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Thermochemical Pretreatments for Agricultural Residue Ash Production for 1 

Concrete 2 

Feraidon F. Ataie1 and Kyle A. Riding1 3 

 4 

Abstract: 5 

 Agricultural residue ash is known to be a very reactive source of supplementary 6 

cementitious material (SCM) for use in concrete. The influence of thermochemical pretreatments 7 

on the reactivity of agricultural residue ash (ARA) for use as an SCM was studied. It was shown 8 

that pretreatments are effective in partial removal of alkali metals and other impurities out of 9 

both wheat straw and rice straw leading to ARA with lower loss on ignition (LOI), higher 10 

internal surface area, and higher amorphous silica content than that of unpretreated ARA. It was 11 

shown that the ash alkali content correlated with the ash LOI and amorphous silica content. 12 

When used at a cement replacement rate of 20% by mass, pretreated ARA accelerated the 13 

hydration of cement paste samples while unpretreated ARA retarded the cement hydration. 14 

Pretreatments were found to increase ARA reactivity as measured by calcium hydroxide content 15 

reduction with time. ARA increased compressive strength of mortar samples by 25% when used 16 

as 20% replacement of cement in the samples. It was found that the calcium hydroxide content of 17 

paste samples and mortar compressive strength were correlated to the amorphous silica content 18 

of the ash.   19 

                                                            
1Dept. of Civil Engineering, Kansas State University, Manhattan, KS 66506 
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Introduction: 20 

The use of supplementary cementitious material (SCM) can reduce the energy and CO2 21 

intensity of concrete. Natural SCMs have received increasing interest because of their high 22 

reactivity, low cost, and availability in some regions where other SCMs are not available. 23 

Agricultural residue ash (ARA) such as rice husk ash (RHA) and sugarcane bagasse ash have 24 

been championed as SCMs that can greatly enhance strength and durability of concrete (Salas, et 25 

al. 2009; Feng, et al. 2004; Nair, et al. 2006; Cordeiro, et al. 2006; Agarwal 2006; Tuan, et al. 26 

2011; Sales and Sofia 2010). Other agro-biomass such as wheat straw (WS) and rice straw (RS) 27 

could be a potential source for SCMs with similar pozzolanic reactivity to RHA.  The pozzolanic 28 

reaction is the reaction between a siliceous material and calcium hydroxide (CH) under water to 29 

form a cementitious material, as shown in       Eq. 1(Wanson, et al. 2009). 30 

 CSHHSCH        Eq. 1 

Note: Oxide notation is used throughout this paper, C = CaO, S = SiO2, H=H2O, A = Al2O3, 31 

F=Fe2O3.  32 

The pozzolanic reaction kinetics is known to be affected by many factors such as ash 33 

mineralogy, surface area, and carbon content of the pozzolanic materials (Feng, et al. 2004; 34 

Wanson, et al. 2010). 35 

Agro-biomass pretreatment processes can enhance ARA reactivity for use in concrete. 36 

Thermochemical pretreatment techniques, such as dilute acid, have been shown to improve 37 

pozzolanic reactivity by increasing surface area and amorphous silica content and decreasing 38 

carbon content of RHA (Feng, et al. 2004; Wanson, et al. 2009; Chandrasekhar, et al. 2006). In 39 

the biofuel industry, thermochemical pretreatment of lignocellulosic biomass has proven to be 40 

very effective hydrolysis process for ethanol production (Zheng, et al. 2009; Saha, et al. 2005; 41 

Kristensen, et al. 2008; Mosier, et al. 2005). The dilute acid pretreatments are effective in 42 
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removal of some hemicellulose; breakdown, re-localization, and structure change of lignin; and 43 

defibration/decrystallization of cellulose of the biomass cell wall. Pretreatment of agro-biomass 44 

has been shown to improve combustion properties of biomass for use as a fuel as a result of 45 

leaching impurities such as Na, K, Ca, and Mg (Jenkins, et al. 2003). These metals decrease the 46 

biomass melting temperature and promote the release of unwanted byproducts during 47 

combustion (Jenkins, et al. 2003). 48 

The pozzolanic properties of rice straw ash (RSA) and wheat straw ash (WSA) have been 49 

examined by only a few researchers. WSA that has not been pretreated has been found to be 50 

pozzolanically reactive when burned at 570 oC and 670 oC for 5 hours (Biricik et al. 1999). Al-51 

Akhras and Abu-Alfoul (2002) have reported that mechanical properties of autoclaved mortar 52 

specimens were improved with by WSA made by burning wheat straw at 650 oC for 20 hrs.  RSA 53 

has been shown to improve mechanical properties of mortar and concrete specimens through a 54 

pozzolanic reaction (Francisco et al. 2008). One study showed that rice straw pretreated with 55 

hydrolysis could produce good quality ash for use in concrete, however no comparison with 56 

unpretreated rice straw ash was made to quantify the benefits of pretreatment (El-Damatty and 57 

Hussain 2007). The impact of thermochemical pretreatments on the RSA and WSA sensitivity to 58 

burning conditions and subsequent reactivity in a cementitious system has not been studied. 59 

Additionally, the mechanism by which pretreatments improve ARA pozzolanicity has not been 60 

fully established. 61 

This paper documents the effects of thermochemical pretreatments on the physical properties, 62 

chemical properties, and reactivity of WSA and RSA in a cementitious system. Employing 63 

several pretreatments techniques and burning conditions, this study attempts to examines the 64 

mechanism(s) by which pretreatments enhance ARA reactivity. Distilled water (DW) and 0.1 N 65 
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hydrochloric acid (HCl) were used to pretreat the biomass at 23oC, 50oC and 80oC for several 66 

soaking durations followed by burning at 500oC, 650oC, 700oC, and 800oC. Loss on ignition 67 

(LOI), internal surface area, and amorphous silica content of ARA were measured for these 68 

ashes. Isothermal calorimetry, thermogravimetric analysis, electrical conductivity measurements, 69 

and mortar compressive strength were used to quantify the ARA reactivity. 70 

Materials: 71 

 An ASTM C 150 (2009) Type I/II portland cement was used for this study with the 72 

cement properties shown in Table 1. Standard graded sand (ASTM 2006) was used for the 73 

mortar experiments. Wheat straw (WS) was purchased from Britt’s farm in Manhattan, KS and 74 

Rice straw (RS) was obtained from Missouri Rice Research Farm, Glennonville, Missouri. 75 

Reagent grade HCl was obtained and diluted to 0.1 N for use in the study. 76 

Experimental methods: 77 

Hydrothermal and thermochemical pretreatment methods were performed on the WS and RS 78 

using distilled water (DW) and 0.1 N HCl. To pretreat the biomass, 250 g of biomass was 79 

immersed in 3100±100 mL of the solution in a 4000 mL glass jar. The sample was stored 80 

undisturbed at a constant temperature for the immersion period of interest. Three different 81 

temperatures, 23oC, 50oC, and 80oC, were used to make ash for each pretreatment method which 82 

will be referred to as DW23oC, DW50oC, and DW80oC for the distilled water pretreatment at 83 

23oC, 50oC, and 80oC and  HCl23 oC, HCl50oC, and HCl80oC for the 0.1 N HCl pretreatment at 84 

23oC, 50oC, and 80oC, respectively. AR samples were immersed for 0.5, 1, 2, 4, 8, and 24 hrs 85 

before burning.  Leachate samples were collected from two separate containers of pretreated AR 86 

for each time and temperature.  The Mg, Ca, K, and Na concentration was measured using 87 

atomic absorption spectroscopy (AAS) for each container. The Mg, Ca, K, and Na concentration 88 
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was reported as the average concentration of the two containers. After pretreatment, the biomass 89 

was rinsed twice with distilled water and dried at 80oC for storage until burning. 200 g of 90 

biomass was burned in each ARA batch made.  A stainless steel cage with two wire mesh 91 

shelves was used to hold the biomass during burning.  A stainless steel pan was placed below the 92 

cage to catch any ash that fell through the mesh.  A programmable electric muffle furnace was 93 

used to heat the samples to a predetermined temperature and hold time. Samples were heated to 94 

500oC, 650oC, 700oC, or 800oC using 1, 2, or 3 hr soak times. Finally, the ash was ground for 95 

one hour at 85 revolutions per minute (rpm) in a laboratory ball mill. 96 

Particle-size distribution and internal surface area of the ground ARA were determined using 97 

a laser diffractometer and BET nitrogen adsorption respectively. LOI of ARA was determined by 98 

measuring the mass loss after heating one gram of dry ARA (WSA or RSA) to 800oC for 3 hrs. 99 

LOI was calculated as the percentage mass loss during firing. 100 

To measure the amorphous silica content of ARA, the ash impurities and soluble material 101 

content were measured (Nair, et al. 2006). The impurities content was measured by first boiling 102 

0.5 g of ARA after the LOI test in 25 mL of 10% nitric acid. After boiling in acid the sample was 103 

filtered through a glass microfiber filter paper with 1.1 µm openings and rinsed with deionized 104 

water. The sample was then dried at 90±10 oC and weighed. To measure the ash soluble material 105 

content, 3 g of ARA was boiled in 200 mL of 10% sodium hydroxide solution (2.5 N NaOH) for 106 

5 minutes. After boiling, the sample was cooled to room temperature, filtered through a 1.1 µm 107 

glass microfiber filter paper, and washed with deionized water. The residue and filter paper was 108 

then heated to 800 oC for 3 hrs. The ash weight change after boiling in the sodium hydroxide and 109 

heating was recorded.  The ARA amorphous silica content was then calculated using Eq. 2 : 110 

imsolam wLOIwSi    Eq. 2 
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where Siam is the amorphous silica content of the ash (%), wsol is the ash weight loss after boiling 111 

in sodium hydroxide and heating (%), LOI is the ash loss on ignition (%), and wim is the weight 112 

of impurities (%).  113 

The decrease in electrical conductivity of a calcium hydroxide solution mixed with SCMs 114 

has been used by other researchers as a simple reactivity index for pozzolanic behavior of SCMs 115 

(Sinthaworn and Nimityongskul 2009; Paya, et al. 2001) and was used in this study.  One gram 116 

of ARA was mixed with 100 mL of saturated calcium hydroxide solution at 23±2 °C.  The 117 

solution’s electrical conductivity was then measured for 7 days.  118 

For the cement paste experiments, ARA was used at a 20% replacement level by mass of 119 

cement when used.  A water-cementitious materials ratio (w/cm) of 0.5 was used for all paste 120 

samples. The paste samples were mixed using a procedure previously used (Riding, et al. 2010). 121 

Distilled water was added to the cementitious material and mixed using a vertical laboratory 122 

mixer at 500 rpm for 90 seconds, followed by a 120 second rest period, and finally mixed at 123 

2000 rpm for 120 seconds.   124 

Isothermal calorimetry was used to study the reaction rate of ARA in a cementitious system.  125 

An eight-channel isothermal calorimeter was used in this study at 23°C.  Paste samples of 126 

approximately 30 g each were used. The calcium hydroxide (CH) content of cement paste 127 

samples was measured by thermogravimetric analysis to study the pozzolanic consumption of 128 

CH by ARA. Samples were wet cured starting at 24 hrs after casting at 23 oC. Cement paste 129 

hydration was stopped at 7, 28, and 90 days after mixing by means of solvent exchange with 130 

isopropanol. 3-5mm thick samples were cut and placed in isopropanol for 7 days.  After 7 days 131 

in isopropanol, the samples were dried in a vacuum for at least 3 days.  For thermogrametric 132 

analysis, samples were heated at 20°C/min up to 900 oC in a nitrogen environment.  133 
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Mortar cube compressive strength was measured according to ASTM C 109 (2008) with a 134 

sand to cementitious material ratio of 2.75. A w/cm of 0.55 was used for all mortar samples 135 

because of the decreased workability of systems with ARA. ARA was used at a 20% 136 

replacement level by mass of cement when used. Mortar cube compressive strength was tested at 137 

7 and 28 days with the results reported as the average of the compressive strength of three mortar 138 

cubes. 139 

Results and discussion: 140 

Pretreatments and alkali leaching 141 

Pretreatments were very effective in altering the chemical and physical structure of the 142 

straw and removing K, Ca, and Mg. Figure 1 shows the leachate K concentrations for different 143 

pretreatments used for WS. The sodium concentrations were found to be much lower than K, and 144 

varied only slightly by pretreatment method. Figure 2 shows the calcium (Ca) and magnesium 145 

(Mg) leachate concentration for WS. HCl and higher temperatures increased the leaching rates of 146 

K, Ca, and Mg.  A much larger difference between HCl and DW pretreatments was seen 147 

however with Ca and Mg removal from WS than K and Na. Similar trends were observed for 148 

RS. The temperature sensitivity of K removal during pretreatments was quantified by calculating 149 

the dissolution activation energy. First, the leachate K concentration with time for a given 150 

pretreatment temperature was fit to  151 

Eq. 3 (ASTM, 2010): 152 

 
)(1

)(
)(

tK

tK
CtC ult 


  

 
Eq. 3 

 153 

where C(t) is the potassium concentration as a function of soaking duration (ppm), t is the time 154 

passed after starting the pretreatment (days), Cult is the ultimate potassium concentration assumed 155 
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to be equal to the concentration measured at 24 hr of treatment (ppm), and K is the rate constant 156 

of potassium dissolution. The Arrhenius plot was made by plotting the natural log of the rate 157 

constant K against the reciprocal of the pretreatment temperature in Kelvins.  Figure 3 shows the 158 

Arrhenius plot for the rate constants calculated for the leachate K concentration for wheat straw. 159 

The activation energy was calculated as the slope of the fit line on the Arrhenius plot multiplied 160 

by the universal gas constant R (8.314 J/mol/K).  The activation energy for leaching K with 0.1 161 

N HCl was found to be 32.2 KJ/mol, versus 13.3 KJ/mol with DW pretreatments. This shows 162 

that the higher the acid concentration the more effectively heat can be used to remove K from the 163 

AR with high acid concentrations. 164 

Surface area, LOI and amorphous silica content of ARA 165 

Pretreatments were effective in reducing the carbon content in the ARA, increasing the 166 

internal surface area, and increasing the percentage of amorphous silica in the ash. Figure 4 167 

shows the amorphous silica content of ARA. For a given burning temperature, pretreatments 168 

increased the amorphous silica content. Pretreated ARA burned at 500°C for 2 hrs had a similar 169 

amorphous silica content as the one burned at 650°C for 1 hr. The unpretreated WSA had 21% 170 

crystalline silica and unpretreated RSA had 19% crystalline silica when burned at 650°C for 1 171 

hour as calculated from the ash total silica content shown in Table 2 and the ash amorphous 172 

silica content shown in Figure 4. The ash pretreated with 0.1N HCl at 80°C showed little if any 173 

crystalline silica while the WSA pretreated with DW at 80°C had 8% crystalline silica. The 174 

increase in amorphous silica content of the pretreated ARA correlated with the removal of Ca, 175 

Mg, and K out of the biomass by pretreatments. Figure 5 shows the amorphous silica content of 176 

ARA versus the CaO, MgO, and K2O content. The amorphous silica content of the ARA 177 

corresponded with a decrease in the CaO, MgO, and K2O content, with the MgO showing a 178 
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slightly better correlation. Figure 6 shows the LOI measured for WSA and RSA. The ARA LOI 179 

decreases as the burning temperature increases regardless of the pretreatment type. At a given 180 

burning temperature, pretreated ARA had a lower LOI than that of the unpretreated control ash. 181 

Figure 7 shows the metal impurity (Ca, Mg, and K) content of the ash for the WSA and RSA was 182 

also correlated to the ARA LOI.  The RSA had a lower LOI than the corresponding WSA, 183 

possibly because of the lower alkali content of the RSA before pretreatment than the WSA. Even 184 

though distilled water pretreatments were not as effective as the more acidic pretreatments, when 185 

burned at 650°C for 1hr the WSA pretreated with DW23/24 still had 52% lower LOI and 15% 186 

higher amorphous silica than that of unpretreated WSA. RSA pretreated with DW23/24 had 55% 187 

lower LOI and 17% higher amorphous silica than that of unpretreated RSA.  188 

Another important impact of the pretreatments is the decrease in temperature sensitivity of 189 

the biomass. Sensitivity reduction is vital for low cost ARA production in using simple kilns or 190 

large scale applications where it may be more difficult to control the temperature. The 191 

pretreatments were very effective in reducing the sensitivity to burning temperatures.  The 192 

HCl80/24 WSA burned at 800 oC had a higher amorphous SiO2 content than that of the control 193 

burned at 500°C as shown in Figure 4.  194 

LOI and amorphous silica content of ARA was shown to be affected by the duration of 195 

burning. Table 4 shows the LOI and amorphous silica content for WSA pretreated with 0.1N 196 

HCl at 80°C for 24 hours and then burned at different temperatures and holding durations. There 197 

appears to be an optimum burning time for each temperature which appeared to coincide with the 198 

removal of most of the carbon. At 500°C, the optimum burning time was found to be between 199 

one and two hours whereas at 600°C it was found to be less than or equal to one hour.  Burning 200 
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periods longer than the optimum time did not appear to improve amorphous silica content or 201 

LOI.  202 

The pretreatment changed the color of the ash, mainly because of the decrease in carbon 203 

content. Figure 8A shows WSA pretreated with 0.1N HCl at 80°C for 24 hrs, while Figure 8B 204 

shows control WSA samples ashed at four different temperatures. The WSA-HCL80/24 ash was 205 

much lighter in color than that of control WSA ashes regardless of the burning condition. Even 206 

though it had a low LOI, the WSA pretreated with HCl at 80°C for 24 hrs and burned at 800°C 207 

for one hr had a slightly darker color than the pretreated ashes made at lower temperatures 208 

(Figure 8A). Although the color of the ash is largely related to carbon content of the ash, 209 

impurities such as alkali metals can change the ash color. At higher temperatures  these metals 210 

react with silicon (Si) to produce crystalline phases that may combined with carbon or contain 211 

iron giving the ash a darker color (Muthadhi and Kothandaraman 2010; Genieva, et al. 2011). It 212 

was also observed that washing the biomass after pretreatments is very important in removing 213 

alkalis from surface of biomass and reducing LOI of the resulted ash. This could be because 214 

when the straw was not washed after the pretreatment, potassium and other impurities in solution 215 

would precipitate on to the surface of the straw during drying. These precipitates could trap 216 

carbon during ashing, leading to higher ash LOI. Even though pretreatments remove metal 217 

impurities out of the biomass cell wall, it is beneficial to wash the biomass after pretreatment to 218 

limit the impurities that would precipitate on the biomass surface. For a given burning condition, 219 

pretreated but unwashed biomass resulted in ARA with darker color and higher LOI compared to 220 

the ash obtained from pretreated and washed biomass. This could be attributed alkalis on the 221 

surface melting at lower temperature and trapping carbon. 222 
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Table 3 presents the ARA surface area determined by BET nitrogen adsorption while Figure 223 

9 shows the particle-size distribution for some selected ARAs. For a given pretreatment, ashes 224 

burned at 500°C for 2 hrs had higher surface area than those burned at higher temperatures. This 225 

is probably because at higher temperatures melting of some material may occur eliminating 226 

pores inside of the ash.  The particle-size distribution was not significantly affected by 227 

pretreatments. Although the surface area of unpretreated RSA and WSA were similar, pretreated 228 

RSA had a larger surface area than that of pretreated WSA. 229 

Conductivity measurements 230 

Figure 10 shows the normalized conductivity (the measured conductivity divided by the 231 

initial conductivity of the solution) data for WSA pretreated with 0.1N HCl at 23°C, 50°C, and 232 

80°C and burned at 500°C for 2 hours and 650°C for 1 hour. The normalized conductivity for 233 

unpretreated WSA and WSA pretreated with DW and 0.1 N HCl is given in Figure 11. The 234 

pretreatment temperature did not significantly affect the measured conductivity change. WSA 235 

burned at 500oC for 2 hrs shows a more rapid drop in conductivity than WSA burned at 650oC 236 

for 1 hour indicating a higher reactivity consistent with the higher surface ash measured in the 237 

samples burned at 500°C. Very little difference was seen between different pretreatments in the 238 

conductivity experiments. Similar behavior was seen for RSA conductivity experiments. The 239 

initial increase in the electrical conductivity from the control sample is likely the result of 240 

dissolution of metal impurities such as Na, K, Ca, and Mg in the solution (Sinthaworn, et al. 241 

2011). 242 

Isothermal Heat of Hydration 243 

  Figure 12 compares the heat of hydration for WSA burned at 650oC for 1 hour with and 244 

without thermochemical pretreatments. Large differences in hydration behavior were seen 245 



11 
 

between the pretreated and control WSA. Figure 13 shows the total heat of hydration of cement 246 

paste samples containing WSA. The pretreated ashes show similar total heat of hydration during 247 

the first 120 hours, indicating a similar degree of cement hydration at 120 hours. Figure 14 248 

shows the heat flow rate for paste samples containing RSA. The hydration rate of pretreated 249 

ARA was accelerated compared to the control samples, whereas the samples with ARA that were 250 

not pretreated were retarded as seen in Figure 12 and Figure 14.  The hydration acceleration is 251 

most likely caused by increased nucleation because of the very high ARA surface area (Bullard, 252 

et al. 2011; Scrivener and Nonat 2011). Also, the samples containing pretreated ARA (WSA and 253 

RSA) showed much more similar behavior to each other during the first 120 hours after mixing 254 

than the non-pretreated ARA. 255 

Pozzolanic Reactivity 256 

The decrease in CH content of cement paste samples containing ARA is a measure of the 257 

ARA pozzolanic reaction. The CH content for cement paste samples with and without ARA was 258 

measured using TGA at 7, 28, and 90 days of hydration as shown in Figure 15 and 16 for WSA 259 

and RSA, respectively. For a given pretreatment type and age, samples containing ARA (WSA 260 

or RSA) burned at 500oC for 2 hr had a lower CH content than those burned at higher 261 

temperatures. This can be attributed to the higher surface area of ARA burned at 500oC for 2 hr. 262 

At a given burning condition, samples containing ARA pretreated with 0.1N HCl at 80oC for 24 263 

hrs had a lower CH content than any other pretreatment type. At a given age, samples containing 264 

WSA at burned at 500°C showed lower CH content than those containing RSA burned at 500°C.  265 

Figure 17 shows the compressive strength development for mortar with and without 20% 266 

cement replaced by ARA.  The WSA and RSA pretreated with HCl at 80°C for 24 hours showed 267 

the highest compressive strength development, with a 25% increase in strength over the ordinary 268 
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portland cement (OPC) mixture at 28 days of age. The increased strength seen with pretreated 269 

ashes confirms the increased pozzolanic reaction seen with the reduction of CH content with 270 

time in samples containing the pretreated ARA. 271 

A comparison of the ARA material characteristic improvement from the pretreatments 272 

(amorphous silica and surface area) and CH content at 90 days is shown in Figure 18. The 273 

increase in amorphous silica content of ARA and surface area correlated with a decrease in the 274 

CH content of paste samples containing ARA and increases compressive strength of mortar 275 

samples containing ARA. The isothermal calorimetry results did not show a reduced hydration 276 

development with the use of ARA indicating that the decrease in CH content seen with the ARA 277 

is likely from the pozzolanic reaction and not a lower cement degree of hydration.  Additionally 278 

the OPC mixture showed an increase in CH content while the mixtures with ARA showed a 279 

decrease in CH between 7 and 28 days.   280 

Conclusions: 281 

The material physical and pozzolanic properties of wheat straw ash (WSA) and rice straw ash 282 

(RSA) were studied. From this study, the following conclusions can be made: 283 

1- Pretreatments are effective in partial removal of Ca, K, and Mg out of the biomass. The 284 

activation energy for K leaching was higher for dilute acid pretreatment than distilled 285 

water pretreatment. This shows that heating samples during pretreatment even more 286 

effective for the more acidic pretreatments.  287 

2- Pretreatments increased the amorphous silica content and surface area and decreased the 288 

LOI of ARA at a given burning temperature. It was shown that amorphous silica content 289 

inversely correlated with the Ca, K, and Mg content of the ash while LOI of ARA is 290 

directly correlated with the Ca, K, and Mg content of the ash. Alkalis seemed to encase or 291 
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combine with carbon during burning. Pretreatments reduced the sensitivity of the ash to 292 

the burning temperature, showing less of a decrease in amorphous silica content than the 293 

non-pretreated ash at 700°C and 800°C. 294 

3- Pretreatments improved the system hydration kinetics.  Non-pretreated ARA retarded the 295 

cement hydration, whereas pretreated WSA and RSA accelerated the cement hydration. 296 

The acceleration may be from increased nucleation from the increased material surface 297 

area. 298 

4- Cement paste sample containing ARA burned at 500°C for 2 hrs contained lower CH 299 

than those samples containing ARA burned at 650°C for 1 hr. This was attributed to the 300 

higher surface area of the ash burned at 500°C for 2 hrs. It was shown that CH content of 301 

the paste after 90 days of hydration was inversely correlated with amorphous silica 302 

content and surface area of the ash used in the paste. Samples containing WSA showed 303 

lower CH content at 90 days than the RSA with similar surface area and amorphous silica 304 

content. 305 

5- When used as 20% replacement of cement in mortar samples, pretreated ARA increased 306 

compressive strength of mortar samples at 28 days by 25% compared to the OPC sample. 307 

Mortar samples containing pretreated ARA showed a 32% increase in 28 day 308 

compressive strength compared to samples containing unpretreated ARA. It was also 309 

shown that mortar compressive strength correlated well with the ash amorphous silica 310 

content.  311 
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 426 

 427 

 428 

Table 1: ASTM C 150 Type I/II ordinary portland cement (OPC) Composition 429 

Chemical 
Composition (wt%) 

SiO2 21.85

Fe2O3 3.4

Al2O3 4.35

CaO 64.19

MgO 1.79

K2O 0.52

Na2O 0.17

SO3 2.77

LOI 0.89

Blaine Surface 

area= 362 m
2
/kg 

 430 

   431 
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 432 

Table 2: Oxide composition of selected ARA 433 

Ash Type  SiO2  Al2O3  Fe2O3  CaO  MgO  K2O  Na2O 

WSA‐Cont‐650/1  66.3  0.26  1.12  14.3  3.05  14.7  0.15 

WSA‐DW80‐650/1  78.8  0.12  1.05  13.2  2.61  4.4  0.12 

WSA‐HCl80‐650/1  86.5  0.28  1.13  9.73  0.78  1.54  0.1 

WSA‐HCl80‐500/2  87.9  0.05  1.07  9.63  0.63  0.7  0.08 

RSA‐Cont‐650/1  79.1  0.34  0.82  11.6  2.54  5.18  0.5 

RSA‐DW80‐650/1  85.4  0.45  0.92  10.69  1.36  0.96  0.26 

RSA‐HCl80‐650/1  88.2  0.47  0.74  9.48  0.56  0.31  0.17 

RSA‐HCl80‐500/2  85.7  1.4  1.02  10.73  0.6  0.34  0.23 

 434 

   435 
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 436 

Table 3: BET data for WSA and RSA under different burning conditions 437 

Ash type 
BET surface 
area (m2/g) 

WSA‐Cont‐500/2  27.6 

WSA‐Cont‐650/1  8.3 

WSA‐HCl80/24‐500/2  168 

WSA‐HCl80/24‐650/1  65 

WSA‐HCl80/24‐700/1  39.7 

RSA‐Cont‐500/2  16.9 

RSA‐Cont‐650/1  9.6 

RSA‐HCl80/24‐500/2  200 

RSA‐HCl80/24‐650/1  134.5 

RSA‐DW80/24‐650/1  58.94 

 438 

   439 
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 440 

Table 4: Effect of holding time on LOI and amorphous silica content 441 

WSA type 
Amorphous 
Silica (%) 

LOI (%) 

HCl80/24‐500/1  72.70 17.58

 HCl80/24‐500/2  88.65 2.76

HCl80/24‐500/3  88.7 2.62

HCl80/24‐650/1  89.14 1.18

HCl80/24‐650/2  88.99 1.1

 442 

   443 
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 444 

 445 

Figure 1: Potassium (K) concentration for wheat straw 446 

 447 

 448 

Figure 2: Ca (a) and (b) Mg concentration for wheat straw 449 
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 450 

Figure 3: Arrhenius Plot for wheat straw 451 

  452 

 453 

Figure 4: Amorphous silica content of pretreated and unpretreated ARA 454 
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 455 

Figure 5: ARA amorphous silica vs ARA (WSA and RSA) oxide content  456 

 457 

Figure 6: LOI of pretreated and unpretreated ARA 458 

 459 

Figure 7: ARA LOI V vs ash K2O, CaO and MgO content 460 
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 461 

Figure 8: Color of wheat straw ash, a) HCl80/24 pretreated and b) unpretreated 462 

 463 

Figure 9: Particle size distribution of OPC and ARAs 464 

 465 

Figure 10: Electrical conductivity change of HCl pretreated wheat straw ash 466 
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  467 

Figure 11: Electrical conductivity change wheat straw ash with different pretreatments 468 

 469 

Figure 12: Heat flow rate of paste samples containing different wheat straw ash 470 
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 471 

Figure 13: Total heat of hydration of paste samples containing different wheat straw ash 472 

 473 

Figure 14: Heat evolution rate of paste samples with and without rice straw ash 474 

 475 

Figure 15: CH content of cement paste containing wheat straw ash 476 
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 477 

Figure 16: CH content of cement paste containing rice straw ash 478 

 479 

Figure 17: Mortar cube compressive strength data 480 
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 482 

 483 

Figure 18: Relation between material characteristics and performance a) amorphous silica 484 

content vs 28 days mortar cub strength, b) amorphous silica content vs CH content of paste 485 

after 90 days c) Surface area of ash vs CH content of paste after 90 days  486 
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