aggregates eventually fills the entire space available, and so by necessity the 

aggregates connect together to produce a system-spanning network, i.e., a gel (Dickinson 2000). 

This occurs approximately when the monomer volume fraction of an individual cluster cvf ,  (i.e., 

referred to as the effective volume fraction) is equal to the fixed monomer volume fraction of the 

entire system, vf , vcv ff =,  (Bremer et al 1995, Dickinson 2000, Sorensen et al 1998). 
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Figure 4.5 illustrates the transition from a sol to a gel. As depicted in this figure, the gel forms 

when the clusters reach to a critical size, spanning the entire system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Transition from a sol to a gel. The colloidal solution can be destabilized by any 

mechanisms given earlier. A gel can form when the aggregates reach a critical size at which they 

span the entire system. 

 

The size of the aggregates at the gel point, GgR ,  and the gel time gt  can be determined 

theoretically by applying the condition given above. We then compare the theoretical gel time 

with the measured gel time using SALS. Before proceeding to derive GgR , , gt , a few definitions 

are needed to be given first: 

4.3.1   Aggregates Radius of Gyration, Rg  
 

The radius of gyration gR of an aggregate is a measure of its overall size, and it can be 

expressed as   
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where r  is the radial distance measured from the cluster center of mass and )(rrρ  is the position 

dependent mass density (Fry et al 2004). As mentioned earlier the mass density of a fractal 

object corresponds to its size by a power law, i.e.,  

 
dDf)( −= rr oρρ r ,            (4.35) 

 

where d  is the spatial dimension. Cluster mass scales with its geometric size as   
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where a  is the monomer size. The above equation is similar to the expression given earlier for 

the Sierpinski fractals, i.e., fD)/(~ lLM . 

4.3.1.1   Number of Monomers per Cluster, N 

 

The number of primary particles in an aggregate of size gR  scales as  
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where ok  is the prefactor of the fractal scaling relationship. In the DLCA regime ≈ok 1.3 

(Sorensen & Roberts 1997), and in a RLCA regime ≈ok 1.2 (Fry et al 2004).  

 

In an aggregating system, mass conservation during aggregation implies a constant 

number of monomers mn  in the system. Hence the number of monomers per cluster N  times the 
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cluster number density cn  (i.e., number of clusters in the system) should be conserved and equal 

to mn , i.e.,  

 

cm nNn = .             (4.38) 

4.3.2   Perimeter Radius Rp 
 

In analogy with a solid sphere, the perimeter radius is defined for fractal aggregates by 

considering a fractal aggregate as spherically isotropic cluster of radius pR . In order to find pR , 

Eq. (4.35) can be substituted into Eq. (4.34) to yield 
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then by integrating Eq. (4.39), we have 
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Equation (4.40) can be refined if a power law density correlation function )(rg  is used instead of 

the power law density )(rρ , i.e.,  
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Equations (4.40) and (4.41) are especially useful to determine gR  when one analyzes the 2-d 

projection of a fractal aggregate (Oh & Sorensen 1997). However, for simplicity we will use Eq. 

(4.40) when needed.  
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The radius of gyration and the perimeter radius are depicted in a cartoon shown in Fig. 

4.6.  

 

 

 

 

 

 

 

 

 

 

Figure4.6  A cartoon of a fractal aggregate. The radius of gyration and the perimeter radius are 

illustrated by the black and green dashed circles, respectively. The ratio pg RR /  for an aggregate 

is 0.69 in the DLCA regime. 

 

4.3.3   Radius of Gyration at the Gel Point 
 

As mentioned earlier, at the gel point, the monomer volume fraction15 of an individual 

cluster cvf ,  is equal to the fixed monomer volume fraction of the entire system, vf . The monomer 

volume fraction of a colloidal solution can be determined by knowing the monomer number 

density provided by the manufacturers (e.g., Invitrogen Corp.), i.e., 

 

,)3/4( 3anf mv π=             (4.42) 

 

                                                 
15 Volume fraction vf  is the ratio of the volume of the dispersed phase to the true volume of the 

dispersion. In colloid science vf  is often denoted as φ. 
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where mn  is the monomer number density, and a  is the radius of the monodispersed particles. 

Thus, the initial volume fraction of a system is a known parameter. The monomer volume 

fraction of an individual cluster cvf ,  is 
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where N is the number of monomers per cluster, and pR  is the cluster perimeter radius. For 

simplicity, it is assumed that the clusters are monodisperse and spherical. Substituting Eqs. 

(4.37) and (4.40) into Eq. (4.43) yields 
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where GgR ,  is the radius of gyration at the gel point. GgR ,  can be determined by using Eq. (4.44) 

and vcv ff =, , i.e.,  
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Equation (4.45) can be approximated for the DLCA regime as  

 

.5.0 )3D/(1
,

f −≈ vGg faR            (4.46) 

4.3.4   Theoretical Gel Time 
 

A scaling argument can be used to approximately determine the theoretical gel time. The 

theoretical gel time is related to the characteristic time, i.e., cg tt ∝ . The gel time is basically the 
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time needed for the monomers to aggregate to form a cluster of size GgR , . The number of 

monomers GN  in an aggregate of size GgR ,  can be determined using Eq. (4.37), i.e.,  
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GN  is the proportionality constant relating ct  to gt , and hence  

 

.cGg tNt =              (4.48) 

 

Equation (4.48) can also be obtained by using Eqs. (4.19) and (4.38). By substituting Eqs. (4.45) 

and (4.47) into Eq. (4.48), the gel time can be obtained, i.e.,  
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Equation (4.49) can be used for both DLCA and RLCA regimes as described below. 

4.3.4.1   The DLCA Regime 

 

Substitution of ct  (i.e., Eq. (4.20)) into Eq. (4.49) and some further simplifications leads 

to an approximation of the gel time, i.e.,  
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4.3.4.2   The RLCA Regime 

 

In the RLCA regime, the characteristic time given in Eq. (4.20) requires the correction 

factor of W (i.e., stability ratio) (Russel et al 1999)   
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where W can be measured experimentally, or can be calculated by using Eq. (4.23) in which the 

maxφ  can be obtained from the DLVO theory, or Eq. (4.24). The gel time in the RLCA regime 

can be obtained by substituting Eq. (4.51) in Eq. (4.49), i.e., 
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It is important to note that the definition of a gel point is based on several assumptions 

that are invalid for real systems (Dickinson 2000).  

 

(i) It is known experimentally that fractal aggregtaes formed in DLCA or RLCA  regime 

have a broad cluster-mass distribution with the time dependent mean size. This means 

that when the largest aggregates are just beginning to join together to form a system 

spanning network, a susbstantial fraction of the particles still exist as monomers or 

small aggregates. These “free” particles become incorporated into the dveloping 

network structure only at times well beyond the gel point.  

(ii) In this model, the aggregate-aggregate interactions are neglected. In reality, even in the 

initial stages of aggregation of a nondilulte dispersions, the local aggregate growth 

must depend on the local particle concentartion gradient, and hence depending on the 

growth of the neighboring aggregates. 

(iii) Once the mean aggregate radius is approaching GgR , , the increasing crowding and 

interpenetration of the largest aggregates must inevitably modify their structure in the 
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gelling system from that in the nongelling DLCA or RLCA system at high dilution 

leading to an increase in th edegree of compactness of the largest aggregates, i.e., to 

increase their effective fractal dimension. 

 

In practice, however, the simple model of gelation can remain reasonably valid up to 

concentartions at which the aggregates’ radii are conciderably larger than the average size of the 

gaps seperating the neighboring clusters (i.e., nearenest neighbour seperation) (Dickinson 2000).  
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CHAPTER 5 Experimental Methods 

5.1   Small Angle Light Scattering (SALS) Setup  
 

Small angle static light scattering (SALS) is one of the most useful techniques to probe 

length scales of the order of the wavelength of light or larger. This technique allows the 

determination of fundamental parameters such as fractal dimension and sizes of aggregating 

clusters or the correlation length of a critical system undergoing a phase transition. This 

technique is also suitable to investigate the kinetics of a growth process in an aggregating 

system.  

 

SALS is not only of interest for basic research. It is also used in many fields of applied 

sciences, such as in atmospheric and aerosol sciences (Friedlander 2000), or in pharmaceutical 

and agricultural industries. The interest for SALS relies on its capabilities to perform particle 

size measurements. Therefore, SALS finds application in many industrial situations, and 

nowadays, commercial instruments are available on the market. However, we would prefer to 

build the SALS ourselves. Because, with the commercial SALS the apparatus would be less 

flexible to any modification related to the different experiments performed in this lab, such as 

studying the flame soot (Kim et al 2004), aerosol gel formed in a combustion chamber 

(Dhaubhadel et al 2006), or the shear experiments presented in this work. In addition, by 

building the SALS setup, we could fix almost any problem that would arise with the set up.  

 

Different designs for the SALS set up have been suggested in the literature (Carpineti et 

al 1990, Ferri 1997, Weber & Schosseler 2002). Our SALS set up is similar to that of Ferri (Ferri 

1997).  

 

Figure 5.1 shows the schematic diagram of the experimental setup. We used a vertically 

polarized argon-ion laser (Spectra Physics 165) with the Model 265 Power Supply. The laser was 

operating at a wavelength of nmo 488=λ . The size of the laser beam at 2/1 e is 1.25 mm. A 
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variable attenuator made of a Glan-Thompson polarizer and a linear polarizer was used to reduce 

the beam power and sets the polarization of the electrical field in the vertical direction. The beam 

then hits the sample. The light scattered by the sample is then collected by lens 1L (Achromat 

F =75 mm, φ =50.8 mm, Thorlabs AC508-075-A1). The Fourier image (Hecht 2002) of the 

sample forms at the focal plane of 1L ; this Fourier image is what we are interested to detect. The 

lens 2L (Achromat F =100 mm, φ =50.8 mm, Thorlabs AC508-100-A1) conjugates the Fourier 

plane of the lens 1L and the plane of the detector sensor. A mirror, made of a drill bit (Gage 73, 

0.024 inches) cut and polished at 45o, is placed in the focal plane of the lens 1L . The small 

mirror deviates the transmitted beam to ca. 90o preventing the unscattered beam from reaching 

the detector. In order to avoid vignetting problems (Hecht 2002) associated with the lens 2L , the 

cell is placed at a distance from the lens 1L so that the cell plane and the 2L plane are conjugated 

via the lens 1L . Hence, all the light collected by the lens 1L is also collected by the lens 2L .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1  Schematic diagram of the Small Angle Light Scattering set up. The picture is not 

drawn to scale. 
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Although 2L appears to be only conjugating the focal plane of 1L and the detector sensor, 

there is an advantage of having 2L in this setup  

 

• By placing the detector at the focal plane of the lens 1L , the transmitted focused beam 

needs to pass clear the detector without affecting the measurements. This can be done by 

inserting a tiny hole inside the detector (Carpineti et al 1990); with this configuration the 

detector needs to be specifically altered for this purpose. However, in Ferri’s setup there 

is an advantage of simply placing a small mirror at the focal plane of 1L . 

• Lens 2L conjugates the image formed at the focal plane of 1L onto the detector sensor 

with a magnification less than one. Therefore, lens 2L would allow one to collect the 

maximum scattered light from the sample without being limited by the actual size of the 

sensor chip. 

 

In order to avoid the spherical aberration (Hecht 2002), hence obtaining a good 

calibration, it is important to position the correct side of both lenses in the SALS set up. As can 

be seen in Fig. 5.1, the more convex side of 1L should face farther from the sample to suppress 

the spherical aberration. Subsequently, we should position 2L with the more convex side 

towards 1L . A simple experiment can be done to test the spherical aberration by placing a study 

lamp closely behind the lens and looking at the real image formed. The image is more focused 

when the less convex side of the lens is facing towards the study lamp.   

 

We used a N-MOS 512 pixel photodiode array (HAMAMATSU, S 3902). Each pixel has 

50 µm pitch and 0.5 mm height. The maximum light sensitivity of the detector is at 600 nm. The 

light sensitivity of the detector at 488 nm is ca. 10% less compared to that at 632 nm. The 

detector runs at 62.5 kHz pixel readout rate and a 50 ms integration time (20 Hz). The dynamic 

range of the detector (i.e., peak signal to RMS noise) is 30,000 to 1. 

 

A Labview Interface program was used for the data acquisition. This program uses a 

National Instruments PCI-6034E Data Acquisition Card (NI Part # 778075-01) to collect 

“frames” of data. Each frame consists of one-512 pixel array with 16-bit resolution. 
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We determined the scattering wave vector q similar to that described by Ferri (Ferri 

1997) as follows: 

 

The light scattered at an angle θ  is mapped by the lens 1L into a ring of radius r placed 

on the focal plane (i.e., Fourier plane) of the lens 1L 16 : 

 

,tan1 θfr =                (5.1) 

 

where 1f is the focal distance of .1L The horizontal component of this ring is then mapped 

by 2L on the photodiode array into a distance l   

 

),/( 22 oi ssrl =               (5.2) 

 

where 2os and 2is are, respectively, the object distance and the image distance of .2L The 

scattering wave vector in the medium is  

 

),2/sin()/4( θλπ=q              (5.3) 

 

where λ and θ are the wavelength of light and the scattering angle in the medium. However, we 

are interested to relate the scattering wave vector in the medium to that in the air   

 

),2/sin()/4( ooq θλπ=              (5.4) 

 

where both oλ and oθ are the wavelength of light and the scattering angle in the air.  

                                                 
16 One can obtain Eq. (5.1) by using the thin lens equation (i.e., 1/so1+1/si1=1/f1) and R/r = 

si1/(si1-f1), where so1 and si1 are, respectively, the object and the image distances. The scattered 

light at angle θ refracts from L1 at a distance R from the optical axis of L1. 
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It can be shown that Eqs. (5.3) and (5.4) are identical when one uses a square cell17. We 

can now combine Eqs. (5.1), (5.2), (5.4), and the small angle approximation to obtain 
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In Eq. (5.5), l  can be written in terms of the photodiode array pixel size and the pixel number as 

 

).#pixel()50( ×= ml µ              (5.6) 

 

In order to find all the parameters for SALS setup, we started with an arbitrary distance 

for 2os . We then calculated all the subsequent parameters and chose the parameters that would 

give the optimum results. However, we needed to consider the following points: 

 

(i) There are always some limits set by the size of the optical table. We also prefered to 

keep the set up simple, and hence easy to calibrate. Therefore, we did not use any 

mirror to direct the beam around the optical table to gain more space. 

(ii) To collect the maximum possible scattered angle with 1L , i.e., 15o.  

(iii) To avoid the vignetting problem: 21o1io )s/s(w2 φ< , where ow2  and 2φ  are, 

respectively, the laser beam diameter and the diameter of 2L . 

(iv) The PDA pixel size was 50 µm which was large compared to a typical CCD detector 

with a pixel size of ca. 10 µm. Therefore, in order to increase the image resolution with 

our available experimental setup, we kept the ratio #pixel/q small without sacrificing 

the maximum scattered angle collected by .1L The only parameters in Eq. (5.5) that 

could conveniently be adjusted were 2os and .2is   

                                                 
17 By using the Snell’s Law (i.e., nsinθ=sinθo, where n is the refractive index of the medium), 

λ=λo/n, and the small angle approximation (sinθ~ θ), one can show that Eqs. (5.3) and (5.4) are 

identical in a square cell.  
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The parameters (i.e., 1os , 1is , 2os , and 2is  ) depicted in Fig. 5.1 are 1os =94 mm, 1is =371 

mm, 2os =296 mm, and 2is =151 mm. Note that all these parameters are measured from the 

principal planes of the lenses whose thicknesses are no longer negligible (Hecht 2002). The 

actual photodiode array chip (see Fig. 5.1) is located at ca. mm 04=d from the outermost edge 

of the PDA detector.  

 

We first needed to align the SALS setup before calibrating the set up. Since the SALS 

apparatus is meant to collect the scattered light at very small angles (i.e., 0.1o), alignment of the 

laser beam is therefore an important procedure. One can first align the laser beam without having 

the optical components in place and then place a few irises to set a reference point during the 

alignment procedure. She/he can then place the lens 1L and ensure that the beam is passing 

through the center of 1L . This task can be easily done by having an iris at the front (or object 

side) of 1L . One can then adjust 1L (i.e., mounted on a XYZ translation stage) by looking at the 

backscattered beam onto the iris just behind .1L The backscattered beam does not overlap with 

the incoming beam unless the beam has passed through the center of .1L One can hold and 

precisely mark the position of each lens by using the L-shaped metal brackets. These brackets are 

bolted to the optical table as a guide which can sometimes be advantageous compared to bolting 

down the translation stages. Quite often, there is a need to repeat a process (alignment, 

calibration) several times; therefore, it would be less time consuming and more convenient if one 

can easily remove the lenses and/or put the lenses back in just a few seconds. The same 

procedure should be repeated for 2L . Note that the alignment of the laser beam should be 

checked with the detector throughout the calibration procedure, i.e., the maximum peak of the 

beam should remain at the same pixel number. 

 

Figure 5.2 shows the small angle light scattering set up. This setup can detect the 

scattering angle approximately ranging between 0.09o - 14o corresponding to the scattering wave 

vector ranging between ca. 200 1cm− - 31000 1cm− .  
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Figure 5.2  The Small Angle Light Scattering set up. The scattering angles ranges between 0.09o 

and 14o. 

5.1.1   SALS Calibrations  
 

The calibration of the SALS setup was carried out by using a 10 µm (Lenox Laser, A-

SLIT-3/8-DISC-10) single slit. In order to adjust the position of the single slit, it was mounted 

onto a XYZ translation stage. We placed the slit at mm 941  = so , i.e., measured from its 

respective principal plane of the lens .1L We then adjusted the position of the single slit and the 

detector in y-z plane to ensure that the maximum intensity was detected by the detector.  

 

In order to minimize the stray light getting into the detector, we performed the 

experiment in a dark room. In addition, a cardboard box was placed over the detector and the 

lenses to ensure the maximum darkness during the measurements. We also removed the small 

mirror while calibrating the set up with the single slit.  

 

The scattered intensity was then collected versus the pixel number. In order to measure 

the background, which was the ambient dark room in this experiment, the laser beam was 

blocked and the data were measured accordingly; the background was then subtracted from the 
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data. Note that the background measurements should be determined according to each 

experiment, and hence can be measured quite differently. To compare the calibration data with 

theory, we used the far-field diffraction theory (i.e., Fraunhofer diffraction) of a single slit, i.e.,  

 

,)
)2(

)2sin(()0()( 2

Dq
DqIqI =              (5.7) 

 
where D (i.e., 10 µm) is the width of the single slit (Hecht 2002).  

 

Figure 5.3 shows the result of the single slit calibration for 1os =94 mm, 1is =371 mm, 

2os =296 mm, 2is =151 mm. In this figure the scattered intensity )(qI is plotted versus q , i.e., 

determined from Eqs. (5.5) and (5.6). The experimental data are normalized to one on the 

intensity scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3  The 10 µm single slit calibration for the SALS setup, where 1os  = 94 mm, 1is = 371 

mm 2os = 296 mm, and 2is = 151 mm. 
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As can be seen in Fig. 5.3, the experimental data are somewhat noisy; also, the detected 

scattering angle is less than what was expected, i.e., based on Eq. (5.5) and (5.6) for the values 

given in the previous page.  

 

We then gradually decreased the distance between the single slit and 1L  until the fourth 

peak was detected as well, we then measured the distance which is 1os = 82 mm. The calibration 

for the new configuration is shown in Fig. 5.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  The 10 µm single slit calibration for the SALS setup, where 1os  = 82 mm, 1is = 371 

mm 2os = 296 mm, and 2is = 151 mm. 

 

We also found that if we increase the distance between the detector and 2L ,i.e., from 

2is = 151 mm to 2is = 180 mm, we would get a less noisy result for the calibration which is 

shown in Fig. 5.5. The reason could be that the image formed on the detector was slightly 
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magnified to yield a smaller calibration factor (i.e., the correlation between q and pixel number), 

and hence a higher resolution. In addition, the calibration factor was adjusted according to the 

new configuration. However, it is important to note that once the calibration factor is determined, 

it has to remain fixed throughout later experiments. The SALS set up can also be calibrated by 

using a 10 µm pinhole; however, in this case the signal to noise is weaker compared to the single 

slit calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  The 10 µm single slit calibration for the SALS setup, where 1os  = 82 mm, 1is = 371 

mm 2os = 296 mm, and 2is = 180 mm. 

 

In order to test the setup further, we performed an experiment with aqueous dispersions 

of polystyrene latex spheres with a diameter of 9.6 µm (7.4% coefficient of variance), obtained 

from Interfacial Dynamics Corporation. The volume fraction was chosen so that multiple 

scattering was negligible (Chapter 3). We used a quartz cell with an optical path length of 2 mm.  
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 Prior to the measurements, the empty cell was first placed on the translation stage. The 

position of the cell in y-z plane was adjusted in order to minimize the scattering from the empty 

cell which could be due to the imperfection in the quartz cell. The cell was then slightly tilted 

with respect to the optical axis to avoid beam reflections falling onto the detector (Ferri 1997). 

Then, the small mirror was adjusted so that the focused transmitted beam hit the tip very close to 

the upper edge, allowing the scattered light at very small angles to pass clear. The cell was then 

filled with distilled water and was positioned on the translation stage. The background data was 

then measured and was subsequently subtracted from the measurements. The colloidal 

suspension was then transferred into the cell, and the scattered light intensity was measured 

versus the pixel number, hence q.  

 

Figure 5.6 shows the scattered intensities )(qI versus q . The volume fraction of the 

polystyrene dispersion was 4105 −×=vf . The theoretical Mie-Lorentz scattering curve (red 

curve) is also plotted as a reference (see section 3.4). The agreement between theory and 

experiment was satisfactory.  
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Figure 5.6  The scattered intensity is plotted versus q for a dispersed solution of polystyrene 

microspheres (9.6 µm). The volume fraction is 4105 −×=vf . The result is compared to the Mie-

Lorentz theory. 

 

5.2   Experimental Methods and the Scattering Cell 
 

The experiments were performed with surfactant-free nearly monodisperse polystyrene 

latex spheres with a diameter of σ = 20 nm (12-15% coefficient of variance which was provided 

by the manufacturer), purchased from IDC. The surface of polystyrene colloids is negatively 

charged with sulfate and high density of carboxylate-modified functional groups on the surface 

(i.e., CML). The surface charge is pH dependent, but is stable at wide range of pH. In addition, 

the surface (i.e., negatively charged) is hydrophobic at low pH and somewhat hydrophilic at high 

pH. In order to minimize bacterial contamination, the polystyrene samples should be stored in 

the refrigerator at 2-8 Co . Magnesium chloride salt (MgCl2) (purchased from Aldrich) was used 
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to screen the double-layer repulsive potential (DLVO theory), and hence to induce the 

aggregation.  

 

The polystyrene and MgCl2 solutions were prepared in a 50-50 volume to volume 

mixture of H2O and D2O (purchased from Cambridge Isotopes Lab, Inc.) to match the density of 

polystyrene (i.e., 1.05 g/cm3) (Cipelletti et al 2000); hence, to prevent any sedimentation effects 

due to gravity (Allain & Cloitre 1993, Allain et al 1995, Asnaghi et al 1992, Gonzalez 2001). 

Equal volumes of polystyrene dispersions and MgCl2 solutions were simultaneously squirted 

using micro liter syringes (Hamilton Company) into the scattering cell (i.e., described below). 

The scattering cell was then mounted on a XYZ-translation stage for SALS measurements.  

 

The scattering cell, which is shown in Fig. 5.7, was made of one O-ring (silicone or 

Viton) sandwiched between two 23 mm-diameter quartz windows (purchased from NSG 

Precision Cells, Inc.) and two washers (i.e., to help to seal the sample). The sample was sealed 

inside a metal sample holder, which had a hole centered on the quartz windows. The scattering 

cell was then immediately mounted onto a sample holder (i.e., sample rotator). The background 

intensity was then measured after placing the unstable colloidal sample on the sample holder. 

The background intensity, which was very small fraction of the scattered intensity, was then 

subtracted from subsequent light scattering measurements.  

 

Prior to any light scattering measurement, the empty cell was first placed on the 

translation stage. The position of the cell in Y-Z plane was adjusted so that the backscattered 

beam from both windows overlapped. This was particularly needed for the scattering cell used in 

this work, because the two windows could not exactly be parallel, and hence this procedure was 

required before any light scattering measurements. The cell was then slightly tilted with respect 

to the optical axis to avoid beam reflections falling onto the detector (Ferri 1997). The 

background intensity was measured immediately after placing the unstable colloidal sample on 

the sample holder. The background intensity, which was very small fraction of the scattered 

intensity, was then subtracted from subsequent light scattering measurements. It is important to 

note that the largest aggregate size in our experiments were approximately 20 µm whereas the 
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size of the laser beam was 1.25 mm. Therefore, the light scattering measurement were an 

ensemble average over the area of the laser beam hitting the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  The scattering cell (left) and the sample holder (right) are shown. The solutions are 

injected into the cell through two holes inserted in the O-ring. The metal sample holder has a 

hole centered on the quartz windows. The sample is mounted onto the translation stage for SALS 

measurements 
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CHAPTER 6 Light Scattering Measurements of the Gel 

Time in the DLCA Regime  

 

6.1   Motivation  
 

Our motivation to perform these experiments was based on the discrepancy we found 

between our experimental gel time in a DLCA regime and the theoretical gel time given in Eq. 

(4.50). Here we show the reason for this discrepancy. 

 

In Fig. 6.1, the theoretical characteristic time (below) and the theoretical gel time (top) 

are plotted versus various volume fractions of particles of radii 10 nm and 100 nm as examples. 

Water was chosen as the dispersed medium having a viscosity of )/(1089.0 3 mskg−×=η at 

25 Co . The fractal dimension of fD = 1.8 (representing a DLCA process) was used to calculate 

Eq. (4.49). The dashed line shown in Fig. 6.1 (below) is the mixing time (i.e., typically about one 

second) which is the time required to stir the colloidal solutions and the salt concentrations. The 

latter is used to screen the double layer repulsive potential of the initially charge stabilized 

particles, and thus to induce an aggregation. 

 

As can be seen in Fig. 6.1 (below) the mixing time is two to three orders of magnitude 

larger than the characteristic time, indicating that mixing can effect (enhance or decrease) the 

aggregation rate in an aggregating system. One is almost tempted to use larger particle sizes to 

avoid this problem. However, this solution is not as simple as it sounds for two main reasons. By 

increasing the particle size to (for example) 100 nm, the gel time will unbearably become very 

long for the measurements, as can be seen in Fig. 6.1 (top). For example, for the volume fraction 

of 1E-4, the characteristic time is about 6 seconds (i.e., above mixing time); however, one has to 

wait 666 hours for the sample to gel! On the other hand, one may propose to choose a higher 
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volume fraction, and hence a more realistic gel time. This, however, could give rise to another 

problem, particularly in the SALS experiments. That is, the scattering of the particles would 

enhance significantly ( 6aI ∝ ), and hence the multiple scattering would become troublesome.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.1  The theoretical characteristic time (below) and the gel time (top) are plotted versus 

various volume fractions for particles of radii 10 nm and 100 nm. The dashed line (below) is the 

mixing time required to stir the colloidal solution and the salt concentration (i.e., to induce the 

aggregation). 
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6.2   Results and Discussions 
 

In order to understand the effect of initial mixing on the aggregation rate in a DLCA 

regime, we performed a series of light scattering measurements with aqueous dispersions of 

polystyrene colloids of radius nm 10=a (14.6 % coefficient of variance). The final volume 

fraction of the polystyrene particles ranged between 51063.3 −× and 41076.2 −×  (the initial 

volume fraction of polystyrene was double the final volume fraction). In order to find the correct 

range of salt concentrations the following procedure was carried out. 

 

(i) The volume fraction of the polystyrene close to 410−  was chosen so that the 

experimental gel time can be measured within a reasonable time.   

(ii) The salt concentration was varied ranging from 2 mM to 50 mM (i.e., final 

concentration).  

(iii) The gel time was then measured based on the SALS measurements, that is, when the 

light scattering data stop evolving further within 10% variation (i.e., somewhat 

arbitrary but the gel time measurements need to be consistent in this sense). 

(iv) The gel time measurements (for the given volume fraction) were plotted against the salt 

concentrations. 

(v) The DLCA regime is when the gel time does not depend on the salt molarity. However, 

in practice, the salt concentration cannot be very high, because the sample flocculates 

immediately after the initial mixing the two solutions. Here flocculation means that 

visible sub-millimeter aggregates form in the sample.  

 

Figure 6.2 shows an example of the gel time measurements for various salt 

concentrations (i.e., 2, 5, 10, and 40mM). The final volume fraction of the polystyrene solution 

was 1.2E-4.  

 

As can be seen in Fig. 6.2, the gel time remains approximately constant as the salt 

concentration is decreased from 40 mM to 10 mM; this indicates that the aggregation process is 

in the DLCA regime (compared to stability ratio shown in Fig 4.4). However, as the salt 

concentration decreases to 5 mM and 2 mM, the gel time increases indicating that the 
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aggregation is in the RLCA regime. For the salt concentration of 2 mM, the light scattering of 

the system remained unchanged comparable to that of the background (i.e., water) for up to 20 

hours. Therefore, the measurements were stopped since we were interested to perform the gel 

time measurements in the fast regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  The gel time measurements (i.e., determined via SALS) versus the salt 

concentrations. The gel time is ca. constant at high salt concentrations increasing rapidly at lower 

salt concentrations. 

 

In Fig. 6.3, the DLVO potential is plotted versus x  (i.e., σ/rx = , and σ = 20 nm) for the 

above salt concentrations (i.e., 2, 5, 10, and 40mM). The ζ-potential of 30 mV was used to 

calculate the DLVO potential that is somewhat arbitrary, but in the range of the ζ-potential 

reported in the literature (Brinker & Scherer 1990). As shown in this figure, increasing the salt 

concentration further reduces the height of the repulsive potential barrier, and hence the 

aggregation is governed by a DLCA process.  
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Figure 6.3  The DLVO potential is plotted versus x  (i.e., σ/rx = ) for various salt 

concentrations. The particle diameter is σ = 20 nm, and ψo = 30 mV. Increasing the salt 

concentration decreases the repulsive potential barrier further.  

 

Figure 6.4 shows the scattered intensity )(qI  (arbitrary units) measurements versus the 

scattering wave vector, q ( 1−cm ) at various times (i.e., 7- 290 min) after the onset of aggregation. 

The final volume fraction of the polystyrene solution was 1.59E-4, and the final salt 

concentration was 10 mM. The first data, which was taken immediately (i.e., within a few 

seconds) after the onset of aggregation, is below 1E-4 on the intensity scale, and hence is 

negligible compared to the scattered light from the aggregating sample at later times. The first 

data was then subtracted from all subsequent measurements.  
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Figure 6.4  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.85 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 180 ± 30 min. The theoretical gel time is 13 min.  

 

There are several features, from light scattering point of view, that can be seen in Fig. 

6.4. 

 

(i) The scattered intensity at small q (i.e., Rayleigh regime) increases with time as 

NnI m∝ , where mn  is the initial monomer number density (i.e. a constant), and N  is 

the number of monomers per cluster. Therefore, the scattered intensity increases as the 

system aggregates (the number of monomers per cluster increases) which is referred to 

as the Tyndall effect. 
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(ii) The power law regime can yield the fractal dimension of the aggregating system if 

RDG conditions are satisfied (i.e., ,112 <<−mak and 11m <<− , where n2 

(polystyrene) =1.59, n1 (water) =1.33, 12 / nnm = , and 129.0~ak ).  

(iii) It can be seen that as aggregates become larger, the Guinier regime, where the slope of 

I  versus q  goes from 0 to negative, progresses to smaller q . One can qualitatively 

determine the size of the aggregates by using 1~ −qRg . Based on this approximate 

equation, the aggregates at the gel point are ca. 10 mµ .  

(iv) When light scattering intensity stops evolving further, it indicates that the aggregates 

have reached to a critical size at which they have spanned the entire system, and hence 

the system is gelled. From this perspective, the experimental gel time can be obtained, 

and compared with the theoretical gel time.  

(v) There is an apparent peak in )(qI  versus q . A peak appears in the structure factor 

( )()( qIqS ∝ ) of dense aggregating colloidal systems when the aggregates radius of 

gyration, gR  becomes comparable in magnitude to the mean nearest neighbor 

separations of the aggregates, nnR . It has been shown, by our group, that the appearance 

of this peak is an artifact (Cerda et al 2004, Huang et al 1998), and its position on the 

q  scale does not represent a true characteristic length scale of the system as have been 

suggested in literature (Carpineti & Giglio 1992, Gonzalez & Ramirezsantiago 1995, 

Poulin et al 1999).  

 

The sample gelled, based on the definition of a gel in our work, within 180 ± 30 min. The 

fractal dimension of aggregating system is ca. 1.85 indicating that the aggregation is in the 

DLCA regime. We then used Eq. (4.49) to calculated the theoretical gel time which is ca. 13min 

if fD = 1.8 is used, and 31 min if fD = 1.85 is used instead. However, in order to be consistent in 

our interpretation of the results, any variation up to 0.05 in the slope was not considered in the 

calculation. In this experiment, a discrepancy can be seen between the calculated and 

experimental gel time. Therefore, the volume fraction was lowered, and the salt concentration 

was kept the same as above. Then the same light scattering measurements were performed in 
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order to determine the experimental gel time. The whole process of preparation and experiments 

in each run tried to be kept as consistent as possible. 

 

Figure 6.5 shows the scattered light intensity versus )( 1−cmq  for the lowest volume 

fraction, vf = 3.63E-5 in this set of experiments. As can be seen in Fig. 6.5, the experimental gel 

time is 480±50 min, and the theoretical gel time is 514 min. For this volume fraction, there is a 

good agreement between the experimental and theoretical gel time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.85 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 480 ± 50 min. The theoretical gel time is 514 

min.  
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Figures 6.6 to 6.9 show a series of light scattering measurements performed for various 

volume fractions, i.e., lower to higher, respectively. One can see that as the volume fraction 

increases the agreement between the experimental and the theoretical gel times become worse. 

Each graph is self-explanatory based on the light scattering descriptions given above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.80 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 130 ± 10 min. The theoretical gel time is 129 

min. 
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Figure 6.7  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.85 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 120 ± 20 min. The theoretical gel time is 70 min. 
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Figure 6.8  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.80 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 120 ± 20 min. The theoretical gel time is 26 min. 

 

 

 

 

 

 

 

 



 102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is 1.80 indicating the aggregation is in 

DLCA regime. The experimental gel time is ca. 220 ± 40 min. The theoretical gel time is 3 min. 

 

 

In Fig. 6.10, the experimental gel time (sec) (i.e., determined by using SALS) and the 

theoretical gel time (sec) (i.e., calculated using Eq. (4.49)) are plotted versus various volume 

fractions of polystyrene colloidal dispersions ( 10=a nm) ranging 

between 45 1076.21063.3 −− ×≤≤× vf . The final salt concentration was 10 mM. In the inset 

figure, the theoretical characteristic time )(stc , the gel time )(stg , and the initial mixing time 

sstmixing 1~)(  are plotted versus the volume fractions given above.  
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Figure 6.10  The theoretical and experimental gel times versus various volume fractions. The 

inset graph shows the theoretical gel time and characteristic time. Initial mixing time is also 

plotted in the inset graph which is the time (i.e., approximately one second) needed to stir the 

sample.  

 

As can be seen in Fig. 6.10, the experimental gel time at low volume fractions agrees 

well with the theoretical gel time. However, by increasing the volume fractions, the agreement 

between theory and experiment gradually diminishes, and at highest volume fraction, the 

experimental gel time is almost 100 times longer than the predicted theoretical gel time. 

However, as can be seen in Fig. 6.10, the experimental gel times at high volume fractions are 

more or less similar. What is going on?  
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One may propose that the aggregation may not be in a pure DLCA regime causing a 

longer experimental gel time compared to the theory. This scenario is not justified, because if the 

aggregation process is in the RLCA regime, the gel time should be longer at all volume fractions 

in this experiment. On the other hand, it can be seen in Fig. 6.10 that the experimental gel time is 

in fact in good agreement with the theory at low volume fractions.  

 

To our knowledge, this kind of comparison between theoretical and experimental gel 

time have been only made in the RLCA regime using silica colloidal particles (Bremer et al 

1995, Smith & Zukoski 2006). Moreover, the calculated  theoretical gel time of the DLCA 

experiments of other works (Carpineti & Giglio 1992, Cipelletti et al 2000) show similar 

behavior as our work (i.e., theoretical gel time at high volume fraction is much faster than the 

experimental gel time). The volume fraction of the polystyrene (radius of 10 nm) solutions used 

in their experiments were 2.96E-4 (Carpineti & Giglio 1992) and 4.8E-4 (Cipelletti et al 2000); 

MgCl2 salt was used in both experiments to induce the aggregation. 

 

A scaling argument has been proposed by our group in order to understand the 

discrepancy between the theoretical and experimental gel time at high volume fractions. We 

should note here that this scenario has not been tested yet, but so far is the only reasonable 

qualitative approach to understand the data shown in Fig. 6.10.  

 

Equation (4.50) (i.e., 5.23 −∝ vg fat , where 8.1Df = ) can be written in terms of the 

“monomer” number density as  

 

,)( 5.45.25.233 −−− ∝∝ ananat mmg             (6.1) 

 

Now let’s assume that there are some kind of small perturbations (e.g., initial mixing), for 

a very short period of time, in an aggregating system immediately after the onset of aggregation. 

If the characteristic time is longer than the initial mixing time, the initial mixing would not affect 

the aggregation rate. However, if the characteristic time is less than the initial mixing time 
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( mixingc tt << ), then by the time the unstable sample is being mixed, the monomers are 

aggregating to form dimers, trimers, tetramers, and finally N -mers. Depending on the duration 

of initial mixing, one can approximately determine the number of monomers in these small 

clusters, N . Hence the size of these small aggregates a′ can be determined by using Eq. (4.47), 

i.e.,  

 

,D/1Naa ∝′                (6.2) 

 

where D  is the fractal dimension of these small aggregates (i.e., formed during initial mixing). 

D  could be different than fD  (i.e., the fractal dimension of the aggregated system at the gel 

point) depending on the initial mixing time, the volume fraction, and the rate of initial mixing. 

The number of these small aggregates in the system (i.e., “new” monomer number density) can 

be obtained using Eq. (4.38) (i.e., Nnn mc /= ). Therefore, the new gel time gt ′  can be rewritten 

as  

 

.5.45.25.25.45.2 −−−− ′∝′∝′ aNnant mcg             (6.3) 

 

Equation (6.2) can be substituted into Eq. (6.3) to give  

 

,/5.45.45.25.2 D
mg NaNnt −−−∝′              (6.4) 

 

where in Eq. (6.4), gt ′  can be written in terms of gt  (i.e., the gel time of an unperturbed system) 

as 

 

./5.45.2 D
gg NNtt −∝′               (6.5) 

 

The new gel time given in Eq. (6.5) can now be considered for two different conditions, 

i.e. 
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At low volume fractions: Initial mixing forms small fractal aggregates with 8.1=D . 

Therefore, by using 8.1=D  in Eq. (6.5), the new gel time is  

 

.5.25.2
ggg tNNtt ∝∝′ −              (6.6) 

 

This is consistent with the results shown in Fig. 6.10 that at low volume fractions, the 

experimental and theoretical gel time are in good agreements. 

 

At high volume fractions: Initial mixing forms compact aggregates with 3=D . 

Therefore, by using 3=D  in Eq. (6.5), the new gel time is 

 

,5.15.2 NtNNtt ggg ∝∝′ −              (6.7) 

 

where  

 

cmixing ttN /= .               (6.8) 

 

Now substituting Eq. (4.48) (i.e., cGg tNt = )  into Eq. (6.8) yields  

 

,/ gmixingG ttNN =               (6.9) 

 

where mixingG tN  can approximately be considered as a constant, and hence ./1 gtN ∝ Therefore, 

 

constant.)/1( ∝∝′ ggg ttt             (6.10) 

 

Again, this result is consistent with the results shown in Fig 6.10 that the gel time at high volume 

fractions are approximately constant. However, this scaling argument would not yield the correct 

experimental gel time, and this remains unsolved up to this point. Therefore, more experiments 

are needed to understand the effect of initial mixing on an aggregating system.  
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6.3   Conclusions 
 

Our SALS gel time measurements showed good agreements between the theoretical and 

the experimental gel times only at low volume fractions of the polystyrene particles. As the 

volume fraction of the polystyrene solution increased to higher values, the difference between 

theoretical and experimental gel times became significantly large. A scaling argument was 

proposed to explain this discrepancy between the theoretical and experimental gel times. It was 

proposed that the initial mixing time of the colloidal solution with the salt in a DLCA regime is 

essentially important in affecting the aggregation rate.  

6.4   Recommendations for Future Work  
 

In order to further investigate the effect of initial mixing on the aggregation rate and 

gelation, a family of curves, an example is shown in Fig. 6.11, can be obtained by the following 

experiments.  

 

(i) The characteristic time can be increased, especially at high volume fractions, and an 

example of which is shown in Fig. 6.11, curve 3. 

a To slow down the aggregation rate by decreasing the salt concentration, where 

the aggregation is in the RLCA regime (i.e., WDLCAtRLCAt cc )()( = ). This is 

particularly important at high volume fractions in which initial mixing time can 

drastically affect the aggregation rate (e.g., see Fig. 6.10).   

b To increase the viscosity of the dispersion medium, and hence increase the 

characteristic time ( η∝ct ). This can be done by using, for example, glycerol in 

which its viscosity is 1000 time more than that of water. One other advantage of 

glycerol is that its refractive index ( glyceroln =1.47) is close to that of polystyrene 

( psn =1.59), and hence multiple scattering would be less problematic (Hoekstra et 

al 2003, Kikuchi et al 2005, Lumma et al 2000, Torres et al 1991a).  

(ii) The initial mixing time can be increased at low volume fractions to obtain curve (1) as 

shown in Fig. 6.11.  
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(iii) To increase the particle size, and hence to increase the characteristic time 

(i.e., 3atc ∝ ). However, as mentioned earlier, multiple scattering can become 

troublesome with large particle sizes, and thus there is an upper limit to flexibility of 

this method. Therefore, for SALS purposes, an increase up to twice as large as the 

previous experiment (diameter 20 nm) is suggested. 

 

It is important to note that there are certainly some constraining limits to the flexibility of 

the experiments suggested above. Here we only addressed a few of those such as multiple 

scattering at large particle sizes, very long gel times at large particle sizes, and/or low volume 

fractions. Therefore, some preliminary experiments are required before further pursuing any 

systematic and extensive experiments to investigate the effect of initial mixing on gelation 
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Figure 6.11  A schematic family of curves is shown for the gel time versus the volume fractions. 

Curve (1) (i.e., red curve) suggests that if an unstable aggregating colloidal solution is initially 

mixed for longer times, the initial mixing itself would induce the gelation. Curve (2) is similar to 

the curve shown in Fig. 6.10 for which the gel time experiments were performed. However, this 

curve can be extended by more experiments at lower volume fractions. Curve (3) is particularly 

important at higher volume fractions in which initial mixing can affect the aggregation rate 

drastically. Curve 3 can be obtained by performing the experiments in RLCA regime. The back 

line shows the gel time for the 20 nm in radius colloids. The gray hollow triangles are the 

experimental gel times from Fig. 6.10. 
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CHAPTER 7 SALS Studies of the Effects of Shear on 

Colloidal Aggregation and Gelation  

 

7.1   Introduction 
 

Many experimental and theoretical studies have been carried out to investigate the effect 

of shear flow on the kinetics of aggregation, the resulting size distributions, and the structures of 

particle aggregates.  

 

Shear can promote aggregation of colloidal particles by either increasing the rate in an 

unstable dispersion or mechanically destabilizing a dispersion resistant to Brownian aggregation. 

In the former situation, the degree of enhancement depends primarily on the rate of collisions 

due to shear relative to those from diffusion alone, as reflected by Péclet number (Russel et al 

1999). 

 

An aggregate subjected to stress may undergo structural revision in two ways and   

possibly with a combination of the two mechanisms. If there is a weak bond in the structure, it 

may fracture and break apart, recombining with the same or another aggregate under more 

favorable conditions (forming bonds at more than a few sites) (Flesch et al 1999). If the weak 

points can withstand the stress, then part of the aggregates can rotate and form more bonds 

within itself, becoming more compact in the process (Lin et al 1990a, Selomulya et al 2002). The 

former revision is known as a fragmentation-reaggregation process and the latter as restructuring.  

7.2   Literature Review 
 

A brief overview of the shear experiments in the literature is given below. We then 

discuss these results later in more detail (e.g., the fractal dimension of the fractal aggregates and 

the mechanisms by which these aggregates have formed, i.e., restructuring, fragmentation, or a 

combination of both).  
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In order to study shear, various types of shear cells are used for this purpose such as  

 

(i) The Couette flow cell which can be a two concentric-cylinder system with an inner 

cylinder rotating while the outer cylinder is at stationary (Wang et al 2005) or vice 

versa (Zeichner & Schowalter 1979). Some of these Couette cells are designed such 

that in situ measurements can be performed using static light scattering technique 

(Clarke et al 1995, Hashimoto et al 1986, Varadan & Solomon 2001, Weber & 

Schosseler 2002). 

(ii) A parallel plate shear cell with a continuous rotation (Clarke et al 1995, Kikuchi et al 

2005) or an oscillatory rotation (Yan et al 1994).  

(iii) Using stirred tanks is another type of shear cell which is useful especially because of its 

industrial applications (Flesch et al 1999, Spicer et al 1996).  

 

The colloidal dispersion and the salt solution are prepared with the desired concentrations 

which are then mixed. 

 

(i) The unstable colloidal solutions are then immediately subjected to shear until a stable 

aggregate size is reached in the system (Kikuchi et al 2005, Oles 1992, Selomulya et al 

2002, Serra & Casamitjana 1998, Serra et al 1997, Torres et al 1991a, Wang et al 

2005). 

(ii) The system is allowed to aggregate for a period of days, and then the shear is applied in 

short impulses, which would subsequently increase, to the aggregated system (Sonntag 

& Russel 1986). 

(iii) The colloidal system is allowed to aggregate and reach to a certain size (500nm). The 

shear is then applied for 0.5 second (Lin et al 1990a, Lindsay et al 1987). 

 

The particle sizes (diameterσ ) used have been  

 

(i) σ < 50 nm (Lin et al 1990a, Lindsay et al 1987). 

(ii) 50 nm < σ < 100 nm (Selomulya et al 2002, Torres et al 1991a). 

(iii) 0.1 µm < σ < 1 µm (Flesch et al 1999, Selomulya et al 2002, Sonntag & Russel 1986). 
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(iv) 1 µm < σ < 5 µm (Kikuchi et al 2005, Oles 1992, Serra & Casamitjana 1998, Serra et 

al 1997). 

(v) σ ~ 10 µm (Wang et al 2005). 

 

Finally, the shear rates in these experiments are 

 

(i) γ < 10 1sec−  (Wang et al 2005). 

(ii) 10 1sec−  < γ < 150 1sec− (Kikuchi et al 2005, Oles 1992, Selomulya et al 2002, Serra & 

Casamitjana 1998, Serra et al 1997). 

(iii) γ > 500 1sec−  (Lin et al 1990a, Lindsay et al 1987, Sonntag & Russel 1986, Torres et al 

1991a). 

 

The parameters of the shear experiments listed above hopefully would facilitate a quick 

reference to the shear experiments reviewed in this chapter. In addition, as we talk about our 

experiments later, one can see where our work stands compared to the shear experiments in the 

literature. However, certainly in all the experiments listed above, the Péclet number have been 

much larger than one to ensure that the aggregation in these systems is governed by the shear 

aggregation compared to the Brownian aggregation.   

 

Sonntag and Russel (Sonntag & Russel 1986) examined the aggregation in shear flow (γ 

= 1500-6000 1sec− ) of diluted suspension of polystyrene latexes in a Couette flow cell using 

static light scattering technique. In their experiments polystyrene (140 nm in diameter) 

dispersion was prepared in a mixture of glycerol and water. Glycerol was used to slow down the 

characteristic time to allow sufficient time for mixing, shearing, and sampling. The addition of 

NaCl salt to the polystyrene solution brought the ionic strength to 0.4 M and the volume fraction 

to 3
v 107.4f −×= . The system was then allowed to aggregate for a period of days. To ensure a 

uniform starting point for their experiments, the aggregation was allowed to continue until the 

latex separated from the suspending medium. The suspensions were then subjected to short 

impulses of know shear rate, in order to minimize the effect of aggregate-aggregate collisions, 

causing an instantaneous fragmentation. Then subsequent impulses of greater shear rate were 
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applied which would progressively reduce the aggregate size in accord with the increasing 

maximum shear rate. At desired intervals during the shear history, the Couette cell was stopped, 

and a sample was extracted and transferred into a scattering cell for light scattering 

measurements. The fractal dimension of the aggregates was 2.48Df =  when the samples were 

sheared at two widely different shear rates. 

 

Torres, Russel, and Schowalter (Torres et al 1991a), similar to the experiment described 

above, used a mixture of glycerol/water for both salt and polystyrene solutions. The shear 

experiments were carried out using a Couette shear cell at 6
v 101f −×=  of polystyrene 98 nm 

and a NaCl salt concentration of 1 M . After mixing the polystyrene and the salt solutions, the 

sample was immediately transferred into a shear cell. The unstable sample was then subjected to 

a shear (γ = 780-1590 1sec− ) for shearing times between 5 and 30 min. After shearing for a 

predetermined time, they removed a sample and transferred it into a light scattering cell for static 

light scattering measurements (the scattering angles ranging between oo 16012 − )18. They found 

1.8Df =  for the sheared samples regardless of the shear rates; their static light scattering 

measurements for Brownian and shear aggregation were indistinguishable. Further, their 

dynamic light scattering (DLS) measurements showed that the aggregation growth rate in a 

sheared sample was much faster than the Brownian aggregation. Their DLS measurements 

showed that the aggregates grew due to shear until they reached a maximum size; this maximum 

size would depend on the shear rate (i.e., smallest for the highest shear rates). Initially they 

considered two possibilities of restructuring and fragmentation of the aggregates due to shear; 

however, their DLS measurements did not show slow kinetics. Therefore, they concluded that 

restructuring of the aggregates did not occur in their experiments (because restructuring would 

yield more compact aggregates, and hence would slow the kinetics accordingly) and 

fragmentation was the most likely mechanism happening in their shear experiments. This 

group, based on the following argument, presented an approximated breakup criterion. They 

                                                 
18 Note that the largest aggregate size that could be probed in their light scattering setup was 

about 300 nm; thus, if the aggregates had a different structure, it could not be detected with their 

light scattering setup. 



 114

proposed that fragmentation occurred when the hydrodynamic force pulling the aggregates apart 

exceeded the attractive forces. Furthermore, by assuming that two aggregates ( i  and j ) joined at 

one particle-particle bond, they showed19 that 

 

,)
18

( )R ( 2/1
2jh,, δγπη

H
ih

AaR ≤+             (7.1) 

 

where HA is the Hamaker constant, hR  is the hydrodynamic radius of the aggregates ( hR is 

defined as the radius of a sphere having the same Stokes drag as the given aggregate, 

and 875.0/ =gh RR ), δ  is a value that corresponds to length scales at which molecular 

structure, roughness, etc., become important and can be approximated to 1 nm. Hierarchical 

simulations performed by the same group (Torres et al 1991b) supported their experimental 

results for flow-induced cluster-cluster aggregation in which rigid bonds form at contact. 

 

Oles (Oles 1992) carried out aggregation experiments in a laminar shear Couette 

apparatus (γ = 25-150 1sec− ) using NaCl=1.16 M  to destabilize a monodisperse suspension of 

polystyrene particles of 2.17 µm with a final 6
v 10f −=  and 6

v 105f −×= . The unstable system 

was transferred into the shear cell within 4-5 minutes. To monitor the dynamics of the size 

distribution, continuous samples were taken from the Couette-flow system with a system of 

plastic tubing. The samples passed through the optical cell of a particle sizer and were pumped 

back into the Couette-flow system. Similar to the above experiments, the particle aggregated due 

to shear, and the aggregation slowed down and a stable aggregate size was reached. Oles found 

that high shear leaded to an increase in the aggregation rate and to a decrease of the equilibrium 

size. The fractal dimension of the aggregates in the initial growth phase was 2.1, changing to 

2.5Df =  in later stages of the aggregation. He proposed that the initial fractal dimension of  

2.1Df =  was due to restructuring of the aggregates in the shear field and the further increase in 

                                                 
19 Zeichner and Schowalter have shown that the Hamaker constant for both fast aggregation and 

fast shear induced aggregation is similar, i.e., AH ~ 2 2110−× J. 
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the fractal dimension ( 5.2Df = ) was due to a preferred fragmentation of weak parts of the 

clusters. Furthermore, his results show that the fractal dimension is independent of the shear rates 

examined in their experiments.  

 

Serra and Casamitjana (Serra & Casamitjana 1998) studied the aggregation and breakup 

behaviors of particles in a laminar Couette flow apparatus (γ =25, 32, and 50 1sec− ). 

Suspensions of latex particles of 2 µm were prepared in 1.29 M NaCl at volume fraction 

of 5
v 105f −×= . Similar to Oles’s work, the samples were taken from the Couette cell into a 

scattering cell for measurements by using tubes, pumped back into the Couette system after the 

measurements. The fractal dimension of the aggregates in the initial stage of growth 

was 1.8D f = . The fractal dimension of the aggregates after reaching the equilibrium size was 

0.222.24Df ±= . This fractal dimension was independent of the shear rates. They found that the 

aspect ratio of the aggregates did not change during the aggregation process, which seemed to be 

in accordance with the fact that there was no change in the structure of the aggregates. Therefore, 

they concluded that there was no restructuring in the process, and instead fragmentation was the 

only mechanism impeding further growth of the aggregates. Serra, Colomer, and Casamitjana 

(Serra et al 1997) carried out similar experiments in both laminar and turbulent regime (γ=25-

195 1sec− ) and found that shear-induced fragmentation was the pronounced mechanism in their 

shear experiments.  

 

Kikuchi et al. (Kikuchi et al 2005) studied aggregation and breakup behaviors of latex 

particles in shear flow confined between two parallel plates using laser scanning confocal 

microscope (CLSM). The distance between two plates was ranging between 30 and 100 µm. The 

shear rates were from 20 to 80 1sec− . A suspension of polystyrene latex particles of 2 µm 

diameter was used in all the experiments with a final volume fraction of  2 310−×  or 4 310−× . 

The salt concentration (NaCl) was 0.2 M. In their experiments, the aggregation was initially 

dominant in the early stage of shearing. However, at later stage of shearing, fragmentation and 

aggregation became equally significant, and thus the steady state was maintained. The perimeter 

based fractal dimension pD was determined via image analysis of their CLSM measurements. 
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The perimeter based fractal dimension was found to be independent of the shear rate and the gap 

width between two plates in their experiments 1.2Dp = 20.  

 

Flesch, Spicer, and Pratsinis (Flesch et al 1999) carried out aggregation experiments of a 

polystyrene particle/Al(OH)3/water system in a stirred tank. The volume fraction of the 

polystyrene particle (diameter of 870 nm) was 1.4 510−× . The salt (i.e., Al2(SO4)3) was added to 

the polystyrene suspension and mixed with the suspension and then the impeller was set to the 

desired speed. The average shear rates in their experiment were γ = 50, 100, and 150 1sec− . 

During the shear aggregation experiment, samples were taken, at different times, from the tank 

into a particle sizer (light scattering set up, Malvern instruments) using a syringe. The particles 

aggregated initially due to shear, but then reached a steady state at which the aggregate size did 

not increase further. The fractal dimension characterizing the aggregate structure was 

independent of shear rates in their experiment, i.e., 0.052.05Df ±= . In order to have an 

agreement between their experimental results and the Smoluchowski’s theory for shear 

aggregation, the fragmentation needed to be considered in the theory. In another study, Spicer, 

Keller, and Pratsinis (Spicer et al 1996) had investigated the effects of impeller type and the 

average shear rates of  γ = 15, 25, and 50 1sec−  on aggregate size and  their structure during the 

shear-induced aggregation. An optical microscope equipped with video camera was used to 

determine the perimeter-based fractal dimension pD in their experiments. They found that the 

evolution of the perimeter-based fractal dimension pD (from the beginning of the shear until the 

system reached steady state in terms of aggregate size and fractal dimension) was not influenced 

by impeller type at γ = 15, 25 1sec− . However, at 1sec50γ −= a maximum in pD was observed 

prior to attainment of steady state for the axial flow impellers as a result of “restructuring”; 

however, fragmentation decreased 1.3Dp ≈  (i.e., 2.55Df ≈ ) at later times. The fractal 

dimension of the aggregates remained more or less within pD =1.23-1.33 ( less than 8% 

                                                 
20 Using the formula given earlier (i.e., 2Dfor,)D3(1D ffp

2/3 >−+= ), the mass fractal dimension 

is calculated to be fD =2.66.  
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variation) during shearing as shown in Fig 8C in their paper (Spicer et al 1996). Therefore, it is 

more logical to consider the restructuring of the aggregates within the uncertainty of their 

experiments. Also, it should be pointed that this group obtained more compact aggregates for 
1sec50 −<γ  (i.e., 2.55Df ≈ ) than that for 1sec15050 −−=γ  (i.e., 2.05Df ≈ ).  

 

Wang et al. (Wang et al 2005) performed an experimental and computational 

investigation on the effect of local fluid shear rate in the aggregation and fragmentation of an 

aqueous dispersion of 9.6 µm latex spheres undergoing laminar shear flow in a Couette cell. 

Polystyrene suspension 2
v 104f −×=  was then mixed with NaCl salt so that the concentration 

of NaCl in the resulting suspension was 1.29 M .The shear rates were (γ = 2.20,  4.49, and 6.74 
1sec− ). The unstable sample was transferred to the Couette cell and the shear was set to the 

desired rate. A progressive scan monochrome CCD camera was used to capture images in their 

experiments. They found that that the perimeter fractal dimension of the aggregates (i.e., 

obtained from the image analysis) initially increased and at later times, pD decreased as 

fragmentation became significant and broke apart the aggregates. However, they observed that 

even as the mean aggregate size reached a plateau (fragmentation and aggregation become both 

significant), the perimeter-based fractal dimension decreased. Therefore, they suggested that 

even after aggregates stopped growing, they undergo a “breakup-induced restructuring” process 

so that they become more compact. Furthermore, they found that pD decreased with increasing 

mean shear rate (indicating that the mass fractal dimension increased with increasing the shear 

rate). However, based on the graph shown in their paper (Fig. 16 in their paper), pD  is in the 

range between 1.15 and 1.25 (i.e., ≈fD 2.6-2.7) throughout their shear experiments. Hence their 

interpretations regarding the “breakup-induced restructuring” mechanism and their statement on 

having more compact aggregates with higher shear rates should be considered with care.  

 

Lin et al. and Lindsay et al. (Lin et al 1990a, Lindsay et al 1987) performed an 

experiment with colloidal gold (diameter of 15 nm). The initial volume fraction in their 

experiment was ca. 610− . The aggregation was initiated by addition of pyridine. When the 

aggregates were roughly about 500 nm, the shear (ca. γ 410≈ 1sec− ) was applied by forcing the 
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sample through a tube using a syringe pump. The clusters were exposed to shear for times 

shorter than 0.5 sec, ensuring that no significant aggregation occurs during this shearing. 

Immediately after the shearing, the aggregation was stopped by addition of surfactant. The 

sample was then examined by static light scattering measurements. There were two slopes in the 

light scattering structure. The slope at smaller length scale (large q ) was similar to the unsheared 

sample (i.e., 1.84Df =  in DLCA regime). The second slope, having a stronger slope, was at 

larger length scale (small q ). By increasing the shear rate, the negative slope (at low q ) 

increased from 2.2  to 2.8 . They suggested that the shear caused the fractal aggregates to 

restructure the aggregates. These restructuring occurred at larger length scales, where the 

structure is weaker and the forces larger. However, below some length scale, the aggregates were 

strong enough to withstand the shear to which they were subjected. The formation of loops and 

additional bonds ensured that some of the mass of the clusters was moved toward their centers, 

hence resulting in a decrease in gR . They also considered the possibility of fragmentation, but 

their DLS results did not show any measurable change in hR  after the shear was applied, and 

hence they concluded that fragmentation did not happen in their experiments. Moreover, the 

length scale qR  corresponding to the cross over between the two slopes on q  scale decreased 

very rapidly with increasing shear. By further increasing the shear rate, qR  approached a 

asymptotic constant value of 100 nm.  

 

Selomulya et al. (Selomulya et al 2002) used a SALS technique ( 1510100 −−= cmq ) to 

monitor the aggregate size and structure in the shear-induced aggregation of dilute suspensions 

of latex particles with different diameters (i.e., 60,  380, and 810 nm) in a Couette flow cell 

under shear rates ranging from 30 to 300 1sec− . In their experiments, both laminar and turbulent 

(i.e., 1sec100 −>γ ) shear rates were studied. The volume fractions of 60, 380, and 810 nm 

polystyrene dispersions were, respectively, 6103.83 −×=vf , 5103.74 −×=vf , and 

4103.76 −×=vf  after being mixed with equal volume of MgCl2 salt solutions (i.e., with final 

concentration of 0.05 M). A small sample was continuously transferred into the scattering cell 

using a tube; the sample was then pumped back into the shear cell. This group found that the 

aggregates formed of 60 nm and 380 nm particles rapidly attained their maximum size before 
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reaching significantly smaller steady state values, particularly at low shear rates. Whereas the 

aggregates of 810 nm particles displayed negligible or no decrease in aggregation size on 

approaching equilibrium. They also showed that the differences in the aggregates behavior were 

less apparent at higher shear rates, where fragmentation was favored, regardless of the primary 

particle size. There were two slopes in their light scattering data (i.e., similar to the results of Lin 

et al. presented above) of which here we focus on the small q  region (or larger length scale) 

referred by this group as SE21 (i.e., scattering exponent). For 60 nm, the SE was 2.65Df ≈  for 

1sec32 −=γ  increasing to 2.8Df ≈  for 1sec330 −=γ . For 1sec100 −<γ , it was suggested that 

restructuring was the main mechanism to form compact aggregates based on the measurements 

of the aggregate size gR  and the number of particles per cluster N (both obtained from SALS 

measurements). If fragmentation was the sole cause of the reduction of the aggregate size, it was 

expected that gR  and N  decreased simultaneously. However, their results showed that gR  and 

N  initially increased due to shear-induced aggregation, gR  then reached a maximum before N . 

They suggested that aggregates first restructured but then fragmentation eventually occurred 

as gR  and N  decreased concurrently. For 1sec100 −>γ , both gR  and N  initially increased 

due to shear-induced aggregation, but remained more or less constant during shearing. The 

aggregates formed of  380 nm particles restructured due to shear which then followed by 

fragmentation, and at higher shear rates fragmentation was the dominating mechanism (i.e., 

similar to aggregates formed of 60 nm particles). The fractal dimension of the aggregates was 

2.50Df ≈  for 1sec32 −=γ  and 3Df ≈  for 1sec462 −=γ . For aggregates formed of 810 nm 

particles, no decrease in size was observed after the aggregates reached their equilibrium size, 

whereas SE still continued to increase. Therefore, they concluded that fragmentation and 

reaggregation were the main mechanisms in governing the final aggregate size and structure. 

                                                 
21 A complication, which arises with the light scattering measurement of aggregates undergoing 

restructuring, is a change in the slope of scattered light intensity versus the scattering vector q  

plots, which violates the RDG approximation. The slope of these plots were designated the 

scattering exponent (SE), rather than the fractal dimension in view of these uncertainties (Peker 

2007) 
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The fractal dimension of the aggregates was 2Df ≈  for 1sec32 −=γ  and 2.7Df ≈  for 

1sec462 −=γ .  

 

Figure 7.1 shows a schematic illustration of the possible effects of shear on the structure 

of a fractal aggregate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1  A schematic of shear effects on the structure of a fractal aggregate. 

 

Based on the literature presented above, it can be concluded that aggregates made of 

smaller particles are more prone to restructuring instead of fragmentation when compared with 

those composed of larger particles particularly at low to moderate shear rates. It is shown that the 

aggregates of smaller primary particle size are generally stronger than the aggregates of the 

larger particles in similar physical and chemical conditions (Selomulya et al 2002). Although 

larger primary particle size may lead to greater bonding force between the particles, the 

aggregate strength also depends on the number of contacts per unit cross sectional area. 
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Consequently, the average size of flocs constituted of larger primary particles that can survive in 

a given shear field is usually lower than their counterparts composed of smaller particle size, and 

hence more prone to fragmentation. 

 

Figure 7.2 summarizes the highlights of the literature-reviewed shear effects on the 

structure of the fractal aggregates. We have also included our work for comparison. Shear stress 

may result in restructuring (denoted with R), fragmentation (denoted with F), or a combination of 

both (denoted with R&F). In the legend of Fig. 7.2, the papers corresponding with these data are 

listed.  

 

As can be seen in the legend of Fig. 7.2, some of the authors’ names are shown in a gray 

area. This is to distinguish the experiments which showed an increase in the fractal dimension 

(i.e., more compact aggregates) for higher shear rates from those in which the fractal dimension 

was independent of the shear rates. Moreover, it should be pointed that in all the papers listed in 

the legend of Fig. 7.2, relatively compact aggregates were obtained, except for the work of 

Torres et al. where the fractal dimension of the sheared and unsheared aggregates were similar 

( 8.1Df = ). 

 

In the presented literature review, the effect of shear has been mostly studied in a 

continuous presence of shear where shear-induced aggregation was dominant over Brownian 

aggregation (i.e., Pe > 1) during the entire experiment. Further, mostly large particle sizes (i.e., 

0.5-2 µm) were used by these groups. When small particle sizes are used, the shear has been 

relatively high so that fragmentation was favored in their systems (Selomulya et al 2002, Torres 

et al 1991a), or the shear was applied for less than a second to investigate the immediate effect of 

shear (Lin et al 1990a).  

 

To our knowledge, the effect of shear for small particle sizes and low shear rates has not 

been studied in the literature (see Fig. 7.2); therefore, a series of experiments were carried out in 

this group to investigate the shear effect at these conditions. Unlike other groups, we applied a 

low shear rate for only a short period; then, the morphology of the aggregates and the 

aggregation kinetics were studied up to the completion of gelation. Moreover, in this work shear 
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was initiated both in a cluster dilute regime (similar to other works) and in a cluster dense 

regime. A cluster dilute regime is defined as when the mean nearest neighbor separation nnR  is 

much larger than the aggregates characteristic size gR ; a cluster dense regime is defined as when 

nnR  is comparable with gR  in an aggregating system (Huang et al 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2  Literature review of the effects of shear on structure of aggregates. Aggregates may 

undergo fragmentation (F), restructuring (R), or a combination of restructuring and 

fragmentation (R&F). The gray area in the legend distinguishes the work of those in which 

fractal dimension increased with a higher shear rate (gray area) from those where fractal 

dimension was independent of the shear rate. 
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7.3   Experimental Methods  
 

In the work presented here, we investigated the effect of shear on an aggregating 

colloidal system with small primary particles, 20 nm. The shear was applied for only a short 

period during the aggregation. The sample was sheared only once at different times after the 

onset of aggregation. Thus, the effect of shear (e.g., fractal dimension, gel time) was studied for 

both Pe < 1 (i.e., Brownian aggregation is dominant) and Pe > 1. In situ light scattering 

technique was carried out to study the effect of shear.  

 

The final salt concentration was 10 mM, and the final volume fraction of the polystyrene 

particles was 4104.36 −×=vf . Equal volumes of polystyrene and salt solutions were 

simultaneously squirted, with 50 lµ syringes, into the scattering cell. The optical path length of 

the cell was 1.8 mm. The mixed solution did not completely fill the cell, and a bubble (i.e., 

approximately 0.14 of the total volume of the cell) was present in the cell.  

 

In the experiments presented here, the rotational speed of the sample holder was varied 

between rad/sec0.085  to rad/sec2.83 , corresponding to the simulated average shear rates of  

0.13 to 3.56 1sec−  (i.e., described below). The axis of rotation of the sample holder, hence the 

angular velocity vector ωr  was parallel to the direction of the incident laser beam, perpendicular 

to the windows. The rotation rate of the sample holder was varied by altering the voltage of a DC 

gear motor (Grainger). 

 

The samples were sheared for a short period (i.e., referred to as shear duration time) and 

only once at different times after the onset of aggregation (i.e., referred to as shear initiation 

time). The shear initiation time was typically 1, 2, 3, 5, and 15 min. The shear duration time was 

33 ± 3 sec. The schematic side view of the sample holder is shown in Fig. 7.3.  
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Figure 7.3  A schematic side view of the scattering cell and the sample rotator. 

 

The velocity profile of a sheared sample is shown as an example in Fig. 7.4. Particle 

Image Velocimetry (PIV) technique was used to observe the effect of the air bubble (mentioned 

above) on the shear flow. We used 9.6 µm polystyrene colloidal dispersion in order to perform 

these measurements.  

 

As can be seen in Fig. 7.4, the local shear rate is zero in the center and has the maximum 

value (for a given shear rate) near the edge of the cell. The shear rate was linear throughout the 

entire cell, excluding the air bubble in the cell. Also, due to the presence of a bubble on the top 

of the cell (i.e., mentioned earlier), the shear is rather nonuniform on the upper half of the cell. 

Therefore, the vertical position of the scattering cell was adjusted so that the laser beam mostly 
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hit the lower half of the cell, approximately at a fixed position during the shear experiments. 

However, we should remind again that no measurements were obtained during shearing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4  Particle velocity profile of a sheared cell. A colloidal dispersion of 9.6 µm 

polystyrene particles was used for the PIV measurements. The angular velocity of the cell was 

0.17 rad/sec.  

 

In order to estimate the laminar shear rate for our cell, we assumed that the velocity of the 

suspension near the glass plates was equal to the velocity of the glass plates themselves when the 

sample was rotated (i.e., there was no slip). We also assumed that the velocity of the suspension 

halfway between the two windows was zero, because gravity held the liquid at the bottom of the 

cell. Thus, the approximate shear rate g(r) was determined, i.e.,  
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where r is the radial distance from the rotation axis, d is the thickness of the cell (d = 2mm). The 

approximate average shear rate γ  was then determined by the following integration over the 

entire cell, i.e.,  
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where Rcell is the radius of the cell that is the radius of the O-ring, Rcell = 4.5mm (see Fig. 7.3). 

Eq. (7.2) was substituted into Eq. (7.3), and after the integration the approximate average shear 

rate was determined as 

 

⋅=
d

Rcell

3
4 ω

γ                (7.4) 

 

In this work, the rotational speeds were 0.085, 0.17, 0.35, 0.75, 1.26, 2.09, and 2.83 

rad/sec. Equation (7.4) was then used to calculate the average shear rates 0.26, 0.51, 1.1, 2.2, 

3.8, 6.3, and 8.5 1sec− .  

 

The average shear rate was also simulated22 with the computational fluid dynamics 

(CFD) software FLUENT 6.2.12 (Tannehill et al 1997). This program uses the finite volume 

method to numerically solve the equations of motion and continuity on a computational mesh of 

user-specified geometry. It also allows the user considerable flexibility to select appropriate 

options (e.g., rheological models, turbulence closure schemes, boundary conditions, numerical 

integration schemes, etc.). CFD simulations of Newtonian fluids in relatively simple geometries 
                                                 
22 Chung-yin Cheng and Dr. Dennis Vigil at Iowa State University performed these simulation 

work. 
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at low Reynolds numbers have been well validated by experimental measurements. Hence the 

use of CFD simulations to calculate the shear rates in our shear cell is justified. 

 

In the present case, a computational mesh consisting of 10,770 nodes was constructed to 

represent the interior and the inside walls of the fluid flow cell. The unsteady equations of 

motion for laminar Newtonian flow with no slip boundary conditions at the cell walls were 

integrated using FLUENT’s built in variable time step option to minimize error. The presence of 

the air bubble required the use of a two-phase model. The FLUENT implementation of the 

volume of fluid scheme (Hirt & Nichols 1981) was selected for this purpose because of its ability 

to accurately simulate, with relatively low computational cost, the transport of fluid-fluid 

interfaces. The integrations were carried out with stagnant fluid initial conditions and were 

terminated after the calculated velocity fields reached steady state. The computed steady-state 

velocity fields exhibited simple and intuitive results. In particular, the liquid phase was nearly 

stagnant in a region approximately intermediate between the bubble-liquid interface and the 

bottom of the cell, in the plane that bisects the two disks. The magnitude of the fluid velocity 

increased monotonically as the flow cell walls were approached from this stagnation zone 

(except of course where the rotational axis intersects the walls). 

 

The volume-averaged shear rate in the liquid phase was computed from the calculated 

velocity fields excluding a small region near the bubble-liquid interface where the computed 

shear rate was evidently high because of the large difference between the velocities in the liquid 

and gas phases. The computed average shear rates were 0.13, 0.24, 0.48, 0.99, 1.60, 2.61, and 

3.56 1sec−  for rotational speeds of 0.085, 0.17, 0.35, 0.75, 1.26, 2.09, and 2.83 rad/sec.  

 

Our simple model of estimating the average shear rate and the simulation work were 

approximately different by a factor of 2.3, where the calculated shear rates were higher than the 

computed values. In this work, we have reported our results based on the computed shear rates. 

However, we should mention here that the average shear rates reported here should be taken as 

estimates rather than absolute values. 
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In order to approximately estimate the Péclet number in our experiments, the 

characteristic size of the aggregates gR  immediately before applying shear was substituted 

instead of the particle radius a   in Eq. (4.33), i.e.,  

 

.
3 3
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R
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B

g γπη
=               (7.5) 

 

The reason for the substitution of gR  was that in our experiments shear was initiated at 

different times after the onset of aggregation. Therefore, the use of the particle size was not an 

appropriate choice to determine the Péclet number.  

 

7.4   Results and Discussions 

 

 In order to study how shear affects the aggregation kinetics and the structure of the 

aggregates, we carried out light scattering measurements of an aggregating system with no shear 

(i.e., Brownian aggregation), an example of which is shown in Fig. 7.5. It is important to note 

that the intensity of the laser beam varied from sample to sample and throughout this project. 

Therefore, the scattered intensities of the figures shown hereafter cannot be compared with one 

another. 

 

 Figure 7.5 shows the scattered intensity )(qI  (arbitrary units) measurements versus the 

scattering wave vector, )( 1−cmq at various times (i.e., 6- 57 min) after the onset of aggregation. 

The final volume fraction of the polystyrene solution was 4.36×10-4, and the final salt 

concentration was 10 mM. 

 

 As can be seen in Fig. 7.5, the scattered intensity at small q increases with time; this can 

be explained as follows. NNnqI m ∝∝)( , where mn  is the initial monomer number density 

(i.e., constant), and N  is the number of monomers per cluster. As an aggregating colloidal 

system aggregates, N increases with time resulting in an enhancement of the scattered intensity. 
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The Guinier regime, (i.e., where the slope of I  versus q  goes from 0 to negative) progresses to 

smaller q  as aggregates become larger. One can qualitatively determine the size of the 

aggregates by using 1~ −qRg . The fractal dimension of the aggregating system (i.e., the power 

law regime) is 0.031.78Df ±= , consistent with the DLCA process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5  Static light scattering I(q) versus the scattering wave vector q( 1cm− ) at different 

times after the onset of aggregation. The fractal dimension is ca. fD = 1.78 ± 0.03 (i.e., in DLCA 

regime). The experimental gel time is ca. tg = 45 ± 5 min.  

 

The peak in I(q) versus q appears in the structure factor ( )()( qIqS ∝ ) of the dense 

aggregating colloidal systems when the characteristic size of aggregates gR  becomes 

comparable in magnitude to the mean nearest neighbor separation of the aggregates, nnR  (Cerda 



 130

et al 2004, Huang et al 1998). The static light scattering stopped evolving after about 45 ± 5 min. 

Based on the definition of a gel in our work, a sample is gelled when light scattering intensities 

stops evolving, and there is no further aggregation. With this definition, the gel time of the 

sample was min545 ±=gt . 

 

 Light scattering measurements was then carried out for shear initiation time of 1 min at 

various shear rates (i.e., 1sec3.56-0.13γ −= ). The volume fraction (i.e., 4.36×10-4) and the salt 

concentration (10 mM) remained similar to the Brownian aggregation experiment (i.e., 

unsheared). An example of the shear experiments with the above conditions are shown in Fig. 

7.6.  

 

Figure 7.6 shows the scattered intensities )(qI  (arbitrary units) versus )( 1−cmq  at 

different times before initiating the shear and after cessation of the shear. The average shear rate 

was 1sec0.99γ −= . The shear initiation time was 1 min, and the sample was sheared for ca. 33 

sec. In order to understand the light scattering data, the legend of the figure is separated into two 

different boxes, i.e., the data before shear was applied and the data after shear was stopped. In 

addition, the time in both legends has started from zero. However, these two different times are 

added for the reported experimental gel time. The time gap between these two measurements is 

the time that sample was sheared (i.e., marked with the yellow box). 

 

 As can be seen in Fig. 7.6, the light scattering intensity increases with time indicating the 

system is aggregating. The fractal dimension is 0.041.80Df ±=  and the sheared sample gelled 

within 1050 ±=gt min. If the fractal dimension (indicating the compactness of an aggregating 

system) in this figure is compared with Fig. 7.5,  it can be seen that the fractal dimensions are 

similar within the uncertainty of the experiments. Therefore, shear did not form more compact 

aggregates. Furthermore, the gel time, which is related to the kinetics of aggregation, remained 

the same as the unsheared sample (Fig. 7.5). On the other hand, the scattered intensities did not 

enhance due to shear as expected for the shear-induced aggregation (for example, compare the 

data for 0.5 min after shear was stopped and before applying the shear). These comparisons 

between Figs. 7.5 and 7.6 indicate that shear did not affect the kinetics of aggregation and the 
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structure of aggregates. However, later in this work, we will present the analyses of the evolution 

of the aggregate size ( gR ) with time as to compare the kinetics of aggregation for various shear 

initiation times and at different shear rates in this work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 0.99 1sec− . The shear 

initiation time was 1 min. Gelation occurred at about tg = 50 ± 10 min. The fractal dimension is 

fD  = 1.80 ± 0.04. 

 

Table 7.1 summarizes the results (i.e., gt  and fD )  of the shear experiments at various 

shear rates when the shear initiation time was 1 min.  
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As can be seen in Table 7.1, at all shear rates the gel time is more or less the same as that 

of the unsheared sample (i.e., min).545 ±=gt The fractal dimension also remained 1.80 for 

various shear rates which is similar to that of the unsheared sample (i.e., 0.031.78Df ±= ). The 

Péclet number (i.e., calculated using Eq. (7.5)) was less than one at all shear rates.  

 

Table 7.1  Results of the gel time and fractal dimension for shear initiation time of 1 min at 

various shear rates ranging from 0.13 to 3.56 1sec− . The error in the fractal dimension is 

approximately 0.04. 

 

 

 

 

 

 

 

 

 

Figure 7.7 shows the scattered intensities )(qI  (arbitrary units) versus )( 1−cmq  at 

different times before applying the shear and after shear was stopped. The average shear rate was 
1sec2.61γ −= . The shear initiation time was ca. 2 min, and the sample was sheared for ca. 33 

sec. Similar to Fig 7.6, the data before applying the shear and after cessation of the shear are 

shown in separate legends.  

 

 Figure 7.7 shows that the light scattering data before applying shear indicates that the size 

of the aggregates are small compared to the wavelength of the light, and hence the scattering is in 

Rayleigh regime. The sample was then sheared for 33 sec. The first data was collected after shear 

was stopped (i.e., shown with red triangle symbol).  
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 As can be seen in this figure, the scattered intensity has significantly increased (i.e., 

shown with the arrow) after shear was stopped. This enhancement in the scattered intensity 

suggests that shear has enhanced the aggregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 2.61 1sec− . The shear 

initiation time was ~2 min. Gelation occurred at about tg = 20 ± 4 min. There is a crossover 

between two slopes of -0.95 ± 0.04 and -2.10 ± 0.04 evolving to -1.80 ± 0.04 at the gel point. 

 

 Figure 7.7 shows that shear has caused a hybrid aggregate structure in the aggregating 

system (two slopes over the entire range of q imply a hybrid structure), and a crossover between 

two negative slopes of 0.040.95 ±  and 0.042.10 ±  can be seen in this figure. These two slopes 

indicate two different aggregate structures at different length scales. We speculate that the 
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negative slope of 0.95 at higher q does not have any quantitative significance. As we were 

limited in our ability to detect the scattering intensity at larger scattering angles, and hence the 

power law regime, which could have a negative slope of 1.8, was not detected. After shear was 

stopped, Brownian aggregation eventually overcame the shear-induced hybrid structure and 

repaired the clusters over time, until the sample gelled with a more tenuous structure that is 

0.041.80Df ±= . The Guinier analysis showed that the aggregates slightly decreased in size 

after cessation of the shear all throughout the completion of gelation. We call this post-shear 

aggregate restructuring. A rough calculation shows that if these fairly compact fD = 2.1 

aggregates changed to a more tenuous fD = 1.8 aggregates, the aggregate radius of gyration 

should have become approximately 3 times larger. However, our results do not show any 

increase in the aggregates’ size. Thus, the disappearance of the double structure is perplexing and 

remains yet a question. The sample gelled at about 420tg ±= min which was shorter than the 

gel time of the unsheared sample, another evidence for the shear enhanced aggregation. 

 

For shear initiation time of 5 min, three different behaviors were observed depending on 

the applied shear rates. The Péclet number was greater than one at all shear rates. These results 

are shown in Table 7.2 and will be explained accordingly. An example of light scattering 

measurements will be given for each category.  

 

Table 7.2  Gel time and fractal dimension for the shear initiation time of 5 min at various shear 

rates ranging from γ = 0.13- 3.56 1sec− . The error in the fractal dimension is approximately 0.03. 
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(5min-i) At low shear rates ( 1sec0.99-0.13γ −= ), applying the shear enhanced the 

aggregation. After termination of the shear, Brownian motion continued the 

aggregation until the sample gelled with a fractal dimension of 0.051.75Df ±= . The 

average gel time of the sheared sample in this range was approximately 

,min525 ±=gt shorter than the gel time of an unsheared sample. Figure 7.8 shows 

an example representing this category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 0.13 1sec− . The shear 

initiation time was 5 min. The sample gelled at about tg = 30 ± 5 min with the fractal dimension 

of 1.71 ± 0.03. 
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(5min-ii) At moderate shear rates of 1sec1.60γ −=  and 1sec2.61 − , shear enhanced the 

aggregation and caused a hybrid aggregate structure after termination of the shear. 

Brownian aggregation then “repaired” the hybrid aggregate structure into a uniform 

gel, which was somewhat similar to Fig. 7.7 (Fig. 7.7 shows this effect more 

significantly than Fig. 7.9). The fractal dimension at the gel point was ca. 

0.031.83Df ±= . The average gel time was approximately ,min414 ±=gt  shorter 

than the gel time of an unsheared sample. Figure 7.9 shows an example representing 

this category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 1.60 1sec− . The shear 

initiation time was 5 min. Gelation occurred at about tg = 15 ± 5 min. There is a crossover 

between two negative slopes of 1.40 ± 0.03 and 2.10 ± 0.05 evolving to 1.84 ± 0.05 at the gel 

point. 
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(5min-iii) At the highest shear rate 1sec3.56γ −= , not only did the shear enhance the 

aggregation, but it also caused the sample to reach its gel point. Furthermore, shear 

caused a hybrid gel structure (i.e., there were two slopes in the structure factor 

measurements). The gel time was significantly shorter than the gel time of an 

unsheared sample, i.e., .min16 ±=gt Figure 7.10 is an example representing this 

category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 3.56 1sec− . The shear 

initiation time was 5 min. Gelation occurred at about tg = 6 ± 1 min. A crossover between two 

negative slopes of 1.70 ± 0.04 and 2.45 ± 0.04 can be seen at the gel point. 
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For the shear initiation time of 15 min, two different behaviors were observed, i.e., 

similar to the cases of (5min-i) and (5min-iii). The Péclet number was well above one at all shear 

rates. These results are shown in Table 7.3. An example of light scattering measurements will be 

given for each category. 

 

As can be seen in Table 7.3, at low shear rates  γ < 0.48 1sec− , shear enhanced the 

aggregation, and the gel time was shorter than the unsheared sample. The fractal dimension of 

the gel was 1.75 ± 0.04. At moderate to high shear rates γ > 0.48 1sec− , shear caused the gelation 

of the sample. Moreover, the gel had a hybrid aggregate structure. It is important to note that 

,unlike the work of Lin et al. and Selomulya et al. (Lin et al 1990a, Selomulya et al 2002), 

increasing the shear rate did not increase the fractal dimension of the gel. It can be seen that the  

fractal dimension at larger length scales is more or less independent of the shear rates. Moreover, 

Sorensen, in his review article, has shown that the power law regime of an aggregate structure 

( fD~)( −qqS ) breaks down when the fractal dimension is larger than fD  > 2.9 (Sorensen 2001). 

The highest fractal dimension reported in this work is ca. fD  = 2.6, and hence the fractal 

dimensions in our experiments  are in the power law regime. 

 

Table 7.3  Gel time and fractal dimension for the shear initiation time of 15 min at various shear 

rates ranging from 0.13 to 3.56 1sec− . The error in the fractal dimension is approximately 0.04. 
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(15min-i) At low shear rates ( 1sec0.13γ −=  and 1sec0.24 − ), the aggregating system gelled 

within a few minutes after termination of the shear. The average gel time was 

min217tg ±= . The gel had a uniform aggregate structure with the fractal 

dimension of 0.041.75Df ±= . Figure 7.11 shows an example representing this 

category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 0.13 1sec− . The shear 

initiation time was 15 min. The sample gelled within a few minutes after cessation of the shear at 

about tg = 18 ± 2 min. The fractal dimension of the sample was 1.75 ± 0.04. 
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(15min-ii) At moderate to high shear rates, shear induced the gelation of the aggregating 

system, and the sample gelled within min116tg ±= (i.e., one minute past the 

shear initiation time). However, at these shear rates, shear caused a hybrid gel 

structure as can be seen in Table 7.3. Note that the hybrid aggregate structure 

occurred at a lower shear rate 1sec0.48γ −=  compared to 1sec3.56γ −=  in Table 

7.2 suggesting that as the shear initiation time increased, a smaller shear rate was 

required to cause a hybrid aggregate structure. Figure 7.12 shows an example 

representing this category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12  Static light scattered intensities I(q) (arbitrary units) versus q ( 1cm− ) at different 

times before applying the shear and after termination of the shear, γ = 0.48 1sec− . The shear 

initiation time was 15 min. Gelation occurred at about tg = 16 ± 1 min. There is a crossover 

between two negative slopes of 1.75 ± 0.04 and 2.60 ± 0.05 at the gel point, indicating a hybrid 

aggregate structure.  
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Table 7.4 summarizes the highlights of the shear experiments (i.e., described above) for 

the shear initiation times of 1, 5, and 15 min for various shear rates ranging from  
1sec3.56-0.13γ −= .  

 

Table 7.4  Summary of the shear effects for the shear initiation times of 1, 5, and 15 min at 

various shear rates ranging  from 0.13 to 3.56 1sec− . 
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In order to gain a better understanding of the aggregation growth at different shear rates 

and shear initiation times, Guinier analysis was used to determine the radius of gyration at 

various times after the onset of aggregation. The results of these analyses are shown in Fig. 7.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13  The radius of gyration Rg (µm) are plotted versus time for the no shear situation and 

the shear rates of (a) 0.13 1sec− , (b) 0.99 1sec− , (c) 2.61 1sec−  , and (d) 3.56 1sec− . The shear 

initiation time was 1, 5, and 15 min for all shear rates. For shear rates of (c) 2.61 1sec−  and (d) 

3.56 1sec− , the analysis for shear initiation times of 2 min and 3 min are also shown, 

respectively. The horizontal dashed line is the lower limit of our SALS size measurements that is 

ca. 300 nm. The last data point in each curve represents the gel point 
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Figures 7.13(a), (b), (c), and (d) show the results of these analyses for the shear initiation 

times of 1, 5, and 15 min at various shear rates of  γ = 0.13, 0.99, 2.61 and 3.56 1sec− , 

respectively. For shear rates of γ= 2.61 1sec− and 3.56 1sec− , the analyses for the shear initiation 

time of 2 min and 3 min are also shown. The analysis of the unsheared sample (i.e. Brownian 

aggregation) is also plotted in all the figures for comparison. The horizontal dashed line (shown 

in Fig. 7.13) represents the lower limit of our SALS size measurements that is ca. 300 nm.  

 

The similarities and differences of the aggregate size evolution for various shear initiation 

times and shear rates are described as follows: 

 

(i) For the shear initiation time of 1 min, regardless of the shear rates, the data more or less 

follow the same curve as that of the unsheared sample until there is no further growth of 

the aggregating system. The size of the aggregates at the gel point for the shear initiation 

time of 1min at the given shear rates was GgR , ~ 4 mµ , similar to that for the no shear 

situation. Note that the gel time is defined as when the aggregates stop further evolving in 

an aggregating system (i.e., when the data reach a plateau in Fig. 7.13) . 

(ii) For the shear initiation times of  2 min (shown in (c)) , 3 min (shown in (d)), and 5 min 

(shown in (a) to (d)), shear enhanced the aggregation significantly as depicted by the 

arrows in each figure (also see Figs. 7.7 and 7.8). At the highest shear rates (3.56 
1sec− shown in (d)), shear also induced the gelation of the sample. 

(iii) For the shear initiation times of 15 min, the data initially followed the same curve as that 

for the unsheared sample; however, applying the shear enhanced the aggregation. At  the 

shear rate of 0.13 1sec− , there were some slight increase in the aggregate size can be 

seen in Fig 7.13 (a) (sample gelled within a few minutes after the termination of the 

shear). At shear rates of 0.99, 2.61, and 3.56 1sec− , shear induced the gelation of the 

sample.  

(iv) For the shear initiation times of 5 and 15 min, the aggregate size at the gel point was 

slightly larger ( GgR , ~ 5-6 mµ ) compared to that for the shear initiation times of 1 and 3 

min ( GgR , ~ 4 mµ ). This difference in the aggregate size could be due to some 
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experimental error or could have some significant meaning, which needs to be 

investigated more in our future work.  

(v) In Fig. 7.13 (b), (c), and (d), corresponding, respectively, to the shear initiation times of 

5, 2, and 3 min, a slightly different trend can be seen. These samples where those for 

which a hybrid aggregate structure was observed initially after the termination of the 

shear repaired later by Brownian aggregation. As can be seen in these figures, after the 

initial enhancement of the aggregate size (shown by the arrows), the aggregates start to 

slightly decrease in size until a stable aggregate size was reached at the gel point. We 

speculate that the decrease in the aggregate size could be due to the restructuring of the 

aggregates due to shear. 

 

The presented results in this work showed that shear can cause a hybrid aggregate 

structure. Here the possible mechanism, by which these hybrid structures are formed, will be 

explained. 

 

 In order to emphasize on the effect of shear on the aggregate structures, Figs 7.10 and 

7.12 (shown above) are replotted here again, but only the data right before initiation of the shear 

and immediately after termination of the shear are shown. Figure 7.14 (bottom) shows the 

scattered intensities for the shear initiation time of 5 min and the shear rate of 1sec3.6γ −= . 

Figure 7.14 (top) shows the scattered intensities for the shear initiation time of 15 min and the 

shear rate of 1sec0.48γ −= . The vertical arrows in Fig. 7.14 show that shear has enhanced the 

aggregation; at the same time, as shown with the horizontal arrows, the aggregates have 

increased in size (i.e., smaller q means larger aggregates qRg /1∝ ). This new shear induced 

structure between the arrows has an effective fractal dimension of 04.045.2 ±  (bottom) and 

05.060.2 ± (top) 
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Figure 7.14  (bottom) Light scattering data for the shear initiation time of 5 min and the shear 

rates of  γ = 3.56 1sec−  (top) light scattering data for the shear initiation time of 15 min and the 

shear rates of γ = 0.48 1sec− .  
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In the literature, fragmentation and restructuring have been the only mechanisms by 

which the effects of shear on aggregating systems are discussed. Although, the hybrid aggregate 

structures are associated with the restructuring mechanism, we will consider both mechanisms 

here as the possible consequences of shear on the structure of aggregates.  

 

• Fragmentation:  An aggregate subjected to shear can breakup into smaller aggregates 

yet remains tenuous (Torres et al 1991a) , or the weaker arms of the aggregate can fall off 

and cause a more compact, and hence smaller aggregate(Kikuchi et al 2005, Oles 1992, 

Selomulya et al 2002, Sonntag & Russel 1986). However, Our results showed no 

indication of fragmentation. Instead, the aggregate radius of gyration increased, for 

example, from nmRg 500≈  before applying the shear to µm8≈gR  after termination of 

the shear  as shown in Fig. 7.14 (bottom). Eq. (7.1) was also used to estimate an 

approximate aggregate size that could remain intact under the largest shear rates applied 

in our experiments. We found that aggregates smaller than 10 µm will not breakup under 

the largest shear rates applied in our experiments ( 1sec6.3 −=γ ). 

 

• Restructuring:  In the work of Lin et al., aggregates, formed of 15 nm gold particles, 

restructured at high shear rates (104 1sec− ) (Lin et al 1990a). Lin et al. found that 

aggregates subjected to shear decreased in size. Moreover, they found that the degree of 

restructuring (i.e., higher fractal dimension) depended on the magnitude of the shear 

applied. In another work by Selomulya et al., relatively large particles (60 nm and 380 

nm) was used for the shear experiments ranging from 30-100 1sec−  . They also found that 

aggregates restructured due to shear in their experiments (Selomulya et al 2002). We 

once again refer to Fig. 7.14, where we see that shear caused an increase in the fractal 

dimension but also an increase in the cluster size, not a decrease as expected for 

restructuring. Furthermore, in contrast with the results of Lin et al., our results did not 

show any increase in the fractal dimension at larger shear rates, and the fractal dimension 

remained more or less the same independent of the applied shear rate. Therefore, the 

restructuring mechanism cannot explain our results either. 
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 Recently, in a work from this laboratory, soot aggregates in an acetylene/air laminar 

diffusion flame were studied using small angle light scattering (Sorensen et al 2003). An 

inhomogeneous aggregate structure was observed at higher heights above the burner orifice (i.e., 

late aggregation times). Similar to Fig. 7.14, Sorensen et al. observed a hybrid aggregate 

structure with two slopes of -1.8 and -2.6 in their light scattering measurements (Sorensen et al 

2003). Sorensen et al. proposed that this hybrid structure of the flame soot was an indication of 

superaggregates, a term coined to mean a large aggregate of a given fractal dimension over large 

length scales composed of smaller aggregates with a different fractal dimension for their smaller 

length scale (Sorensen et al 2003). This proposition was based on simulation work by Fry et al. 

who showed that DLCA can proceed creating fD = 1.8 fractal aggregates until the system 

becomes cluster dense (i.e., when the cluster mean nearest neighbor separation becomes 

comparable to the cluster size) (Fry et al 2004). Once cluster dense, the aggregation mechanism 

can cross over to a percolation mechanism and fD  = 2.55 percolated superaggregates (of smaller 

fD  = 1.8 DLCA aggregates) result. Theoretically, the percolation of the aggregates is shown that 

will eventually occur in all aggregating systems resulting in a cross over between two slopes of 

8.1−  and 55.2−  (Gimel et al 1999, Hasmy & Jullien 1996, Rottereau et al 2004, Stauffer 1992). 

Yet, in the literature, DLCA colloidal aggregation experiments (no shear) have not shown any 

evidence of a percolated aggregating system. The cross over length scale between the two slopes 

of 8.1− and 55.2−  is shown to occur when the size of the DLCA aggregates reach the radius of 

gyration at the gel point GgR , , discussed in Chapter 4 (Fry et al 2004). 

 

Figure 7.15 shows a schematic drawing of a superaggregate where the fD = 1.8 fractal 

aggregates are percolated to form a superaggregate with a fractal dimension of fD ~ 2.6 at larger 

length scales. 
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Figure 7.15  A schematic drawing of a superaggregate.  

 

The crossover length scale in our shear experiments (i.e., when a hybrid aggregate 

structure was observed) was determined with the uncertainty of our experiments. In order to 

calculate the theoretical GgR ,  (i.e., )3D/(1
,

f5.0 −≈ vGg faR ), 41036.4 −×=vf  (used in our 

experiments) and the fractal dimension given in Tables 7.2 and 7.3 were used; the fractal 

dimension had some variation from run to run which is included in the error. The experimental 

and theoretical GgR ,  are shown in Table 7.5.  

 

As can be seen in Table 7.5, for the shear initiation time of 15 min, there is a good 

agreement between theory and experimental results. For the shear initiation time of 5 min, the 

agreement is not as good with the calculated value. It should be noted that GgR ,  is greatly 

dependent on any small variation of the fractal dimension; this can be seen in the approximate 

equation given for GgR , . Furthermore, we speculate that this difference between the theoretical 

and experimental GgR ,  for shear initiation time of 5 min may be due to the fact that the system 

was not as deep into the cluster dense regime (i.e., it is farther from the gel point than at 15 min). 
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The results shown in Table 7.5 support our proposed mechanism of shear-induced 

supperaggregates formation, where shear causes the growth of a hybrid aggregate structure. 

 

 

Table 7.5  The comparison between calculated Rg,G (µm) and the measured Rg,G (µm) at shear 

initiation times of 5 and 15 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.5   Conclusions 
 

In a cluster dilute regime, applying a shear did not enhance the aggregation kinetics 

leading to a gel structure indistinguishable from that formed via a DLCA process, 

04.080.1Df ±= . In a cluster dense regime and at low shear rates, shear enhanced the 

aggregation and the gel structure was uniform with a fractal dimension of 04.075.1Df ±= . In a 

cluster dense regime and at moderate to high shear rates, shear caused the sample to reach the gel 

point with a hybrid aggregate structure with the fractal dimensions of 05.070.1Df ±=  and 

05.055.2Df ±= .Moreover, we see no evidence for fragmentation or restructuring due to the 
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shear in our data. Moreover, the previous literature has no evidence for shear causing growth to a 

hybrid structure. We also found that the fractal dimension of the hybrid aggregate structure of 

the sheared sample did not increase by increasing the shear rates. These results are different than 

the work of Lin et al. and Selomulya et al. in which the fractal dimension increased by increasing 

the shear rates; these groups proposed that  shear induced-restructuring occurred in their 

experiments (Lin et al 1990a, Selomulya et al 2002). 
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CHAPTER 8 Conclusions 

The focus of this work has been on the experimental investigation of the effects of 

shearing on the structure and the aggregation kinetics of an aggregating colloidal system. It is 

well known that the aggregation of particles in a colloidal system can be controlled by three 

different mechanisms including Brownian aggregation, shear-induced aggregation, and 

differential sedimentation aggregation.  

 

Small angle light scattering experiments were conducted with 20 nm monodisperse 

polystyrene sols induced to aggregate in the diffusion-limited regime by the addition of MgCl2. 

The morphology and the growth kinetics of the aggregating system when subjected to a shear 

field (γ = 0.13- 3.56 1sec− ) was studied. In our experiments, shear was applied only once (ca. 30 

seconds) at various times (1-15 minutes) after the onset of aggregation.  

 
In a cluster dilute regime, applying a shear did not enhance the aggregation kinetics 

leading to a gel structure indistinguishable from that formed via a DLCA process, 

04.080.1Df ±= . In a cluster dense regime and at low shear rates, shear enhanced the 

aggregation and the gel structure was uniform with a fractal dimension of 04.075.1Df ±= . In a 

cluster dense regime and at moderate to high shear rates, shear caused the sample to reach the gel 

point with a hybrid aggregate structure with the fractal dimensions of 05.070.1Df ±=  and 

05.055.2Df ±= . 

 

 Our experimental results have shown that shear may enhance the aggregation and 

gelation causing structural modification, not by shear destruction of aggregates (fragmentation or 

restructuring), but by shear induced growth, a new mechanism by which superaggregates form in 

a shear field. Hence, our results have introduced a new consequence of shear morphological 

effects to the previous shear studies which observed only shear-induced restructuring or 
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fragmentation. Our shear experiments have also shown a new feature in which Brownian 

aggregation “repairs” the hybrid aggregate structure formed initially due to shear. 

 

Similar to shearing experiments, initial mixing of an unstable aggregating system can 

affect the aggregation kinetics. A series of light scattering measurements were carried out to 

study the effect of initial mixing on the gel time. Our light scattering measurements of the gel 

times have shown quantitative agreement between theoretical and experimental gel time at low 

volume fractions 5106 −×<vf . However, at high volume fractions of the polystyrene colloidal 

solutions, the theoretical and experimental gel times differ by orders of magnitudes, with a much 

faster theoretical gel time. These gel time experiments have only been performed in a RLCA 

regime (slow regime), where initial mixing is negligible compared to their experimental gel time 

(Bremer et al 1995, Smith & Zukoski 2006). Yet, there are more experiments to be done in future 

to resolve this interesting enigmatic problem. 

 

Relevant to our light scattering measurements, the extent and effect of multiple scattering 

on angularly resolved light scattering measurements were studied. For simple interpretation of 

light scattering experiments, it is important to have single scattering. Therefore, it is important to 

be aware of how multiple scattering can affect light scattering measurements, how to detect it, 

and how one can possibly avoid it. Our experimental results have shown that the average number 

of scattering events is a universal parameter to describe the extent of multiple scattering. This 

quantity can easily be measured or calculated hence provides a useful experimental indicator of 

multiple scattering. 

 

 

 



 153

 References 

 

Adachi Y. 1995. Dynamic Aspects of Coagulation and Flocculation. Advances in Colloid and 

Interface Science 56: 1-31 

Allain C, Cloitre M. 1993. The Effects of Gravity on the Aggregation and the Gelation of 

Colloids. Advances in Colloid and Interface Science 46: 129-38 

Allain C, Cloitre M, Wafra M. 1995. Aggregation and Sedimentation in Colloidal Suspensions. 

Physical Review Letters 74: 1478-81 

Asnaghi D, Carpineti M, Giglio M, Sozzi M. 1992. Coagulation Kinetics and Aggregate 

Morphology in the Intermediate Regimes between Diffusion-Limited and Reaction-Limited 

Cluster Aggregation. Physical Review A 45: 1018-23 

Berg MJ, Sorensen CM, Chakrabarti A. 2005. Patterns in Mie scattering: Evolution When 

Normalized by the Rayleigh Cross Section. Applied Optics 44: 7487-93 

Berne BJ, Pecora R. 2000. Dynamic Light Scattering: With Applications to Chemistry, Biology, 

and Physics: Dover Publications. 384 pp. 

Bohren CE, Huffman DR, eds. 1983. Absorption and Scattering of Light by Small Particles. New 

York: John Wiley & Sons, Inc. 

Bremer LGB, Walstra P, Vanvliet T. 1995. Estimations of the Aggregation Time of Various 

Colloidal Systems. Colloids and Surfaces a-Physicochemical and Engineering Aspects 99: 121-7 

Brinker CJ, Scherer GW. 1990. Sol-Gel Science: The Physics and Chemistry of Sol-Gel 

Processing. San Diego: Academic Press, Inc. 

Brown W, ed. 1993. Dynamic Light Scattering; The Method and Some Applications: Oxford 

University Press 



 154

Carpineti M, Ferri F, Giglio M, Paganini E, Perini U. 1990. Salt-Induced Fast Aggregation of 

Polystyrene Latex. Physical Review A 42: 7347-54 

Carpineti M, Giglio M. 1992. Spinodal-Type Dynamics in Fractal Aggregation of Colloidal 

Clusters. Physical Review Letters 68: 3327-30 

Cerda JJ, Sintes T, Sorensen CM, Chakrabarti A. 2004. Structure factor scaling in colloidal 

phase separation. Physical Review E 70 

Cipelletti L, Manley S, Ball RC, Weitz DA. 2000. Universal aging features in the restructuring of 

fractal colloidal gels. Physical Review Letters 84: 2275-8 

Clarke SM, Ottewill RH, Rennie AR. 1995. Light-Scattering-Studies of Dispersions under Shear. 

Advances in Colloid and Interface Science 60: 95-118 

Dhaubhadel R, Pierce F, Chakrabarti A, Sorensen CM. 2006. Hybrid Superaggregate 

Morphology as a Result of Aggregation in a Cluster-Dense Aerosol. Physical Review E 73 

Dickinson E. 2000. Structure and rheology of simulated gels formed from aggregated colloidal 

particles. Journal of Colloid and Interface Science 225: 2-15 

Drake RL. 1972. A General Mathematical Survey of The Coagulation Equation. In Topics in 

Current Aerosol Research (Part 2), ed. GM Hidy, JR Brock. New York: Pergamon Press 

Evans DF, Wennerström H. 1999. The Colloidal Domain: Where Physics, Chemistry, Biology, 

and Technology Meet. New York: Wiley-VCH 

Family F, Maters BR, Platt DE. 1989. Fractal Pattern Formation in Human Retinal Vessels. In 

Fractals in Physics, ed. A Aharony, J Feder. Vence, France: Elsevier Science Publishers 

Feke DL, Schowalter WR. 1985. The Influence of Brownian Diffusion on Binary Flow-Induced 

Collision Rates in Colloidal Dispersions. Journal of Colloid and Interface Science 106: 203-14 

Ferri F. 1997. Use of a Charge Coupled Device Camera for Low-Angle Elastic Light Scattering. 

Review of Scientific Instruments 68: 2265-74 



 155

Flesch JC, Spicer PT, Pratsinis SE. 1999. Laminar and turbulent shear-induced flocculation of 

fractal aggregates. Aiche Journal 45: 1114-24 

Friedlander SK. 2000. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics (Topics in 

Chemical Engineering). New York: Oxford University Press 

Fry D, Chakrabarti A, Kim W, Sorensen CM. 2004. Structural crossover in dense irreversibly 

aggregating particulate systems. Physical Review E 69 

Fry D, Sintes T, Chakrabarti A, Sorensen CM. 2002. Enhanced kinetics and free-volume 

universality in dense aggregating systems. Physical Review Letters 89 

Gimel JC, Nicolai T, Durand D. 1999. 3D Monte Carlo simulations of diffusion limited cluster 

aggregation up to the sol-gel transition: Structure and kinetics. Journal of Sol-Gel Science and 

Technology 15: 129-36 

Gonzalez AE. 2001. Colloidal aggregation with sedimentation: Computer simulations. Physical 

Review Letters 86: 1243-6 

Gonzalez AE, Ramirezsantiago G. 1995. Spatial Ordering and Structure Factor Scaling in the 

Simulations of Colloid Aggregation. Physical Review Letters 74: 1238-41 

Goodwin J. 2004. Colloids and Interfaces with Surfactants and Polymers: An Introduction. New 

York: John Wiley & Sons 

Guinier A, Fournet G. 1955. Small Angle Scattering of X-Rays: John Wiley & Sons, Inc. 

Hashimoto T, Takebe T, Suehiro S. 1986. Apparatus to Measure Small-Angle Light-Scattering 

Profiles of Polymers under Shear-Flow. Polymer Journal 18: 123-30 

Hasmy A, Jullien R. 1996. Percolation in cluster-cluster aggregation processes. Physical Review 

E 53: 1789-94 

Hecht E. 2002. Optics. San Fracisco: Pearson Education 



 156

Hiemenz PC. 1986. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker, 

Inc. 

Hirt CW, Nichols BD. 1981. Volume of Fluid (Vof) Method for the Dynamics of Free 

Boundaries. Journal of Computational Physics 39: 201-25 

Hirtzel CS, Rajagopalan R. 1985. Colloidal Phenomena: Advanced Topics. New Jersey: Noyes 

Publications 

Hoekstra H, Vermant J, Mewis J. 2003. Flow-induced anisotropy and reversible aggregation in 

two-dimensional suspensions. Langmuir 19: 9134-41 

Huang H, Oh C, Sorensen CM. 1998. Structure factor scaling in aggregating systems. Physical 

Review E 57: 875-80 

Hunter RJ. 1994. Introduction to Modern Colloid Science. New York: Oxford University Press 

Israelachvili J. 2006. Intermolecular and Surface Forces. San Diego: Academic Press 

Jullien R. 1992. From Guinier to Fractals. Journal De Physique I 2: 759-70 

Jullien R, Botet R. 1987. Aggregation and fractal aggregates. Singapore: World Scientific 

Jullien R, Thouy R, Ehrburgerdolle F. 1994. Numerical Investigation of 2-Dimensional 

Projections of Random Fractal Aggregates. Physical Review E 50: 3878-82 

Kerker M. 1969. The Scattering of Light and Other Electromagnetic Radiation. New York and 

London: Academic Press, Inc. 666 pp. 

Kikuchi Y, Yamada H, Kunimori H, Tsukada T, Hozawa M, et al. 2005. Aggregation behavior 

of latex particles in shear flow confined between two parallel plates. Langmuir 21: 3273-8 

Kim W, Sorensen CM, Chakrabarti A. 2004. Universal Occurrence of Soot Superaggregates with 

a Fractal Dimension of 2.6 in Heavily Sooting Laminar Diffusion Flames. Langmuir 20: 3969-73 

Kolb M, Botet R, Jullien R. 1983. Scaling of Kinetically Growing Clusters. Physical Review 

Letters 51: 1123-6 



 157

Lattuada M, Wu H, Morbidelli M. 2001. Estimation of Fractal Dimension of Colloidal Gels in 

the Presence of Multiple Scattering. Physical Review E 6406 

Lin MY, Klein R, Lindsay HM, Weitz DA, Ball RC, Meakin P. 1990a. The Structure of Fractal 

Colloidal Aggregates of Finite Extent. Journal of Colloid and Interface Science 137: 263-80 

Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. 1989. Universality in Colloid 

Aggregation. Nature 339: 360-2 

Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. 1990b. Universal Reaction-

Limited Colloid Aggregation. Physical Review A 41: 2005-20 

Lin MY, Lindsay HM, Weitz DA, Klein R, Ball RC, Meakin P. 1990c. Universal Diffusion-

Limited Colloid Aggregation. Journal of Physics-Condensed Matter 2: 3093-113 

Lindsay HM, Lin MY, Weitz DA, Sheng P, Chen Z, et al. 1987. Properties of Fractal Colloid 

Aggregates. Faraday Discussions: 153-65 

Lumma D, Lurio LB, Borthwick MA, Falus P, Mochrie SGJ. 2000. Structure and dynamics of 

concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray 

scattering. Physical Review E 62: 8258-69 

Mandelbrot BB. 1983. The Fractal Geometry of Nature. New York, San Francisco: Freeman and 

Company 

Meakin P. 1983. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited 

Aggregation. Physical Review Letters 51: 1119-22 

Meakin P. 1988. Fractal Aggregates. Advances in Colloid and Interface Science 28: 249-331 

Mishchenko MI. 2002. Vector Radiative Transfer Equation for Arbitrarily Shaped and 

Arbitrarily Oriented Particles: a Microphysical Derivation from Statistical Electromagnetics. 

Applied Optics 41: 7114-34 

Mishchenko MI, Hovenier JW, Mackowski DW. 2004. Single Scattering by a Small Volume 

Element. Journal of the Optical Society of America a-Optics Image Science and Vision 21: 71-87 



 158

Mishchenko MI, Travis LD, Lacis AA. 2002. Scattering, Absorption, and Emission of Light by 

Small Particles: Cambridge University Press. 480 pp. 

Mitsugu M. 1989. Experimental observation of aggregation. In The Fractal Approach to 

Heterogeneous Chemistry: Surfaces, Colloids, Polymers, ed. D Avnir: John Wiley & Sons Ltd 

Mokhtari T, Sorensen CM, Chakrabarti A. 2005. Multiple-scattering Effects on Static Light-

Scattering Optical Structure Factor Measurements. Applied Optics 44: 7858-61 

Monk GS. 1937. Light. New York & London: McGraw Hill Book Company, Inc. 477 pp. 

Oh C, Sorensen CM. 1997. The effect of overlap between monomers on the determination of 

fractal cluster morphology. Journal of Colloid and Interface Science 193: 17-25 

Oh C, Sorensen CM. 1999. Scaling Approach for the Structure Factor of a Generalized System 

of Scatterers. Journal of Nanoparticle Research 1: 369-77 

Oles V. 1992. Shear-Induced Aggregation and Breakup of Polystyrene Latex-Particles. Journal 

of Colloid and Interface Science 154: 351-8 

Ottewill RH, Shaw JN. 1966. Stability of Monodisperse Polystyrene Latex Dispersions of 

Various Sizes. Discussions of the Faraday Society: 154-& 

Peitgen HO, Jürgens H, Saupe D. 1991. Fractals for the Classroom: Part one: Introduction to 

Fractals and Chaos: Springer. 452 pp. 

Peker S. 2007. Role of Surface Forces in the Formation and Stability of Fractal Structures. In 

Colloid Stability: The Role of Surface Forces-Part 1, ed. TF Tadros. New York: Wiley - VCH 

Pesic P. 2005. Sky in a Bottle: The MIT Press. 270 pp. 

Pfeifer P, Obert M. 1989. Fractals: Basic Concepts and Terminology. In The Fractal Approach 

to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, ed. D Avnir: John Wiley & Sons Ltd 

Poulin P, Bibette J, Weitz DA. 1999. From colloidal aggregation to spinodal decomposition in 

sticky emulsions. European Physical Journal B 7: 277-81 



 159

Rottereau M, Gimel JC, Nicolai T, Durand D. 2004. Monte Carlo simulation of particle 

aggregation and gelation: I. Growth, structure and size distribution of the clusters. European 

Physical Journal E 15: 133-40 

Russel WB, Saville DA, Schowalter WR. 1999. Colloidal Dispersions. Cambridge: Cambridge 

University Press 

Selomulya C, Bushell G, Amal R, Waite TD. 2002. Aggregation mechanisms of latex of 

different particle sizes in a controlled shear environment. Langmuir 18: 1974-84 

Serra T, Casamitjana X. 1998. Structure of the aggregates during the process of aggregation and 

breakup under a sheer flow. Journal of Colloid and Interface Science 206: 505-11 

Serra T, Colomer J, Casamitjana X. 1997. Aggregation and breakup of particles in a shear flow. 

Journal of Colloid and Interface Science 187: 466-73 

Smith WE, Zukoski CE. 2006. Aggregation and gelation kinetics of fumed silica-ethanol 

suspensions. Journal of Colloid and Interface Science 304: 359-69 

Somasundaran P, Markovic B, Krishnakumar S, Yu X. 1997. Colloid Systems and Interfaces 

Stability of Dispersions Through Polymer and Surfactant Adsorption. In Handbook of Surface 

and Colloid Chemistry, ed. KS Birdi. New York, Boca Raton: CRC Press 

Sonntag H. 1993. Coagulation Kinetics. In Coagulation and Flocculation: Theory and 

Applications, ed. B Dobias. New York: Marcel Dekker, Inc. 

Sonntag H, Strenge K. 1987. Coagulation Kinetics and Structure Formation. New York: Plenum 

Press 

Sonntag RC, Russel WB. 1986. Structure and Breakup of Flocs Subjected to Fluid Stresses .1. 

Shear Experiments. Journal of Colloid and Interface Science 113: 399-413 

Sorensen CM. 1997. Scattering and Absorption of Light by Particles and Aggregates. In 

Handbook of Surface and Colloid Chemistry, ed. KS Birdi. New York, Boca Raton: CRC Press 



 160

Sorensen CM. 2001. Light Scattering by Fractal Aggregates: A Review. Aerosol Science and 

Technology 35: 648-87 

Sorensen CM, Cai J, Lu N. 1992. Test of Static Structure Factors for Describing Light-Scattering 

from Fractal Soot Aggregates. Langmuir 8: 2064-9 

Sorensen CM, Fischbach DJ. 2000. Patterns in Mie scattering. Optics Communications 173: 145-

53 

Sorensen CM, Hageman B, Rush TJ, Huang H, Oh C. 1998. Aerogelation in a flame soot 

aerosol. Physical Review Letters 80: 1782-5 

Sorensen CM, Kim W, Fry D, Shi D, Chakrabarti A. 2003. Observation of soot superaggregates 

with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames. Langmuir 19: 7560-3 

Sorensen CM, Roberts GC. 1997. The prefactor of fractal aggregates. Journal of Colloid and 

Interface Science 186: 447-52 

Sorensen CM, Wang GM. 1999. Size Distribution Effect on the Power Law Regime of the 

Structure Factor of Fractal Aggregates. Physical Review E 60: 7143-8 

Spicer PT, Keller W, Pratsinis SE. 1996. The effect of impeller type on floc size and structure 

during shear-induced flocculation. Journal of Colloid and Interface Science 184: 112-22 

Stanley HE. 1985. Form: An Introduction to Self-Similarity and Fractal Behavior. In On Growth 

and Form: Fractal and Non-Fractal Patterns in Physics, ed. HE Stanley, N Ostrowsky. France: 

Martinus Nijhoff Publishers 

Stauffer D. 1992. Introduction to Percolation Theory. London: Taylor & Francis 

Stauffer D, Stanley HE. 1990. From Newton to Mandelbrot: A Primer in Theoretical Physics: 

Springer-Verlag Telos. 191 pp. 

Strenge K. 1993. Structure Formation in Disperse Systems. In Coagulation and Flocculation: 

Theory and Applications, ed. B Dobias. New York: Marcel Dekker, Inc. 



 161

Swift DL, Friedlander SK. 1964. Coagulation of Hydrosols by Brownian Motion + Laminar 

Shear Flow. Journal of Colloid Science 19: 621-& 

Tadros TF. 2007. General Principles of Colloid Stability and the Role of Surface Forces. In 

Colloid Stability: The Role of Surface Forces-Part 1, ed. TF Tadros. New York: Wiley - VCH 

Tannehill JC, Anderson DA, Pletcher RH. 1997. Computational Fluid Mechanics and Heat 

Transfer. London: Taylor & Francis 

Torres FE, Russel WB, Schowalter WR. 1991a. Floc Structure and Growth-Kinetics for Rapid 

Shear Coagulation of Polystyrene Colloids. Journal of Colloid and Interface Science 142: 554-

74 

Torres FE, Russel WB, Schowalter WR. 1991b. Simulations of Coagulation in Viscous Flows. 

Journal of Colloid and Interface Science 145: 51-73 

Urban C, Schurtenberger P. 1998. Characterization of Turbid Colloidal Suspensions Using Light 

Scattering Techniques Combined with Cross-Correlation Methods. Journal of Colloid and 

Interface Science 207: 150-8 

van de Hulst HC. 1957. Light Scattering by Small Particles. pp. 470: John Wiley & Sons, Inc. 

Varadan P, Solomon MJ. 2001. Shear-induced microstructural evolution of a thermoreversible 

colloidal gel. Langmuir 17: 2918-29 

Verwey EJW, Overbeek JTG. 1947. Theory of the Stability of Lyophobic Colloids. New York: 

Elsevier Publishing Co. 

Vicsek T. 1992. Fractal Growth Phenomena: World Scientific Publishing Co. Pte. Ltd. 380 pp. 

Victor JM, Hansen JP. 1984. Liquid-Gas Transition in Charged Colloidal Dispersions. Journal 

De Physique Lettres 45: L307-L12 

Voss RF. 1989. Random Fractals: Self-affinity in Noise, Music, Mountains, and Clouds. In 

Fractals in Physics, ed. A Aharony, J Feder. Vence, France: Elsevier Science Publishers 



 162

Wang L, Marchisio DL, Vigil RD, Fox RO. 2005. CFD simulation of aggregation and breakage 

processes in laminar Taylor-Couette flow. Journal of Colloid and Interface Science 282: 380-96 

Weber V, Schosseler F. 2002. Absolute Small Angle Light Scattering Measurements from 

Weakly Scattering Systems in a Shear Flow Apparatus. Review of Scientific Instruments 73: 

2537-43 

West AHL, Melrose JR, Ball RC. 1994. Computer-Simulations of the Breakup of Colloid 

Aggregates. Physical Review E 49: 4237-49 

Witten TA, Sander LM. 1981. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. 

Physical Review Letters 47: 1400-3 

Yan YD, Dhont JKG, Smits C, Lekkerkerker HNW. 1994. Oscillatory-Shear-Induced Order in 

Nonaqueous Dispersions of Charged Colloidal Spheres. Physica A 202: 68-80 

Zeichner GR, Schowalter WR. 1979. Effects of Hydrodynamic and Colloidal Forces on the 

Coagulation of Dispersions. Journal of Colloid and Interface Science 71: 237-53 

 


