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1  Introduction
The relationship between output and inflation has long been of interest in the 
monetary economics literature. Today, some consensus has formed about some 
important issues. For instance, the general view is that this relationship is at most 
weak in the long run, reflecting a sort of classical dichotomy between nominal 
and real variables. On the other hand, the short run seems to be well described 
by some variant of the New Keynesian Phillips Curve (NKPC).1 Yet despite the 
emerging consensus for using the NKPC to model the short run, there remains 
considerable disagreement about what form it should take. Numerous studies 
have shown that the strictly forward looking NKPCs are unable to replicate many 
of the empirical patterns found in the data.2 However, one limitation of many of 
these studies is that they have focused on models consisting of just a single NKPC 
equation (i.e., the aggregate supply) and have overlooked the aggregate demand 
side of the economy and its interaction with the NKPC. This focus on single equa-
tion NKPC models often results in misleading conclusions.3 Less attention has 

1 The fact that output and inflation should be connected in the short run does not imply the 
existence of a stable relationship between the two variables since both the sources of economic 
shocks and the way central banks monitor policy may change over time and across countries. See 
Walsh (2003, Chapter 1) and references therein for a summary of the main empirical regularities 
found in the monetary economics literature.
2 The original NKPCs were founded on contracting ideas from Taylor (1980) and Calvo (1983). 
However, performance issues, such as the lack of inflation persistence, led to the introduction of 
backward looking terms to these basic rational agent models. Fuhrer and Moore (1995) and Fuhr-
er (1997, 2006) advocate a contracting idea from Buiter and Jewitt (1981) to motivate the backward 
looking term, while Galí and Gertler (1999) use an empirical motivation for the backward term 
along with a marginal cost structure substituted for the output gap. Numerous papers, including 
Coenen and Wieland (2005), Rudd and Whelan (2006) have explored the merits of these formu-
lations. More recently, Ireland (2007), Lansing (2009), Cogley and Sbordone (2008) and others 
have explored models which add learning, unit roots or near unit roots to the discussion.
3 For instance, as noted in Mankiw (2003, 66–67), it is hard to identify the parameters featured 
in the NKPC when inflation-push shocks are relatively more important than output gap shocks. 
Put differently, the chances of identifying the NKPC model parameters are higher when output 
gap shocks dominate. Indeed, many of the papers relying on single equation NKPC models as-
sume an exact relationship between current inflation, expected inflation and output gap (i.e., 
there are no inflation-push shocks), and the source of variation comes from the output gap (i.e., 
the variable driving in the NKPC). In addition, from a policy perspective, the single equation 
NKPC models are often associated with the possibility for an immediate and costless disinflation 
policy because current inflation is entirely determined by the expected path of future output 
gaps and if the central bank could commit to setting the path of future output gaps equal to zero, 
adjustment would occur immediately (Galí and Gertler 1999, 203). However, this argument does 
not hold when output gap and inflation-push shocks are modelled so that they are highly persis-
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Reproducing, lead, lag and persistence      269

been placed on more fully specified general equilibrium models.4 This paper fills 
this gap by investigating the short-run performance of the NKPC in a small-scale 
general equilibrium model with several sources of persistence. We use a general 
equilibrium structure that is rich enough so as to reproduce the key comovement 
features seen in the data that are not easily matched in single equation NKPC 
models, but also is simple enough, in contrast with the recent medium-scale 
models as in Smets and Wouters (2003, 2007), so that it is possible to understand 
exactly which model features are necessary to match the dynamic patterns of 
output and inflation data.5

This paper contributes to our understanding of the output and inflation 
relationship in three important ways. First, it provides a new data description 
method, that builds on techniques developed in den Haan (2000). This extension 
is rather straightforward, but it helps us to shed light on lead and lag comove-
ments of the data. It not only identifies the lead and lag empirical regularities, but 
it also shows whether they are part of the short-term or long-term forces driving 
the data. Second, the paper uses these techniques to describe the lead, lag and 
contemporaneous comovement between output and inflation as well as inflation 
persistence. This description is particularly useful for the output and inflation 
application here where so much of the debate has centered on whether the NKPC 
is able to replicate dynamic patterns seen in the data. Third, a small-scale New 
Keynesian model (NKM) with a rich set of modeling features is described and then 
studied to see which of these features are important for generating the actual pat-
terns. These model features include, a consumer utility function with generalized 
habit persistence, a hybrid NKPC à la Galí and Gertler (1999), a monetary policy 
rule that incorporates inflation, output and output growth as suggested by Smets 
and Wouters (2007), a time varying inflation target and persistence in the IS curve 
and the NKPC shock processes.

The data description method is used in two important ways. First, lead, lag 
and persistence patterns of the data are described. Early work by Fuhrer and 
Moore (1995) documented these patterns and thus set the mark which most 

tent as part of the economic structure. Under such a structure, it is not feasible for a central bank 
to make a commitment about the path of future output gaps.
4 Some exceptions include Rotemberg and Woodford (1997), Christiano, Eichenbaum and Evans 
(2005), Keen (2009), and Smets and Wouters (2003, 2007) which propose medium-scale general 
equilibrium models with many equations and, in some cases, numerous sources for variation.
5 Medium-scale models are more realistic by featuring, among other ingredients, many more 
structural shocks. However, they might be viewed as less useful to understand the mechanics 
driving business cycle comovements than small-scale models. Indeed, the interpretation of the 
business cycle features exhibited by medium-scale models is often summarized by classifying 
shocks as demand and supply shocks.
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studies of the NKPC have sought to achieve. Our method refines the typical data 
summary to decompose the lead, lag and persistence patterns into forecast hori-
zons, thus allowing one to judge whether the data patterns are more short term 
or long term in nature. We find a hump shape in our lead and lag diagrams which 
show that these patterns are arising from medium-term components rather than 
short- or long-term components. Second, we use this data description in a fitting 
exercise which fits our rich NKM to the data and thus shows which of the mod-
eling features are important for achieving data matches.

Our fitting exercises find several important results. First, we find that there 
are several ways to reproduce the lead and lag patterns between output and infla-
tion. The key features of the model that are needed to achieve this dimension of 
fit are: 1) the model needs to have both demand equations and supply equations 
with their own stochastic elements; 2) the model needs to get the relative propor-
tions for the supply and demand shock variances just right; 3) the model needs 
to get the relative persistence for the supply and demand shocks just right; and 
4) a sensible balance between endogenous persistence (habit formation and the 
backward looking component of the hybrid NKPC) and exogenous shock persis-
tence. It is shown that these requirements can be satisfied, at least qualitatively, 
with a variety of alternative shock and persistence specifications as well as with 
different specifications for the consumption habit formation structure and the 
backward looking component of the hybrid NKPC. The intuition for this struc-
ture is relatively easy to understand from the impulse response functions pro-
vided below. The demand shocks produce a positive lead of output over inflation 
when the effects of these shocks are more persistent in inflation than output, 
and the supply shocks produce a negative lead of inflation over output when the 
effects of supply shocks last longer in output than inflation. By balancing these 
two dynamic features with the right variances for the demand and supply shocks 
and the proper persistence levels of the model, the lead and lag patterns between 
output and inflation can be reproduced.

A second stylized fact of the data is that both inflation and output are highly 
persistent, but inflation is more so. Reproducing this fact is more difficult. To 
achieve this feature of the data jointly with the lead and lag patterns, we find it 
necessary to have endogenous persistence through preferences featuring habit 
formation as well as the right balance (size and persistence) between IS and 
inflation-push shocks. These results perhaps explain the difficulty that single 
equation models, without a demand side to the economy, have had in achieving 
persistence in inflation. The fact that both supply and demand shocks are nec-
essary is supportive of proponents of intrinsic inflation persistence structures, 
such as Fuhrer (2006) as well as proponents of extrinsic inflation persistence 
structures.
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The rest of the paper is organized as follows. Section 2 is designed as a data 
section. It first reviews some of the data features described by Fuhrer and Moore 
(1995) and others. It then describes the extension of den Haan’s (2000) method 
to analyze lead and lag comovements in the data and applies the method to the 
US post-war output and inflation time series. Section 3 introduces our small-scale 
NKM with three key building blocks, an IS curve, a hybrid NKPC and a monetary 
policy rule. This model is designed to have a rich set of demand and supply shock 
structures as well as several sources of persistence. At the same time, the model 
is simple enough to clearly understand what are the key features necessary to 
produce the statistical patterns seen in the data. In Section 4, we follow a fitting 
approach designed to uncover which of the model features are needed to repro-
duce the output and inflation dynamics. Section 5 concludes.

2  �Leads, lags and persistence in output and 
inflation data

In this section we investigate the lead, lag and persistence patterns in the output 
and inflation data for the US. The section is broken into three subsections. In 
the first subsection, we begin by reviewing some of the findings from Fuhrer and 
Moore (1995) which have become well-known stylized facts for the literature in 
this area. Next we describe an extension to the forecast error correlation methods 
in den Haan (2000) which allows a more complete picture of the data movements. 
Finally, we apply this new method to the output and inflation data, and see how 
it provides a richer summary of the dynamic movements of these two data series 
than the Fuhrer and Moore (1995) approach.

2.1  Review of lead, lag and persistence measurements

In order to understand our new forecast error correlation approach, it is helpful to 
first review some of the more familiar lead and lag facts first described in Fuhrer 
and Moore (1995) and emphasized by Galí and Gertler (1999) and many others 
later on. Fuhrer and Moore (1995) used a trivariate VAR to summarize the data on 
output gap, inflation and short-term interest rates. For the output gap they used 
(the log of) deviations of per capita nonfarm business output from a linear-fitted 
trend, for inflation they used the annualized growth rate in the implicit deflator 
for the nonfarm business output and for the short-term interest rate they used the 
3-month Treasury bill rate.
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272      Steven P. Cassou and Jesús Vázquez

Our analysis has four small differences from theirs. First, our plots only 
include the output and inflation data series and leave out the short-term interest 
rate plots. We left out the short-term interest rate plots to keep things simple and 
focus on the output and inflation dynamics, which are the main focus of most 
of the literature in this area. Second, for our analysis, output gap is obtained by 
implementing the Hodrick and Prescott (1997) filter to the data.6 Third, we con-
sider the Fed funds rate as the short-term interest rate and fourth, we use a larger 
sample period (1965:1–2008:4) which also includes data from the last 15 years that 
was not available to Fuhrer and Moore (1995).

The results of our calculations are provided in Figure 1. This figure shows that 
these small differences in the calculations have little effect on the dynamic pat-
terns in the data. The autocorrelation functions for output and inflation, as well 
as the lead and lag correlation patterns, are almost identical to what was found 
by Fuhrer and Moore (1995). In particular, the diagonal elements in Figure  1  
show that inflation is quite persistent, whereas as the output gap has somewhat 
less persistence. On the other hand, the off-diagonal elements together show the 
familiar lead and lag pattern of output and inflation, where output leads inflation 

6 This filter is designed to extract so called business cycle frequencies, that is frequencies cor-
responding to 2 and 8 year cycles, from the data. The result of this filter is a detrended data series 
which could also be interpreted as a measure of output gap.
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Figure 1 Autocorrelation and lead/lag pattern of output and inflation based on a VAR.
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when there is a positive correlation and inflation leads output when there is a 
negative correlation. Thus, a high level of output anticipates a high level of infla-
tion about five quarters later (upper-right graph), while a high level of inflation 
is followed by a lower level of output about ten quarters later (lower-left graph).7 
These correlations are interpreted as follows. The negative correlation of lagged 
inflation with current output is sometimes interpreted as indicating that high 
(low) inflation rates generally lead to tight (loose) monetary policy which reduces 
(increases) future output, while the positive current and future correlations are 
interpreted as indicating that high (low) output levels put (reduce) inflationary 
pressures on the economy leading to higher (lower) future inflation. This inter-
pretation is consistent with the identification scheme implied by the NKM consid-
ered below where monetary policy shifts are viewed as aggregate demand shocks 
and the inflationary pressures as inflation-push shocks.

2.2  A new method for measuring leads, lags and persistence

In den Haan (2000) a new methodology for assessing the comovement of eco-
nomic variables was developed.8 The method makes use of forecast errors for 
assessing comovement and is attractive for several reasons. First, the method 
does not require any modeling assumptions, such as a VAR ordering or structural 
assumptions on the error terms, to be applied. Second, it does not require that 
the data be detrended or that the variables in the model have identical orders of 
integration.9

Another salient feature of the den Haan (2000) approach is the interpreta-
tion for the sources of fluctuations. As in typical VAR methods, the fluctuations 
in both the data and thus in the forecast errors originate from some underlying 

7 An almost identical empirical lead-lag pattern can also be obtained by using a univariate ap-
proach instead of a VAR approach. For instance, Galí and Gertler (1999) and Smets and Wouters 
(2007), following a univariate approach, report similar lead-lag patterns. These authors also plot 
leads and lags in the same diagram. Their depiction of the lead-lag pattern exhibits the well 
known S-shaped pattern with lagged values of inflation exhibiting negative correlations with 
current output, and current and future values of inflation exhibiting positive correlations with 
current output.
8 In addition to den Haan (2000), other applications of this approach include den Haan and 
Sumner (2004) and María-Dolores and Vázquez (2008).
9 Avoiding detrending of the data is useful because den Haan (2000, 5) argues that the negative 
correlation between output and prices often found in the data could be an artifact of common 
detrending procedures used to make the data stationary. Moreover, Fuhrer and Moore (1995) de-
voted several pages to discussing the order of integration of output, inflation and interest rates 
and nonconclusive evidence was found.
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structural shocks which could be associated with the various variables in the 
model. However, the method does not need to identify exactly which structural 
shocks play a role in any particular equation and can be left unspecified. One 
simply envisions that all of the structural shocks play some role in each of the 
model variables and the comovements in the observed data are shaped by the 
importance of these structural shocks in the variables for which comovements 
are being investigated, but sorting out which of the structural shocks are impor-
tant is not necessary.10

The focus in den Haan (2000) was on contemporaneous comovements of the 
economic variables, but for our investigation, we are interested in more than just 
that. Here we extend this methodology to look at not only the contemporane-
ous comovements, but also lead and lag comovements and autocorrelation func-
tions in order to analyze inflation and output persistence. This provides a more 
complete description of the data dynamics. Such lead and lag and persistence 
analyses are familiar to readers of the modern dynamic macroeconomic litera-
ture. However, the technique here provides a broader format for describing the 
data dynamics than the approach used in the macroeconomic literature as well.

We begin by running a VAR of the form

	

2

=1

,
L

t l t l t
l

X Bt Ct A Xµ ε−= + + + +∑
�

(1)

where Al is an N × N matrix of regression coefficients, μ, B, and C are N-vectors of 
constants, εt is an N-vector of innovations, and the total number of lags included 
is equal to L. The εt are assumed to be serially uncorrelated, but the components 
of the vector can be correlated with each other. For the application here, we run a 
trivariate VAR, so N = 3. Notice that, in addition to the rate of inflation and the Fed 
funds rate, real GDP is used instead of the detrended real GDP considered in the 
Fuhrer and Moore approach. Also, following popular forecasting practice, we let 
L = 4, so there is one full year worth of lags in the VAR.

From this VAR, forecast errors can be computed for alternative forecast hori-
zons. A particular N-vector of forecast errors can then be viewed as the cyclical 
component of Xt for a particular forecast horizon. Thus, the forecast errors associ-
ated with short-term horizons would tend to capture more of the high-frequency 

10 One limitation of this approach is that it does not provide standard impulse response func-
tions which show the responses of each endogenous variable to alternative structural shocks. 
However, den Haan (2000) views this as a positive feature as he notes that such standard im-
pulse response analysis requires an identification structure which is often the subject of some 
dispute.
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components of the data whereas long-term forecast errors would tend to empha-
size relatively more low-frequency components. Each of these forecast errors, or 
cyclical components, obtained from the different equations at various forecast 
horizons can then be used to compute contemporaneous correlations for the fore-
cast errors from the different equations at various forecast horizons as in den 
Haan (2000).

In our analysis, we extend this approach by further using these forecast 
errors to compute cross correlations at various leads and lags as well as autocor-
relation functions. In particular, the cross correlations are computed by matching 
forecast errors for the same forecast horizon where each forecast is based on an 
information set that differs with a specific number of leads or lags. These calcu-
lations provide a more complete dynamic perspective of comovement than the 
alternative approaches suggested by Fuhrer and Moore (1995), Galí and Gertler 
(1999) and den Haan (2000) by not only showing how the data comove at leads 
and lags, but also by showing how the data comove at leads and lags at alterna-
tive forecast horizons. These alternative forecast horizons thus tell us if the lead 
and lag patterns are arising due to more short-term or more long-term compo-
nents of the data. In the next subsection, we show how this system of lead and lag 
correlations between forecast errors can be plotted against the forecast horizon to 
conveniently assess the lead and lag structure of the data.

2.3  New insights into the data comovements

This subsection is broken down into two smaller sections in order to keep the dis-
cussion clear. We begin by looking at the lead and lag results between output and 
inflation. Next, the persistence of inflation and output is discussed.

2.3.1  Lead and lag relationships between output and inflation

Figure 2 presents a set of six diagrams for the forecast error correlations between 
output and inflation. One common element in all the diagrams is the contempo-
raneous correlation which is plotted at various forecast horizons in each diagram 
by a dashed line. Each of the six diagrams then has a lead-lag pair in which a con-
temporaneous forecast error for output is matched with a lead (thick solid line) or 
a lag (thin solid line) forecast error for inflation. The upper left diagram has a lead-
lag pair in which the correlations are for inflation eight quarters, or 2 years, ahead 
or behind output, while the upper right diagram has a lead-lag pair correspond-
ing to six quarters, the middle left diagram has a lead-lag pair corresponding  
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to four quarters, the middle right has a lead-lag pair corresponding to three quar-
ters, the lower left has a lead-lag pair corresponding to two quarters and the lower 
right has a lead-lag pair corresponding to one quarter. A useful comparison of 
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Figure 2 Actual comovement between output and inflation.
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these diagrams can be made with the off-diagonal graphs in Figure 1 by noting 
that if one focuses on the lead lines in Figure 2 and one moves upward through 
the diagrams (i.e., one moves through the diagrams with progressively longer 
leads), it is the same type of exercise as moving from the origin to the right in the 
upper-right diagram of Figure 1, while if one focuses on the lag lines in Figure 2 
and one moves upward through the diagrams (i.e., moves through the diagrams 
with progressively longer lags), it is the same type of exercise as moving from the 
origin to the right in the lower-left graph in Figure 1.

Interpreting the diagrams borrows insights from both the Fuhrer and Moore 
(1995) and Galí and Gertler (1999) approach and the den Haan (2000) approach. 
As in Fuhrer and Moore (1995) and Galí and Gertler (1999), places where the lead 
correlation is higher than the contemporaneous correlation, one would interpret 
output as leading inflation. Furthermore, as in den Haan (2000), the horizontal 
axis represents the forecast horizon and provides information about whether the 
correlation occurs in the short run or long run. Situations in which the lead line 
exceeds the contemporaneous line toward the right edge of the diagram would 
indicate that output leads inflation at longer forecast horizons. Because alternative 
filters used in the literature [for instance, the Hodrick and Prescott filter used by 
Galí and Gertler (1999) or the linear-trend filter used by Fuhrer and Moore (1995)] 
are often set to isolate so called business cycle frequencies, our diagrams have as 
their highest forecast horizon 32 quarters (i.e., 8 years). We use forecast horizons 
as low as one quarter, so the left side of the diagrams consists of short-term cor-
relations. These correlations are typically low because of the high percentage of 
noise at short-term forecast horizons.

To be more concrete about the actual results, let us start by walking through 
the middle right diagram in Figure 2.11 To conduct this analysis, it is important 
to recognize that the lead plot in essence decomposes the single three quarter 
correlation value in the upper right diagram of Figure 1, the lag plot in essence 
decomposes the single three quarter correlation value in the lower left diagram 
in Figure 1, and the contemporaneous correlation plot in essence decomposes the 
contemporaneous correlation value which is the left edge value of both the upper 
right and lower left diagrams in Figure 1.

11 It is possible to use standard bootstrapping methods to find confidence bands around the cor-
relation plots. Such confidence bands were generated using programs from den Haan’s web site 
and showed sufficiently wide bands that the individual correlation plots were not significantly 
different from each other, as shown in the Appendix for output leads. However, many individual 
correlations associated with alternative leads, lags and forecast horizons are statistically signifi-
cant whereas the contemporaneous correlation is not. Therefore, as in Fuhrer and Moore (1995) 
and numerous others, we still interpret maximal correlations that are different from the contem-
poraneous correlation as indicating a lead or lag.
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First notice that the contemporaneous correlation plot in Figure 2 is relatively 
low and ranges between 0.1 and 0.25 over all the forecast horizons as emphasized 
by María-Dolores and Vázquez (2008). These values are in line with the contem-
poraneous correlation displayed on the left edge of the upper right and lower 
left diagrams in Figure 1. Next note that both the lead and lag lines are close to 
zero for the first four quarters. This is because the population moment (i.e., the 
population correlation) between the inflation forecast error four quarters ahead 
(or behind) and the current forecast error for output is zero. As one moves past 
the four quarter horizon, the lead line moves up positively and the lag line moves 
down negatively. These results indicate that at all forecast horizons, (i) high 
values of output lead to high values of inflation three quarters later, and (ii) high 
values for lagged inflation anticipate low values for output three quarters later.

Both results are consistent with those displayed in Figure 1. What is new 
here is that the lead and lags have been broken down by forecast horizons. Since 
the forecast horizons are loosely related to frequencies, with short-term fore-
cast horizon errors emphasizing high frequencies and the long-term horizons 
emphasizing low frequencies, we see that the rising lead line and the falling 
lag line tells us that the positive lead and negative lag values in Figure 1 are due 
mostly to medium- and longer-term (low) movements (frequencies). Since the 
lead plot has a hump shape to it, we see that the medium-term movements are 
somewhat more important than the long-term movements for producing the lead 
of output over inflation. Similarly, since the lag plot has a cup shape to it, we 
see that the medium-term movements are somewhat more important than the 
long-term movements for producing the lag of output over inflation. Looking at 
the other diagrams in Figure 2 shows similar results with the curves spreading 
out for the medium-term forecast horizons, but still maintaining a sizable lead 
or lag for the longer forecast horizons. These also indicate the values in Figure 1 
are mostly due to the medium-term movements, but the longer term movements 
also have a role.

It is also useful to note that, loosely speaking, the correlations in Figure 
1 are recovered as the forecast horizon approaches infinity.12 So looking at the 
middle left diagram in Figure 2 (with 1-year leads and lags) and focusing on the 
right edge of the lead and lag lines, we see that the right edge of the lead is 
somewhat higher than the right edge of the lead in the middle right diagram 

12 The “ loosely speaking” qualification is important when considering situations when some 
variable in the VAR is non-stationary. In this case, the correlation coefficient of the forecast errors 
might not converge to the unconditional correlation coefficient of the two time series as the fore-
cast horizon goes to infinity, but it can be estimated consistently, as shown in den Haan (2000), 
since forecast errors are stationary for a fixed horizon.
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(with a 3-quarter lead) and the right edge of the lag is somewhat lower than the 
right edge of the lag in the middle left diagram (with a 3-quarter lag). Recogniz-
ing this shows that Figure 2 also captures the S-shaped pattern described above 
in the discussion of Figure 1, where the S-shaped pattern terminology is used 
to describe the Galí and Gertler (1999) way of plotting the lead and lag results. 
What Figure 2 shows is that this S-shaped pattern not only exists at the aggre-
gate, but it is also true across all forecast horizons and that the S-shape is due 
mostly to the medium-term movements.

Finally, it is useful to understand economically, what these lead and lag plots 
are saying. The low correlation values at the short-term horizons are indicating 
that there is a relatively high amount of noise in the short term, thus driving down 
the correlations. On the other hand, the hump shape in which medium-term fore-
cast horizons are higher than long-term forecast horizons point to a long-run 
classical dichotomy where output and inflation movements are relatively inde-
pendent. What the diagrams indicate is that most of the lead and lag correla-
tions that people are familiar with in the Fuhrer and Moore (1995) analysis are 
arising from comovement between the data in the medium term. Furthermore, 
without the decomposition presented here, the aggregate numbers of the Fuhrer 
and Moore (1995) approach would not provide this insight.

2.3.2  Persistence of inflation and output

Figure 3 shows the autocorrelation functions for inflation and output. These func-
tions have been computed using the forecast error decomposition and thus are 
useful for understanding whether the autocorrelations are due to short-term or 
long-term components of the data as well.

To understand how these plots are calculated, first focus on the solid line in 
each of the diagrams of Figure 3. These plots correspond to the first order autocor-
relation value of inflation and output from the standard Box-Jenkins calculations, 
only here the first order autocorrelations correspond to the cyclical component of 
the variable associated with the forecast horizon enumerated on the horizontal 
axis. Each point in these plots is computed by computing a vector of n-step ahead 
forecast errors and then using this vector to compute the first order autocorre-
lation for the n-step ahead forecast horizon. The other plots are computed in a 
similar way. Each point in the two lag plot is computed by computing a vector 
of n-step ahead forecast errors and then using this vector to compute the second 
order autocorrelation for the n-step ahead forecast horizon.

One useful point of reference to the Fuhrer and Moore (1995) calcula-
tions (i.e., the diagonal diagrams in Figure 1) is to note that the Box-Jenkins 
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autocorrelation value is, loosely speaking, recovered as the forecast horizon 
approaches infinity.13 This means that the right edge values of these diagrams 
are approximately equal to the values that Fuhrer and Moore (1995) compute in 
their plots. Focusing on this right edge, we see that the autocorrelation function 
for inflation falls off much more slowly than the correlation function for output. 
This illustrates the well known inflation persistence observation which so many 
NKM seek to match. By comparing the first order autocorrelation of inflation in 
Figure 1 (0.87) and Figure 3 (0.76) we observe that our cyclical component based 
on long-term forecast errors is less persistent than inflation itself. The intui-
tion for this is simple. Our measures of cyclical inflation remove any linear and 
quadratic trend from actual inflation data thus reducing the long-term correla-
tion. These lower correlation results are in line with those described in Cogley 
and Sbordone (2008, 2111, table 1) who also removed trends using a different 
technique.

0 4 8 12 16 20 24 28

One lag

Eight lags
Four lags
Two lags

32

Forecast horizon

1.00

-1.00

0.50

-0.50

0

A
ut

oc
or

re
la

tio
n

Autocorrelation function of actual inflation

0 4 8 12 16 20 24 28

One lag

Eight lags
Four lags
Two lags

32
Forecast horizon

1.00

-1.00

0.50

-0.50

0

A
ut

oc
or

re
la

tio
n

Autocorrelation function of actual inflation

Figure 3 Inflation and output persistence.

13 Again, the “loosely speaking” qualification is important when considering situations when 
some variable in the VAR is non-stationary. In this case, the autocorrelation of the forecast hori-
zon does not converge to the Box-Jenkings autocorrelation as the forecast horizon goes to infinity, 
but it can be estimated consistently for a fixed horizon.
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Also of interest is to note that, as in the lead and lag analysis above, the fore-
cast errors at different horizons can be interpreted as capturing more or less of 
the short-term or long-term components of the data, with the short-term forecast 
horizons capturing more of the high frequency components of the data and the 
long-term forecast horizons capturing more of the low frequency components of 
the data. Using this insight, we see that neither the inflation or output autocor-
relation plots exhibit the hump shapes seen in the lead and lag analysis. This 
means that both the inflation and output persistence observed in the data is due 
to medium- and long-term components of the data.

3  A New Keynesian model with built in persistence
This section describes a small-scale NKM with a number of different structures 
designed to induce persistence. Many of these structures are quite standard in 
the literature, so we will briefly review them.14 The purpose for describing this 
model is so that later we can explore which of these persistence structures are 
most effective at generating the type of comovement and persistence patterns 
seen in the output and inflation data.

The model is a general equilibrium model with three key equations that 
jointly influence the way that the economy behaves. In the IS curve, persistence 
is induced through a generalized habit persistence structure as well as through 
a shock process with persistence. In the NKPC, persistence is induced through 
a so called, “hybrid” structure suggested by Galí and Gertler (1999) as well as 
through a persistent shock process. And in the monetary policy rule, persistence 
is introduced through a rule that incorporates several data features for guiding 
interest rates, including policy inertia and the standard connection to output and 
inflation, but also adding a connection to the growth rate of output as suggested 
by Smets and Wouters (2007) and a time-varying inflation target.

3.1  An IS curve based on generalized habit persistence

The demand for goods, or IS curve, is based on an optimizing agent structure. 
Here we add to the standard IS derivation a generalized habit persistence formu-
lation which induces considerable endogenous persistence in demand.

14 The model considered in this paper, although different in some details, shares many features 
(among others, habit formation, sticky prices and persistent shocks) with the small-scale NKM 
suggested by Ireland (2004), studied recently by Sargent and Surico (2011).
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The IS curve is derived from a representative consumer optimization problem 
in which the consumer maximizes

τγ α α α α
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where ct, yt, st and Rt denote consumption, income, savings and gross real return 
at period t, respectively. The parameters β and τ denote the discount factor and 
the intertemporal elasticity of substitution, respectively. The parameters γ and α 
control the habit persistence structure. When γ = 0, habit persistence disappears 
and the associated IS curve collapses into the standard IS curve described in the 
basic NKM. When γ > 0, habit persistence is present and the parameter α comes 
into play. This parameter controls the way in which habit persistence enters the 
model. When α = 1, the habit consists of an equally weighted index of consump-
tion over the last four quarters. When α < 1, the habit overweights the most recent 
consumption level, while when α > 1, the habit overweights consumption four 
quarters earlier.15 As α→0, the IS curve approaches the standard one-period lag 
habit IS curve.

Using standard optimization techniques followed by standard linearization 
methods, the IS curve can be shown to be given by
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15 The habit formation structure introduced here could be a potential candidate for capturing 
seasonal patterns in the data. Since we are dealing with seasonal adjusted data in this paper, as 
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where Δ is the first-difference operator, 4

1
,i

i
Ω α

=
=∑  and ,ty�  πt and it denote 

output, inflation and the nominal interest rate deviations from their respective 
steady state values.16 Finally, gt denotes an IS shock which is assumed to be gov-
erned by

	 1= ,t g t gtg gρ ε− +
� (3)

where εgt are innovations which are identical and independently distributed over 
time with variance 2 .gσ

3.2  The hybrid Phillips curve

The supply of goods is captured by a NKPC. Lubik and Schorfheide (2004) use a 
forward looking NKPC given by

	 π β π κ+= + −�1 ( ),t t t t tE y z � (4)

where zt captures exogenous shifts in the marginal costs of production and is 
often referred to as an inflation-push shock. It is assumed to be governed by

	 1= ,t z t ztz zρ ε− + � (5)

where εzt are independent over time, as well as from the εgt terms, and they have 
variance 2 .zσ  There is a general preference in the New Keynesian literature for a 
strictly forward looking NKPC like this one because it can be motivated by the 
standard Calvo (1983) and Taylor (1980) contracting story as described in Galí and 
Gertler (1999). Under this formulation, κ measures the slope of the NKPC and is 
related to other structural parameters by

1 (1 )(1 ) ,θ βθ
κ

τ θ

  − −=  

where θ denotes Calvo’s probability, i.e., the fraction of firms that do not adjust 
prices optimally in a particular period.

in the related literature, there is no need to say much about this feature here. But this structure 
may be useful in other contexts where unadjusted data is important. Some authors have warned 
about the bias introduced in empirical analysis when considering seasonal adjusted data instead 
of raw (unadjusted) data.
16 These calculations can be obtained from the authors upon request. The use of the first-differ-
ence operator is just to simplify the IS curve expression a little bit, which is nevertheless quite 
cumbersome. Moreover, notice that this way of writing the IS curve only makes sense whenever 
γ≠0.
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Some presentations, such as Galí and Gertler (1999), further augment the 
NKPC to include a backward looking component such as

	
1 1 ( ),

1 1 1t t t t t tE y zβ ω κ
π π π

βω βω βω+ −= + + −
+ + +

�
�

(6)

where ω denotes the fraction of “backward-looking” firms following a simple rule 
of thumb for adjusting their prices based on the recent history of aggregate behav-
ior when they are able to do so under Calvo’s (1983) lottery scheme. This NKPC is 
typically referred to as a hybrid NKPC. In these formulations, the additional com-
ponent 11 t

ω
π

βω −+
 is typically motivated by an empirical need rather than micro-

foundations, and because of this lack of a formal foundation, the hybrid version 
is considered less attractive.17

Since the strictly forward looking NKPC is a special case of the hybrid curve 
which imposes ω = 0, we will work with this more general possibility. We wish to 
investigate the degree to which it is possible to match the data dynamics best. As 
we show below, it is possible to match the lead, lag and persistence characteris-
tics of the data without the backward looking term. However, this term is helpful 
in improving the fit.

3.3  A persistent policy function

To complete the model, we consider a policy rule that is similar to the one used by 
Smets and Wouters (2007), but is augmented to include a time varying inflation 
target. According to this rule, nominal interest rate policy responds to output, 
inflation and the growth rate of output according to

	 1 1 2 3 1 1(1 )[ ( ) ( ) ] [( ) ( )] ,t t t t t t t t t t ti i y z y z y z vρ ρ φ π π φ φ∗
− − −= + − − + − + − − − +� � �

� (7)

where φ1, φ2 and φ3 are the sensitivities of policy to the various economic varia-
bles, ρ captures policy inertia and the shock vt is independent over time and from 
the εgt and εzt, and has variance 2 .vσ  Furthermore, the inflation target is assumed 
to follow the process given by

	 1 ,t t tππ
π ρ π ε∗

∗ ∗
−= +

�
(8)

17 In alternative specifications of the NKPC, as the one derived in Ireland (2004) and Smets and 
Wouters (2007), the backward-looking component shows up as a consequence of a price indexa-
tion scheme.
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where ε
πt is independent over time and from the vt, εgt and εzt, and has variance 

2 .
π

σ ∗  One attraction of this formulation for policy is that it has the popular Taylor 
rule as a special case. The Taylor rule arises when ρ = 0 and φ3 = 0. In addition, 
the policy rule used by Lubik and Schorfheide (2004) is a special case when 
φ3 = 0. Also note that one can obtain a constant inflation target model by setting 

2 0.
π π

ρ σ∗ ∗= =

3.4  Model simulations

The model is simulated using the method suggested by Lubik and Schorfheide 
(2003) that builds on Sims (2002) approach. This approach is straightforward 
to apply and simply requires writing the system of equations (2), (6), (7), (3), 
(5) and (8), along with several identities involving forecast errors, in a matrix 
form

	 0 1 1 ,t t t tX XΓ Γ Φε Πη−= + +
� (9)

where
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These equations are then programmed into computer code and simulated 
using routines available on the web.18

4  Fitting the model to the data
In this section, we investigate whether our general NKM is able to capture the 
lead, lag and persistence characteristics described in Section 2. In order to keep 
our exercise clear, we have organized this section into two subsections. In the first 
subsection, we describe our fitting approach. We then apply this approach and 
fit our model.

18 The GAUSS code for computing the equilibria of LRE models was downloaded from Schorfheide’s 
web-site.
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The next subsection describes the performance of our fit model. That subsec-
tion is broken into two smaller sections. The first focuses on describing the lead, 
lag and persistence properties of the baseline model, which is the most general 
specification of the theoretical NKM described in Section 3. Next, we focus on 
various restricted versions of the baseline model to investigate what modeling 
features are key to achieving a good fit.

4.1  The empirical approach

The paper uses an empirical approach that is similar to methods matching 
impulse response functions as in Rotemberg and Woodford (1997) and Christiano, 
Eichenbaum and Evans (2005), among others. An advantage of this approach is 
that moment estimators are often more robust than full-information maximum-
likelihood estimators. Moreover, this approach allows us to focus on data fea-
tures for which the small-scale model considered here, which clearly exhibits a 
big abstraction from reality, is most relevant.19

As in Rotemberg and Woodford (1997) and Christiano, Eichenbaum and 
Evans (2005), we split the model parameters in two groups. The first group is 
formed by the pre-assigned parameters β, τ and κ. Accordingly, we set β = 0.99, 
τ = 0.5 and κ = 0.25 corresponding to standard values assumed in the relevant lit-
erature for the discount factor, the consumption intertemporal elasticity and the 
Phillips curve slope, respectively.20

The second group of parameters are chosen to minimize the value of a quad-
ratic distance function. This objective has two key differences from the methods 
matching impulse response functions. First, we match a different set of moments, 
including lead and lag correlations between output and inflation, standard 
deviations of inflation and output, and the autocorrelation function of inflation. 
Second, because we are not interested in testing, we do not compute standard 
errors and other formal statistics, and instead simply report the parameter values 
which match the summary statistics the best.

Given the aim of the paper, the alternative fitting exercises consider a set 
of statistics that describe the lead, lag and persistence patterns of output and 

19 We also investigated a full-information Bayesian maximum-likelihood approach [see, for in-
stance, Fernández-Villaverde and Rubio-Ramírez (2004) and Lubik and Schorfheide (2004)] to 
estimate the general equilibrium model suggested in this paper, but the parameter estimates 
resulted in a bad fit of the lead, lag and persistence patterns seen in actual data.
20 Notice that these parameters are consistent with a Calvo’s probability value equal to 0.71, 
which implies that firms roughly revise their optimal prices every 3.4 quarters on average.
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inflation data. As noted in footnote 1, these dynamic patterns are not likely (struc-
tural) stable. Therefore, they are not as appropriate for estimating structural 
parameters such as the ones assigned to the first group above, but are appropri-
ate for the policy and shock process parameters. This insight further motivates 
the split of the model parameters in two groups.

The fitting approach works as follows. First, K summary statistics are obtained 
from the observed data. Using notation from Christiano, Eichenbaum and Evans 
(2005), these summary statistics are arranged in a vector denoted by �.Ψ  Then 
the model is simulated M times for an equal number of periods as the number of 
periods in the observed data.21 For each simulation, the same summary statistics 
are computed from a trivariate VAR including, as with actual data, real output, 
inflation and the nominal interest rate. These summary statistics are then aver-
aged over the M simulations. Let Ψ(ξ) denote the mapping from the remaining 
model parameters, which are denoted as a group by ξ, and the model summary 
statistics. These model summary statistics are then compared to the summary 
statistics in the data to compute a quadratic distance function of the statistical 
comparisons, which is then minimized via standard optimization methods. This 
distance function can be written formally as

� �min ( )  ( ) ,J
ξ

Ψ Ψ ξ Ψ Ψ ξ   ′= − −   

where we are implicitly using the identity weighting matrix as in Rotemberg and 
Woodford (1997).

All fitting exercises were based on calculations where the number of simula-
tions, M, was set to 50.22 For our exercise, the K summary statistics include both 
correlation and variance information as well as moments capturing inflation per-
sistence. Most of our results focus on a set of 226 summary statistics, but we do 
investigate a smaller set of 162 statistics in the robustness subsection. The first 160 
summary statistics included the lead, lag and contemporaneous correlations that 
are plotted in the middle-left and bottom-right diagrams of Figure 2. Since the con-
temporaneous correlations in both diagrams are the same, in effect the summary 
statistics include the correlations represented by only five lines plotted: the two 

21 To be more precise, there are 177 observations in the data. To match this length, the model is 
simulated for 354 periods and the first half of the periods are discarded to move the model away 
from its initial conditions.
22 A robustness exercise was carried out by using M = 100, and the results were not found to 
be sensitive to the choice of M. Another robustness exercise which increased the weight on the 
output standard deviation to 5 found a better fit for the output standard deviation, but resulted 
in poor lead and lag performance. Details of this exercise are available from the authors upon 
request.
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lead plots, the two lag plots and the one contemporaneous correlation plot. Each 
of these lines has 32 correlations, so the five together gave us 160 summary statis-
tics. Since this is a large number and the information conveyed by those moments 
is somewhat redundant with the other four diagrams in Figure 2, we decided not 
to use the lead and lag plots from these other diagrams in the parameterization 
exercise, but nevertheless we also pay attention to them in assessing the ability of 
the model in reproducing the lead, lag and persistence patterns. Next, since these 
160 summary statistics are only correlations, they do not necessarily fit variances 
very well. So, in order to target the variances better, we added two standard devia-
tion statistics. These include the standard deviation of inflation and the stand-
ard deviation of Hodrick-Prescott detrended output. In addition to these lead, lag 
and variance statistics we found that some additional statistics summarizing the 
inflation persistence were also useful to include. In particular, we also included 
the 32 first-order autocorrelations of the inflation forecast errors and the 32 eigth-
order autocorrelations of the inflation forecast errors, bringing the total number of 
summary statistics up to 226. As in the case of the lead and lag plots, we focused 
only on a subset of the autocorrelation plots since the information in these plots is 
related to the information in the other plots and two plots proved to be sufficient 
to ensure a good match for all the autocorrelations.

The various fitting formulations and results are provided in Table 1. Column 1 
provides a list of the parameter values that were estimated while Column 2 shows 
the support interval chosen for each parameter. These support intervals reflect 
our view of the set of reasonable parameter values based on the estimates pro-
vided by a vast empirical literature estimating alternative versions of the NKM. 
The remaining columns provide estimated parameter values for various different 
fitting exercises. Columns 3 provides the results for our most general specification 
which we call our baseline model. This model imposes no parameter restrictions to 
our NKM. The remaining columns present various restricted versions of the model 
which are designed to investigate which features of the model are important for 
replicating the summary statistics. These restricted model results are discussed in 
more detail in Section 4.2.2, but for now it is useful to note that column 4 restricts 
the parameters of the time variation in the inflation rate target, column 5 restricts 
the backward looking term in the hybrid NKPC, column 6 restricts the habit for-
mation structure, columns 7 and 8 restrict the persistence in the IS and inflation-
push shocks and column 9 investigates a fitting algorithm which does not include 
the inflation persistence correlations in the summary statistics of the fitting algo-
rithm (i.e., 162 moments are considered). The rows of Table 1 are arranged with the 
parameter estimates appearing first. Then a measure of fit, provided by the value 
of the quadratic distance function J is reported and finally some information about 
the output and inflation standard deviations are also reported.
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Focusing on column 3, the estimation results from the unrestricted specifica-
tion show that both habit formation, γ, and the backward looking component of 
the NKPC, ω, play a role as well as IS and inflation-push shocks, while the policy 
shock was essentially zero with a value of σv = 1.9e–05. This unimportant role for 
monetary policy shocks to reproduce the lead, lag and persistence patterns is in 
line with the results in Smets and Wouters (2007, 601) based on a cross-covariance 
decomposition of shock contributions. Since α > 1, the habit persistence structure 
weights recent consumption more weakly than consumption further in the past. 
Policy rule parameter estimates are in line with those reported in the literature 
(e.g., Smets and Wouters 2007). Namely, the inertial parameter, ρ, is rather large 
as well as the response of the nominal interest rate to inflation changes, φ1. Mean-
while, the responses of the nominal interest rate to output gap, φ2, and output 
growth, φ3, are zero. These estimates show that policy makers focus on inflation 
when choosing interest rates. IS and NKPC shocks show a great deal of persis-
tence, but IS shocks are more persistent (i.e., ρg is greater than ρz). Finally, the 

Table 1 Estimation results.

  Support  
 
 

K = 226  K = 162

Restrictions

None  Const. π*  ω = 0  γ = 0  ρg = 0  ρz = 0  None

γ   (0, 1)   0.4327  0.4321  0.4694  –  0.0082  0.7162  0.4131
α   (0, ∞)   6.0665  3.0492  56.5367  –  0.0620  4.0495  133.85
ω   (0, 1)   0.1507  0.1806  –  0.2301  0.1765  0.8227  0.5469
ρ   (0, 1)   0.8863  0.8705  0.8840  0.9114  0.9948  0.8166  0.9470
φ1   (1, 2.5)   2.4888  2.4885  2.4888  2.4888  2.4888  2.4888  2.4889
φ2   (0, 1)   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
φ3   (0, 1)   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
ρg   (0, 0.99)  0.9853  0.9780  0.9854  0.9853  –  0.9853  0.9853
ρz   (0, 0.99)  0.7348  0.7009  0.7723  0.6927  0.8018  –  0.8088

π
ρ ∗     0.9485  –  0.9802  0.9484  0.9712  0.9483  0.9695
σg   (0, ∞)   4.6e-05  5.3e-04  4.3e-04  7.4e-04  0.0011  2.5e-04  2.9e-04
σz   (0, ∞)   0.0080  0.0087  0.0074  0.0110  0.0093  0.0144  0.0072
σ

n
  (0, ∞)   1.9e-05  5.8e-06  3.0e-05  1.9e-05  1.6e-04  1.9e-05  2.1e-05

π
σ ∗     6.8e-05  –  6.5e-05  6.8e-05  7.9e-05  6.8e-05  6.8e-05
J     5.3685  5.4269  5.3895  5.8322  6.8307  5.6935  3.7258

Volatility statistics

  Actual  Model simulation data

σy   2.1101  0.4896  0.4957  0.4799  0.8159  0.7405  0.1917  0.6163
σ

π
  2.3604  2.6540  2.6980  2.6543  2.7442  2.7388  2.5057  2.7009
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inflation target is also highly persistent as shown by the estimated value of 
π

ρ ∗ 
close to one. A highly persistent inflation target is consistent with the view of a 
time-varying inflation target mainly driven by low frequency movements.

The bottom panel in Table 1 shows the standard deviations of actual infla-
tion and (Hodrick-Prescott detrended) output data together with the standard 
deviations of simulated data obtained from the alternative parameter values. In 
general, we see the model underestimates output volatility whereas the opposite 
is true for inflation volatility.

4.2  Simulated data performance

4.2.1  Lead, lag and persistence patterns in inflation and output

In this section we investigate the ability of the unrestricted parameter estimates 
given in column 3 of Table 1 to replicate the statistical features of the data summa-
rized in Section 2. Figure 4 plots lead and lag patterns based on simulations of the 
model of length 177, which is the same length as the observed data. To compute 
these graphs, 50 simulations were generated, then the lead and lag patterns for 
each simulation were computed and finally the leads and lags were averaged 
across the 50 simulations.

Figure 4 shows that the general equilibrium NKM is able to reproduce some 
of the lead and lag patterns observed in actual data. Although the model does fall 
short, in that it does not fully reproduce the size of the hump and cup shapes seen 
in Figure 2, it is still a success in that it is able to reproduce these shapes.23 Focus-
ing only on the comparison between the contemporaneous plots and the lead 
plots, we see that when the lead correlation is positive, output leads inflation for 
leads up to six quarters and that this lead is mostly due to medium- and long-term 
components in the simulated data. Focusing only on the comparison between the 
contemporaneous plots and the lag plots, we see that when the lead correlation 
is negative, inflation leads output at lags up to 2 years, and that the lead is due to 
medium- and longer-term components in the simulated data.

In order to dissect the origins for the lead and lag correlations, it is useful 
to consider impulse response functions. Figure 5 plots impulse response func-
tions for the three economic variables in the model based on the parameteri-
zation in column 3. These plots show the impulse responses for the IS curve 
(demand) shock and the NKPC (supply) shock. Each of these shocks is important 

23 Fuhrer (1997) and Galí and Gertler (1999), among others, have included strong ad-hoc back-
ward-looking components associated with the NKPC to reproduce the lead, lag patterns.
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for understanding a different part of the lead and lag pattern. In particular, the 
IS shocks are important for generating the lead of output over inflation, which 
occurs when output and inflation move together (the upper right plot of Figure 
1), while the supply shocks are important for generating the lead of inflation over 
output, which occurs when output and inflation move in opposite directions (the 
lower left plot of Figure 1). Striking the right balance between the IS and supply 
shocks is crucial for reproducing this lead and lag pattern.

0.9

0.6

0.3

-0.3

-0.6
0 4 8 12 16 20 24 28 32

Forecast horizon

0C
or

re
la

tio
n

0.9

0.6

0.3

-0.3

-0.6
0 4 8 12 16 20 24 28 32

Forecast horizon

0C
or

re
la

tio
n

0.9

0.6

0.3

-0.3

-0.60 4 8 12 16 20 24 28 32
Forecast horizon

0C
or

re
la

tio
n

0.9

0.6

0.3

-0.3

-0.60 4 8 12 16 20 24 28 32
Forecast horizon

0C
or

re
la

tio
n

0.9

0.6

0.3

-0.3

-0.6
0 4 8 12 16 20 24 28 32

Forecast horizon

0

C
or

re
la

tio
n

0.9

0.6

0.3

-0.3

-0.6
0 4 8 12 16 20 24 28 32

Forecast horizon

0

C
or

re
la

tio
n

Two year lead

Contemporaneous
Two year lag

A year lead

Contemporaneous
A year lag

Two quarter lead

Contemporaneous

Two quarter lag

A quarter lead

Contemporaneous

A quarter lag

Three quarter lead

Contemporaneous
Three quarter lag

Six quarter lead

Contemporaneous
Six quarter lag

Figure 4 Simulated comovement between output and inflation.
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To be more clear about how the mechanics of the model work, first focus 
on the IS shock impulse. Note that a demand shock results in a spike up in both 
output and inflation, thus producing a positive relationship. To understand the 
lead of output over inflation, note that the impact on output dies out more quickly 
than the impact on inflation. This relatively persistent inflation value means that 
output portents future inflation.

On the other hand, to understand the lead of inflation over output, note that 
a supply shock results in a spike up in inflation and a spike down in output, 
thus producing a negative relationship. Next note that here, the negative output 
impact dies out more slowly than the positive inflation impact. In this case, the 
relatively persistent output value means that inflation portents future output. 
After a few periods, the response of inflation also becomes negative reinforcing 
the positive correlation between output and inflation produced by IS shocks.

It is these two different response patterns which together produce the lead of 
output over inflation when the correlation between the two is positive, and the 
lead of inflation over output when the correlation between the two is negative, 
as seen in the off diagonal plots of Figure 1. However, to get these plots right, the 
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Figure 5 Impulse response functions.
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response patterns need to be balanced just right. In other words, the demand and 
supply shocks need to be balanced just right. If either one overwhelms the other, 
then one of the lead relationships disappear. Furthermore, it is also important to 
emphasize that the degree to which there is persistence to the demand or supply 
shocks is also critical. This persistence impacts the persistence displayed in the 
impulse response functions and without that persistence, one of the lead rela-
tionships will also disappear.

Two other key features of the inflation and output data are that, 1) both series 
are persistent and, 2) inflation is relatively more persistent than output. Figure 6 
plots autocorrelation functions for the simulated data that are analogous to the 
ones in Section 2. Although the inflation persistence is somewhat greater in the 
real data than in our model, the figure does show that the model is able to capture 
high levels of persistence for both simulated inflation and output and that the 
inflation persistence is somewhat greater than the output persistence.

4.2.2  Restrictions from the base case

As we saw, the model is able to replicate the data features summarized in Section 
2 very well. But the question remains, do we need all of the features given in the 
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Figure 6 Simulated inflation and output persistence.

Brought to you by | Kansas State University Libraries
Authenticated

Download Date | 2/6/15 4:08 PM



294      Steven P. Cassou and Jesús Vázquez

NKM from Section 3, or are some unnecessary or redundant. In this subsection 
we investigate the importance of some of the modeling features for replicating 
the data patterns.24

The first exercise we undertook was to investigate the importance of a time 
varying inflation target on the part of the policy maker. A restricted model was 
estimated for this formulation and the results are summarized in column 4 of 
Table 1. As the value of the distance function, J, indicates, this model feature is 
not very important for the fit. This can also be seen by noting that the param-
eter estimates are virtually unchanged with this restriction. Furthermore, plots 
of the correlations analogous to those given in Figures 4 and 6 resulted in virtu-
ally indistinguishable plots. Similar conclusions are reached when the backward-
looking component of the NKPC curve (ω = 0) is removed (see column 5). However, 
in this case, the estimate of the habit formation parameter α is much larger than 
the one obtained in the baseline case, but the value of J barely changes.

Next we investigated the need for the habit formation structure. Column 6 of 
Table 5 shows the results obtained when ignoring habit formation. Interestingly, 
the remaining parameter estimates do not change much under this restriction. 
However, J moderately increases by 8.6%. The lead, lag patterns (not shown to 
save space) are not affected much by this restriction, however the increase of J is 
due to a deterioration of inflation persistence fit. To some extent the backward 
looking term, ω, in the NKPC increases, but not to the extent that α increased 
when ω was set to zero in the column 5 restriction. Together these results imply 
that the habit persistence feature is more important to fitting the data than the 
backward looking feature of the NKPC.

Similar results are found when removing the IS shock persistence (column 
7). However, there are a few noticeable differences. The habit formation structure 
becomes unimportant when the IS shock persistence is ignored and this leads to 
a larger deterioration of the fit (i.e., J increases by 27.2% with respect to the base 
case). Moreover, in an experiment not presented in Table 1, the deterioration of J 
becomes even larger when the persistent effects of a time varying inflation target 
shock are eliminated by assuming a constant inflation target 2( 0)

π π
ρ σ∗ ∗= =  along 

with the zero IS shock persistence. In this case, where all sources of demand 
shock persistence are removed, J increases by a sizable 44.0% with respect to 
the base case. This deterioration is most noticeable in the lead and lag diagrams 
where the hump-shaped lead pattern and the cup-shaped lag pattern are far 
from being reproduced when demand shock persistence is ignored as shown 

24 A full presentation of these exercises is too lengthy to fit in this paper, so what we present 
here is a summary of results that are more fully described in an Appendix that can be obtained 
from the authors upon request.
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by Figure 7. We interpret this result as showing that it is essential to have some 
sources of demand shocks in the model in order to fit the lead and lag patterns. 
This further confirms the insights noted above in the discussion of the impulse 
response functions plotted in Figure 5.

Next focusing on the elimination of the supply shocks by setting the NKPC 
shock persistence (column 8) to zero results in a relatively small increase in J, 
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Figure 7 Simulated comovement between output and inflation when removing all sources of 
demand shock persistence.
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but a much worse fit of output volatility and a rather unrealistic estimate of 
ω = 0.82. This small increase in J implies that the lead, lag patterns are repro-
duced to some extent by ignoring NKPC shock persistence, but the absence 
of this exogenous shock persistence forces the estimate of the backward-
looking NKPC parameter, ω, to take an unrealistic value in order to gener-
ate the balance needed between the endogenous supply persistence and the 
demand side persistence in order to generate the lead, lag pattern. This trade-
off between the ω and the NKPC shock is consistent with findings in Fuhrer 
(2006) who argues that intrinsic persistence arising either through the supply 
shock or inflation terms in the NKPC are essential to obtaining inflation per-
sistence. A plot, not included here for brevity, results in a similar diagram 
to Figure 7 and shows that this restricted case is able to produce the hump 
shaped lead feature, but fails to produce the cup shaped lag feature of Figure 
2. As in the demand shock persistence case, this experiment shows the need 
for supply shocks to fit the data and again confirms insights discussed earlier 
with Figure 5.

Overall, the analysis of these restricted cases provides further evidence that 
it is important to have the right balance between demand and supply persistence. 
These results also provide insight into the intrinsic versus extrinsic inflation per-
sistence debate. What we find is that the backward looking component of the 
NKPC is unimportant, contrary to Galí and Gertler (1999) yet consistent with Galí 
(2003) who argues that ω should have limited quantitative importance. We also 
find that supply shocks are important for obtaining a good fit, which is consist-
ent with proponents of intrinsic sources of inflation persistence such as Fuhrer 
(2006) and contrary to those who have found intrinsic sources to be unimportant 
such as Dossche and Everaert (2007). Yet, we also find that persistence in the 
demand processes, such as the habit persistence feature of the IS curve or per-
sistent demand shocks are important too, consistent with Dossche and Everaert 
(2007) and contrary to Fuhrer (2006).

Finally, one last exercise which provides further insight into the inflation 
persistence debate is summarized in column 9 of Table 1. In this exercise, we 
investigate what happens if we restrict our attention to the lead, lag and stand-
ard deviation statistics (i.e., K = 162) only and remove the last 64 statistics that 
describe the inflation persistence. In this exercise we see that the estimate of α as 
well as the estimate for ω become very large and would be hard to defend as rea-
sonable values. As one would expect, this model does well replicating the lead, 
lag patterns. However, the model does badly at replicating inflation persistence. 
We interpret these large parameter values as showing an important pitfall of esti-
mating model parameters without incorporating inflation persistence into ones 
fitting approach.
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5  Conclusion
This paper has contributed to our understanding of the relationship between output 
and inflation in three important ways. First, a new method that sheds light on lead 
and lag comovements of the data was described. This method not only identifies the 
lead and lag empirical regularities, but it also shows whether they are part of the 
short-term or long-term forces driving the data. Second, the paper uses these tech-
niques to describe the lead, lag and contemporaneous comovement between output 
and inflation, as well as inflation persistence. Here we showed that the lead and lag 
patterns of the data arise mostly from data components that drive the medium-term 
forecast horizons. Third, a New Keynesian model with a rich set of modeling features 
is described and then studied to see which of these features are important for generat-
ing the actual patterns. It was found that demand and supply shocks are important 
for replicating the lead and lag patterns in the data and that persistent IS shocks and 
the habit formation structure of the IS curve were particularly important for achieving 
inflation persistence while monetary policy shocks did not play an important role.

These results provide insights relative to a number of previous studies. First, 
NKMs that only have a NKPC, and do not have demand equations, will have a 
limited ability to capture the data patterns well. Second, the model here is rela-
tively simple compared to other general equilibrium models and shows that the 
right balance of persistence for demand and supply is needed to explain the data 
patterns. In addition, the small-scale NKM presented here is attractive not only 
because of its ability to fit the data, but also because it is easy to understand the 
intuition behind the transmission mechanism of shocks.

Extensions of the analysis are worth considering. It is the nature of the busi-
ness cycle to be asymmetric. Bringing such asymmetry into the model structure 
may improve the performance. As was seen in the impulse response analysis, the 
impact of demand and supply shocks are quite different in terms of their impact 
and duration and this difference may be important in helping to understand the 
asymmetry of the business cycle. To pursue such analysis, further modifications 
to the time series methods introduced here that treat booms and busts differ-
ently may be helpful. Another worthwhile project would be to compare the fitting 
algorithm here which emphasizes leads and lags to other fitting algorithms that 
emphasize other aspects of the data.
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Appendix A 

Confidence Band Appendix

Figure A.1 shows the confidence bands associated with the contemporaneous and 
lead comovements between output and inflation which were displayed in Figure 
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Figure A.1 Comovement between Output and Inflation (confidence bands).
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2. This figure breaks apart some of the individual diagrams in Figure 2, so that 
only one plot is shown in each of the sub-figures. In particular, each of the sub-
figures include either a contemporaneous or a lead plot from Figure 2 along with 
a 95% confidence intervals around the plot. The confidence bands where gener-
ated using a bootstrap method. As Figure A.1 shows, the confidence bands are 
quite wide and that the individual lead lines are not significantly different from 
the contemporaneous line. However, many individual correlations associated 
with alternative leads and forecast horizons are statistically significant whereas 
the contemporaneous correlation for the corresponding forecast horizon is not. 
Therefore, we still think that it is possible to interpret the leads and lags as we did 
in the paper. Such an interpretation is consistent with conclusions in Fuhrer and 
Moore (1995), Galí and Gertler (1999) and numerous others.
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