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INTRODUCTION

The theory of logical descriptions is an indispensable tool in the analysis

of the formal structure of everyday mathematics. The word "description" will be

used to indicate a name which by its own structure unequivocally identifies the

object of which it is a name. When one speaks of "the derivative of f(x) ,
" "the

line through two points," "the square root of x," one is using descriptions. All

particular constants or functions of mathematics are given by descriptions.

The purpose of this report is to present in a natural order some of the

elementary properties of logical descriptions. To this end a fundamental knowledge

of symbolic logic will be assumed on the part of the reader. Those theorems which

are specifically relevant to this development are listed subsequently in the latter

part of the introduction.

In constructing a description one ascertains a statement F(x) which is true

when x is the object in question and takes as a description of the object "the x

such that F(x) . " This is symbolized by "ixF(x) , " (where i denotes the Greek letter

iota) which is read "the x such that F(x),» and which is called a description. The

statement "there is exactly one x such that F(x) n is symbolized by "(RjXjFCx)." With

regard to this notation the following comment is in order. If (3-jX)F(x), then

ixF(x) is a name of the unique object which makes F(x) true. However, suppose

/^(Ejx) F(x) , so that there is no unique object which makes F(x) true. With reference

to this statement the following convention will be made. Choose an arbitrary, fixed

object, sayrr, and agree that, if (E-|X)F(x) then ixF(x) is a name of the unique x

which makes F(x) true, and if aj (E.jX)F(x), then ixF(x) is the name of*TT. The

following principle of mathematical reasoning, known as "modus ponens," will

frequently be used in this report: If "P" and "P3Q" are both proved, then one is

entitled to infer that "Q" is proved. The logical analogue to the formal axiom of

choice is the principle: "If (Ex)F(x), then F(y)." This will be referred to as
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Finally, the prefixes "(x) 11 and "(Ex)" will denote "For all x, " and "there

exists an x such that" respectively.

The following is a list of definitions, axioms and propositions which will be

referred to periodically.

Definition 1 ; ?
1
,p , . . . ,Pn V-Q indicates that there is a sequence of state-

ments S
1
,S
2
,...,S

S
such that Ss is Q and for each Si either:

(1) Si is an axiom. (2) Si is a P. (3) S± is the same as some earlier Sj.

(^) Sa is derived from two earlier S's by modus ponens.

Definition 2 ; P
1
,P2 , . . . ,Pnl-^Q indicates that there is a sequence of state-

ments S 1t S2 Ss , such that Ss is Q and for each Si either:

(1) Si is an axiom. (2) Si is a P. (3) There is a j less than i such that

Si and Sj are the same. (4) There are j and k, each less than i, such that Sfc is

Sj Si« (5) There is a variable x, which does not occur free in any of P
1
,P2 , . .. ,Pn ,

and a j less than i such that S
i

is (x)Sj.

Definition 3 : P.| ,P2 , . . . ,Pn V£Q indicates that there is a sequence of state-

ments S
1
,S2 ,. .. ,SS , such that S

s
is Q and for each Si either:

(1) S^ is an axiom. (2) Si is a P. (3) There is a j less than i such that S^

and Sj are the same. (^) There are j and k, each less than i, such that S^ is

S
j

S
i*

There is a variable x, which, does not occur free in any of P-j ,?2 , . . . ,Pn

or in any earlier step which is a result of Rule C, and there is a j less than i

such that Si is (x)Sj. (6) There are variables x and y, not necessarily distinct;

such that y does not occur free in any of P^ ,P
2 pn , or in any earlier step which

is a result of Rule C, and there is a j less than i such that Sj is (Ex)F(x) and

S^ is F(y). In this case vie say that F(y) is derived from (Ex)F(x) by use of Rule

C with y.
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Definition ^: Let A denote either a variable or a description. Let P be a

statement and Q be the result of replacing each free occurrence of x (if any) in

P by an occurrence of A. Consider each variable y which has free occurrences in A.

I
1* some bound occurrence of y in Q is one of the free occurrences of y in an occur-

rence of A in Q which is the result of replacing x in P by an occurrence of A, then

the replacement causes confusion. Otherwise the replacement causes no confusion.

If P,Q,R, are statements, not necessarily distinct, and x,x^ ,x
2 , . . . ,xn are variables

not necessarily distinct, then each of the following is an axiom:

Axiom scheme 1 ; (x^ ) (x^ . . . (x
&

) (P3PP)

.

Axiom scheme 2 : (x )(x )...(x )(PQDP).
1 2 n

Axiom scheme 3 ; (x )(x )...(x )(ps>Q.^>. ^(QR)^(RP)).
1 2 n

Axiom scheme 4 : (x )(x )...(x
) ( (x) .PZ>Q:3 : (x)p. 3. (x)Q) .

1 2 n

If x,x ,x ,...,x are variables, not necessarily distinct, and p is a statement with
1 2 n

no free occurrences of x, then the following is an axiom:

Axiom scheme 5 : (x )(x )...(x )(P3(x)p).
i 2 n

If x,y,x ,x , .. . ,x are variables, not necessarily distinct, then the following is12 n

an axiom:

Axiom scheme 6 : (xj(x )...(x ) ( (x)F(x,y)^F(y,y) )

.

Let x
1

,x^ x^.x.y.z, be variables, of which x,y, and z are distinct, but of which

x.j ,X£,...,x
n

need not be distinct either from each other or from x,y or z. Let P be

a statement which contains no bound occurrences of x or y. Let Q and R be the

results of replacing all free occurrences of z in P by occurrences of x and y

respectively. Then the following is an axiom:

Axiom scheme 7 : (x
1
) (Xg) . . . (x^) (x,y) :x=y. ,Q»R.

Let x
1

tx .... »*
n
,x be variables, not necessarily distinct. Then the following is

an axiom:

A:~sm scheme 8 : (x )(x )...(x ) (x)x=x.12 n
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Proposition 1 : If P ,...,P |-Q, then P ,...,P ,R R K.
1 n 1 n 1 n

Proposition 2: If P ,...,P \-Q and Q ,...,Q then P ,...,P ,Q ,...,Q \-R.
1 n 1 1 n 1 n 2 n

Proposition 3 : If P P hQ and R ,...,R t-Q^S, then P ,P ,R R hS.
1 n 1 n 1 n 1 n

Proposition 4 : If H2 and Q Q h-R, then Q .....Q \-R.
1 1 n 2 n

Proposition 5 : If V-Q.. hQ hQ , and Q Q HR, thenV-R.12 n 1 n

Proposition 6 ; Let P ,P be statements. Let X be a statement built up
1 2 n

from P .P , ...,P by use of £ and**, using each P more than once if desired. Let X
1 2 n

take the value T whatever sets of values T and F be assigned to P^.P^,...,? . Then|-X.

Proposition 7 : "Deduction theorem: " If P ,P ,...,P ,Q|-R; then
1 2 n

?
1-
P
2

?
n>-

Q=R -

Proposition 8 : "Equivalence theorem:" Let p ,p ,...,P ,A.B be statements and12 n

x^,x^ t ...,x
a

be variables. W is built up out of some or all of the P's and A and

be by means of t, a», and (x), where each time (x) is used, x is one of x ,x , . ,.,x

,

* 1 c a

and where one may use each P or each x or A or 3 more than once if desired. V is the

result of replacing some or none of the A's in \! by B's. Let y^,y2 ,.,.,y^ be vari-

ables such that there are no free occurrences of any of the x's in (y^)(y
2
)...

(y
b) (ASB) . Then h ) (y

£
) . . . (yb ) (A~B) .D.WSV.

' Proposition 9 : "Substitution theorem: " Assume the hypothesis of the

equivalence theorem. If HA=3 and \- V,
r
, then hV.

Proposition 10 : "Corollary to Duality Theorem:" Let P„.p„ p be state-12 n

ments and let W and V be built up out of some or all of the p's by use of

fjt ^ . V ,(x), and (Ex), where each p is used as often as desired, and whatever

variables in (x) and (Ex) are used as often as desired. Let X and Y be the results

of replacing § by v , v by £ ,
(x) by (Ex), and (Ex) by (x) in W and V, respectively.

If h W HV, and if this would continue to hold if we replace each

? by/v/P , then hX= I.
i i
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Proposition 11 ; Suppose that ?
1

.P^, . . . ,P^Q. Let
y, ,y2 , . . . ,yn be the y<

s

With which Rule C is used in the given demonstration of P,,?„ P 1-3. If none12 n c

of these occur free in Q, then ,P
2 , . . . ,PnV-Q.

Proposition 12 : If P ,P ...,p ,Q are statements, not necessarily distinct,
1 £ n

and x is a variable which has no free occurrences in any of P^ ,P^, . . . .p^, and if

P
1

,?2' * *
*

'V- Q
'
then ?

1
« P
2

p
n
Wx)Q.

Proposition 13 ; "Generalization Principle:" If P is a statement and x is a

variable and 1- P , then V (x) P

.

Proposition 1^ : P3Q, Q^RhP^R.

Proposition 15 : hP2(Q^PQ)«

Proposition 16: ppR, Q^R^PvQOR.

Proposition 17 : h ?0 .QPR:= :Q

Proposition 18 : HPQ=QP.

Proposition 19 : V-P:>Q.P^R:B:P^QR.

Proposition 20 : HPS^Q-S.Q^'-P-

Proposition 21 : hPQ^R: S :P3.Q=>R.

Proposition 22 : h P.Q vR: = :PQ vPR.

Proposition 23 :

Proposition 2h : h(x)F(x) ~(y)F(y).

Proposition 25 : h (x) (y)p = (y) (x)p.

Proposition 26 : V- (x) .PQ. = : (x)p. (x)Q.

Proposition 27 : \-(x).P:>Q:S :(Ex)p.pvO if no free occurrences of x in Q.

Proposition 28 : |-F(y,y)r> (Sx)F(x,y)

.

Proposition 29 : h (Sx) F(x) = (Ey) F(y )

.

Proposition 30 : h(x) (y) :x=ysy=x.

Proposition 31 : fr-(x,y,z) :x=y.y=z.:» ,x=z.

proposition 32 : h(x,y) :x=y. :p . F(x) ^>F(y)

.
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Proposition 33 : h (z)(Z^x)x=z.

ProTDOsition 34 : (E
1
* )F(* ) : ~: (Ejx) .K(x) .F(x)

.

AXIOMS FOR DESCRIPTIONS

The axiom schemes for i and proofs of subsequent theorems will be stated in

agreement with introductory conventions in order to avoid explicit clarification of

necessary assumptions concerning the absence of confusion of bound variables.

Axiom scheme 9 : Let x
1

,x , . . .

»

x
n
.x,y be variables, not necessarily distinct.

Let F(x),F(iyQ),Q be statements. Then O^.Xg X
r) : (x)F(x) ,3.F(iyQ) is an axiom.

Axiom scheme 10 ; Let x^ ,x^, . . . .x^.x be variables, not necessarily distinct.

Let P and Q be statements. Then (x ,x ...,x ):(x).p=Q.^.ixP=ixQ is an axiom.
\ c. n

Axiom scheme 11 : Let x
1
,x^, . . . .x^.x.y be variables, not necessarily distinct.

Let F(x) and F(y) be statements. Then (x^ ,x^ x^) .ixF(x)=iyF(y) is an axiom.

Axiom scheme 12 : Let x^x t ...,x ,x be variables, not necessarily distinct.

Let P be a statement. Then (x^ ,x , . . . ,x^); . (BjX)P: Z> : (x) :ixp=x.= .p is an axiom.

Axiom scheme 9 in conjunction with Axiom scheme 6 says that if A is an object

(i.e. a description or variable), then (x)F(x)^F(A). As no restrictions are put

on iyQ, this means that iyQ is to be interpreted as an object even in the situation

where Aj(E^y)Q, and where iyQ has no meaning. Objections to this convention can be

resolved by interpreting iyQ as a name ifortt in all such cases.

Axiom scheme 10 indicates that if P and Q are equivalent for all x, then ixp

and ixQ are names of the same object. The question as to what sense this makes if

(EjX)p can be answered similarly as for Axiom scheme 9.

Axiom scheme 11 provides a means of changing bound variables to bound variables

as long as no confusion of bound variables is caused. An immediate consequence of

Axiom scheme 12 is that if (E^x)p, then ixp is the unique x which makes p true. The

proof of this assertion will be postponed until the next section.
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GENERAL PROPERTIES OF DESCRIPTIONS

Theorem 1 ; \- ixP=ixP

Proof: Let F(x) be x=x, then by Axiom scheme 9, V- (x)x=x. 0.iXP=ixP.

Hence by Axiom scheme 8 and proposition 3 of the statement calculus the theorem

follows.

Theorem 2 : If F(x) is a statement such that there. is no confusion of bound

variables in F(ixF(x)), then h(E.x)F(x):> F(ixF(x)).

Proof: 3y Axiom scheme 9,

f

.-(x):ixF(x)=x. = F(x):0:ixF(x)=ixF(x).= F(ixF(x)). By truth values,

S~(x):ixF(x)=x. = F(x): 3 :ixF(x)=ixF(x) ,= F(ixF(x)) '.. .'.(x) :ixF(x)=x.

:= F(x) : z> : ixF(x)=ixF(x) . ^>F(ixF(x) . Then

i~ (x) :ixF(x)=x. = F(x):0:ixF(x)=ixF(x). ^F(ixF(x)) by the statement calculus.

Hence J- ixF(x)=ixF(x):. z> (x) :ixF(x)=x. == F(x) : 3:F(ixF(x)) by Proposition 17 and

the Substitution Theorem. So by Theorem 1 and the statement calculus,

h (x):ixF(x)=x. ~ F(x) :O : F(ixF(x) ) . Now by Axiom scheme 12

h(E 3c)P(x);D :(x):ixF(x)=oc. =F(x), Hence by Propositions 14 and 5 of the state-

ment calculus, h (E
1

x)F(x)3F(ixF(x)) which is the theorem.

Theorem 3 : If h^xjFCx), then ixF(x) is the unique x which mates F(x) true.

Proof: It follows directly from Theorem 2 that ixF(x) is one of the x's which

makes F(x) true. It remains to be shown that ixF(x) is unique. Assume V-F(z).

By Axiom scheme 12, h(E
1

x)F(x):»:(x):ixF(x)=x.S.F(x). By hypothesis KB^FCx),

hence by modus ponens and Proposition 24 we conclude V~(z) :ixF(x)=z.ELF(z) . By

Axiom scheme 6, l-ixF(x)=z. 3F(z), whence HF(z). 3.ixF(x)=z by the definition of

equivalence, and so |-z=ixF(x) by modus ponens and the symmetric property of equality.

Theorem 4 : j_ (y).ix(x=y)=y, where x and y are distinct variables.

Proof: Choose y, a variable distinct from x and take F(x) to be x=y. Then by

Proposition 33 V- (y) (E x)x=y, and so h(E
1

x)x=y by Proposition 23. Hence by Theorem
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restricted predicate calculus, h (y) .ix(x=y)=y.

Lemma 1 ; V- (x,y) :x=y.= y=x.

Proof: 3y Proposition 30 V- (x,y).x=y3y=x. Replacing x by y and y by x gives

l-(yiX).3Px3 x=y. Then by Proposition 25 h-(x,y).y=x3x=y. 3y propositions 15

and 3 of the statement calculus, V- (x,y).x=y O y=x: (x,y).y=xDx=y. Hence

<— (x,y):x=y. •= ,y=x by proposition 26 and the definition of equivalence.

Theorem 5 ; h (y):ixp=y. = .y=ixP.

Proof: Choose a variable z which does not occur in ixP. Then by Lemma 1

,

h-(x,z):x=z. S..z=x. So by Axiom scheme 9, W(z) :ixP=z. = ,z=ixP. Then by Axiom

scheme 6, h ixp=y. =r.y=ixP, since it is permitted that there be free occurrences of

y in ix?. The theorem follows by the Generalization Principle.

Corollary 1 ; V- (y) .y=ix(x=y)

.

Proof: Let P be x=y, then by Theorem 5, h (y) :ix(x=y)=y. = .y=ix(x=y) . 3y

Proposition 6 and the definition of equivalence,

1- (y):ix(x=y)=y. :>.y=ix(x=y) : .(y) :y=ix(x=y) . z> .ix(x=y)=y. Hence by Axiom scheme 2

;- (y):ix(x=y)=y. :>y=ix(x=y). Then by Axiom scheme k and Theorem k the corollary

follows.

Corollary 2: |- ixP=iyQ.= .iyQ=ixP.

Proof: By Theorem 5 h (y) :ix?=y. S.y=ixP. Hence by Axiom scheme 9,

h ixP=iyQ. =.iyQ=ixp.

Theorem 6a : \- (y,z) :ixP=y.y=z. Z>.ixP=z.

Proof: Choose variables u,w which do not occur in ixp. Then by Proposition

31 I- (x,u,w) :x=u.u=w. DX=w. So by Axiom scheme 9, l-(u,w) :ix?=u.u=w.O .ix?=w. Then

by two applications of Axiom scheme 6, l-ixp=y.y=z. 3.ix?=z, where there are per-

missible free occurrences of y and z in ixp. The theorem is then a consequence of

two applications of the Generalization Principle.
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Theorem 6b : Jr (x,z) :x=iyQ.iyQ=z. = .x=z.

Proof: The proof is analogous to the proof of Theorem 6a.

Theorem 6c: Hz) :ix?=iyQ.iyQ=z. o ixp=z.

Proof: Choose a variable v which does not occur in iyQ. Then by Theorem 6a

y- (y,v):ixP=y.y=v.3.ix?=v. So by Axiom scheme 9, V- (v) :ixP=iyQ.iyQ?*v. 2.ixP=v.

Then by Axiom scheme 6, hixP=iyQ.iyQ=z.^ .ixP=z. The theorem follows by the

Generalization Principle.

Corollary 6c ; V- ixP=iyQ . iyQ=izR. Z> . ixP=izR.

Proof: The corollary follows directly from the theorem by Axiom scheme 9.

Theorem 6d : h (y) :ixP=y.y=izR. Z> .ixP=izR.

Proof: Using Proposition 25 of the restricted predicate calculus and Theorem

6a, the proof is analogous to that of Theorem 6c.

Theorem 7 : Let F(x,y) be a statement and let F(ixP,y) and F(y,y) be the

results of replacing all free occurrences of x in ?(x,y) by occurrences of ix? and

y respectively, and suppose these replacements cause no confusion of bound vari-

ables. Then, Ky):i*P=y.:>.F(ixP,y)=F(y,y).

Proof: Let z be a variable which does not occur in F(x,y) or ix?, and let

F(x,z) and F(z,z) denote the results of replacing all free occurrences of y in

F(x,y) and F(y,y) by occurrences of z. Also let F(ixP,z) be the result of re-

placing all free occurrences of x in F(x,z) by occurrences of ix?. Clearly there

is no confusion of bound variables in F(ixP,z) since there is none in F(ixP,y).

By Axiom scheme 7, H(x,z):x=z. p.F(x,z)3?F(z,z). So by Axiom scheme 9,

V-(z):ixp=z.^.F(ixP,z)r>F(z,z). Hence by Axiom scheme 6,

;-ix?=y. 3.F(ixP,y)=>F(y,y).

3y Axiom scheme 7 h (z,x) :z=x. ^J.F(z,z)=>F(x,z) , and so J-z=x. =>.?(z,z)=?F(x,z)

by two uses of Proposition 23. Then let x=z be R^ in proposition 1 of the state-

ment calculus; hence x=z hz=x.^.F(z,z)r?F(x,z). By the Deduction Theorem



10

l-x=z:=>:z=x.3.F(z,z)^F(x,z). By truth values HP O. Q=>R:= :P3Q.r>P=>R, and so

i-x=z: 3:z=x. D.F(z,z):PF(x,z). : =: .s=z3z=x.3.3C=z. ^F(z,z) ^F(x.z) . By the

definition of equivalence, Proposition 18 and Axiom scheme 2 we conclude

hx=z3z=x:r>:x=z.^.F(z,z)=>F(x,z). Hence by Proposition 30

l-x=z. O.F(z,z)l?F(x,z) , and so by t^o uses of the Generalization Principle

K(x,z):x=z. p.F(z,z)r>F(x,z). By Axiom scheme 9

h(z):ixP=z. 3> .F(z,z)^F(ixP,z). Then by Axiom scheme 6

hixP=y. ZP.F(y,y):?F(ixP,y). Consequently, HixP=y. ^.F(ixP,y) =F(y,y) by

Proposition 19 and the definition of equivalence. The theorem follows by the

Generalization Principle.

Theorem 8 ; \r F(iyQ) ^>(Ex)F(x).

Proof: By Axiom scheme 9, V- (x)a>F(x) ^^F(iyQ). So by Proposition 20

V-F(iyQ) P-w(x)vF(x). Hence V-F(iyQ) =?(Ex)F(x) by the defirition of (Ex)F(x).

Lemma 2 ; V- (y) : F(y) .= . (Ex) .x=y. F(x)

.

Proof: By Proposition 28 Hy=y.F(y).^.(Ex).x=y.F(x). So by Proposition 21

l-y=y^:F(y).^.(Ex).x=y.F(x). Then by Axiom scheme 8, HF(y).3.(Ex).x=y.F(x).

Now by Proposition 32, H (x,y):x=y.F(x).^ .F(y). So H(x) :x=y.F(x) .F(y).

by Propositions 23 and 25. Then h (Ex).x=y.F(x):^ :F(y) by Proposition 2? since

there are no free occurrences of x in F(y). Hence V-F(y).=.(Ex).x=y.F(x).and the

lemma follows by the Generalization Principle.

Theorem 9 : V-F(ixP). =. (Ex) .x=ixP.F(x)

.

Proof: Choose a variable z which does not occur in ix?. Then by Lemma 2,

h(x):F(x).H.(Ez).z=x.F(z). Hence by Axiom scheme 9, V-F(ixP).=.(2z).z=ixP.F(z).

So by Proposition 29, V-F(ixP). S.. (Ex) .x=ixP.F(x) which is the theorem.

Lemma 3 : |- (y) :F(y) .S. (x) .x=yZ>F(x)

.

Proof: Replace F(x) by ^F(x) in Lemma 2 and use the Corollary to the

Duality Theorem.
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Theorem 10 ; V- F(ixP) :~ : (x) :x=ixP.Z>.F(x)

.

Proof: The proof is analogous to the proof of Theorem 9.

DEFINITION BY CASES

Definitions by cases are very common in the schemata of mathematical dialogue.

The requisite circumstances pertaining to such a definition are the existence of two

or more mutually exclusive conditions on a variable x; for example, "x is rational"

and "x is irrational", and the desire to define f(x) for each x covered by one of

the conditions, with different definitions according to which condition x satisfies.

A condition on x is generally a statement involving x. The statement /v/(pj?_.)

is to be interpreted as the statement that the conditions Pi
and Pj are mutually

exclusive. The assertion that several conditions P.j .Pg, . .. ,Pn be mutually exclusive

is the logical product of all statements ^(P-jP-p with 1£i<j£n.

Lemma |- (x).P3Q:»: (E^PSCE^Q.

Proof: Take A to be P, B to be Q, W to be (E.jX)p and V to be (E.jx)Q in the

hypothesis of the Equivalence Theorem (Proposition 8). The lemma is then a direct

consequence of the theorem.

Lemma^: Let P.
]

,p
2

p
n » R1

* ' * ,Rn be any statements; let Q be the logical

product of "(P^) for every i and j with ISKjin. Then for Uk&n,

Proof: Assume QP
k :=> -.R^ v R^ . . . v r^. = is not universally valid;

that is, there exists a set of truth values for P ...,p ,Q, and R, ,...,R which
I n 1 * * n

makes
'Vl V R

2
P
2
V *

'
* vR

n
P
n*
S>R

k take the value F. Inspection of a truth

value table for " => 11 indicates that this can occur only if Qp^ has truth value T

and P
1
R

1
v P

2
R
2
v

* * *
vP

nRn- s -\ ^ truth value F- The truth value T for QP
k

im-

plies both Q and P
k
have truth value T. But the truth value T for/u(P.p .) implies
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Pj^P has truth value F for every i and j with 1 6. i < j 6 n. Hence p^p^ has truth

value F for i < k and P, P. has truth value F for i > k and so P, has truth value F
k i 1

for all i t£ k.

The truth value F for P^v P^v ... vP^S^, however, implies either Rk

has truth value F and P^R^ y P2R2 V *** vP
n
R
n

has ^rut^1 vaxue T or \ has truth value

T and P^ v P?R.V ... yP R has truth value F.
1

1 * 2 n n

Case I. The truth value T for P^^ p^v . .. v P
r
R and truth value F for Rk

imolies P.R. has the truth value T for some i^k. Hence p. has truth value T for

some i^ik. But this contradicts the statements that P^ has truth value F for all i£k.

Case II. The truth value F for P
1
R

1
v P^v ... vP^ implies P^ has truth

value F for all i. Then ? R has truth value F and hence p, has truth value F since
k k K

has truth value T, which is also a contradiction.

Hence QP
k :
^tR^ yR^v ... vR^^P^ never has the value F. As it must take

either the value T or F in each case, it must take the value T in all cases. There-

fore ^p
k

: 3 :

P

!
^ v P

£
R
2
v . . . v f^SRjj is a tautology and by the Truth Value Theorem

(Proposition 6) the lemma follows.

Lemma 6 ; If |-P D.QSL R and bR, then HOQ.

Proof: By truth values, h P=>.Q=R:=> :P=?.RSQ. Hence HP3.R2Q by modus

ponens and so PhR^Q. Q^R by the definition of equivalence and Proposition 2.

Then h-P^.RDQ by Axiom scheme 2 and the Deduction Theorem. Hence hR^.P^Q by

Proposition 17. The lemma follows by modus ponens with V-R.

Theorem 11 : Let P^p t ...,P be statements and let Q be the logical product of

all statements ^(PjPj) for all i and j with 1 £i < j <.n. Let y be a variable.

For each i, 1 ± i £n, let A^ be a variable different from y or a description not

containing free occurrences of y. Then for 1 ik£ n:
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gives

I. h (y).QP, :5:(Ey);y=A.p . v .y=A p .v.*". v.v=A P .k 1 11 2 2 n n

II. h (y).QP, :D:iy(y=A .P . v.y=A p . V.-". v.y=A P )=A .k 11 2 2 n n k

Proof: By Lemma 5, V- QP :D:R p vRP v ... yR P . S.R .

k 112 2 n n k

Taking R to be y=A and F(y) to be y=A .P . v .y=A .p . v .•**. v.y=A .P
i i 112 2 n n

\-QP :3 :F(y).H.y=A . So by Rule C and Axiom scheme 4,
k k

V- (y).QP :3>:(y):F(y).-=.y=A . Now by Lemma 4,
k k

\T (y):F(y).= .y=A :=> : .(S y)F(y).S.(E y)F(y).=.(E v)y=A , where P is F(y) and
K 1 1 1k

Q is y=A . If A is a variable, then H(E y) y=A from Proposition 33 and Axiom
k k 1k

scheme 6. If A is a description, then \- (E y)y=A from Proposition 33 and Axiom
k 1 k

scheme 9. In either case, }- (E y)y=A , and so H(y):F(y).S.y=A ,:3>:.(E y)F(y) by1k k 1

Lemma 6. Hence H(y).QP :3:(E y)F(y) by Propositions 14 and 5, which is part I of
k 1

the theorem.

Now by Axiom scheme 10, h (y) :F(y) .= .y=A . :P : .iyF(y)=iy(y=A ). Then by Theorem
k k

4 and whichever of Axiom schemes 6 or 9 is appropriate, |- iy(y=A )=A . By Theorem
k k

6c and Proposition 23, h iyF(y)=iy(y=A ).iy(y=A )=A .=>.iyF(y)=A, , and so by
k k k k

Proposition 21, h iyF(y)=iy(y=A ).3.iy(y=A )=A ^ iyF(y)=A . Then by Proposition 17,
k k k k

V" iy(y=A )=A .^>.iyF(y)=iy(y=A )3iyF(y)=A
i

. Hence by modus ponens with
k k k k

|riy(y=A
k
)=A

k
one gets V-iyF(y)=iy(y=A^)

.

Z> .±yF(y)=A^. So by two uses of Propo-

sitions 14 and 5, I- (y).QP 0:iyF(y)=A which is the second part of the theorem,
k k

In practical mathematical discussions the amount of generality of the pre-

ceeding theorem is usually more than desirable or useful. In most instances when

making a definition by cases the P's will be conditions on x and consequently con-

tain free occurrences of the variable x. However, y can generally be taken as a

variable which does not occur in the P's, giving a special case of the theorem. This

special case is the one commonly used.



Theorem 12 : Let P ,p , ...,P be statements and let Q be the logical product
1 2 n

of all statements /v (P.P .) with 1 £ i < j £. n. Let y be a variable not occurring

in any of the P's. For each i, 1 £ i £ n, let A_^ be a variable different from y or

a description not containing free occurrences of y. Then:

I. H(P vPv ... VP ):3:(E y) : y=A .p . v .y=A .P .v v.y=A .P . Also for
1 2 n 111 2 2 n n

II. V- QP :D:iy(y=A P y.y=A P v V.y=A .P )=A .k 11 2 2 n n k

Proof: Take F(y) to be y=A .p .v .y=A .P .v."'.v .y=A .P ; then by Theorem 11,11 2 2 n n

a. \-(y).QP :3:(Ey)F(y).

b. Y-(y).QP :3:iyF(y)=A, .

k k

From part a, \r QP^: 0:(2^y)F(y) by Axiom scheme 6. Hence for k=1,2,...,n

t~ P^D :Q. 3.(S^y)F(y) by Proposition 21 and the Substitution Theorem. Then by

repeated applications of Propositions 16 and 5, HP vP v ... V? :P:Q.^.(E y)F(y)12 n 1

and so,K(P vP v ...vP ).Z>.(E y)F(y) vMch is part I of the theorem.
1 2 n 1

Since there are no occurrences of y in any P. , there are no occurrences of y

in QP . So by Proposition 23 and Axiom scheme 5, h (y)Q? Z> QP and h QP D (y)QP
k k k k " k*

Then by Proposition 15, t-QP 2 (y)QP : "D : (y)Q? QP .3.QP (y)QP . (y)Qp Z? QP .

k k k k k k k k

Hence h(y).QP :3:QP by modus ponens and the definition of equivalence. Then
k k

i— QP :3>:iyF(y)=A by the Substitution Theorem and part b. This is the second
k k

part of the theorem.

DESCRIPTIONS WITH RESTRICTED QUANTIFICATION

The natural interpretation of id. F( et ) when «t is restricted to the range

K(fcC) would seem to be ix(K(x).F(x)) ; however, in case/w(E x) .K(x) .F(x) . this

definition is not adequate to prove hK(i*F(©e)). in order to resolve this



dilemma a definition of idF(*) by cases is generally adopted. First choose a

fixed object denoted by A satisfying the restriction K(x), so that HC(A). Then

define i*F(*) to be ix(K(x) .F(x)) in case (E^x) ,K(x) .F(x) , and to be A in case

A'(E
1

x).K(x).F(x). That is, i«CF(<*0 is defined to be:

iy(y=ix(K(x).F(x)):(E
1

x):K(x).F(x).: V :.y=A. /*/(E.jx) .K(x) ,F(x)) , where y is a vari-

able not occurring in A or K(x)F(x).

Theorem 13 : Ifotis subject to the restriction K(cC) and A is the fixed object

chosen for use in defining ietF(ct), then:

I. V-(E
1
*)F(o0.o.i<AF(cC)=ix(K(x)F(x)).

II. H"(E
1
cC)F(e0.3.ioCF(d.)=A.

Proof: Taking P
1

to be (E^x) .K(x) .F(x) , ?^ to be/v(E
l

x).K(x).F(x), and

Q to be,y/(p P ) gives hQP,= p 4 and HQPSP since12 11 2 2

|-"(P
1
*P

1

).P
1
3P

1

and h^CP^P^.p^Pg by truth values. Hence by Theorem 12, part

II and the Substitution Theorem,

V- (E^) .K(x) .F(x) : Z> :iy(y=ix(K(x) .F(x) ) : (E^x) .K(x) .F(x) . : V : .y=A. /u (E^x) .K(x) ,F(x) )=

ix(K(x).F(x)). Hence by the definition of i©£F(eC) and Proposition 3^

I- (E
1
cC)F(oC).3.ioCF(oC)=ix(K(x)F(x)) which is the first part of the theorem.

Also I-a^x) .K(x) .F(x) : O :iy(y=ix(K(x) .F(x) ) :E
1
(x) :X(x) .F(x) . : V : .y=A.

^(S
1
x).K(x)F(x))=A by Theorem 12, part II. Thus h«^E

1
X)F(ct) . I? .icCF(oC)=A by

reasoning similar to that in part I.

Theorem 1^- : IfoCis subject to the restriction K(oC) and z does not occur in

i«CF(oO, thenK3z).iotF(et)=z.K(z).

Proof: By Theorem 1 and the definition of i<*F(c<. ) , hi<*-F(«t )=icCF(oC) . Then

by Theorems 8 and 5 hi<*F(cC)=iflCF(oC) (Ez) .i«CF(ot)=z. So V-(Sz).ioCF(cC)=z

by modus ponens. Hence ^ieCF(ot)=z by Rule C. The completion of the proof is based

on the logical principle of "proof by cases."
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Case I. If (E^)F(ei), then (E
1

oC)F(<<.) hi «CF(aC )=ix(K(x)F(x)) by Theorem 13,

part I, and Proposition 2. Then by Theorem 6c,

h- ix(K(x) . F(x) )=i oc F( oC ) . i F( 06 )=z . 3 . ix(K (x) . F(x) )=z . Hence

(E,eC)F(oC)hr ix(K(x).F(x))=z by the definition of Theorem 5, corollary 2,

Proposition 21 and tiro uses of Proposition 3. By Proposition 3^

h(E
i

^)F(oL): = :(E
1
x).K(x).F(x). Hence (E

1
«C)F(«3C ) h(ElX).K(x).F(x) and so,

(E
1

oC )F(6L ) h(x):ix(K(x).F(x)=x.SK(x).F(x) by Axiom scheme 12 and proposition 3.

Then (E
1

ct )F(«t ) hix(K(x) .F(x)=z.2K(z) ,F(z) by Axiom scheme 6. So

(E^ <k)Y(ei ) V-ix(K(x) .F(x))=z.=>K(z) .F(z) by the definition of equivalence and Axiom

scheme 2. Consequently, (E^ot. )F(«C ) ^K(z) .F(z) by the definition of £ and Proposi-

tion 3 with (E
1

d. )F(«C ) £ix(K(x)F(x))=z. Hence (E
1
<L )F(et ) £k(z) . Nov:

V-i<F(ot)=z.3.K(z)5iBLF(«t)=a.K(a) by Proposition 15. So

(E^JfCoC) V£ioCF(«6)=z.K(z) by two uses of Proposition 3 and the definition of ^ .

Finally, (E
1

o6)F(«C ) £(Ez) .i*F( *)=z.K(z) by Proposition 28. Hence

(S
1
eC)F(oC)H(Ez).i^.F(oC)=z.K(z) by Proposition 11.

Case H. Suppose a/ (e oc )F(oC ) , then a> (E
1

et)F( <L) hi*.F(«C)=A by Theorem 13,

part II, and Proposition 2. So by reasoning analogous to that in Case I,

/v(E
1
cOF(cC) £A=z. But HA=z. P.K(A)=K(z) by Theorem 7, and so HA=z. ^ .K(A)J>K(z)

.

However in the definition of i<*F(«C), A was chosen such that t-X(A). Hence

mCE^JfCoC )l^K(z) by the definition of £and two uses of Propositions 3. Therefore

A>(E
1
«t)F(<t ) V-(Ez).i «t»F(*)=z.K(z) by reasoning similar to that in Case I.

Now by Case i and Case II, from the Deduction Theorem we get:

h(E
1
«t)F(^)r>E(z).i <<.F(oC)=:z.K(z) and hv(E

1
ot)F(rf )3E(z).i«CF(fit)=z.K(z). Hence

by Propositions 16 and 5, \r (E
1
<* )F(ot ) V^E, cC )F(ct) . =>.E(z) .i*.F(cC)=z.K(z) . But

by truth values, h (E
1
*)F( ct ) cc

) F( 06) , and so h (Sz) ,i«CF( oC)=z.K(z) by modus

ponens, which is the theorem.
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Coronary 1 ; If °L is subject to the restriction K(«0 and there is no con-

fusion of bound variables in K(i«tF(A)), then HK(i*F(«t)).

Proof: 3y Lemmas 1 and 2 and the Substitution Theorem,

h (y):K(y). "S (Ez).y=z.K(z), and so HK(i*F(-t ) ) := : (Ez) .1 cCF(oC)=z.X(z) by Axiom

scheme 9. Kence hK(i<lF(<c)) by the definition of equivalence and Theorem 1^.

Theorem 15 : If oL and ^ are subject to the restriction K(<*), and z does not

occur in i
J
G( {>), then \r ( ct)F(rf). =>.F(i [iG((S ))

.

Proof: 3y Theorem 14-, H (Ez).i^ G(
jj
)=z.K(z) and so ^ i ^ G( £ )=z.K(z) by Rule

C. Hence \^K(z) and i £>G( £>)=z by Axiom scheme 2 and proposition 18. 3y Pro-

position 23, h (z).X(z)OF(z): 3:K(z)OF(z). Using restricted quantification this

is; V- ( <L)F(«t).3.K(z)3F(z). Then K(z)3.(flC)F(«t)3F(z) by Proposition 17.

Hence ^ ( << )F(ot ) . I>.F(z) by modus ponens. and the definition of By Theorem 7

and the definition of i()G(^), h if G(iP')=z.Z3.F(i f G( ^ )5F(z) and so,

F(i (2>G(
J>

)SF(z) .by modus ponens. Hence h ( oc)F(oC)c>F(i pG( £>)) by the Sub-

stitution Theorem and Proposition 1 1 since z does not occur in i
f$
G( (3> )

.

Theorem 16 ; If od. is subject to the restriction K(ct) and A is the fixed ob-

ject chosen in defining ioCF(«L), then h ( oc) .F( ot)S G( «C) : D :i *F( oc)=ioCG(oC)

.

Proof: Assume («C).F(«C)=G( oC). That is, (x) :K(x) . P.F(x)5G(x) , and so

X(x).-p.F(x) = G(x) by Axiom scheme 6. Then K(x) . O .F(x)=G(x) : Z> :X(x)F(x)=K(x)G(x)

by truth values. So K(x)F(x)= K(x)G(x) by modus ponens. Hence

(«O.F(O^G(«ObK(x)F(x)SK(x)G(x) by the definition of H. So

(«O.F(pC )=G(ot)Kx):K(x)F(x)=K(x)G(x) by Proposition 12.

Case I: Suppose (E
1
ot)F(ot) ; that is, (E-jx) ,K(x) ,F(x) . 3y Lemma ^,

H (x) :K(x)F(x)==K(x)G(x) : Z> : (E^x) .K(x) .F(x)= (E.,x) .X(x) ,G(x) . Hence

(cC).F(oO=G(cC) h(E
1

x).K(x).F(x)=(E
l
x).K(x).G(x) by Proposition 3- So by the

definition of equivalence, Axiom scheme 2 and Proposition 3,

(ei).F(cC)SG(«t),(E
1
flL)F(at)|-(E

1
x)K(x).G(x). That is,
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(oL).F(^)=G(o6), (E
1
ot)F(ot)h(E

1

ot)G(oC). Then by Theorem 13, part I and

Proposition 2 (E
1
«t)F(ot) \-i^F(«C)=ix(K(x) ,F(x)) and ( oc) ,F(*)SG( ot)

,

(E
1
«l)F(«O»-i«CG(*0=ix(K(x).G(x)) using Proposition 3. However, by Axiom

scheme 10, V- (x):K(x).F(x)=K(x).G(x): =>:ix(K(x).F(x))=ix(K(x).G(x)). So

( «C).F(oC)S.G(oC) V-ix(K(x).F(x))=ix(K(x).G(x)) by Proposition 3- Then by

corollary 6c, h i * F( oC )=ix(K(x) F(x) ) . ix(K(x) . F(x) )=ix(K(x) ,G(x) ) : Z> :i-t F(«6 )«

ix(K(x).G(x)). Hence (c6).F(o6)=G( oc),(E
1

oC) F( oC)hic6F(oC)=ix(K(x).G(x)) by

Proposition 21 and two uses of proposition 3. Finally

(oC).F(oC)=G(oC), (E
1
</)F(oC)Hi«CF(«C)=ioCG(oC) by Theorem 5, corollary 2, the

transitive property of descriptions and propositions 3 and 21

.

Case H. Suppose a/(E^ ct)F(*-). Then by Lemma ^ and reasoning similar to that

in Case I, ( eC).F(«OSG(«0 , ~ (E
1
*)F(oC) h(E

1
x)K(x).G(x)). That is,

( «OF(<OSG(ot), ^ (E
1
»c)F(od ) Ha/(E

1
<C)G(o6). Then by Theorem 13, part II,

V-a<E
1
«C)F(oC).3.ioCF(oC)=A and H"(E.,<rf.)G(oC). 3.i «CG( oC)=A. Hence

"(E-j <C)F(eC)hicCF(oC)=A by Proposition 2 and (*.).FU )3.G(«0,

a/(E
1
<«c)F(c4) hi<<G(oC)=A by Propositions 3 and 2. Then

^icCF(o<.)=A.A=iotG(oC).3.ictF(flC)=ioCG(oC) by corollary 6c and so

(<*).F(c<.)=G(cO, ^(E-j ct)F(oC)HiotF(o6)=ioCG(oC) by Theorem 5, corollary 2,

Proposition 21 and tiro uses of Proposition 3.

Now from Case I and Case H, by two uses of the Deduction Theorem and

Proposition 21, one gets: \- ( «0 ,F(* ) SG(* ) .(E
1
*)F( cC) . O .i cCF( d )=i ,< G( <* ) and

H( «O.F(eO=G(oO."(E
1
*OF(«C).3.i«F(oO=i*G(rt). Hence by Propositions 16

and 3 H(»0.F(<O2G(cC).(E
1
*)FU) v( cC) ,F(* )S G(oC ) . /v (E., * )F( * ) : => :i*F(oO=

i*£(«C). Hence, ( oC) .F(X ) =G(oC) h(E
1
*)F(«C) ^(Ej* )F(<* ).S>.i*F(*)si*G(«0.

by Propositions 22, 21 and 2. But by truth values, f- (E
1

* )F(* )v "(E-j «C )F(«C ) and

so (eO.FU )^G(«C) hiotF(<*.)=ioCG(oC) by Proposition 3. The theorem then follows

by the Deduction Theorem.



Theorem 17 : If °<.and are subject to the restriction K(cC), then

V- i*F(cO=i£, F((b).

Proof: The theorem follows from the definition of io*F(<>0 and i^F( |5>) by-

Axiom scheme 1 1

.

Lemma 7 : If F(x) ,F(ixP) ,F(iyQ) are statements interpreted by introductory

c ventions, then h ixP=iyQ. :>.F(ixP^F(iyQ).

Proof: By Theorem 7, V-(y) :ixP=y. P .F(ixP,y)= F(y,y) . Hence the lemma folloxjs

by Axiom scheme 9.

Theorem 18 ; If there are no free occurrences of x in icC F(oc), then

h (E
1
*)F( °0 : Z> : (x) :i«CF(«t )=oc.=K(x) .F(x)

.

Proof: Suppose (E.j oC)F( «C) . Then by Theorem 13, part I, and Proposition 2,

(S
1
<*)F(«c)hi«LF(«<.)=ix(K(x).F(x)). However by Axiom scheme 12,

(E
1
cC)F(«6) h(x):ix(K(x).F(x))=x.= .K(x)F(x). Hence by Theorem 5, corollary 2,

Lemma 7, and Proposition 3, (E^JfC-C) Kx):ietF(<*)=x.= .X(x).F(x). The theorem

follows by the Deduction Theorem.

Theorem 19 : If oC and £> are subject to the restriction K( <*) and there are no

free occurrences of
f
in i«tF(o6), then H(E

1

*)F(oc) : D:( (J>) :i<*F(cO= f>.=.F(£>).

Proof: Assume (S^ cO .F( dC) . Then by Theorem 18 and Proposition 2

(E
1
<^)F(oC)Hx):io<.F(oC)=x.=.K(x)F(x). So (E., cL)y( oC) V-i «LF( o£-)=x.=K(x)F(x) by

Proposition 23. By truth values,

V- i <*-F( *C)=x.= .K(x)F(x) . :
~=>\ .K(x) :3 : ioi F( oC)=x.= .F(x) . Hence

(E
1
et)F(oC) h(x):.K(x):3:iotF(«^)=x.S.F(x) by Propositions 3 and 12, or

(2
1
*C)F( «6) \-( (b) :i «^F( «C )= j^.= .F( ^) . The theorem follows by the Deduction

Theorem.

The last theorem is analogous to Theorem k for unrestricted quantification.

Theorem 20 : If d and ^ are subject to the restriction K( <*• ) , then
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Proof: Let F(x) be x=y. By Proposition 30, hy=x=F(x). Then by Proposi-

tion 3 and the Deduction Theorem, h-K(x).=> .y=x=F(x) , and so

\- (x) :K(x) . 3.y=xEF(x) -by the Generalization Principle. Since t-(Ey)K(y) , we get

VrK(y) by Rule C. Hence hrK(y) :(x):K(x).Z>.y=x=F(x) by Proposition 15, the

definition of £ , and two uses of modus ponens. So

V* (Ey):K(y):(x):K(x).3.y=xSF(x) by Proposition 28 and Proposition 11. Using

restricted quantification this is h (E
1
<*.)F( 3y Theorem 13, part I,

H(E
1
*C)F(eC). D.ioCF(«t)=ix(K(x)F(x)). So |-ix(K(x)F(x) )=i «LF(rf- ) by modus

ponens and Theorem 5, corollary 2. Then HF(ix(K(x)F(x))=F(ioCF(oC)) by Lemma 7.

But \-(E
1
x)F(x)K(x)^F(ixK(x)F(x)).K(ixF(x)K(x)) by Theorem 2. Hence

\—F(ixX(x)F(x)) by Proposition 3^i modus ponens and Axiom scheme 2. Then

t-F(io(F(oC)) by the definition of equivalence and modus ponens. That is,

j- ioC(cC=y)=y. So |-K(y). ^.i<jC(o6=y)=y by Proposition 3 and the Deduction

Theorem. Hence |-(y) :K(y) . ^>.i«C(oC=y)=y by the Generalization Principle. Using

restricted quantification this is f- ( (3 ).i*C(<*= £ )= p.
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Descriptions are so numerous in everyday mathematics that their formal

structure warrants mention in any logical framework which purports to be adequate

for the types of intuitive reasoning used by mathematicians in their mathematical

thinking.

It is the purpose of this paper to present some of the fundamental properties

of logical descriptions. The first section is simply a statement of the axiom

schemes for i and some intuitively obvious consequences.

In proving theorems about descriptions, many of the results are not dependent

upon any special axioms about descriptions, but upon the description itself. In

practical considerations of ixF(x), if one can prove (E.jx)F(x), and hence infer

F(ixF(x)), then practically all theorems about ixF(x) follow from this result.

Definitions by cases are common in mathematics, hence a theorem is proved

which permits such definitions.

When expressions such as "For all x, F(x)," or "The x such that F(x)," occur

in mathematical dialogue it is tacitly understood that there are certain restrictions

on the x, and that what is meant is something like, "For all real numbers, x,F(x),"

or "The prime number, x, such that F(x) .
" Hence the last section deals with veri-

fying theorems about logical descriptions with restricted quantification analogous

to those for unrestricted quantification.


