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Abstract 

Vaccinia virus is the prototypic poxvirus that has been widely used as a model for 

investigating poxvirus biology and genetics. Like several members of the Poxviridae family, 

vaccinia virus can infect several different species including mice, cows and humans. Because the 

entry of poxviruses into a host cell relies on ubiquitously expressed surface molecules, which are 

found in many species, the ability of poxviruses to infect and replicate in different host cells 

primarily depends on their ability to subvert the host’s innate immune response. One critical 

barrier to infection is overcoming the general shutdown of protein translation initiated by the 

cellular protein kinase PKR. PKR detects cytoplasmic double-stranded (ds) RNA generated 

during infection by the replicating virus, which activates it to phosphorylate the alpha-subunit of 

the eukaryotic translation initiation factor 2 (eIF2) and suppress general translation. Poxviruses 

are large viruses with dsDNA genomes that encode around 200 genes. Several of these genes are 

known as host range genes and are important for replication in different host species and many 

interact with components of the host immune response to promote viral replication. Two genes in 

vaccinia virus, called E3L and K3L, are known inhibitors of PKR and have previously been 

shown to be important for virus replication in cells from different species. The molecular 

explanation behind their host range function, however, is unknown. The main goal of the 

research presented in this thesis is to determine the molecular mechanisms for the host range 

function of vaccinia virus E3L and K3L, particularly in different hamster host cells. Along with 

an analysis of vaccinia virus host range genes, we have used genome-wide comparisons between 

host-restricted poxviruses in the Leporipoxvirus genus to parse out the potential genomic 

determinants of host range restriction in this clade of poxviruses. The overarching aim of this 

thesis work is to better understand the molecular mechanisms for host range in poxviruses. 
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Chapter 1 - Introduction 

Viruses continue to be an economic and social concern globally as the diseases they 

cause threaten human and animal populations (1). The adaptation of viruses to new hosts or 

niches within their hosts is a consequence of their evolution and ecology and can lead to the 

emergence of zoonotic viral diseases that pose problems for humans and the animal populations 

they depend on (2). It is therefore critically important to understand the interactions between 

these viruses and their hosts that affect virus host range and virulence or host susceptibility. 

Poxviruses are a group of important human and animal pathogens that historically have had a 

great impact on these populations, and their continued emergence and discovery in surveillance 

efforts offer evidence that these viruses will continue to play an important role in the global 

ecosystem (3, 4). The sequencing of entire poxvirus genomes has begun to reveal the genetic and 

molecular determinants for poxvirus infection, replication, and virulence, yet our understanding 

of how species-specific differences in host-virus interactions affect the host range of poxviruses 

is limited and requires further study. 

 Poxviruses 
Poxviruses are a family of large double-stranded (ds) DNA viruses that replicate 

exclusively in the cytoplasm of host cells. Poxviruses have complex, enveloped virions that are 

large enough to be visible by a light microscope (~250x350nm) and ultrastructural examination 

of samples by electron microscopy has long been the gold standard for diagnosing poxviral 

infections. The virions of poxviruses are shaped like rounded bricks, and a cross section of these 

viruses reveals a unique dumb-bell shaped interior that is caused by the presence of two lateral 

bodies that sit on either side of the viral core, which houses the structural proteins, some 

transcriptional enzymes, and the dsDNA genome (5, 6). The genomes of poxviruses range in size 

from 135-360 kilobase pairs (kb), and therefore poxviruses have some of the largest viral 

genomes ever studied and the largest genomes of any animal viral pathogen. Approximately 130-

360 open reading frames (ORFs) are encoded in the genomes of poxviruses, which vary between 

genera and between different strains of each species (7).  
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Poxviruses as a family display very different host range sizes and infect a wide range of 

hosts from insects to mammals (Fig. 1.1). For example, variola virus (VARV) can only infect 

humans, while the closely related cowpox virus has one of the largest host range sizes of all 

poxviruses and has been documented to infect more than 200 mammalian species. However, 

poxvirus entry is not dependent on binding a specific cell receptor. Instead poxviruses enter host 

cells by membrane fusion or are internalized by macropinocytosis (8). Poxvirus attachment and 

membrane fusion is facilitated by a complex of proteins in the viral envelope, which bind to cell 

surface glycosaminoglycans like chondroitin sulfate or heparin sulfate that are ubiquitously 

expressed on many host cells (9-11). Therefore, the ability of individual poxviruses to replicate 

in different host cells depends on the successful manipulation of the host antiviral response. In 

experimental settings, several genes have been shown to influence the host tropism of different 

poxviruses and are therefore identified as host range genes (12, 13). These host range genes 

perform many functions during virus infection including suppressing the induction of pro-

inflammatory and interferon-stimulated genes, inhibiting apoptosis and the virus-induced host 

shut-off of protein translation, as well as inducing the degradation of antiviral proteins (Fig. 1.2) 

(14). Additionally, these gene products are involved in the maturation of infectious particles or 

the stimulation of actin polymerization that is important for viral egress and cell-to-cell spread. 

The work done in this thesis focuses largely on the interactions between E3L and K3L from 

vaccinia virus (VACV) with the innate immune response protein kinase PKR and the role these 

interactions play in determining the host range of VACV and the role their orthologs play in 

influencing the evolution of host range in other poxviruses.  

 Poxvirus genomes 
The central region of poxvirus genomes (~100kb) is highly conserved in gene order as 

well as in sequence, while the ends of the genomes are more variable in length and content (15). 

The conserved central region mostly encodes genes whose protein products are involved in 

critical functions such as transcription, DNA replication, and virion assembly. Genes encoding 

host response proteins and other non-essential genes tend to be distributed towards the ends of 

the genome (7, 16, 17). The most terminal regions of the genome are inverted and duplicated at 

either end and are therefore referred to as the inverted terminal repeat (ITR) region. The ITRs of 

poxvirus genomes range in size from 0.1-16kb in chordopoxviruses (14, 18) and can be up to 
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23kb in some entomopoxviruses (19, 20). In VACV, the ITR length ranges from 3.4-16.4kb 

between different strains (14). Although many of the VACV vaccine strains have shorter ITRs 

than the laboratory strains, there is no obvious correlation between ITR length and virulence. The 

ITR of VARV (Bangladesh strain) for example is only about 700bp in length and does not 

encode a single ORF (21). The variation in size of poxvirus ITRs is believed to be largely due to 

large genetic duplications that occur during virus replication or by the incorporation of new 

genetic material from within a co-infected cell as this region of the genome is highly prone to 

recombination due to the nature of poxvirus genome replication (22, 23). Duplication of large 

genomic segments in laboratory passaged cowpoxviruses (CPXVs) has even resulted in progeny 

virus strains with ITRs more than 50kb in length, and genetic recombination has been observed 

between closely related poxvirus species and between strains of the same species (24, 25). The 

recombinogenic nature of poxviruses paired with the flexibility to incorporate relatively large 

DNA sequences into their genome has expanded their use as vaccine vectors and as tools in 

molecular biology while at the same time making them excellent models for studying genome 

evolution and host-virus co-evolution (26, 27).  

Poxvirus genomes are linear, however at each terminus, a hairpin loop is formed to 

covalently link the ends of the genome (28). DNA replication begins when this loop is nicked, 

which allows the viral DNA polymerase to attach and copy the hairpin. The copied sequence 

then folds back on itself and the two DNA strands separate to allow replication towards the other 

end of the genome. Following replication a long concatemer of genomes is formed that is 

resolved by viral nucleases and resolvases (29-31). 

Many poxvirus genomes themselves are notably A/T-rich, although distinct ratios of A/T 

content has been observed in and associated with different poxvirus genera. The A/T-content of 

parapoxvirus genomes average ~35%, while the A/T-content of entomopoxvirus genomes is 

more than 80%, and most orthopoxviruses genomes are around 65% A/T-rich (18, 32, 33). The 

A/T-content within a single poxvirus genome can vary considerably as well. In the orf virus NZ2 

strain, for example, the A/T-content ranges from 18-61% for different genes (18). The distinct 

A/T-content of different poxvirus genera may act as a way to identify potential genomic regions 

or genes that were recently acquired or horizontally transferred (34). Furthermore, because more 

closely related poxviruses tend to share similar A/T-contents, this characteristic can also aid in 
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determining the relationships of different poxvirus species, although the reason behind the 

differences in A/T-content is unknown.  

 Gene expression in poxviruses 
The ORFs of poxvirus genomes are tightly packed and often overlap with adjacent ORFs. 

Poxvirus genes are transcribed by viral RNA polymerases in the cytoplasm of host cells and are 

therefore not spliced but are expressed from the uninterrupted coding sequence. Poxvirus ORFs 

are transcribed from either the top or bottom strands of DNA, designated as being read to the 

right or to the left, respectively. The naming of poxvirus genes, therefore, often reflects this 

transcriptional direction either with an “R” or an “L” after the gene designation. There does not 

appear to be a correlation between the direction in which a particular gene is transcribed and its 

transcriptional regulation, although most genes near the termini of poxvirus genomes are 

transcribed toward the ends and groups of genes are often arranged in transcriptional clusters of 

the same orientation, presumably to reduce interfering with transcription complexes during gene 

expression (18). Transcriptional read-through that occurs, particularly during late stages of 

replication, therefore, produces a large quantity of complementary RNA molecules that can form 

dsRNA and stimulate an immune response in the host (35). 

Transcription of poxvirus genes is regulated temporally by short, conserved promoter 

motifs and occurs in three stages: early, intermediate and late (36). Poxvirus promoters have 

been best characterized in VACV and mostly consist of short poly-A/T stretches (37). These 

promoter motifs are not recognized by cellular RNA polymerases but are instead transcribed by a 

virally encoded multi-subunit DNA-dependent RNA polymerase along with stage-specific 

transcription factors (38). Early gene transcription factors are packaged within the infectious 

virions along with the RNA polymerase to allow gene transcription immediately following 

infection (39-41). Transcription of intermediate and late genes occurs following DNA replication 

of the genome (42-44), and several genes have both early and post-replicative promoters and are 

therefore expressed at both early and late times during infection (45, 46) A synthetic poxvirus 

promoter often used in the construction of recombinant viruses that is derived from sequences 

found in VACV is also an early/late promoter that is presumably recognized by all poxviruses to 

allow gene expression throughout virus replication (36).  
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Like all viruses, poxviruses use the host translational machinery to translate their mRNAs 

into proteins. Poxviruses therefore encode proteins that serve to prevent the host shutdown of 

protein translation that would otherwise occur following infection. A large percentage of genes 

that are expressed immediately following virion entry and uncoating encode for proteins that are 

involved in evading the immune response as well as proteins that are required for DNA 

replication and transcription of intermediate and late stage genes (47). A single round of virus 

replication from entry to the production of new virus takes approximately 8 hours for VACV, 

and genome replication usually takes place within the first 2 hours (38). There are four 

distinguishable virions produced by poxvirus infection (48). The intracellular mature virus 

(IMV) is a non-enveloped virus particle that is the most abundant form found in the infected cell. 

Some intracellular virus particles are wrapped by a double membrane derived from the host 

Golgi network, which forms the intracellular enveloped virus (IEV) (49). As the assembled IEVs 

begin to bud out of the cell, their membranes fuse with the plasma membrane to form the cell-

associated enveloped viruses (CEV), and the virion is propelled outward by growing actin 

filaments. The released virion is known as the extracellular enveloped virus (EEV), and this form 

plays an important role in virus dissemination and virulence (50).  

 Poxvirus phylogeny and host range 
There are several complete poxvirus genome sequences available, which has allowed the 

study of their phylogenetic relationships and gene conservation. A representative phylogenetic 

tree of 37 fully sequenced poxviruses is shown in Figure 1.1. The entomopoxviruses, which 

infect insect hosts, represent a sub-family within the Poxviridae family and form a separate clade 

from the chordopoxviruses, which infect vertebrate species. Currently, the chordopoxviruses are 

further sub-divided into 10 genera: Avipoxviridae, Crocodilidpoxviridae, Molluscipoxviridae, 

Parapoxviridae, Orthopoxviridae, Yatapoxviridae, Leporipoxviridae, Cervidpoxviridae, 

Capripoxviridae, and Suipoxviridae. The latter five genera form a sister clade to the 

orthopoxviruses and are known as Clade II viruses.  
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Figure 1.1 Host range and phylogeny of sequenced poxviruses 

The poxvirus phylogeny shown is adapted from (14) and (57). The phylogenetic positions of 

pseudocowpox virus (PCPV), Yoka virus (YKV), Cotia virus (COTV), raccoonpox virus (RCPV), 

skunkpox virus (SKPV), volepox virus (VPXV), and salmon gill poxvirus (SGPV) are incorporated as 

published (53, 55, 56, 58, 59). The position of squirrel fibroma virus (SQFV) is also included as it is 

described in Ch. 4. The approximate host range size is indicated by the circles: large dark blue circles 

represent larger host ranges and small light blue circles represent host ranges restricted to only one or a 

few species. No circle indicates insufficient data to project the host range. Branches highlighted in red 

correspond to poxvirus lineages that encode a full-length E3L ortholog and blue branches correspond to 

lineages encoding a functional K3L ortholog. Poxvirus lineages highlighted with yellow branches encode 

E3L orthologs that lack a functional N-terminal Zα domain. Lineages highlighted with teal dashes encode 

a non-functional K3L ortholog due to early stop codons and inactivating mutations. Abbreviations for 

poxvirus genera are: EPV = entomopoxvirus; APV = avipoxvirus: CrPV = crocodylidpoxvirus; MPV = 

molluscipoxvirus; PPV = parapoxvirus; OPV = orthopoxvirus; YPV = yatapoxvirus; LPV = 

leporipoxvirus; CePV = cervidpoxvirus; CaPV = capripoxvirus; SPV = suipoxvirus. 
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The identification of new poxvirus species in nature, such as the crocodilepox virus 

(CRV), which was sequenced from lesions of infected Nile crocodiles on a farm in Zimbabwe, or 

the unclassified Cotia virus (COTV), which was detected in mice at the Cotia field station in São 

Paulo, Brazil in 1961, has prompted the need to name new poxvirus genera (51-53). Another 

example is the Yoka virus (YKV), which was originally discovered in a mosquito pool in the 

Central African Republic in 1972 (54). YKV groups closely with the Orthopoxvirus clade, 

however, it has been suggested that this virus actually represents a separate genus (55). The 

recent publication of the genome of salmon gill poxvirus (SGPV) likewise provided evidence 

that this poxvirus should be classified within its own genus (56). While SGPV encodes several 

genes found in chordopoxviruses, the authors observed substantial differences in gene order and 

sequence variation that suggested it is the most evolutionarily divergent member of the 

Chordopoxvirus sub-family. With increased surveillance for environmental poxviruses and the 

current advances in sequencing technology, it is probable that many more genera will be added 

to the Poxviridae family in the future and a continued analysis of their evolution and host range 

will be needed. The following is a brief overview of the genomics and host range of the 

established Chordopoxvirus genera.  

 Avipoxviruses, molluscipoxviruses, and parapoxviruses 
The avipoxviruses represent an evolutionarily divergent group of poxviruses that have 

been found to cause disease in hundreds of bird species in 23 different orders (60). The genomes 

of four avipoxvirus species have been completely sequenced: fowlpox virus (FWPV), turkeypox 

virus (TKPV), pigeonpox virus (PGPV), and canarypox virus (CNPV), although 9 species are 

currently recognized (61-63).  Phylogenetic analyses have indicated there are 3 major 

avipoxvirus clades (designated A, B, and C), and the high sequence divergence between these 

avipoxviruses and the variability in their genomic organization has led some to suggest the 

avipoxviruses may be a distinct sub-family within the chordopoxviruses (64). Avipoxvirus 

genomes are the biggest of all poxviruses and are characterized by multiple gene duplications, 

which is particularly profound in the ankyrin repeat family genes, N1R/p28 and B22R-related 

genes. All together, these gene families make up 36% of the CNPV genome (62). The host range 

of avipoxviruses appears to be broad, but detailed information is limited and determining the 

exact host range of each species is complicated by the existence of the many avipoxvirus species. 
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As it is observed for several other poxviruses, mechanical transmission by mosquitos and other 

biting insects is implicated in the transmission of avipoxviruses between avian hosts (63). 

Avipoxviruses cannot replicate in non-avian species, but they can initiate protein expression and 

induce an immune response. For this reason, these viruses have been successfully used for the 

construction of live recombinant vaccines against many infections including HIV and malaria 

(63).  

Molluscum contagiousum virus (MOCV) is the only identified member of the genus 

Molluscipoxviridae and displays the narrowest host range and tissue tropism of all known 

poxviruses. MOCV exclusively replicates in human basal keratinocytes, but it’s known for 

causing a skin disease mainly affecting children and immunocompromised people called 

molluscum contagiosum (65). MOCV as well as the avipoxviruses lack many host range genes 

that are found in other chordopoxviruses, including orthologs of VACV E3L and K3L (Fig. 1.1). 

MOCV, on the other hand, possesses many genes that are absent in most other poxviruses, many 

of which are homologous to cellular genes and may have important immunomodulatory 

functions for MOCV (66, 67). These viruses must have evolved unique strategies to counteract 

the host response in their hosts. 

Parapoxviruses are widespread pathogens that infect a variety of different mammals 

including humans. Representatives of this genus include bovine papular stomatitis virus (BPSV), 

the pseudocowpox virus (PCPV) and orf virus (ORFV), which have been fully sequenced (58, 

68). Parapoxvirus genomes are remarkably G/C-rich compared to other poxviruses (>60%), a 

feature which is also observed in MOCV and CRV (18). BPSV and PCPV cause skin diseases in 

cattle all over the world, and transmission from cattle to humans can occur (69, 70). Lesions in 

humans are generally localized and resolve after 4-6 weeks, but more serious complications can 

occur in immunocompromised people. Orf virus causes serious infections in sheep and goats and 

can be a significant economic burden in affected areas (69). Orf virus has a moderately large host 

range and can also infect camels, musk ox, cats, reindeer and humans. Although several genes 

with recognized host range function are missing from parapoxvirus genomes, parapoxviruses are 

the only non-orthopoxvirus/non-Clade II poxviruses that contain E3L orthologs, indicating that 

E3L evolved in a common ancestor (57).  
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 Orthopoxviruses 
The most well studied groups of poxviruses are the orthopoxviruses, whose member 

species share a higher degree of genetic similarity than is observed between members of any 

other clade of poxviruses (7). Orthopoxviruses exhibit some of the widest variation in host range, 

but all known orthopoxviruses have mammalian hosts and most infect rodents or small mammals 

naturally. Most fully sequenced poxviruses fall within this clade of viruses, which is not to say 

that most poxviruses are orthopoxviruses. Instead, this likely reflects the fact that most of these 

viruses are important human and animal pathogens, such as VARV and VACV, which both serve 

as models for poxvirus biology.  

 Variola virus, camelpox virus, and taterapox virus 

VARV caused human smallpox and therefore had a huge impact on human history 

having killed more people than all other infectious diseases combined (12). Multiple VARV 

strains existed that exhibited major differences in disease severity. Depending on the case fatality 

rates (CFRs), VARV strains are classified as either VARV major (CFR 10-30%) or VARV 

minor (CFR <1%). Edward Jenner himself, who developed the first vaccine against smallpox, 

observed the natural occurrence of these strains in his original descriptions, and the fluctuation 

between major and minor strains was similarly observed globally (71). Phylogenetic analyses of 

VARV strains isolated during the 20th century also indicated that the emergence of VARV minor 

strains with reduced CFRs occurred independently at least twice during its evolution (72, 73). 

VARV is a human specific pathogen and its closest relatives, taterapox virus (TATV) and 

camelpox virus (CMLV), are also host-specific (Fig. 1.1). CMLV is a widespread pathogen of 

camels that causes an infection resembling smallpox in humans, but despite the close relationship 

with VARV, human handlers of infected camels are rarely infected and infections are usually 

localized and self-limited (74-77). Both VARV and CMLV cause high case fatality rates in their 

hosts (78, 79). Meanwhile, TATV was isolated from an apparently healthy Kemp’s gerbil 

(Tatera kempii) in Benin, but like VARV and CMLV, TATV is also thought to also have a 

narrow host range, as experimental infections of Mongolian gerbils (Meriones unguiculatus), 

European rabbits (Oryctolagus cuniculus) and a rhesus monkey (Macaca mulatta) were not 

productive (80). Although molecular dating of poxviruses is a subject of intense debate (the 

emergence of VARV is dated between 3,000 and 60,000 years ago depending on the analysis), 
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phylogenetic analyses of VARV, CMLV and TATV suggest that they diverged from a common 

ancestor at around the same time (59, 81-84).  

 Cowpox virus 

There are ~90 genes conserved in all sequenced orthopoxviruses, which are thought to 

represent the minimal genome encoded by the ancestral poxvirus (16). It has been suggested that 

a cowpox (CPXV)-like virus was the progenitor virus for VARV and all orthopoxviruses 

because it has the biggest genome of all the orthopoxviruses including all genes said to represent 

the minimal orthopoxvirus genome, and it has the broadest host range (7). The evolution towards 

host restriction in VARV and other orthopoxviruses then is presumed to have occurred via 

successive series of gene deletions and inactivation events (18, 85, 86). CPXV is represented by 

at least two evolutionarily distinct species, which are represented by the Brighton Red and GRI-

90 strains. Phylogenetic analyses indicate that the Brighton Red CPXV strain is most closely 

related to the murine-specific ectromelia virus (ECTV), while the GRI-90 strain is more closely 

related to VACV (87). Both CPXV species have an extensive host range, but despite their names, 

these viruses are most likely maintained naturally in rodent populations, and infections are most 

often reported in domestic cats (4, 88, 89). The natural hosts of the ancestral orthopoxvirus were 

presumably also of the order Rodentia as the majority of the extant orthopoxviruses have rodent 

hosts with the exception of VARV and CMLV (4).  

 Monkeypox virus 

Similar to CPXV, there are two distinct monkeypox virus (MPXV) clades, which 

originate from western and central Africa, respectively (90). While the two MPXV clades are 

still more closely related to each other than to other orthopoxviruses, they differ greatly in 

virulence and transmissibility, and there are major genomic differences between them (4, 57, 91, 

92). The natural hosts of MPXV are probably also rodents as indicated by a high seroprevalence 

in rodent species of western African countries where MPXV is endemic. Interest in MPXV has 

increased since its emergence as a zoonotic disease in humans (93). Because all orthopoxviruses 

are related immunologically and can be protective against infection by other orthopoxviruses, the 

cessation of mass vaccinations against smallpox may have allowed humans to become 

increasingly susceptible to MPXV. Vaccination against smallpox therefore likely provided cross-

protection from infection with other orthopoxviruses such as MPXV unintentionally (94, 95). An 
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outbreak of MPXV related to the western African virus occurred in the United States in 2003. 

The virus is thought to have been imported from Ghana in a shipment of infected rodents and 

was transmitted to local prairie dogs that were kept as pets (96). This outbreak marked the first 

occurrence of human MPXV outside of Africa, where human infections occurred sporadically. 

No human-to-human transmission nor any human fatalities were observed during the US 

outbreak, which may be attributed to the lower virulence of the western African MPXV 

compared to the central African species (97). 

A striking difference between the MPXVs and other orthopoxviruses are gene- or 

domain-inactivating mutations in both orthologs of VACV K3L and E3L, respectively. An early 

stop-codon found in K3L, as well as deletions of key residues important for interacting with the 

host protein, PKR, are found in both MPXV species. Furthermore, mutations in the start-codon 

of the E3L ortholog in MPXV and a 2bp deletion in the N-terminus lead to the functional 

inactivation of the Zα domain (57). The initiation of translation likely occurs within this domain 

and results in the production of only the C-terminal dsRNA-binding domain. A recombinant 

VACV encoding an E3L with the same N-terminal truncation is attenuated in mouse models, but 

recent work showed that MPXV encodes other proteins that are able to compensate for the loss 

of this protein domain (98).   

 Vaccinia virus, horsepox virus and rabbitpox virus 

The eradication of smallpox from nature still remains one of the greatest triumphs of the 

World Health Organization, and the use of VACV as a vaccine in the eradication campaign, has 

been the driving force for much of the effort to understand its biology (99). For this reason, 

VACV is the type species of the Orthopoxvirus genus and has been the most intensively studied 

poxvirus. Although the precise origin and natural history of VACV are unknown, the biology of 

this virus is still relevant to the study of all vertebrate poxviruses and viral diseases more broadly 

(100). For instance, VACV was the first animal virus to be purified and genetically engineered 

for use as a vaccine vector for other infectious diseases and recombinant VACVs have been used 

to develop vaccines against other infectious diseases such as tuberculosis, rabies, vesicular 

stomatitis virus, and rinderpest in cattle as well as induce cross-reactive immune responses for 

diseases such as HIV (101-106). 
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VACV has often been confused with CPXV due to the historical use of the term “cow 

pox” used by Edward Jenner in his original description of his experiments and observations 

(107). However, VACV is most closely related to horsepox (HSPV) and rabbitpox viruses 

(RPXV). The historical and evolutionary relationship of VACV to HSPV and RPXV is not well 

resolved. Edward Jenner in his own experiments showed that material taken from the “grease” of 

horses (an infection of horses’ heels that may have been caused by a VACV-like poxvirus) 

directly provided protective immunity against smallpox infection. Additionally because RPXV 

has only been identified in laboratory rabbit colonies, some believe it is a descendant of a 

laboratory strain of VACV and do not consider it a separate species  

(107, 108). Phylogenetic analyses suggest, however, that both HSPV and RPXV are well 

separated from all of the analyzed VACV strains and likely have an independent evolutionary 

history (57, 109, 110).  

There are numerous strains of VACV that have been developed as vaccine strains over 

the years, as well as several VACV-related viruses that have been discovered in the environment, 

some of which are likely to be escaped vaccine strains following the global eradication campaign 

(111, 112). For instance, VACV-related viruses have caused outbreaks in Brazilian cattle farmers 

and their herds that are thought to be descendants of vaccine strains of VACV used in the area. 

Positive PCR tests from the surveillance of local capuchin monkeys (Cebus paella) and black-

howling monkeys (Allouata caraya) as well as successful virus isolation from a wild mouse 

(Mus musculus) during these outbreaks indicate that these species might be natural reservoirs for 

VACV-like viruses (113, 114).  

The most widely used VACV strains for laboratory research are the Western Reserve 

(WR), which is a mouse adapted derivative of a vaccine strain of VACV, and the Copenhagen 

strain, which was the first VACV strain to be completely sequenced (115, 116). Each represent 

the type genomes for the species although extensive passaging in cell culture of these and other 

VACV strains has led to large variation between VACV genomes mainly due to large deletions. 

This is particularly apparent in vaccine strains of VACV where attenuation by gene loss was the 

objective. The four most widely used vaccine strains of VACV for vaccinating against smallpox 

were EM-63 from Russia, Lister in the United Kingdom, New York City Board of Health 

(NYCBH) in the United States, and Temple of Heaven (Tian Tan) in China due to the higher 

safety record of each compared to other VACV strains (99, 111, 117-119). As time went on, 
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even safer and more attenuated strains were developed. Targeted deletion of 18 non-essential 

genes from the Copenhagen strain of VACV resulted in the generation of the highly attenuated 

NYVAC strain (120). Similarly, an alternative approach to attenuation by gene deletion was used 

to develop the MVA (Modified virus Ankara) and the CVI-78 (derived from NYCBH) vaccine 

strains by serial passaging the virus in animals or in tissue culture. The MVA vaccine strain, for 

example, was passaged more than 550 times in chick embryo fibroblasts and accumulated 

multiple deletions (~30kb of genomic material was lost) that severely restricted its host range 

(99, 121-125). The efficacy of many of these vaccine strains for protecting against human 

smallpox is unknown since the virus has been eradicated, and this can no longer be tested. 

Nevertheless, research continues as the threat of VARV or other orthopoxviruses being used for 

bioterrorism still exists, and the continued emergence of environmental zoonotic poxviruses such 

as MPXV remains a possible risk to humans and animals. 

The host range of VACV is relatively broad, as indicated by experimental infections of 

primate, rodent, lagomorph, and ungulate species (95). Moreover, transmission between humans 

has been observed, which, in immunocompromised individuals, can be fatal (126, 127). In 

general, the virulence of VACV in humans is much less severe than VARV, and the quest to 

understand this difference has driven much of the research on this and other poxviruses. While 

the expanded host range of CPXV can be attributed to the larger set of immunomodulatory genes 

and genes with host range function, the larger host range of VACV compared to VARV cannot 

be explained solely by the number of such genes. It is therefore important to look at the 

interactions between individual host range gene products and the host proteins they serve to 

regulate to gain a clearer picture of the mechanisms underlying host range in poxviruses.  

 North American orthopoxviruses 

The Orthopoxvirus clade can be further subdivided into so-called “old-world” and “new-

world” orthopoxviruses. The global distribution of most orthopoxviruses naturally occurs in the 

eastern hemisphere on the Eurasian and African continents (in the old world), however, there is a 

subset of closely related poxviruses that are presumed to be endemic to North America. These 

include the raccoonpox virus (RCPV), skunkpox virus (SKPV), and volepox virus (VPXV). The 

host range and natural reservoirs for these orthopoxviruses remains largely unknown, although 

each was isolated from their namesake animal species (128-130). A phylogenetic analysis using 

nine conserved chordopoxvirus genes placed the North American orthopoxviruses within the 
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Orthopoxvirus clade, but all three species formed a monophyletic sister group distinct from the 

formerly described old-world orthopoxviruses, indicating their genetic and evolutionary 

separation (59). 

 Clade II Poxviruses 

 Yatapoxviruses 

Viruses within Clade II are comprised of several poxvirus genera that infect a wide range 

of hosts. The yatapoxviruses, represented by yaba-like disease virus (YLDV), tanapox virus 

(TPV) and yaba monkey tumor virus (YMTV), are a group of viruses for which few studies have 

been done to understand the virulence and host range, but all of these viruses are known to infect 

species of primates including humans. Each virus was isolated from primates in equatorial 

Africa, but it is not known if primates are the natural hosts for these viruses or even whether they 

are the only hosts (131, 132). TPV was isolated from humans living in the Tana River basin in 

Kenya in 1957 and 1962, and a few years later, an outbreak of YLDV occurred in three primate 

colonies in the US in 1966 (133, 134). YLDV and TPV are closely related to one another 

exhibiting 98.6% nucleotide identity levels across their genomes and are generally considered to 

be different strains of the same species, while YMTV is distinct from either antigenically and in 

its disease presentation (132, 135). YMTV was discovered as the causative agent that induced 

tumors in rhesus macaques (Mucaca mulatta) in Yaba, Nigeria (136). The genome of YMTV is 

missing 13 ORFs that are found in both TPV and YLDV, which include some genes with 

putative host range function, although all three viruses appear to be able to infect a similar range 

of primate species (57, 133, 136-138).  

 Leporipoxviruses 

Aside from the orthopoxviruses, the leporipoxviruses are the second most extensively 

studied group of poxviruses. The prototype virus from this genus is myxoma virus (MYXV), 

which is endemic in North and South America. Currently there are two major groups of MYXV 

recognized: the Californian and South American strains. MYXV infections are restricted to 

leporid species (lagomorphs including rabbits and hares) for which the genus is named. The 

South American strains naturally infect the Tapeti rabbit (Sylvilagus brasiliensis) causing a mild 

and self-limited disease in these animals (139, 140). Infection of European rabbits (Oryctolagus 
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cuniculus) by MYXV, by contrast, causes a severe disease known as myxomatosis with lethality 

rates approaching 100% (141). For this reason, MYXV was used as a biological weapon against 

invasive European rabbit populations in Australia in the 1950’s and later (illegaly) in Europe. 

Following the introduction of MYXV into these locations, rabbit populations were devastated 

killing more than 99% of the rabbits. Over time, however, the released strains of MYXV became 

attenuated in terms of virulence, and the local European rabbit populations simultaneously 

became more resistant to MYXV infection (3). The sequences of field MYXV isolates has 

revealed several differences in coding sequences that may explain the reduced virulence of the 

MYXV over time (142). The majority of observed mutations were located in the ITR, where 

most immune evasion and host range genes are found, and by analyzing samples collected at 

different times, the inferred mean evolutionary rate of the MYXV isolates were found to be the 

highest of any dsDNA virus to date. Because the natural hosts of MYXV are American rabbit 

species, the switch to the European rabbit host is thought to have driven rapid evolution in this 

virus particularly in genes that combat the host immune response. To illustrate this point, a single 

point mutation in the host range gene, M156R, which was found in 13 out of 22 MXYV isolates, 

was found to attenuate virus replication in cell culture (143). This suggests that in response to the 

new immune responses of the European rabbit hosts, natural selection for attenuated viruses with 

this mutation occurred in the field. Attenuation of these viruses presumably prolongs the survival 

of the animal host and increases the chance of transmission to a subsequent host, which 

ultimately increases the fitness of the virus.  

There are three other less well characterized members of the Leporipoxvirus genus: rabbit 

fibroma virus (RFV), squirrel fibroma virus (SQFV), and hare fibroma virus (FIBV). The 

complete genome sequence of rabbit fibroma virus was published at the same time as the MYXV 

genome (144, 145). In the fourth chapter of this thesis, we also present the complete genome 

sequence of squirrel fibroma virus and discuss the details of its contents more extensively. Both 

RFV and SQFV are endemic to North America, while FIBV has been primarily identified in 

Africa and is the only leporipoxvirus to naturally infect species outside of the western 

hemisphere. The natural hosts of RFV are Eastern cottontail rabbits (Sylvilagus floridanus) found 

in southern US, Central America and northern South America. Like MYXV infection of its 

natural host, RFV infection of cottontail rabbits causes the formation of cutaneous fibromas, but 

the disease is otherwise mild and infected rabbits eventually recover. In contrast to MYXV 
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infection of European rabbits, RFV infection of this species is not severe and rabbits recover 

from infection within a few weeks (139). While the majority of the leporipoxviruses infect 

lagomorph species (FIBV infects African hares of the Lepus genus), the hosts of the SQFV are 

species of North American tree squirrels (Sciurus sp. and Tamiasciurus sp.). Despite its genetic 

similarities with the other sequenced leporipoxviruses, attempts to infect rabbits with SQFV did 

not produce disease symptoms or a high virus titer (146). 

A characteristic shared by all sequenced leporipoxviruses is that the E3L orthologs lack 

the N-terminal Zα domain that binds left-handed Z-DNA/Z-RNA and instead encode only the 

dsRNA-binding domain. While the Zα domain is inactivated and likely non-functional in 

MPXV, this domain is completely absent from the genomes for all leporipoxviruses. Because all 

other Clade II poxviruses contain E3L orthologs encoding both the Zα domain and the dsRNA-

binding domain, this domain was likely lost in the ancestral leporipoxvirus and may contribute to 

the relative host range restriction of the viruses in this genus. The loss of the N-terminal Zα 

domain that is observed in both MPXV and leporipoxviruses represents an interesting example 

of convergent evolution in very different poxviruses with different host species. Whether the loss 

of this domain led to an attenuation of these viruses in their natural hosts that resulted in 

increased transmissibility remains an untested but viable hypothesis. 

 Cervidpoxviruses, suipoxviruses and capripoxviruses 

Both the cervidpoxviruses and the suipoxviruses are represented by a single virus species: 

deerpox virus (DPV) and swinepox virus (SWPV), respectively. The genomes of two DPV 

strains have been completely sequenced that exhibit 95% sequence identity at the nucleotide 

level (147). These viruses have been isolated from wild mule deer (Odocoileus sp.) in 

northwestern US states, although infection of a captive reindeer (Rangifer tarandus tarandus) 

was also reported (148, 149). However, because a high seroprevalence for DPV antibodies was 

observed in Odocoileus deer species that wasn’t observed in sympatric elk species (Cervus sp.), 

the host range of this virus is probably not very broad (150). SWPV infections occur worldwide 

causing a common skin disease in pigs. However, pigs (Sus scrofa) are the only known host of 

SWPV. Although work on host range genes in SWPV is limited, analyses of the genome of 

SWPV revealed that compared to other Clade II poxviruses, SWPV is missing 13 ORFs that may 

contribute to the narrow host range of this virus (151). Studies on the K3L ortholog in SWPV 
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showed that this ortholog is capable of inhibiting human PKR in yeast and cell culture-based 

assays (152, 153) and preliminary evidence suggests that this viral protein shows a species-

specific preference for strongly inhibiting PKR from swine (Peng and Rothenburg, unpublished). 

The genus Capripoxviridae contains three closely related members: sheeppox virus 

(SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV). These viruses naturally 

infect sheep, goats, and cattle, respectively, of north equatorial Africa and parts of Asia although 

some SPPV and GTPV isolates can infect both sheep and goats (154, 155). These viruses are of 

high interest to agricultural and veterinary communities as infections by capripoxviruses have led 

to serious economic losses. Mortality rates for SPPV and GTPV are near 100% for their 

respective hosts, and although LSDV mortality rates are often much lower (~1%), they can 

occasionally reach 75% (154). The genomes of the capripoxviruses display approximately 96% 

sequence identity with one another and each possess a similar set of immunomodulatory genes 

(156, 157). A study of African wildlife indicated a relatively low prevalence for these viruses in 

the wild, although, because of their high virulence, this group of viruses is still closely watched 

due to the risks they pose. Nevertheless, the host range for these viruses is probably relatively 

narrow, and human infections have not been reported.   

 Poxvirus immune evasion by host range genes 
Poxvirus pathogens are excellent at hijacking and taking over their host cells due to the 

expression of an impressive arsenal of immunomodulatory genes that inhibit and subvert host 

responses. Poxvirus genes that modulate the host response and control virulence are generally 

located near the termini of poxvirus genomes and are most variable between species. Many of 

these genes are dispensable for virus replication in cell culture, but viruses that have been 

engineered to lack them are often attenuated in infection models. Poxvirus genes that are 

important for viral replication in a subset of cells or host animals and genes that are important for 

differences in poxvirus host range are referred to as host range genes (12). To date, 

approximately 15 genes have been identified that possess host range function in different 

poxvirus species as deletion of these genes leads to replication defects in some, but not all, 

otherwise permissive cells (13). These genes can be grouped into distinct gene families, although 

interestingly, not a single host range gene family has been identified that is present in all 

poxviruses (57). Instead, most of these gene families actually show evidence for multiple 
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independent lineage-specific inactivation events, such as the inactivation of the K3L orthologs in 

MPXV and ECTV and the loss of the N-terminal domains of E3L orthologs in MPXV and 

leporipoxviruses. The major targets of poxvirus host range genes are the key mediators of innate 

immune response including interferon and complement pathways as well as the apoptotic and 

inflammatory responses. In the following section, both host innate immune pathways and the 

host range genes that interact with them will be discussed. 

 Poxviral antagonism of the interferon response 

Interferon (IFN) responses are strategically and systematically targeted by all poxviruses, 

as this host defense constitutes one of the most potent barriers to infection. IFN induces the 

expression of antiviral genes within the infected cell and also promotes T helper cell responses 

(158-160). IFN signaling occurs through IFN receptors (IFNARs), which bind extracellular IFN 

at the cell surface to mediate the recruitment and activation of intracellular Janus kinases (JAKs) 

and the phosphorylation of specific pairs of signal transducers and activators of transcription 

(STATs) (161). Phosphorylated STAT dimers translocate to the nucleus or activate interferon 

response factors (IRFs) to induce transcription of several interferon-stimulated genes (ISGs) 

involved in establishing an antiviral state (162, 163). Multiple IFN family genes are found in all 

vertebrates, which underscores the importance of this response for controlling virus infection 

from a very early point in vertebrate evolution. IFN proteins were originally discovered by their 

ability to interfere with virus replication (164). The critical importance of their activity was later 

confirmed in IFNAR-deficient mice, which exhibited an extreme susceptibility to viral infection 

and often serve as animal models of infection when suitable animal models cannot be used (165, 

166). IFN family genes are categorized as either type I or type II based on structural homology, 

the receptors they use and the signaling pathways they trigger (167, 168). Type I IFN proteins 

are further sub-divided into IFN-α, -β, -ε -κ, -ω, and -ν, which all bind to and signal through the 

IFN-α/β receptors (167, 169-172). IRF3 and IRF7 are key transcriptional regulators of type I 

IFN induction (173-175).  

IFN-γ is the only recognized type II IFN protein, which differs considerably from the 

type I IFNs in structure and signals through a distinct receptor (176). Type II IFN-γ plays a 

critical role in limiting poxvirus infection (165, 177). To overcome the antiviral effect of IFN-γ, 

several poxviruses encode viral IFN-γ receptor homologs that competitively bind IFN-γ to 
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prevent signaling (Fig. 1.2) (178-180). In MYXV, the IFN-γ receptor homolog called M-T7 

specifically binds to rabbit IFN-γ while IFN-γ receptor homologs from orthopoxviruses possess a 

broader specificity for binding IFN-γ from different species, likely reflecting the evolutionary 

history of the orthopoxviruses with their hosts (179, 181-183). M-T7 in MYXV was also shown 

to bind a broad spectrum of chemokines to modulate the immune response, although this activity 

was not species-specific and may serve to supplement the IFN-γ binding function (184). Like the 

IFN-γ receptor homologs, many poxviruses also encode a protein that is similar to the cellular 

IFN-α/β receptor (185). The best characterized of these comes from VACV (B18R in VACV-

WR). This protein contains three immunoglobulin domains and inhibits IFN−α/β signaling by 

competitive binding of IFN-α/β from various mammalian species (186-188). Both of these gene 

families in poxviruses aid in limiting the IFN-mediated establishment of the antiviral state.  

VACV C7L has also been shown to inhibit the activity of type I interferon signaling via 

IRF-1, which interferes with the expression of ISGs and the establishment of the antiviral state 

(189) (Fig. 1.2). VACV C7L was identified as a host range gene due to the fact that it restored 

viral replication of a K1L deficient VACV in human MRC-5 and swine LLC-PK1 cells but not 

rabbit RK13 cells (190). C7L orthologs are found in all orthopoxviruses and Clade II poxviruses, 

however, the molecular mechanism of its host range function is currently unknown (191, 192). In 

leporipoxviruses, the C7L ortholog has been duplicated twice and is present in three tandem 

copies (M062R, M063R, and M064R) (57). From targeted gene knockouts of each copy, only 

deletion of M064R did not lead to a defect in host range, but it was still found to be a virulence 

factor for the virus (193). Deletion of M063R, on the other hand, dramatically reduced MYXV 

replication in rabbit cell lines, but did not affect replication in monkey cells (BGMK and BSC-

40) and only moderately affected replication in human and murine cells (HOS and 3T3, 

respectively) (194). Similarly, a deficiency in M062 led to replication defects of MYXV in 

several cell lines except some human cell lines and BSC-40 cells (195). The M062 protein was 

shown to specifically interact with the rabbit version of the antiviral protein, SAMD9, which 

may explain its host range function for MYXV (196) (Fig. 1.2). 
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Figure 1.2 Molecular interactions of host range factors in poxviruses. 

The host range function of genes encoded by poxviruses can be attributed to several interactions with 

specific host proteins. The specificity of these interactions with their host targets can either restrict or 

expand the range of hosts in which the virus can replicate. Abbreviations used: dsRNA = double stranded 

RNA; MAVS = mitochondrial antiviral signaling protein (also known as IPS-1/Cardiff/VISA); TNFR = 

tumor necrosis factor receptor; IRF (1,3,7) = interferon response factor; CEV = cell associated 

enveloped virus; EEV = extracellular enveloped virus; Ub = ubiquitin; SCF-1 = Skp1:Cullin-1:F-box 

ubiquitin ligase complex; eIF2 = eukaryotic translation initiation factor 2; IFNAR = interferon receptor; 

IFN = interferon; Bcl-xL = B-cell lymphoma extra large; FADD = Fas-associated Death domain 

protein; TRADD =  TNFR-1 associated Death domain protein; Organelles and proteins not drawn to 

scale. * B5 is present on both cellular and EEV membranes (here shown in two sizes) and promotes the 

transition from CEV to EEV during viral replication. Modified after (14). 
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 Poxviral defenses against cellular inflammation and host complement 
Several other signaling pathways also stimulate the induction of ISGs via interleukin-

mediated or tumor necrosis factor (TNF)-mediated signal transduction and activation of the pro-

inflammatory transcription factor, NFκB (197). NFκB comprises an important family of 

transcription factors that regulate the innate interferon and inflammatory responses, including 

apoptosis (198). In uninfected cells, NFκB is bound to its inhibitor, IκB, which prevents NFκB 

from traveling to the nucleus (197). A kinase complex identified as the IκB kinase (IKK) 

complex is responsible for phosphorylating IκB following its own activation, which is then 

degraded by the proteasome (199). The degradation of IκB releases NFκB and allows it to 

translocate to the nucleus where it stimulates the transcription of an array of antiviral and pro-

inflammatory genes including type I IFN (200).  

The MVA vaccine strain of VACV contains multiple genomic deletions and has been 

useful for identifying the importance of various poxvirus genes for host range through 

complementation experiments. The K1L gene is partially deleted in MVA and insertion of the 

full-length K1L in MVA restored virus replication in rabbit RK13 cells, but not in other cells 

normally permissive to VACV replication (124). Deletion of K1L from VACV-Cop similarly 

resulted in reduced replication in RK13 cells, but not in human, monkey, or pig cell lines (190). 

Cells infected with this virus induce a rapid shutdown of protein synthesis suggesting K1L may 

act upstream of cellular proteins that inhibit protein translation, and further studies indicated K1L 

inhibits the activation of the NFκB pathway (201, 202). Deletion of K1L in VACV resulted in an 

increase in IκBα degradation and led to an increase in activated NFκB and NFκB transcriptional 

activity (202) (Fig. 1.2). K1L orthologs are found in all orthopoxviruses except VARV, CMLV 

and TATV where early stop-codons and short indels result in the inactivation of the ORF. 

Interestingly, these gene inactivations occurred independently in each of these three viruses, 

suggesting the deletion of this gene may play a role in restricting poxvirus host range as these 

three viruses exhibit some of the most restricted host ranges of all poxviruses (57).  

TNF is a pro-inflammatory cytokine induced by NFκB activity that is primarily secreted 

by macrophages and activated T-cells (203). Several poxviruses also encode decoy homologs of 

the TNF receptor that function by sequestering extracellular TNF (204-207). The best-studied 

poxvirus TNF receptor homologs are the T2-like proteins encoded by leporipoxviruses (Fig. 1.2). 

M-T2 from MYXV binds rabbit TNF comparably to the cellular rabbit TNF receptor and is 
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important for MYXV pathogenesis (204, 205). An M-T2 deficient MYXV replicated well in 

RK13 cells but showed a replication defect in RL-5 cells (205, 208). Like the viral mimics of the 

IFN receptors, M-T2-like proteins are likely to have a large effect on virus host range as the 

ligands they bind from different species often display great variability in sequence. M-T2 was 

shown to specifically interact with rabbit TNFα, but showed no ability to interact with TNFα 

from human or mouse origin, and a T2-like protein from VARV (CrmB) was better able to 

inhibit human TNF than mouse or rat, which correlates with the host range of these viruses (209, 

210). 

Cellular inflammation is also associated with the activity of a group of proteins that form 

complexes of initiator proteins called inflammasomes (211). Inflammasomes are distinct protein 

complexes made up of a family of proteins called NOD-like receptors (NLRs), although recently 

other sensor proteins have been associated with different inflammasome complexes in response 

to different stimuli (212-216). These NLRs recognize and respond to different stimuli generated 

by viruses, bacteria and toxins to induce an inflammatory response (217, 218). Once activated, 

NLRs oligomerize and subsequently recruit and activate inflammatory proteases like caspase-1 

(219). The activation of caspase-1 requires proteolytic processing of its pro-domain, and this 

process is mediated by ASC (adaptor protein apoptosis-associated speck-like protein containing 

a CARD), which enables interactions between related domains on the NLR and the unprocessed 

pro-caspase-1 (220). The release of cleaved caspase-1 allows it to act on several cytokines, 

including pro-interleukin (IL)-1β (221). IL-1β, as well as IL-18, belongs to the IL-1 family of 

cytokines that regulate T-cell responses and activates natural killer (NK) cells in response to 

IFN-γ signaling or cellular inflammation (222). Both proteins are cleaved from a precursor pro-

IL form into a shorter active form by the IL-1β-converting enzyme (ICE) and are then secreted 

from the cell (223).  

MYXV encodes a small protein called M013L that contains a pyrin domain like those 

found in inflammasome NLRs that mediate their interaction (224). M013L was shown to inhibit 

the activation of caspase-1 in human THP-1 cells, and M013L proteins from MYXV as well as 

those from the related RFV were observed to physically interact with the adaptor protein, ASC, 

which contains a similar pyrin domain (224, 225) (Fig. 1.2). Deletion of M013L impaired 

MYXV replication in rabbit RL5 cells and primary blood lymphocytes and monocytes, but had 

no effect on MYXV replication in rabbit RK13 cells, indicating a role for this gene in the cell 
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tropism of MYXV and possibly also the host range. Orthologs of this gene are only found in 

Clade II poxviruses, although loss of this gene probably occurred independently in the 

capripoxviruses and in the yatapoxvirus YMTV, as each of these viruses lacks an M013L 

ortholog, but they are not directly related phylogenetically (57).  

In addition, poxvirus caspase inhibitors such as CrmA in CPXV (SPI-2 in VACV) inhibit 

the cleavage and secretion of these IL-1 family cytokines to modulate their inflammatory effects 

(226) (Fig. 1.2). Other poxviral serine protease inhibitors (serpins) also play important roles in 

regulating inflammation, apoptosis and complement activation (227, 228). Three serpin proteins 

are encoded by orthopoxviruses, which target caspases including caspase-1, as well as other 

caspases and host complement factors. Deletion of the serpin, SPI-1 from RPXV and VACV 

impaired virus replication in human cells (RPXV and VACV) or pig cells (RPXV), but did not 

affect replication in other cells (229, 230). This host range activity of the poxvirus serpins has 

only been shown for SPI-1, but it remains likely that the other serpins also contribute to the host 

range of poxviruses. 

The complement system is an ancient arm of the innate immune system and is targeted by 

several pathogens including poxviruses (231). In response to an invading pathogen, complement 

convertases initiate a series of enzymatic reactions via classical and alternative pathways that 

result in the destruction of the infected cell. VACV encodes a complement control protein (VCP) 

that is localized on the surface of infected cells in association with another VACV protein, A56, 

and which has been shown to interfere with the complement cascade at multiple points (232, 

233) (Fig. 1.2). VACV VCP is made up of four short consensus repeats (SCR) that are 

homologous to the basic units of mammalian complement regulators (234, 235). A protein 

related to VCP, called B5R has been identified as a host range gene because it was inactivated in 

an attenuated vaccine strain of VACV (LC16m8), which cannot replicate in Vero cells, but 

replicates well in rabbit RK13 cells (235). Complementation of B5R in this strain increased 

plaque size and restored replication of this virus to that of the parent virus strain. Additionally, a 

strain of RPXV lacking B5R produced smaller plaques in RK13, CV1 and Rat2 cells, indicating 

viral spread was diminished, but the virus was still able to replicate in Vero cells even without 

plaque formation (236). Unlike VCP, which is a virulence factor for VACV that binds 

complement factors, B5R interacts with Src kinase to phosphorylate another VACV surface 

protein to induce actin polymerization required for cell-to-cell spread (237) (Fig. 1.2). All 
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orthopoxviruses and Clade II viruses encode an ortholog of VCP with different numbers of SCR 

domains, and all orthopoxviruses except MPXV and TATV encode an ortholog of B5R (57). 

Although only B5R has been attributed with a host range function, VCP orthologs were shown to 

inhibit complement in a virus and host species-specific manner. The VCP ortholog from VARV 

inhibited complement factors, such as C3b and C4b, from human and baboon better than VACV 

VCP, which was a better inhibitor of guinea pig, cat, and dog complement proteins (238, 239). 

The species-specificity of VCP activity in these viruses correlated with their host range, and 

therefore VCP likely also contributes partially to the host range of these viruses.  

 Induction and inhibition of apoptosis by poxviruses 
Apoptosis is a form of programmed cell death in which defective or unwanted cells are 

removed from an organism (240). Apoptosis is also an effective mechanism for getting rid of 

virus-infected cells and thus can function as a form of innate immunity (241). A key event in the 

induction of the apoptotic response is the activation of a family of pro-apoptotic caspases (242). 

These caspases are often targeted by viruses, including poxviruses, to prevent the initiation of 

apoptosis. MOCV, for example, prevents the activation of the initiator caspase, caspase-8 that 

signals apoptosis from Fas or TNF ligand binding and subsequent signaling cascades (243) 

Additionally, CrmA from CPXV, which inhibits the pro-inflammatory ICE activity, can inhibit 

granzyme B-mediated apoptosis, initiated by diverse stimuli including TNF ligand binding (244-

246).  

Several poxvirus proteins that interfere with apoptotic signaling have been characterized 

in MYXV. M011L from MYXV prevents the release of cytochrome c from mitochondria that 

stimulates apoptosis by inhibiting the loss of inner mitochondrial membrane potential (247) (Fig. 

1.2). VACV F1L fulfills a similar function in orthopoxviruses through sequestration of the 

mitochondrial membrane proteins Bax and Bak (248-253). M011L and F1L are structurally 

related to the cellular Bcl-2 family proteins, which are localized to mitochondrial membranes 

(254, 255). Additionally, MYXV expresses an endoplasmic reticulum (ER)-localized protein (M-

T4) that inhibits apoptosis by an unknown mechanism (256, 257). M-T2, which acts as an 

extracellular TNF receptor homolog in MYXV also functions as an intracellular inhibitor of 

apoptosis (208, 258).  
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The M-T5 protein of MYXV has also been linked to the inhibition of apoptosis and 

exhibits homology with CP77 from CPXV (CHOhr) (259, 260). These two proteins are members 

of largest family of poxvirus proteins, which encode ankyrin repeat domains (ANK) that mediate 

protein-protein interactions (261). Most of theses proteins also encode F-box-like domains in 

their C-terminus (also known as Pox protein Repeats of Ankyrin C-terminal domains, PRANC) 

(262, 263). CPXV CP77 and M-T5 are the only two PRANC proteins with identified host range 

function (259, 264). CP77 is required to rescue VACV replication in non-permissive CHO cells, 

which otherwise induces apoptosis via TNFα-mediated activation of NFκB (265). CP77 likely 

binds to p65 of NFκB and the cellular SCF E3 ligase complex, which leads to the degradation of 

this important transcription factor (Fig. 1.2). CP77 has also been shown to rescue replication of 

ECTV in poorly permissive hamster and rabbit cells (266). MYXV encodes two copies of M-T5 

in its ITR, and it is essential for pathogenesis in rabbits (259). Deletion of M-T5 led to a 

reduction of viral replication in rabbit RL5 cells and a subset of human tumor cells, however, no 

defect was observed in rabbit RK13 cells (267). The defect in replication was correlated with a 

reduction of Akt phosphorylation, so M-T5 is thought to inhibit apoptosis through interactions 

with Akt (Fig. 1.2).  

Another family of host range genes that affects apoptosis is the p28 family for which 

ECTV p28 is the prototype member. ECTV p28 encodes a unique combination of N-terminal 

KilA-N and C-terminal RING domains (268). The mechanism of the host range function of p28 

is not well understood, but it is suggested that the ubiquitin ligase activity of the RING domain is 

important for targeting host proteins for degradation to prevent the induction of apoptosis (269, 

270) (Fig. 1.2). 

 Cellular sensors of double-stranded RNA and poxviral evasion strategies 
Virus infection induces IFN production through the detection of viral pathogen-

associated molecular patterns (PAMPs) by host pattern-recognition receptors (PRRs). This initial 

sensing by the host is the first obstacle a virus must overcome in order to successfully replicate 

in a given host. PRRs can sense components of the viral envelope such as glycoproteins, the viral 

genome itself or products generated during virus replication such as double-stranded (ds) RNA. 

Double-stranded RNA is a particularly potent danger signal for the cell, as it is not a normal 

constituent of the cellular cytoplasmic environment. Double-stranded RNA is generated 
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following infection with most viruses including not only dsRNA viruses, but also DNA viruses 

like poxviruses, which actually generate a large amount of dsRNA due to the accumulation of 

overlapping transcripts, particularly late in infection (35). Several cellular proteins can sense and 

are activated by dsRNA because it is strong indicator of infection by a broad range of viruses. 

Two major groups of antiviral dsRNA sensors that are found in most vertebrate cells and that are 

important regulators of poxvirus replication and host range are the RIG-I-like receptors (RLRs), 

and the 2’-5’-oligoadenylate synthetases (OASs).  

The RIG-I-like receptor (RLR) family is comprised of RIG-I, melanoma differentiation-

associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2). RIG-I and 

MDA5 consist of two N-terminal caspase recruitment domains (CARDs), a DExD/H box RNA 

helicase domain and a C-terminal repressor domain, while LGP2 lacks the CARD domains 

necessary for antiviral activity (271, 272). Both RIG-I and MDA5 recognize distinct forms of 

cytoplasmic dsRNA. RIG-I recognizes short dsRNA molecules with 5’ triphosphates, while 

longer dsRNA molecules activate MDA5 (273, 274). The helicase domains of RIG-I and MDA5 

are important for sensing these viral RNA molecules, but it is the CARD domains that are 

responsible for triggering the intracellular antiviral signaling cascades through direct interactions 

with the mitochondrial antiviral sensor protein, MAVS (also known as IPS-1, VISA or CARDIF) 

(275, 276). Signaling by MAVS leads to the phosphorylation and nuclear translocation of IRF-3 

and IRF-7 and subsequently, the induction of several ISGs (277). The 2’-5’-oligoadenylate 

synthetase proteins (OASs) are a family of IFN-induced antiviral restriction factors that also 

sense and respond to viral dsRNA (278-280). Activated OAS family proteins synthesize 2’-5’-

phosphodiester-linked oligoadenylate molecules that activate the latent effector protein RNase L 

(281). The endoribonuclease activity of activated RNase L causes the degradation of cellular and 

viral mRNAs (single-stranded RNA) thereby preventing protein translation and restricting viral 

replication (282).  

Two genes in VACV, called D9 and D10, have been implicated in preventing the 

accumulation of dsRNA to avoid detection by these PRRs. D9 and D10 are decapping enzymes 

that hydrolyze the 5’ cap of mRNA transcripts (283, 284), but their inactivation in VACV leads 

to a dramatic increase in dsRNA accumulated during infection of several different cell types 

(285). Inactivation of both D9 and D10 in the same virus led to replication defects in monkey 

(BSC-1 and Vero) and human (HeLa, MRC-5, and A549) cells, but not in Syrian hamster BHK-
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21 or murine MEF cells and therefore together provide a host range function. Individual deletion 

of either D9 or D10, however, only led to moderate effects on virus replication, so their 

cooperation is important to this host range function although no evidence was found that D9 and 

D10 directly interact with each other (286, 287). By tightly regulating viral mRNA stability, it 

was proposed that the decapping activity of D9 and D10 control the levels of dsRNA generated 

by complementary transcripts during infection, which was required for preventing the antiviral 

activity of RNase L and the phosphorylation of IRF-3 in some host cells. 

Despite the activity of D9 and D10, poxvirus replication does produce a great deal of 

dsRNA during post-DNA replicative stages of infection. VACV E3L prevents the activation of 

host sensors such as RIG-I and OAS by binding dsRNA, which leads to a block in IRF-3 and 

IRF-7 activation and IFN-α/β production (288-290). VACV E3L is a multifunctional host range 

gene that is critically important for antagonizing the IFN response to allow the replication of 

poxviruses in most cells (291-293) (Ch.2). VACV E3L consists of an N-terminal Z-DNA 

binding domain (Zα) and a C-terminal dsRNA-binding domain. Deletion of E3L from VACV 

leads to replication defects in cells from several species, but not in chicken embryonic 

fibroblasts, BHK-21, or RK13 cells (290, 294).  

 RNA-dependent protein kinase, PKR 

There are many host proteins involved in mediating an immune response against viral 

infection, and the orchestration of their activities together is necessary to give host cells the 

advantage in most host-virus interactions. Inhibition of one or more of these proteins is required 

in order for viruses to successfully replicate within a given host cell. The focus of the work in 

this thesis is on a single host protein that is a key mediator of many aspects of the innate immune 

response to virus infection that have been discussed in this chapter. The RNA-dependent protein 

kinase, PKR, is a pattern recognition receptor that detects viral dsRNA in the cytoplasm but also 

has a dual function as an antiviral effector to restrict viral replication. Activated PKR causes a 

shutdown of cellular protein translation, which induces the expression of NFκB regulated IFN 

and inflammatory cytokines (295), and the activation of PKR has also been associated with the 

induction of apoptosis following cellular stress such as during a virus infection (296). 

PKR is expressed in all vertebrate cells and is composed of two N-terminal dsRNA-

binding domains and a C-terminal kinase domain, which are connected by a flexible linker 
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region of variable length (297). Latent PKR is activated by cytoplasmic dsRNA, which it senses 

and binds with its two dsRNA-binding domains. For human PKR, the first dsRNA-binding 

domain exhibits a higher affinity for dsRNA and is more critical for PKR activation (298, 299). 

Activated PKR forms dimers that catalyze phosphorylation reactions on serine 51 of the alpha 

subunit of the eukaryotic translation initiation factor 2 (eIF2α) (300, 301). The phosphorylated 

form of eIF2α binds more tightly with its guanine exchange factor, eIF2B, which prevents the 

recharging of the GDP-bound eIF2α to its GTP-bound form. This then renders eIF2α incapable 

of binding Met-tRNA and initiating translation of the mRNA and leads to a shutdown of cap-

dependent protein synthesis, including the translation of both cellular and viral proteins. As a 

consequence of PKR’s central role in the innate immune response, many viruses have evolved 

mechanisms to subvert its antiviral activities (302). The continued antagonism by viral inhibitors, 

including inhibitors encoded by poxviruses, has driven the rapid evolution of PKR, and positive 

selection at specific residues involved in the interactions with these viral proteins has been 

identified in PKR from certain vertebrate lineages (153, 303). 

As a dsRNA-binding protein, VACV E3L also inhibits the activation and activity of PKR 

in addition to RIG-I and OAS (304-307) (Fig. 1.2). Because E3L inhibits several PRRs that 

detect dsRNA, it is not clear which targets of E3L are responsible for its host range function or 

what the molecular mechanisms are for this function. There is strong evidence, however, to 

suggest that PKR is the main target of E3L at least in some cell types (308) (Ch. 2). In the second 

and third chapters of this thesis, the host range function of E3L for VACV replication in hamster 

host cells is investigated in more detail with the aim of uncovering the molecular mechanism 

responsible for the defect in host range caused by deletion of E3L from VACV.  

In addition to E3L, many poxviruses also encode a second inhibitor of PKR called K3L 

in VACV. K3L shares structural homology with the S1 domain of eIF2α, the target of PKR, and 

therefore K3L competitively binds activated PKR as a pseudosubstrate to inhibit its activity (309, 

310) (Fig. 1.2). Like E3L, deletion of K3L from VACV impaired virus replication in a subset of 

mammalian cells (murine L929 and hamster BHK-21 cells), but did not affect replication in 

others (human HeLa and rabbit RK13 cells) (290, 311, 312). K3L from VACV and its ortholog 

from MYXV, M156R, have been shown to exhibit species-specificity in their inhibitory 

interactions with PKR (143, 153, 303). Because K3L sequences from different poxviruses are 

highly variable (as low as 21% protein sequence identity between different species) and PKR 
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from the species they infect are also quite divergent (~60% protein sequence identity between 

human and mouse PKR), we hypothesized that differences in their interactions are responsible 

for the observed host range function of K3L, and that K3L orthologs have evolved to specifically 

inhibit PKR of their respective hosts. In addition to analyzing the host range function of E3L, in 

this thesis the host range function of VACV K3L for virus replication in different host cells is 

also examined and discussed (Chs. 2 and 3). 

Although the natural host of VACV is unknown, its relationship to other orthopoxviruses 

and infection studies in different animal models and host cells suggest that the natural host of the 

VACV ancestor was likely a small mammal, such as a rodent. As previously mentioned, a host 

range defect in VACV replication was identified in Syrian hamster BHK-21 cells from the 

deletion of K3L, but not E3L (290), therefore the analyses into the host range function of these 

viral proteins in this thesis focus on their interactions with host PKR proteins from the Syrian 

hamster and related hamster species. The Syrian hamster (Mesocricetus auratus) is a widely used 

model organism for bacterial and viral infection due to the ease of raising this animal in 

captivity. Other hamster species have also been or are still used in scientific research, such as the 

Chinese hamster (Cricetulus griseus), although many hamster species were not easy to keep or 

breed. All Syrian hamsters used in research laboratories up to 1971 originated from a single 

female hamster and her litter that were dug up in the early 1930s by a naturalist in northern 

Syria, and this species is found only in a small region of this area (Fig. 1.3). Meanwhile, the 

related Turkish hamster (Mesocricetus brandtii) has a much broader home territory that overlaps 

with the Syrian hamster’s, although it is still relatively small compared to the geographic range 

covered by the Chinese hamster in northern East Asia or the Armenian hamster (also known as 

the migratory hamster, Cricetulus migratorius) across broad tracts of the Asian continent. Old-

world orthopoxviruses like VACV, are likely to have been present across several regions of Asia 

for a long time, therefore it is possible that their geographic boundaries overlapped with these 

hamster species. If these viruses were maintained in small mammals, it is possible that the 

hamster species may have encountered and evolved alongside VACV-like or other related 

orthopoxviruses. 

The concerted effort of host antiviral genes is important for preventing virus infection, 

and in the same way small species-specific differences can lead to changes in host susceptibility, 

the unique cooperative activities of several viral proteins also dictate the range of hosts a virus 
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can infect. Poxviruses have a tremendous coding capacity compared to other viruses, and as a 

family, poxviruses encode a remarkable array of genes, the products of which for many appear to 

have co-evolved in their respective hosts to specifically counteract components of the immune 

response. The fourth chapter of this thesis is a genomic analysis of a poorly characterized 

poxvirus of the Leporipoxvirus genus that exhibits a very different host range from the other 

better-characterized leporipoxviruses. The detailing of the genome of the SQFV along with the 

characterization of some of its potential host range genes is an important first step in 

understanding how each of the genes encoded by this poxvirus contributes to its host tropism and 

species-specific virulence. Additionally, a study of its evolutionary relationship to other 

poxviruses serves to support the overarching goal of this thesis, which is to understand the 

genetic and molecular determinants of host range in poxviruses.  

 

 
Figure 1.3 Hamster home territories. 

The territory ranges of the four hamster species used in this thesis are pictured (IUCN Red List). The 

Syrian hamster originates from a very small region of northern Syria (red), while the other hamsters are 

found across broader areas of the Middle East and Asia. 
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 Abstract 
Poxviruses exhibit wide variations in host range and some, such as vaccinia virus 

(VACV), have a broad host range and are able to infect multiple species. Protein kinase R (PKR) 

is an antiviral protein that suppresses general translation during virus infection and whose rapid 

evolution is attributed to its interactions with several viral inhibitors. VACV encodes two 

inhibitors of PKR: E3L and K3L, which were identified as host range genes. Whereas K3L was 

shown to be necessary for VACV replication in Syrian hamster cells, E3L was essential for 

replication in cells from other species. To determine the molecular basis for the host range 

function of E3L and K3L, we used a luciferase reporter transfection assay in PKR-deficient 

HeLa cells to measure interactions between these inhibitors and PKRs from different rodent 

species. Our results show a surprising variability in the sensitivity of PKR from even closely 

related species to both E3L and K3L. We found that PKR from Syrian and Chinese hamsters 

were sensitive to inhibition by K3L, while Armenian hamster PKR was resistant to K3L but 

sensitive to inhibition by E3L. In addition, infections of different species' cells with VACV 

lacking E3L and/or K3L correlated the sensitivity of each species’ PKR to E3L or K3L with the 

replication of VACV mutants and the phosphorylation of PKR’s substrate, eIF2α. Our results 

show that the host range function of E3L and K3L can be explained by species-specific 

differences in the sensitivity of PKR to these VACV inhibitors. 
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 Significance 
Vaccinia virus (VACV) E3L and K3L are known to contribute to the host range of the 

virus, but the molecular explanation for their host range function has not been determined. In this 

work we identify species-specific inhibition of PKR as the molecular explanation for the host 

range function of VACV E3L and K3L, and by validating and extending previous analyses to 

include closely related hamster species, this work will significantly impact our understanding of 

viral protein interactions with host innate immune response proteins, which can be surprisingly 

and critically different even between closely related species. An unexpected significance of this 

work is the first characterization of a PKR that is resistant to VACV E3L, which would not be 

predicted by the current model of E3L inhibition by binding excess double-stranded (ds) RNA. 

This finding and the identification of a closely related PKR that resists inhibition by K3L, 

provides a framework for the mechanistic characterization of PKR inhibition by K3L as well as 

E3L, which is not yet completely understood. Additionally in this study, we generated a 

molecular tool to investigate species-specific interactions with viral PKR inhibitors in the context 

of an isogenic host cell that in the future will be useful for developing informative studies of 

virus host range. 
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 Introduction 
Poxviruses are large double-stranded (ds) DNA viruses that exclusively replicate in the 

cytoplasm of infected host cells. The entry of poxviruses into a host cell utilizes receptors 

ubiquitous in most species and is therefore species-independent (1). The successful replication of 

poxviruses in their hosts is therefore dependent on their ability to evade the host’s innate immune 

responses within the host cell. As a family, poxviruses exhibit wide variation in host range sizes 

(2). Through the use of deletion mutants and recombinant viruses, a number of viral genes that 

are necessary for replication in some hosts but not in others have been identified and are labeled 

as host range genes. Vaccinia virus (VACV) is the prototypic member of the Orthopoxvirus 

genus, which includes the human-restricted variola virus (VARV), the causative agent of 

smallpox. In contrast to VARV, VACV exhibits a very broad host range and can infect multiple 

host species. Two host ranges genes that are well conserved in the genomes of all 

orthopoxviruses and most poxviruses are called E3L and K3L in VACV. 

E3L and K3L have been shown to suppress interferon induced responses of the host, and 

both inhibit the host early response protein, PKR (3, 4). PKR is an antiviral kinase that is 

expressed at basal levels in most vertebrate cells. PKR encodes two dsRNA-binding domains in 

its N-terminus and a kinase domain in its C-terminus, which are connected by a linker region of 

variable length (5). During virus infection, dsRNA is produced in the cytoplasm of the host cells 

as a byproduct of viral replication. PKR senses and binds this dsRNA, which induces a 

conformational change that allows the protein to dimerize with another PKR molecule and 

become autophosphorylated, which is necessary for its complete activation (6, 7). Activated PKR 

then phosphorylates the alpha subunit of eIF2 (eIF2α), which leads to a general shutdown of 

cap-dependent protein translation and prevents viral replication in infected cells. The kinase 

domain of PKR has been shown to be evolving more rapidly than that of other eIF2α kinases, 

which is likely due to antagonistic interactions it has with several viral inhibitors including 

VACV E3L and K3L (8, 9).  

E3L is a major interferon (IFN) antagonist of VACV, and in human cells, the inhibition 

of PKR is the key factor involved in the response to IFN treatment, which would otherwise limit 

the translation of intermediate and late viral gene transcripts (10). The ability of E3L to bind and 

sequester viral dsRNA from cellular proteins such as PKR is thought to be critical for E3L’s host 

range function as the replacement of dsRNA-binding proteins from other viruses or even bacteria 
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have been shown to partially rescue replication of an E3L deleted VACV in mouse and human 

cell lines, and the deletion of the dsRNA-binding motif from E3L abolishes its ability to inhibit 

host PKR (11-15). K3L, on the other hand, is a pseudosubstrate inhibitor of PKR. It shares 

homology with the S1 domain of eIF2α, the major substrate of PKR, and can bind activated PKR 

to prevent its activity (16).  

In 2002, Langland and Jacobs showed that E3L was required for VACV replication in 

human HeLa cells while being dispensable for virus replication in Syrian hamster BHK-21 cells 

using VACV mutants deleted for E3L or K3L. In the same study they also showed that K3L was 

required for replication in the BHK-21 cells, but was not required for replication in HeLa cells. 

The authors proposed that different levels of PKR expressed in each cell line and differences in 

the amount of dsRNA generated during infection explained the differential requirement for E3L 

and K3L in these cells, however, the molecular explanation for the observed host range functions 

of E3L and K3L remains unclear. Based on previous work in which we correlated the sensitivity 

of mouse and human PKR to inhibition by VACV K3L with its requirement for VACV infection 

of cells from the same species (8), we hypothesized that in cells from different species, such as in 

human HeLa and S. hamster BHK-21 cells, E3L and K3L interact with PKR differently, and that 

this interaction is responsible for their observed host range functions of E3L and K3L in the 

different cell lines. 

Using a sensitive cell-based luciferase assay to measure the interaction of PKR with these 

viral antagonists, we were able to assess the sensitivity of PKR from different host species to 

inhibition by E3L or K3L. Our analyses uncovered an unexpected variation in the sensitivity of 

PKR from four related hamster species and identified two opposing instances of PKR resistance 

to inhibition by both viral proteins, which were confirmed in several different assays. 

Furthermore, the inability of E3L and K3L to inhibit PKR from these species correlated with 

replication of mutant VACVs lacking E3L or K3L in cells from the corresponding hamster 

species as well as the phosphorylation of eIF2α by the endogenous PKR proteins. Additionally, 

increasing PKR expression with IFN stimulation increased the differences in replication of the 

single-deletion VACV mutants, which could be rescued in BHK-21 cells by knocking-down 

PKR. Together, these results strongly support the conclusion that species-specific inhibition of 

PKR by VACV E3L and K3L mediate their host range functions, which contributes to the large 

host range of this virus. 
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 Methods 

 Cell lines, viruses, yeast strains and plasmids 
Mouse (BALB/C) 3T3 (ATCC CRL-1658; kindly provided by Dr. Stephen K. Chapes), 

rat NRK (ATCC CRL-6509), mouse C3HA (kindly provided by Dr. Stephen K. Chapes), mouse 

L929 (ATCC CCL-1; kindly provided by Dr. Stephen K. Chapes), European rabbit RK13 

(ATCC CCL-37; kindly provided by Dr. Bernard Moss), Syrian hamster BHK-21 (ATCC CCL-

10), Syrian hamster HaK (ATCC CCL-15), Armenian hamster AHL-1 (ATCC CCL-195), 

Chinese hamster Don (ATCC CCL-16), Chinese hamster V79-4 (ATCC CCL-93), human HeLa 

control and HeLa-PKRkd (both kindly provided by Dr. Charles Samuel) were maintained in 

Dulbecco’s Modified Essential Medium (DMEM, Life Technologies) supplemented with 5% 

fetal bovine serum (FBS, Fischer) and 25µg/ml gentamycin (Quality Biologicals). 

RK13+E3L+K3L cells (17) were grown in media additionally supplemented with 500µg/ml 

geneticin (G418) and 300µg/ml zeocin (Life Technologies) and stably express VACV E3L and 

K3L. Human embryonic kidney 293-T-REx cells (Invitrogen) were grown in media further 

supplemented with 100µg/ml zeocin and 15µg/ml blasticidin (Life Technologies), and Flp-In 

ready HeLa-PKRkd cells were grown in media supplemented with 100µg/ml zeocin and 10µg/ml 

blasticidin. Chinese hamster CHO-K1 (ATCC CCL-61; kindly provided by Dr. Anna 

Zolkiewska) cells were grown in Roswell Park Medical Institute (RPMI, Life Technologies) 

media supplemented with 10% FBS and 25µg/ml gentamycin. All cells were incubated at 37˚C, 

5% CO2. The HeLa-PKRkd cells stably express shRNA to knock down endogenous human PKR 

expression, and the HeLa control cells stably express non-specific shRNA (18). Viruses used 

include the wild-type VC-2 (VACV-Copenhagen) and its derivatives, VC-R1 (∆E3L, (19)), 

vp872 (∆K3L, (3)), and VC-R2 (∆E3L∆K3L, (20)). Both VC-R1 and VC-R2 express a 

destabilized EGFP gene from the E3L locus under control of the native E3L promoter. 

PKR from the indicated species and VACV-WR E3L and K3L were cloned into the 

pSG5 mammalian expression vector (Stratagene) for transient expression driven by the SV40 

promoter as described in (8). The cloning of knock-down resistant human PKR, mouse PKR, rat 

PKR, European rabbit PKR, Syrian hamster PKR, and Chinese hamster PKR into the pSG5 

plasmid was described previously (8, 21, 22). Armenian hamster PKR was cloned from AHL-1 

cells using primers located outside of the open reading frame (ORF) (C42: GGG CGA CGC 
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GAT CTC AGA GTC AGC ACC CGA AGC AAA AGT CGA ATC CT and C40: GGA AAA 

AAA AGT ACA ATG TTC CCC CTT ATT CCA TCT CAG ATT TTA G) and cloned into the 

pCR2.1-TOPO-TA (Invitrogen) vector for amplification and sequencing. Primers were designed 

to sub-clone the PKR ORF into pSG5 with SacI and XhoI restriction sites (C47:  TAA GAG 

CTC GCC ACC ATG GCC AGT GAT ACA CCG GG and C48: AAT CTC GAG TCA CTA 

ACG TGT GTG TCT TTT CTG TAT C). Turkish hamster PKR was cloned from cDNA 

generated from total RNA isolated from the testes of a Turkish hamster (Mesocricetus brandtii, 

kindly donated by Bob Johnston and Frank Castelli (Cornell University)). The same primers used 

to amplify the A. hamster PKR ORF were used and the primers used to sub-clone the Turkish 

hamster PKR were BA70 mbPKR SacI-1F: GTA CGA GCT CGC CAC CAT GGC CAG TGA 

TAC ACC C and BA71 mbPKR XhoI-2R: CTG TCT CGA GTC ACT AAT GTG TGT ATC 

GTT TCT GTA CTT CTG. Protein sequence alignments and protein sequence identities of the 

PKRs were obtained using ClustalW in MegAlign (DNAStar, Inc.). For transfections, plasmids 

were prepared using the Nucleobond Xtra Midi Endotoxin Free DNA preparation kit (Macherey-

Nagel). 

All yeast strains were amplified on YEPD plates and maintained on synthetic minimal 

media plates (SD) at 30˚C. The generation of the yeast strains stably transformed with empty 

vector (pRS305, J673), VACV E3L (J659), or VACV K3L-H47R (J674) at the LEU2 locus were 

described previously (8). Syrian hamster PKR (pN1) and Armenian hamster PKR (pN2) were 

cloned into the pYX113 (R&D Systems) vector, which encodes the GAL-CYC1 hybrid promoter 

and the selectable marker URA3 as previously described for human PKR (8). 

 Virus infections and interferon and siRNA treatments 

For all virus infections, sonicated virus samples were diluted in DMEM (or RPMI) 

supplemented with 2.5% FBS to perform infections at the indicated multiplicities of infection 

(MOI). For each of the cell lines used, 5.0x105 cells were plated in 6-well plates one day before 

infection, and infections were performed in duplicate unless otherwise noted. The growth media 

was removed from each well before adding the diluted virus inoculum and incubating it for one 

hour at 37˚C. After the incubation period, the inoculum was removed, cells were washed twice 

with phosphate buffered saline (PBS), and fresh growth media was replaced. Virus was collected 

at the indicated times post infection by scraping cells directly into the media and submitting the 



63 

 

lysates to three rounds of freeze/thaw cycles followed by sonication (2x15s) in a cup sonicator. 

Virus titers were measured in plaque forming units per ml (pfu/ml) by counting plaques formed 

on RK13+E3L+K3L cells (17). Fluorescent images from VC-R2 infected cells were taken on an 

inverted microscope (Leica) with Q-Image software (300ms exposure).  

Cells were pre-treated with human interferon-alpha (hsIFNα) or mouse interferon-α1 

(mmIFNα1, pbl interferon source) 17-24 hours prior to collecting RNA or infecting with viruses. 

For all experiments with human IFNα, 500 units/ml were used to pre-treat cells. For experiments 

with mouse IFNα1, BHK-21 cells were either pre-treated with 5, 500, or 1000 units/ml for 

infections with VC-R1 and VC-R2 or BHK-21, AHL-21, and V79-4 cells were pre-treated with 

50 units/ml mmIFNα1 for infections with all four viruses. Cells were treated with 5 units/ml 

mmIFNα1 before collecting RNA for RT-PCR analysis. 

Four siRNA duplexes (21nt) were designed to target Syrian hamster PKR or Armenian 

hamster PKR (Dharmacon, Table 2.1). BHK-21 cells were left untreated or transfected in 6-well 

plates with 50nM or 100nM siRNA diluted in siRNA buffer (60mM KCl, 6mM HEPES, 20µM 

MgCl2, pH 7.4) using GenMute (SignaGen) or Lipofectamine RNAiMAX (Invitrogen) siRNA 

transfection reagents according to the manufacturers instructions. The media in each well was 

changed after 24 hours, and the cells were infected with the four VACV strains at an MOI=1 at 

48 hours post transfection or at an MOI=0.01 24 hours post transfection. Virus lysates from two 

replicate infections were collected after 30 hours and titered on RK13+E3L+K3L cells. 

Fluorescent and bright field images were taken at 24 and 48 hours post infection (hpi) using an 

inverted fluorescent microscope (Leica). 

 

 Sense Antisense 

Duplex 1 GGAAUUAGCUGAACAAAUAUU UAUUUGUUCAGCUAAUUCCUU 

Duplex 2 CACCAGAACGAUAGAGUAAUU UUACUCUAUGCUUCUGGUGUU 

Duplex 3 CCACAUGACAGAAGGUUUAUU UAAACCUUCUGUCAUGUGGUU 

Duplex 4 GGAAAGUAGACAAUGAUUUUU AAAUCAUUGUCUACUUUCCUU 

Table 2.1 Sequences of hamster PKR siRNA duplexes.  

Four siRNA target sequences were designed to target S. hamster or A. hamster PKR using the 

Dharmacon siDESIGN Center (dharmacon.gelifesciences.com). 
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Human PKR was knocked-down in the 293-T-REx cells by transfecting 10nM, 50nM, or 

100nM of Human EIF2AK2 (5610) siRNA (Dharmacon, ON-TARGETplus-SMARTpool) or 

100nM of the pooled hamster PKR siRNA duplexes in 6-well plates as described. Protein lysates 

were collected 24 hours post transfection in 1% SDS for Western blot analysis. 

 Luciferase assay for PKR inhibition 
The luciferase assay for inhibition of PKR activity was described previously (8, 22). 

Briefly, 5x104 HeLa-PKRkd cells were seeded 24 hours before transfection in 24-well plates. For 

each transfection, 0.05µg of firefly luciferase encoding plasmid (pGL3promoter, Promega), 

0.2µg PKR encoding plasmids (pSG5), and 0.4µg VACV E3L or VACV K3L were transfected 

using GenJet-Hela (Signagen) in triplicate. For titration experiments, VACV E3L was co-

transfected at the indicated concentrations and the total amount of plasmid transfected was kept 

constant with additional empty vector (pSG5). Cell lysates were harvested 48 hours after 

transfection using mammalian lysis buffer (Goldbio), and the luciferase activity was determined 

by measuring light in a luminometer (Berthold) after adding luciferin substrate (Promega). 

Luciferase activity from vector control transfections were compared to transfections with only 

PKR encoding plasmids to assess the PKR activity for each species, which was then used to 

normalize co-transfections of the corresponding PKR with each viral inhibitor.  

For luciferase assays of VACV infected cells, 5x104 HeLa-PKRkd cells seeded in 24-well 

plates were co-transfected in triplicate with 0.3µg of either S. hamster or A. hamster PKR and 

0.05µg firefly luciferase. Twenty-four hours post transfection, cells were infected with VC-R2, 

VC-R1 or vp872 (MOI=1) and lysates were collected 24 hours post infection. Relative luciferase 

activity was calculated by normalizing results for transfections with each PKR to those infected 

with VC-R2 (no PKR inhibitors). 

 Yeast assay for PKR inhibition 
Yeast stably expressing VACV E3L (J659), VACV K3L-H47R (J674), or empty vector 

(J673) were transformed with empty vector or vectors encoding human PKR, S. hamster PKR, or 

A. hamster PKR using the Lithium acetate/polyethylene glycol method. Four independent 

transformed clones were picked from each transformation and colony purified on SD plates. 

Purified colonies were then streaked on SD or galactose plates (S-Gal, contains 2% galactose and 

all essential amino acids except uracil) to induce PKR expression and grown for seven days.  
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 Generation of hamster PKR-expressing HeLa cell lines 
The generation of stable PKR-expressing cells from HeLa-PKRkd cells were performed 

as described previously with a few differences (22). Briefly, knock-down resistant human PKR, 

S. hamster PKR and A. hamster PKR were cloned into a stable transfection vector (pEGFP-N1, 

Clontech) encoding either the endogenous human PKR promoter used by Peng et al. (22) or the 

SV40 promoter instead of the CMV promoter/enhancer in the original plasmid. The promoter 

sequences are followed by the intron of the rabbit β-globin gene from pSG5 and a multiple 

cloning site with two in-frame FLAG tag sequences inserted so that the cloned PKRs are tagged 

C-terminally. HeLa-PKRkd cells were transfected using GenJet HeLa (SignaGen) according to 

the manufacturers instructions and cultured with 1µg/ml geneticin (G418, Invitrogen). Geneticin-

resistant cells were grown for two or three weeks under selection before isolating individual 

clones by seeding cells at a low density (0.3 or 1 cell/well) into 96-well plates and amplifying 

colonies from single cells. PKR expression was monitored from the polyclonal cell populations 

as well as the single colony isolates by detecting PKR with FLAG antibodies (abm) and 

comparing expression to the reconstituted HeLa hs-14 cells expressing FLAG tagged PKR at 

levels comparable to endogenous PKR in HeLa control cells. Individual clones were also 

screened for endogenous PKR expression with human PKR antibodies. 

 Generation of tetracycline-inducible Flp-In HeLa cells 
HeLa-PKRkd cells were used to generate line of cells where endogenous PKR is knocked 

down so that other species PKR can be incorporated and their expression controlled using the T-

REx Flp-In system (Tet-On, Invitrogen). In this system, the addition of the antibiotic tetracycline 

or doxycycline de-represses expression of the gene-of-interest, which is inserted into a single site 

within the genome. HeLa-PKRkd cells were stably transfected with the pFRT/lacZeo plasmid 

(10µg) encoding the target site and cultured in media containing 100µg/ml zeocin (Life 

Technologies) to select for stable integrations. Twenty single cell clones were isolated and tested 

for expression of β-galactosidase (expressed constitutively from a CMV promoter as a fusion 

gene with Zeocin in the target site) by Western blot. To pick clones with a single target site 

integration, qPCR of the LacZ gene was performed from genomic DNA and compared to qPCR 

results with genomic DNA isolated from 293-T-REx cells, which have a single Flp-In integration 

site (Invitrogen). Two clones with qPCR results similar to the 293-T-REx cells were then 
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amplified and stably transfected with pcDNA6/TR, which expresses the Tet repressor from a 

human CMV promoter, and cultured with 10µg/ml blasticidin (Life Technologies). 

 Generation of tetracycline-inducible hamster PKR-expressing 293 cells 

Syrian hamster and A. hamster PKR were cloned into the pcDNA5/FRT/TO expression 

vector with two C-terminal FLAG tag sequences. Human 293-T-REx cells (Invitrogen) were 

stably transfected with each hamster PKR plasmid according to the manufacturers instructions 

and polyclonal pools of the stably transfected cells were selected by their resistance to 

hygromycin. Each hamster PKR was induced from the polyclonal cells with different 

concentrations of either tetracycline (Amresco) or doxycycline (Clontech) for 24 hours and their 

expression was analyzed by Western blot.  

 Quantitative PCR and RT-PCR analyses 
Genomic DNA from 293-T-REx cells (Invitrogen), HeLa-PKRkd cells and 20 single 

colony isolates of zeocin-resistant HeLa-PKRkd cells was isolated and used as template for 

quantitative PCR (qPCR) analyses. Quantitative PCR was performed using the BioRad CFX96 

Touch Real-Time PCR Detection System with iQ-SYBR Green Supermix (BioRad) to probe for 

Flp-In insertion site copy number. Primers were designed to amplify 150 base pairs of the LacZ 

gene present in the LacZ-Zeocin fusion gene marker in the Flp-In site (BA218 LacZ-1F: CAT 

TCG CCA TTC AGG CTG and BA210 LacZ-1R: GCC GTC GTT TTA CAA CGT C). 

Genomic DNA template concentrations were varied in a two-fold dilution series for each qPCR. 

Three technical replicates of each qPCR were performed and the means and standard deviations 

of the cycle threshold values (Cq) were calculated. The cycle threshold was manually adjusted to 

60 relative light units (RLU) in the BioRad software program to generate the reported Cq values. 

Melt curve analyses were performed after each run to verify the purity of the products generated 

by each qPCR and samples were run on 1% agarose gels for visual confirmation. The qPCR 

program used with final melt curve analysis is: 95˚C, 3 min.; (95˚C, 15 sec.; 58˚C, 30 sec) 40 

cycle repeats; 65˚C-95˚C, 0.5˚C/s increment. 

RNA was collected from IFN treated or untreated cells grown in 6-well plates 17-24 

hours after treatment using TRIzol (Thermo Fisher). A cDNA library of expressed genes was 

then generated using SuperScript III reverse transcriptase and oligo-dT primers (Invitrogen). 

Primers used to amplify S. hamster PKR from BHK-21 and Hak cells for RT-PCR analysis were 
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BA16 maPKR NheI-1F TCG CTA GCA TGG CCA GTG ATA CTC CC and BA26 maPKR 

XhoI-1R TAA TCT CGA GAT GTG TGT GTC GTT TCT GTA CTT C. Primers used to 

amplify A. hamster PKR from AHL-1 cells were BA14 cmiPKR NheI-1F ACT GCT AGC ATG 

GCC AGT GAT ACA CCG G and BA27 cmiPKR XhoI-1R TAA TCT CGA GAC GTG TGT 

GTC TTT TCT GTA TCT C. Primers used to amplify C. hamster PKR from V79-4 cells were 

C49 cgrPKR-1F TAA GAG CTC GCC ACC ATG GCC AGT GAT ACA CCG GGT TTC TAC 

ATG GAC and C50 cgrPKR-1R AAT CTC GAG TCA CTA AAG TGT GTG TCT TTT CTG 

TAT CTC. Primers used to amplify eIF2α from all cell lines were rodent eIF2α-1F GTA GTG 

ATG GTG AAT GTA AGA TCC and rodent eIF2α-2R CAT CAC ATA CCT GGG TGG AG. 

Mean band intensities were quantified with the Kodak-4000MM Image Station software. The 

ratios of PKR to total eIF2α were calculated and for normalized ratios, IFN-treated band ratios 

were normalized to band ratios for untreated cells. 

 Western blotting 
Protein lysates were collected from confluent monolayers of cells grown in 6-well plates 

in 1% sodium dodecyl-sulfate (SDS) in PBS and sonicated 2x5s to shear genomic DNA. Lysates 

from transfected cells were collected 48 hours post transfection in 1% SDS. Lysates from cells 

infected with wild-type VC-2 (Copenhagen), VC-R1 (∆E3L), vp872 (∆K3L), or VC-R2 

(∆E3L∆K3L) (MOI = 5) were collected at 6 hours post infection (hpi) in 1% SDS for analyzing 

phosphorylation of eIF2α. All protein lysates were separated on 10% polyacrylamide gels and 

blotted on polyvinyl difluoride (PVDF, GE Healthcare) membranes. Blotted membranes were 

blocked with either 5% non-fat milk or 5% BSA (for rabbit anti-human PKR and rabbit anti-

phospho-eIF2α) before being incubated with mouse or rabbit anti-human PKR (HL71/10, R&D 

Systems; D7F7, Cell Signaling), mouse anti-D (FLAG, abm), rabbit anti-phospho-eIF2α (Ser51, 

BioSource International), rabbit anti-total eIF2α (Santa Cruz Biotechnology), mouse anti-β-actin 

(Sigma-Aldrich), or mouse anti-β-galactosidase (Promega) diluted in TBST buffer (20M Tris, 

150mM NaCl, 0.1% Tween 20, pH 7.4). Membranes were incubated overnight at 4˚C in the 

primary antibody, washed with TBST, and then incubated for 1hr at room temperature with the 

secondary antibody conjugated to horseradish peroxidase (goat anti-rabbit-HRP or goat anti-

mouse-HRP, Open Biosystems; donkey anti-rabbit-HRP or donkey anti-mouse-HRP, Life 

Technologies). The membranes were then washed with TBST to remove excess secondary 
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antibody, and proteins were detected with Proto-Glo ECL detection buffers (National 

Diagnostics). Images were taken using the Kodak-4000MM Image Station, and mean band 

intensities were quantified with the Kodak Image Station software. The standard deviations of 

the ratios of phosphorylated eIF2α to total eIF2α for each sample were calculated from two 

independent Western blots. 

 Results 

 E3L and K3L are differentially required for VACV replication in cell culture 
Vaccinia virus (VACV) encodes several regulators of the antiviral response, and two of 

these genes E3L and K3L, have been shown to be differentially required for VACV replication 

in cells from different species and are therefore labeled as host range genes. Both VACV E3L 

and K3L positively impacted virus replication in mouse L929 cells, but only VACV K3L was 

required for virus replication in BHK-21 hamster cells while VACV E3L was required for virus 

replication in human HeLa cells (23, 24). In these studies, VACV lacking either E3L or K3L was 

compared to the parental virus. To further test the importance of VACV E3L and K3L for virus 

replication in other species’ cells and extend previous analyses, we used wild type VACV 

(Copenhagen) and mutant viruses lacking the genes for E3L (VC-R1), K3L (vp872) as well as a 

VACV mutant lacking both E3L and K3L (VC-R2) to infect different rodent and rabbit cell lines 

(Fig 2.1). As previously observed, deletion of either E3L or K3L from VACV reduced virus 

replication in murine L929 cells, suggesting both are important for replication in these cells. 

VACV did not, however, replicate to high titers in the L929 cells, so we also tested BALB/C-

3T3 and C3HA murine cells. Additionally, we tested VACV replication in rat NRK cells and 

European (E.) rabbit RK13 cells. In the murine cell lines, deletion of K3L resulted in a 4.1-10-

fold reduction in virus titer, but deletion of K3L only marginally impaired virus replication in the 

E. rabbit RK13 cells and rat NRK cells. Deletion of E3L, however, had a severe impact on virus 

replication in all cell lines tested with significant reductions in titer in BALB/C-3T3, NRK, and 

RK13 cells and dramatic reductions in both C3HA and L929. The presence of either E3L or K3L 

was required for VACV replication in all of the tested cell lines as deletion of both genes 

prevented replication of VC-R2 above input levels. We were able to rescue the replication of the 

VACV mutants in RK13 cells by ectopically expressing E3L and K3L (Fig 2.2A). Wild type 

RK13 cells (RK13wt) and RK13 cells engineered to stably express E3L and K3L from VACV 
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(RK13+E3L+K3L) were infected with the three mutant viruses and the wild-type VACV.  The 

expression of E3L and K3L in the RK13 cells significantly increased replication of VC-R1 and 

VC-R2, which both exhibited the largest defect in replication in the wild type RK13 cells. The 

slight reduction in titer that we consistently observed for vp872 compared to VC-2 in the wild 

type cells (~2.2-fold) was also completely eliminated in the RK13+E3L+K3L cells. These results 

suggest that E3L and K3L are both important for VACV replication in murine cells and that E3L 

is critical for VACV replication in mammalian cells from several species. 

 
Figure 2.1 VACV E3L and K3L are differentially required for replication in cell culture. 

Different rodent or rabbit cells were infected with VACV-Cop or its derivatives lacking E3L (VC-R1), 

K3L (vp872) or both (VC-R2) at an MOI=0.01. Virus samples were collected from each infection at 30 

hours post infection (hpi) and titers were measured in RK13+E3L+K3L cells by standard plaque assay. 

Error bars indicate the standard deviation of two independent replicate infections. Titers for C3HA and 

L929 cells represent results from a single infection. Titers indicated with an “x” were below the detection 

limit (<10pfu/ml) The dashed line represents the level of input virus. Fold differences between the 

indicated virus titers are shown above the graph. P-values were calculated using the Student’s t-test. 

*p<0.05; **p<0.005; ***p<0.0005. 
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Figure 2.2 VACV E3L and K3L inhibition of PKR is required for VACV replication in RK13 cells. 

Wild type RK13 or RK13+E3L+K3L cells were infected with VACV-Cop or its derivatives lacking E3L 

(VC-R1), K3L (vp872) or both (VC-R2) at an MOI=0.01. Virus samples were collected from each 

infection at 30 hours post infection (hpi, A). The dashed line represents the level of input virus, and fold 

differences in virus titer are indicated above the graph. Wild type RK13 or RK13+E3L+K3L cells were 

mock infected or infected with the indicated vaccinia viruses at an MOI=5. Cell lysates were collected 6 

hours post infection and analyzed by Western blot (B). Membranes were probed for phosphorylated 

eIF2α (eIF2α-P; B, top panel), and then stripped and re-probed for total eIF2α (B, bottom panel). Band 

intensities for each were measured and the ratios of phosphorylated eIF2α to total eIF2α were calculated 

as a percentage. The average ratios of two independent blots are indicated above the panels in B and are 

represented in the bar graph below. Error bars indicate the standard deviation of two replicate 

experiments. P-values were calculated using the Student’s t-test. *p<0.05 (19). 

 PKR inhibition by E3L and K3L is important for VACV replication 
Both E3L and K3L have been shown to inhibit the antiviral interferon (IFN) response 

(14). One IFN-stimulated gene that interacts with both E3L and K3L is the RNA-dependent 

protein kinase, PKR. We tested the activity of PKR during VACV infection by detecting 

phosphorylation of its substrate eIF2α in infected RK13 cells as well as in RK13+E3L+K3L 
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cells (Fig 2.2B). The severe attenuation of VC-R2 in the wild-type RK13 cells correlated with 

high levels of phosphorylated eIF2α, whereas the wild-type virus as well as the single deletion 

mutant viruses suppressed eIF2α phosphorylation to levels close to uninfected cells. The rescue 

of VC-R2 in the RK13+E3L+K3L cells also correlated with a reduction in the levels of 

phosphorylated eIF2α similar to that observed in uninfected RK13 cells.  

 

 
Figure 2.3 PKR inhibition is a critical barrier to VACV replication in HeLa cells. 

Protein lysates from HeLa control cells stably expressing control shRNA (18) and Hela-PKRkd cells were 

probed for PKR expression (A). HeLa-PKRkd cells or HeLa-control cells were infected with VACV-Cop 

or its derivatives lacking E3L (VC-R1), K3L (vp872) or both (VC-R2) at an MOI=0.01 (B). Virus samples 

were collected from each infection at 30 hours post infection (hpi) and titers were measured on 

RK13+E3L+K3L cells by standard plaque assays. Error bars indicate the standard deviation of two 

independent replicate infections. The dashed line represents the level of input virus. 
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In contrast to expressing E3L and K3L ectopically, we also infected cells where the 

endogenous PKR is stably knocked down, and found that replication of the mutant viruses was 

also rescued. HeLa cells stably expressing shRNA against human PKR exhibit nearly complete 

suppression of PKR expression (Fig. 2.3A) (18). Wild type VACV replicates to high titers in 

HeLa cells, but deletion of E3L completely restricted virus replication (Fig. 2.3B) (23), which we 

also observed with the virus deleted for both E3L and K3L. Depletion of endogenous PKR in 

HeLa cells allowed both VC-R1 and VC-R2 to replicate to levels comparable or close, 

respectively, to VC-2 suggesting inhibition of PKR activity by E3L is the greatest barrier to 

VACV replication in human HeLa cells. 

The rescue of the mutant virus’ replication in cells overexpressing E3L and K3L or in 

cells depleted for PKR suggests that antagonism of PKR by E3L and/or K3L is important for 

VACV replication in several different host cells. To investigate the molecular basis for the 

relative importance and differential requirement of E3L and K3L for VACV replication in the 

host cells that we tested, we used a luciferase reporter assay. We used this assay, which is based 

on the PKR-mediated translational suppression of luciferase expression in HeLa-PKRkd cells, to 

test inhibition of PKR from the corresponding host species (8). In these cells, we transiently co-

transfected a plasmid encoding luciferase with plasmids encoding PKR cloned from human, 

mouse, rat or E. rabbit cells along with plasmids encoding either VACV E3L or K3L (Fig. 2.4A 

and B). Consistent with previous work, human PKR was sensitive to inhibition by E3L, as 

indicated by the increase in luciferase activity relative to transfections with this PKR alone, but it 

was only weakly inhibited by K3L. Similarly rat PKR was only sensitive to inhibition by E3L 

and was resistant to inhibition by K3L. The relative insensitivity of human and rat PKR to K3L 

inhibition correlated with the absolute requirement of E3L for VACV replication in cells from 

these two host species (Figs. 2.1 and 2.3). In contrast, mouse and E. rabbit PKR were completely 

inhibited by both E3L and K3L. VC-R1 replicated in murine BALB-C/3T3 and E. rabbit RK13 

to titers above input levels, which were 36.7-46.6 times greater than those reached by VC-R2 in 

the same cells (Fig. 2.1). This indicated that in these cells, K3L was still important for virus 

replication. In the RK13 cells, VC-R1 also suppressed phosphorylation of eIF2α with K3L alone 

to levels comparable to VC-2 infected cells (Fig. 2.2B). Together these results suggest that PKR 

inhibition by E3L and/or K3L is necessary for VACV replication in multiple host cells, and the 
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differential dispensability of K3L for VACV replication correlated with species-specific 

inhibition of PKR by K3L. 

 
Figure 2.4 PKR inhibition by VACV E3L and K3L. 

HeLa-PKRkd cells were transfected with plasmids encoding firefly luciferase (0.05µg), PKR from the 

indicated species (0.2µg) and VACV E3L or K3L (0.4µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. 

 

 Syrian hamster PKR from BHK-21 cells is resistant to inhibition by VACV E3L 
Considering the broadly observed requirement for E3L during VACV infection in many 

of the cell lines that we tested, including not only the rodent and rabbit cells, but also cells from 

dog, cow, camel, pig and sheep species (Peng, C., unpublished), we were intrigued by the 

previous results observed by Langland and Jacobs (23) that E3L was dispensable for VACV 

replication in BHK-21 cells and that deletion of K3L instead restricted virus replication. 

Knowing that inhibition of PKR by E3L is a critical barrier to VACV infection in other cells, we 

hypothesized that in infections with the E3L-deleted VACV, K3L can inhibit PKR from BHK-21 

cells and overcome the host shut-off induced by its activity, but when K3L is deleted from the 

virus, E3L is unable to suppress PKR activity sufficiently. We previously showed that the 

sensitivity of mouse, rat, and human PKR to inhibition by VACV K3L correlated with its 
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requirement during VACV infection of cells from the same species (Fig. 2.4) (8). To test our 

hypothesis, we used the same luciferase assay for PKR inhibition and co-transfected plasmids 

encoding mouse PKR or Syrian (S.) hamster PKR cloned from BHK-21 cells as well as a 

plasmid encoding VACV E3L in increasing concentrations (Fig. 2.5). As was observed 

previously, mouse PKR was sensitive to E3L inhibition, and this sensitivity was dose dependent 

with higher levels of relative luciferase activity indicating increased levels of inhibition by E3L. 

Interestingly, S. hamster PKR exhibited no sensitivity to E3L inhibition and was resistant even 

when high amounts of E3L plasmid were co-transfected. The complete resistance of S. hamster 

PKR to inhibition by VACV E3L was particularly striking considering that the generally 

accepted mechanism of E3L inhibition of PKR by binding excess dsRNA would not predict a 

species-specific response. These results, however, are consistent with our hypothesis and explain 

the unusual dispensability of E3L for VACV replication in S. hamster BHK-21 cells.  

 
Figure 2.5 Syrian hamster PKR is resistant to inhibition by VACV E3L. 

HeLa-PKRkd cells were transfected with plasmids encoding firefly luciferase (0.05µg), mouse or Syrian 

hamster PKR (0.2µg) and VACV E3L at the indicated concentrations. Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. 
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 VACV E3L and K3L exhibit differential inhibition of PKR from hamster species 
To determine if this phenomenon was unique to S. hamster PKR or whether PKR from 

other hamster species also shared this trait, we cloned PKR into expression plasmids from three 

additional hamster species: the Turkish (T.) hamster (Mesocricetus brandtii), the Armenian (A.) 

hamster (Cricetulus migratorius), and the Chinese (C.) hamster (Cricetulus griseus). Compared 

to human PKR, which has been used most frequently to characterize PKR activity and function, 

the four hamster PKRs, including that from S. hamster (Mesocricetus auratus), share a much 

higher sequence identity with each other (Figs 2.6 and 2.7). A protein sequence alignment of the 

hamster PKRs with human PKR revealed several regions of the protein unique to the hamster 

species (highlighted in purple) as well as some regions that are well conserved between humans 

and hamsters (highlighted in blue). PKR from the two Mesocricetus hamster species shared a 

higher amino acid sequence identity (97.3%) to each other than to PKR from the Cricetulus 

species (80.6-83%), while PKR from the A. hamster and C. hamster shared a slightly lower 

identity (89.9%) with each other. 

 

 
Figure 2.6 Percent sequence identiies of the hamster PKRs and human PKR. 

The amino acid sequences of human PKR, Syrian hamster PKR, Turkish hamster PKR, Armenian hamster 

PKR, and Chinese hamster PKR were aligned by Clustal W (MegAlign, DNAStar, Inc.), and the percent 

amino acid sequence identities are listed for each PKR pair. H.s = human PKR; M.a. = S. hamster PKR; 

M.b. = T. hamster PKR; C.m. = A. hamster PKR; C.g. = C. hamster PKR. 

H.s. M.a. M.b. C.m. C.g. % amino acid identity 

62.7 62.0 61.9 62.7 Human PKR 
(Homo sapiens) 

97.3 82.1 83.0 S. Hamster  PKR 
(Mesocricetus auratus) 

80.6 81.7 T. Hamster PKR 
(Mesocricetus brandtii) 

89.9 A.  Hamster PKR  
(Cricetulus migratorius) 

C. Hamster PKR  
(Cricetulus griseus) 
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Figure 2.7 Protein sequence alignment of hamster PKRs with human PKR. 

The amino acid sequences of human PKR, Syrian hamster PKR, Turkish hamster PKR, Armenian hamster 

PKR, and Chinese hamster PKR were aligned by Clustal W (MegAlign, DNAStar, Inc.). Conserved 

residues are highlighted in blue and indicated with an asterisk. Residues conserved in the four hamster 

PKRs are highlighted in purple. Residues are numbered according to human PKR. 

! !      !
!

! !       10        20        30        40        50        60        70        80!
               ---------+---------+---------+---------+---------+---------+---------+---------+!
         human MAGDLSAGFFMEELNTYRQKQGVVLKYQELPNSGPPHDRRFTFQVIIDGREFPEGEGRSKKEAKNAAAKLAVEILNKEKK         80!
    S. hamster MASDT-PGFYMDKLNKYHQKHRVTITYKHLFTTGPPHDRRFTFQVIIDGEEFPEAEGKTKQEAKNAAAKLAVDTLN-ANK         78!
    T. hamster MASDT-PGFYMDKLNKYHQKHRVTITYKHLFTTGPPHDRRFTFQVIIDGEKFPEAEGKTKQEAKNAAAKLAVDKLN-ANK         78!
    A. hamster MASDT-PGFYMDKLNKYHQKHKVKITYKQLHITGPPHDRRFTFQVIIDGEEFPEAEGRTKQEAKNAAAQLAVERLN-ENK         78!
    C. hamster MASDT-PGFYMDKLNKYHQKHKVMITYKQLHITGPPHDRRFTFQVIINGEEFPEAEGRTKQEAKNAAAQLAVERLN-ENK         78!
               ****   ** *  ** * **  *   *  *   ************** *  *** **  * ******* ***  **   *!
!

! !       90        100       110       120       130       140       150       160!
               ---------+---------+---------+---------+---------+---------+---------+---------+!
         human AVSPLLLTTTNSSEGLSMGNYIGLINRIAQKKRLTVNYEQCASGVHGPEGFHYKCKMGQKEYSIGTGSTKQEAKQLAAKL        160!
    S. hamster ANS-----HTDALEGSFTGNYIGLVNSYAQKEKLSVNYQQCAFNTQSPQRFCYKCIIGLKTYGIGSGATKQEAKQLAAKE        153!
    T. hamster ANS-----HTDALEGSFTGNYIGLVNSYAQKEKLSVNYQQCAFNTQSPQRFCYKCIIGLKTYGIGSGATKQEAKQLAAKE        153!
    A. hamster VDS-----HTDTSEGSLSGNYIGLVNSYAQKENLSVNYEQCTSNTQSPQRFCCKCKIGPKTYGIGSGATKQEAKQLAAKD        153!
    C. hamster ADS-----QTDASEGLLSGNYIGLVNSYAQKENLSVNYEQCTSNTQSPQRFCCKCKIGLKTYGIGSGATKQEAKQSAAKD        153!
                 *      *   **   ****** *  ***  * *** **      *  *  **  * * * ** * ******* *** !
!

! !       170       180       190        200       210       220       230      !
               ---------+---------+---------+------ ---+---------+---------+---------+---------!
         human AYLQILSEETSVKSDYLSSGSFATTCESQSNSLVTS-TLASESSSEGDFSADTSEINSNSDSLNSSSLLMNGLRNNQRKA        239!
    S. hamster AY-QKLPEKSSMRVCRASSGLSKSSSSGHFNSWSTANNFTSLSAPGSDFSETASNN--HCVFFKSP--LMNGLRENKRKP        228!
    T. hamster AY-QKLPEKSSMRVCRASSGLSKSSSSGHFNSWSTANKFTSLSAPGSDVSATASNN--HCVFFKSP--LMNGLRENKRKP        228!
    A. hamster AY-QKLSEKSSMRVDRASSDLSTSSSSGRSSSLCTTSNFSSLSAPESDFSETASQNHCHSVSFESP--FTNGLRENKRKS        230!
    C. hamster AY-QKLSEKSSMRVDRTSSGLSTSSSSGLSSSLSTASHFTSLSAPQSDFSEIASKNHWHSISFESP--FTNGLRENKRKS        230!
               ** * * *  *      **            *  *     * *    * *   *          *      *** * ** !
!
   !       240       250       260       270       280       290       300       310       !
               +---------+---------+---------+---------+---------+---------+---------+---------!
         human KRSLAPRFDLPDMKETKYTVDKRFGMDFKEIELIGSGGFGQVFKAKHRIDGKTYVIKRVKYNNEKAEREVKALAKLDHVN        319!
    S. hamster RVKLSS----NDVQRNKYTTDSRFNEDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVKYNSEKEVREVKALAALSHVN        304!
    T. hamster PVKLSS----NDVQSNKYTTDSRFNEDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVKYNSEKEVREVKALAALSHVN        304!
    A. hamster GVKPLL----NDVQRSKYTIDPRFNDDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVRYNTEKEVREVKALAALSHVN        306!
    C. hamster GVKPSP----SDVQRNKYTMDSRFNNDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVSCNTEKEVREVKALAALSHIN        306!
                          *    *** * **  **  ** ********************* ****  * **  ******* * * *!
!

!       320       330         340       350       360       370       380       390      !
               +---------+-  --------+---------+---------+---------+---------+---------+-------!
         human IVHYNGCWDGFD--YDPETSDDSLESSDYDPENSKNSSRSKTKCLFIQMEFCDKGTLEQWIEKRRGEKLDKVLALELFEQ        397!
    S. hamster IVQYHFCWLGQDWEYDTEQSMN------------SATPRSKTECLFIQMEFCDKGTLEQWMTSVKQRKVDNDLFLELAEQ        372!
    T. hamster IVQYHFCWLGQDWEYDTEQSMN------------SATPRSKTECLFIQMEFCDEGTLEQWMTSVKQRKVDNDLFLELAEQ        372!
    A. hamster IVQYHSCWLGQD--YAPEHSLD------------RNPRRAKTDCLFIQMEFYDKGTLEQWMLNCKQRKVDNDLFLEFSEQ        372!
    C. hamster IVQYHSCWLGQD--YDPEHSPD------------RNPRRSKTQCLFIQMEFYDKGTLEQWMLNCKQRKVDNDLFLELSEQ        372!
               ** *  ** * *  *  *                    * ** ******** * ******       * *  * *   **!
!

! !420       410       420       430       440       450       460       470     !
               --+---------+---------+---------+---------+---------+---------+---------+-------!
         human ITKGVDYIHSKKLIHRDLKPSNIFLVDTKQVKIGDFGLVTSLKNDGKRTRSKGTLRYMSPEQISSQDYGKEVDLYALGLI        477!
    S. hamster ITTGVDYIHSKGLIHRDLKPSNIFLVDEKHIKIGDFGLVTALENDGNRTKNTGSLLYMSPEQLSLQEYGKEVDIFALGLI        452!
    T. hamster ITTGVDYIHSKGLIHRDLKPSNIFLVDEKHIKIGDFGLVTALENDGNRTKNTGSLLYMSPEQLSLQEYGKEVDIFALGLI        452!
    A. hamster ITTGVDYMHSKGLIHRDLKPCNIFLVDEKHIKIGDFGLVASLEKDGNRTKGTGTELYMSPEQLSLQEYGKEVDIFALGLI        452!
    C. hamster ITTGVDYIHSKGLIHRDLKPCNIFLVDEKHIKIGDFGLVTSMEKDGNRTKRTGTLLYMSPEQLSLQEYGKEVDIFALGLI        452!
               ** **** *** ******** ****** *  ********     ** **   *   ****** * * ******  *****!
!

! !480       490       500        510       520       530       540       550   !
               --+---------+---------+----- ----+---------+---------+---------+---------+-!
         human LAELLHVCDTAFETSKFFTDLRDGIISD-IFDKKEKTLLQKLLSKKPEDRPNTSEILRTLTVWKKSPEKNERHTC             551!
    S. hamster LAELLHICITIIEKSKFFTDLRDGIFHDDIFGSKEKRLLTKLLSKKPTDRPSASEILMTLAEWKNISEVQKRHTH             527!
    T. hamster LAELLHICITIVEKSKFFTDLRDGIFHDDIFGSKEKRLLMKLLSKKPTDRPSAHEILKTLAEWKSISEVQKRYTH             527!
    A. hamster LAELLHICITDFEKIKFFSDLRAGIFHDNIFGSKEKNLLMKLLSNKPTERPSTSEILMTLAEWKRISEIQKRHTR             527!
    C. hamster LGELLHICITDLEKSKFFNDLRDGIFHDDIFGSKEKSLLKKLLAKKPMERPSTSEILMTLAEWKSISEIQKRHTL             527!
               * **** * *  *  *** *** **  * **  *** ** *** ***  **   *** **  **   *   * *!
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We tested the four hamster PKRs as well as human and mouse PKR for comparison in 

the luciferase transfection assay for their sensitivities to VACV E3L inhibition (Fig 2.8A). 

Human and mouse PKR were inhibited by E3L, confirming previous results and correlating with 

the importance of this gene product for VACV replication in human and mouse cells (8, 23, 24). 

Additionally, both A. hamster and C. hamster PKR were also sensitive to inhibition by E3L, but 

importantly T. hamster PKR, like S. hamster PKR, was resistant to E3L inhibition. These results 

suggest that PKR resistance to VACV E3L is not unique to the S. hamster but is shared by at 

least one other Mesocricetus hamster species. Interestingly, resistance to E3L inhibition appears 

to be uncommon. We also tested 17 other mammalian PKRs for sensitivity to E3L, and only the 

S. hamster and T. hamster PKR were not inhibited (Peng, C., unpublished).  

To understand the role of K3L inhibition of PKR in these species, we tested the same 

human, mouse, and hamster PKRs with VACV K3L in the luciferase assay (Fig. 2.8B). Again 

confirming previous results, human PKR was found to be largely insensitive to inhibition by 

K3L and mouse PKR was efficiently inhibited. Whereas S. hamster and T. hamster PKR were 

resistant to E3L inhibition, both exhibited sensitivity to inhibition by K3L. Contrary to this, the 

PKRs from the Cricetulus hamster species exhibited very different sensitivities to K3L. PKR 

from the C. hamster was inhibited well by K3L as illustrated by the high levels of luciferase 

activity, whereas A. hamster PKR was completely resistant to K3L inhibition. We also compared 

the expression of transfected FLAG-tagged S. hamster PKR and A. hamster PKR with human 

PKR using anti-FLAG antibodies and found them to be expressed to comparable levels (Fig 

2.9A). Remarkably, in testing their expression in co-transfection with either FLAG-tagged E3L 

or K3L from VACV, we observed a correlation between an increase in the transfected gene 

expression and inhibition of PKR by either E3L or K3L. Co-transfection of VACV E3L and S. 

hamster PKR, for example, resulted in no increase in S. hamster or T. hamster PKR expression 

(Fig. 2.9A and B), but co-transfection of K3L with S. hamster PKR resulted in an increase in the 

overall levels of both PKR and K3L likely due to a reduction in the translational suppression 

mediated by PKR that occurs following transfection. Together, the resistance of S. hamster PKR 

to E3L inhibition and the sensitivity of it to K3L inhibition, therefore, further explain the 

previous observation that VACV lacking K3L did not replicate well in BHK-21 cells. 
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Figure 2.8 Species-specific PKR inhibition by VACV E3L and K3L. 

HeLa-PKRkd cells were transfected with plasmids encoding firefly luciferase (0.05µg), PKR from the 

indicated species (0.2µg) and VACV E3L (A) or VACV K3L (B, 0.4µg). Relative luciferase activity for 

each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Error bars indicate the standard deviations for three replicate transfections. 
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Figure 2.9 Co-transfection of PKR from different species with VACV E3L and K3L. 

HeLa-PKRkd cells were transfected with plasmids encoding FLAG-tagged PKR from the indicated 

species (1µg) with or without FLAG-tagged VACV K3L or E3L (1µg). 1% SDS protein lysates were 

collected and analyzed by Western blot for gene expression 24 hours post transfection with anti-FLAG 

antibodies (top panels) or anti-β-actin as a loading control (bottom panels). All of the PKRs were 

expressed to similar levels, but expression of each PKR increased as well as the viral inhibitor when PKR 

was inhibited. ma = S. hamster; cmi = A. hamster; hs = human; mb = T. hamster. 
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The species-specific resistances of the S. hamster PKR and A. hamster PKR to inhibition 

by VACV E3L and K3L, respectively, was further confirmed in a yeast growth assay in which 

the expression and activity of PKR suppresses translation and arrests yeast growth under PKR 

expression inducing conditions (Fig. 2.10A-C). Plasmids encoding human PKR, S. hamster 

PKR, or A. hamster PKR were transformed into control yeast strains or yeast strains stably 

expressing VACV E3L or VACV K3L-H47R, which was identified in a mutation screen for 

better inhibitors of PKR in yeast (H47R, (25)). We also tested the inhibition of PKR by K3L-

H47R in the luciferase assay and found that it inhibits the tested PKRs similarly to wild type 

VACV K3L (Fig. 2.11). Expression of both hamster PKRs and human PKR in yeast prevented 

yeast growth compared to yeast transformed with the empty vector (Fig 2.10A). Yeast growth 

was rescued when human PKR was transformed into E3L or K3L-H47R expressing cells (Fig. 

2.10B and C), indicating human PKR was inhibited by both viral inhibitors. When S. hamster 

PKR was expressed, however, yeast growth was only rescued in K3L-H47R expressing cells, 

and no yeast growth was observed in E3L expressing cells. Similarly, only co-expression of A. 

hamster PKR with E3L resulted in yeast growth, which 

correlated with our previous results in the luciferase assay. 

However, similar to what we consistently observed in the 

luciferase assay, inhibition of PKR by K3L elicited more 

robust results than inhibition of PKR by E3L, which may 

be due to differences in the mode of PKR inhibitory 

activity for each protein (3, 24). 
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Figure 2.10 Species-specific PKR inhibition by VACV E3L 

and K3L in yeast. 

Plasmids encoding human, S. hamster, or A. hamster PKR 

under the control of a yeast GAL-CYC1 hybrid promoter were 

transformed into yeast strains stably expressing the empty 

vector (control, A), VACV E3L (B), or VACV K3L-H47R (C) 

from the LEU2 locus. Transformants were colony-purified 

under non-inducing conditions and then streaked on SC-Gal 

plates to induce PKR expression for 7 days. Representative 

results are shown for 4 independent transformations. 
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Figure 2.11 VACV K3L-H47R inhibits PKR similarly to VACV K3L. 

HeLa-PKRkd cells were transfected with plasmids encoding firefly luciferase (0.05µg), PKR from the 

indicated species (0.2µg) and VACV K3L or VACV K3L-H47R (0.4µg). Relative luciferase activity for 

each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Error bars indicate the standard deviations for three replicate transfections. 

 

To determine if the resistant phenotypes of S. hamster and A. hamster PKR would also be 

observed during virus infection, we transfected HeLa-PKRkd cells with plasmids encoding each 

PKR and luciferase and subsequently infected the cells with VC-R2, VC-R1, or vp872 (Fig 

2.12). The luciferase activity measured from the infected cell lysates further confirmed the 

results from our transient co-transfection experiments. In cells transfected with S. hamster PKR 

and infected with VC-R1 (encodes only K3L), we observed higher luciferase activity than in 

cells infected with vp872 (encodes only E3L) or VC-R2 (no PKR inhibitors). Similarly, higher 

luciferase activity was observed in vp872 infected cells expressing A. hamster PKR, suggesting 

that the activity of this PKR on the translation of luciferase was more inhibited when E3L was 

expressed from vp872 than in either VC-R2 or VC-R1 infections where no E3L was present. 
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Figure 2.12 Ectopic expression of hamster PKR in VACV infected cells. 

HeLa-PKRkd cells in 24-well plates were transfected with either S. hamster or A. hamster PKR (0.3µg) 

and infected with VACV-Cop mutants lacking E3L, K3L, or both (MOI = 1) after 24hrs. Relative 

luciferase activity was obtained 48hrs post transfection by normalizing the results to those from wells 

infected with VC-R2 (lacks E3L and K3L). Error bars represent the standard deviation for three replicate 

transfections/infections. 

 Requirement for E3L or K3L for VACV replication in hamster cells correlates with 

PKR inhibition and eIF2α  phosphorylation 

Having identified the two hamster PKRs from S. hamster and A. hamster as showing 

opposing sensitivities to inhibition by VACV E3L and K3L, as well as C. hamster PKR that was 

sensitive to inhibition by both VACV inhibitors, we wanted to test if these observed PKR 

sensitivities correlated with virus replication in cells from these species with our mutant VACV 

strains. We first needed to test the susceptibility of different hamster species cell lines to 

infection with the wild type VACV as well as test for the requirement of E3L and K3L in each 

cell line. We infected five hamster cell lines with VC-2 and VC-R2 at a low multiplicity of 

infection (MOI) to observe multi-cycle replication (Fig. 2.13). BHK-21 cells derived from a S. 

hamster and AHL-1 cells derived from an A. hamster were both permissive to VACV infection, 

but VC-R2 was unable to replicate above levels of input in either cell line. While the most 

commonly used C. hamster cell line is CHO, VACV infection of C. hamster CHO cells results in 
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an abortive infection in the absence of a cowpox virus protein, CP77 (26, 27). In agreement with 

the previous reports, neither wild type VC-2 nor VC-R2 could replicate in our CHO cells. 

Because it was not clear if the inability of VACV to replicate in CHO cells had a cell-type-

specific or a species-specific base, we tested two additional C. hamster cells lines, Don and V79-

4, for their ability to support VACV replication. VC-2 replicated in both additional C. hamster 

cell lines, although not to the same level as in either BHK-21 or AHL-1 cells within 48 hours. 

The deletion of E3L and K3L also restricted VC-R2 replication in both Don and V79-4 cells 

suggesting their importance for VACV replication in these cells. We decided to use the V79-4 C. 

hamster cells in subsequent experiments because they grew more similarly to the BHK-21 and 

AHL-1 cells whereas the Don cells grew more slowly. 

 

 
Figure 2.13 VACV replication in hamster cells. 

Cells derived from S. hamster (BHK-21), A. hamster (AHL-1), and C. hamsters (CHO, Don, V79-4) were 

infected with wild-type VACV-Cop (VC-2) or VC-R2 lacking E3L and K3L at an MOI=0.001. Virus was 

collected after 48hrs, and the dashed line represents the level of input virus. VC-2 replicates in BHK-21 

and AHL-1 cells whereas the mutant VC-R2 is highly attenuated. Because VACV cannot replicate in C. 

hamster CHO cells without the expression of CPXV CP77, two other C. hamster cell lines were tested, in 

which VC-2 was able to replicate. 
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Figure 2.14 Phosphorylation of eIF2α  in mutant VACV infected hamster cells. 

Three hamster cell lines were infected with wild type VACV-Cop (VC-2) or mutant viruses lacking E3L 

(VC-R1), K3L (vp872), or both (VC-R2) at an MOI=5. Protein was collected with 1%SDS at 6hpi and 

separated by SDS-PAGE. Membranes were probed for phosphorylated eIF2α (Ser-51, top panels), total 

eIF2α (middle panels), or β-actin (bottom panels) (A). Band intensities for each were measured and the 

ratios of phosphorylated eIF2α to total eIF2α were calculated and plotted on the graph (B). Error bars 

indicate the standard deviation of two independent experiments.  

 

To correlate PKR activity in the hamster cell lines during infection with the observed 
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analyzed protein lysates from the three hamster species’ cells infected with the wild type or 

mutant VACV strains by Western blot and probed them for phosphorylated eIF2α (eIF2α-P) as 

well as total eIF2α and β-actin as loading controls (Fig. 2.14A and B). In all three cell lines, a 

low level of eIF2α-P (low PKR activity) was observed in uninfected and VC-2 infected cells, but 
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high levels were induced by infection with VC-R2 as expected (Fig. 2.14A, upper panels). 

Furthermore, in agreement with the observed sensitivities of S. hamster PKR and A. hamster 

PKR to E3L and K3L, no difference in the levels of eIF2α phosphorylation was observed in S. 

hamster BHK-21 cells infected with VC-R1 or A. hamster AHL-1 cells infected vp872 compared 

to uninfected controls (Fig 2.14B). However, strong bands for eIF2α-P were observed in BHK-

21 cells infected with vp872 and AHL-1 cells infected with VC-R1, which supports our 

hypothesis that these viruses lack a good inhibitor of PKR from the respective species. 

Accordingly, the ratio of eIF2α-P to total eIF2α was lower in V79-4 cells infected with either 

VC-R1 or vp872 than in cells infected with VC-R2.  

To correlate the differences in PKR activity with virus replication in each cell line, we 

infected cells from each of the three hamster species with all four VACV strains at a relatively 

high MOI of 1 (Fig. 2.15). We observed a strong correlation between increased PKR activity 

during infection (high levels of eIF2α-P) and restriction of virus replication. While virus titers 

resulting from infections with the wild type VC-2 and double-deletion mutant VC-R2 in all of 

the cells were similar to our previous observations with the low MOI, we observed notable 

differences in the virus titers reached by the single-deletion mutant viruses in each of the cell 

lines. These differences correlated both with the PKR activity observed for each cell line as well 

as the sensitivity of each species’ PKR to inhibition by E3L or K3L. In S. hamster BHK-21 cells, 

VC-R1 replicated nearly as well as VC-2 (~2-fold reduction), while vp872, which lacks K3L, 

reached titers 3.5 times less than VC-R1 and 7.2 times less than VC-2. Meanwhile, in A. hamster 

AHL-1 cells, VC-R1 replication was severely restricted. Compared to VC-R1, vp872 replicated 

significantly better to titers 90 times greater and comparable to those reached by VC-2 (1.6-fold 

reduction). Both of these results correlated with the observed ability of S. hamster and A. 

hamster PKR to resist inhibition by E3L and K3L, which we would predict necessitates the 

presence of the second inhibitor for virus replication. Furthermore, both VC-R1 and vp872 

replicated similarly in C. hamster V79-4 cells and slightly less than VC-2 (~2-fold reduction), 

suggesting the remaining viral PKR inhibitor in either of the single-deletion viruses was 

sufficient to allow virus replication in these cells. Consistent with this, the level of eIF2α-P in 

either the VC-R1 or vp872 infected V79-4 cells was slightly increased relative to VC-2 infected 

cells, which may correspond to the slight reduction in titer we observed for these viruses in the 

V79-4 cells (Figs. 2.14 and 2.15). These results suggests that the functional redundancy of E3L 
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and K3L in VACV for inhibiting host PKR may be necessary for maintaining its broad host 

range and their activity may be synergistic in some species cells, such as in C. hamster cells.  

 

 
Figure 2.15 VACV mutant replication in hamster cells. 

Three hamster cell lines were infected with wild type VACV-Cop (VC-2) or mutant viruses lacking E3L 

(VC-R1), K3L (vp872), or both (VC-R2) at an MOI=1 in duplicate. Viruses were collected at 30hpi and 

titered on RK13+E3L+K3L cells by plaque assay. Error bars indicate the standard deviation of two 

replicate experiments and fold differences between the single and double-deletion mutant viruses are 

noted above each. P-values were calculated using the Student’s t-test. * p<0.05; *** p<0.0005. 

 Induction or suppression of PKR expression affects VACV replication in hamster cells 

The level of eIF2α-phosphorylation observed in BHK-21 cells infected with vp872 was 

surprising considering this virus was still able to replicate in our BHK-21 cells (Figs. 2.14 and 

2.15), which was contrary to previously published results (23). We speculated that our BHK-21 

cells expressed lower levels of PKR than other cell lines, so to induce higher expression of PKR, 

we treated the BHK-21 cells with human interferon alpha (hsIFNα) and measured PKR 
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expression by RT-PCR, since antibodies against Syrian hamster PKR were not available to 

measure protein levels (Fig. 2.16A and B). Additionally, to be sure that the differences we 

observed in VACV replication and eIF2α-phosphorylation were due to species-specific 

differences and not cell type-specific differences, we included a second S. hamster cell line, 

HaK, in our analysis.  

 

 
Figure 2.16 Interferon induces PKR expression in Syrian hamster cells. 

Two S. hamster cell lines (BHK-21 and HaK) were treated with 500U/ml human interferon-α (hsIFNα) or 

left untreated. RNA was isolated from each well after 17 hours to generate cDNA for RT-PCR 

amplification of S. hamster PKR or eIF2α genes (A). Band intensities were measured and plotted as a 

ratio of PKR to eIF2α (B). 

 

We also performed replication curves of the four VACV strains in the two untreated and 

IFN treated S. hamster cell lines (Fig 2.17). Treatment with hsIFNα strongly induced PKR 

expression in both BHK-21 and HaK cells with relative ratios of PKR increasing nearly 8-fold in 

BHK-21 cells and nearly 2.5-fold in HaK cells (Fig. 2.16B). In the untreated cells, the replication 

kinetics of the VACV mutants was very similar between the two cell lines (Fig. 2.17). VC-R1 

replicated as well as the wild type VACV in both BHK-21 and HaK cells and vp872 replicated in 

both untreated cell lines to intermediate levels between VC-R2 and VC-R1. Pre-treatment of 
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BHK-21 cells with hsIFNα, however, slowed the replication of vp872 and increased the fold 

difference with VC-R1 at 32hpi to 49-times less compared to 17-times less in untreated cells. All 

four VACV strains were more sensitive to hsIFNα pre-treatment in the HaK cells, but VC-R1 

still replicated as well as the wild type VC-2 and neither vp872 nor VC-R2 could replicate in the 

treated cells.  

 
Figure 2.17 VACV replication in interferon treated Syrian hamster cells. 

Two S. hamster cell lines (BHK-21 and HaK) were pre-treated with 500U/ml hsIFNα or left untreated. 

After 17 hours, the cells were infected with VACV-Cop and the mutant VACV strains at an MOI=0.01. 

Virus was collected at the indicated time points and titered on RK13+E3L+K3L cells by plaque assay. 

Fold differences between the single-deletion VACV strains at 32hpi is indicated. IFN pre-treatment 

attenuated the vp872 virus lacking K3L in both S. hamster cell lines. 

 

We additionally treated the AHL-1 cells and V79-4 cells with hsIFNα and compared 

virus replication with the treated BHK-21 cells (Fig. 2.18). All four VACV strains replicated to 
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lower titers in the AHL-1 cells pre-treated with hsIFNα, although vp872 was still able to 

replicate above input levels. Similarly, we again observed a significant difference between VC-

R1 and vp872 titers in untreated BHK-21 cells and this difference was increased when cells were 

pre-treated with hsIFNα. In V79-4 cells, however, virus replication of all of the viruses was only 

marginally reduced (~2.5-fold reduction on average) with hsIFNα pre-treatment.  

 

 
Figure 2.18 VACV replication in human interferon treated hamster cells. 

The three hamster cells were either pre-treated with 500U/ml hsIFNα or left untreated. After 17 hours, 

the cells were infected with VACV-Cop and the mutant VACV strains at an MOI=0.01. Virus was 

collected at 30hpi and titered on RK13+E3L+K3L cells by plaque assay. Error bars indicate the 

standard deviation of two replicate experiments and fold differences between the single deletion mutant 

VACV strains are noted. P-values were calculated using the Student’s t-test. * p<0.05, *** p<0.0005 

 

Although the replication of vp872 was reduced in the BHK-21 cells treated with hsIFNα, 

this virus was still able to moderately replicate despite the increased PKR expression. Because 
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mmIFNα1, which induced a high level of PKR expression as detected by RT-PCR even at the 

lowest concentration tested (5U/ml). This resulted in a 15.2-fold reduction in vp872 virus titers 

in the mmINFα1 treated BHK-21 cells compared to untreated cells and a 45.7-fold reduction 

compared to VC-R1 titers in the treated cells. Using similar concentrations of mmIFNα1 to those 

used with hsIFNα (500U/ml and 1000U/ml), replication of both VC-R1 and vp872 was 

prevented from reaching titers above the level of input.  

 
Figure 2.19 Mutant VACV replication in mouse interferon treated BHK-21 cells. 

S. hamster PKR and eIF2α genes were amplified by RT-PCR from BHK-21 cells treated with 5U/ml 

mmIFNα for 17 hours. Band intensities were measured and calculated as a ratio of PKR to eIF2α (A and 

B). BHK-21 cells were pre-treated with 5U/ml, 500U/ml, or 1000U/ml mmIFNα1 or left untreated. After 

24 hours, the cells were infected with VC-R1 or vp872 at an MOI=0.01. Virus was collected at 30hpi and 

the level of input virus is indicated by the dashed line. Fold differences are noted above the graph (C).  
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Figure 2.20 Mutant VACV replication in mouse interferon treated hamster cells. 

The A. hamster (AHL-1) and C. hamster (V79-4) cells were pre-treated with 5U/ml mmIFNα1 or left 

untreated for 17 hours and cDNA was prepared from each for RT-PCR amplification of hamster PKR and 

eIF2α (A). Band intensities were measured and calculated as a ratio of PKR to eIF2α. The ratios for 

each were normalized to the untreated sample, which is graphed in B. The three hamster cells were left 

untreated or pre-treated with 50U/ml mmIFNα1 for 24 hours, and then the cells were infected with the 

VACVs at an MOI=0.01. Virus was collected at 30hpi and titered on RK13+E3L+K3L cells by plaque 

assay, and fold differences between the single deletion mutant viruses are noted. Error bars indicate the 

standard deviation of two replicate experiments. P-values were calculated using the Student’s t-test. * 

p<0.05 
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Treatment of AHL-1 with mmIFNα1 also resulted in a strong induction of PKR 

expression as detected by RT-PCR (Fig 2.20A and B), but in the V79-4 cells, expression of PKR 

was not increased following mmIFNα1 treatment. From these results, we suspected that the V79-

4 cells have a deficient IFN response and either lack the IFN receptor or are otherwise defective 

at some point in the IFN pathway prior to expression of interferon stimulated genes like PKR. 

Alternatively, but less likely, the murine IFNα1 used in this assay might not be recognized well 

by the C. hamster IFN receptors. Similar to the hsIFNα pre-treatment, no dramatic change in 

virus titers was observed when V79-4 cells we pre-treated with mmIFNα1 and infected with the 

VACV strains (Fig 2.20C). Replication of the VACV strains in both BHK-21 and AHL-1 cells, 

however, was greatly reduced with mmIFNα1 pre-treatment. The fold reduction in vp872 titers 

in mmIFNα1 treated BHK-21 cells compared to VC-R1 titers was increased to 139-fold 

compared to 12.6-fold in untreated cells, and vp872 replicated nearly 2800-times better than VC-

R1 in treated AHL-1 cells.  

To correspond with the induction and overexpression of PKR in BHK-21 cells treated 

with IFN, we designed siRNA to target either S. hamster or A. hamster PKR and knock down its 

expression in BHK-21 as well as the AHL-1 cells. We infected untreated cells and siRNA treated 

cells with the four VACV strains at an MOI of 0.01 and measured viral titers after 48 hours (Fig. 

2.21). In both untreated cell lines, VC-R2 reached titers significantly lower than the wild-type 

virus (~500-1000X reduction). Treatment with siRNA to knock down PKR expression in both 

cell lines rescued VC-R2 replication, which reached titers not significantly different from the 

wild-type virus. Similarly in BHK-21 cells, vp872 titers were increased with siRNA treatment 

relative to untreated cells and were not significantly different from titers reached by VC-R1, 

indicating that PKR was successfully knocked down in these cells and that PKR expression and 

activity correlated with the reduction in vp872 replication in BHK-21 cells. An even greater 

difference was observed in the AHL-1 cells. VC-R1 replication in untreated AHL-1 cells was 

restricted compared to vp872 replication (~700X reduction), but replication of VC-R1 was 

increased significantly with siRNA treatment to titers comparable with both wild-type VC-2 and 

vp872 viruses. 
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Figure 2.21 siRNA knock-down of PKR in hamster cells. 

A pool of four siRNA oligos targeting hamster PKR were transfected into BHK-21 and AHL-1 cells at 

50nM concentration. Twenty-four hours post transfection, untreated cells and siRNA treated cells were 

infected with wild-type VACV-Cop (VC-2) and its derivatives lacking E3L, K3L, or both. Virus collected 

after 48 hours was titered on RK13+E3L+K3L cells. Error bars indicate the standard deviation of three 

replicate infections. Fold differences are shown between the indicated virus infections. Asterisks indicate 

statistical significance as determined by the Student’s t-test. n.s.= p>0.05, * p<0.05, **p<0.005, 

***p<0.0005. 
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Figure 2.22 siRNA knock-down of PKR in hamster cells rescues mutant VACV replication. 

A pool of four siRNA oligos targeting hamster PKR were transfected into BHK-21 and AHL-1 cells at 

50nM concentration. Twenty-four hours post transfection, untreated cells and the siRNA treated cells 

were infected with VC-R1 or VC-R2 at MOI=0.01 (A). Virus replication was monitored at 24hpi and 

48hpi by fluorescence imaging (100X magnification, 1000ms exposure). Treated or untreated BHK-21 

cells were also infected with VC-2 or vp872 (MOI=0.01) and monitored for CPE by light microscopy (B). 
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The replication of VC-R1 and VC-R2, which both express GFP from the E3L locus, were 

also monitored in siRNA treated and untreated cells over 48 hours of infection by fluorescence 

microscopy (Fig. 2.22A). Very little GFP fluorescence was detected in VC-R2 infected BHK-21 

cells after 24hpi or 48hpi, corresponding to the attenuated phenotype of this virus in BHK-21 

cells, while GFP fluorescence was observed in VC-R1 infected BHK-21 cells as expected. 

Knockdown of S. hamster PKR with siRNA resulted in higher levels of GFP expression from 

VC-R1 and VC-R2 infected BHK-21 cells consistent with the increase in relative titers we 

observed from the infection (Fig. 2.21). Furthermore, infection with vp872 in the siRNA treated 

BHK-21 cells also resulted in an increase in cytopathic effect (CPE) compared to untreated cells 

infected with this virus, particularly after 24hpi, and was similar to that observed from infections 

with VC-2 (Fig. 2.22B). As expected, no GFP fluorescence was observed from VC-R1 or VC-R2 

infections of untreated AHL-1 cells correlating with the inability of these viruses to replicate in 

these cells. However, when PKR was knocked down in these cells, both VC-R1 and VC-R2 

formed large GFP-positive plaques indicative of replication. This data shows a correlation of 

both the expression and activity of PKR with the replication of VACV lacking E3L and/or K3L 

in hamster cells, which is consistent with the sensitivity to either inhibitor that we observed for 

the corresponding PKR from each hamster species. 

 Generation of hamster PKR expressing cell lines and an inducible-expression system 

Our results showed a strong correlation between the sensitivity of PKR from different 

species to VACV E3L and K3L in reporter assays with eIF2α phosphorylation and virus 

replication after VACV infection of cell lines. In order to extend these findings, we decided to 

generate isogenic PKR-expressing cell lines in the HeLa-PKRkd cell background. We previously 

used this method to compare human and rabbit PKR interactions with the K3L ortholog from 

myxoma virus (22). Similarly, we cloned both S. hamster and A. hamster PKR into a stable 

transfection vector to express each PKR from the native human PKR promoter and stably 

transfected the HeLa-PKRkd cells. Single-cell clones were screened for hamster PKR expression 

using anti-FLAG antibodies and compared to expression from HeLa-PKRkd cells complemented 

with human PKR-FLAG (hs-14 cells; a representative sample of the screening is shown in Fig. 

2.23A and B). While we were initially able to identify single-cell clones that expressed PKR 

from each species and also had low endogenous PKR expression, we generally observed very 
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low expression of the hamster PKRs compared to the control hs-14 cells, which was gradually 

reduced during subsequent passages (not shown). Additionally, none of the A. hamster PKR-

expressing cells were able to restrict replication of VC-R1 or VC-R2 except for clones in which 

we also observed an increased level of background endogenous human PKR expression. The S. 

hamster expressing cells that we identified were able to suppress VC-R2 replication, but 

replication of VC-R1 and vp872 was similar based on GFP-fluorescence of VC-R1 (Fig 2.23B) 

and CPE caused by vp872 (not shown). 

Under the suspicion that the endogenous human PKR promoter may not be ideal for 

expression of the hamster PKRs in HeLa cells, we sub-cloned both the hamster PKRs as well as 

human PKR into a stable transfection vector under the control of the constitutive SV40 promoter. 

Strong expression of each PKR protein was observed from the stably transfected cells at 48 

hours post transfection, particularly for human PKR (Fig. 2.24A). After three weeks of passaging 

the cells under antibiotic selection for the integrated plasmid, however, we observed a dramatic 

decrease in PKR expression from both of the hamster PKR expressing cell populations as well as 

the human PKR expressing cells. Nevertheless, the level of human PKR expression after three 

weeks under selection was similar to that observed from the hs-14 cells expressing human PKR 

from the endogenous PKR promoter.  

When we infected the stably transfected polyclonal cell populations after one passage and 

after four passages with the four VACV strains, we observed a heavy restriction on replication of 

all of the VACV strains after one passage post transfection with each of the three PKRs 

preventing VC-R1 and VC-R2 replication entirely (Fig 2.24B). Cells infected after four rounds 

of passaging no longer restricted VC-2 replication compared to the vector control transfected 

cells, but VC-R2 was also able to replicate above input levels for all polyclonal cell lines (Fig 

2.24C). While VC-R1 was more restricted in the human PKR and A. hamster PKR-transfected 

cells as we expected, vp872 was not at all restricted in the polyclonal S. hamster PKR-

transfected cells. 
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Figure 2.23 Screening of hamster PKR-expressing HeLa cells. 

HeLa-PKRkd cells were stably transfected with plasmids encoding FLAG-tagged S. hamster PKR or A. 

hamster PKR from the native PKR promoter and protein lysates (1% SDS) were collected from single-cell 

clones for each (A). PKR expression from each clonal cell line was analyzed by Western blot using anti-

FLAG antibodies and compared to PKR expression from hs-14 expressing FLAG-tagged human PKR and 

transiently transfected hamster PKRs (top panel). Membranes were subsequently probed for endogenous 

human PKR expression with anti-hsPKR antibodies (middle panel) and β-actin or eIF2α as loading 

control (bottom panel). Each of the single-cell clones were infected with VC-R1 or VC-R2 at MOI = 0.01 

and fluorescent plaque formation was observed 24 hours post infection (B). ma = S. hamster; cmi = A. 

hamster; hs = human.  
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Figure 2.24 Unstable expression from hamster PKR-reconstituted HeLa cells. 

HeLa-PKRkd cells were stably transfected with empty vector (control), or plasmids encoding FLAG-

tagged knock-down resistant human PKR, S. hamster PKR, or A. hamster PKR driven by the SV40 

promoter. Protein lysates were collected from the polyclonal pool of geneticin-resistant cells and probed 
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for reconstituted PKR expression with anti-FLAG antibodies at 48 hours post transfection and after 3 

weeks of geneticin selection (A). At 48 hours (passage 1, B) and after ~3 weeks (passage 4, C), the 

polyclonal cells were seeded in 6-well plates and infected with the four viruses. Error bars represent the 

standard deviations of two replicate infections. 

 

 
Figure 2.25 PKR-reconstituted HeLa cells suppress VC-R2 but do not express hamster PKR. 

Single geneticin-resistant clones were isolated and infected with VC-R2 at MOI=0.01 and monitored for 

GFP expression after 48 hours (A). VC-R2 replication, as indicated by GFP expression, was reduced in 

all PKR expressing cell lines compared to the vector control. Protein lysates were collected from the 

clonal PKR-transfected cells, clonal vector control cells and control HeLa cells (not PKRkd) and probed 

for PKR expression using anti-FLAG antibodies (B). FLAG-tagged PKR expression was not observed for 

either hamster PKR-reconstituted clone but was observed from both human PKR-expressing clones 

tagged with FLAG epitopes. 

 

We then selected for single cell clones from each of the polyclonal cell populations and 

screened them for VC-R2 replication and PKR expression using anti-FLAG antibodies (Fig 

2.25A and B). While all of the single cell clones that expressed human or hamster PKR restricted 

VC-R2 replication compared to the vector control cells, we only observed FLAG-tagged PKR 
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expression from the human PKR clone, which was comparable with hs-14 PKR expression. 

From these results we concluded that the expression of the hamster PKRs in the HeLa cells 

might be toxic, which would select against cells expressing high levels of hamster PKR. In 

addition, our selection for clones that suppress VC-R2 replication may have instead selected for 

cells that have lost the knockdown of human PKR of the parent cells or otherwise have increased 

endogenous PKR expression. 

In order to overcome the potentially cytotoxic effect of hamster PKR expression, we 

decided to use a tetracycline-inducible expression system to control PKR expression in the 

hamster-PKR expressing cells. In this system, the gene for the tetracycline repressor (TetR) from 

E. coli is stably expressed from cells and a single gene-of-interest insertion site is integrated into 

the genome, which has two tetracycline repressor binding sites in the promoter. Integration of the 

gene-of-interest into this site is mediated by Flp-recombinase from Saccharomyces cerevisiae, 

but expression of the integrated gene is suppressed unless tetracycline or doxycycline is present, 

which binds the tetracycline repressor and allows for gene transcription (T-REx, Invitrogen).  

Using the HeLa-PKRkd cells as the parent cell line, we first transfected the plasmid 

encoding the insertion site and selected for stable integrations with zeocin. The insertion site 

expresses a fusion Zeocin-LacZ gene under the control of a constitutive CMV promoter, so we 

selected twenty single cell clones and screened them for expression of β-galactosidase by 

Western blot (Fig 2.26A). All twenty clones expressed β-galactosidase to varying degrees and 

none of the clones exhibited a high background of human PKR expression. To make sure that 

our cells had only a single integration of the insertion site, we collected genomic DNA from each 

of the clones and used quantitative (q) PCR with two template concentrations and primers 

designed to detect a portion of the LacZ gene (Fig 2.26B). We ensured that the designed primers 

were able to detect a single increase in gene copy-number using genomic DNA prepared from 

293-T-REx cells, which have only a single insertion site (Fig. 2.27, Invitrogen). The cycle-

threshold values decreased by ~1 cycle with each 2-fold increase in template concentration 

correlating to a doubling of the target site copy number. We compared the Cq values from qPCR 

reactions performed with the DNA from the single cell clones to those obtained with the 293-T-

REx cell DNA and identified two clones, #4 and #26, that yielded similar results, which 

indicated they are likely to have only a single integration of the Flp-In insertion site. Both cell 

lines were subsequently transfected with the plasmid encoding the tetracycline repressor and 
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selected for stable integration with blasticidin. Into these Flp-In Ready HeLa-PKRkd cells, we 

will be able to insert the hamster PKRs and test the sensitivity of PKR to VACV E3L and K3L in 

an isogenic background as well as determine the dose dependent effects of PKR on the 

requirement for E3L and K3L for VACV infection of cells in this context.  

 
Figure 2.26 Screening HeLa-PKRkd clones for Flp-In site integration. 

Protein lysates were collected with 1%SDS from 293-Trex cells, HeLa-PKRkd cells, and 20 single colony 

isolates (numbered 1 through 34) of HeLa-PKRkd cells stably expressing the Flp-In site for gene-of-

interest expression and separated by SDS-PAGE and analyzed for expression endogenous human PKR, b-

galactosidase (β-Gal), and β-actin by Western blotting (A). Genomic DNA was collected from 293-Trex 

cells and the 20 HeLa-PKRkd clones. The gDNA was used as template in two quantities for qPCR with 

primers amplifying the LacZeo fusion gene to select clones containing a single insertion of the Flp-In site 

in the genome (B). The dashed lines indicate the cycle threshold value corresponding to single gene 

copies for each template volume according to the results with 293-Trex cell genomic DNA. Wt = HeLa 

wild type; KD = HeLa PKRkd. 
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Figure 2.27 Quantitative PCR test for single Flp-In site in 293-T-REx cells. 

Genomic DNA was collected from 293-T-REex cells and the gDNA was used as template in four 

quantities for qPCR with primers amplifying the LacZeo fusion gene. Each doubling of the template DNA 

reduces the Cq value by ~1 cycle.  

 

To test the induction of gene expression in the T-REx system, we stably transfected both 

S. hamster and A. hamster PKR into the 293-T-REx cells and assayed for hamster PKR 

expression following treatment with tetracycline or doxycycline by Western blot (Fig. 2.28). 

PKR expression was very low in un-induced cells but was strongly induced in the presence of 

0.1µg/ml tetracycline or doxycycline. Induction of each PKR was not observed in the presence 

of lower concentrations of tetracycline; however, the dose-dependent effect on gene expression 

must lie within the range of 1ng-100ng/ml tetracycline or doxycycline, as no further increase in 

PKR expression was observed with higher concentrations of each antibiotic. The ability to 

induce the hamster PKRs from the 293-T-REx cells is a promising proof-of-concept, but their 

utility for comparing PKR from different species is limited without first knocking-out or 

knocking-down the expression of the endogenous human PKR. Initial attempts to knock down 

human PKR in these cells with siRNA did not result in efficient knock-down after 24 hours (Fig. 

2.29), but continued optimization of this procedure may allow the use of the hamster PKR-

expressing 293 cells in future experiments. 
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Figure 2.28 293-T-REx cells express hamster PKRs following induction with tetracycline or 

doxycycline. 

FLAG-tagged S. hamster (ma) or A. hamster (cmi) PKR were cloned into 293-T-Rex cells, and their 

expression was induced with different concentrations of tetracycline or doxycycline as indicated for 24 

hours. Protein lysates were collected in 1% SDS and expression was probed by Western blot. Protein 

collected from HeLa-PKRkd cells transfected with each FLAG-tagged PKR (Tx) was also analyzed for 

size comparisons. 

 

 
Figure 2.29 siRNA treatment test to knock-down human PKR in 293-T-REx cells. 

Protein lysates were collected with 1% SDS from 293-Trex cells that were left untreated or transfected 

for 24 hours with a pool of four siRNAs targeting human (hs) PKR at different concentrations or pooled 

siRNAs targeting S. hamster (ma) PKR. 

 

The generation of the Flp-In Ready HeLa-PKRkd cells also provides a useful tool for our 

lab more generally as we can now express any gene-of-interest in these cells in a PKR-deficient 
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background and control the expression of each gene by adding tetracycline or doxycycline. This 

reduces the potential for selecting against highly expressing cells in cases where the exogenous 

protein is toxic to the cells and has the added benefit that the genomic location of the insertion 

site is the same between clones, since genomic integration occurs at the Flp-In site. 

 Discussion 
In this study we have demonstrated that E3L and K3L are critical host range factors for 

VACV replication in a variety of mammalian cell types and that their host range functions can be 

explained by species-specific inhibition of the host innate immune response protein, PKR. We 

and others have previously described the host specific nature of VACV K3L inhibition of PKR 

as well as K3L orthologs in other poxviruses such as myxoma virus (8, 9, 22). Here we extend 

these analyses to look at interactions between both K3L and E3L of VACV with PKR from 

closely related hamster species. Although the natural hosts of VACV are unknown, other related 

orthopoxviruses are thought to be primarily maintained in rodent populations (2, 28), which adds 

significance to the work done here as the sensitivity of the hamster PKRs to these viral inhibitors 

has a greater potential to be the result of selective pressure imposed on these rodents by 

poxviruses or other viruses with similar PKR inhibitors rather than being the result of random 

differences.  

VACV E3L encodes an N-terminal Z-DNA binding domain and a C-terminal dsRNA-

binding domain. The dsRNA-binding motif of E3L is highly conserved among dsRNA-binding 

proteins including PKR and has been shown to be necessary for inhibition of PKR (15, 29, 30), 

although the N-terminal domain of E3L was also found to be necessary to inhibit the IFN 

response in mouse cells (31). PKR was identified as the key host factor modulating E3L in 

human Huh7 cells in response to IFN treatment (10) and is the most important protein in 

determining the restriction of VACV lacking E3L in HeLa cells (Fig 2.3B) (18). 

Our results confirmed previous studies that identified an essential role for E3L in the 

replication of VACV in several different cell lines. Due to the near universal requirement of E3L 

for VACV replication in host cells, we found the observation by Langland and Jacobs in 2002 

that VACV lacking E3L can replicate in BHK-21 cells intriguing. The authors suggested that 

variable expression of endogenous PKR and differing levels of dsRNA generated during 

infection of the different cell lines could explain the dispensability of E3L. While we don’t 



105 

 

exclude the effects of these cell-type-specific differences, we propose that the major difference 

explaining the ability of the E3L-deleted VACV to replicate in BHK-21 cells is the species-

specific resistance of S. hamster PKR to E3L inhibition. We showed the resistance of S. hamster 

PKR to inhibition by VACV E3L in our luciferase transfection assay, in a yeast growth assay, as 

well as in virus infected cells where levels of transfected PKR were kept constant and we would 

not expect differences in amounts of dsRNA generated. 

Using the same highly sensitive cell culture-based transfection assay for PKR inhibition 

in cells deficient in endogenous PKR, we were able to compare the sensitivity of PKR from 

several different species to both viral inhibitors from VACV. The gene product of VACV K3L is 

comprised of an S1-fold homologous to the S1 domain of PKR’s substrate, eIF2α. K3L acts as a 

pseudosubstrate inhibitor by binding PKR to block its activity (16, 32). We observed a 

remarkable variability in the ability of K3L to inhibit PKR from even closely related species. In 

particular, the resistance of the A. hamster PKR to K3L was unique among all the hamster PKRs 

tested, while PKR from the C. hamster of the same genus was very sensitive to K3L inhibition. 

The resistance of A. hamster PKR to K3L inhibition was observed in several different assays as 

with the S. hamster PKR, and their opposing sensitivities to both PKR inhibitors from VACV 

provides an opportunity to investigate the resistance of each to the respective VACV inhibitors 

more mechanistically. 

Our identification of the resistance of S. hamster PKR to inhibition by VACV E3L was 

unexpected considering the broad requirement of E3L for VACV replication in many cell lines 

and the mode of E3L inhibition of PKR by binding dsRNA. However, the identification of a 

second resistant PKR from a T. hamster (Mesocricetus brandtii) suggests that resistance to 

inhibition by E3L and potentially other viral dsRNA-binding proteins may be a novel innovation 

that arose in the Mesocricetus hamster lineage. Many viruses encode proteins that bind dsRNA 

to prevent activation of antiviral cellular proteins such as PKR (33). Such a general characteristic 

of this innate immune response protein would undoubtedly favor individuals with resistant PKRs 

during virus infection. The presence of both E3L and K3L in VACV and many other poxviruses 

therefore highlights the importance of having two genes with overlapping functions in order to 

maintain a broad host range. 

Most mammalian cell lines are permissive for VACV replication, however, C. hamster 

ovary cells (CHO) are one of the few for which VACV cannot replicate. VACV requires the 
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expression of a host range protein from cowpox virus called CP77 to replicate in CHO cells, 

which prevents the host shutoff of protein synthesis and the induction of apoptosis to allow for 

virus replication (26, 34). From this study, we determined that this requirement is not specific to 

all C. hamster cells, but is instead a characteristic specific to this cell line. Wild-type VACV 

replicated in two other C. hamster cell lines that we tested (Fig. 2.13), which allowed us to 

compare replication of our mutant viruses in a cell line from this species to their replication in 

cell lines derived from the two other hamster species. 

By infecting cell lines derived from each hamster species with our VACV mutants 

lacking E3L and/or K3L, we were able to see a strong correlation between PKR sensitivity to 

inhibition by E3L and K3L, as determined in the luciferase and yeast assays, and high levels of 

phosphorylated eIF2α indicative of increased PKR activity, and restriction of replication of the 

mutant viruses in each cell line. We showed that VC-R1, which displayed a severe host range 

defect in most cell lines tested, replicated in two different S. hamster cell lines comparably to the 

wild type virus, and vp872, which lacks K3L, exhibited delayed replication kinetics and reached 

lower titers compared to the E3L-deleted virus. Additionally, in S. hamster BHK-21 cells, IFN 

stimulation and the concomitant induction of PKR expression resulted in an increase in the 

attenuation of vp872. This correlation supports the important role of PKR inhibition in VACV 

replication and the inability of E3L to inhibit PKR from the S. hamster. It is notable, however, 

that vp872 titers in the BHK-21 cells were always higher than VC-R2 titers in all of our 

experiments. This suggests that E3L may perform other necessary functions for the virus besides 

inhibition of PKR that allows for some replication in these cells. There is evidence to suggest 

that the N-terminal Z-DNA binding domain of E3L is involved in regulating host gene 

expression and can act independently of the C-terminal dsRNA-binding domain to inhibit 

activation of IRF3 (interferon response factor 3), which induces the expression of several ISGs 

(15). Furthermore, E3L can interfere with the activation of the OAS/RNaseL pathway (in BHK-

21 cells, (23)), and E3L is able to suppress cytokine induction through both PKR-dependent and 

PKR-independent pathways (35). Nevertheless, the relative resistance of VC-R1 in BHK-21 cells 

to either human or murine IFN pre-treatment in our experiments and the subsequent increase in 

PKR expression supports our initial hypothesis for the species-specific resistance of S. hamster 

PKR to inhibition by VACV E3L. This along with the fact that VACV also encodes K3L, which 
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is otherwise able to inhibit S. hamster PKR, explains the previously observed dispensability of 

E3L for VACV in these cells.  

In addition, the replication of vp872 in the A. hamster AHL-1 cells mirrored the 

dispensability of K3L that was reported for VACV replication in human HeLa cells (23). Human 

PKR was only weakly inhibited by VACV K3L, but VACV is able to replicate in human cell 

lines because human PKR can be inhibited by VACV E3L (Figs. 2.3 and 2.4; (8)). Similarly both 

A. hamster and rat PKR are resistant to inhibition by VACV K3L, while VACV E3L can inhibit 

PKR from both species (Figs. 2.4 and 2.8). Likewise, the sensitivities of these species’ PKRs 

correlated with the inability of the E3L-deleted VACV to replicate in cells derived from these 

host species, while deletion of K3L had little to no negative effect on virus replication (Figs. 2.1 

and 2.15). Knocking down A. hamster PKR in the AHL-1 cells also resulted in a rescue of virus 

replication for both VC-R1 and VC-R2 as indicated by GFP expression, which suggests that 

inhibition of PKR is a critical factor for VACV replication in these hamster cells and that VACV 

E3L is required for this function unless PKR expression is suppressed (Fig. 2.22). Altogether, 

these results indicate that the host range function of VACV K3L is due to species-specific 

inhibition of PKR from different host species, and that unlike with E3L, PKR resistance to 

inhibition by K3L has evolved multiple times in different mammalian species. 

We were also able to increase the susceptibility of BHK-21 cells to infection with vp872 

as well as VC-R2 by knocking down S. hamster PKR, which increased virus induced CPE or 

GFP expression for each. This suggests that PKR is the major restricting host factor for these 

viruses and that the attenuation of vp872 in BHK-21 cells is due to a defect in PKR inhibition. 

The rescue of VC-R1 replication in BHK-21 cells following siRNA knockdown of S. hamster 

PKR suggests that this PKR may be activated to a low degree in untreated BHK-21 cells infected 

with VC-R1, although in these cells we only observed a low level of eIF2α-phosphorylation (Fig 

2.14). Recent work suggests that PKR may induce the expression of ISGs independent of eIF2α-

phosphorylation mediated by interactions with other PRR’s such as RIG-I or MDA5 in response 

to different viruses (36). It remains possible that some of the reduction in VC-R1 replication that 

we observed relative to VC-2 may be explained by such interactions, although this remains to be 

tested. 

Despite our previous success in engineering HeLa cells that express FLAG-tagged human 

or rabbit PKR (22), we encountered surprising difficulties using the same methods to create 
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HeLa cells that express hamster PKR stably. We surmise that the hamster PKRs were not stably 

expressed in HeLa cells because their activity is toxic to the cells. In cells where each hamster 

PKR was under the control of the endogenous human PKR promoter, the expression of PKR was 

generally low in single-cell clones relative to the hs-14 cells expressing human PKR at levels 

comparable with control cells. It is, however, possible that their expression was higher at earlier 

passages and that highly expressing clones were selected against over time, since we observed a 

similar reduction of PKR expression from cells expressing the hamster PKRs from a constitutive 

SV40 promoter (Fig 2.24). Further evidence for this comes from a recent publication, where the 

use of S. hamster PKR was suspended and replaced with human PKR for biochemical analyses 

due to the high toxicity of the hamster PKR in the bacteria used to generate the protein (37). The 

reason for the unstable hamster PKR expression is not clear, but our solution to use an inducible 

expression system for generating the hamster PKR expressing cells in turn yielded a useful 

molecular tool to investigate species-specific interactions with other viral PKR inhibitors in the 

context of an isogenic host cell that in the future will be useful for developing informative 

studies of virus host range. 
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 Abstract 
Vaccinia virus (VACV), the prototype poxvirus, can infect several host species including 

rodents, cattle, and humans and therefore has a very broad host range. To maintain this broad 

host range, VACV encodes several host range genes that are important for overcoming host 

defenses. Two host range genes encoded by VACV called E3L and K3L target PKR, a critical 

mediator of the host interferon response, at different steps during its activation and activity. Our 

previous work and work from others has shown that the redundant roles of E3L and K3L for 

VACV are critically important for VACV to maintain its broad host range and its ability to infect 

many different species. Deletion of E3L, for example, prevented virus replication in cells derived 

from an Armenian hamster, whose PKR is resistant to inhibition by K3L, while deletion of K3L 

highly attenuated virus replication in Syrian hamster derived cells, whose PKR is resistant to 

inhibition by E3L. Using the inverse relationship of these two hamster PKRs with VACV E3L 

and K3L, we designed a set of experiments using a cell culture-based luciferase assay to 

investigate the critical components of each that contribute to their ability to resist inhibition by 

either VACV protein. From this analysis, we uncovered further support for the interaction of 

K3L with residues in the helix αG of PKR’s kinase domain, which has likely also driven positive 

selection in PKR during rodent and lagomorph evolution. Additionally, we determined that the 

interaction with VACV E3L is more complex and involved interactions with multiple domains in 

PKR. However, mutations that interfere with dimer formation restored E3L’s ability to inhibit 

PKR from the S. hamster and mutations that are predicted to abolish dsRNA-binding in PKR 

prevented E3L from inhibiting otherwise sensitive PKRs. These results provided evidence to 

support a model of E3L inhibition that depends on PKR’s ability to bind dsRNA and form 

inactive hetero-dimers via dsRNA bridging or by disrupting PKR dimers.  
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 Significance 
Protein kinase R (PKR) is a key mediator of the interferon-induced antiviral response. Its 

activation by double-stranded RNA during virus infection leads to a shutdown of protein 

translation and viral replication. For this reason, many viruses have evolved proteins and 

mechanisms to overcome the activity of this protein. Vaccinia virus (VACV) encodes two 

inhibitors of PKR, E3L and K3L that inhibit PKR at different steps in its activation and activity. 

At the same time, PKR in different species have been shown to exhibit differential sensitivities to 

these inhibitors, for which the molecular explanations are not yet completely understood. In this 

study we performed a mechanistic analysis of two PKRs from related species that are resistant to 

inhibition by E3L or K3L. Our results confirmed previous reports of the importance of the αG 

helix in the kinase domain of PKR for interactions with K3L and provide evidence for a general 

resistance mechanism to viral dsRNA-binding protein inhibitors by S. hamster PKR. This 

resistance can be attributed to interdomain interactions involved in PKR dimerization and 

activation. The study of this novel innovation in S. hamster PKR to overcome viral PKR 

inhibition by VACV E3L is significant because it challenges the conventional model for E3L 

inhibition of PKR by sequestration and provides further evidence to support the hetero-

dimerization model for the PKR inhibitory function of E3L, which continues to be an area of 

intense research. 
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 Introduction 
The RNA-dependent protein kinase (PKR) is a critical component of the antiviral innate 

immune response in vertebrates (1, 2). PKR recognizes intracellular double-stranded (ds) RNA 

generated during a virus infection, which leads to its activation via dimerization and 

autophosphorlylation reactions (3-5). Active PKR then phosphorylates the alpha subunit of the 

eukaryotic translation initiation factor 2 (eIF2α), locking eIF2 in a GDP-bound state that is 

incapable of binding Met-tRNA to initiate protein translation. This causes a general shutdown in 

cellular cap-dependent protein translation and halts virus replication as viruses critically depend 

on cellular translation machinery to replicate in host cells (6). 

Vaccinia virus (VACV) is the prototype member of the poxvirus family, which 

collectively exhibits wide variation in host range. Vaccinia virus can infect several host species 

including rodents, cattle, and humans, and it therefore has a very broad host range. To maintain 

this broad host range, VACV encodes several host range genes that are important for overcoming 

host defenses. Two host range genes encoded by VACV called E3L and K3L target PKR at 

different steps during its activation and activity (7, 8). Our work and work from others has shown 

that the redundant roles of E3L and K3L for VACV are critically important for VACV to 

maintain its broad host range and its ability to infect different species (Ch. 2) (9, 10). K3L 

contains an S1 domain that is homologous to the PKR binding domain of PKR’s substrate, 

eIF2α, and directly binds to the kinase domain of PKR, thereby blocking the interaction of 

activated PKR with eIF2α (7, 11, 12). The E3L gene encodes an N-terminal Z-DNA-binding 

domain (Zα) that plays some role in the pathogenesis of VACV in vivo as well as a C-terminal 

dsRNA-binding domain whose function is critical for suppression of the interferon response in 

VACV infected cells (13, 14). The exact mechanism of E3L’s interactions with PKR is less well 

understood, but it is generally accepted that the binding of dsRNA is necessary for E3L’s host 

range function and inhibition of PKR activity, although recent work has suggested the possibility 

of a role for E3L’s immune antagonism that is independent of dsRNA binding (15).  

PKR is composed of two N-terminal dsRNA-binding domains (RBDs) that are linked to a 

C-terminal kinase domain by a flexible region of variable length (linker region). The kinase 

domain of PKR, like other cellular kinases, can be further divided into a smaller N-terminal lobe 

(N-lobe) and a larger, C-terminal lobe (C-lobe). The N-lobe is made up of five anti-parallel β 

sheets (β1- β5) flanked by two α helices (α1 and α2). This lobe is involved in direct interactions 
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between the two PKR molecules of an active dimer. The C-lobe is mostly helical in structure 

with 8 α helices (αD to αJ) and two pairs of short anti-parallel β sheets (β7- β8 and β6- β9). 

Three helices form the core of the C-lobe (αE, αF, and αH), while αD, αG, and αJ are more 

exposed on the surface of the enzyme. The helix αG forms the interaction interface with the 

substrate of PKR, eIF2α (16). Residues within this helix have been shown to be important in 

interactions with viral pseudosubstrate inhibitors of PKR, such as VACV K3L (17, 18). These 

interactions have influenced the rapid evolution of the PKR kinase domain, which shows strong 

signatures for positive selection in primates and vertebrates. 

In the previous chapter, we described two closely related hamster PKRs that exhibited 

opposing resistances to inhibition by either VACV E3L or K3L. While Armenian (A.) hamster 

PKR was resistant to inhibition by VACV K3L, Syrian (S.) hamster PKR was resistant to 

inhibition by VACV E3L and both were sensitive to the remaining viral inhibitor. This 

observation provided a framework for us to investigate the mechanism of each PKR’s resistance 

to either inhibitor, which also unexpectedly allowed us to examine aspects of PKR’s activation 

that are targeted by viral inhibitors more generally. We generated a series of domain exchanges 

in either hamster PKR as well as deletion and point mutations to uncover the regions and 

residues important for their ability to resist inhibition by E3L and K3L using our cell culture-

based luciferase for PKR inhibition. Our results confirmed previous reports of the importance of 

the helix αG in the kinase domain of PKR for interactions with K3L and provided evidence for a 

general resistance mechanism to viral dsRNA-binding protein inhibitors by S. hamster PKR, 

which could be attributed to interdomain interactions involved in PKR dimerization and 

activation by dsRNA.  
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 Methods 

 Cell lines and plasmids 
HeLa-PKRkd (kindly provided by Dr. Charles Samuel) cells were maintained at 37˚C, 

5% CO2 in Dulbecco’s Modified Essential Medium (DMEM, Life Technologies) supplemented 

with 5% fetal bovine serum (FBS, Fischer) and 25µg/ml gentamycin (Quality Biologicals). 

PKR from the indicated species and viral inhibitors were cloned into the pSG5 

mammalian expression vector (Stratagene) for transient expression driven by the SV40 promoter 

as described by Rothenburg, et al. (17). Plasmids encoding VACV-Western Reserve (WR) E3L 

and K3L were described previously (Ch. 2). The E3L ortholog from VARV was generated by 

mutating residues in VACV E3L to match the sequence of VARV E3L and then cloned into 

pSG5. Sequences for Us11 and σ3 were derived from Herpes Simplex virus-1 and mammalian 

reovirus Type 1 Lang S4 gene (σ3 protein), which were kindly provided by Ian Mohr and Cathy 

Miller, respectively. The cloning of knock-down resistant human PKR, and PKR from European 

rabbit, mouse, rat, Syrian hamster, and Armenian hamster species into the pSG5 plasmid was 

described previously (17, 19, 20) (Ch. 2). Guinea pig PKR was cloned from 104C1 cells (ATCC 

CRL-1405, Cavia porcellus), and chicken PKR was cloned from cDNA prepared from a whole 

14-day chicken embryo (Gallus gallus). Hybrid PKR constructs or deletion mutant PKRs were 

generated using two- or three-step fusion PCR to join segments of each PKR gene with 

overlapping ends into a single open reading frame (ORF). Point mutations were generated by 

site-directed mutagenesis PCR using the PfuUltra High-Fidelity DNA polymerase (Invitrogen). 
PCR was performed with primers containing the intended mutations flanked by 15-20 

nucleotides identical to the template up- and downstream of the mutations. All ORFs were 

cloned into the pSG5 mammalian expression vector (Stratagene) driven by the SV40 promoter 

and each construct was sequenced to confirm the absence of other mutations. Nucleotide 

sequences for PKR genes analyzed in the positive selection analysis were obtained from 

Genbank (described in Table 3.1) or were derived from PKR sequences amplified from tissue 

samples in this analysis. Protein sequence alignments of the PKRs were obtained using ClustalW 

in MegAlign (DNAStar, Inc.). For transfection assays, plasmids were prepared using the 

NucleoBond Xtra Midi Endotoxin Free plasmid preparation kit (Macherey-Nagel).  
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 Luciferase assay for PKR inhibition 
The luciferase assay for inhibition of PKR activity was described previously (17, 20). 

Briefly, 5x104 HeLa-PKRkd cells were seeded 24 hours before transfection in 24-well plates. For 

each transfection, 0.05µg of firefly luciferase encoding plasmid (pGL3promoter, Promega), PKR 

encoding plasmids (pSG5), and plasmids encoding each viral inhibitor or S. hamster dsRBDs 

were transfected at the indicated concentrations using GenJet-Hela (Signagen) in triplicate. For 

titration experiments the total amount of plasmid transfected was kept constant with additional 

empty vector (pSG5). Cell lysates were harvested 48 hours after transfection using mammalian 

lysis buffer (Goldbio), and the luciferase activity was determined by measuring light in a 

luminometer (Berthold) after adding luciferin substrate (Promega). PKR activity for each mutant 

construct was determined by comparing the luciferase activity for each PKR with vector control 

transfections. For PKR activity values in Table 3.5, the vector normalized PKR activity for each 

PKR mutant was subsequently normalized to S. hamster PKR activities within each experiment 

and the average and standard deviation of the normalized activity was determined from at least 

two independent experiments. For most experiments shown, the relative luciferase activity for 

each co-transfection with a PKR inhibitor was normalized to transfections with each PKR 

construct alone to show the relative amount of inhibition. 

 Phylogenetic and positive selection analysis 

Nucleotide sequences of 7 rodent or 12 rodent and lagomorph species PKRs (Table 3.1) 

were aligned using MUSCLE (21) and poorly aligned regions were trimmed using G-blocks 

(version 0.91b, (22)). A maximum likelihood tree was generated from theses alignments using 

PhyML v3 with nodal support assessed via 100 pseudo-replicates of bootstrapping (23). Model 

selection for the phylogenetic analysis was determined using ModelTest (24) The dN/dS rates 

(ω) were estimated using the codon-based nested models M1 (neutral)/M2 (selection) and M7 

(beta)/M8 (beta and ω), as implemented in PAML v4 (Phylogenetic Analysis by Maximum 

Likelihood, (25)). Using a Bayesian approach (Bayes Empirical Bayes, BEB), amino acid 

residues with posterior probabilities above 0.900 (p<0.10) for positive selection (ω>1) in either 

model were screened, and residues with posterior probabilities above 0.950 (p<0.05) in either 

rodent or rodent and lagomorph (Glires) PKR sequences were considered to be under positive 

selection for this analysis. Residues under positive selection in the kinase domain were projected 
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onto the PKR-eIF2α structure (PDB 2A1A, (16)) using human PKR coordinates in MacPyMol 

(26). 

 

Species name Common name Gene 
Abbr. 

Accession 
number 

Mesocricetus auratus Syrian hamster maPKR NM_001281945.1 
Mesocricetus brandtii Turkish hamster mbPKR unpublished 
Cricetulus migratorius Armenian hamster cmiPKR unpublished 
Cricetulus griseus Chinese hamster criPKR KT272869.1 
Mus musculus house mouse mmPKR NM_011163 
Rattus norvegicus brown rat rnPKR XM_008764426.1 
Cavia porcellus Guinea pig cpoPKR KT272870.1 
Heterocephalus glaber naked mole rat hgPKR XM_004839297.2 
Ictidomys 
tridecemlineatus 

13-lined ground 
squirrel itPKR XM_005336548.2 

Oryctolagus cuniculus European rabbit ocPKR KT272867.1 
Sylvilagus floridanus cottontail rabbit sfPKR unpublished 
Sylvilagus bachmani brush rabbit sbPKR unpublished 
Table 3.1. Gene sequences used in the positive selection analysis. 

Rodent (top 7) and lagomorph (last 3) species PKR sequences were collected from GenBank (NCBI) or 

were cloned from cells or tissue from the indicated species in this study. 

 

 Results 

 Syrian hamster PKR is resistant to dsRNA-binding proteins from different viruses 

In the previous chapter, we described the resistance of Syrian (S.) hamster PKR and 

Turkish (T.) hamster PKR, both from Mesocricetus hamster species, to inhibition by vaccinia 

virus (VACV) E3L and confirmed the importance of this resistance to virus replication in cells 

from these species. The resistance of S. and T. hamster PKR was surprising and unexpected 

considering the conventional mode of E3L inhibition by binding and sequestering dsRNA (8, 

27). To investigate the molecular mechanism of this resistance, we focused only on S. hamster 

PKR since it shares a high sequence identity with T. hamster PKR and first asked whether this 

resistance is restricted to VACV E3L or if it was also able to resist inhibition by E3L orthologs 

from other poxviruses. Using the same cell culture-based luciferase reporter assay that was used 

in the previous chapter to detect PKR inhibition, we co-transfected plasmids encoding PKR from 

mouse and Armenian (A.) hamster, which we previously identified as sensitive to VACV E3L 
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inhibition, and S. hamster PKR with E3L from VACV as well as orthologs from variola virus 

(VARV), myxoma virus (MYXV), yaba monkey tumor virus (YMTV), sheeppox virus (SPPV), 

and swinepox virus (SWPV) (Fig 3.1). Both mouse and A. hamster PKR were sensitive to 

inhibition by E3L orthologs from VACV, VARV and MYXV, but S. hamster PKR activity was 

not affected by any of these proteins.  

 

 
Figure 3.1 Syrian hamster PKR is resistant to other E3L orthologs from poxviruses. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg) and PKR from 

the indicated species (0.2µg), and E3L orthologs from the indicated viruses (0.4µg). Relative luciferase 

activity was determined by normalizing measured light units to PKR-only transfected cells. Error bars 

indicate the standard deviations for three replicate transfections. VACV= vaccinia virus; VARV= variola 

virus; MYXV= myxoma virus; YMTV= yaba monkey tumor virus; SPPV= sheeppox virus; SWPV= 

swinepox virus. 

 

M029L, the E3L ortholog from MYXV, lacks the N-terminal Zα Z-DNA-binding domain 

found in both E3L proteins from VACV and VARV and encodes only a domain orthologous to 

the C-terminal dsRNA-binding domain of E3L (28). Previous work has suggested a role for the 

N-terminal Zα domain for the anti-immune function of E3L for VACV (13, 14). While the Zα 

domain in VACV E3L may perform other anti-immune functions for VACV, our results for 
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M029L inhibition of these PKRs imply that only a dsRNA-binding domain is required for PKR 

inhibition. Furthermore, the resistance of S. hamster PKR to all of these inhibitors suggests there 

is a similar interaction between these PKRs and orthologous E3L proteins for which we observed 

PKR inhibition. E3L orthologs from YMTV, SPPV and SWPV, which are from related Clade II 

poxviruses, were also tested, but these viral proteins exhibited no or only minimal inhibitory 

activities in this assay against the tested PKRs (Fig. 3.1). These data are in agreement work 

showing that these orthologs cannot fully rescue the replication of an E3L-deleted VACV (29).  

The replication of recombinant VACV viruses lacking E3L could be partially rescued 

with dsRNA-binding proteins from other viruses or bacteria (30-32). To determine if the 

resistance of S. hamster PKR was unique to orthologous poxvirus proteins, or if this 

phenomenon extended to other viral dsRNA-binding proteins, we tested the ability of Us11 from 

Herpes Simplex virus 1 (HSV-1) and σ3 from mammalian reovirus to inhibit S. hamster PKR in 

the luciferase assay along with human, mouse and A. hamster PKR for comparison (Fig 3.2A). 

Us11 is a dsRNA binding protein that interacts with PKR physically to block its activation, 

which requires its basic residue-rich RNA-binding domain (33, 34). Reovirus σ3 is a structural 

protein that also binds dsRNA and can inhibit PKR activity, which, similar to E3L and Us11, 

requires its ability to bind dsRNA  

(32, 35, 36). Neither Us11 nor σ3 share sequence homology with E3L, but both have been shown 

to partially rescue the replication of an E3L-deleted VACV (37). In the luciferase assay, both 

Us11 and σ3 inhibited PKR from human, mouse and A. hamster, but the S. hamster PKR was 

not inhibited by either. In fact, of eight different mammalian and avian PKRs tested, only the S. 

hamster PKR was resistant to both σ3 and Us11 (Fig 3.2A and B). Interestingly, PKR from other 

species, such as rat and chicken, were relatively insensitive to inhibition by either σ3 or Us11 

compared to the other tested PKRs suggesting that perhaps the development of resistance to viral 

dsRNA-binding inhibitors may be more common than has been previously appreciated. 

Furthermore, these results suggest that S. hamster PKR is more broadly resistant to inhibition by 

various dsRNA-binding proteins, which represents a unique innovation that evolved to overcome 

virus infection by many different viruses. 
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Figure 3.2 Syrian hamster PKR is resistant to other viral dsRNA-binding proteins. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg) and PKR from 

the indicated species (0.2µg), and Herpes Simplex virus-1 (HSV) Us11 or mammalian reovirus (Reo) σ3 

(0.4µg). Relative luciferase activity for each transfection was determined by normalizing measured light 

units to PKR-only transfected cells. Error bars indicate the standard deviations for three replicate 

transfections. P-values were calculated with Student’s t-test. n.s.= p>0.05 
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 Domain swapping of hamster PKRs reveals regions important for resistance to VACV 

E3L and K3L 

To investigate the molecular basis for the resistance of S. hamster PKR to inhibition by 

dsRNA-binding inhibitors, we focused on its interaction with VACV E3L. In addition, to build 

off our previous findings that another PKR from the closely related A. hamster is resistant to the 

second PKR inhibitor encoded by VACV, K3L, we decided to use the opposing resistances of 

each PKR to construct a series of hybrid PKRs of the two by swapping protein domains 

(described in Figs. 3.3 and 3.13) to test in the luciferase assay, taking advantage of the relatively 

high-throughput capacity of this assay. This allowed us to determine the regions within each 

protein important for their resistance to E3L or K3L, thereby giving us insight into the molecular 

mechanism of their interactions.  

 

 
Figure 3.3 Domain map of PKR. 

The two N-terminal dsRNA-binding domains (broad green stripes), linker region and kinase domain (thin 

blue stripes) are shown on the domain map. In domain exchange experiments, the N-terminus included 

the linker region and the C-terminus included the entire kinase domain after that. The kinase domain was 

further subdivided into N-terminal and C-terminal lobes (N- and C-lobe, respectively). 

 

Hybrid PKRs of S. hamster PKR and mouse PKR, which is sensitive to both E3L and 

K3L inhibition, or A. hamster PKR were generated by exchanging the first 241 amino acids of 

either PKR (N-terminus) with the C-terminal kinase domain of the other species’ PKR protein 

sequence. For both sets of hybrids, exchange of the kinase domain significantly altered 

sensitivity to VACV K3L without changing the activity of each hybrid PKR (Table 3.5), while 

exchange of the N-terminus, encoding both dsRNA-binding domains (RBDs) and the variable 
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linker region, significantly altered sensitivity to VACV E3L (Fig 3.4A and B). The resistance of 

A. hamster PKR to VACV K3L was completely transferred to the hybrid PKR encoding the 

kinase domain of A. hamster (ma/cmi PKR, #5), supporting previous data that the kinase domain 

of PKR is involved in direct interactions with this viral inhibitor (12, 17, 18). Meanwhile, 

exchange of the N-terminus of S. hamster PKR significantly reduced the sensitivity of the same 

hybrid PKR relative to A. hamster PKR, although we consistently observed a slight increase in 

sensitivity relative to the S. hamster PKR (Fig 3.4B), which was significant when higher ratios of 

E3L to PKR (4:1) were transfected (Fig 3.5). This suggests that the majority of the resistance 

phenotype of S. hamster PKR lies in the N-terminus, however, we cannot exclude completely a 

role for the kinase domain in this interaction. It is interesting, however, in experiments with the 

same hybrid of S. hamster PKR and mouse PKR (ma/mm PKR, #21) that we did not see the same 

increase in sensitivity to E3L (Fig 3.4A), which suggests that subtle differences between the 

kinase domain sequences of A. hamster and mouse PKR may affect the interaction with VACV 

E3L.  

 

 
Figure 3.4 Resistance to VACV E3L and K3L lie in N- or C-terminal domains of PKR. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

hybrids from the indicated species (0.2µg), and VACV E3L or K3L (0.4µg). Relative luciferase activity 

for each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Error bars indicate the standard deviations for three replicate transfections. Numbers under each species 

PKR correspond to their number in Table 3.5. ma= S. hamster, mm= mouse, cmi= A. hamster. P-values 

were calculated with Student’s t-test. n.s.= p>0.05, **p<0.005, ***p<0.0005. 
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Figure 3.5 The N-terminus of Syrian hamster PKR mostly confers resistance to VACV-E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

hybrids from the indicated species (0.2µg), and VACV E3L or K3L (0.2µg or 0.8µg). Relative luciferase 

activity was determined by normalizing measured light units to PKR-only transfected cells. Error bars 

indicate the standard deviations for three replicate transfections. Numbers under each species PKR 

correspond to their number in Table 3.5. ma= S. hamster, cmi= A. hamster. P-values were calculated 

with Student’s t-test. n.s.= p>0.05, *p<0.05, ***p<0.0005. 

 

The kinase domain of PKR is divided into an N-terminal lobe that is involved in the auto-

inhibition of latent PKR and a C-terminal lobe that contains the catalytic site (16). To investigate 

whether either of these regions contributed to the slight sensitivity of the N-terminal S. hamster 

hybrid PKR (ma/cmi PKR, #5), we swapped either the N-terminal lobe (N-lobe) or C-terminal 

lobe (C-lobe) from A. hamster PKR kinase domain into S. hamster PKR and compared it to the 

hybrid PKR with the entire kinase domain from A. hamster (ma/cmi PKR, #5) (Fig 3.6). Neither 

domain lobe conferred a large increase in sensitivity to E3L, but the C-terminal lobe had a 

slightly greater effect than the N-terminal lobe, which did not affect S. hamster PKR sensitivity 

to E3L inhibition at all. This suggests that any role for the kinase domain of S. hamster PKR in 

its resistance to E3L lies in the C-terminal lobe; however, our results suggest that the N-terminus 

of S. hamster PKR is primarily responsible for the observed resistance to E3L inhibition. 
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Figure 3.6 Resistance to E3L may involve the kinase domain. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

hybrids from the indicated species (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. Small domain maps of each PKR 

construct are shown above the corresponding data. (cyan = S. hamster; blue = A. hamster). Numbers 

under each species PKR correspond to their number in Table 3.5. P-values were calculated with 

Student’s t-test. n.s.= p>0.05, *p<0.05; ma= S. hamster; cmi= A. hamster. 

 

To further fine-map the protein regions in the N-terminus of S. hamster PKR important 

for the resistance to VACV E3L, we sub-divided the N-terminal region exchanged between S. 

hamster PKR and A. hamster PKR into each RBD and the linker region and tested their 

sensitivity to VACV E3L and/or K3L (Figs 3.7 and 3.8). As we saw before, the kinase domain 

was entirely responsible for PKR sensitivity to VACV K3L inhibition as all hybrids encoding the 

kinase domain from A. hamster PKR were resistant to K3L inhibition (#5-7). The sensitivity of 

each hybrid PKR to VACV E3L, on the other hand was different for different combinations of 

the RBDs and the linker region. A general trend was observed with an increase in sensitivity to 

E3L for hybrids encoding a larger percentage of the protein and multiple domains from A. 

hamster PKR than from S. hamster PKR, which again suggests that some cooperation occurs 

between multiple protein regions to resist E3L inhibition.  
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Figure 3.7 Domain exchanges of Syrian hamster and Armenian hamster PKR alter sensitivity of 

VACV E3L and K3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

hybrids from the indicated species (0.2µg), and VACV E3L or K3L (0.4µg). Relative luciferase activity 

for each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Error bars indicate the standard deviations for three replicate transfections. Numbers after each species 

PKR correspond to their number in Table 3.5. Small domain maps of each PKR construct are shown 

above the corresponding data (cyan = S. hamster; blue = A. hamster). ma= S. hamster; cmi= A. hamster; 

RBD= dsRNA-binding domain. 
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Figure 3.8 Resistance to E3L involves multiple domains. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

hybrids from the indicated species (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. Numbers after each species PKR 

correspond to their number in Table 3.5. Small domain maps of each PKR construct are shown above the 

corresponding data (cyan = S. hamster; blue = A. hamster). P-values were calculated with Student’s t-

test. n.s.= p>0.05, *p<0.05, **p<0.005; ma= S. hamster; cmi= A. hamster; RBD= dsRNA-binding 

domain; LR= linker region. 

 

The PKR hybrids that were least sensitive to E3L inhibition, however, encoded both the 

linker region and second RBD from S. hamster PKR, although neither domain alone could 

completely confer resistance to E3L in A. hamster PKR (Fig 3.8). These two domains were 

found to cooperatively affect both the sensitivity of S. hamster PKR and the resistance of A. 

hamster PKR in hybrid constructs. The second RBD from S. hamster PKR significantly reduced 
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the sensitivity of A. hamster PKR and this hybrid PKR (2RBDma/cmi, #8) was as sensitive to 

E3L as hybrid constructs also encoding the linker region and/or the first RBD of S. hamster PKR 

(#5 and #10, respectively). This suggests that the second RBD in the N-terminus of S. hamster 

PKR is primarily responsible for the reduced sensitivity to E3L observed for the N-terminus S. 

hamster hybrid (ma/cmi PKR, #5). Complementary exchange of the second RBD in S. hamster 

PKR with that from A. hamster PKR, however, only marginally increased the sensitivity to E3L 

inhibition (~1.2X increase from S. hamster PKR). Likewise, the linker region of A. hamster PKR 

alone did not make S. hamster PKR as sensitive to E3L as the N-terminus A. hamster hybrid 

(cmi/ma PKR, #11). However, in combination, the linker region and second RBD from A. 

hamster PKR created a hybrid PKR that was significantly more sensitive to E3L than the hybrid 

with only the second RBD from A. hamster PKR and was as sensitive as the wild type A. 

hamster PKR. Additionally, the importance of the linker region in PKR interactions with E3L 

was also observed in hybrid PKRs made with mouse and S. hamster PKR (Fig 3.9). PKR hybrids 

with linker regions originating from mouse PKR were more sensitive to E3L inhibition even 

when both RBDs were from S. hamster PKR. 

 

 
Figure 3.9 Syrian hamster linker region is important for resistance to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR and PKR 

hybrids from the indicated species (0.2µg) and VACV E3L (0.4µg). Relative luciferase activity was 
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determined by normalizing measured light units to PKR-only transfected cells. Numbers after each 

species PKR correspond to their number in Table 3.5. Small domain maps of each PKR construct are 

shown above the corresponding data (cyan = S. hamster; purple = mouse). Error bars indicate the 

standard deviations for three replicate transfections. P-values were calculated with Student’s t-test. 

*p<0.05 ma= S. hamster; mm-mouse; LR= linker region; KD= kinase domain. 

 

 
Figure 3.10 First dsRNA-binding domain of human PKR increases Syrian hamster PKR sensitivity 

to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR and PKR 

hybrids from the indicated species (0.2µg) and VACV E3L (0.4µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. Numbers under each species PKR 

correspond to their number in Table 3.5. Small domain maps of each PKR construct are shown above the 

corresponding data (cyan = S. hamster; blue = A. hamster; dark red = human). P-values were calculated 

with Student’s t-test. **p<0.005; ***p<0.0005; ma= S. hamster; cmi= A. hamster, hs= human, RBD= 

dsRNA-binding domain. 
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Because most studies on the function of PKR and its domains have been performed using 

human PKR, we decided to see if we could confirm our results using hybrids with human PKR. 

Interestingly, hybrid PKRs generated by swapping the RBDs of S. hamster PKR with those from 

human PKR, which is also sensitive to E3L inhibition, suggested that the first RBD might also be 

important for the interaction with E3L (Fig 3.10). However, the sensitivity of these hybrids to 

E3L inhibition was only marginally increased (~1.2-1.3X increase from S. hamster PKR) or not 

increased at all, supporting the conclusion that multiple domains of PKR, including the linker 

region, are involved in the interaction with E3L and the resistance of S. hamster PKR to E3L 

inhibition. 

 Residues in the linker region are important for PKR sensitivity to VACV E3L 

When we cloned S. hamster PKR from BHK-21 cells, we identified two isoforms that 

correspond to the full-length protein and a splice variant that is missing 53 amino acids from the 

linker region. The structure of the linker region connecting the C-terminal kinase domain and the 

N-terminal RBDs has not been solved, and it is variable in length between PKR from different 

species. The flexibility of this region is thought to play a role in the conformational change that 

occurs during PKR activation (38, 39), and from our previous results, we suspected that this 

region might be involved in the interaction with VACV E3L. We already showed that full length 

S. hamster PKR was resistant to E3L inhibition, but to test whether the presence of a short 

version of S. hamster PKR may affect the ability of E3L to inhibit PKR in this species’ cells, we 

cloned the splice variant isoform of S. hamster PKR into the mammalian expression vector and 

tested its interactions with E3L in the luciferase assay (Fig 3.11). Additionally, we deleted the 

corresponding region in A. hamster PKR to create an artificial “splice-variant” form (cmiPKR-

sv, #33) and tested its activity and sensitivity to E3L as well. Deletion of the spliced out linker 

region residues in either hamster PKR did not affect their activity or their sensitivity to inhibition 

by E3L. These results support recently published work using deletion mutants of human PKR, 

which showed that PKR activity and regulation by dsRNA was not affected by deletion of the 

same region within human PKR (40). 
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Figure 3.11 Splice variant forms of hamster PKR do not exhibit altered sensitivity to VACV E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), S. hamster or 

A. hamster PKR with the indicated deletions (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity 

for each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Numbers under each species PKR correspond to their number in Table 3.5. Error bars indicate the 

standard deviations for three replicate transfections. P-values calculated with Student’s t-test. n.s.= 

p>0.05; **p<0.005;  ma= S. hamster; cmi= A. hamster; sv= splice variant. 

 

The splice variant of S. hamster PKR has the shortest linker region of all of the PKRs that 

we tested with only 24 amino acids compared to 77 amino acids in the full length protein and 82 

amino acids in human PKR. To determine whether the remaining 24 amino acids in the splice 

variant S. hamster PKR are contributing to the resistance of this PKR to VACV E3L, we 

generated a series of deletion mutant S. hamster PKRs by deleting 6 amino acids at a time in the 

remaining linker region and tested if this altered their sensitivity to E3L (Fig. 3.12). Deletion of 

amino acids 164-223 had no considerable effect on S. hamster PKR sensitivity to E3L, while 

deletion of the next 6 amino acids caused a significant increase in sensitivity, which we also 

observed in successive deletion mutants. Deletion of the entire linker region (∆164-241) resulted 

in a slight reduction in PKR activity relative to the other mutants (#32). Remarkably this PKR 

was still able to suppress 74-86% of luciferase translation. These results suggested that residues 

important for S. hamster PKR resistance to E3L lay between residues 224-229 in the linker 
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region (indicated in Fig. 3.13). Within this length of amino acids in the linker region, 5 of the 6 

amino acids are not conserved across seven rodent species that also exhibit sensitivity to E3L 

inhibition, but there are only two amino acids that differ between S. hamster PKR and A. 

hamster PKR. Surprisingly, however, mutation of these two amino acids in full length S. hamster 

PKR to the corresponding residues in A. hamster PKR (PR228-229SG) or vice versa (SG230-

231PR) did not alter the sensitivity of these mutants to inhibition by E3L (Fig 3.23, #55 and 

#57). It is therefore possible that the significant increase in sensitivity of the linker region 

deletion mutant primarily resulted from the shortened linker.  

 

 
Figure 3.12 Linker region deletion mutants of Syrian hamster PKR are sensitive to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), S. hamster 

PKR with the indicated deletions (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. Numbers under each species PKR 

correspond to their number in Table 3.5. P-values were calculated with Student’s t-test. n.s.= p>0.05, 

**p<0.005, ***p<0.0005;  ma= S. hamster; cmi= A. hamster. 
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                   10        20        30        40        50        60  !
          ---------+---------+---------+---------+---------+---------+!
S.hamster MASDTPGFYMDKLNKYHQKHRVTITYKHLFTTGPPHDRRFTFQVIIDGEEFPEAEGKTKQ!
A.hamster MASDTPGFYMDKLNKYHQKHKVKITYKQLHITGPPHDRRFTFQVIIDGEEFPEAEGRTKQ!
                              * *    * *                            **!
                   70        80        90        100       110       120              !
          ---------+---------+---------+---------+---------+---------+!
S.hamster EAKNAAAKLAVDTLNANKANSHTDALEGSFTGNYIGLVNSYAQKEKLSVNYQQCAFNTQS!
A.hamster EAKNAAAQLAVERLNENKVDSHTDTSEGSLSGNYIGLVNSYAQKENLSVNYEQCTSNTQS!
                                       **!
                   130       140       150       160       170       180!
          ---------+---------+---------+---------+---------+---------+!
S.hamster PQRFCYKCIIGLKTYGIGSGATKQEAKQLAAKEAYQKLPEKSSMRVCRASSGLSKSSSSG!
A.hamster PQRFCCKCKIGPKTYGIGSGATKQEAKQLAAKDAYQKLSEKSSMRVDRASSDLSTSSSSG!
                                **!
                   190       200       210         220       230       !
          ---------+---------+---------+  ---------+---------+--------!
S.hamster HFNSWSTANNFTSLSAPGSDFSETASNNHC--VFFKSPLMNGLRENKRKPRVKLSSNDVQ!
A.hamster RSSSLCTTSNFSSLSAPESDFSETASQNHCHSVSFESPFTNGLRENKRKSGVKPLLNDVQ!
                                                 *         **  * !
           240       250       260       270       280       290       !
          -+---------+---------+---------+---------+---------+--------!
S.hamster RNKYTTDSRFNEDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVKYNSEKEVREVKALA!
A.hamster RSKYTIDPRFNDDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIKRVRYNTEKEVREVKALA!
                  *   *                  !
           300       310       320       330       340       350        !
          -+---------+---------+---------+---------+---------+--------!
S.hamster ALSHVNIVQYHFCWLGQDWEYDTEQSMNSATPRSKTECLFIQMEFCDKGTLEQWMTSVKQ!
A.hamster ALSHVNIVQYHSCWLGQD--YAPEHSLDRNPRRAKTDCLFIQMEFYDKGTLEQWMLNCKQ!
                     *!
           360       370       380       390       400       410      !
          -+---------+---------+---------+---------+---------+--------!
S.hamster RKVDNDLFLELAEQITTGVDYIHSKGLIHRDLKPSNIFLVDEKHIKIGDFGLVTALENDG!
A.hamster RKVDNDLFLEFSEQITTGVDYMHSKGLIHRDLKPCNIFLVDEKHIKIGDFGLVASLEKDG!
!
           420       430       440       450       460       470      !
          -+---------+---------+---------+---------+---------+--------!
S.hamster NRTKNTGSLLYMSPEQLSLQEYGKEVDIFALGLILAELLHICITIIEKSKFFTDLRDGIF!
A.hamster NRTKGTGTELYMSPEQLSLQEYGKEVDIFALGLILAELLHICITDFEKIKFFSDLRAGIF!
                                                      **  *   * !
           480       490       500       510       520!
          -+---------+---------+---------+---------+-------!
S.hamster HDDIFGSKEKRLLTKLLSKKPTDRPSASEILMTLAEWKNISEVQKRHTH 527!
A.hamster HDNIFGSKEKNLLMKLLSNKPTERPSTSEILMTLAEWKRISEIQKRHTR 527!
!

RBD1%
RBD2%
Spliced%out%in%variant%S.%hamster%PKR%
N<lobe%kinase%domain%
C<lobe%kinase%domain%
Helix%αG%

*%Point%mutaCons%made%
A%PosiCvely%selected%residues%
A%PosiCvely%selected%residues%%
%%%%specific%to%Mesocricetus%hamsters%
%%%%PotenCally%important%linker%residues%
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 Positive selection in hamster PKR reveals the molecular basis for PKR resistance to 

VACV K3L but not VACV E3L 
From our domain swapping analysis, we concluded that multiple domains are involved in 

the resistance to E3L. To investigate whether the importance of the RBDs and the linker region 

could be narrowed down to differences or combinations of differences at the amino acid level, 

we sought a different approach to focus our analysis on those amino acids most likely to be 

involved in interactions with the viral inhibitor. Previous work looking at protein interactions 

with viral pseudosubstrate inhibitors of PKR identified important residues for these interactions 

by looking for signs of positive selection at individual residues (17, 18). The premise for this 

method is that at interaction interfaces between antagonistic proteins, such as between PKR and 

a viral inhibitor, the evolutionary pressure to change to avoid inhibition will be high enough to 

be observed as a higher rate of nonsynonymous to synonymous (dN/dS) mutation across 

evolutionary history. By analyzing two datasets of related PKR sequences from 7 rodent and 12 

rodent and lagomorph species, we identified 49 unique amino acids across PKR for which there 

was a high probability (p<0.10) for positive selection to have occurred (Tables 3.1 and 3.2, Figs 

3.14 and 3.15). Based on our analyses and the results of previous analyses, we selected 20 of 

these amino acids with the highest likelihood of positive selection (p<0.05) (Table 3.3). These 

residues were identified in every domain of PKR covering the entire length of the protein, but 

most were identified in the linker region (5/20) and the kinase domain (13/20) (Fig 3.16). 

Residue A488/I463 was not identified with a high probability in our analysis, but this residue 

was previously identified as being important for conferring human and mouse PKR sensitivity to 

K3L, so we also included it as a candidate residue for positive selection (17). Additionally, 8 out 

of the 20 were uniquely different in the Mesocricetus species PKRs suggesting they are more 

likely to be important for the resistance of PKRs from this genus (Fig. 3.13). 

Figure 3.13 Protein sequence alignment of Syrian and Armenian hamster PKR. 

Syrian and Armenian hamster PKR were aligned using ClustalW (DNAStar, Inc.) and different residues are 

highlighted in purple. The position of each domain outlined in the domain swapping experiments is indicated 

by colored lines above the alignment. Residues identified in the positive selection analysis are shown in blue 

with those specific to the Mesocricetus hamster species highlighted in pink. The position of point mutations 

made in this study are indicated with an asterisk below the alignment. 
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                  10        20        30        40        50        60        70          80             90!
        ----- ----+---------+---------+---------+---------+---------+---------+----- --- -+-    ------ --+--!
MaPKR   MASDT-PGFYMDKLNKYHQKHRVTITYKHLFTTGPPHDRRFTFQVIIDGEEFPEAEGKTKQEAKNAAAKLAVDTLN-ANK-ANS----HTDALE-GSFTG 92!
MbPKR   MASDT-PGFYMDKLNKYHQKHRVTITYKHLFTTGPPHDRRFTFQVIIDGEKFPEAEGKTKQEAKNAAAKLAVDKLN-ANK-ANS----HTDALE-GSFTG 92!
CmiPKR  MASDT-PGFYMDKLNKYHQKHKVKITYKQLHITGPPHDRRFTFQVIIDGEEFPEAEGRTKQEAKNAAAQLAVERLN-ENK-VDS----HTDTSE-GSLSG 92!
CriPKR  MASDT-PGFYMDKLNKYHQKHKVMITYKQLHITGPPHDRRFTFQVIINGEEFPEAEGRTKQEAKNAAAQLAVERLN-ENK-ADS----QTDASE-GLLSG 92!
MmPKR   MASDT-PGFYMDKLNKYRQMHGVAITYKELSTSGPPHDRRFTFQVLIDEKEFPEAKGKSKQEARNAAAKLAVDILDNENK-VDC----HTSASEQGLPYG 94!
RnPKR   MASDT-PGFYVDKLNKYSQIHKVKIIYKEISVTGPPHDRRFTFQVIIEEREFPEGEGRSKQEAKNNAAKLAVEILDNENK-VDS----HTDASEQGLIEG 94!
CpoPKR  MATGLSAGFYIEELNKYQQKHGVKVSYEKLSVTGPPHNSVFTFRVIIEDRTFPQGEGRTKQDAKNSAAKIAFTILNQEKKESSSSSLMPRDTSE-ESANG 98!
HgPKR   MANGFVPGFYIEELNKYHQKNGVKVSYQELSVTGPPHSLLFTFQVTIDGRTFPEGKGRSKQDAKNAAAKLAFDVLTQEKKVGSSSSSMTKDTSE-ESAFG 99!
ItPKR   MANIISRGFFIEELNKYRQKYQVVLKYQELATTGPPHDLRFTFQVIIDERKFPEAEGKSKQEAKNAAAKIAVDILNKENKTVSPLSLATTDTSE-GSPPG 99!
OcPKR   MANDLSPGFFIEELNKYRQKHNILLKYHELPQSGPPHDVTFTFKVIINEREFPEAEGKSKKEAKNAAAKIAVDILNKENKEVSPLSLETTNTSE-GSSIG 99!
SfPKR   MANDLSPGFFIEELNKYRQKHNIVLKYHELPQSGPPHDVTFTFKVIINEREFPEAEGKSKKEAKNAAAKIAVDILNKENKEVSSLSLETTNSSE-GSSIG 99!
SbPKR   MANDLSPGFFIEELNKYRQKHNIVLKYHELPQSGPPHDVTFTFKVIINEREFPEAEGKSKKEAKNAAAKIAVDILNKENKEVSSLSLETTNTAE-GSSIG 99!
!
               100       110       120       130       140       150       160       170             180 !
        -------+---------+---------+---------+---------+---------+---------+---------+-------     - -+------!
MaPKR   NYIGLVNSYAQKEKLSVNYQQCAFNTQSPQRFCYKCIIGLKTYGIGSGATKQEAKQLAAKEAYQKLPEKSSMRVCRASSGLSKSS-----S-SGHFNSWS 186!
MbPKR   NYIGLVNSYAQKEKLSVNYQQCAFNTQSPQRFCYKCIIGLKTYGIGSGATKQEAKQLAAKEAYQKLPEKSSMRVCRASSGLSKSS-----S-SGHFNSWS 186!
CmiPKR  NYIGLVNSYAQKENLSVNYEQCTSNTQSPQRFCCKCKIGPKTYGIGSGATKQEAKQLAAKDAYQKLSEKSSMRVDRASSDLSTSS-----S-SGRSSSLC 186!
CriPKR  NYIGLVNSYAQKENLSVNYEQCTSNTQSPQRFCCKCKIGLKTYGIGSGATKQEAKQSAAKDAYQKLSEKSSMRVDRTSSGLSTSS-----S-SGLSSSLS 186!
MmPKR   NYIGLVNSFAQKKKLSVNYEQCEPNSELPQRFICKCKIGQTMYGTGSGVTKQEAKQLAAKEAYQKLLKSPPKTAGTSSS-VVTST-----F-SGFSSSSS 187!
RnPKR   NYIGLVNSFAQKENLPVNFELCDPDSQLPHRFICKCKIGQTTYGTGFGANKKEAKQLAAKNAYQKLSEKSPSKTG-----FVTSL-----S-SDFSSSSS 183!
CpoPKR  NYVGLLNRFSQKYRLLINYE-YDLGEEGPQRFQFKCKIGQKVYGFGVASTKKDAKQLAAKLAFDKISKEISMKTPQMSNEYSSTD----SSDSGNSSSKA 193!
HgPKR   NYVGLVNRIAQKDKLSVNYEQYDLREQGPRRFQCKCKIGQKVYGCGTASTKQDAKQLAAKLAFDRISEEKLEKAHQASHDHFSTE----SRDSGNGSSKT 195!
ItPKR   NYIGLVNRISQKERLNVNYEECELGEQDPKKFKYKCKIGKKVYGIGIGSTKQEAKQLAAKCALQKLSEESPMKTDLVPSAAFVSPGNVNNCGSTGSTMSS 199!
OcPKR   NYIGLINRITQKAKLTVNYEPCELWEQGPKRFQYKCRIGLKVYGTGIGSTKQEAKQLAAKSAYHKILSEGTLMTINSTSPGSVAT-TINDFRNIALVSHT 198!
SfPKR   NYIGLINRFAQKAKLTVNYEPCELREQGPKRFQYKCRIGSKVYGTGIGSTKQEAKQLAARFAYHKIQSEGTLMTANFTSAGSVAT-TTNDFRNIALVSHT 198!
SbPKR   NYIGLINRVAQKAKLTVNYEPCELREQGPKRFQYKCRIGLKVYGTGIGSTKQEAKQLAARFAYHKILSEGTLMTANFTSSGSVAT-TTNDFRNIALVSHT 198!
!
           190       200            210       220       230       240       250       260       270       280 !
        ---+---------+--------     -+---------+---------+---------+---------+---------+---------+---------+-!
MaPKR   TANNFTSLSAPGSDFSETASNN-----HCVFFKSPLMNGLRENKRKPRVKLSSNDVQRNKYTTDSRFNEDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIK 281!
MbPKR   TANKFTSLSAPGSDVSATASNN-----HCVFFKSPLMNGLRENKRKPPVKLSSNDVQSNKYTTDSRFNEDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIK 281!
CmiPKR  TTSNFSSLSAPESDFSETASQNHC---HSVSFESPFTNGLRENKRKSGVKPLLNDVQRSKYTIDPRFNDDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIK 283!
CriPKR  TASHFTSLSAPQSDFSEIASKNHW---HSISFESPFTNGLRENKRKSGVKPSPSDVQRNKYTMDSRFNNDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIK 283!
MmPKR   MTSNGVSQSAPGS----------------FSSENVFTNGLGENKRKSGVKVSPDDVQRNKYTLDARFNSDFEDIEEIGLGGFGQVFKAKHRIDGKRYAIK 271!
RnPKR   ITSNSASQSASG-----------------RDFEDIFMNGLRE-KRKSGVKVPSDDVLRNKYTLDDRFSKDFEDIEEIGSGGFGQVFKAKHRIDGKTYAIK 265!
CpoPKR  LASEQPSENDCSANACSWHRGSS------CSAMNGFASKLRKVKINLAAKFANADTEDNENSVNGRIAKDYEDIVPIGEGGYGVVFKAKHKLDKTISVIK 287!
HgPKR   LASESSSENDFSANARKSDHSSDSE--SGCCPVNGLRNKQMKTKVNLAPKFDHANVEENKYTVNDRFASEYEDIEPIGDGGYGQVFKAKHKLDEKISVIK 293!
ItPKR   SLSEPLSEKDSSSDDWTNVQSSENLDSSGSSSMNGLSSNKKKKKISLAAKFDSYNVEENQYTVDHRFAKDFKDIEPIGKGGFGQVFKAKHKIDGNTYVVK 299!
OcPKR   CGSESPSENYFSTTVPEGSYNDDSLNNSSSSSMNVSRNNHKKIKRHLAPTFNLPDKEASKYTVNPRFANDFKEIEPIGAGGFGQVFKAKHRIDGKTYVIK 298 !
SfPKR   CGSESPSENCFSTTVPERSYNDDSLNNSSSSSLNVFRNNHKKIKRNLAPIFNLPDKEASKYTADHRFASDFKEIEPIGAGGFGQVFKAKHRIDGKTYVIK 298!
SbPKR   CGSELPSENYFSTTVPERSYSDDSLNNSSSSPLNVFRNNHK-IKRSLAPVFNPPDKEASKYTANHRFAKDFKEIEPIGAGGFGQVFKAKHRIDGKTYVIK 297!
!
                290       300       310       320             330       340       350       360       370!
        --------+---------+---------+---------+-------      --+---------+---------+---------+---------+-----!
MaPKR   RVKYNSEKEVREVKALAALSHVNIVQYHFCWLGQDWEYDTEQSMNS------ATPRSKTECLFIQMEFCDKGTLEQWMTSVKQRKVDNDLFLELAEQITT 375!
MbPKR   RVKYNSEKEVREVKALAALSHVNIVQYHFCWLGQDWEYDTEQSMNS------ATPRSKTECLFIQMEFCDEGTLEQWMTSVKQRKVDNDLFLELAEQITT 375!
CmiPKR  RVRYNTEKEVREVKALAALSHVNIVQYHSCWLGQD--YAPEHSLDR------NPRRAKTDCLFIQMEFYDKGTLEQWMLNCKQRKVDNDLFLEFSEQITT 375!
CriPKR  RVSCNTEKEVREVKALAALSHINIVQYHSCWLGQD--YDPEHSPDR------NPRRSKTQCLFIQMEFYDKGTLEQWMLNCKQRKVDNDLFLELSEQITT 375!
MmPKR   RVKYNTEKAEHEVQALAELNHVNIVQYHSCWEG--VDYDPEHSMS-------DTSRYKTRCLFIQMEFCDKGTLEQWMRNRNQSKVDKALILDLYEQIVT 362 !
RnPKR   RITYNTKKAKREVQALAELNHANIVQYRVCWEGEDYDYDPENSTNG------DTSRYKTRCLFIQMEFCDKGTLQQWLEKRNRSQEDKALVLELFEQIVT 359 !
CpoPKR  RVEYTNSKVLREAQALATLNHPNIVQYRYCWKEQL--LDGQE------------------YLFISMEFCDKGTLEQWIEQRRGNYSDKALGLELFEQITT 367 !
HgPKR   RVRCTNEKVLREVHALAALNHTNIVRYYHCWKGID--YDPECSTST-------NPRSRSCCLFISMEFCDKGTLEKWIYQREKSNPDKALALEFFEQITT 384 !
ItPKR   RVMYNNKKVEREVQALATFKHPNIVHYCSCWEGDD--FYEDPESS---------ARIKTKCLFIQMELCDKGTLNEWIENRRQKVPDKALALELFEQIAE 388!
OcPKR   RVKYDSEKVEREVKALAALTHPNIVHYYGCWVGHD--YDPESSNSDTENSMNMNLGVKTRCLLIQMEFCDLGTLEQWIENRRQQKSEKALALEFFWQITT 396 !
SfPKR   RVKYNSEKAEREVKALAALTHPNIVHYYGCWPGYD--YDPESSNSDTENSMNMNLGVKTRCLLIQMEFCDLGTLEQWIENRRQNKSDKALALEFFGQITT 396!
SbPKR   RVKYNSEKAEREVKALATLTHPNIVHYYGCWDGYD--YDPESSNSDTENSMNMNLGVKTRCLLIQMEFCDLGTLEQWIENRRQKKSDKALALEFFWQITT 395!
!
            380       390       400       410        420       430        440       450       460       470 !
        ----+---------+---------+---------+--------- +---------+---- -----+---------+---------+---------+---!
MaPKR   GVDYIHSKGLIHRDLKPSNIFLVDEKHIKIGDFGLVTALENDGN-RTKNTGSLLYMSPEQ-LSLQEYGKEVDIFALGLILAELLHICITIIEKSKFFTDL 473!
MbPKR   GVDYIHSKGLIHRDLKPSNIFLVDEKHIKIGDFGLVTALENDGN-RTKNTGSLLYMSPEQ-LSLQEYGKEVDIFALGLILAELLHICITIVEKSKFFTDL 473!
CmiPKR  GVDYMHSKGLIHRDLKPCNIFLVDEKHIKIGDFGLVASLEKDGN-RTKGTGTELYMSPEQ-LSLQEYGKEVDIFALGLILAELLHICITDFEKIKFFSDL 473!
CriPKR  GVDYIHSKGLIHRDLKPCNIFLVDEKHIKIGDFGLVTSMEKDGN-RTKRTGTLLYMSPEQ-LSLQEYGKEVDIFALGLILGELLHICITDLEKSKFFNDL 473!
MmPKR   GVEYIHSKGLIHRDLKPGNIFLVDERHIKIGDFGLATALENDGKSRTRRTGTLQYMSPEQ-LFLKHYGKEVDIFALGLILAELLHTCFTESEKIKFFESL 461!
RnPKR   GVDYIHSKGLIHRDLKPGNIFLVDEKHIKIGDFGLATALENDGNPRTKYTGTPQYMSPEQKSSLVEYGKEVDIFALGLILAELLHICKTDSEKIEFFQLL 459!
CpoPKR  GVCYVHSKNIIHRDLKPGNIFLVDEKQIKIGDFGLATSLKTDEK-RTEGTGTKSYMSPEQLNS-QDYGKEVDIFALGLILSELIHVRATFQETVAVFKDL 465!
HgPKR   GVQYIHSKSIIHRDLKPVNIFLVDEKQVKIGDFGLATTLENDEK-RTRDKGTMRYMSPEQLASAEDYGKEVDIFALGLILGELIHICSTVQETMEFFKDL 483!
ItPKR   GVHYIHSKDLIHRDLKPSNIFLVGEKQIKIGDFGLVTTLKNDEL-RTREKGTRRYMSPEQISS-EEYGKEVDIFALGLILAELLYICPTVSETLKIFEDL 486 !
OcPKR   GLKYIHSKELIHRDLKPNNIFLVAINQIKIGDFGLVTSLQNNEK-RTVNKGTLRYMSPEQISS-QNYGKEVDIYALGLILAELLHICTTVVETAKIFAEL 494!
SfPKR   GLKYIHSKELIHRDLKPNNIFLVAINQIKIGDFGLVTSLQNNEK-RTVNKGTFRYMSPEQISS-ENYGKEVDIYALGLILAELLHICTTVAETLKIFKEL 494!
SbPKR   GLKYIHSKELIHRDLKPNNIFLVAINQIKIGDFGLVTSLQNNEK-RTVNKGTLRYMSPEQISS-QNYGKEVDIYALGLILAELLHICTTVAETVKIFTEL 493!
!
              480       490       500       510       520     !
        ------+---------+---------+---------+---------+-------!
MaPKR   RDGIFHDDIFGSKEKRLLTKLLSKKPTDRPSASEILMTLAEWKNISEVQKRHTH 527!
MbPKR   RDGIFHDDIFGSKEKRLLMKLLSKKPTDRPSAHEILKTLAEWKSISEVQKRYTH 527!
CmiPKR  RAGIFHDNIFGSKEKNLLMKLLSNKPTERPSTSEILMTLAEWKRISEIQKRHTR 527!
CriPKR  RDGIFHDDIFGSKEKSLLKKLLAKKPMERPSTSEILMTLAEWKSISEIQKRHTL 527!
MmPKR   RKGDFSNDIFDNKEKSLLKKLLSEKPKDRPETSEILKTLAEWRNISEKKKRNTC 515!
RnPKR   RNGVFSDDIFDNKEKSLLQKLLSSKPRERPNTSEILKTLAEWKNISEKKKRNTC 513!
CpoPKR  RKGIFD-NVFDNKEKSLLRKLLAKEPQRRPDTSEILKTLAEWKKVLDKKERHTY 519!
HgPKR   RKGIFY-DVFDSKEKNLLQKLISREPQRRPDTQEILRTLAEWKNASEKKERNTC 536!
ItPKR   RNGIFP-DVFDIKEKSLLQKLLSKEPQKRPDTSKILKTLAKWKDVSERK-RNTY 538!
OcPKR   RRGIFP-DVFDIKEKTLLQKLLALEPEKRPDTSEILKTLAEWKNVSDKKQRYTY 547!
SfPKR   RSGIFP-DVFDIKEKTLLQKLLSLEPEKRPDTSEILKTLAEWKNVSDKKQRNTY 547!
SbPKR   RSGIFP-DVFDIKEKTLLQKLLSLEPEKRPDTSEILKTLAEWKNVSDKKQRNTY 546!
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Figure 3.14 Protein sequence alignment of 12 rodent and rabbit PKRs. 

Residues conserved in all 12 PKRs examined (100% conserved) are highlighted in blue. Residues are 

numbered according to S. hamster PKR. Abbreviations of each species PKR are described in Table 3.1. 

 

 
Figure 3.15 Phylogenetic tree of 12 rodent and rabbit PKRs used for positive selection analysis. 

A mid-point rooted maximum likelihood tree was constructed from the alignment of the nucleotide 

sequences for 12 rodent and rabbit PKRs analyzed for positive selection. Bootstrap values for 100 

replicates are indicated at branch nodes. 
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Rodentia                     
7 seqs. 

Residue 
(hs/ma) 

PAML-BEB 
posterior 

probability 

Glires                  
12 seqs. 

Residue 
(hs/ma) 

PAML-BEB 
posterior 

probability 
Model 2 V24/T23 0.913 Model 2 V24/T23 0.988 

 P31/F30 0.901  S97/F90 0.909 
 S97/F90 0.926  M98/T91 0.991 
 T197/N190 0.992  S196/A188 0.938 

 E379/T354 0.928  L232/L221 0.931 
 S448/N423 0.964  A239/P228 0.974 
 L452/L427 0.959  K240/R229 0.984 
 A488/I463 0.749*  L243/L232 0.999 
 F489/I464 0.942  K261/S246 0.989 
 Q516/T492 0.936  M265/E250 0.983 

Model 8 V24/T23 0.967  G325/F310 0.962 
 P31/F30 0.966  D328/L313 0.903 
 S97/F90 0.976  F330/Q315 0.991 
 M98/T91 0.957  T336/Q323 0.944 
 D176/C167 0.916  D338/M325 0.961 
 Q189/H181 0.928  K352/S327 0.902 
 S190/F182 0.939  S354/T329 0.939 
 V194/S186 0.910  S355/P330 0.978 
 T197/N190 0.998  R356/R331 0.995 
 E205/G198 0.955  K360/E335 0.995 
 D211/T204 0.925  E379/T354 0.927 
 N223/K214 0.956  S448/N423 0.951 
 S224/S215 0.918  D486/I461 0.935 
 P245/S234 0.942  F489/I464 0.968 
 K261/S246 0.951  S492/S467 0.995 
 M265/E250 0.942  T496/T471 0.928 
 G325/F310 0.964  K522/K497 0.958 
 W327/W312 0.903 Model 8 V24/T23 0.994 
 D338/M325 0.910  P31/F30 0.946 
 K360/E335 0.954  N32/T31 0.948 
 E379/T354 0.976  S97/F90 0.955 
 R381/V356 0.907  M98/T91 0.996 
 S448/N423 0.990  Q139/L132 0.905 
 L452/L427 0.988  D176/C167 0.931 
 D486/I461 0.927  C186/S178 0.912 
 A488/I463 0.895*  S196/A188 0.967 
 F489/I464 0.982  T212/A205 0.900 
 S492/S467 0.943  S219/C210 0.915 
 T496/T471 0.954  M229/M218 0.901 
 Q516/T492 0.980  L232/L221 0.964 
 E524/T500 0.903  P245/S234 0.925 
    K261/S246 0.995 
    M265/E250 0.992 
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    G325/F310 0.984 
    D328/L313 0.943 
    F330/Q315 0.995 
    T336/Q323 0.975 
    D338/M325 0.982 
    D339/N326 0.942 
    K352/S327 0.958 
    S354/T329 0.969 
    S355/P330 0.987 
    R356/R331 0.996 
    S357/S332 0.936 
    K360/E335 0.997 
    E379/T354 0.964 
    S448/N423 0.979 
    L452/L427 0.989 
    Q463/Q438 0.946 
    F489/I464 0.986 
    S492/S467 0.997 
    T496/T471 0.962 
    K522/K497 0.978 
Table 3.2 Screened residues under positive selection in PKR. 

Residues were identified to be under positive selection in rodent (Rodentia, 7 species sequences) or 

rodent and rabbit (Glires, 12 species sequences) using two models in the program PAML: Model 2 

(selection, ω) and Model 8 (ω&beta). Residues with posterior probabilities greater than 0.900 are listed 

for each analysis with human (hs) PKR and S. hamster (ma) PKR coordinates. *A488/I463 was identified 

using both models for rodent PKRs, and not in rodent and rabbit, but the probability of positive selection 

was below 0.900. 
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Figure 3.16 Residues under positive selection in rodent/lagomorph PKRs. 

The two N-terminal dsRNA-binding domains (broad green stripes), linker region and kinase domain (thin 

blue stripes) are shown on the domain map. Red arrowheads indicate the position of residues found to be 

under positive selection in PKR from rodent and lagomorph species (A). A cartoon of the kinase domain 

of human PKR (PDB 2A19) shows the position of positively selected residues labeled with the S. hamster 

PKR residue (highlighted in red) (B). 
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Residue 
(hs/ma) 

PAML-BEB 
(Glires/Rodentia:M8) 

Other 
Analyses 

Protein 
Location 

Protein  
Sub-location 

V24/T23 ***/** Elde* RBD1 β1 
S97/F90 **/**  RBD2 α3 
M98/T91 ***/**  RBD2 α3 

S196/A188 **/n.s.  Linker  
L232/L221 **/-  Linker  
A239/P228 **/-  Linker  
K240/R229 ***/-  Linker  
L243/L232 ***/n.s.  Linker  
K261/S246 ***/** Rothenburg*** 

Elde*** 
N-lobe α0 

M265/E250 ***/* Elde*** N-lobe α0 
G325/F310 **/**  N-lobe β4 
F330/Q315 ***/n.s. Elde* N-lobe β4 
E379/T354 **/** Rothenburg** C-lobe αD 
S448/N423 **/*** Rothenburg** C-lobe loop β9-αEF 
L452/L427 **/**  C-lobe loop β9-αEF 
D486/I461 **/* Rothenburg** C-lobe αG 
A488/I463 -/n.s. Rothenburg** C-lobe αG 
F489/I464 **/** Elde*** C-lobe αG 
S492/S467 ***/* Elde* C-lobe αG 
T496/T471 **/** Elde*** C-lobe αG 
K522/K497 **/n.s.  C-lobe αI 

Table 3.3 Residues in PKR under positive selection. 

Residues were identified to be under positive selection in rodent (Rodentia, 7 species sequences) or 

rodent and rabbit (Glires, 12 species sequences). Residues with posterior probabilities greater than 0.95 

(p<0.05) from Model 8 (ω&beta) results in one or both analyses are listed with human (hs) PKR and S. 

hamster (ma) PKR coordinates. For each residue, the domain location and structural sub-location within 

PKR is indicated as well as whether it was also identified in other similar positive selection analyses (17, 

18). RBD= dsRNA-binding domain, N- and C-lobe= kinase domain. *p<0.10, **p<0.05, ***p<0.01, 

n.s.= not significant (p>0.10), - = not identified. 
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The highest concentration of residues under positive selection was found in the C-

terminal lobe of the kinase domain in the αG helix. This region of PKR directly contacts eIF2α 

and has been shown to contribute to the sensitivity of PKR to inhibition by pseudosubstrate 

inhibitors such as VACV K3L (17, 41). We identified three residues within the helix αG to be 

under positive selection in rodent and lagomorph species PKR, which were also identified in the 

previous positive selection analyses on PKR in vertebrate and primate lineages (Fig 3.17). 

Within this region of PKR, only four amino acid residues differ between S. hamster and A. 

hamster PKR. These differences coincided with the three positively selected residues we 

identified at this position in our analyses. Additionally, the fourth differing residue was found to 

be under positive selection in all vertebrates and was important for contributing to the sensitivity 

of human and mouse PKR to inhibition by K3L (17). Mutation of each of these four residues 

individually in S. hamster and A. hamster PKR to the corresponding residue did not completely 

transfer the sensitivity or resistance of either PKR to inhibition by K3L, but the first two amino 

acids (amino acids 463 and 464) appeared to have the largest effect (Fig. 3.18). Exchange of all 

four amino acids in either hamster PKR, however, completely reversed the resistance of A. 

hamster PKR to K3L inhibition to S. hamster PKR and allowed K3L inhibition of A. hamster 

PKR. Consistent with the greater individual effect of the first two differing amino acids in the 

helix αG, mutating both of these residues together also completely reversed the sensitivity to 

K3L and therefore, entirely account for the resistance of A. hamster PKR to K3L (Fig. 3.19). 

Meanwhile, mutations in the helix αG did not influence the sensitivity of either hamster PKR to 

inhibition by E3L (Fig. 3.20). 
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Figure 3.17 Residues under positive selection are clustered on the helix-αG of the PKR kinase 

domain. 

The residues found to be under positive selection in this analysis were projected onto the kinase domain 

of human PKR (PDB 2A19) and are highlighted in red. Residues contacting eIF2α are highlighted in 

green. Several positively selected residues cluster near the contact site in the helix-αG, where A. hamster 

and S. hamster PKR differ at four positions (shown in blue or cyan below). Three of the four amino acids 

within this helix are under positive selection (shown in blue below and indicated with asterisks above). 

Residue 463 (highlighted in cyan below) was previously identified to be under positive selection in 

vertebrates (17). 
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Figure 3.18 Single amino acid exchanges in the helix-αG of the PKR kinase domain. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR with the 

indicated mutations (0.2µg), and VACV K3L (0.4µg). Relative luciferase activity for each transfection 

was determined by normalizing measured light units to PKR-only transfected cells. Numbers under each 

PKR construct correspond to their number in Table 3.5. Error bars indicate the standard deviations for 

three replicate transfections. ma= S. hamster; cmi= A. hamster. 
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Figure 3.19 Two amino acid exchanges in the helix-αG of the PKR kinase domain alter PKR 

sensitivity to K3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR with 

either all four residues of the helix-αG mutated (αG) or two mutations (II/DF, DF/II) (0.2µg), and VACV 

K3L (0.4µg). Relative luciferase activity for each transfection was determined by normalizing measured 

light units to PKR-only transfected cells. Numbers under each PKR construct correspond to their number 

in Table 3.5. Error bars indicate the standard deviations for three replicate transfections. ma= S. 

hamster; cmi= A. hamster. 
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Figure 3.20 Helix-αG mutations do not affect PKR sensitivity to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR or PKR 

with the four mutations in the helix-αG (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity for 

each transfection was determined by normalizing measured light units to PKR-only transfected cells. 

Numbers under each PKR construct correspond to their number in Table 3.5. Error bars indicate the 

standard deviations for three replicate transfections. ma= S. hamster; cmi= A. hamster. n.s.=p>0.05. 
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E3L inhibition. However, none of these individual or combinations of mutations considerably 

altered the sensitivity of the hamster PKRs (a composite of multiple experiments is shown in Fig 

3.21).  

 

 
Figure 3.21 Point mutations in hamster PKR do not alter sensitivity to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR with the 

indicated mutations (0.2µg), and VACV E3L (0.4µg or 0.8µg). A composite of multiple experiments is 

shown. Relative luciferase activity for each transfection was determined by normalizing measured light 

units to PKR-only transfected cells. Numbers under each PKR construct correspond to their number in 

Table 3.5. Error bars indicate the standard deviations for three replicate transfections. ma= S. hamster; 

cmi= A. hamster. 
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A mutant of S. hamster PKR with mutations in the linker region between or near residues 

224-229 (maPKR-P228S/R229G/L232P, #56) appeared slightly sensitive to E3L inhibition 

(note: within a single experiment, the difference is ~1.2X greater than the S. hamster wild-type 

control), but, the corresponding mutations in A. hamster PKR (#58) did not reduce the sensitivity 

of this PKR to inhibition by E3L. It is therefore possible that these residues contribute in part to 

the resistance of S. hamster PKR to E3L inhibition, but they cannot by themselves fully 

recapitulate this resistance in a PKR sensitive to E3L, such as A. hamster PKR. While we were 

not able to test all possible mutations and combinations of mutations in S. hamster PKR, we 

concluded that because the interaction of PKR with E3L is likely to involve multiple residues in 

different domains, the resistance of S. hamster PKR to E3L is more complicated than PKR 

interactions with pseudosubstrate inhibitors. We therefore took another approach and analyzed 

the sensitivity of PKRs that contain mutations in residues that are important for dsRNA-binding 

or are contributing to PKR homodimerization as these are critical steps in the activation of PKR 

that might be affected by interactions with E3L. 

 PKR dsRNA-binding and dimerization affect PKR sensitivity to VACV E3L 

There are currently two models that might explain the PKR inhibitory function of E3L: 

dsRNA sequestration and hetero-dimerization of E3L and PKR. In the sequestration model, E3L 

binds and sequesters activating dsRNA during virus infections, thereby preventing its detection 

by latent PKR (10, 14, 27). In the hetero-dimerization model, E3L physically binds PKR to form 

a hetero-dimer, which prevents the homo-dimerization of PKR that is required for its activation 

(42, 43). In both models, E3L inhibits PKR before the latter is fully activated. To understand the 

ability of S. hamster PKR to resist inhibition by E3L, we decided to investigate the early 

activation steps of S. hamster PKR and look for evidence that might explain this phenomenon.  

The first step in PKR activation is the detection of dsRNA via its RBDs. The two RBDs 

in PKR contain conserved basic residue-rich RNA-binding motifs found in a number of different 

RNA-binding proteins including VACV E3L (44-47). Mutation of these basic residues in the 

RNA-binding motif of the first RBD disrupts RNA binding and abolishes human PKR activity 

(48, 49). Making similar mutations in S. hamster and A. hamster PKR significantly reduced 

activity levels of both suggesting dsRNA binding is necessary for PKR activation in our 

luciferase assay as well (Fig 3.22). Alanine substitutions made to abolish RNA binding in the 
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second RBD of each PKR had a more modest effect on PKR activity than similar mutations in 

the first RBD. We observed decreases in the translational suppression of the second RBD 

mutants for each PKR by an average of 2-3-fold compared to 4-6-fold for mutations in the first 

RBD indicating that, like human PKR, the ability of the first RBD to bind dsRNA is principally 

important for S. hamster and A. hamster PKR activation. Interestingly, in contrast to what we 

observed for the hamster PKRs, mutations in both RBDs of human PKR resulted in an 

unexpected increase in PKR activity relative to the single-domain mutations that we cannot 

explain.  

 
Figure 3.22 Residues important for dsRNA-binding in the first dsRNA-binding domain are most 

important for PKR activity. 

HeLa-PKRkd cells were co-transfected with firefly luciferase (0.05µg) and PKR with the indicated 

mutations (0.2µg). Relative luciferase activity was normalized to vector-only transfected cells. Error bars 

indicate the standard deviations for three replicate transfections. The dashed line indicates the control 

background level of luciferase translation without PKR. ma= S. hamster; cmi= A. hamster; hs= human. 
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To know if these PKR mutations affected the sensitivity to E3L inhibition, we looked at 

the relative luciferase activity in co-transfections with VACV E3L (Fig 3.23). Remarkably, E3L 

was unable to inhibit any of the RNA-binding mutant PKRs, even mutants with higher PKR 

activity, suggesting that dsRNA binding is required for E3L’s inhibitory interactions with PKR. 

Mutation of dsRNA-binding residues in S. hamster PKR had no effect on E3L inhibition, as 

these mutants were resistant like the wild type protein.  

 

 
Figure 3.23 Mutations in residues important for dsRNA-binding prevent E3L inhibition. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR with the 

indicated mutations (0.2µg), and VACV E3L (0.4µg). Relative luciferase activity for each transfection 

was determined by normalizing measured light units to PKR-only transfected cells. Error bars indicate 

the standard deviations for three replicate transfections. ma= S. hamster; cmi= A. hamster; hs= human. 
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Because S. hamster PKR also requires dsRNA binding for its activity, we hypothesized that 

S. hamster PKR may exhibit a higher affinity for dsRNA than other species’ PKR, which can 

outcompete E3L for binding to dsRNA during an infection. To test this hypothesis, we designed 

an experiment to see if the RBDs of S. hamster PKR could act as an auto-inhibitor of its own 

activity, which would suggest its ability to bind activating dsRNA is greater than that of E3L and 

explain its resistance assuming the sequestration model for E3L inhibition (Fig 3.24). The RBDs 

of S. hamster PKR, however, were not able to inhibit full-length S. hamster PKR similar to 

VACV E3L even at higher concentrations. Meanwhile, the S. hamster RBDs inhibited A. 

hamster PKR at higher concentrations, although not as well as E3L, which indicates that while 

the ability to bind dsRNA is important for inhibition of PKR, this ability alone is not sufficient to 

completely explain the PKR inhibitory function of E3L and the resistance of S. hamster PKR. 

 

 
Figure 3.24 Syrian hamster dsRNA-binding domains can inhibit Armenian hamster PKR like E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR from the 

indicated species (0.3µg or 0.2µg) and VACV E3L (0.6µg or 0.8µg). Relative luciferase activity for each 

transfection was determined by normalizing measured light units to PKR-only transfected cells. Error 

bars indicate the standard deviations for three replicate transfections. P-values calculated with Student’s 

t-test. n.s.= p>0.05, *p<0.05; ma= S. hamster; cmi= A. hamster. 
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The sensing and binding to cytoplasmic dsRNA by latent monomeric PKR induces a 

conformational change to an open configuration that allows for two PKR molecules to dimerize. 

This homo-dimerization is necessary for human PKR activity; however, it is not clear whether 

one or both PKRs in the dimer are responsible for carrying out subsequent phosphorylation 

reactions (3). In theory, each PKR molecule still retains the ability to perform phosphorylation 

reactions individually. In this way, we reasoned that a PKR molecule could theoretically be 

active as a monomer in different host species or different cellular environments. To test the 

hypothesis that S. hamster PKR might be able to avoid E3L inhibition by maintaining kinase 

activity as a monomer, we mutated a conserved residue in the N-lobe of PKR shown to be 

important for human PKR dimerization and activity (Fig 3.25) (50).  

 

 
Figure 3.25 Residues under positive selection are clustered on the dimerization region of the PKR 

kinase domain. 

The residues found to be under positive selection were projected onto the kinase domain of human PKR 

(PDB 2A19) and are highlighted in red. Residues contacting eIF2α are also highlighted in green and 

residues contacting another PKR dimer are highlighted in cyan. Several positively selected residues also 

clustered near the region of dimerization. Two residues in this region that form a salt-bridge important 

for dimerization in human PKR are indicated. 
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Affect	
  of	
  
mutation	
  

PKR	
  Mutant	
  Construct	
   %	
  Luc.	
  
inhibition	
  

Rel.	
  PKR	
  
activity	
  

E3L	
  
Sensitivity	
  

Wild	
  type	
   hsPKR	
   80.51±5.86	
   1.00±0.30	
   ++++	
  
Dimerization	
   hsPKR-­‐D266R	
   -­‐27.17±18.74	
   6.63±2.02	
   ++	
  
Dimer.	
  Rev.	
   hsPKR-­‐	
  D266R/R262D	
   24.31±20.34	
   3.68±0.73	
   +/-­‐	
  
RNA-­‐binding	
  
RBD1&2	
  

hsPKR-­‐KK60-­‐61AA/	
  
KK150-­‐151AA	
  

69.28±11.10	
   1.66±0.28	
   -­‐	
  

RBD1	
   hsPKR-­‐KK60-­‐61AA	
   7.73±13.11	
   5.76±1.68	
   +/-­‐	
  
RBD2	
   hsPKR-­‐KK150-­‐151AA	
   69.92±13.27	
   1.72±0.17	
   +/-­‐	
  

Wild	
  type	
   maPKR	
   92.48±3.80	
   1.00±0.51	
   -­‐	
  
Dimerization	
   maPKR-­‐D251R	
   30.61±4.88	
   9.80±6.19	
   ++	
  
Dimer.	
  Rev.	
   maPKR-­‐D251R/R247D	
   81.74±1.35	
   2.60±1.78	
   +++	
  
RNA-­‐binding	
  
RBD1&2	
  

maPKR-­‐KQ59-­‐60AA/	
  
KQ143-­‐144AA	
  

67.10±17.37	
   4.24±2.35	
   -­‐	
  

RBD1	
   maPKR-­‐KQ59-­‐60AA	
   64.81±24.05	
   5.09±2.92	
   -­‐	
  
RBD2	
   maPKR-­‐KQ143-­‐144AA	
   82.72±7.52	
   2.18±0.99	
   -­‐	
  

Wild	
  type	
   cmiPKR	
   89.87±4.24	
   1.00±0.42	
   ++++	
  
Dimerization	
   cmiPKR-­‐D253R	
   4.97±5.11	
   10.17±2.06	
   ++++	
  
Dimer.	
  Rev.	
   cmiPKR-­‐D253R/R249D	
   54.13±14.23	
   4.46±1.63	
   ++++	
  
RNA-­‐binding	
  
RBD1&2	
  

cmiPKR-­‐KQ59-­‐60AA/	
  
KQ143-­‐144AA	
  

67.59±23.20	
   2.93±1.67	
   -­‐	
  

RBD1	
   cmiPKR-­‐KQ59-­‐60AA	
   68.05±15.43	
   3.53±0.83	
   +/-­‐	
  
RBD2	
   cmiPKR-­‐KQ143-­‐144AA	
   74.98±12.17	
   2.78±0.77	
   -­‐	
  

Table 3.4. Dimerization and dsRNA-binding mutant PKRs tested in the luciferase assay.  

Listed for each construct is a number and a name, which indicates the mutations performed. The percent 

translational suppression by each PKR relative to vector controls (% PKR activity) are shown for each 

construct and the fold change in activity for each PKR construct was determined relative to the activity of 

the parental wild type PKR (human, S. hamster, or A. hamster PKR) within each experiment (Rel. PKR 

activity). Values for each PKR construct were averaged from at least two independent experiments and 

the standard deviations are shown. The sensitivity of each construct to inhibition by VACV E3L is shown 

with a “+” indicating sensitivity or “-” indicating resistance. ma= S. hamster; cmi= A. hamster; hs= 

human; RBD= dsRNA-binding domain; Dimer. Rev.= Dimerization reversion. 

 

The activity levels of wild type S. hamster PKR were very similar to those observed for 

A. hamster PKR and several other PKR from different mammalian species. Both PKRs 

consistently suppressed ~90-93% of luciferase translation compared to vector control 

transfections (Table 3.4, and data not shown). In contrast, when we mutated residue 251 in S. 

hamster PKR from an aspartate to an arginine, the mutant PKR only suppressed ~30% of 
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luciferase translation exhibiting a nearly 11-fold decrease in PKR activity (Fig 3.26). We 

observed an even greater decrease in A. hamster and human PKR activity with the corresponding 

mutations, which both lost all or nearly all translational suppression activity. This indicates that 

S. hamster PKR, like both A. hamster and human PKR, requires the formation of the same salt-

bridge during dimerization for the majority of its activity. Nevertheless, the mutated S. hamster 

PKR still retained a greater ability to suppress luciferase translation than the other species’ PKRs 

suggesting that a small portion of its activity may in fact be due to active PKR monomers. 

Alternatively, these results may indicate that the formation of the salt-bridge is not as critical to 

the dimerization of S. hamster PKR or that S. hamster PKR dimers are further stabilized by other 

biochemical interactions.  

 

 
Figure 3.26 Hamster PKRs require residues forming salt-bridge during dimerization for PKR 

activity. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg) and PKR with 

the indicated mutations (0.2µg). Relative luciferase activity for each transfection was determined by 

normalizing measured light units to vector-only transfected cells. Error bars indicate the standard 

deviations for three replicate transfections. The dashed line indicates the control background level of 

luciferase translation without PKR. ma= S. hamster; cmi= A. hamster; hs= human. 
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Figure 3.27 Reversion of salt-bridge residues in dimerization region of PKR does not completely 

restore PKR activity and makes Syrian hamster PKR sensitive to E3L. 

HeLa-PKRkd cells were co-transfected with plasmids encoding firefly luciferase (0.05µg), PKR with the 

indicated mutations (0.2µg) and VACV E3L (0.4µg). Relative luciferase activity for each transfection was 

determined by normalizing measured light units to vector-only transfected cells. Error bars indicate the 

standard deviations for three replicate transfections. The dashed line indicates the control background 

level of luciferase translation without PKR. ma= S. hamster; cmi= A. hamster; hs= human. 

 

Making an additional mutation of the second residue involved in the salt-bridge (R262D 

in human PKR) is expected to rescue PKR activity by restoring the ability to form the salt-bridge 

that strengthens the PKR homodimers. When we mutated this second residue in S. hamster PKR 

to rescue dimerization, PKR activity was greatly increased, however, the double mutant PKR 

was still ~2.6X less active than the wild type (Fig 3.27, Table 3.4). More dramatically, the same 

reversion mutation in human PKR likewise did not fully restore its PKR activity as predicted 

from results with the same mutations in a yeast assay (50). Instead the double mutant only 

suppressed ~24% of luciferase translation, which was also ~3.7X less active than the wild type 

protein on average, and the double mutant of A. hamster PKR was ~4.5X less active than its wild 

type version. From these results we surmised that the importance of the relative positions of 

surrounding residues in the dimer interaction interface are also important to the formation or 
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stability of the salt-bridge and that the simple translocation of the two critical residues does not 

fully restore the stability of this interaction in HeLa cells, and possibly resulted in weak dimer 

formation between the mutant PKRs.  

While the inhibition of inactive mutant PKRs (PKRs that did not suppress luciferase 

translation relative to the vector control) cannot be inferred, inhibition by VACV E3L of the 

double mutants, for which some activity was restored, could be analyzed. In fact, these mutants 

provided a unique opportunity to observe the effect of inferred weak dimer formation on their 

inhibition by E3L. We therefore tested E3L inhibition of the double dimerization mutant PKRs 

with their wild type counterparts (Fig 3.27). Interestingly, from our results, we observed a 

relative increase in the inhibition of S. hamster PKR for the double mutant that corresponded to a 

~2.5-fold increase in luciferase translation similar to that observed for wild type human PKR or 

A. hamster PKR. The sensitivity of this mutant S. hamster PKR to E3L inhibition was striking 

considering the extent to which PKR activity was restored for this mutant. The moderate PKR 

activity of the A. hamster double mutant PKR was still efficiently inhibited by E3L, but the low 

activity of the human PKR mutant prevented making an accurate assessment of E3L inhibition. 

The ability of E3L to inhibit the double mutant S. hamster PKR, however, indicates that E3L 

likely inhibits PKR by disrupting dimerization, which supports the hetero-dimerization model of 

E3L inhibition.  

 Discussion 
The broad host range of VACV can be attributed to the activities of several host range 

genes that serve to inhibit the immune response within host cells. Two important host range 

genes in VACV are E3L and K3L, which inhibit the cellular protein kinase R (PKR). In the 

previous chapter, we showed that PKR from closely related hamster species exhibited strikingly 

different sensitivities to inhibition by VACV E3L and K3L, which correlated with the replication 

of VACV mutants and eIF2α phosphorylation in cell lines from the corresponding hamster 

species. In this analysis, we built off our previous results and used the observation that S. 

hamster and A. hamster PKR were oppositely resistant to inhibition by E3L and K3L, 

respectively, to investigate the mechanisms by which these proteins are able to accomplish this 

feat. Many studies looking at PKR sensitivity to inhibition have been done in yeast, but we used 

a cell culture-based assay that is more sensitive to differences in sensitivity and allowed for a 
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more medium-throughput analysis of several hybrid hamster PKRs mutants. Using a combined 

approach of domain swapping experiments and point mutational analyses at sites of positive 

selection, we mapped the resistance of S. hamster PKR to VACV E3L to the second RBD and 

the linker region and identified two amino acids in the kinase domain of A. hamster PKR that 

confer its resistance to VACV K3L. A summary of each PKR mutant’s relative PKR activity and 

sensitivity to inhibition by VACV E3L or VACV K3L is described in Table 3.5. 

 

PKR	
  Mutant	
  Construct	
   Rel.	
  PKR	
  
activity	
  

E3L	
  
Sensitivity	
  

K3L	
  
Sensitivity	
  

1.	
  	
  maPKR	
   1.00±0.49	
   -­‐	
   ++++	
  
2.	
  	
  cmiPKR	
   1.18±0.31	
   ++++	
   -­‐	
  
3.	
  	
  hsPKR	
   2.06±1.13	
   ++++	
   +	
  
4.	
  	
  mmPKR	
   0.92±0.14	
   ++++	
   ++++	
  
5.	
  	
  ma/cmiPKR	
   0.91±0.22	
   ++	
   -­‐	
  
6.	
  	
  1+2RBDma/cmiPKR	
   0.88±0.20	
   +++	
   -­‐	
  
7.	
  	
  1RBDma/cmiPKR	
   0.85±0.17	
   ++++	
   -­‐	
  
8.	
  	
  2RBDma/cmiPKR	
   1.22±0.22	
   ++	
   +/-­‐	
  
9.	
  	
  ma-­‐LR/cmiPKR	
   0.94±0.07	
   +++	
   -­‐	
  
10.	
  2RBD+LRma/cmiPKR	
   0.90±0.09	
   ++	
   -­‐	
  
11.	
  cmi/maPKR	
   1.25±0.34	
   +++++	
   ++++++	
  
12.	
  1+2RBDcmi/maPKR	
   1.13±0.24	
   ++	
   ++++	
  
13.	
  1RBDcmi/maPKR	
   1.17±0.25	
   +	
   +++	
  
14.	
  2RBDcmi/maPKR	
   0.92±0.25	
   +	
   +++++	
  
15.	
  cmi-­‐LR/maPKR	
   1.11±0.14	
   ++	
   +++++	
  
16.	
  2RBD+LRcmi/maPKR	
   0.92±0.09	
   ++++	
   ++++++	
  
17.	
  maPKR/cmi-­‐C-­‐lobe	
   0.68±0.07	
   +	
   -­‐	
  
18.	
  1RBDcmi/maPKR/cmi-­‐C-­‐lobe	
   0.73±0.12	
   ++	
   -­‐	
  
19.	
  maPKR/cmi-­‐N-­‐lobe	
   1.11±0.11	
   -­‐	
   +++++	
  
20.	
  1RBDcmi/maPKR/cmi-­‐N-­‐lobe	
   1.52±0.23	
   ++	
   +++++	
  
21.	
  ma/mmPKR	
   1.04±0.32	
   +/-­‐	
   ++++	
  
22.	
  1+2RBDma/mmPKR	
   1.23±0.23	
   ++	
   +++++	
  
23.	
  mm/maPKR	
   1.28±0.49	
   ++	
   +++	
  
24.	
  1+2RBDmm/maPKR	
   1.40±0.43	
   +	
   ++	
  
25.	
  1RBDhs/maPKR	
   1.10±0.14	
   +	
   ++++	
  
26.	
  2RBDhs/maPKR	
   2.05±0.13	
   -­‐	
   ++++	
  
27.	
  1+2RBDhs/maPKR	
   1.56±0.14	
   +	
   ++++	
  
28.	
  maPKR-­‐sv	
  (∆164-­‐217)	
   1.18±0.29	
   -­‐	
   ++	
  
29.	
  maPKR∆164-­‐227	
   0.82±0.14	
   +/-­‐	
   +++	
  
30.	
  maPKR∆164-­‐233	
   0.85±0.16	
   +++	
   +++	
  
31.	
  maPKR∆164-­‐239	
   0.82±0.07	
   ++	
   +++	
  
32.	
  maPKR∆LR	
  (∆164-­‐241)	
   1.26±0.42	
   ++	
   ++	
  
33.	
  cmiPKR∆164-­‐219	
   0.90±0.02	
   +++	
   n.d.	
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34.	
  ma/mmPKR∆LR	
  (∆164-­‐241)	
   1.00±0.24	
   +	
   n.d.	
  
35.	
  maPKR/cmi-­‐aG	
  (4mut)	
   0.99±0.21	
   -­‐	
   -­‐	
  
36.	
  maPKR-­‐II463-­‐464DF	
   0.96±0.20	
   -­‐	
   -­‐	
  
37.	
  maPKR-­‐T471S	
   1.00±0.15	
   -­‐	
   ++++	
  
38.	
  maPKR-­‐S467I	
   1.14±0.15	
   +	
   ++++	
  
39.	
  maPKR-­‐I464F	
   1.01±0.04	
   +/-­‐	
   ++	
  
40.	
  maPKR-­‐I463D	
   1.65±0.15	
   -­‐	
   ++	
  
41.	
  cmiPKR/ma-­‐aG	
  (4mut)	
   2.17±0.94	
   +++	
   +++	
  
42.	
  cmiPKR-­‐DF465-­‐466II	
   2.10±0.92	
   +++	
   +++	
  
43.	
  cmiPKR-­‐S471T	
   1.34±0.01	
   +++	
   -­‐	
  
44.	
  cmiPKR-­‐I467S	
   1.48±0.005	
   +++	
   -­‐	
  
45.	
  cmiPKR-­‐F464I	
   2.21±0.52	
   +++	
   +	
  
46.	
  cmiPKR-­‐D463I	
   1.22±0.20	
   +++	
   +	
  
47.	
  maPKR-­‐FT90-­‐91LS	
   1.00±0.19	
   -­‐	
   n.d.	
  
48.	
  cmiPKR-­‐LS90-­‐91FT	
   1.20±0.29	
   +++	
   n.d.	
  
49.	
  maPKR-­‐F310S	
   1.05±0.14	
   -­‐	
   +++	
  
50.	
  maPKR-­‐R21K/T23K	
   1.01±0.14	
   +	
   ++++	
  
51.	
  maPKR-­‐R21K/T23K/F310S	
   0.92±0.11	
   +	
   ++++	
  
52.	
  maPKR-­‐H28Q/F30H	
   1.17±0.15	
   -­‐	
   n.d.	
  
53.	
  maPKR-­‐L232P	
   1.00±0.08	
   -­‐	
   n.d.	
  
54.	
  cmiPKR-­‐P234L*	
   1.32±0.28	
   ++++	
   n.d.	
  
55.	
  maPKR-­‐PR228-­‐229SG*	
   1.12±0.06	
   +/-­‐	
   n.d.	
  
56.	
  maPKR-­‐P228S/R229G/L232P*	
   1.31±0.07	
   +	
   n.d.	
  
57.	
  cmiPKR-­‐SG230-­‐231PR*	
   1.48±0.19	
   ++++	
   n.d.	
  
58.	
  cmiPKR-­‐S230P/G231R/P234L*	
   1.30±0.21	
   ++++	
   n.d.	
  
59.	
  maPKR-­‐M218T*	
   1.35±0.40	
   -­‐	
   n.d.	
  
Table 3.5. Hamster PKR mutant constructs tested in the luciferase assay. 

Listed for each construct is a number and a name, which indicates the mutations or domain swaps 

performed. The activity of each PKR construct was determined relative to the activity of S. hamster PKR 

within each experiment. Relative light units from S. hamster PKR only transfections were averaged and 

normalized to 1.  Activity levels less than 1 correspond to higher levels of PKR activity (increased 

suppression of translation). Values for each PKR construct were averaged from at least two independent 

experiments and the standard deviations are shown. Activity levels of wild type A. hamster, human and 

mouse PKR were also compared to S. hamster PKR. The sensitivity of each construct to inhibition by 

VACV E3L or K3L is shown with a “+” indicating sensitivity or “-“ indicating resistance. *= FLAG-

tagged versions of the construct were tested; n.d.= not determined; ma= S. hamster; cmi= A. hamster; 

hs= human; mm= mouse; RBD= dsRNA-binding domain; sv= splice variant; LR= linker region. 

 

The co-crystal structure of dimeric PKR kinase domain with its substrate eIF2α has been 

very useful for analyzing the structural relevance of different residues in PKR since it was 
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determined (16). Within the kinase domain of PKR, K3L likely interacts with the same region in 

the C-terminal lobe that interacts with eIF2α, and this has driven positive selection at residues in 

solvent exposed portions of the PKR enzyme (Fig 3.16). The rapid evolution of the kinase 

domain of PKR has been demonstrated in vertebrates and primates, and previous studies 

suggested that positively selected residues in PKR contribute to differential sensitivity of PKR 

from different species to VACV K3L (17, 18). Our results that positively selected residues in the 

helix αG of A. hamster PKR kinase domain explain its resistance to K3L support these previous 

studies, which also identified residues within this helix structure to be important for PKR 

interactions with VACV K3L. It is remarkable that this region in PKR, which must maintain its 

ability to interact with the highly conserved eIF2α, can vary so much between even closely 

related species and that only a few amino acid changes can completely change the sensitivity of a 

species’ PKR to inhibition by pseudosubstrate inhibitors, such as K3L. 

Whereas we would expect species-specific differences in K3L’s inhibition of PKR due to 

the high sequence diversity of PKR and K3L’s mode of inhibition, which requires direct protein-

protein interactions, the resistance of S. hamster PKR to VACV E3L inhibition is surprising. The 

extension of this resistance to other viral dsRNA-binding proteins also indicates a more general 

mechanism for this resistance, which may have been beneficial for the survival of this species at 

some point in its evolutionary history. The species-specific resistance to E3L inhibition we 

observed for S. hamster PKR challenges the long held model for E3L inhibition of PKR by 

sequestering activating dsRNA and instead suggests a mechanism involving a direct protein-

protein interaction, which is more likely to drive positive selection in the interacting proteins. 

We, however, were not able to detect any single positively residue or combination of residues in 

our analysis that could alter the resistance of S. hamster PKR to inhibition by E3L. Although our 

mutational analysis was not exhaustive, it remains possible that our positive selection analysis 

was not broad enough to observe suitable signatures of this selection, or that the rare nature of 

the interaction between S. hamster PKR and E3L does not lend itself to detection in analyses for 

positive selection, as we have not observed this resistance in any of the 16 other species’ PKRs 

we have in the lab. Nevertheless, from our domain swapping experiments, we determined that 

multiple domains in S. hamster PKR contribute to the resistance to E3L but that the second RBD 

and the linker region of S. hamster PKR are most important for conferring this resistance. We 

also determined that the kinase domain likely also plays a role and residues important for PKR 
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dimerization in the N-terminal lobe of the kinase domain contribute to the ability of E3L to 

inhibit PKR. 

 

 
Figure 3.28 Diagram of the stages of PKR activation. 

PKR becomes activated by binding dsRNA and is fully active following dimerization and auto-

phosphorylation reactions. Hyper-autophosphorylation occurs at multiple locations within activated 

PKR. The salt-bridge formed during PKR dimerization is indicated with a star. 

 

The dimerization of two PKR molecules is part of a sequence of events for the activation 

of PKR that occurs following the detection of cytoplasmic dsRNA (Fig. 3.28). Our results 

looking at the role of PKR’s ability to bind dsRNA or form stable dimers by mutating residues 

important for both functions validated this conventional model of PKR activation. PKR 

activation requires the binding of dsRNA by the first RBD, which is independent of and precedes 

dimerization with another PKR molecule (49). Similarly, our data indicate that dsRNA-binding 

by the first RBD in hamster and human PKR is most critical to their ability to suppress 

translation. Latent PKR, which nuclear magnetic resonance data suggests is held in an 

autoinhibitory, closed conformation, undergoes a conformational change to a more open 

configuration after binding dsRNA and forms a dimer with a second PKR molecule (51). Dimers 

formed by activated PKRs are strengthened by hydrogen bonds and by the formation of a salt-

bridge across residues in the N-lobe of the kinase domain, without which the activity of PKR is 

greatly diminished (Fig. 3.26) (50). While our mutant PKRs with mutations predicted to prevent 
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the formation of the necessary salt-bridge for dimerization exhibited a significant reduction in 

PKR activity, mutations predicted to restore the salt-bridge, did not fully recover this lost 

activity. It was surprising, however, that only the S. hamster double mutant PKR regained 

activity levels comparable to other wild type PKRs, while the activity of the A. hamster or 

human PKR double mutants on average suppressed less than 55% or 25% of luciferase 

translation, respectively. It is possible then, that wild type S. hamster PKR already forms dimers 

that are stronger and more stable, and therefore mutation of these residues only weakly disrupts 

the stability of this interaction, whereas it is more disruptive for the other species’ PKRs. In 

support of the potential importance of dimerization in the evasion of viral inhibitors by PKR, our 

positive selection analysis revealed a second clustering of positively selected residues around the 

dimer contact region in the kinase domain (Fig. 3.25). However, because exchange of the N-lobe 

alone did not alter the sensitivity of S. hamster PKR to inhibition by E3L, the importance of 

these residues for S. hamster PKRs’ resistance is unclear. 

For complete activation, PKR is autophosphorylated at several serine and threonine 

residues in a region known as the activation loop (5, 52). This autophosphorylation, particularly 

at T446 in human PKR, is necessary for PKR catalytic activity, although it is thought that 

hyperphosphorylation at other sites may also serve to stabilize PKR dimers (3). While it remains 

to be tested, it is possible that S. hamster PKR dimers are further stabilized by such 

hyperphosphorylation reactions within the protein. In protein lysates collected from transfected 

cells, we consistently observed a second shifted band for S. hamster PKR that we did not observe 

for any of the other PKRs that may represent a hyper-autophosphorylated molecule (Ch. 2). A 

previous study with a human PKR mutant lacking part of the linker region to mimic the splice 

variant S. hamster PKR exhibited enhanced autophosphorylation, which suggests that linker 

region length and PKR autophosphorylation are correlated (53). 

In this study, we found that the deletion of residues 224-229 in the linker region of S. 

hamster PKR influenced its resistance to E3L, and further deletion of the remaining linker region 

resulted in S. hamster PKRs that were also sensitive to E3L inhibition. Work from others 

suggests that species-specific contributions of the linker region to the activation of PKR are 

possible as this region of PKR is highly variable in length. While the role of the linker region in 

PKR activation and activity is poorly understood, there is evidence that the linker plays a role in 

mediating interactions between the RBDs and the kinase domain during PKR dimerization and 
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activation, although the RNA-binding activity of the RBDs also affects dimerization (39, 53). 

PKRs with shorter linker regions found in rodent PKRs such as rat PKR (60 amino acids) were 

autophosphorylated and could phosphorylate eIF2α in the absence of RNA activators at much 

lower protein concentrations than human PKR, which has a relatively long linker region (82 

amino acids) (40). Additionally, the splice variant form of S. hamster PKR missing 53 amino 

acids in the linker region was found to be constitutively active in in vitro assays for PKR 

activation and did not respond to RNA activators (Schwartz and Conn, unpublished). This could 

suggest that some of S. hamster PKR activity (at least the splice variant isoform) may be RNA-

independent, which we would not expect to be affected by viral inhibitors that bind excess 

dsRNA like VACV E3L, HSV-1 Us11 or reovirus σ3. Furthermore, a splice-variant form of 

human PKR in this study was activated more than the full length human PKR by longer dsRNA 

molecules (40bp) indicating that the properties of the linker region may impart a way to 

distinguish and respond to different forms of dsRNA in vivo. PKR is able to recognize viral RNA 

from a broad range of virus families, so it is likely that RNA molecules beyond the canonical 

dsRNA can activate PKR. PKR from different species, such as S. hamster PKR may therefore be 

more able to distinguish or detect longer or structured RNA molecules that others cannot. 

PKR is a key component of the cell’s innate antiviral response that must be overcome by 

viruses in order to replicate. In VACV, E3L and K3L are responsible for inhibiting the activity of 

PKR in susceptible host cells. The mechanism of pseudosubstrate inhibition employed by K3L 

has been well studied, and our analysis confirmed this mechanism in interactions with hamster 

PKRs (11, 12, 17, 18). The high sequence diversity of PKR, particularly in the kinase domain, 

and the direct protein-protein interactions involved with K3L convey a great degree of species-

specificity for the activity of this viral protein. However, the mechanism of VACV E3L’s 

inhibition of PKR is less clear, especially as it contributes to VACV host range.  
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Figure 3.29 Diagram of models of E3L inhibition of PKR. 

The dsRNA sequestration model and hetero-dimerization model for E3L inhibition of PKR are shown. In 

the sequestration model, E3L inhibits PKR by sequestering activating dsRNA prior to PKR dimerization 

and autophosphorylation. In the hetero-dimerization model, E3L disrupts weak PKR dimers via direct 

interactions mediated by dsRNA-binding. Stronger or more stable PKR dimers can resist inhibition and 

remain active.  

 

The study of E3L’s interactions with PKR continues to be an area of intense research. 

There are two models for the inhibitory function of E3L, which are not mutually exclusive (Fig. 

3.29). Early work showing the importance of E3L’s dsRNA-binding function for inhibition of 

PKR suggested that E3L binds and sequesters dsRNA to avoid activation of PKR (8, 10, 14, 54). 

This model, however, requires a stoichiometric abundance of E3L proteins to completely prevent 

detection by PKR, which has been suggested but would be likely difficult to accomplish in an 

infected cell (55). Moreover, work from others has separated the dsRNA-binding functions of 
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E3L with its inhibition of PKR and host range function (15, 42). Our results instead indicate that 

mutations affecting dimerization also affect inhibition by E3L, and therefore E3L’s interactions 

with PKR are not limited to the stages prior to its activation as is suggested by the sequestration 

model. Binding dsRNA by PKR is still critical to these interactions since we observed mutations 

that affect dsRNA binding in PKR also completely restricted E3L from inhibiting otherwise 

sensitive PKRs (Fig. 3.23). Together our data suggest a model for inhibition whereby E3L forms 

heterodimers with PKR via a dsRNA bridge, or following its dsRNA-induced conformational 

change, which prevents or disrupts PKR dimerization. Human PKR, for example, forms 

relatively weak dimers (Kd ~500µM), and it may be that PKR from most other species also only 

weakly dimerize (56). Disrupting weak dimers in this way would be a broadly effective form of 

inhibition and would help to explain the near absolute requirement of E3L for VACV infection 

of host cells from different species (Ch. 2). In the case of S. hamster PKR, stronger PKR dimers, 

stabilized by hyper-autophosphorylation, additional biochemical interactions between adjacent 

amino acids, or by a higher affinity to activating dsRNA, would not be inhibited in this way. 

From the results presented in this chapter, we do not exclude any of these mechanisms from 

contributing to the resistance to E3L inhibition by S. hamster PKR and all are potentially acting 

synergistically to lead to the development of this general resistance to viral dsRNA-binding 

inhibitors.  
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 Abstract 
Poxviruses are large dsDNA viruses that infect a wide range of vertebrate and 

invertebrate species, and are currently subdivided into two subfamilies and ten genera. Members 

of the genus Leporipoxviridae infect rabbit and squirrel species and include the well-

characterized myxoma virus and rabbit fibroma virus. In 1952, a novel leporipoxvirus was 

isolated from infected Eastern gray squirrels in Maryland. The newly named squirrel fibroma 

virus (SQFV) causes a disease in different North American squirrel species that is characterized 

by cutaneous fibromas known as squirrel fibromatosis. SQFV has been reported in many US 

states along the east coast since its discovery and typically causes a self-limiting disease but has 

been shown to cause death in young squirrels. To better understand the relationship of the SQFV 

to the other poxvirus species, we sequenced the complete genome of the SQFV Kilham 1952 

strain and initiated a comparative study with other fully sequenced poxviruses. We analyzed the 

phylogenetic relationship of SQFV to other poxviruses as well as characterized its replication in 

cell culture using a fluorescent recombinant virus. From the genomic analysis, we uncovered 

several unique features that may account for the virus’ host range restriction to squirrels and 

moderate virulence, including species-specific activity of potential host range factors and a 

number of gene truncations and deletions. Of most interest, we discovered that within the SQFV 

inverted terminal repeat sequence, which is one of the longest (19.5 kb) of any completely 

sequenced chordopoxvirus, there is evidence for a recombination event that occurred between an 

ancestral leporipoxvirus and an old-world orthopoxvirus. Additionally, we confirmed the 

presence of the same recombination in a SQFV isolate from an infected squirrel in Ohio isolated 

more than 56 years after the discovery of the original virus. This finding highlights the potential 

for even distantly related poxviruses to recombine in the field, which might result in altered host 

range and virulence. 
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 Significance 
The reporting of the complete genomic sequence for any organism is always a critical 

step in understanding its biology and often opens the door to many more studies. This work 

presents the complete genome of the previously poorly characterized squirrel fibroma virus 

(SQFV) and provides a comparative analysis of this virus with other related leporipoxviruses. 

The importance of this group of poxviruses to the medical field and to studies of viral host range 

and host-virus co-evolution has been well demonstrated, and therefore it is anticipated that the 

potential impact of future analyses with SQFV aided by the information provided here will be 

high in these areas. The identification of a recombination event between a SQFV ancestor and an 

orthopoxvirus in the field provides the first example of recombination occurring between such 

distantly related poxviruses, which has implications for our evolutionary understanding of these 

poxviruses and highlights the potential for the emergence of novel recombinant poxviruses in 

nature that may have altered host range and virulence. 
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 Introduction 
Leporipoxviruses are a genus within the sub-family Chordopoxvirinae, which are 

restricted to lagomorph (rabbits and hares) and squirrel host species. The prototypic and best-

characterized member of this poxvirus genus is myxoma virus (MYXV), which causes a lethal 

disease in European (E.) rabbits called myxomatosis. Members of the Leporipoxvirus genus were 

some of the first poxvirus genomes to be completely sequenced (1, 2), which allowed a detailed 

characterization of the molecular biology of these viruses and the mechanisms behind their 

narrow host range.  

There are currently four leporipoxvirus species recognized; MYXV (including 

genetically distinct South/Central American strain and Californian strains), rabbit fibroma virus 

(RFV, Shope fibroma virus), hare fibroma virus (FIBV), and squirrel fibroma virus (SQFV). 

Only SQFV naturally infects squirrels whereas all the others infect only leporid species for 

which the genus is named. SQFV has gone largely unnoticed in the scientific community, with 

very few studies having been conducted on SQFV since its discovery (3-6). SQFV was first 

identified in 1936 and isolated by Kilham et al. in 1952 from six infected gray squirrels in 

Maryland, USA (4). It was originally characterized as a member of the Leporipoxvirus genus due 

to similarities in disease symptoms and the pathology caused by it, the morphology and 

ultrastructure of the virion by electron microscopy, and its immunological cross-reactivity with 

other known leporipoxviruses.  

Squirrel fibromatosis, caused by SQFV, is a disease of squirrel species that is 

characterized by the presence of multiple dermal nodules and fibromas in infected individuals. 

Histologically the sites of infection are typified by epidermal hyperplasia, ballooning 

degeneration and intracytoplasmic inclusion bodies (7). The incubation time of squirrel 

fibromatosis is reported to be between 7 and 14 days before tumors and fibromas become visible 

(8). Infected squirrels generally recover in less than two months, although the disease can be 

fatal in very young squirrels (5). This disease has been reported primarily in states along the 

eastern coast and in the southeast of the US (9). In 1998 an epizootic of squirrel fibromatosis 

occurred in the southern US state of Florida affecting more than 200 gray squirrels, but the 

reason for the high mortality caused by this outbreak is still unknown (10). 

SQFV was originally believed to be restricted to gray squirrels (Sciurus carolinensis), as 

this viral disease most commonly affects this species and they were the species from which the 
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original virus was isolated. However, several reports from people working for the National Park 

Services as well as wildlife veterinarians and managers have diagnosed other squirrel species 

with this disease over the years since its discovery. These include both the western gray squirrel 

(S. griseus) and fox squirrel (S. nigers) of the same genus, as well as the American red squirrel 

(Tamisciurus hudsonicus) representing a second squirrel genus  

(7, 11-14).  

SQFV is readily transmittted passively between juveniles via mosquitos and it is thought 

that other biting insects such as the squirrel flea (Orchopeus howardi) may also mechanically 

transmit the SQFV (5). However, the sporadic nature of the disease caused by SQFV and the low 

frequency of outbreaks make it difficult to accurately study the epidemiology of the virus. 

MYXV, meanwhile, has a seasonal cycle that correlates with the presence of appropriate 

arthropod vectors and this relationship has been monitored closely since its release into Australia 

and Europe over the past ~65 years. SQFV is possibly also transmitted directly between infected 

squirrels since squirrel fibromatosis outbreaks usually do not spread far from the disease 

epicenter. It is not clear whether squirrels represent a dead-end host for the SQFV or whether the 

virus has recently jumped into these host species, since it is difficult to produce virus titers in 

adult squirrels that are sufficiently high for vector transmission (5, 15). 

The expansion of improved sequencing technologies is rapidly increasing the number of 

poxvirus genomes that are being completely sequenced and new poxvirus species have been 

discovered and characterized in recent years (16-23). We present here a comprehensive 

comparative analysis of the complete SQFV genome with the other fully sequenced 

leporipoxviruses, focusing on the genetic differences between them that might explain the 

different host tropism of the SQFV. From our analysis we identified evidence of ongoing gene 

loss and fragmentation in the SQFV in putative immunomodulatory genes, evidence of 

horizontal gene transfer, as well as the longest inverted terminal repeat (ITR) sequence (19.5 kb) 

of any completely sequenced chordopoxvirus. Within this unique ITR we found evidence for a 

recombination event that likely occurred between the ancestral leporipoxvirus and an old-world 

orthopoxvirus. While recombination has been previously observed between closely related 

poxviruses and between leporipoxvirus members (24), the evidence for recombination in the 

SQFV genome is to our knowledge the first reported example of recombination occurring 

between such distantly related poxviruses.  
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Additionally, we have characterized SQFV replication in multiple mammalian cell lines 

as well as analyzed the potential host range function of selected SQFV proteins to begin building 

a framework for future molecular analyses of SQFV, which will be useful for studies on the 

evolution of viral host range. 

 Methods 

 Cell lines, plasmids, and viruses  
RK13 (ATCC CCL-37), BHK-21 (ATCC CCL-10), BSC-1 (ATCC CCL-26), 293T 

(ATCC CRL-3216), HeLa (ATCC CCL-2), HeLa-PKRkd (25), Vero (ATCC CCL-81), CHO 

(ATCC CCL-61), and NRK (ATCC CRL-6509) were maintained in Dulbecco’s Modified 

Essential Medium (DMEM, Life Technologies) supplemented with 5% fetal bovine serum (FBS, 

Fischer) and 25µg/ml gentamycin (Quality Biologicals). RK13+E3L+K3L cells (26) were grown 

in media additionally supplemented with 500µg/ml G418 and 300µg/ml zeocin (Life 

Technologies) and stably express VACV E3L and K3L. CHO cells were grown in Roswell Park 

Medical Institute (RPMI) media supplemented with 10% FBS and 25µg/ml gentamycin. All cells 

were incubated at 37˚C, 5% CO2. The HeLa-PKRkd cells, kindly provided by Charles Samuel, 

stably express shRNA to knock down endogenous human PKR expression.  

PKR from the indicated species and viral genes were cloned into the pSG5 mammalian 

expression vector (Stratagene) for transient expression driven by the SV40 promoter. The 

cloning of knock-down resistant human PKR, mouse PKR, Syrian hamster PKR, European 

rabbit PKR, and guinea pig PKR into the pSG5 plasmid was described previously (27-29). Brush 

rabbit PKR was cloned from total RNA collected from the paw of a brush rabbit provided by the 

Riparin Brush Rabbit Recovery project (Peng and Rothenburg, unpublished). Cottontail rabbit 

PKR was cloned from total RNA of SF-1 Eastern cotton tail cells (ATCC CCL-68, Peng and 

Rothenburg, unpublished). M156R and M029L were cloned from MXYV Lausanne (Lu) strain, 

and E3L was cloned from VACV Western Reserve (WR) strain. The E3L and K3L orthologs 

from the SQFV (S033 and S152) were PCR amplified from DNA prepared from a single-passage 

SQFV-Kilham in RK13 cells, and were cloned into the pSG5 expression vector using SacI and 

XhoI restriction sites. The primers used to clone S152 were KS07-SacI-1F GAT CGA GCT 

CGC CAC CAT GGA TCC TTT ACC AGG GAG and KS08-XhoI-1R GAT CCT CGA GTC 

ATT AAC CCG TAA AAA AAC GAC GTA GAT C. The primers used to clone S033 were 
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KS09-SacI-1F CTA GGA GCT CGC CAC CAT GAT GGA TTC CAT TAA TAC CTT ATT 

GAG and KS10-XhoI-1R CGA TCT CGA GCT ATC AAA ATT TTA TAA CAA CAT GCT 

TCA ATA TAA TGT CC. Alignments of the K3 and E3 orthologs and percent identity scores 

were generated by the ClustalW method in the sequence analysis software MegAlign (DNAStar, 

Inc.; Madison, WI USA). 

Viruses used in this work include SQFV-Kilham (ATCC VR-236), SQFV-mCherry, 

which expresses mCherry from a synthetic early/late promoter inserted between ORFs S135 and 

S136 (described here), rabbit fibroma virus (RFV; Shope fibroma virus, (30)), MYXV-GFP, 

which expresses GFP from a synthetic early/late promoter inserted between ORFs M135R and 

M136R (31), and vaccinia virus (VACV-WR)-GFP, in which GFP is inserted downstream of a 

3xFLAG tagged A7L gene and is controlled by the viral late p11 promoter (32).  

 Virus Infections 
For all virus infections, sonicated virus samples were first diluted in DMEM (or RPMI) 

supplemented with 2.5% FBS to perform infections at the indicated multiplicities of infection 

(MOI). In 6-well plates, 2.5x105 or 5x105 cells were plated in each well 24-48 hours prior to 

infection to allow the monolayer to become confluent. Before adding the virus inoculum to each 

well, the growth media was first removed and the virus inoculum was incubated with the cells 

for 1-2 hours at 37˚C. After this incubation, the inoculum was removed and the cell monolayers 

were washed once with PBS before adding fresh growth media. Virus infections were then 

collected immediately into the media (0hpi) or incubated for the indicated lengths of time before 

being imaged or collected for titration. For virus purification, confluent 100mm plates of RK13 

cells were infected with SQFV-Kilham or SQFV-mCherry at an approximate MOI=0.001 due to 

the low titers of the original virus used, and the infections were allowed to incubate for 6-7 days 

to allow the infection to spread throughout the plates before harvesting the infected cells for 

virus purification. 

The purchased stock of SQFV-Kilham strain (ATCC VR-236) was subsequently 

expanded in RK13 cells. This single-passage virus was then further expanded in RK13 cells and 

purified by sucrose gradient ultracentrifugation. DNA was isolated from 20% of the total volume 

of the purified virus by two rounds of phenol:chloroform extraction and submitted for full 

genome sequencing using the Illumina MiSeq platform (San Diego, CA, USA). 
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For infections with the wild isolate of SQFV obtained from the CDC (SQFV-CDC, 

homogenate 2008-040), confluent monolayers of RK13 or BSC-1 cells in T-75s or 100mm plates 

were infected directly with a dilution of the squirrel lesion homogenate after sonicating it in a 

cup sonicator (2x1min). After a 1-2 hour incubation, the SQFV-CDC inoculum was left on the 

cells to allow any un-adsorbed virus to remain in the flask and fresh growth media was added. 

Virus samples were collected from infections directly into the media 2-6 days post infection or 

DNA was isolated from infected cells 5-7 days post infection. Collected virus was used either 

directly (undiluted) or in serial dilution to infect new RK13, BHK-21, or BSC-1 cells to passage 

the virus for propagation. While some cytopathic effect could be observed at 48hpi on RK13 

cells with the original inoculum and from undiluted samples of the first passage virus (P1, data 

not shown), further passages with virus samples collected from the second passage (P2) did not 

induce a cytopathic effect in infected wells, nor could enough SQFV DNA be isolated for PCR 

detection. Attempts to propagate and purify the SQFV-CDC were therefore unsuccessful. DNA 

isolated from P1 infections were used for PCR amplification and sequencing of the amplicons as 

well as for full genome sequencing on the Illumina-MiSeq platform (San Diego, CA, USA). 

Virus titers for all viruses used were determined by standard plaque assay (or focus 

forming assay) on RK13+E3L+K3L cells. All viruses used in this study form distinct foci or 

plaques on these cells and are readily quantified with a light or fluorescent microscope. For the 

parental SQFV-Kilham not expressing mCherry, foci were counted 4-6 days post infection. 

VACV-GFP and MXYV-GFP titers were counted 2-3 days post infection, while RFV and 

SQFV-mCherry titers were counted 3-4 or 4-6 days post infection, respectively to allow distinct 

focus formation. 

 DNA sequencing and genome assembly and annotation 

Next generation sequencing was performed using the Illumina MiSeq platform to obtain 

the complete genome sequence of the SQFV-Kilham. Raw sequence data was processed and 

aligned to form three contiguous sequence files. Two of the contigs (one large and one small) 

corresponded to the inverted terminal repeats (ITR) on either end of the genome (small) and the 

other to the larger part of the genome (large). The third contig contained sequences matching 

host mitochondrial DNA and was therefore excluded from our analysis. The large and small 

contigs were then joined to create one sequence file for the entire genome. Primers flanking the 
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junction of the large and small contigs were designed to confirm the sequence by Sanger 

sequencing the PCR product (Table 4.1). 

 Segments of the genome were analyzed using BLAST and BLASTx (Basic Local 

Alignment Sequencing Tool, NCBI, (33)) to identify ORFs corresponding to known poxvirus 

sequences. The position of the beginning and end of each ORF was assigned based on the 

longest continuous in-frame ORF corresponding to each identified gene using the ORF finder 

tool in Seqbuilder (DNAStar, Inc.). Long intergenic spaces where no poxvirus ORF was 

identified were compared to all sequences in the database using BLAST and BLASTx to identify 

potential novel ORFs or horizontally transferred genes. Putative functions were assigned 

according to known functions of orthologous proteins.  

For determining the relative protein sequence identities in the ITR, the protein sequences 

for each ORF were obtained from the indicated representative poxvirus species (Table 4.4). Each 

protein sequence was aligned individually with its orthologs using ClustalW in the program 

MegAlign (DNAStar, Inc.), and sequence identities were calculated.  

The first nucleotide position of the genome was designated as the first nucleotide of the 

small contig corresponding to the left-hand ITR. Open reading frames were numbered starting 

with S001 in the left-hand ITR and ending with S165 in the right-hand ITR and given the letter 

designation “S” for Squirrel fibroma virus. The previous annotation of the rabbit fibroma virus 

(RFV or Shope’s fibroma virus) also used “S” designations for ORFs, so we have used “RFV” 

instead to refer to RFV ORFs to differentiate the two annotations (1). Duplicated ORFs in either 

ITR were annotated separately to identify the ITR they belong to (i.e. S001 and S165 are 

identical, inverted ORFs). 

Sequences of long intergenic spaces, sequence repeats, and gene truncations were PCR-

amplified and confirmed by Sanger sequencing amplified PCR products (Table 4.1). Sequences 

that were not well resolved in the original contigs were also Sanger sequenced to obtain the 

complete genome. 
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Primer pairs used in this study Size 
(bp) Genomic Region 

SQFV-149R-1F 
CCTGCTTTAAGAAAAAACAACGTAGG 
SQFV-151R-1R 
GGACGATTGAAGAAATTTTTTGAAAAACTCC 

562 
From end of S148R to beginning 
of S149R covering the intergenic 
space 

SQFV-150R-1F 
CCAACAAAGATTTGTTTTTTAATGAAAATAAAG 
SQFV-151R-2R  
CCTGTTTTATATCATCCGGGTAC 

568 

From small gene fragment 
homologous to M150R to middle 
of S149R covering frameshift site 
in S149R 

SQFV-151R-1F 
CTACCATATGAGTATGGATACTCC 
SQFV-151R-3R  
GCTTATAATGTTACTTATATGAAAAACATCTC 

502 
From middle of S149R to end of 
gene sequence covering 
frameshift site in S149R 

SQFV-151R-2F 
CGTTACTATTCATGGGTAGGG 
SQFV-154L-1R  
CTAGATACTATATAAATCAACAAAAGTG 

857 

From end of S149R sequence to 
end of S151L covering large 
intergenic space and putative 
HGT ORF 

SQFV-124R-1F 
GCTATTCATAGTGTACGGAGTC 
SQFV-126R-1R  
CATAATTTTATAACTTGTTTTTTTATATCCAAAGG
ATTAAAAAAAG 

694 From end of S127R to beginning 
of S129R covering S128R 

SQFV-130R-1F 
CAAAGGGGGAAAGCGAC 
SQFV-132L-1R 
GAGCTAATTTACTTATATATTTTAGCAAAGTTATT
TAG 

617 

From end of S133R to end of 
S134L covering the gene 
fragment homologous to M131R 
and large intergenic space 

SQFV-137R-1F 
CATAGTTGTTACGTTTACGGAATTG 
SQFV-139-1R  
CGATCGATATGTCAAACTTTACATAGTTAC 

969 
From end of S137R to beginning 
of S139R covering truncated 
S138L and long ATA repeat 

SQFV-138L-1F (w/139-1R) 
GTATAAGTCGTTAGACTTAAACGGAAC 550 From S138L fragment to 

beginning of S139R 

SQFV-156R-1F 
GATTACACGTGGATCTACGTCG 
SQFV-006-9-1R  
CAAGAAACTCAAAAGGGTACGTG 

603 
From end of S152R to beginning 
of S153R covering large 
intergenic space 

DpV84007-1F 
CTTTATATGTTTTAACCTTTATAATATTGTCTATTA
AG 
SQFV-003.2-1F  
GCGGTATGTTCGATTTCATGAAG 

1118 
From beginning of S010L/S156R 
to middle of S011L/S155R 
covering large intergenic space 
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SQFV 006L-1F 
GTCATTTGTTAATTTCTTAACCGTGTTTAC 
SQFV-010L-1R 
GCGGAACATAATCATGTCCTTAC 

469 From end of S013L in 5’ ITR to 
end of S014L outside the 5’ ITR  

SQFV-155R-1R 
CTTAACCGTGTTTACAAACGTGG 
SQFV-155R-1F  
CCATCAATACATCCTCTGTTGTAC 

505 
From end of S153R in 3’ ITR to 
middle of S153R outside the 3’ 
ITR  

SQFV-B22R-1F 
CCTTTTCTGGTGAGAGGTG 
SQFV-B22R-1R  
GAGGCTATCAAGTCCACAATAAATC 

459 
In middle of S001L/S165R 
covering string of unidentifiable 
nucleotides (N’s) 

SQFV-B8-203/MT4-1F 
CGATAGGAAGAATATAACCAGGAAC 
SQFV-DPV-ANK-1R  
GGATCATCAAAGCATCCGATTATATG 

493 
From start of S006L/S160R to 
middle of DPV ANK covering 
the putative recombination site 

SQFV-large contig-1F 
GTTATTCGATCGCCGTGGATATATC 
SQFV-small contig-1R 
GATGCAACTAGATCCAGATCAC 

406 

From beginning of S008L/S158R 
to just after S009L/S157R 
covering breakpoint for large and 
small sequence contigs 

SQFV-072L-1F 
CTTGGATTCCATTTAATGTAAGAAACAAC 
SQFV-074R-1R 
GTATAATTTTCCATCCTTGTATGTAAAAGCTCTC 

755 
From beginning of S075L to 
beginning of S077R covering 
S076R and the 60aa insertion 

SQFV-DPV-007-1R 
CTATGTGGAGACCTATGTCGG 
SQFV-DPV-010-1F 
GTACATTAACACATGCATCTTCTTTATC 

280 From beginning of S009L/S157R 
to end of S010L/S156R 

BA135 SQFVintgn-1F 
CTACACAAGTATGTGATGTTATCTAAGTTG 
BA140 SQFV136-2R 
CACATCACATAACAGTATGTCTAAATTACC 

455 

SQFV 3’ recombination arm 
corresponding to the intergenic 
space before S136 to the 
beginning of S136 

BA136 686-ELprm+133-OH-1F 
CGAGTTTTATTTTTAAGAGATGATTTACTAAAAAT
TGAAATTTTATTTTTTTTTTTTGG 
BA139 686+SQFV-OH-1R 
CAACTTAGATAACATCACATACTTGTGTAGCTATT
ACTTGTACAGCTCGTCCATGC 

810 

Covering mCherry gene with 27-
30bp overhangs corresponding to 
the intergenic space between 
S135 and S136 with a poxvirus 
early/late promoter 

BA138 SQFV133intgn-1R 
TAAATCATCTCTTAAAAATAAAACTCGTACACTTT
G 
BA149 SQFV133-2F 
GGAAAACGGTTACAAAGTGTTCAGG 

412 

SQFV 5’ recombination arm 
corresponding to the end of S135 
into the intergenic space before 
S136 
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 Promoter motif analysis 

Upstream sequences -100bp to +10bp for putatively early and intermediate genes and -50 

to +10bp for late genes in the SQFV genome were grouped according to the promoter 

classification of the corresponding orthologs in RFV and MYXV (Table 4.2). Upstream 

sequences corresponding to 42 putative early genes were used as the input in the online MEME 

Suite version 4.11.1 (Multiple EM for Motif Elicitation, (34)) to identify the early promoter 

motif, and similarly for intermediate (8 genes) and late (52 genes) gene sequences with specified 

motif lengths of between 6 and 30bp (for early and late motifs) or 6 and 50bp (for intermediate 

motifs). Motifs generated from each analysis were then compared with the same promoter motif 

identified in RFV for verification (1). Identified early and late motifs were then used as input in 

the program FIMO (Find Individual Motif Occurrences, MEME Suite) to identify similar 

promoter motifs in the upstream sequences from the remaining ORFs (p<0.0001). ORFs where 

both an early motif and late motif were identified were classified as early/late genes, while those 

where no motif was identified were left unassigned unless the orthologs from both MYXV and 

RFV had the same promoter class designation and the promoter motif in SQFV was assumed 

(indicated with a question mark following the promoter designation). 

  

Table 4.1 Primer pairs used in this study. 

Primer pair sequences used to amplify and sequence regions of the SQFV-Kilham and SQFV-CDC 

genome are listed along with the expected size of the PCR product and a general description of the 

genomic region amplified. 
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Early Late Intermediate 

M006L M121R M004.1L M088L M040L 
M011L M126R M010L M091L M042L 
M012L M129R M019L M092L M045L 
M013L M132L M020L M093L M053R 
M014L M138L M022L M094R M089L 
M015L M141R M023R M096L M090L 
M017L M142R M026R M099L M095L 
M018L M146R M028L M100R M108R 
M021L M147R M032R M101L  
M024L M148R M038L M102L  
M025L M149R M039L M103L  
M029L M151R M042L M104L  
M030L M154L M043L M105L  
M031R  M045L M106L  
M033R  M048L M107L  
M034L  M052L M109L  
M036L  M054R M115L  
M040L  M055R M116L  
M047R  M057L M118L  
M056R  M058R M119L  
M062R  M059R M122R  
M063R  M060R M133R  
M064R  M069L M137R  
M079R  M070R M143R  
M084R  M071L   
M097R  M072L   
M111R  M074R   
M113R  M081R   
M117L  M086L   

Table 4.2 Genes used in promoter analysis 

Upstream sequences for the SQFV orthologs to each MYXV ORF listed in the table were used to 

determine the promoter motifs in SQFV. Gene names are given according to their MYXV designation and 

are grouped according to their promoter classification in MYXV or RFV and as they were grouped to 

generate the consensus early and late promoter motifs shown in Fig. 4.3. 

 Generation of recombinant squirrel fibroma virus 
Primers were designed to insert the mCherry gene into a location of the genome with a 

large intergenic space to avoid interrupting termination or promoter sequences (Table 4.1). The 

region between ORFs S135 and S136 was chosen based on the initial sequence information 

available. A fusion PCR of the genomic regions flanking the insertion site (~400bp on either 

arm) and the mCherry gene was generated using ~30bp overhangs on the mCherry PCR product 

corresponding to the SQFV genomic sequence at the insertion site. A VACV synthetic early/late 
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promoter was designed into the primers to drive expression of the mCherry gene in the fusion 

PCR product. The fusion PCR was then cloned into the pCR2.1 TOPO-TA vector (Invitrogen) 

for amplification. The insert used for virus recombination was excised from the plasmid using 

EcoRI and gel purified according to the manufacturer’s instructions (Qiagen). The purified 

recombination sequence was then transfected using Lipofectamine 2000 (Invitrogen) into SQFV-

Kilham infected cells immediately following the addition of fresh growth media. Virus was 

collected from the recombination after 24 hours and recombinant viruses were selected by 

mCherry expression. Virus clones expressing mCherry were submitted to multiple rounds of 

plaque purification before performing a single amplification step on RK13 cells in a T-75 

followed by a second amplification in 100mm plates of RK13 cells for virus purification. DNA 

was isolated from the purified recombinant virus for PCR analysis and sequence confirmation of 

the correct insertion of the mCherry gene in the genome. 

 Phylogenetic analyses 
To generate the phylogenetic tree of fully sequenced poxviruses, protein sequences of 23 

single-copy genes present in all of the analyzed species were collected from the NCBI GenBank 

for 38 poxvirus species (Tables 4.3 and 4.4) and aligned individually using MAFFT (Multiple 

Alignment using Fast Fourier Transform, version 7, (35)) or Kalign (36) multiple sequence 

alignment programs. The aligned protein sequences were then concatenated manually and the 

concatenated alignment was trimmed using Gblocks (version 0.91b, (37)) using a low stringency 

model to exclude large sequence gaps. The trimmed alignment was submitted to ProtTest 

(version 3; (38)) to select the best-fit model of protein evolution (Model used: LG+I+G+F) and 

analyzed in PhyML (version 3.0; (39)) to generate a maximum-likelihood tree with 

bootstrapping (100 replicates), which was viewed in FigTree (40). The entomopoxviruses were 

used as the outgroup for these analyses and branch lengths represent sequence divergence in 

amino acid substitutions per site. For single gene analyses, protein sequences were collected 

from poxvirus species encoding orthologous proteins, and the sequences were aligned using 

MUSCLE (Multiple Sequence Comparison by Log-Expectation, (41)). The alignment was then 

submitted to PhyML to generate a midpoint-rooted maximum-likelihood tree. 
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VACV-Cop Genes  Putative function 

A2L Transcription factor VLTF-3 
A3L Major core protein P4b precursor 
A7L Early transcription factor large subunit 
A10L Major core protein P4a precursor 
A16L Fusion complex myristylprotein 
A18R ATP-dependent DNA helicase 
A22R Holliday junction resolvase 
A24R RNA polymerase subunit 
A32L ATPase 
D5R NTPase, AAA-ATPase 
D6R Early transcription factor 
D12L mRNA capping enzyme small subunit 
E1L Poly (A) plymerase catalytic subunit 
E9L DNA polymerase 
E10R Thiol-oxidoreductase 
F10L Serine/threonine/tyrosine kinase 
G9R Fusion complex myristylprotein 
H2R IMV fusion complex protein 
H6R DNA topoisomerase I 
I7L Core cysteine protease 
I8R DNA/RNA helicase 
J5L IMV fusion complex protein 
J6R RNA polymerase subunit 

Table 4.3 VACV-Cop genes used in the phylogenetic analysis 

A list of the gene orthologs with their VACV-Cop designations and their putative functions that were used 

in the concatenated alignment for the phylogenetic analysis. 
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Genomes used in this analysis Abbr. RefSeq ID Accession 
number 

Amsacta moorei entomopoxvirus ‘L’ AMEV NC_002520 AF250284.1 
Bovine papular stomatitis virus strain BV-AR02 BPSV NC_005337 AY386265.1 
Camelpox virus M-96, Kazakhstan CMLV NC_003391 AF438165.1 
Canarypox virus strain ATCC VR-111 CNPV NC_005309 AY318871.1 
Cotia virus SPAn232 COTV NC_016924 HQ647181.2 
Cowpox virus strain Brighton Red CPXV-BR NC_003663 AF482758.2 
Cowpox virus strain GRI-90 CPXV-GRI --- X94355.2 
Nile crocodilepox virus CRV NC_008030 DQ356948.1 
Deerpox virus W-848-83 DPV-848 NC_006966 AY689436.1 
Deerpox virus W-1170-84 DPV-1170 NC_006967 AY689437.1 
Ectromelia virus strain Moscow ECTV NC_004105 AF012825.2 
Fowlpox virus FWPV NC_002188 AF198100.1 
Goatpox virus Pellor GTPV NC_004003 AY077835.1 
Horsepox virus isolate MNR-76 HSPV --- DQ792504.1 
Lumpy skin disease virus NI-2490 LSDV NC_003027 AF325528.1 
Molluscum contagiosum virus subtype 1 MOCV NC_001731 U60315.1 
Monkeypox virus isolate Sierra Leone MPXV-SIE --- AY741551 
Monkeypox virus strain Zaire-96-I-16 MPXV-Z96 NC_003310 AF380138.1 
Melanoplus sanguinipes entomopox virus MSEV NC_001993 AF063866.1 
Myxoma virus strain California/San Francisco 1950 MYXV-MSW --- KF148065.1 
Myxoma virus strain Lausanne MYXV-Lu NC_001132 AF170726.2 
Orf virus strain OV-SA00 ORFV NC_005336 AY386264.1 
Pseudocowpox virus strain VR634 PCPV NC_013804 GQ329670.1 
Raccoonpox virus RCPV NC_027213 KP143769.1 
Rabbit fibroma virus RFV NC_001266 AF170722.1 
Rabbitpox virus RPXV --- AY484669.1 
Salmon gill poxvirus SGPV NC_027707 KT159937.1 
Sheeppox virus 10700-99 strain TU-V02127 SPPV NC_004002 AY077832.1 
Squirrelpox virus strain Red squirrel UK SQPV NC_022563 HE601899.1 
Squirrel fibroma virus strain Kilham 1952 SQFV --- this work 
Swinepox virus isolate 17077-99 SWPV NC_003389 AF410153.1 
Taterapox virus strain Dahomey 1968 TATV NC_008291 DQ437594.1 
Tanapox virus isolate TPV-RoC TPV-RoC --- EF420157.1 
Vaccinia virus Copenhagen VACV-Cop --- M35027.1 
Variola virus strain Bangladesh 1975 v75-550 Banu VARV-Banu --- DQ437581.1 
Yoka virus strain DakArB 4268 YKV NC_015960 HQ849551.1 
Yaba-like disease virus YLDV NC_002642 AJ293568.1 
Yaba monkey tumor virus YMTV NC_005179 AY386371.1 
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Table 4.4 Poxvirus genomes used in the phylogenetic analysis 

All of the poxvirus genomes used in the phylogenetic analysis in this study are listed with their 

abbreviated names and accession and/or RefSeq numbers. 

 PKR inhibition luciferase assay 

The luciferase assay for inhibition of PKR activity was described previously (28, 29). 

Briefly, 5x104 HeLa-PKRkd cells were seeded 24 hours before transfection in 24-well plates. For 

each transfection, 0.05µg of firefly luciferase encoding plasmid (pGL3promoter, Promega), 

0.2µg PKR encoding plasmids (pSG5), and 0.4µg MYXV M156, SQFV S151, MYXV M029, 

SQFV S033, or VACV E3L were transfected using GenJet-Hela (Signagen) in triplicate. Cell 

lysates were harvested 48 hours after transfection using mammalian lysis buffer (Goldbio), and 

the luciferase activity was determined by measuring light in a luminometer (Berthold) after 

adding luciferin substrate (Promega). Luciferase activity from vector control transfections were 

compared to transfections with only PKR encoding plasmids to assess the PKR activity for each 

species, which was then used to normalize co-transfections of the corresponding PKR with each 

viral inhibitor.  

 Results 

 Genome of the squirrel fibroma virus 

 General features of the genome 

The SQFV genome (SQFV-Kilham strain) is 168,586 nucleotides in length and has an 

A/T content of 65.5%. The length of the genome is similar to the two other fully sequenced 

Leporipoxvirus members, MXYV and RFV, but is longer than either by nearly 10kb. Based on 

homologies to known poxvirus genes and using a 40 amino acid cut-off for identifying novel 

open reading frames (ORFs), we determined that the SQFV genome encodes 153 predicted 

ORFs with 12 complete ORFs duplicated in the inverted terminal repeats (ITRs) (Fig 4.1, Table 

4.5). The ITRs of the SQFV are 19.5kb in length, and therefore the SQFV has the largest ITRs of 

all sequenced chordopoxviruses, with the exception of a few laboratory-passaged strains of 

cowpox virus (CPXV) strains (42, 43).  
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The boundaries between the ITR and the unique region of the genome are at the 

beginning of S013 on the left end and in the middle of S153 on the right end. The right ITR 

boundary actually cuts into the ORF of S153, which is partially duplicated as S013 on the left 

end. This partially duplicated ORF, however, may not be expressed as no promoter element 

could be identified and a large portion of the N-terminus is missing compared to its counterpart 

at the other end of the genome.  

We numbered the ORFs starting from S001 in the ITR to S165 corresponding to the 

complementary ORF in the right ITR. The ORFs of the SQFV genome are arranged and 

transcribed in a similar manner to other leporipoxviruses, and most of the genes found in RFV 

and MYXV are also present in SQFV. As is common for genes near the genomic termini in 

chordopoxviruses, all of the genes in the SQFV ITRs are transcribed away from the center of the 

genome, which presumably reduces the formation of double-stranded (ds) RNA during virus 

replication and the stimulation of an interferon response (44). 

 
  

Figure 4.1 Genome map of SQFV-Kilham 

The genome of the SQFV-Kilham is 168.586kb long encoding 153 unique open reading frames with 12 

complete ORFs repeated at either end of the genome in the inverted-terminal repeats (ITR, highlighted 

in red). Each ORF is represented to scale by a filled box and their transcriptional direction is 

indicated with genes that are read to the right shown above the black line, and genes read to the left 

end of the genome shown below the black line. Major gene truncations are represented by orange 

boxes demarcating the remaining ORF. 
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ORF Start 
(bp) 

Stop 
(bp) 

Size 
(aa) Prom. Predicted 

Function/Features Ortholog 
Amino 
Acid 

Identity 

BLASTX  
e-values 

S001/ 
S165 

6078/ 
162,510 

576/ 
168,012 1833 L glycoprotein, unknown(45) CPXV219 0.78 0.00E+00 

S002/ 
S164 

6902/ 
161,686 

6284/ 
162,304 618 E unknown CPXV218 0.69 3.00E-92 

S003/ 
S163 

8405/ 
160,183 

7331/ 
161,257 358 L soluble α/β IFN 

receptor(46) 
MPXV 
B16R 0.69 3.00E-162 

S004/ 
S162 

9141/ 
159,447 

8694/ 
159,894 149 E/L NF-κB signaling 

inhibitor(47-­‐49) CPXV208 0.85 5.00E-93 

S005/ 
S161 

10,267/ 
158,321 

9253/ 
159,335 338 ? IL-1 convertase(50,	
  51) CPXV 

CrmA 0.85 0.00E+00 

S006/ 
S160 

11,419/ 
157,169 

10,717/ 
157,871 234 E/L ER protein, apoptosis 

regulation(52,	
  53) CPXV B8R 0.68 2.00E-102 

S007/ 
S159 

13,143/ 
155,445 

11,727/ 
156,861 472 E ankyrin repeat(54) DPV165 0.33 4.00E-52 

S008/ 
S158 

14,393/ 
154,195 

13,172/ 
155,416 407 L phospholipase D-like(55,	
  

56) LSDV146 0.58 8.00E-145 

S009/ 
S157 

15,556/ 
153,032 

14,743/ 
153,845 271 E soluble IFN-γ receptor(57) DPV010 0.37 2.00E-41 

S010/ 
S156 

16,647/ 
151,941 

15,597/ 
152,991 350 E/L IL-1 receptor(57) DPV007 0.49 2.00E-103 

S011/ 
S155 

17,936/ 
150,652 

17,603/ 
150,984 111 ? unknown RFV003.2L 0.81 2.00E-62 

S012/ 
S154 

18,696/ 
149,892 

18,457/ 
150,132 80 L kelch repeat(58) RFV004.1R 0.85 4.00E-30 

S013 19,246 18,853 131 ? 
putative E3 Ub ligase; 

truncated, partial duplication 
of S152(58) 

M006L 0.73 2.00E-65 

S014 19,650 19,401 83 E/L EGF-like growth factor(59) RFV010L 0.64 1.00E-27 

S015 20,123 19,634 163 E? membrane virulence factor, 
apoptosis regulator(60) RFV011L 0.66 3.00E-62 

S016 20,557 20,131 142 E dUTPase(61,	
  62) M012L 0.85 5.00E-85 

S017 20,913 20,640 91 E/L 
pyrin 

domain/inflammasome(63,	
  
64) 

M013L 0.68 5.00E-32 
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S018 22,504 20,950 518 E? kelch repeat, putative E3 Ub 
ligase(58,	
  65) RFV014L 0.76 0.00E+00 

S019 23,525 22,558 322 E/L RNA reductase (small 
subunit)(66) RFV015L 0.91 0.00E+00 

S020 23,697 23,553 48 ? unknown M016L 0.79 5.00E-21 

S021 24,012 23,780 77 E unknown M017L 0.79 2.00E-33 

S022 24,403 24,196 69 E/L unknown M018L 0.84 4.00E-23 

S023 25,106 24,461 215 L fusion/entry(67) M019L 0.92 2.00E-133 

S024 26,424 25,086 446 L S/T/Y protein kinase 2(68) RFV020L 0.94 0.00E+00 

S025 28,422 26,541 627 E EEV maturation(69,	
  70) M021L 0.83 0.00E+00 

S026 29,568 28,455 371 L envelope antigen(71,	
  72) M022L 0.94 0.00E+00 

S027 29,668 29,764 32 L? unknown M023R 0.66 7.70E-01 

S028 30,183 29,739 148 E/L unknown RFV024L 0.93 2.00E-99 

S029 30,875 30,247 209 E unknown(73) M025L 0.88 9.00E-128 

S030 30,915 31,218 101 E/L DNA-binding 
phosphoprotein(74) M026L 0.97 3.00E-65 

S031 32,630 31,220 470 L poly(A) polymerase catalytic 
subunit(75) M027L 0.96 0.00E+00 

S032 34,825 32,629 732 L unknown, EV formation(76)  M028L 0.86 0.00E+00 

S033 35,197 34,867 110 E IFN resistance; PKR 
inhibitor(26,	
  77) M029L 0.80 2.00E-49 

S034 35,922 35,258 221 E RNA polymerase 
subunit(78) RFV030L 0.89 7.00E-136 

S035 36,029 37,220 397 E? virosome protein(79) RFV031R 0.80 0.00E+00 

S036 37,227 38,922 565 E/L unknown, 
morphogenesis(80) M032R 0.94 0.00E+00 

S037 38,934 39,749 271 E core protein(81,	
  82) M33R 0.98 0.00E+00 

S038 42,770 39,752 1006 E/L DNA polymerase(83) M034L 0.93 0.00E+00 
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S039 42,805 43,093 96 L thiol-oxidoreductase(84,	
  85) M035R 0.94 3.00E-60 

S040 45,162 43,119 681 E Erk1/2 signaling(86) M036L 0.83 0.00E+00 

S041 46,248 45,309 313 L? 
DNA-binding, late 

morphogenesis, core 
protein(87) 

M038L 0.95 0.00E+00 

S042 46,476 46,251 75 E/L membrane protein, 
entry/fusion(88) M039L 0.85 1.00E-36 

S043 47,304 46,479 275 L DNA-binding 
phosphoprotein(89) M040L 0.93 2.00E-162 

S044 47,621 47,387 78 ? structural protein(90) M041L 0.94 8.00E-43 

S045 48,802 47,644 386 L core protein, telomere 
binding(91,	
  92) RFV042L 0.87 0.00E+00 

S046 50,084 48,797 429 L 
morphogenesis, cysteine 

protease, core protein(93,	
  
94) 

M043L 0.97 0.00E+00 

S047 50,089 52,123 678 ? DNA/RNA helicase(95,	
  96) RFV044R 0.89 0.00E+00 

S048 53,899 52,129 590 L metallo-endoproteinase, 
morphogenesis(97-­‐99) M045L 0.89 0.00E+00 

S049 54,231 53,898 111 L fusion/entry(100) M046L 0.95 5.00E-53 

S050 54,224 54,902 226 E IBT-dependent protein, late 
elongation factor(101) M047R 0.90 3.00E-127 

S051 55,249 54,862 129 L glutaredoxin 2, membrane 
protein(102,	
  103) RFV048L 0.94 4.00E-74 

S052 55,251 56,544 431 ? core protein(104) RFV049R 0.87 0.00E+00 

S053 56,552 56,741 63 E RNA polymerase 
subunit(105) M050R 0.98 5.00E-36 

S054 56,743 57,265 174 ? unknown(106) M051R 0.91 1.00E-113 

S055 58,289 57,239 350 L structural protein, IV 
formation(107) M052L 0.94 0.00E+00 

S056 58,317 59,097 260 E/L late transcription factor(108,	
  
109) RFV053R 0.98 0.00E+00 

S057 59,121 60,117 332 L myristylprotein, fusion 
complex(110) M054R 0.92 0.00E+00 

S058 60,120 60,846 242 L myristylprotein, IMV virion 
protein(111,	
  112) M055R 0.97 5.00E-159 

S059 60,897 61,194 99 E morphogenesis, IV 
formation(113) RFV056R 0.82 6.00E-50 
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S060 62,109 61,149 320 L core protein, early 
transcription(114) RFV057L 0.93 0.00E+00 

S061 62,133 62,886 251 L? 
DNA binding structural 

protein precursor, major core 
protein(115,	
  116) 

RFV058R 0.93 1.00E-166 

S062 62,908 63,295 129 L fusion/entry(117) M059R 0.94 6.00E-66 

S063 63,251 63,698 149 L dimeric virion protein(118) RFV060R 0.87 6.00E-89 

S064 63,734 64,268 178 E thymidine kinase(119) M061R 0.87 7.00E-113 

S065 64,330 64,804 158 E/L host range(120,	
  121) M062R 0.80 5.00E-84 

S066 64,862 65,483 207 E host range(122) M063R 0.70 1.00E-85 

S067 65,547 66,153 202 E/L host range(123) M064R 0.80 5.00E-80 

S068 66,215 67,214 333 ? 
poly(A) polymerase 

regulatory subunit(124,	
  
125) 

M065R 0.97 0.00E+00 

S069 67,131 67,686 185 E RNA polymerase subunit M066R 0.95 3.00E-125 

S070 68,093 67,694 133 E fusion complex(126) M067L 0.96 2.00E-87 

S071 68,167 72,025 1286 E/L RNA polymerase 
subunit(127) M068R 0.98 0.00E+00 

S072 72,548 72,031 172 L S/Y phosphatase(128) M069L 0.98 8.00E-122 

S073 72,563 73,133 190 L fusion complex(129) M070R 0.94 2.00E-131 

S074 74,115 73,140 325 L IMV envelope protein(130) M071L 0.88 0.00E+00 

S075 76,506 74,118 796 L RNA pol. assoc. 
transcription factor(32,	
  131) M072L 0.95 0.00E+00 

S076 76,633 77,179 182 E/L late transcription factor(132)  M073R 0.96 2.00E-37 

S077 77,213 78,155 314 E/L topoisomerase I, telomere 
resolvase(133,	
  134) RFV074R 0.96 0.00E+00 

S078 78,157 78,601 148 ? unknown, membrane 
biogenesis(135) M075R 0.91 2.00E-90 

S079 78,605 81,110 835 E? mRNA capping enzyme, 
large subunit(136,	
  137) RFV076R 0.92 0.00E+00 

S080 81,506 81,077 143 L virion component(138) M077L 0.86 2.00E-84 
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S081 81,511 82,230 240 ? structural protein(138) M078R 0.84 6.00E-148 

S082 82,231 82,884 218 E uracil DNA 
glycosylase(139) M079R 0.96 3.00E-156 

S083 82,920 85,278 786 E/L 
rep./recomb. NTPase, AAA-
ATPase, genome uncoating 

factor(140) 
M080R 0.96 0.00E+00 

S084 85,277 87,182 635 ? early transcription factor(32,	
  
141) M081R 0.98 0.00E+00 

S085 87,216 87,705 163 E RNA polymerase 
subunit(142) M082R 0.96 1.00E-110 

S086 88,536 87,681 285 ? carbonic anhydrase-like 
structural protein(143,	
  144) M083L 0.84 2.00E-163 

S087 88,547 89,201 218 E? mut-T like protein, 
decapping enzyme(145) RFV084L 0.91 3.00E-140 

S088 89,200 89,977 259 L 
mut-T like protein neg. gene 

regulator, decapping 
enzyme(146,	
  147) 

M085R 0.92 4.00E-173 

S089 91,879 89,983 632 L NTPase I, DNA 
helicase(148,	
  149) RFV086L 0.91 0.00E+00 

S090 92,760 91,899 287 E/L 
mRNA capping enzyme sm. 
subunit, transcript. initiation 

factor(150) 
M087L 0.97 0.00E+00 

S091 94,445 92,786 553 L rifampicin resistance, IMV 
protein(151,	
  152) M088L 0.95 0.00E+00 

S092 94,930 94,479 150 L trans-activator, late 
transcription factor 2(153) RFV089L 0.91 7.00E-95 

S093 95,634 94,962 224 E trans-activator, late 
transcription factor 3(154) M090L 0.99 3.00E-147 

S094 95,858 95,633 75 L thiol-oxidoreductase(155,	
  
156) M091L 0.96 3.00E-44 

S095 97,831 95,869 654 L major core protein P4b 
precursor(157) M092L 0.94 0.00E+00 

S096 98,334 97,871 154 L core protein(158) RFV093L 0.73 2.00E-51 

S097 98,373 98,862 163 L RNA polymerase 
subunit(159) M094R 0.92 4.00E-78 

S098 99,983 98,864 373 I? core protein(160) RFV095L 0.94 0.00E+00 

S099 102,149 100,013 712 L early transcription factor 
large subunit(141,	
  161) M096L 0.96 0.00E+00 

S100 102,202 103,060 286 E intermediate transcription 
factor(162) M097R 0.94 0.00E+00 
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S101 103,292 103,040 84 E membrane protein(163) M098L 0.90 2.00E-31 

S102 105,998 103,295 901 L major core protein P4a 
precursor(164) RFV099L 0.89 0.00E+00 

S103 106,012 106,954 314 L scaffolding protein(165,	
  
166) RFV100R 0.96 0.00E+00 

S104 107,454 106,956 166 L structural protein(167) M101L 0.87 2.00E-86 

S105 107,682 107,481 67 L 
structural protein, IMV 

membrane protein p8; 25aa 
insertion(168) 

M102L 0.91 2.00E-18 

S106 108,027 107,739 96 L IMV membrane protein, 
assembly factor(169) M103L 0.92 4.00E-47 

S107 108,205 108,046 53 L potential immuno-
modulatory protein(170) M104L 0.92 2.00E-25 

S108 108,479 108,197 94 L? core protein M105L 0.91 8.00E-57 

S109 109,593 108,465 376 L 35K myristylprotein, fusion 
complex(171) M106L 0.92 0.00E+00 

S110 110,209 109,609 200 L IMV membrane protein, 
morphogenesis(172) M107L 0.85 3.00E-101 

S111 110,222 111,656 478 L 
transcript release factor, 

ATP-dep. DNA 
helicase(125,	
  173) 

M108R 0.92 0.00E+00 

S112 111,888 111,642 82 L late stage 
morhpogenesis(174,	
  175) M109L 0.78 4.00E-28 

S113 112,231 111,892 113 ? core protein(176) M110L 0.88 5.00E-67 

S114 112,228 113,521 431 E? DNA polymerase 
processivity factor(177) M111R 0.85 0.00E+00 

S115 113,486 113,966 160 ? Holliday junction 
resolvase(178,	
  179) M112R 0.84 3.00E-94 

S116 114,002 115,160 386 E/L intermediate transcription 
factor(162) M113R 0.92 0.00E+00 

S117 115,188 118,653 1155 E RNA polymerase 
subunit(180) M114R 0.97 0.00E+00 

S118 119,187 118,659 176 L 
fusion protein, EV 

formation, IMV surface 
protein(181) 

M115L 0.62 5.00E-65 

S119 119,610 119,190 140 L IMV membrane protein(182,	
  
183) M116L 0.95 5.00E-83 

S120 120,524 119,618 302 E RNA polymerase 
subunit(180) M117L 0.91 0.00E+00 
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S121 120,723 120,495 76 L core protein(107,	
  184) M118L 0.96 5.00E-43 

S122 120,861 120,741 40 L unknown RFV119L 0.77 2.00E-13 

S123 121,662 120,897 255 L ATPase(185) RFV120L 0.96 6.00E-180 

S124 121,755 122,277 174 E EEV glycoprotein, NK 
receptor homolog(186) M121R 0.75 5.00E-67 

S125 122,289 122,802 171 L 
lectin-like EEV 

glycoprotein, NK receptor 
homolog(187) 

M122R 0.90 2.00E-111 

S126 122,837 123,374 179 E unknown(188) M123R 0.88 6.00E-113 

S127 123,417 124,278 287 E unknown RFV124R 0.85 3.00E-164 

S128 124,293 124,782 163 ? unknown M125R 0.63 8.00E-52 

S129 124,834 125,647 271 E structural protein? M126R 0.86 4.00E-171 

S130 126,974 125,645 443 ? Type II CPD 
photolyase(189) M127L 0.81 0.00E+00 

S131 127,852 126,976 292 ? CD47-like transmembrane 
integrin associated(190) M128L 0.80 2.00E-137 

S132 127,994 128,231 79 E myristylprotein(191) M129R 0.63 4.00E-30 

S133 128,312 128,630 106 E/L unknown M130R 0.62 1.00E-34 

S134 129,689 129,161 176 E/L unknown M132L 0.85 8.00E-90 

S135 129,770 131,444 558 E/L ATP-dependent DNA 
ligase(192) M133R 0.88 0.00E+00 

S136 131,691 132,237 182 ? Bcl-2-like fold, IL-1/TLR 
antagonism(193,	
  194) M136R 0.83 4.00E-106 

S137 132,240 133,167 309 L? unknown(195) M137R 0.80 0.00E+00 

S138 133,651 133,543 36 ? 
α-2,3-sialyltransferase; 

truncated, likely not 
functional(196) 

RFV138L 0.86 2.00E-47 

S139 134,069 134,630 187 ? Bcl-2-like fold(193) M139R 0.90 8.00E-123 

S140 134,638 136,321 561 ? kelch repeat, Putative E3 Ub 
ligase(58) M140R 0.84 0.00E+00 

S141 136,349 136,940 197 E surface antigen, OX-2 
homolog(197) M141R 0.63 2.00E-54 
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S142 136,948 137,857 303 E S/T protein kinase(198)  M142R 0.89 0.00E+00 

S143 137,877 138,573 232 L? RING finger protein(199) M143R 0.91 4.00E-141 

S144 138,619 139,468 283 ? VCP precursor, complement 
control protein(200,	
  201) M144R 0.71 2.00E-125 

S145 139,555 139,879 108 E? secreted virulence factor, 
Bcl-2-like fold(194,	
  202) M146R 0.83 2.00E-59 

S146 139,913 140,774 287 E/L S/T protein kinase RFV147R 0.85 0.00E+00 

S147 140,850 142,863 671 E host range, ankyrin-
like(203,	
  204) RFV148R 0.74 0.00E+00 

S148 142,867 144,337 490 E host range, ankyrin-
like(204,	
  205) M149R 0.84 0.00E+00 

S149 144,798 145,044 78 E serpin (SERP-2); truncated, 
frameshift(206,	
  207) M151R NA NA 

S150 146,364 146,502 46 L unknown 
28S rRNA 
gene frag., 

O. cuniculus 
0.87 5.00E-08 

S151 147,255 146,582 224 E ERK-2/NF-kB 
inhibition(208) M154L 0.76 9.00E-117 

S152 147,425 147,656 77 E 
IFN resistance, 

eIF2α homologue, PKR 
inhibitor(29,	
  209,	
  210) 

RFV008.2L 0.80 7.00E-34 

S153 148,199 149,735 512 E putative E3 Ub ligase, kelch 
repeat(58) M006L 0.68 0.00E+00 

Table 4.5 SQFV genome annotation table 

The annotated ORFs in SQFV are represented with the nucleotide position of the start and stop codons. 

Predicted lengths of translated proteins for each ORF are given in amino acids. A putative function was 

assigned based on the function of orthologous proteins. Amino acid sequence identities were calculated 

with BLASTx for the translated nucleotide sequences compared to the listed ortholog (best match). 

Putative early (E), intermediate (I), late/post-replicative (L) or early/late (E/L) promoter designations are 

listed. 
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 Phylogeny of squirrel fibroma virus 

With the complete genome sequenced, we wanted to determine the phylogenetic 

relationship of the SQFV to the other poxviruses, and particularly to the other leporipoxviruses. 

Previous studies inferred the phylogeny of the SQFV based on sequence comparisons of the 

DNA polymerase encoded by S038 (corresponding to VACV E9L) and a conserved membrane 

fusion protein encoded by S062 (corresponding to VACV G9R). From these analyses, the SQFV 

was placed on the same branch with MYXV and RFV within the cluster of Clade II poxviruses 

(7, 211). Using a concatenated alignment of 23 single-copy protein sequences, which are present 

in 38 fully sequenced poxvirus genomes (Tables 4.3 and 4.4), we generated a maximum-

likelihood tree that depicts the evolutionary relationship of the SQFV to other poxviruses (Fig 

4.2).  

 
Figure 4.2 SQFV is the most divergent leporipoxvirus. 

A maximum-likelihood tree of 38 fully sequenced poxviruses including SQFV was generated from an 

alignment of 23 concatenated single-copy gene protein sequences conserved in all the poxviruses 

analyzed. Bootstrap values (100 replicates) above 50 are indicated at each junction and branch 

separations with bootstrap values less than 50 were collapsed into a single branch tip. Branch lengths 

are measured in base-pair substitutions per site. Abbreviations for poxvirus species are described in 

Table 4.4. 
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The tree was rooted to melanoplus sanguinipes entomopoxvirus (MSEV) and amsacta 

moorei entomopoxvirus (AMEV), which represent a separate sub-family within Poxviridae. All 

major branches were supported by high bootstrap values. In agreement with a previous report, 

salmon gill poxvirus (SGPV), crocodilepox virus (CRV), and canarypox (CNPV) and fowlpox 

(FWPV) viruses branched off at the base of the Chordopoxvirus clade (16). As predicted, SQFV 

was found in a monophyletic clade with RFV and the two MYXV strains (Lu and MSW), 

confirming the close evolutionary relatedness of SQFV with the other leporipoxviruses. The tree 

also showed that the two genetically distinct European laboratory (Lu, Lausanne) and 

Californian (MSW) MYXV strains and RFV are more closely related to one another than to 

SQFV. 

 Transcriptional regulation 

The upstream sequences of 42 putative early, 52 late, or 8 intermediate ORFs, as 

classified by the designation of their MYXV and RFV orthologs, were analyzed for common 

sequence motifs within each promoter class (Table 4.2). From this analysis distinct early 

promoter and late promoter motifs were identified (Fig 4.3), which are similar to the classical 

poxvirus promoter sequence motifs, however, we were not able to differentiate intermediate and 

late-stage post-replicative motifs (1, 212-214). Intermediate promoters motifs are less well 

conserved than the characteristic early and late promoter motifs and for several intermediate 

promoters identified in VACV, late promoter elements and late promoter activity could also be 

observed (212). We then used the identified motifs to search for similar promoter motifs in the 

upstream sequences of all the annotated ORFs in the SQFV genome and assigned each with a 

putative transcriptional class (Table 4.5). 
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Figure 4.3 SQFV early and late promoter motifs. 

SQFV promoter motifs were identified from sequences upstream of each gene using the motif 

identification program implemented in MEME. The frequency of occurrence of a nucleotide in each 

position in the early and late promoter motifs for the initial analysis is indicated to show the consensus 

motif sequence. SQFV early and late promoter motifs are similar to those identified in RFV (1), but no 

clear intermediate promoter motif was identified in this analysis. 

 Genetic differences between squirrel fibroma virus and other leporipoxviruses 

 Identification of regions of dynamic gene loss/fragmentation in leporipoxviruses 

Gene deletion and fragmentation is commonly observed in poxviruses due to insertion 

and deletions (indels) as well as disruptions of ORFs caused by premature stop codons, which 

have the potential to greatly impact viral gene expression, host tropism and virulence and 

therefore can have a great influence on the evolution of these viruses.  

The genomic region corresponding to ORFs M131R to M139R in MYXV has 

experienced a high frequency of gene loss and fragmentation in the Leporipoxvirus lineage. In 

RFV, ORFs 135R, 136R, and 139R corresponding to M135R, M136R, and M139R in MYXV, 

are all fragmented with the remaining sequences not predicted to produce functional proteins 

(Fig. 4.5) (1). Similarly, SQFV contains a small, truncated fragment of M138L and only 

fragmentary remains of an ortholog of M131R, while ORFs corresponding to M134R and 

M135R are completely absent from the genome (Table 4.6). Genes M131R and M138L are 

homologs of host derived superoxide dismutase (SOD) and α-2, 3-sialyltransferase in MYXV, 
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respectively, and orthologs of both are present in RFV (Fig. 4.4, Table 4.6) (1). Interestingly, the 

M131R ORF is also disrupted in MYXV-MSW, which was isolated in California, but otherwise 

all sequenced chordopoxviruses encode genes for a homolog of SOD suggesting its importance 

for poxvirus virulence or immune regulation (Fig. 4.5) (1, 215-217). Additionally, MYXV 

strains lacking M138L have been experimentally shown to be attenuated in vivo (196). While the 

incomplete loss of these ORFs from the SQFV genome may indicate a relatively recent loss of 

these genes in SQFV, whether their loss is a result of a change in the host range of SQFV or 

contributes to the different host tropism of this virus compared to the other leporipoxviruses 

remains to be tested.  

 

 
Figure 4.4 Genomic region of dynamic gene loss and fragmentation in leporipoxviruses. 

There are multiple occurrences of gene fragmentation or gene loss in MYXV-MSW, RFV and SQFV in the 

genomic region corresponding to ORFs M131R to M139R in MYXV. The gene loss and fragmentation 

appears to have occurred independently in each with only one missing gene common between RFV and 

SQFV and between MYXV-MSW and SQFV.  

  

  

Gene$ MYXV)
Lu$

MYXV)
MSW$ RFV$ SQFV$

M131R% ✔% X$ ✔% X$

M132L% ✔% ✔% ✔% ✔%

M133R% ✔% ✔% ✔% ✔%

M134R% ✔% ✔% ✔% X$

M135R% ✔% ✔% X$ X$

M136R% ✔% ✔% X$ ✔%

M137R% ✔% ✔% ✔% ✔%

M138L% ✔% ✔% ✔% X$

M139R% ✔% ✔% X$ ✔%
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MYXV RFV SQFV Predicted function 
M000.5L/R Absent Absent unknown 
M001L/R RFV001L/R Absent secreted chemokine 

binding protein 
M002L/R RFV002L/R Absent TNF-R homolog 
M003.1L/R RFV003.1L/R Absent NF-κB signaling inhibitor 
M004L/R RFV004L/R Absent apoptosis regulator 
M005L/R RFV005L/R Absent E3 Ub ligase 
M006L RFV006L  Absent kelch repeat 
M007L/R RFV007L/R Absent IFN-γ receptor homolog 
M008L/R RFV008L/R Absent kelch repeat 
M008.1L/R fragmented Absent SERP-1 
M009L (509aa) RFV009L (partially 

duplicated, 510aa) 
S013L (truncated, 
partial duplication of 
S153R, 131aa) 

kelch repeat 

M023R (61aa) RFV023R (35aa) S027R (32aa) late protein 
M129R (136aa) RFV129R (78aa) S132R (79aa) myristylated protein 
M131R  RFV131R  fragmented Cu/Zn SOD homolog 
M134R RFV134R Absent glycoprotein, unknown 
M135R fragmented Absent IL-1/6 receptor homolog 
M136R fragmented S136R A52R-like, bcl-2 fold 
M138L (290aa) RFV138L (290aa) S138R (truncated, 

36aa) 
α-2,3-sialyltransferase 

M139R fragmented S139R A52R-like, bcl-2 fold 
M150R  fragmented fragmented NF-κB inhibition 
M151R (333aa) RFV151R (333aa) S149R (frameshift 

truncation, 78aa) 
SERP-2 

M152R fragmented Absent SERP-3 
M153R RFV153R Absent RGD motif 

Table 4.6 A comparison of leporipoxvirus gene differences. 

A comparison was made for all differences in the gene content of the three leporipoxvirus species with 

respect to the MYXV orthologs. Genes listed as absent are entirely missing from the genome, while genes 

listed as fragmented still have some remaining gene fragments. Truncated genes are indicated with the 

deduced protein length listed. 



202 

 

 
Figure 4.5. Gene inactivation and gene loss in leporipoxvirus genomes. 

Horizontal lines represent the genomic sequence corresponding to the region between M150R and 

M153R (A) or M131R and M139R (B) in MYXV-Lu and the orthologous sequences in MYXV-MSW, RFV 

and SQFV. ORFs are represented by brown boxes or striped orange boxes for orthologous sequences that 

are present but are not predicted to be expressed (not drawn to scale). Base pair insertions (blue 

triangles) or deletions (inverted green triangles) present in ORFs, which lead to frameshifts are indicated 

with the number of nucleotides inserted or deleted listed above. Inactivation of the start codon in RFV 

139R is shown with a red “x”, but many other inactivating indels are present within this ORF. The 

insertion of an early stop codon in the SQFV 131R ortholog is indicated with a red circle.  The dashed 

line indicates the orthologous sequence is missing. 

 Loss of other potential immunomodulatory genes in the squirrel fibroma virus 

Because of the distinct phenotype and high pathogenicity of MYXV in E. rabbits, several 

genes in MYXV have been characterized as having a role in modulating the host immune 

response through their experimental deletion from the virus (218). Many of these genes are also 

conserved in RFV and likely perform similar functions in this virus. There are some important 

differences, however, that may contribute to the low pathogenicity of RFV in E. rabbits and 

therefore could also play a role in the virulence of SQFV in its host species (1). 
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Serine protease inhibitors (serpins) are a large family of proteins that inhibit proteolytic 

cleavage by other proteases (219). In poxviruses serpins are important for inhibiting the 

apoptotic and inflammatory response. SQFV does not encode any functional copies of orthologs 

to the MYXV serpin family genes M008.1R/L, M151R, or M152R (also known as SERP-1, 

SERP-2, and SERP-3, respectively). Of the three serpin genes found in the MYXV (Lu) genome, 

M151R and M152R are fragmented or interrupted by multiple indels in both the RFV and 

MYXV-MSW genomes, and both are completely absent from the SQFV genome (Table 4.6 and 

Fig. 4.5). SERP-1 (M008.1L/R) regulates the inflammatory response during MYXV infection 

(220, 221) and has been used as an anti-inflammatory agent in humans (222). SERP-3 (M152R) 

is a virulence factor for MYXV (223) and SERP-2 (M151R) is an inhibitor of the interleukin-1β-

converting enzyme blocking inflammation (206). In SQFV, the S149 ORF encodes a nearly 

complete ortholog of M151R, which is the only intact serpin gene found in RFV or MYXV-

MSW. However, a two-base pair insertion 182 nucleotides into the ORF causes a frameshift that 

is predicted to result in a truncated protein containing only 78 amino acids (Tables 4.5 and 4.6). 

Another single base pair insertion occurs 401 nucleotides downstream of the first insertion that 

would further disrupt the ORF, suggesting that this gene is likely not functional in SQFV (Fig. 

4.5). 

Additionally, the right end of the genome corresponding to ORFs M150R to M156R in 

MYXV is highly variable between the different leporipoxviruses. In MYXV, the protein product 

of M150R blocks inflammation induced by NF-κB (224). A very small fragment of this ORF is 

still identifiable in the SQFV genome between ORF S148 and S149 but is likely not expressed. 

This gene is also fragmented in RFV as well as in the left ITR of MXYV-MSW, although the 

right ITR of MYXV-MSW contains an intact full-length copy of M150R that may compensate 

for the fragmentation of the other copy (Fig. 4.5). M153R in MYXV has a predicted RGD motif, 

which is found in integrin family proteins and is important for mediating cell attachment. This 

protein has been shown to down-regulate expression of MHC-I and surface molecules that are 

important for attracting immune cells (225, 226). A complete copy of this gene is present in the 

RFV genome but is missing entirely from the SQFV genome. The absence of any fragment of 

orthologs for both M152R and M153R indicates that these genes were probably lost together in a 

single genomic excision event. A single copy of orthologs to MYXV M154L and M156R are 

both present in SQFV, but in RFV, the ortholog of M156R is duplicated and ORFs 
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corresponding from M150R to M156R in MYXV-MSW are also duplicated in both ITRs. The 

proximity of these ORFs to the ITR boundary has likely contributed to the variation in gene copy 

number in RFV and the MYXVs since their divergence (1, 215, 227). 

Genes orthologous to MYXV M001L/R, M002L/R, M003.1L/R, M004L/R, M005L/R, 

M006L/R, M007L/R, M008L/R, and M008.1L/R are all absent from the SQFV genome but are 

present in RFV (Table 4.6). The ortholog of M009L in SQFV is also truncated and is likely not 

functional. The loss of all of these genes, which include homologs of tumor necrosis factor 

(TNF) and interferon (IFN)-γ receptors, inhibitors of NF-κB signaling and apoptosis, a secreted 

chemokine and a serpin probably impacts the modulation of the host immune response by SQFV. 

 Potential horizontal gene transfer  

It is established that many poxvirus genes probably originated from their hosts as several 

still have a high sequence identity with their host gene homologs. The superoxide dismutase 

(SOD) from RFV, for example, still bears a remarkable resemblance to mammalian SODs (1), 

and the homolog of vascular endothelial growth factor found in many poxviruses is thought to be 

a modified version of similar host proteins (228). Considering that the entire replication cycle of 

poxviruses takes place in the cytoplasm, the mechanism for how they are able to incorporate host 

genes into their genome is unknown. Nevertheless, the horizontal transfer of genes from host to 

virus has played an important role in the evolution of this family of viruses. Between the ORFs 

S149 and S151, corresponding to M151R and M154R in MYXV, there is a short 46 amino acid 

long ORF for which part of the coding sequence is most similar to a fragment of the 28S rRNA 

gene from the E. rabbit (Fig. 4.6; Table 4.5). We also identified the same unique ORF in a SQFV 

isolate collected from an infected squirrel (SQFV-CDC). We tentatively annotated this ORF as 

S150 but its classification as a true ORF that is expressed during SQFV infection still needs to be 

evaluated. The identification of a putative late/post-replicative promoter motif 41bp upstream of 

the annotated start codon provides evidence to support the potential expression of this ORF and 

its classification as a novel gene in SQFV acquired horizontally from a mammalian host.  
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Figure 4.6 Multiple sequence alignment of S150 and similar sequences in GenBank. 

Nucleotide sequences identified in BLAST searches with the S150 ORF were aligned in MUSCLE and 

trimmed manually to highlight the region of S150 that is homologous. Most homologous sequences 

identified were from the 28S ribosomal RNA gene. Nucleotides differing from the consensus are 

highlighted in orange and 100% identity is indicated with an asterisk. R.n.= Rattus norvegicus 

(NR_046246.1); M.m.= Mus musculus (NR_003279.1); O.c.= Orytolagus cuniculus (AF460236.1); H.s.= 

Homo sapiens (M27830.1). 

 Evidence for recombination with an orthopoxvirus  

In annotating the SQFV genome, we noted the high sequence identity of several genes 

within the SQFV ITR with orthopoxvirus genes. Despite the SQFV ITR being nearly twice as 

long as that of either RFV or MYXV, many of the genes found in the ITR region of RFV and 

MXYV are missing in SQFV (Table 4.6). We therefore decided to analyze the relative sequence 

identity levels of each ORF in the SQFV ITR with orthologs from poxvirus species representing 

different genera to determine the most closely related sequences and infer the origin of the genes 

(Fig 4.7). We used cowpox virus GRI (CPXV) and raccoonpox virus (RCPV) to represent old-

world and new-world Orthopoxviridae (OPV) member species, respectively, as well as sheeppox 

virus (SPPV), deerpox virus (DPV), RFV and MYXV to represent other Clade II viruses. 

The first six ORFs in the SQFV ITR showed the highest protein sequence identity to the 

orthologs from the OPV representatives, with an average identity of 69.6% to RCPV proteins 

and 77.1% to CPXV proteins for all six ORFs. None of the orthologs of these ORFs from the 

Clade II poxviruses exhibited more than 35% amino acid sequence identity to the SQFV 

proteins, and a few were not encoded by some or all Clade II poxviruses. Three out of the first 

ten ORFs in the SQFV ITR represent novel proteins in the Leporipoxvirus genus having no 

!
!
SQFV-Kil S150        GGGGCCACCCTC-CGCCCGTCACGC--AACGCACGTTCGTGGGGAACCTGGCGC!
SQFV-CDC S150        GGGGGCACCCTC-CGCCCGTCACGC--AACGCACGTTCGTGGGGAACCTGGCGC!
R.n. 28S rRNA        GGGGCCGCCCTCTCGCCCGTCACGCTTAACGCACGTTCGTGTGGAACTTGGCGC!
M.m. 28S rRNA        GGGGCCGCCCTCTCGCCCGTCACGTTGAACGCACGTTCGTGTGGAACCTGGCGC!
O.c. 28S rRNA        GGGGCCGCCCTCTCGCCCGTCACGC--ACCGCACGTTCGTGGGGAACCTGGCGC!
H.s. 28S rRNA        GCGGCCGCCCCCTCGCCCGTCACGC--ACCGCACGTTCGTGGGGAACCTGGCGC!
                     * ** * *** * ***********   * ************ ***** ******!
!
!
SQFV-Kil S150        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCATA-GGAGCAGAG!
SQFV-CDC S150        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCATA-GGAGCAGAG!
R.n. 28S rRNA        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCGTACGTAGCAGAG!
M.m. 28S rRNA        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCGTACGTAGCAGAG!
O.c. 28S rRNA        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCGTACGTAGCAGAG!
H.s. 28S rRNA        TAAACCATTCGTAGACGACCTGCTTCTGGGTCGGGGTTTCGTACGTAGCAGAG!
                     **************************************** ** * *******!
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comparable orthologs in either MYXV or RFV (S002, S003, and S010), while the remaining 

seven deduced proteins exhibited only a minimal identity with corresponding leporipoxvirus 

proteins (18.8-33% amino acid sequence identity).  

 
Figure 4.7 Protein sequence identities of SQFV ITR genes to poxvirus orthologs. 

Protein sequences of the first 14 genes in the ITR of SQFV were aligned with orthologous proteins from 

representatives of the Orthopoxvirus clade (cowpox-GRI and raccoonpox viruses), Clade II poxviruses 

(sheeppox and deerpox viruses) and Leporipoxvirus genus (myxoma and rabbit fibroma viruses). Percent 

identity from individual protein multiple sequence alignments were calculated with MegAlign and are 

plotted for each ORF. Where no orthologous protein was present, there is no bar shown. 

 

Deduced proteins encoded by ORFs S007 through S010 exhibited only moderate identity 

levels to any of the orthologs from the poxviruses tested (highest identity was 58.0% for S008 to 

ORF 139 from SPPV). Both S008 and S010 exhibited relatively high sequence identity to 

orthologs from SPPV and DPV suggesting these genes might have originated from a related 

Clade II poxvirus. This may also be the case for S007 and S009, which had the highest sequence 

identity with the ortholog from DPV, although the overall protein sequence identity for these 

ORFs was much lower (32.4% and 24.1% identity, respectively). Only proteins corresponding to 

ORFs S011 through S014 (S014 being the first ORF outside of the ITR) showed the highest 

identity to leporipoxvirus orthologs. Two of these four proteins in fact have no ortholog in either 

OPV analyzed (S011 and S012). 
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Figure 4.8 Phylogenetic analysis of SQFV ORF S004/S162 indicates recombination with an old-

world OPV. 

A midpoint-rooted maximum-likelihood tree was generated from the alignment of the OPV-like protein 

sequence of S004/S162 in the SQFV ITR with orthologs from 25 other poxviruses. Bootstrap values above 

50 (100 replicates) for branch separations are indicated. The placement of the SQFV protein suggests 

that it is more closely related to orthologous proteins from old-world OPVs than to the ortholog in 

raccoonpox virus, a North American OPV. 

 

To better understand the origin of the OPV-like ORFs, we generated a maximum-

likelihood tree generated from the alignment of the protein sequence encoded by the fourth ORF 

(S004) in SQFV, for which there are orthologs from 25 other poxviruses (present in a single 

genomic copy). This ORF encodes a gene orthologous to VACV-WR B14R (CPXV B13R), 

which is a virulence factor for VACV that interferes with NFκB signaling by inhibiting the IκB 

kinase (IKK) (47, 48). The SQFV protein encoded by S004 was clearly separated from the Clade 

II poxviruses and the leporipoxviruses and instead nested with orthologous proteins from 

orthopoxviruses (Fig. 4.8). Interestingly, this analysis predicted S004 to be more closely related 

to orthologs from the group of so-called “old-world” poxviruses rather than to the North 
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American poxvirus protein from RCPV, which is in agreement with the slightly higher sequence 

identity of SQFV ORFs S001-S006 with CPXV than with RCPV protein orthologs. 

 Analysis of a distinct squirrel fibroma virus isolate 

In 2008, the Centers for Disease Control and Prevention (CDC) Poxvirus and Rabies 

branch identified a squirrel in Ohio, USA that had several nodular lesions on its body during a 

baiting experiment for a vaccinia-vectored rabies vaccine (Fig 4.9). DNA collected from the 

lesions did not yield positive results for vaccinia virus in OPV-specific assays. Diagnostic PCR 

was done at that time using pan-pox primers amplifying a highly conserved RNA polymerase 

subunit, which identified the causative agent to be SQFV. We obtained two squirrel lesion 

samples from the CDC and used the homogenized lesion material to attempt amplification of the 

virus in cell culture. Our several attempts to grow the virus were largely unsuccessful, as were 

attempts made at the CDC. However, we were able to isolate viral DNA from our infected cell 

cultures and amplify SQFV-specific genomic regions by PCR (Fig 4.10).  

 

 
Figure 4.9 Fox squirrel lesions from presumable SQFV infection. 

In 2008, during a CDC directed vaccinia-vectored rabies vaccine baiting experiment in Ohio, a female, 

juvenile fox squirrel with multiple nodular lesions was identified. Lesions were present over the entire 

body including the back (dorsal area pictured in A) and limbs (right hind limb pictured in B). Photo 

credit: Gallardo-Romero, N. Centers for Disease Control and Prevention, Poxvirus and Rabies Branch. 

 

The SQFV-Kilham strain was originally isolated in 1952 from six gray squirrels in 

Maryland, and the virus was subsequently passaged twice in gray squirrels, four times in 

A study of leporipoxvirus-like squirrel fibroma virus
Yu Li, Hui Zhao, Nadia Gallardo-Romero, Ginny Emerson, Darin Carroll, Charles Rupprecht and Inger Damon 

Poxvirus and Rabies Branch, DHCPP (proposed), NCEZID (proposed), Centers for Disease Control and Prevention, Atlanta, GA, USA.
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conserved RNA polymerase subunit genes shows that two viral isolates are more 

than 99% identical to each other. However, two viral isolates demonstrated 

different cytopathic effect in cell cultures. 
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Figure 2. The fox squirrel lesion. 

Disclaimer
"The findings and conclusions in this report are those of the author(s) and do not necessarily represent 
the official position of the Centers for Disease Control and Prevention/the Agency for Toxic Substances 
and Disease Registry."

The squirrel fibroma was first identified in grey 

squirrels (Sciurus carolinensis) in Maryland counties in 

1952.  The cross-neutralization tests showed it is related to 

Shope rabbit fibromas. Early squirrel fibroma was reported 

most commonly along the eastern coast and in grey 

squirrels (Fig.1), however it also was identified in other 

squirrel species, including fox squirrels (Sciurus niger) and 

Western gray squirrels (native in the Pacific West) (Fig. 1). 

Recently, this disease was reported in the American Red 

Squirrel (Tamiasciurus hudsonicus) in northern Indiana and 

in Northwestern Canada. The red squirrel has one of the 

widest distributions of any North American squirrel (Fig. 1). 

The phylogenetic analysis of the squirrel fibroma viral 

isolates (SFV) shows that SFV are closely related to the 

genus leporipoxvirus. Our literature review suggested 

squirrel fibromatosis is not an infrequent, native, zoonotic 

poxvirus disease in North American.

DNA was extracted from the squirrel lesion and Squirrel fibroma virus strain ATCC VR-

236™.  Rabbit    kidney    cells  line  RK13  was  used  for  the  cell  culture  of  the  specimen  and  SFV  

VR-236. Pan-pox lowGC PCR assay: Forward primer: ACA CCA AAA ACT CAT ATA ACT TCT,  

Reverse primer: CCT ATT TTA CTC CTT AGT AAA TGA T. PCR conditions: each reaction 

(50 μL)  contained  1X    PCR  buffer,  200  μM  dNTP mix, 250 μM  MgCl2 , 6U DNA polymerse, 

20μM each primer. Thermocycling conditions: 2 min at 92C, followed by 30 cycles of 92C for 

10 sec, 50C for 30 sec, and 68C for 60 sec. PCR amplicons were sequenced on ABI 3130XL 

Genetic Analyzer following standard protocols. 

In 2008, during oral rabies vaccine (a vaccinia-

vectored rabies glycoprotein G construct) baiting in Ohio, a 

fox squirrel with multiple nodular lesions was recovered in 

the field. The lesions from the squirrel (Figure 1) were tested 

with orthopoxvirus generic and vaccinia virus specific assays 

and rule out the possibility of the infection of oral rabies 

vaccine. Using a newly developed pan-pox lowGC PCR 

assay, an PCR amplicon was generated from the lesion 

material and the sequences of the amplicon showed that 

sequence is similar to the known leporipoxviruses. The 

original SFV isolates deposited in ATCC was obtained for 

futher characterization and comparison to understand the 

evolution of SFV in North America.

SFV 100% CPE in 
RK13

Fox squirrel Lesion 
5 in RK13

RK13  NEG CONTROL

Figure 1. Geographic distribution of  
squirrel species that are susceptible to 
SFV. 

Figure 3. cell culture comparison of 
SFV2008_040 and SFV_VR236. 

Figure 4. phylogeny of SFV2008_040 and SFV_VR236 
from DNA polymerase gene. 

During oral rabies vaccine (a vaccinia-vectored rabies glycoprotein G construct) baiting 

in Ohio, a squirrel, with multiple nodular lesions, was recovered in the field. Both 

orthopoxvirus generic and vaccinia virus specific assays, testing DNA extracted from the 

lesion, were negative. Additional poxvirus diagnostics, using a newly developed pan-pox low 

GC PCR, identified an amplicon from the lesion material to have sequence similarity to a 

leporipoxvirus-like poxvirus. A literature search shows that squirrel fibroma virus was isolated 

and characterized over 30 years ago in the Eastern and Northeastern US. Squirrel fibroma 

virus isolate ATCC VR-236™  was  obtained  from  ATCC  for  comparison  with  the  newly  isolated  

sample. Limited DNA sequence comparison of highly conserved RNA polymerase subunit 

genes shows that two viral isolates are more than 99% identical to each other. However, the 

two viral isolates demonstrated different cytopathic effect in cell cultures. 

Although fox squirrels and Eastern gray squirresl have 

overlapping ranges of distribution in the U.S.,  the infected 

squirrel, with multiple nodular lesions (fig. 2), was likely a fox 

squirrel based on its size and abdominal fur color. After ruling 

out a vaccinia infection using orthopoxvirus assays, the 

extracted DNA was amplified using a newly developed pan-

pox low GC PCR (target RNA polymerase gene), which 

amplify all known Chordopoxviruses DNAs except those from 

Avipoxviruses and poxviruses with high GC contents. The 

amplicon sequence, about 220 bp in length, is 90% identical 

to that of Rabbit fibroma virus and is identical to the first 

archived squirrel fibroma virus (SFV_VR-236™)  from  50  

years ago. The newly isolated sample SFV2008_040 and 

SFV_VR-236™,  although  identical  based  on  partial  

sequences of the RNA polymerase subunit gene, shows 

biological differences in cytopathic effect on RK13 cells (fig. 

3). 

The phylogeny of 

SFV2008_40 and SFV_VR236 was 

inferred based on comparisons of 

the essential  viral DNA polymerase 

gene (3021 bp) DNA sequence 

alignments with that of other 

available chordopoxviruses (Fig.4). 

There are 2 SNPs between two 

SFV isolates among 3021 bp

alignments, suggesting that two 

SFV isolates are closely related 

although  likely isolated from 

different species of North American 

squirrels. Multiple genes or whole 

genome DNA sequence  

comparisons may provides 

Eastern gray squirrel
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a more complete understanding the evolution of SFV. SFVs and Myxoma virus /Rabbit fibroma 

virus share 86% identity of  DNA polymerase gene sequences and form a monophyletic clade, 

suggesting that SFV is a sister species to the Myxoma virus/Rabbit fibroma species in 

Leporipoxvirus genus.

A" B"



209 

 

woodchucks and twice in domestic cottontail rabbits (4). To dispel concerns that the passaging of 

the virus might have introduced mutations not present in the original wild variants, we used PCR 

to amplify and sequence several genomic regions of the SQFV isolate from Ohio (SQFV-CDC). 

Twelve amplified regions were sequenced and compared to the SQFV-Kilham reference genome 

covering a total of 5.5kb, and altogether six differences between the two strains were identified 

(99.7% nucleotide sequence identity) with two differences resulting in predicted amino acid 

differences in coding regions (Fig 4.11). The remaining sequence variations were present in 

intergenic regions and near repetitive nucleotide sequences.  

 
Figure 4.10 SQFV-CDC isolate DNA PCR.  

DNA isolated from infected RK13 or BSC-1 cells was used as template for PCR analysis with primers 

specific for the recombination site in the ITR, two SQFV-specific gene regions outside of the ITR and one 

conserved gene using universal poxvirus primers.  

 

Of the regions sequenced from the SQFV-CDC, two regions of particular interest were 

the recombination site in the ITR and the putative host acquired ORF S150. The presence of the 

recombination site that lies between ORFs S006 and S007 separating the OPV-like genes from 

the rest of the ITR was verified in the wild SQFV isolate DNA and was identical in sequence to 

the SQFV-Kilham strain sequence. Additionally, a positive PCR product was generated using 

primers targeted within the S001 B22R ortholog suggesting that at least one of the OPV-like 

ORFs is present in the wild SQFV strain. The presence of the putative ORF S150 was also 

confirmed in the wild strain with only one single nucleotide polymorphism identified that, if 
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1)  recombination site in ITR 
2)  S076R, internal gene 
3)  S149R, internal gene 
4)  S046L, universal poxvirus primers 

VACV-
Cop 

RK13 
 

BSC-1 
 

water 
 

SQFV-
CDC 

BSC-1 

SQFV-CDC 
RK13 

SQFV-
Kilham 

1  2   3  4  5   6  7  8  9  10 11 12    13  14  15  16  17  18 19  20   21 22  23  24  25  26  27 28 

500bp 
1kb 



210 

 

expressed, would result in a proline to alanine amino acid change in the translated protein (Figs. 

4.6 and 4.11).  

 

 
Figure 4.11 Map of SQFV regions amplified by PCR and confirmed by Sanger sequencing. 

In the genome map, the ITR of the SQFV is shown in red and the remaining genomic region is shown in 

light blue. Regions amplified by PCR to confirm the correctness of the sequence in the SQFV-Kilham 

strain are represented by yellow or purple bars (bar width is an approximation of region covered; actual 

PCR lengths are detailed in Table 4.1). Regions amplified and sequenced from the SQFV-CDC isolate 

strain are represented by dark blue or purple bars. Purple bars are regions of the genome that were 

confirmed by Sanger sequencing in both the SQFV-Kilham and SQFV-CDC strains. Differences between 

the SQFV-CDC isolate strain sequence and the SQFV-Kilham strain are indicated with an asterisk above 

the amplified region. The nucleotide position for each genetic difference shown corresponds to the site in 

SQFV-Kilham. Differences that occur within a coding region are highlighted in pink, including the SNP 

in the putative horizontally transferred gene S150, which results in a Pro to Ala change if expressed. All 

other observed differences occur in intergenic sequences and are not predicted to result in differences in 

protein coding or expression. 

 

 Squirrel fibroma virus replication in cell culture 
The SQFV has not been extensively characterized experimentally apart from early reports 

of animal infections after the initial isolation (4) and epidemiological reports from its sporadic 

emergence in squirrels (10, 14). To understand and characterize the replication of the SQFV in 

cell culture, we infected RK13 cells with the SQFV-Kilham and monitored its replication over 

96 hours (Fig. 4.12). SQFV infection of RK13 cells did not cause plaque formation but only 

resulted in the formation of very small foci, which were difficult to clearly differentiate from the 
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normal accumulation of cell debris in confluent cell monolayers. Only infection foci large 

enough to be clearly identified were counted to reduce false positives from counting uninfected 

cell clusters. Thus the determined titers were likely lower than the actual titers. In order to obtain 

a virus for which replication could be more easily and reliably monitored, we engineered a 

SQFV that expresses the red fluorescent protein mCherry driven by a synthetic poxvirus 

early/late promoter (229). The mCherry gene was integrated into the intergenic region between 

S135 and S136 genes, which corresponds to the region that was previously used to generate a 

GFP-expressing MYXV (31). Additionally, we tested SQFV replication in BHK-21 since several 

viruses replicate well in these cells to see if higher virus titers could be obtained. The infection 

kinetics of the SQFV-mCherry virus was tested in RK13 (Fig 4.13) and BHK-21 (Fig 4.14) cells 

over a four-day period. SQFV-mCherry exhibited similar growth kinetics as the parental SQFV-

Kilham virus in RK13 cells, although the parental virus appeared to reach titers ~8X lower than 

the SQFV-mCherry after 96 hours of infection, which was likely due to an underestimation of 

the foci generated by SQFV-Kilham.  

The SQFV displayed a delayed replication phenotype compared to the other 

leporipoxviruses tested as well as vaccinia virus (Fig 4.13 and 4.14). A noticeable drop in titer 

from 0 hours post infection (hpi) was consistently observed after 12 hours of infection, likely 

representing the viral eclipse phase. Virus titers then quickly recovered to levels above input by 

24hpi. Replication of both the SQFV-Kilham and SQFV-mCherry viruses increased 

logarithmically over the 96-hour period and eventually reached titers similar to both of the other 

leporipoxviruses, whose titers reached a plateau by 72hpi. From monitoring mCherry expression, 

the SQFV-mCherry continued to replicate beyond 120hpi (5 days) in both BHK-21 and RK13 

cells (Fig 4.16 and data not shown). By comparison, RK13 cells infected with MYXV-GFP were 

visibly saturated with GFP by 72hpi (Fig 4.15), and cells infected with VACV-GFP were 

saturated by 48hpi, while SQFV-mCherry infected cells never completely disseminated through 

the monolayer nor reached visible saturation of the fluorescent signal. The VACV-GFP infected 

RK13 and BHK-21 cells were completely detached by 96hpi and were therefore disposed after 

this time. Thus no image was collected for the 5dpi time point for this virus (Figs 4.15 and 4.16). 

The replication kinetics of SQFV-mCherry in BHK-21 cells was very similar to its replication in 

RK13 cells and was even slightly better than RFV replication in these cells surpassing titers 

reached by RFV at 72hpi and steadily increasing after that (Fig 4.14). 
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Figure 4.12 Replication of SQFV-Kilham in RK13 cells. 

Confluent monolayers of RK13 cells in 6-well plates were infected with SQFV-Kilham at estimated 

MOI=1 and MOI=0.01. Titers were measured by counting focus forming units (ffu) on RK13 cells. Error 

bars represent the standard deviation of two independent replicate infections. 
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Figure 4.13 Replication kinetics of SQFV-mCherry and other poxviruses in RK13 cells. 

Confluent monolayers of RK13 cells in 6-well plates were infected with SQFV-Kilham-mCherry (SQFV-

mC), MYXV-Lu-GFP (MYXV-GFP), VACV-WR-GFP (VACV-GFP), or RFV at MOI=0.01. Titers were 

measured by counting focus forming units (ffu) or plaque forming units (pfu, for VACV) on RK13 cells. 

Error bars represent the standard deviation of three independent replicate experiments. 
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Figure 4.14 Replication kinetics of SQFV-mCherry and other poxviruses in BHK-21 cells. 

Confluent monolayers of BHK-21 cells in 6-well plates were infected with SQFV-Kilham-mCherry 

(SQFV-mC), MYXV-GFP, VACV-GFP, or RFV at MOI=0.01. Titers were measured for the indicated 

time points by counting focus forming units (ffu) or plaque forming units (pfu, VACV-GFP) on 

RK13+E3L+K3L cells and are displayed on a logarithmic scale.  
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Figure 4.15 SQFV-mCherry forms tight foci of infection on RK13 cells. 

Using the mCherry expressing SQFV (mC), replication of the SQFV could be easily monitored and 

compared to other fluorescent viruses from MXYV (Lu) and VACV (WR). Confluent monolayers of RK13 

cells in 6-well plates were infected with each virus at MOI=0.01 and pictures were taken of the infected 

wells daily (100X magnification). All images of mCherry fluorescence were taken using a 600ms exposure 

time, while GFP fluorescent images were exposed for 300ms for days 1 and 2 post infection and 100ms 

for days 3-5 post infection due to the high intensity of the fluorescence at these times. 

 

A cytopathic effect could be observed and compared for all four viruses in the RK13 

cells, but none of the leporipoxviruses caused a visible cytopathic effect in the BHK-21 cells. At 

24hpi only very small foci of SQFV-mCherry replication could be observed in RK13 cells 

compared to the large plaques formed by VACV-GFP and the large foci formed by MYXV-GFP 

(Fig 4.15). The size and brightness of the mCherry expressed from infection foci continued to 

increase over the study period, but the spread of the virus from the initial sites of infection was 

limited compared to that observed for MYXV-GFP. Some secondary infection foci were 

observed by 96hpi (4 days) in the SQFV-mCherry infected RK13 cells, but the majority of virus 

produced appeared to be restricted to the original cluster of infected cells. This may suggest 

inefficient viral spread, which may have an impact on the pathogenicity of this virus in its host. 

Attempts to express mCherry in RFV from the same genomic location as SQFV were 
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unsuccessful, but foci formed by RFV in the RK13 cells were easily identifiable by light 

microscopy. We observed a steady increase in infection focus size for RFV over the study period 

as well in the RK13 cells. By size comparison, RFV foci were larger and covered a larger 

proportion of the well than SQFV-mCherry at the same time points but were slightly smaller in 

size than those formed by MYXV-GFP. It is noteworthy, however, that in some experiments, 

RFV actually reached higher titers than MXYV-GFP at earlier time points in RK13 cells (Fig 

4.17). These qualitative observations of the infection progression directly correspond to the 

observed titers for the SQFV-mCherry compared to both leporipoxviruses and VACV-GFP (Fig 

4.13).  

 

 
Figure 4.16 Replication of SQFV-mCherry, MYXV-GFP, and VACV-GFP in BHK-21 cells. 

Confluent monolayers of BHK-21 cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms unless 

otherwise noted.  
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Figure 4.17 SQFV-mCherry replication in mammalian cell lines compared to other poxviruses. 

Nine different mammalian cell lines were infected with SQFV-mCherry, MYXV-Lu-GFP, VACV-WR-

GFP, and RFV at an MOI = 0.01. Titers were measured by counting focus forming units (ffu) or plaque 

forming units (pfu) on RK13+E3L+K3L cells and compared for each infection at 0 and 48 hours post 

infection (hpi). Titers are displayed on a logarithmic scale. 

 

In addition, to assess the replication of SQFV-mCherry in both RK13 and BHK-21 cells, 

we tested and compared its replication in 7 other mammalian cell lines to investigate the host 
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MYXV-GFP. At 48hpi, both MYXV-GFP and VACV-GFP reached higher titers than SQFV-

mCherry in every cell line tested except in BHK-21 cells where SQFV-mCherry actually reached 

titers slightly higher than MYXV-GFP, which was not observed in the replication curve, 

although differences in input may explain this difference (Fig 4.14 and 4.17). Lower levels of 

GFP expression can also be observed from MYXV-GFP infected BHK-21 cells (Fig 4.16) 

suggesting MYXV does not replicate well in these cells. SQFV-mCherry actually reached higher 

titers than RFV in three of the tested cell lines (293T, NIH/3T3, and BHK-21), but RFV reached 

the highest titer of all three leporipoxviruses in the rabbit derived RK13 cells. VACV-GFP 

replicated to higher titers than the three other viruses in almost all cell lines tested, but MYXV-

GFP actually reached the highest titers by 48hpi in the African green monkey Vero cells. Vero 

cells lack a functional IFN response and were included in this analysis in an attempt to find a cell 

line that would yield high titers of the SQFV for amplification (230). However, SQFV-mCherry 

replicated to similar titers (~104 ffu/ml) in 6 of the 9 cell lines tested, including Vero cells. Only 

minimal replication was observed for SQFV-mCherry in human HeLa cells (~500 ffu/ml) with 

just a few small fluorescent foci observed (Fig 4.21). Chinese hamster CHO cells have 

previously been shown to be non-permissive to VACV infection without the expression of a 

CPXV gene, CP77 (231) and were included to test leporipoxvirus replication (Figs 4.17 and 

4.19). None of the four viruses were able to replicate in these cells including VACV-GFP, 

confirming previous results. Furthermore, none of the leporipoxviruses were able to replicate in 

rat (Rattus norvegicus) NRK cells, while VACV-GFP reached high titers in these cells by 48hpi 

(Figs. 4.17 and 4.18).  
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Figure 4.18 SQFV-mCherry (mC) replication in NRK cells. 

Confluent monolayers of NRK cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms. None 

of the leporipoxviruses replicated in the rat NRK cells, but there was high GFP expression from VACV-

GFP infections. 

 
Figure 4.19 SQFV-mCherry (mC) replication in CHO cells. 

Confluent monolayers of CHO cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms. No 

replication was observed for any of the viruses in these cells. 

1dpi% 2dpi% 3dpi% 4dpi%

SQFV-mC%

MYXV-GFP%

VACV-GFP%

1dpi% 2dpi% 3dpi% 4dpi%

SQFV-mC%

MYXV-GFP%

VACV-GFP%



220 

 

 
Figure 4.20 SQFV-mCherry (mC) replication in Vero cells. 

Confluent monolayers of Vero cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms unless 

otherwise indicated. Fluorescent foci formed in SQFV-mCherry infected wells were very small but 

continued to increase in size over time. GFP expression from MYXV-GFP and VACV-GFP infections was 

higher, particularly for MYXV-GFP. 

 
Figure 4.21 SQFV-mCherry (mC) replication in HeLa cells. 

Confluent monolayers of HeLa cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms. 

Fluorescent foci from MYXV-GFP infected cells were restricted in size compared to VACV-GFP foci. 
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Only a few mCherry expressing foci were observed in SQFV-mCherry infected wells, but most of the cells 

were not infected. 

 
Figure 4.22 SQFV-mCherry (mC) replication in 293T cells. 

Confluent monolayers of 293T cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms. 

Fluorescent foci for both MYXV-GFP and SQFV-mCherry increased in size at a similar pace, but foci 

formed by SQFV-mCherry did not spread as far as MYXV-GFP. 

 
Figure 4.23 SQFV-mCherry (mC) replication in NIH/3T3 cells. 

Confluent monolayers of NIH/3T3 cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms. 
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Fluorescent foci from SQFV-mCherry infected cells were less dense, but larger and brighter than foci 

from MYXV-GFP infected cells by 3dpi, whose replication was very restricted in these cells. 

 
Figure 4.24 SQFV-mCherry (mC) replication in BSC-1 cells. 

Confluent monolayers of BSC-1 cells in 6-well plates were infected with each virus at MOI=0.01 and 

pictures were taken of the infected wells daily (100X magnification). All images of mCherry fluorescence 

were taken using a 600ms exposure time, and all GFP fluorescent images were exposed for 300ms unless 

otherwise noted. VACV-GFP infected cells were discarded after 4dpi as cells were completely infected 

and detached. 

 

 Squirrel fibroma virus PKR inhibitors 

Work from our lab and others has shown that inhibition of the antiviral response induced 

by the host RNA-dependent protein kinase (PKR) is a critical barrier to infection for poxviruses 

including VACV and MYXV (25, 29). PKR is a protein that senses cytoplasmic dsRNA 

generated during a virus infection, and once activated, phosphorylates the alpha subunit of the 

eukaryotic translation initiation factor 2 (eIF2α) to suppress general protein translation. MYXV 

genes M156R and M029L are orthologs of VACV K3L and E3L, respectively, which inhibit 

PKR at different stages of its activation and activity (26, 29, 209).  
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Figure 4.25 Sequence alignment of K3 orthologs. 

Protein sequences from MYXV-Lu, MYXV-MSW RFV, and SQFV-Kilham were aligned in MUSCLE with 

VACV K3. Residues that are identical to the consensus are highlighted in blue and residues conserved in 

the leporipoxvirus orthologs are highlighted in orange. The SQFV K3 ortholog, S152R, is most similar to 

the other leporipoxvirus orthologs having 81.8% protein sequence identity with M156 from MYXV-Lu, 

80.0% protein sequence identity to RFV156, 73.3% protein sequence identity to M156 from MYXV-MSW, 

and only 31.1% protein sequence identity to VACV K3. Asterisks indicate amino acid conservation (two 

asterisks for conservation in all five virus proteins and one asterisk for amino acid conservation in four 

out of the five). 

 

An ortholog of MYXV M156R is present at a single location near the right end of the 

genome of SQFV (ORF S152). The ortholog in SQFV exhibits a higher protein sequence identity 

with both M156 and RFV 008.2, the K3 ortholog in RFV, than it does to VACV K3 (Fig 4.25). 

A recent study showed that M156R inhibits PKR from rabbit species specifically, and in 

subsequent work M156R was shown to inhibit PKR from its natural host, the brush rabbit (b. 

rabbit, S. bachmani), with the highest efficiency (29) (Peng and Rothenburg, unpublished). This 

species-specific inhibition likely contributes to the restriction of this virus to rabbit host species. 

In order to determine if the K3L ortholog in SQFV can inhibit PKR and if there is any species-

specificity to this inhibition that may contribute to its restricted host range, we cloned the S152 

gene from the SQFV into a mammalian expression vector and tested its ability to inhibit PKR 

from human, Syrian hamster, mouse, European rabbit, brush rabbit, cottontail rabbit and Guinea 

pig in a luciferase transfection assay, which has been used previously to look at PKR inhibition 

by viral inhibitors (28, 29). Due to the lack of sequence information available for tree squirrel 

species, we were not able to test PKR from a squirrel, although several attempts were made to 

clone PKR from a fox squirrel. 

10! 20! 30! 40! 50! 60! 70! 80!
VACV-Cop K3   MLAFCYSLPNAGDVIKGRVYEKDYALYIYLFDYPHSEAILAESVKMHMDRYVEYRDKLVGKTVKVKVIRVDYTKGYIDVNYKRMCRHQ  88!
MYXV-Lu 156   ---MDL-SP--GSVHEGIVYFKDGIFKVRLLGYEGHECILLDYLNYRQDTLDRLKERLVGRVIKTRVVRADGL--YVDLRRFF       75!
MYXV-MSW 156  ---MGP-AV--GAIREGAVYFKDGIFKVRLRGHEACECLLLDYLDYRSDTVDQLKERLVGRVIKTRVVRVDGS--YVDLRRFFEG     77!
RFV 008.2     ---MGLLLP--GSVHEGVVYFRDGVFRVSLHGYEDHDCVLLDYLNYRHDTLDQLKRRLVGRTIKTQVVRVNGL--YVDLRRFFTG     78!
SQFV-Kil 152  ---MDP-LP--GSVHDGVVYFKDGTFRVRLHGYNDHECILLDYLDYRMETLDMLKERLVGRVIKTRVVRVNGL--HVDLRRFFTG     77!
                 *    *  * *  * ****** * * * **   ** ***** ** ** * ** ***** *** **** *   ********!                         *    * **  *      *         *                 ***   *  * *        *   !
!
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Figure 4.26 Species-specific inhibition of PKR by MYXV M156R and SQFV S152. 

HeLa-PKRkd cells were co-transfected with plasmids encoding PKR from different species (0.2µg), 

MYXV M156R or SQFV S152 (0.4µg), and firefly luciferase (0.05µg). Luciferase activity was normalized 

to PKR only transfections for each species’ PKR and error bars represent the standard deviation of three 

replicate transfections.  

 

Confirming previous results, M156R from MYXV only inhibited PKR derived from 

rabbit species, and PKR from the b. rabbit, myxoma virus’ natural host, was most sensitive to 

inhibition by MYXV M156R. Similarly SQFV S152 was unable to inhibit the PKR from most 

species tested (human, Syrian (S.) hamster, mouse and Guinea (G.) pig), but surprisingly unlike 

with M156R, PKR from the European (E.) rabbit was also resistant to inhibition by SQFV S152 

(Fig 4.26). Only the b. rabbit and cottontail (ct., S. floridanus) rabbit PKRs were sensitive to 

inhibition by S151. The resistance of E. rabbit PKR to inhibition by S152 is curious because we 

showed that SQFV replicates in E. rabbit derived RK13 cells, albeit relatively slowly compared 

to either MXYV or RFV. Nevertheless, SQFV must be able to overcome PKR activity in these 

cells. 
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Figure 4.27 Alignment of SQFV S033 dsRNA-binding motif with other E3 orthologs. 

A domain map of VACV E3L is shown indicating the Zα and dsRNA-binding domains. The E3L ortholog 

from SQFV resembles both M029L and RFV 029L in that it lacks the N-terminal Zα Z-DNA-binding 

domain found in VACV E3L and in E3L orthologs from other poxviruses. A multiple sequence alignment 

of MYXV M029, RFV 029, SQFV S033, and VACV E3 proteins was made using ClustalW, and the last 30 

residues are expanded to show the similarity in the dsRNA-binding domains of the E3 orthologs. Amino 

acid residues that are identical are highlighted in light blue. Residues conserved in all four orthologs are 

indicated with an asterisk. 

 

An ortholog of VACV E3L is also present in the SQFV genome (ORF S033) that exhibits 

a 40.0% identity to the VACV E3L protein and an 85.3% identity to M029L, the ortholog from 

MYXV. VACV E3L is composed of two functional domains: an N-terminal Zα Z-DNA binding 

domain and a C-terminal dsRNA-binding domain, while the E3L orthologs found in the 

leporipoxviruses and SQFV lack the portion encoding the Zα domain and only encode the 

dsRNA-binding domain (Fig 4.27). The C-terminal dsRNA-binding domain of VACV E3L 

contains a lysine-rich motif that is important for binding dsRNA and inhibiting PKR, and 

deletion of the last 26 amino acids of VACV E3L abolishes its ability to bind dsRNA and inhibit 

PKR (232). When we compared these with the protein sequence of the E3L ortholog in SQFV, a 

KSATGSNKKEARKNAAKEAMDVILKHVVIKF 115!
KSATGSNKKEARKNAAKEAMDIILKHVVIKF 116!
KSATGSNKKEARKNAAREAMDIILKHVVIKF 110!
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  * *  *  *  ***  * *  *  * * *!
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similar lysine and basic residue-rich motif was identified in the C-terminus that bears homology 

with the leporipoxvirus orthologs (Fig 4.27).  

 

 
Figure 4.28 SQFV S033 is a functional inhibitor of PKR. 

HeLa-PKRkd cells were co-transfected with plasmids encoding human, Syrian (S.) hamster, or mouse 

PKR (0.2µg), VACV E3L, SQFV S033, or MYXV M029L (0.4µg), and firefly luciferase (0.05µg). 

Luciferase activity for each transfection was normalized to transfections with each PKR alone with 

luciferase. Error bars indicate the standard deviation of three replicate transfections.  

 

We cloned S033 from SQFV and tested its ability to inhibit PKR compared to VACV 

E3L and MYXV M029L. S033 inhibited PKR from human and mouse PKR similarly to VACV 

E3L and even slightly better than MXYV M029L (Fig 4.28). The S. hamster PKR, which our 

previous results show is resistant to inhibition by VACV E3L and other dsRNA-binding proteins 

(Ch. 2), was largely insensitive to inhibition by SQFV S033, but interestingly, we consistently 

see a slight increase in luciferase activity that would suggest S033 is able to partially inhibit S. 

hamster PKR activity. Whether this modest inhibition would be enough to prevent translational 

shut-down by this species’ PKR during a virus infection is still unclear. However, this data 

clearly indicate that the E3L ortholog in SQFV is a functional inhibitor of PKR from human and 
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mouse species. Previous work indicates that M029L from MYXV is not a species-specific 

inhibitor of PKR, but like VACV E3L, M029L is critical for virus replication both in cell culture 

and in vivo (26, 29). It is therefore likely that S033 is also an important immunomodulatory 

protein for SQFV. 

 Discussion 
The genome of the SQFV has offered several new clues into its evolutionary history and 

relationship to the members of the Leporipoxvirus genus. Of the four recognized leporipoxvirus 

species (MYXV, RFV, FIBV, and SQFV), SQFV is the only virus that is not naturally restricted 

to lagomorph host species (rabbits and hares). All of the leporipoxvirus species have very limited 

host ranges and infect only a few species (15). The impact of these dedicated host-virus 

relationships on leporipoxviruses such as MYXV has resulted in the accumulation of genetic 

differences that result in species-specific activity of the viral proteins, some of which have a host 

range function (29, 121). 

Our phylogenetic analysis shows that SQFV forms a monophyletic clade with the two 

MYXV strains and RFV within the group of Clade II viruses, and thus confirms the 

characterization of SQFV as a member of the Leporipoxvirus genus (Fig. 4.2). The analysis 

further show that MYXV-Lu and MYXV-MSW were more closely related to each other than to 

either RFV or SQFV, and that the MYXV strains are more closely related to RFV than to SQFV, 

which indicates that SQFV is the most divergent of the sequenced leporipoxviruses. The 

phylogeny of the chordopoxviruses further shows that the arrangement of the basal branches 

mirrors the evolution of vertebrate classes, with salmon gill poxvirus, which infects salmon, 

forming the most basal branch, followed by crocodilepox virus (infects Nile crocodiles) and the 

avipoxviruses, canarypox and fowlpoxviruses (infect birds), and finally the clade of poxviruses 

that infect mammals including the orthopoxviruses and Clade II poxviruses. Although non-

mammal-infecting poxviruses are underrepresented, this indicates that the poxviruses did not 

switch between major host classes and supports an early origin of the poxvirus family. 

It is also interesting to note, that the South American MYXV strains encode the most 

genes common to this genus, while the other leporipoxviruses, including MYXV-MSW, RFV, 

and SQFV, evidently lost several of these orthologs found in the South American strains (Figs 

4.4 and 4.5, Table 4.6). It seems, therefore, that the genome of the South American MYXV 
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strains, including MYXV-Lu, best represents the ancestral leporipoxvirus genome, and different 

evolutionary pressures to retain or lose these genes marked the divergence of SQFV, RFV and 

MYXV within this lineage of poxviruses. 

Poxvirus genomes can be divided into broad regions of genes based on their function and 

overall conservation in poxviruses. Genes of the central core region of poxvirus genomes are 

broadly conserved across the family both in their genomic arrangement and in their sequences. 

These genes encode proteins necessary for replicating the viral genome, viral transcription 

factors, and structural genes involved in viral morphogenesis (233). The genes near the genomic 

termini, on the other hand, are more often associated with host immune evasion and host range 

functions and are more variable between poxvirus species. In general, Leporipoxvirus genus 

members all share a relatively high sequence identity to each other. MYXV and RFV exhibit on 

average 87% protein identity in the central core region of the genome and around 70% in the 

termini. The genetic conservation of SQFV in comparison with these other leporipoxvirus 

members is similarly high with amino acid sequence identities for proteins encoded in the central 

region of the genome averaging 87.5% to either RFV or MYXV and ranging between 62% and 

98% for individual proteins.  

The major exception to this conservation is found in the ITR of SQFV, where the first six 

genes remarkably show the highest protein sequence identity levels to orthopoxvirus (OPV) 

orthologs. Additionally, ORFs S007 through S010 exhibit low sequence identities to orthologous 

proteins of other sequenced poxviruses. However, due to a higher sequence identity with 

orthologous proteins found in capripoxviruses than to any other orthologs tested, it is possible 

that these genes originated from an as-of-yet unidentified Clade II poxvirus. The presence of the 

OPV-like genes in the ITR of SQFV provide strong evidence that the leporipoxvirus ancestral to 

SQFV recombined with an OPV to acquire these genes. Furthermore, although the origin of the 

four ITR genes following these six genes is unknown, the distinct change in sequence identity for 

these encoded proteins suggest a second recombination occurred with the ancestral SQFV and 

another possibly more related poxvirus. From the sequence of SQFV-Kilham alone, it is not 

apparent whether this second recombination occurred in the ancestral OPV prior to the initial 

recombination that resulted in the acquisition of the first six OPV-like ORFs or whether the 

ancestral SQFV first acquired the divergent ORFs from another poxvirus and later recombined 

with an OPV. The sequencing of more SQFV isolates that have altered ITR gene contents may 
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shed light on this question. The findings that an identical recombination site sequence as well as 

an ortholog of CPXV B22R is also present in the genome of the SQFV-CDC isolate from Ohio 

clearly indicate that the OPV-like genes identified in SQFV-Kilham are maintained in natural 

populations of the virus and have remained genetically stable over the 56 years since the 

isolation of SQFV in Maryland (4). 

One explanation for the maintenance of these novel genes in the genome of SQFV may 

be that several of these genes have putatively homologous functions to genes that are missing 

from the rest of the genome relative to the other leporipoxviruses (Table 4.7). For example, S010 

encodes a putative IL-1 receptor homolog with the highest sequence identity to ORF 007 in 

DPV. This protein could perform a similar function as M135R in MYXV, which is an IL-1/6 

receptor homolog whose direct ortholog is missing in SQFV and is also fragmented in RFV. The 

absence of this gene in RFV, along with orthologs for both M136R and M139R, which share a 

predicted bcl-2-like fold domain and may play a role in inhibiting the apoptotic response during 

infection, might also have an effect on the virulence and host range of this virus. Because SQFV, 

which shares an ancestor with MYXV and RFV according to our phylogeny, encodes complete 

ORFs for orthologs of both M136R and M139R, their absence from the RFV genome may 

suggest there was a less stringent selective pressure to maintain multiple proteins that inhibit the 

apoptotic response for this virus (Fig 4.4, Table 4.5). 

 

SQFV MYXV  Putative Function 

S001/S165 M134R glycoprotein, unknown 

S004/S162 M003.1L/R intracellular virulence factor, NF-κB 
signaling inhibitor 

S005/S161 M151R SERP-2/IL-1 convertase inhibitor 

S006/S160 M004L/R apoptosis regulation 

S009/S157 M007L/R IFN-γ receptor homolog 

S010/S156 M135R IL-1 receptor homolog 

Table 4.7 Recombined genes may compensate for missing leporipoxvirus genes. 

A table of genes found in the SQFV ITR is shown that have similar predicted functions to the 

leporipoxvirus genes that have been lost in SQFV. 
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The complete absence of both orthologous sequences of M134R and M135R in the 

SQFV genome might have resulted from a single excision of both genes entirely, and it is 

possible that the loss of the M134R ortholog in SQFV occurred soon after or simultaneously 

with the acquisition of a B22R ortholog in the ITR during recombination with an OPV. M134R, 

which is homologous to CPXV B22R although sharing relatively low amino acid sequence 

identities, is present near the right end of the genome in MYXV and RFV. Cowpox virus B22R 

encodes a large glycoprotein with an unknown function but whose presence in poxvirus genomes 

is well conserved (45). In some poxvirus lineages, several copies of B22R orthologs are encoded 

despite the large size of this gene, suggesting it has a functional importance (234). 

Another interesting feature is that SQFV has lost all functional orthologs of its MXYV 

serpin family genes. However, SQFV S005/S160 encodes an ortholog of CPXV CrmA, which is 

related to MXYV SERP-2 (M151R) (Table 4.7). RFV also lacks orthologs of both SERP-1 

(M008.1L/R) and SERP-3 (M152R), but while fragmented remains of each are present in RFV, 

no evidence of either exists in the SQFV genome. RFV, however, maintains a complete SERP-2 

ortholog (RFV 151R). Deletion of M151R from MYXV has been shown to attenuate virus 

replication in vivo and reduce infection-associated pathology (206). Because it has been clearly 

demonstrated for MYXV that the activity of poxviral serpins is important for virulence and host 

range, it is possible that the activity of S005/S161 protein product exerts similar functions. The 

two-base pair insertion in S149, the ortholog of M151R that results in the truncation of this gene 

is interesting in that the rest of the ORF remains intact. This could indicate that the frameshifting 

mutation was acquired recently and likely after the OPV-like SERP-2 was added to the genome 

of this leporipoxvirus. 

Additionally, in the ITRs of both RFV and MYXV, M003.1L/R, M004L/R and M007L/R 

encode proteins that play important roles in modulating the immune response during MYXV 

infection (1, 2). Orthologs for all of these genes are missing in SQFV (Table 4.6). SQFV 

S009/S157, which exhibits the highest sequence similarity with ORF 010 in DPV, shares a 

predicted function with M007L/R (M-T7) as an IFN-γ receptor homolog, which is a critical 

virulence factor for MYXV in E. rabbits (235). SQFV ORFs S004/S162 and S006/S160 encode 

proteins with putatively similar functions as M003.1L/R and M004L/R, respectively, but both 

are most similar in sequence to the OPV orthologs. In fact, the first six OPV-like genes in the 

ITR of SQFV all show the highest sequence identity with OPV orthologs and are syntenic with 
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their counterparts in the CPXV genome (Fig 4.29). CPXV has a very broad host range and like 

other OPVs, its host range includes several rodent species such as rats and mice (236-238). 

While there is no complete genome sequence for any arboreal squirrel species for which the 

SQFV has been shown to infect, squirrels are classified as members of the order Rodentia and 

are therefore more closely related to other rodent species than they are to lagomorph rabbit and 

hare species. It is possible that the acquisition of these OPV-like genes was important in the 

evolution of the SQFV host range relative to the other leporipoxviruses. 

 

 
Figure 4.29 Conserved synteny of SQFV and CPXV genes. 

The six outermost genes present in both ends of the SQFV ITR (right end of genome shown) bear the 

highest amino acid sequence identity with orthologous genes found in orthopoxviruses (OPV). A 

comparison of the SQFV OPV-like gene order in the ITR with their orthologs as they are ordered in the 

genome of the cowpox virus-GRI-90 (CPXV-GRI) is shown. Light purple boxes represent the OPV-like 

ORFs in SQFV and the closest orthologs in CPXV-GRI. In the CPXV genome, genes B8R through B22R 

are present in the far right end of the genome, but are not part of the CPXV ITR. The B22R gene in 

CPXV-GRI is followed by 3.7kb of open reading frames before the 8.3kb ITR begins (not shown). Several 

genes (light brown boxes) between these orthologous CPXV genes are also found in the CPXV genome 

that are not in the SQFV genome.  

 

Cowpox viruses are also included in a group of OPVs that are referred to as “old-world” 

OPVs in contrast to the OPVs found in North America such as the volepox virus and raccoonpox 

virus (RCPV) identified in recent years (17, 211, 239). Sequence analyses suggest a clear genetic 

separation of these viruses from the old-world OPVs first identified in Europe, Asia, and Africa 

(240). The high protein sequence identity of the OPV-like ORFs in the ITR of SQFV to an old-

world OPV and the close relationship of S004/S162 to orthologous sequences from old-world 

OPVs suggest that the recombination event that resulted in the acquisition of the six OPV-like 

ORFs in the ITR of SQFV occurred with an old-world OPV rather than a North American OPV. 
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To date, all cases of SQFV infection have been reported in North America, but for recombination 

to occur, they must have co-infected a host cell, and therefore they must also have been in the 

same geographic location. It is possible that OPVs may have been present in North America that 

went unrecognized but remained genetically similar to the well-known OPVs present in Europe 

and Asia, such as CPXV, VACV and VARV. The actual distribution of these so-called “old-

world” OPVs then may have been broader than previously appreciated. 

Within the SQFV genome, there are only three genes whose predicted functions are 

unique to the Leporipoxvirus genus (Table 4.8). Two of these genes, S003/S163 and S008/S158 

are predicted to encode a soluble α/β IFN receptor and phospholipase D-like protein, 

respectively, while the third gene, S002/S164 is homologous to CPXV B21R, whose function is 

unknown. The soluble α/β IFN receptor is likely to have an immunomodulatory function, but the 

importance of the phospholipase D-like protein in viral virulence or host range is unclear. 

Phospholipase D family proteins can be found in other poxviruses and are surface proteins that 

may play a role in protein trafficking and the formation of the intracellular envelope from post-

Golgi vesicles (241). 

 

SQFV RFV MYXV Predicted function 

S002/S164 Absent Absent unknown 

S003/S163 Absent Absent soluble α/β IFN receptor 

S008/S158 Absent Absent phospholipase D-like 

S150 Absent Absent unknown 

Table 4.8 Novel genes in SQFV not found in other leporipoxviruses. 

Genes found in SQFV that have no ortholog in the other leporipoxviruses are shown with their predicted 

functions 

. 

We found that both SQFV orthologs of MYXV M029L and M156R are functional 

inhibitors of the antiviral host protein, PKR (26, 29). We have unsuccessfully attempted to clone 

squirrel PKR from a fox squirrel (Sciurus nigers) to test for species-specific inhibition that may 

account for the host range restriction of SQFV, but cloning was made difficult by the lack of 

sequence information for this species. Nevertheless, the exclusive sensitivity of PKR from North 

American rabbit species to S152 suggest some species-specific selection for PKR inhibition may 

have occurred. In particular, the southeastern cottontail rabbit PKR was most sensitive to 
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inhibition by S152, which is interesting considering the two largest outbreaks of SQFV occurred 

in gray squirrels of eastern Florida within the same territory as the eastern cottontail. Cottontail 

rabbits were infected experimentally in some of the original experiments with the SQFV but they 

are not known to be naturally infected by the virus (4). While the importance of PKR inhibition 

in determining the host range of SQFV requires further studies, the results presented here offer 

evidence that a direct ancestor of SQFV may have once been able to infect rabbit populations in 

regions near where it has been found. Alternatively, this rabbit species or similar species may 

have been or still is a reservoir host for the virus between outbreaks in squirrels. Further 

evidence supporting the idea that SQFV originally infected rabbit species comes from the 

presence of the potential horizontally transferred ORF in the SQFV genome, S150. This short 

ORF bears the highest similarity to part of the 28S rRNA gene in European rabbits suggesting it 

may have come from a rabbit host (Fig. 4.6). This gene however, is highly conserved in 

mammals. Therefore it is possible that the ORF actually originated from a squirrel, but the lack 

of sequence information for appropriate squirrel species in the database prevents the detection of 

such similarities. 

SQFV infections in nature are infrequently and sporadically reported, but this virus only 

causes a noticeable disease in young or immunocompromised individuals. With the exception of 

the epizootics that have occurred in populations of gray squirrels in Florida, there are few well-

described cases (10). Similarly, MYXV infections of its natural hosts, the American brush rabbit 

and tapeti, are largely benign and are only rarely lethal. This may indicate that like MYXV in 

American rabbits, SQFV has reached a co-evolutionary equilibrium with its squirrel host species. 

It is currently unknown what caused the outbreaks of SQFV to occur in the 1990’s, but it would 

be interesting to compare the sequence of virus isolates from these outbreaks with this reference 

genome to see what changes might explain the altered virulence. 

Our results suggest that SQFV replicates in cell culture similarly to both MYXV and 

RFV, but most notably, SQFV replication was slower than either RFV or MYXV in most of the 

cell lines tested. Future studies looking into the putative functions of the SQFV genes involved in 

these differences are needed. Furthermore, MYXV, as a rabbit specific pathogen, cannot 

replicate in normal human cells but due to an observation that MYXV can replicate in some 

human cancer cells, MYXV is currently being investigated as an oncolytic virus to be used to 

treat cancer (242). The restricted host-range of SQFV and the attenuated replication phenotype of 
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this virus in human cells make the idea of using SQFV as a possible oncolytic agent promising 

and worth future investigation.  
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Chapter 5 - Concluding remarks and future directions 

Variola virus, the causative agent of smallpox, was the most lethal infectious disease in 

human history in terms of lives lost. This virus has a very narrow host range, only infecting 

humans, however, other related poxviruses, such as vaccinia virus (VACV), which is used as a 

vaccine against smallpox, have a much broader host range and can infect several different 

species. The virulence and host range of poxviruses is controlled by their interactions with the 

host immune system, and particularly interactions of host innate immune response proteins with 

viral proteins and molecules. These interactions drive evolution of both the host and the virus 

and often their co-evolution together. Therefore understanding the mechanisms that control the 

host tropism and species-specific virulence of poxviruses will aid in the identification and 

prediction of emerging viral threats, which is critical to being able to react to and protect against 

their spread within a community. The research projects described in this thesis highlight 

differences at the host-virus interface that are responsible for differences in poxviral host range. 

Using combined bioinformatic and molecular approaches to investigate host range in 

poxviruses, we demonstrated that overcoming the antiviral effects of host PKR is essential for 

poxviruses like VACV to replicate successfully within a host cell. In addition we showed that 

species-specific variation in PKR from different mammalian species dramatically affects host 

susceptibility to poxvirus infection as well as the host range of poxviruses such as VACV in a 

variety of mammalian cell types. In the second and third chapters of this thesis, we focused on 

two host range factors from VACV, namely E3L and K3L, and determined that their interactions 

with PKR from different species could explain their host range functions. Using a highly 

sensitive cell culture-based transfection assay for PKR inhibition, we were able to compare the 

sensitivity of PKR from several different species to both viral inhibitors from VACV. 

Additionally, in chapter 4, we analyzed the genome of a poorly characterized leporipoxvirus with 

a restricted host range to better understand the genetic underpinnings of poxvirus evolution and 

host range. 

The results presented in chapter 2 show that there is a surprising variability in the 

sensitivity of PKR from even closely related species to both E3L and K3L. From these analyses 

we identified resistance to E3L inhibition by Mesocricetus hamster PKRs, which we confirmed 

in both a yeast growth assay as well as in virus infected cells, and we also identified resistance to 



255 

 

K3L inhibition by the closely related Armenian hamster PKR. Through a series of cell line 

infection experiments, our results suggest that inhibition of PKR by both VACV E3L and K3L 

contributes to the large host range and cell tropism of this virus. The rapid evolution of PKR in 

vertebrates has allowed for PKR from some species to develop resistance to the activity of E3L 

or K3L, which necessitates the presence of both in VACV to infect cells from a variety of 

species, including the hamster species examined in these studies. Further confirmation of the 

importance of PKR inhibition to the host range function of E3L and K3L by using the cells 

generated in the second chapter that express exogenous PKRs in an isogenic background will 

serve to strengthen this conclusion. The generation of the tetracycline inducible PKR expressing 

cells will additionally allow a controlled analysis of the effects of differential PKR expression on 

the replication of mutant VACVs lacking E3L or K3L. Others have proposed such cell type-

specific differences in PKR expression or dsRNA production as a contributing factor for 

observed differences in the replication of VACV mutants lacking E3L or K3L in different cell 

types (1). While we cannot exclude these or other cell-type specific effects from the results of 

these studies, our work clearly shows that species-specific inhibition of PKR can explain the 

majority of the host range defects of VACV deleted for E3L and particularly for VACV deleted 

for K3L in different host cells. In addition, the inducible expression system we generated will 

allow the investigation of potential species-specific effects of other contributing innate immune 

response factors to the host range of VACV or other viruses. 

As part of our analysis into the host range function of E3L and K3L for VACV, we 

uncovered the unique ability of the Syrian and Turkish hamster to resist inhibition by E3L. In 

chapter 3, we analyzed the mechanism of this resistance by using domain swapping and 

mutational analyses with Syrian hamster PKR and the Armenian hamster PKR, which had the 

added benefit of allowing us to investigate the resistance of this PKR to VACV K3L. This 

mechanistic characterization between these closely related PKRs revealed a general mechanism 

of resistance for the Syrian hamster PKR to inhibition by dsRNA-binding proteins, including 

E3L as well as reovirus σ3 and Herpes simplex virus Us11, which depended on residues 

involved in dsRNA-binding as well as PKR dimerization in the second dsRNA-binding domain 

and the interdomain linker region. Our analyses also confirmed the importance of specific 

residues in the helix αG of the PKR kinase domain for interactions with VACV K3L. The 

exchange of only two amino acid residues within this helical structure was able to completely 
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confer resistance to inhibition by K3L in a previously sensitive PKR. Previous work from us and 

others has implicated this region of PKR for interactions with pseudosubstrate inhibitors from 

poxviruses, and our own results with hamster PKRs provide an important validation of these 

studies (2, 3). (Peng and Rothenburg, unpublished). 

The resistance of Syrian hamster PKR to inhibition by E3L is a significant finding as it 

challenges the widely held assumption that the immunomodulatory activity of E3L is primarily 

mediated through the sequestration of excess dsRNA generated during virus replication. We 

hypothesized that instead of solely relying on a broadly acting and species-independent activity 

such as dsRNA-binding, direct interactions of E3L with PKR proteins also play an important role 

in the anti-immune activity of E3L for VACV. The species-specific nature of the observed 

resistance to E3L was unique to the Mesocricetus hamster PKRs and suggested a feature of these 

species’ PKR proteins was responsible. While we were able to map this resistance by 

investigating the individual and combined contributions of each domain in PKR to this 

interaction in the luciferase assay, we reasoned that direct protein-protein interactions between 

E3L and PKR proteins in different species over time would have placed a positive selective 

pressure on PKR at residues critical for these interactions. Therefore, our analysis for positive 

selection in rodent and lagomorph PKRs was aimed at uncovering otherwise unobvious residues 

in each domain that would contribute to its resistance to viral dsRNA-binding proteins such as 

E3L. However, our results instead pointed to a more complex molecular interaction involving the 

activation and dimerization of PKR itself. The conclusions drawn from the experiments 

described in chapter 3 serve as a hypothetical starting point to direct future investigations into 

this phenomenon. Further biochemical confirmation and evaluation of dsRNA-binding and 

affinity, differential phosphorylation states, or variations in dimer strength or stability for Syrian 

hamster PKR during VACV infection will be necessary to pinpoint the most important properties 

of this host protein that confer its resistance to E3L and other viral dsRNA-binding proteins. 

Other evolution-guided analyses have yielded insights into critical host-virus protein-

protein interactions between PKR and its viral inhibitors (2, 3). Such analyses have been useful 

for detecting the genetic imprints of similar evolutionary co-adaptation of other host and virus 

proteins such as TRIM-5α with capsid proteins from retroviruses (4-7). Our inability to detect a 

role for positively selected residues in the resistance to VACV E3L likely speaks to the nature of 

the resistance mechanism rather than to a deficiency in our analysis, since we were able to 
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identify positively selected residues that contributed to the resistance of Armenian hamster PKR 

to VACV K3L, although the mechanism of this interaction is arguably better suited to 

identification of critical residues by this method. 

An alternative approach to investigate the unique interaction between Syrian hamster 

PKR and VACV E3L that was not explored in depth in this thesis work is to look from the side 

of the virus. Our results from chapter 2 indicate that VACV deleted for K3L (vp872) is heavily 

attenuated in Syrian hamster BHK-21 cells. We recently initiated a study using experimental 

evolution of vp872 in BHK-21 cells to see if we could artificially place selective pressure on 

VACV E3L to improve virus replication in these cells. We have isolated DNA from serially 

passaged virus progeny and cloned multiple E3L amplicons into plasmids for sequence analysis. 

We might see changes in the sequence of E3L in response to this selective pressure over time. In 

a previous study, experimental evolution of VACV lacking E3L led to the rapid expansion of the 

K3L gene locus and to the subsequent selection for a hyperactive mutant K3L that was a better 

inhibitor of PKR (8). It will be interesting to see if we can observe a similar expansion of the 

E3L locus following selection in BHK-21 cells or if selection for other mechanisms to overcome 

the otherwise poor inhibition of PKR by E3L develops. 

The research described in chapters 2 and 3 show the complexity of E3L inhibition of 

PKR, which relies on the interaction with multiple domains in PKR and is presumably dependent 

on both E3L and PKR binding to dsRNA. Future research on this project could look at the 

specific RNAs that are bound by both E3L and PKR to determine if there is a sequence or 

structure-specific preference by either protein that would help to partially explain the ability of 

Syrian hamster PKR to resist inhibition by E3L. The implications of this work would be great as 

it would show that PKR can evolve to select for virus-specific sequences or features in the 

dsRNA generated during a virus infection; a mechanism that would allow PKR to bypass direct 

interactions with viral inhibitors and exit the ongoing host-virus arms race generated by these 

protein-protein interactions. To this end, it will be important to test other PKR proteins from 

more species to identify other PKRs that are resistant to E3L or other viral dsRNA-binding 

protein inhibitors, such as NS1 from Influenza virus to know if this mechanism of resistance is 

rare or if it has evolved in other animal lineages. Because several viruses encode inhibitors of 

PKR, the results from this work and future work will have a broad impact on studies using other 

host-virus systems as well.  
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Many poxviruses only cause mild diseases in their reservoir or natural hosts, such as 

MYXV in American rabbit species, which probably reflects a co-evolutionary relationship 

between the viruses and their hosts. From the MYXV example it is important to note that as this 

virus was forced to switch hosts during its deliberate release into the Australian continent and 

into feral European rabbit populations there, the virulence of the virus in the new host was 

dramatically different and more lethal. These types of host-switching events can be devastating 

particularly when they involve closely related species. The current knowledge for predicting 

such host-switching events is insufficient.  

The evolution of host range and virulence in poxviruses is intricately connected to the 

host-virus relationship and is influenced by both the physical and immunological environments 

in which they exist. Over the evolution of poxviruses, their genomes have been frequently 

subjected to gene duplication, inactivation, and deletion events. Additionally, the acquisition of 

host genes is commonly observed, and these horizontally transferred genes are likely an 

important factor in the evolution of host range. Gene loss and inactivation are also thought to 

contribute to host adaptation and specialization, such as with VARV adaptation to humans.  

Despite a relatively high degree of gene conservation with the other fully sequenced 

leporipoxviruses, we discovered several occurrences of gene loss and fragmentation as well as 

evidence of gene acquisition in the genome of the SQFV. The region corresponding to MYXV 

M131R to M139 appears to be an extremely dynamic region of gene loss and fragmentation in 

leporipoxviruses. Additionally, the region corresponding to MYXV M150R to M154L has also 

experienced a high degree of genetic optimization through gene inactivation and truncation in 

leporipoxvirus species. Remarkably, the MYXV Lausanne (Lu) strain appears to encode all of 

the genes within these regions that were presumably present in the ancestral leporipoxvirus 

whereas the other leporipoxviruses have subsequently lost one or more genes from these regions. 

This is in spite of the fact that our phylogeny indicates that SQFV shares the most distant 

common ancestor of the leporipoxvirus lineage with RFV and both MYXV strains.  

There are very few examples of genes present in the SQFV genome for which there are 

no orthologs present in any of the other sequenced leporipoxviruses. In fact, one such ORF is not 

found in any other sequenced poxvirus and likely represents a horizontally transferred host gene. 

S150 is a very small ORF that shares high sequence identity with a fragment of a mammalian 

28S ribosomal RNA gene. The importance of this ORF for SQFV virulence or host range is not 
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known nor whether this ORF is even expressed during SQFV infection, however, further 

analysis of this SQFV gene may be interesting as there are no other examples of poxviruses 

encoding ribosomal RNA genes. One distinguishing feature of viruses is their inability to exist 

independently of a host cell and their dependence on host translational machinery including 

ribosomes. It is unlikely that this small ORF provides a true ribosomal function for the SQFV, 

but it would be interesting to see if it did have some effect on viral protein translation in some 

way such as by directing host translational machinery to viral mRNAs during infection. The 

identification of this same ORF in the wild SQFV isolate provided important verification of its 

presence in the SQFV genome. As many genes in poxviruses are thought to have originated from 

host genes, the identification of this small ORF that may have been acquired relatively recently 

as it is not present in any other leporipoxviruses could still bear some of the genetic clues of the 

original transfer that may yield insight into the mechanism of these events that are yet unclear. 

From the genomic analysis of SQFV in chapter 4, we uncovered several unique features 

that may account for the virus’ host range restriction to squirrels. Most notably, in the ITR region 

of the SQFV genome, we identified evidence for a recombination event that occurred between an 

ancestral leporipoxvirus and a virus related to old-world orthopoxviruses as well as a second 

recombination event that occurred with a different non-leporipoxvirus, which we were also able 

to confirm in the wild SQFV isolate. The acquisition of genes in the ITR of SQFV from these 

recombination events may have been coincident with the loss of other genes from SQFV or 

otherwise preceded their loss. Several of the acquired genes, most of which likely have an 

immunomodulatory function, are orthologous to genes that have been lost in SQFV relative to 

the other leporipoxviruses. For instance, the loss of the well-conserved B22R-ortholog 

corresponding to M134R in MYXV is surprising, but this gene might have become dispensable 

after the acquisition of the ortholog of CPXV B22R in the ITR. Moreover, the loss of a 

M007L/R (M-T7) ortholog, which has a host range function for MYXV, is also likely supported 

by the acquisition of an IFN-γ receptor homolog orthologous to that found in CPXV. As is 

discussed in chapter 4 of this thesis, the potential host-specificity of these recombined genes is 

probably contributing to the distinct host range of the SQFV compared to the other 

leporipoxviruses. 

While many important immunomodulatory gene orthologs lost in SQFV relative to 

MYXV have been functionally replaced by genes present in its unique ITR, one important host 
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range gene that remains missing from the SQFV genome is an ortholog to M002L/R (M-T2), 

which encodes a TNF receptor homolog and interferes with TNF mediated NFκB signaling (9, 

10). M-T2 orthologs are only found in leporipoxviruses, but several orthopoxviruses encode TNF 

receptor related proteins of the Crm family (11). The relevance of its absence from the SQFV 

genome is not yet known, but may also affect the host range or virulence of this virus. 

Additionally, since the SQFV naturally infects North American squirrels, it will be helpful for 

understanding the evolution of this virus to sequence more isolates of this virus from nature. 

From the wild SQFV isolate collected from the infected squirrel, we have already processed 

DNA for full genome sequencing. The results obtained by comparing these genome sequences 

will allow us to identify important differences that have occurred during viral evolution over 

more than 50 years in nature and may have implications for the evolutionary understanding of 

these poxviruses. 

The recombination events identified in the SQFV genome are to our knowledge the first 

clear examples pointing to a naturally occurring recombinant poxvirus, and both represent the 

first example of such recombination events occurring between distantly related poxviruses. Until 

now, recombination has only been observed or analyzed between closely related poxvirus 

species. This finding therefore highlights the potential for even distantly related poxviruses to 

recombine in the field, which might result in altered host range and virulence. The highly 

recombinogenic potential of poxviruses increases the likelihood that such hybrid poxviruses will 

emerge.  

The eradication of VARV from nature and the cessation of mass vaccinations with 

VACV leave human populations vulnerable to infection by other orthopoxviruses. While most 

zoonotic poxviruses that infect humans have been relatively mild, the emergence of MPXV 

strains with high case fatality rates in Africa (~10%) serves as a reminder that these or other 

poxviruses may yet evolve (12). This may occur through continuous host-virus co-adaptation to 

become more human-specific or through more rapid host-switching events potentially driven by 

recombination with other poxviruses or by horizontal transfer of host genes that increase their 

virulence such as those described in this thesis work. The continued study of the molecular 

determinants of poxvirus host range is therefore warranted.  
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