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INVERSE PROBLEM FOR A HEAT EQUATION WITH

PIECEWISE-CONSTANT CONDUCTIVITY

S. GUTMAN∗ AND A.G. RAMM

Abstract. We consider the inverse problemof the identification of a piecewise-

constant conductivity in a bar given the extra information of the heat flux
through one end of the bar. Our theoretical results show that such an

identification is unique. This approach utilizes a ”layer peeling” argument.
A computational algorithm based on this method is proposed and imple-

mented. The advantage of this algorithm is that it requires only 3D min-
imizations irrespective of the number of the unknown discontinuities. Its

numerical effectiveness is investigated for several conductivities.

AMS Mathematics Subject Classification : 35R30, 93B30
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1. Introduction

Let Π be the set of piecewise constant functions on [0, 1] with finitely many
discontinuity points,

Π = {a(x) : 0 < ν ≤ a(x) ≤ µ, a(x) = aj, x ∈ [xj−1, xj), j = 1, 2, ..., n} (1.1)

with x0 = 0 and xn = 1.
Consider the following heat conduction problem in an inhomogeneous bar of the
unit length with a conductivity a ∈ Π:







ut = (a(x)ux)x, (x, t) ∈ Q = (0, 1) × (0,∞),
u(0, t) = g(t), u(1, t) = 0, t ∈ (0,∞),
u(x, 0) = 0, x ∈ (0, 1).

(1.2)

Suppose that the extra data f(t) = a(0)ux(0, t) 6≡ 0, i.e., the heat flux through
the left end of the bar, is known. The inverse problem (IP) for (1.1)-(1.2) is:

IP: Given f(t) and g(t) for all t > 0, find a(x).
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There exists an extensive literature on inverse problems for heat equations, see
e.g. [1, 3, 4, 14] and the references therein. Fewer results are available for the
identifiability, i.e., the unique identification of the conductivity, for such inverse
problems.

Some identifiability results for smooth or constant conductivities were obtained
previously, see [8, 17, 16]. These works show that one can identify a constant
conductivity a in (1.2) from the measurement z(t) taken at one point p ∈ (0, 1).
These works also discuss problems more general than (1.2), including problems
with a broad range of boundary conditions, non-zero forcing functions, as well
as elliptic and hyperbolic problems. Additional identifiability results have been
obtained by us in [11, 12] and [13].

In [6] and [7] we showed that one can uniquely identify certain piecewise-
constant conductivities from measurements zm(t) of the heat conduction process
(1.2) taken at finitely many points pm ∈ (0, 1). The stability of this procedure
was studied in [7].

In this paper we establish the identifiability for the IP. That is the piecewise-
constant conductivity a ∈ Π in (1.2) can be uniquely recovered from the obser-
vations of the heat flux taken at just one point x = 0. This result is proved in
Section 2 following the arguments in [15]. The main idea of the proof is to apply
a ”layer peeling” argument. Suppose that two conductivities a, b ∈ Π satisfy
(1.2) with the same data f(t) and g(t) for t > 0. Let both a and b have no dis-
continuities on an interval [0, y], 0 < y ≤ 1. Then we can show that a(x) = b(x)
for x ∈ [0, y]. A repeated application of this argument shows that a = b on the
entire interval [0, 1]. See [15] for further refinements of this result, in particular
for the data f, g available only on a finite interval (0, T ).

A ”layer peeling” algorithm consistent with our theoretical developments is
presented in Section 4. The advantage of this method is that it requires only
3D minimizations irrespective of the number of the unknown discontinuities.
In Section 3 the heat conduction problem is represented in terms of iteratively
applied mappings E. In Section 4 the layer peeling algorithm is presented as a
nonlinear minimization problem for an E in a 3D box. In Section 6 the algorithm
is tested for conductivities with a small number of discontinuities.

2. IP identifiability

The main tool for the uniqueness proof is the Property C (completeness of the
products of solutions for (1.2)). See [10] for details on the Property C for ODE,
[9] and [14] for Property C for PDE.

We will use the following Property C result established in [15].

Theorem 1. Let PC[0, 1] be the set of piecewise-constant functions on [0, 1]. Let

q1, q2 ∈ PC[0, 1] be two positive functions. Suppose that ψ1(x, k) and ψ2(x, k)
satisfy

−ψ′′
j (x, k)+k2q2j (x)ψj(x, k) = 0, ψj(1, k) = 1, ψ′

j(1, k) = 0, j = 1, 2. (2.1)
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Then the set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in PC[0, 1]. That is, if

h ∈ PC[0, 1] and
∫ 1

0

h(x)ψ1(x, k)ψ2(x, k)dx = 0 (2.2)

for any k > 0, then h = 0.

Now we prove our main identifiability result

Theorem 2. Problem IP has at most one solution a ∈ Π.

Proof. Following [15], problem (1.2) is restated in terms of the Laplace transform

v(x, s; a) = (Lu)(x, s; a) =

∫ ∞

0

u(x, t; a)e−stdt, s > 0.

Let G(s) = L(g(t)) and F (s) = L(f(t)). Thus (1.2) with the extra condition
a(0)ux(0, t) = f(t) becomes

(a(x)v′)′ − sv = 0, 0 < x < 1,

v(0, s; a) = G(s), a(0)v′(0, s; a) = F (s) (2.3)

v(1, s; a) = 0.

Let

k =
√
s, ψ(x, k) = a(x)v′(x, s; a), and q(x) =

√

1

a(x)
.

Then, using k2v(x, s; a) = ψ′(x, k), system (2.3) is rewritten as

− ψ′′(x, k) + k2q2(x)ψ(x, k) = 0, 0 < x < 1, (2.4)

ψ(0, k) = F (k2), ψ′(0, k) = k2G(k2), ψ′(1, k) = 0.

Let ψ1(x, k) and ψ2(x, k) be the solutions of (2.4) for two positive piecewise-
constant functions q1(x) and q2(x) correspondingly. That is,

− ψ′′
1 (x, k) + k2q21(x)ψ1(x, k) = 0, 0 < x < 1, (2.5)

ψ1(0, k) = F (k2), ψ′
1(0, k) = k2G(k2), ψ′

1(1, k) = 0,

and

− ψ′′
2 (x, k) + k2q22(x)ψ2(x, k) = 0, 0 < x < 1, (2.6)

ψ2(0, k) = F (k2), ψ′
2(0, k) = k2G(k2), ψ′

2(1, k) = 0.

Multiply equation (2.5) by ψ2(x, k) and integrate it over [0, 1]. Then use an
integration by parts and the boundary conditions in (2.5) and (2.6) to obtain

k2

∫ 1

0

q21ψ1ψ2dx = ψ′
1ψ2|10 −

∫ 1

0

ψ′
1ψ

′
2dx = −k2G(k2)F (k2) −

∫ 1

0

ψ′
1ψ

′
2dx. (2.7)

Similarly,

k2

∫ 1

0

q22ψ1ψ2dx = −k2G(k2)F (k2) −
∫ 1

0

ψ′
1ψ

′
2dx. (2.8)
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Subtracting (2.8) from (2.7) gives

∫ 1

0

(q21 − q22)ψ1ψ2dx = 0

for any k > 0.
The set of products {ψ1(x, k)ψ2(x, k)}k>0 is dense in PC[0, 1] by Theorem 1.

Therefore q1 = q2. Thus (2.4) has unique solution q ∈ PC[0, 1]. Consequently
(2.3) has a unique solution a ∈ Π, and the Theorem is proved. �

3. Direct problem

Since the temperature u(x, t) and the heat flow a(x)ux(x, t) are continuous in
the bar, initial and boundary value problem (1.2) can be written as























ut(x, t) = aiuxx(x, t), x ∈ (xi−1, xi), t > 0
u(0, t) = g(t), u(1, t) = 0, t > 0
u(xi + 0, t) = u(xi − 0, t),
ai+1ux(xi + 0, t) = aiux(xi − 0, t),
u(x, 0) = 0, x ∈ (0, 1)

(3.1)

for i = 1, 2, ..., n− 1.
Consider the following Sturm-Liouville problem:















aiψ
′′(x) = −λψ(x), x ∈ (xi−1, xi),

ψ(0) = ψ(1) = 0,
ψ(xi + 0) = ψ(xi − 0),
ai+1ψ

′(xi + 0) = aiψ
′(xi − 0),

(3.2)

i = 1, 2, ..., n− 1, where ψ′(x) = dψ

dx
.

It follows from standard arguments, see, e.g., [5, 6], that (3.2) has infinitely
many eigenvalues {λk}∞k=1 satisfying

νπ2k2 ≤ λk ≤ µπ2k2. (3.3)

The corresponding orthonormal set of eigenfunctions {ψk}∞k=1 forms a basis in
the Hilbert space H = L2[0, 1]. Denote the inner product in H by < ·, · > and
the norm by ‖ · ‖. Let a ∈ Π, u be the solution of (1.2), and

Φ(x; a) = − 1
∫ 1

0
1

a(ξ) dξ

∫ x

0

1

a(ξ)
dξ + 1. (3.4)

The compatibility condition for the data implies g(0) = 0. Thus, the function
ũ(x, t; a) = u(x, t; a)− Φ(x; a)g(t) is the solution of the problem:







ũt − (aũx)x = −g′(t)Φ, 0 < x < 1, t > 0,
ũ(0, t) = 0, ũ(1, t) = 0, t > 0,
ũ(x, 0) = 0, 0 < x < 1.

(3.5)
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Let {λk, ψk}∞k=1 be the eigenvalues and the eigenfunctions of (3.2), and
φk(a) =< Φ, ψk > for k = 1, 2, · · · . Then the solution u(x, t; a), t > 0 of (1.2) is
given by

u(x, t; a) = g(t)Φ(x; a) +

∞
∑

k=1

Bk(t; a)ψk(x; a), (3.6)

where

Bk(t; a) = −
(

g(t) − λk

∫ t

0

e−λk(t−τ)g(τ )dτ

)

φk(a) (3.7)

for k = 1, 2, . . .
Using the Laplace transform v = Lu system (3.1) becomes

aiv
′′ − sv = 0, x ∈ (xi−1, xi), v(0, s; a) = G(s), a1v

′(0, s; a) = F (s),

v(xi + 0, s; a) = v(xi − 0, s; a), ai+1v
′(xi + 0, s; a) = aiv

′(xi − 0, s; a). (3.8)

From (3.6)-(3.7), the solution v(x, s) is given by

v(x, s; a) = G(s)Φ(x; a) −
∞
∑

k=1

φk(a)

(

G(s) − λk
G(s)

s+ λk

)

ψk(x; a)

= G(s)

(

Φ(x; a) −
∞
∑

k=1

sφk(a)

s+ λk
ψk(x; a)

)

. (3.9)

Therefore

F (s) = a1v
′(0, s; a) = −G(s)





1
∫ 1

0
1

a(ξ) dξ
+ a1

∞
∑

k=1

sφk(a)

s+ λk
ψ′
k(0; a)



 . (3.10)

Note that the solution v(x, s; a) of (3.8) can also be described in a different way.
Since a(x) = a1 on [0, x1), we consider the initial value problem a1v

′′ − sv = 0
with v(0, s; a) = G(s) and a1v

′(0, s; a) = F (s). Thus, for x ∈ [0, x1) we have

v(x, s; a) = G(s) cosh

√

s

a1
x+

F (s)√
a1s

sinh

√

s

a1
x (3.11)

and

a1v
′(x, s; a) = G(s)

√
a1s sinh

√

s

a1
x+ F (s) cosh

√

s

a1
x. (3.12)

Using the matching conditions v(x1 + 0, s; a) = v(x1 − 0, s; a) and a2v
′(x1 +

0, s; a) = a1v
′(x1 − 0, s; a) we conclude that

v(x1 + 0, s; a) = G(s) cosh

√

s

a1
x1 +

F (s)√
a1s

sinh

√

s

a1
x1 (3.13)

and

a2v
′(x1 + 0, s; a) = G(s)

√
a1s sinh

√

s

a1
x1 + F (s) cosh

√

s

a1
x1. (3.14)
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Equations (3.13) and (3.14) can be compactly rewritten as

(

v(x1 + 0, s; a)
a2v

′(x1 + 0, s; a)

)

= E(s; 0, x1, a1)

(

G(s)
F (s)

)

=





cosh
√

s
a1

x1
1√
a1s

sinh
√

s
a1

x1

√
a1s sinh

√

s
a1

x1 cosh
√

s
a1

x1





(

G(s)
F (s)

)

. (3.15)

Define

E(s; p, x, b) :=

(

cosh
√

s
b
(x− p) 1√

bs
sinh

√

s
b
(x− p)√

bs sinh
√

s
b
(x− p) cosh

√

s
b
(x− p)

)

. (3.16)

Because of the requirement v(1, s; a) = 0 system (2.3) takes the form

1
∏

i=n

E(s; xi−1, xi, ai)

(

G(s)
F (s)

)

=

(

0
·

)

, (3.17)

where the second component of the right hand side of (3.17) can be any function
of s.

4. Inverse problem

Using the notation of the previous section, the Inverse Problem IP can be
stated as:

Given G(s) and F (s), find a ∈ Π such that vector equation (3.17) is satisfied

for its first component.

Consistent with the ”layer peeling” arguments of [15], we propose an algorithm
that determines the sought conductivity a∗ ∈ Π by determining its values ai and
the discontinuity points xi one by one starting at the left end of the interval [0, 1]
and iteratively advancing to its right end.

First, we present an informal description of the algorithm. Let G(s) and F (s)
be known. Choose a point p ∈ (0, 1), and ν ≤ b, c ≤ µ. This choice corresponds to
the heat conduction problem (1.1)-(1.2) with a(x) = b for 0 ≤ x ≤ p and a = c for
p ≤ x ≤ 1. Let the extra condition for the heat flow at x = 0 be bux(0, t) = f(t)

with (Lf)(s) = F (s). Then E(s; 0, p, b)
(

G(s)
F (s)

)

gives the temperature and the heat

flow in the bar at the point x = p. Furthermore
(

H(s)

·

)

= E(s; p, 1, c)E(s; 0, p, b)

(

G(s)

F (s)

)

is the temperature and the heat flow at x = 1.
Because of the condition u(1, t) = 0, we would like to have H(s) = 0. So,

in the first iteration, one minimizes J = ‖H(s)‖2 with respect to the variables
p, b, c. Let the resulting minimizer be (a1, x1, c̃). We take x1 and a1 as the first
discontinuity point and the value of the sought conductivity a∗ for 0 ≤ x < x1.
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Next iteration works with the remaining interval [x1, 1]. It involves the mini-
mization with respect to p, b, c of J = ‖H(s)‖2 now defined by

(

H(s)

·

)

= E(s; p, 1, c)E(s; x1, p, b)E(s; 0, x1, a1)

(

G(s)

F (s)

)

.

Let the minimizer of J be (x2, a2, c̃). Then x2 is the second discontinuity point
of a∗ and a∗(x) = a2 for x1 ≤ x < x2. The iterations continue until the desired
tolerance tol is reached, or the allowable number of iterations Nmax has been
exceeded. Note that the values of the discrepancy J are decreasing with each
iteration.

Layer Peeling (LP) Algorithm

Let g(t) be the temperature, and f(t) be the heat flux at x = 0 for the heat
conduction described by (1.1)-(1.2) with â ∈ Π.

Let the Laplace transforms (Lg)(s) = G(s) and (Lf)(s) = F (s) be known for
s1 ≤ s ≤ s2.

Choose tol > 0 for the tolerance, and Nmax for the maximal number of itera-
tions.

Let x0 = 0 and k = 1.
Iteration.

For k = 1 define H(s; p, b, c) by
(

H(s; p, b, c)

·

)

= E(s; p, 1, c)E(s; 0, p, b)

(

G(s)

F (s)

)

.

For k ≥ 2 with the discontinuity points {x1, ..., xk−1} and the values {a1, ...,
ak−1} known from the previous iterations, define H(s; p, b, c) by
(

H(s; p, b, c)

·

)

= E(s; p, 1, c)E(s; xk−1, p, b)

1
∏

i=k−1

E(s; xi−1, xi, ai)

(

G(s)

F (s)

)

.

Let

J(p, b, c) =

∫ s2

s1

|H(s; p, b, c)|2ds

and

(xk, ak, c̃) = argmin J(p, b, c), xk−1 ≤ p ≤ 1, ν ≤ b, c ≤ µ.

Stopping Criterion.

If J(xk, ak, c̃) > tol and k < Nmax then let k := k+1 and do another Iteration.
Otherwise let n = k + 1, xn = 1, an = c̃. Stop.
The sought conductivity a∗ ∈ Π has discontinuities at x1, x2, ..., xn−1 and the

values a∗(x) = ai for xi−1 ≤ x < xi, i = 1, 2, ..., n.

5. Computational algorithms

To test the effectiveness of the LP algorithm, let us assume that a conductivity
â ∈ Π is given together with the temperature g(t) = u(0, t; â), t > 0 satisfying
g(0) = 0. Let G(s) be the Laplace transform of g(t). Then the heat flux F (s) can
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be computed by (3.10). This computation requires the eigenvalues and the eigen-
functions of the Sturm-Liouville problem (3.2) with a = â. They are computed
as follows.

Shooting Method for Eigenvalues and Eigenfunctions. Let a ∈ Π. Then
there exists a partition 0 < x1 < x2 < · · · < xn−1 < 1 of the interval [0, 1], and
a sequence a1, a2, . . . , an such that a(x) = ai for xi−1 < x < xi, i = 1, 2, ..., n.

Fix a λ > 0 and solve the sequence of the initial value problems

(a(x)v′(x))′ = −λv(x), x 6= xi,
v(0) = 0, v′(0) = 1,
v(xi + 0) = v(xi − 0),
ai+1v

′(xi + 0) = aiv
′(xi − 0),

(5.1)

on intervals [0, x1], [x1, x2], ..., [xn−1, 1].
Let F (λ) = v(1; λ), that is F (λ) is the value of the solution v(x) of (5.1) at

x = 1. Let hλ > 0. We used hλ = (µπ2 − νπ2)/20 utilizing the bounds for the
first eigenvalue from (3.3). Let λl = νπ2 and λr = λl + hλ. Compute F (λl) and
F (λr). If these two values have a different sign, then use a bisection (or other
root finding method, see [18]) in λ to find the value λ1 for which F (λ1) = 0 within
a prescribed tolerance. If F (λl) and F (λr) have the same sign, then translate the
interval [λl, λr ] by hλ and repeat the procedure until all the required eigenvalues
are found.

Let v(x; λ1) be the solution of (5.1) with λ = λ1. This solution is normalized
to obtain the first eigenfunction ψ1(x; a). The process is repeated for all the other
eigenvalues.

The central part of the LP algorithm, described in section 4, is the nonlinear
minimization procedure for the discrepancy J(p, b, c) in its Iteration step. The
variables p, b, c appear only in the product E(s; p, 1, c)E(s; xk−1, p, b). The def-
inition (3.16) of the operator E allows one to compute the partial derivatives
of J(p, b, c) explicitly. Thus various gradient type minimization methods can be
applied, see [18].

6. Numerical results

In all our numerical experiments we let ν = 0.1, µ = 1.0, tol = 0.0001 and
Nmax = 3. The temperature u(0, t) was taken to be g(t) = sin t, t > 0. Thus
G(s) = 1/(s2 + 1). Given a conductivity â ∈ Π,M = 250 eigenvalues and the
eigenfunctions of the associated Sturm-Liouville problem (3.2) were computed
by the Shooting Method. It was found experimentally that the Fourier series

approximation
∑M

k=1 φk(â)ψk(x; â) for Φ(x; â) with a significantly smaller M
had a detrimental effect on the quality of the identification. Then the Laplace
transform F (s) of the heat flux f(t) was computed using (3.10) at J = 400
equidistant points sj , j = 1, ..., J spanning the interval (0, 80].

The following three numerical experiments illustrate the typical performance
of the LP algorithm.

Let
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â(1)(x) =

{

0.8, 0 ≤ x < 0.2

0.2, 0.2 ≤ 1
(6.1)

The identified conductivity was

a∗(1)(x) =



















0.784, 0 ≤ x < 0.1500

0.388, 0.1500 ≤ x < 0.8385

0.622, 0.8385 ≤ x < 0.8401

1.000, 0.8401 ≤ 1.

(6.2)

In the other two experiments we had

â(2)(x) =











0.2, 0 ≤ x < 0.2

0.8, 0.2 ≤ x < 0.5

0.2, 0.5 ≤ 1

(6.3)

with

a∗(2)(x) =



















0.190, 0 ≤ x < 0.2100

1.000, 0.2100 ≤ x < 0.2416

1.000, 0.2416 ≤ x < 0.3857

1.000, 0.3857 ≤ 1,

(6.4)

and

â(3)(x) =











0.8, 0 ≤ x < 0.2

0.2, 0.2 ≤ x < 0.5

0.8, 0.5 ≤ 1

(6.5)

with the identified conductivity

a∗(3)(x) =



















0.784, 0 ≤ x < 0.1700

0.3520, 0.1700 ≤ x < 0.8506

1.000, 0.8506 ≤ x < 0.8670

1.000, 0.8670 ≤ 1.

(6.6)

The results of these experiments are shown on Figure 1. These typical results
show that the method achieves good identification for the first (the closest to
the left end of the interval [0, 1]) discontinuity. However, the second discontinu-
ity cannot be reliably identified. A closer examination shows that the objective
function J introduced in Section 4 is becoming practically independent of addi-
tional discontinuity points after a couple of iterations of the LP algorithm. Thus
the method is unable to ”see” the additional discontinuities without an increase
in precision in the data and the computations.
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Figure 1. Original â(i) (dashed line) and the identified conductivity a∗
(i)

(solid line), i = 1,2,3.
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