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Abstract 

River discharge influences fish and invertebrate communities and understanding how hydrologic 

variables contribute to fish and invertebrate composition can provide information for restoration 

and management. This study examines the relationship between several flow regime metrics that 

may influence fish and invertebrate community structure in large river systems such as the 

Kansas River. First, I examined how hydrology influences macroinvertebrate (drifting and 

benthic) density and fish communities before, during, and after flooding in both main and 

secondary channels. I found that drifting invertebrate density increased during flooding 

potentially providing increased prey opportunities for fishes. I also found that fluvial dependent 

and generalist fish species use inundated habitats more than fluvial specialists. My results 

suggest that the flux of water into inundated habitats supports a unique subset of invertebrate and 

fish communities of the main channel. Next, I examined the importance of lateral connectivity on 

fish and invertebrate composition by examining differences in seasonally and permanently 

inundated secondary channels in relation to main channel reaches. I found that drifting and 

benthic invertebrate assemblages and fish assemblages differed between seasonally inundated 

and permanently connected secondary channels. These results suggest that maintenance of 

diverse secondary channel connections is useful in preserving native biota in the Kansas River. 

Finally, I tested if hydrologic variables influenced recruitment of four native Kansas River 

fishes. I found that recruitment for two of the four fish species (flathead catfish, Pylodictis 

olivaris, and shovelnose sturgeon, Scaphirhynchus platorynchus) increased in high flow years. 

These results indicate that a natural and variable flow regime may be important for maintaining 

fish community structure in the Kansas River. The results of this study have implications for 

management strategies that include the use of high flows to provide a pulse of insect prey to the 



 
 

main channel for fishes, restoration of natural high and low flow variability as important to fish 

recruitment, and diversity in secondary channel connectivity (seasonal and permanently 

connected) that promotes unique fish and invertebrate communities.  
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Abstract 

River discharge influences fish and invertebrate communities and understanding how hydrologic 

variables contribute to fish and invertebrate composition can provide information for restoration 

and management. This study examines the relationship between several flow regime metrics that 

may influence fish and invertebrate community structure in large river systems such as the 

Kansas River. First, I examined how hydrology influences macroinvertebrate (drifting and 

benthic) density and fish communities before, during, and after flooding in both main and 

secondary channels. I found that drifting invertebrate density increased during flooding 

potentially providing increased prey opportunities for fishes. I also found that fluvial dependent 

and generalist fish species use inundated habitats more than fluvial specialists. My results 

suggest that the flux of water into inundated habitats supports a unique subset of invertebrate and 

fish communities of the main channel. Next, I examined the importance of lateral connectivity on 

fish and invertebrate composition by examining differences in seasonally and permanently 

inundated secondary channels in relation to main channel reaches. I found that drifting and 

benthic invertebrate assemblages and fish assemblages differed between seasonally inundated 

and permanently connected secondary channels. These results suggest that maintenance of 

diverse secondary channel connections is useful in preserving native biota in the Kansas River. 

Finally, I tested if hydrologic variables influenced recruitment of four native Kansas River 

fishes. I found that recruitment for two of the four fish species (flathead catfish, Pylodictis 

olivaris, and shovelnose sturgeon, Scaphirhynchus platorynchus) increased in high flow years. 

These results indicate that a natural and variable flow regime may be important for maintaining 

fish community structure in the Kansas River. The results of this study have implications for 

management strategies that include the use of high flows to provide a pulse of insect prey to the 



 
 

main channel for fishes, restoration of natural high and low flow variability as important to fish 

recruitment, and diversity in secondary channel connectivity (seasonal and permanently 

connected) that promotes unique fish and invertebrate communities.  
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Chapter 1 - Flooding and Lateral Connectivity: An Ecosystem 

Perspective 

Flowing water is a defining characteristic of all riverine ecosystems but flow regimes 

within and among rivers are naturally dynamic and vary both spatially and temporally (Poff et al. 

1997; Landres et al. 1999). Hydrology of lotic systems commonly includes periods of high and 

low flows but the duration, frequency, timing, and magnitude of these events varies among rivers 

and river alterations (Poff et al. 1997). Hydrology can alter many aspects of riverine systems 

including habitat structure, nutrient flow, and biodiversity (Power et al. 1995, Doyle et al. 2005, 

Konar et al. 2013). Therefore, understanding how river flows regulate ecological processes and 

influence riverine organisms is important for conservation and management of these dynamic 

systems.  

Lateral movement of water from the main channel into floodplains is an important 

component of river flow for biodiversity and ecosystem function (Heiller et al. 1995; Bunn and 

Arthington 2002). For example, inundation of floodplain habitats in the Mississippi River in 

2011 corresponded with increased fish diversity and native fish growth rates compared to main 

channel habitats (Phelps et al. 2015). Floodplain habitats are some of the most biologically 

diverse habitats in the world and they provide many ecological benefits to aquatic organisms in 

large-river systems (Tockner and Stanford 2002) that rely on floodplain habitats for many 

important life history needs (Tockner and Stanford 2002; Winemiler 2005; Górski et al. 2011). 

The Flood Pulse Concept (Junk et al. 1989) theorizes that most of the energy (i.e. nutrients) in 

large rivers is derived from floodplain habitats and therefore high flows are necessary for many 

lotic organisms to persist. However, the timing, duration, and magnitude of floods can alter the 

benefits of flooding (Poff et al. 1997) and benefits of lateral connectivity and floodplain habitats 
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may change depending on the amount of lateral connectivity (i.e. seasonally or permanently 

connected habitats). 

Lateral connectivity between main channel and floodplain habitats during flooding was 

historically a common natural process in many large rivers and provided important ecological 

benefits for riverine organisms (Poff et al. 1997; Galat et al. 1998), and also provides many 

benefits to humans (Zimmerman et al. 2008, Vörösmarty 2010, Dodds et al. 2013). The 

widespread regulation of stream flow and restriction of overbank flooding via levees has altered 

floodplain inundation regimes in most large river systems (Fahrig 2003; Carlisle et al. 2011) and 

thus lateral connectivity between main channel and true floodplain habitats is rare or absent in 

many rivers. Mitigation and other restoration activities to provide inundation of secondary 

channels and other riparian habitats may be important for fish and invertebrate communities in 

these systems (Poff et al. 1997; Besacier-Monbertrand et al. 2014). Many recent studies have 

examined the relationship between lateral connectivity and fish and invertebrate communities 

(e.g. McMullen and Lytle 2012; Besacier-Monbertrand et al. 2014; Górski et al. 2014). However, 

understanding the combined response of fish and invertebrate communities to lateral 

connectivity may help us better understand the overall importance of floodplain inundation on 

riverine ecosystems.  

We tested three hypotheses to examine the importance of hydrologic variation and lateral 

connectivity for fish and invertebrates in the Kansas River, a seventh-order river in the Great 

Plains. Chapter 2 describes how fish and invertebrate assemblages were affected by flooding and 

increased lateral connectivity in a seasonally connected secondary channel only inundated during 

flooding. We examine invertebrate abundance trends in main channel habitats before, during, 

and after flooding and among main and secondary channel habitats during flooding over three 
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years of sampling. We then relate these trends to fishes and examine patterns in fish communities 

among habitats to identify the importance of lateral connectivity and inundation of seasonal 

floodplain habitats for biota in large river systems. Chapter 3 builds on these findings but 

expands them to a permanently connected secondary channel. We again examine trends in 

invertebrate and fish assemblages and compare the findings from the permanently connected 

secondary channel to the seasonally connected secondary channel studied in chapter two. In an 

effort to further understand the benefits of lateral connectivity, we examine the role of hydrology 

on fish recruitment patterns in the Kansas River in Chapter 4. Finally, in Chapter 5 we present 

the main findings of each chapter and summarize the importance of all the research presented in 

the previous chapters. These findings provide critical information regarding the importance of 

flooding and lateral connectivity for the biota of a temperate large-river ecosystem and may help 

guide restoration efforts focused on lateral connectivity and the natural flow regime.  
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Chapter 2 – Fish and Invertebrate Community Response to High 

Flows and Floodplain Inundation in the Kansas River 

ABSTRACT 

Flow regimes control many components of aquatic ecosystems and affect the distribution and 

abundance of aquatic organisms. Floods and floodplain connectivity are integral components of 

the natural flow regime of many lotic systems and are believed to regulate energy flow to 

macroinvertebrates and fishes. First, we examined how hydrology impacts invertebrate densities 

and presence and absence of fishes before, during, and after flooding over a three year period in 

main channel habitats in a Great Plains river. Next, we assayed invertebrate densities and fish 

communities response to hydrology among main channel and inundated secondary channel 

habitats during flooding. Drifting invertebrate densities increased by an average of 471% in all 

habitats during flooding demonstrating that floods proved a pulse of invertebrates to the river 

system potentially resulting in an increase in prey availability to fish. In contrast, highest benthic 

invertebrate densities were consistently observed before or after, but never during, flooding. 

Models with year and flood stage had the strongest support for differences in benthic and drifting 

invertebrate communities among sampling periods indicating that benthic and drifting 

invertebrate communities respond to hydrology but that these hydrologic effects are confounded 

by annual variation. During flooding, inundated habitats supported a unique invertebrate 

community with higher densities of Chaoboridae (32.6% of catch) whereas Chironomidae were 

dominant in main channel habitats (47 – 50%). We found that fluvial dependent and generalist 

fish species used inundated habitats more than fluvial specialist. Although there are many 

potential mechanisms by which fish and invertebrates may benefit (e.g. spawning, feeding, and 
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refugia habitats) from secondary channels, our results indicate that the secondary channel 

habitats are important for these organisms, both directly and indirectly.  

INTRODUCTION 

The flow regime controls many abiotic components of lotic ecosystems including habitat 

structure, water chemistry, and nutrient cycling (Poff and Ward 1989; Poff et al. 1997; Bunn and 

Arthington 2002). Hydrology also has a profound impact on the distribution and abundance of 

aquatic organisms and has been considered the “master variable” of lotic ecosystem structure and 

function (Power et al. 1995; Doyle et al. 2005). Natural hydrology varies both spatially and 

temporally and often includes periods of low-flows and flooding in addition to baseflow 

conditions (Poff et al. 1997; Landres et al. 1999) and this variation in the flow regime is essential 

in maintaining the structure and function of freshwater ecosystems (Poff et al. 1997; Bunn and 

Arthington 2002; Poff 2009).  

Many theories have been developed to explain the role of varying flow conditions on 

lotic ecosystem structure and function and the biotic communities they support. The River 

Continuum Concept (RCC; Vannote et al. 1980) was among the first of these theories and 

developed a framework to understand the transfer of nutrients and energy in a longitudinal 

manner from headwaters downstream to large rivers. However, the RCC failed to consider the 

role of floodplain inundation. The Flood Pulse Concept (FPC; Junk et al. 1989) added to the 

RCC framework to incorporate the importance of the exchange of nutrients or energy between 

the floodplain and main channel of large rivers. Specifically, the FPC purports that connectivity 

between floodplains and main channel habitats is critical for productivity and biodiversity in 

large river systems (Junk et al. 1989; Tockner et al. 2002). Although both the RCC and FPC 

attempt to explain energy flow in lotic ecosystems, the two concepts are not mutually exclusive. 
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It is possible that a combination of these patterns occur in many lotic systems; however, the 

importance of each is unclear in temperate large river systems (Tockner et al. 2000; Thorp et al. 

2006; Junk and Bayley 2007). More recently, the river wave model, which proposes that energy 

production and inputs are largely dependent on riverine flows, was developed to better 

synthesize energy flow in riverine ecosystems (Humphries et al. 2014). The river wave model 

suggests that local autochthonous production and allochthonous inputs are primary energy 

sources during low flows (i.e. wave troughs), upstream allochthonous inputs and downstream 

movement of material regulate energy when flows are increasing and decreasing (i.e. wave rising 

and falling limbs), and during peak flows (i.e. wave crests) production is primarily derived from 

floodplain habitats (Humphries et al. 2014). The shape of the wave (and corresponding changes 

in primary energy sources) is strongly linked to riverine hydrology and these patterns can be 

impacted by many factors including anthropogenic regulation, climate, and geomorphology 

(Humphries et al. 2014). 

In many lotic systems, floods are natural disturbance events that include a period of high 

flow that connects main channel and floodplain habitats (Poff et al. 1997; Galat et al. 1998). 

Organisms, including fishes, in large river systems are dependent on these flooding events to 

initiate spawning, and provide nursery, feeding, and refugia habitats (Welcomme 1985; Zeug and 

Winemiller 2007). The natural flow regime, including flooding, varies spatially and temporally 

and many native fishes have adapted to survive and often thrive during extremes in their natural 

flow regime (Freeman et al. 2001; Koel and Sparks 2002).  

Anthropogenic activities have altered the natural flow regime and impacted many large 

rivers (Vörösmarty et al. 2010; Dodds et al. 2013). For example, the construction of dams, 

levees, and the channelization of main channels have altered the timing, magnitude, and duration 
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of high flows, and reduced or eliminated floodplain connectivity in many large rivers (Poff et al. 

1997; Puckridge et al. 1998, Carlisle et al. 2011) and led to declines in native species (Bunn and 

Arthington 2002; Poff and Zimmerman 2010). Altered flow regimes and accompanying water 

quality declines may also impact macroinvertebrate communities and disrupt the prey base for 

fishes (Lind et al. 2006). Because anthropogenic impacts are so pervasive in freshwater 

ecosystems, many contemporary management and restoration activities focused on maintaining 

biodiversity and ecosystem structure and function in large river systems incorporate protocols to 

mimic the natural flow regime (e.g. Propst and Gido 2004; Arthington et al. 2006; Kiernan et al. 

2012).  

Restoring natural floodplain connectivity may benefit large river fishes, invertebrates, 

and ecosystems through several pathways including increasing access to food sources and 

transferring nutrients and energy from inundated floodplain habitats to the main channel (Poff et 

al. 1997; Besacier-Monbertrand et al. 2014). Floods may increase the number of invertebrate 

prey available to fishes in the main channel either by increasing longitudinal connectivity (i.e., 

RCC), by increasing lateral connectivity (i.e., FPC), or a combination of both. Although 

autochthonous productivity and terrestrial carbon sources provide the foundation for large river 

food webs (Thorpe et al. 1998; Herwig et al. 2004; Winemiller 2005), macroinvertebrates can 

transfer these basal sources throughout the food web via “bottom-up” processes (Polis et al. 

1997). Therefore, macroinvertebrates are a good surrogate for tracking when and where the 

energy is used in the system as they are a primary food source for many large river system fishes 

(Wipfli et al. 2010). High flows can lead to an increase in shear stress on benthic environments 

potentially leading to “catastrophic drift”, causing an increase in the density of benthic 

invertebrates in the drift and decreased densities in benthic habitats (Callisto and Goulart 2005; 
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Lauridsen and Fribert 2005; Gibbins et al. 2007). Tracking invertebrate abundance before, during 

and after a flood may help us understand the role of flooding on prey availability and increase 

our understanding of the importance of high flows and floodplain connectivity and provide 

support for the river wave concept (Humphries et al. 2014). The influence of lateral connectivity 

between main channel and secondary channel habitats on macroinvertebrate communities may 

be regulated by physical or habitat effects of high flows on these taxa (Tockner et al. 2000; Starr 

et al. 2014). By examining invertebrate densities in main channel and floodplain habitats we may 

also increase our understanding of how invertebrate communities use secondary channel habitats 

in large rivers. 

Despite the variable connectivity and corresponding intermittent flows in secondary 

channels, invertebrates may become established in these habitats under certain hydrologic 

conditions (Figure 2.1). If secondary channels contain standing water before flooding, they may 

support breeding and colonizing invertebrates that may then drift into the main channel during 

flooding (Boulton and Lloyd 2006). Otherwise, secondary channels may serve as a sink for 

invertebrates as invertebrates found in the secondary channel must be derived from drift from 

upstream reaches during floods (Figure 2.1). Macroinvertebrate colonization rates are highly 

variable and are influenced by a number of factors (e.g. temperature, dispersal rate, time since 

last inundation) in the inundated habitat (Mackay 1992; Boulton and Lloyd 2006). 

Macroinvertebrate populations can establish quickly (1-3 days) in recently inundated areas 

especially in areas with high densities of invertebrate resting stages or with high abundances of 

“explosive breeders” that can quickly become established in new aquatic environments (De 

Stasio 1989; Boulton and Lloyd 1992, Corti et al. 1997). Tracking the source (e.g. upstream or 
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floodplain reaches) of invertebrates during flooding can increase our understanding of potential 

invertebrate prey and consumption by fishes.  

Many recent studies have examined the role of flooding and lateral connectivity on 

invertebrates (Cross et al 2011; McMullen and Lytle 2012; Besacier-Monbertrand et al. 2014) 

and movement of fishes between main channel and inundated habitats (Lyon et al. 2009; 

Conallin et al. 2011; Gorski et al. 2014). However, understanding the simultaneous changes in 

invertebrate abundance and fish movement as an interacting community will help us better 

understand the overall aquatic community response to lateral connectivity. We seek to advance 

our understanding of the importance of flooding and floodplain connectivity in temperate rivers 

by testing three hypotheses to identify the role of flooding on invertebrates and utilization of 

invertebrate prey resources for large river fishes. First, we examined how floods impact 

invertebrate abundance and density by testing the hypothesis that main channel 

macroinvertebrate community composition will change with flow conditions (before, during, 

after flooding) and density will increase in main channel habitats during flooding. Next, we 

examined invertebrate density and community composition among main channel and inundated 

habitats during flooding to identify the importance of these habitats as potential feeding habitats 

for fishes. Finally, we tested the hypothesis that fish prey on invertebrates from inundated 

habitats directly (by moving into inundated habitats) and indirectly (staying in main channel and 

feeding on prey carried into the main channel, sensu: Junk et al. 1989; Galat and Zweimuller 

2001) resulting in different fish communities in main channel habitats where we expect more 

generalist species and secondary channel habitats where we expect more fluvial specialist fish 

species. Although our hypothesis was developed to examine differences in fish communities 

related to prey availability, fishes often use these habitats for other reasons such as spawning or 
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refugia from high flows (Welcomme 1985; Zeug and Winemiller 2007) and differences in 

community structure may be influences by other factors. 

METHODS 

Study site 

The Kansas River is a 7th order sand bed river located in northeast Kansas and flows 274 

km from its source near Junction City, KS to the Missouri River in Kansas City, KS. The Kansas 

River has a gradient of 0.5 – 1.2m/km resulting in a wide (𝑥̄  = 164 m) and shallow (𝑥̄  = 1.5m) 

channel throughout most of the river (Makinster and Paukert 2008; Eitzmann and Paukert 2010). 

With a watershed of approximately 155,000 km2 (Colby et al. 1956), the Kansas River accounts 

for about 12% of the Missouri River watershed (Metcalf et al. 1966). The Kansas River 

mainstem is relatively free of impoundments with the exception of one lowhead dam, Bowersock 

Dam, located near Lawrence, Kansas (river kilometer 83) and one weir, Johnson County Weir, 

located near rkm 27. However, flood control dams on major tributaries including the Smokey 

Hill and Republican Rivers, have altered the flooding regime dramatically since the early 1960s 

(Costigan and Daniels 2012). As a result, extensive floodplain inundation along the Kansas River 

is now rare.  

Our study design included three reaches in the main channel of the Kansas River near 

Manhattan, Kansas (39°11’24”N, 96°30’53”W) and an adjacent inundated secondary channel 

reach (Figure 2.2). Macroinvertebrates were collected from two main channel reaches of the 

Kansas River near Manhattan, Kansas (rkm 232) before, during, and after flooding (April – 

September) in 2009 – 2011 (Figure 2.3). Each reach was approximately 1km long and was 

divided into four equidistant transects. Samples were collected from the left, middle, and right of 

each transect for a total of twelve sampling sites in each reach. We defined flooding as 
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inundation of the sampled secondary channel, which occurred when flows were 137% higher 

than the 20 year mean annual flow. These floods were constrained to the river channel and never 

extended over-bank to true floodplain habitats but they inundated some riparian terrestrial (i.e. 

bank) habitats. Total flood duration was much longer in 2010 (76 days) than in 2009 (14 days) 

and 2011 (28 days). Secondary channel samples were only collected during periods of flooding 

in 2009 – 2011 because it did not have sufficient flows for sampling before and after flooding. 

Samples were collected starting on the first day of flooding in 2011 but we were unable to 

accurate calculate when flooding would occur in 2009 and 2010 and as a result samples were 

collected starting on the third day of flooding in these years.  

  

Main channel macroinvertebrate response during flooding 

Drifting Invertebrates 

 Drifting invertebrates were sampled during daylight hours at each site before, during, and 

after flooding in the upstream and downstream habitats using a 150 cm long paired bongo net 

with 50 cm diameter openings and 202 µm mesh attached to the bow of the boat with a 10 m tow 

rope and deployed downstream. The net was held in place using the outboard motor and floats 

were attached to the top of the bongo net to ensure the nets remained suspended near the top of 

the water column during sampling. For each sample, nets were deployed for 150 seconds and 

velocity was recorded for each net using a mechanical flow meter attached to the net opening.  

Benthic Invertebrates 

Benthic invertebrates were sampled at each site before, during, and after flooding in the 

upstream and downstream habitats before, during, and after flooding using a mini-ponar dredge 

(15.24 cm × 15.24 cm opening). Samples were emptied into a wash bucket and elutriated through 
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a 250 µm sieve in the field. After elutriation, all remaining substrate was washed through three 

sieves (63 – 250 µm) and into a catch pan. All sieves and the catch pan were visually examined 

for invertebrates to ensure that all invertebrates were collected before discarding the elutriated 

substrate. Invertebrate density was calculated from invertebrate abundance data as catch per unit 

volume (number per m-3) for drifting invertebrates and catch per unit area (number per m-2) for 

benthic invertebrates. Because invertebrate density was standardized for volume (drifting) and 

area (benthic), these groups were analyzed separately.  

Invertebrate Laboratory Methods 

All invertebrate samples were preserved in 10% buffered neutral formalin in the field, 

stained with Rose Bengal, and returned to the laboratory, sorted, identified to order, and 

enumerated. Common aquatic invertebrates were identified to family when possible. As a result, 

some taxa of the order diptera were identified to family (i.e. ceratopogonidae, chaoboridae, and 

chironomidae) whereas other dipterans, including terrestrial and adult dipterans, were classified 

as “grouped diptera”. When necessary, large samples were split using a Folsom Plankton Splitter 

and one half of the sample was randomly selected for processing.  

Data Analysis 

Seven candidate models were created to identify how main channel macroinvertebrate 

densities varied with respect to sampling year, reach (upstream main channel, downstream main 

channel, inundated secondary channel), and flood stage (before, during, or after flooding; Table 

2.1) for drifting and benthic invertebrates separately. We also included a null model with just the 

intercept to provide a reference for model performance. We used an information theoretic 

approach based on Akaike’s information criterion (AIC; Akaike 1974, Burnham and Anderson 

2002) to identify best fit models. Akaike information criterion corrected for small sample size 
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(AICc) to decrease the probability of selecting overfit models (Burnham and Anderson 2002). 

We calculated ΔAICc (ΔAICc = AICc – AICc(minimum)) to identify best fit models, and candidate 

models with ΔAICc <2 were considered competing models with similar performance (Burnham 

and Anderson 2002). In such cases, we calculated Akaike weights (wi), which indicates the 

probability that model i is the best fit model among competing candidate models (Burnham and 

Anderson 2002).  

To evaluate differences in community structure among samples, a Bray-Curtis distance 

metric was used followed by an analysis of similarity (ANOSIM) to test for effects of sampling 

years and flood stages in the main channel reaches. Non-metric multidimensional scaling 

(NMDS) was used to visually examine variation in macroinvertebrate structure among flood 

stages in the main channel. Scree plots were constructed and we visually examined the 

relationship between stress and number of retained axes to determine the optimal number of axes 

to retain. The Similarity Percentage (SIMPER) function was used to identify the contribution of 

each taxa to the overall dissimilarity among groups for the NMDS plot. All statistical analyses 

were conducted using R version 2.13.1 (The R Foundation for Statistical Computing 2011).  

 

Main channel and inundated habitat macroinvertebrate response during flooding 

Drifting and benthic macroinvertebrates were collected in upstream and downstream 

main channel reaches and an inundated secondary reach during floods when all habitats were 

connected using the methods outlined in the previous section. Three candidate models were 

created to examine how macroinvertebrate density varied in relation to sampling year and reach 

during flooding conditions (Table 2.1). Akaike information criterion and ΔAICc scores were used 

to examine relative model performance and identify best fit models.  
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We tested the hypothesis that macroinvertebrate communities were similar among 

reaches during flooding using a Bray-Curtis distance metric followed by an analysis of similarity 

(ANOSIM). Non-metric multidimensional scaling (NMDS) was used to visually examine 

variation in macroinvertebrate structure among reaches during flooding. We identified the 

optimal number of axes to retain by visually examining Scree plots. Similarity percentage 

(SIMPER) was calculated for each plot to identify the contribution of each species to the overall 

dissimilarity among reach groups.  

 

Fish community response to flooding 

We tested the hypothesis that fish consume invertebrate prey originating from inundated 

habitats during flooding by collecting fish from the two main channel reaches and one inundated 

secondary channel reach of the Kansas River near Manhattan, Kansas (rkm 232). Fishes were 

collected from each reach using a combination of pulsed-DC boat electrofishing, experimental 

gill nets, and seines. Pulsed-DC electrofishing was conducted following the standardized 

protocols presented by Guy et al. (2009) and Miranda (2009). At each transect, one 300-second 

sample was collected from a randomly selected bank with the boat moving downstream for a 

total of four samples per habitat (main channel upstream, downstream, and secondary channel). 

Captured fish from each transect were enumerated, measured (mm), and identified to species or 

returned to the laboratory when necessary for identification. 

 Monofilament experimental gill nets (1.8 m tall and 30.5 m long with four total 7.6 m 

long panels of 1.90, 3.81, 5.08, and 7.62 cm bar measure mesh) were used to further examine the 

fish assemblage at each transect. One gill net was set in the evening at a randomly selected 

location (left, middle, right) of each transect following standardized protocols defined by Lester 
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et al. (2009) and Curry et al. (2009) and retrieved the following morning for a total of four nets 

per habitat. Nets were set parallel to the flow to reduce drag during periods of high flow and 

maintain consistency among all sampling periods.  

 Small bodied fishes were collected with seines from one bank of each of the four 

transects in each reach. Three to five seine hauls were conducted at each site using a 6.0 m long 

and 1.2 m deep straight seine with 0.64 cm mesh following standardized methodology outlined 

by Curry et al. (2009). High flows during flooding limited habitats suitable for seining; as a 

result, seining sites were determined based on availability. If multiple habitats suitable for 

seining were identified for a particular transect one was randomly selected for sampling. Seine 

samples were preserved in 10% formalin and returned to the laboratory for identification and 

enumeration.  

Data Analysis 

Fish Community 

Catch rates for fishes were highly variable during flooding, primarily as a result of gear 

inefficiency during this high-water period. Therefore, fish abundance data were converted to 

presence or absence for all analyses. Binary data are less sensitive than quantitative data but 

should be used in place of abundance data when such data are unreliable (Kwak and Peterson 

2007). We used non-metric multidimensional scaling of a Jaccard distance matrix to test the 

hypothesis that fish assemblages (using species presence/absence) were consistent among all 

reaches during flooding. Scree plots were used to identify how many axes to retain by comparing 

the number of retained axes to overall stress. SIMPER values were calculated to identify the 

contribution of each species to overall dissimilarity among groups. Additionally, fishes were 

classified into habitat-use guilds as generalist, fluvial specialists or fluvial dependent based on 



 

19 
 

life history characteristics to facilitate generalized comparisons among fish communities in 

different reaches (Travnichek et al. 1995, Galat and Zweimüller 2001). Briefly, generalists use 

many habitats (lotic and lentic) and are able to complete their entire life cycle without flowing 

water, fluvial dependents require lotic habitats to successfully complete some portion of their life 

history, and fluvial specialists require lotic habitats for the majority of their life history and are 

almost always found in lotic systems (Travnichek et al. 1995, Galat and Zweimüller 2001). 

All statistical analyses were conducted using R version 2.13.1 (The R Foundation for 

Statistical Computing 2011).  

RESULTS 

Macroinvertebrate response to main channel flooding 

Drifting Invertebrates 

We collected 347 drifting invertebrate samples from the upstream and downstream 

reaches of the Kansas River in 2009, 2010, and 2011. A total of 34,182 drifting invertebrates 

representing 6 orders and at least 14 families were captured over the course of the study. 

Chironomidae were the most abundant taxa in drift samples among all flood stages (Table 2.2a) 

accounting for 46.3% of the total catch. Grouped Diptera (i.e. terrestrial, adult, and rare 

dipterans), Chironomidae, and Ephemeroptera were the most abundant taxa before, during, and 

after flooding respectively (Table 2.2a). Among all samples, ten taxa accounted for at least 5% of 

the total catch and were retained for further analyses.  

Two competing models that predicted drifting invertebrate densities in the main channel 

before, during and after flooding had deltaAICc < 2.0 (Table 2.1). Both the top model (year and 

flood stage; wi=0.69) and the competing model (year, flood stage, and reach; wi=0.31) included 

year and flood stage indicating that invertebrate density changed with flows but that this pattern 
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was not consistent among years. Drifting invertebrate density was higher during floods compared 

to before or after flooding in each of the three years of the study (Figure 2.4). Whereas drifting 

invertebrate densities in the main channel upstream and downstream reaches increased an 

average of 471% during flooding compared to pre-flood conditions 2009 and 2010 samples, 

average densities increased 7,775% in 2011 (Figure 2.4).Whereas increased densities may be 

related to peak flow magnitude which was about twice as high in 2011 than in 2009 and 2010, 

peak flows were not observed until after samples were collected and flows during collection 

were similar among all years (Figure 2.3). 

Main channel drifting invertebrate assemblage structure was generally more similar 

before and after flooding compared to samples collected during flooding (stress = 0.17; Figure 

2.5). Seven taxa (Ceratopogonidae, Chaoboridae, Chironomidae, grouped Diptera, 

Ephemeroptera, Oligochaeta, Trichoptera) accounted for a majority of dissimilarity among 

reaches. Grouped Diptera, Ceratopogonidae, and Chaoboridae were generally indicative of pre-

flood conditions, whereas Oligochaeta, and Chironomidae were associated with flooding. Post 

flood drifting invertebrate assemblages were associated with Ephemeroptera and Trichoptera.  

Benthic Invertebrates 

We collected 143 benthic invertebrate samples from the upstream and downstream 

reaches of the Kansas River in 2009, 2010, and 2011. A total of 3,484 benthic invertebrates 

representing 8 orders and 15 families were captured. Among all reaches and sampling periods, 

benthic invertebrate assemblages were dominated by Chironomidae (Table 2.2a). Chironomidae 

was the most abundant benthic taxa before and during flooding whereas Oligochaeta were most 

abundant after flooding (Table 2.2a). Eight taxa each accounted for greater than 5% of the total 

catch and were retained for further analyses. 
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Only one model (year and flood stage; wi=0.72); had strong support (ΔAIC <2) for 

benthic invertebrates densities (Table 2.1). However, a second model (year, flood stage, and 

reach; wi=0.26) had marginal support (ΔAIC = 2.04) indicating that river reach may have some 

impact on benthic invertebrate abundances. No consistent patterns were discernible for benthic 

invertebrate density between main channel reaches or among years which shows lower densities 

prior to flooding in 2009 but higher densities in other years during the same period (Figure 2.4). 

Benthic invertebrate assemblages before and after flooding showed more similarity to 

each other than to assemblages during flooding (NMDS, stress = 0.34; Figure 2.5). Benthic 

invertebrate assemblages tended to be similar among upstream and downstream reaches 

regardless of flood stage. However, the benthic invertebrate assemblage showed some unique 

characteristics, including high densities of Corixidae, during flooding in 2011 possibly indicating 

a shift in assemblage structure for these samples compared to other samples. Similarity 

percentage analysis indicated that Corixidae were most strongly associated with pre-flood 

conditions, grouped Diptera were most strongly associated with flooding conditions, and post-

flood conditions were associated with an increase in Ceratopogonidae and Trichoptera. 

 

Main channel and inundated habitat macroinvertebrate response during flooding 

Drifting Invertebrates 

 A total of 184 drifting invertebrate samples were collected from the upstream, 

downstream, and inundated secondary channel in 2009, 2010, and 2011. Among all reaches, 

28,239 drifting invertebrates were collected during flooding conditions including taxa from 6 

orders and 16 families. Chironomidae was the most abundant taxa among all samples and were 

the most common taxa in upstream and downstream main channel reaches (Table 2.2b). 
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Chaoboridae was the most abundant taxa in the inundated secondary channel during flooding 

(Table 2.2b). Eight taxa accounted for at least 5% of the total catch and were retained for further 

analyses.  

 The model with sampling year and study reach (wi=1.00) was the only supported model 

for drifting invertebrate assemblages during flooding (Table 2.1). Drifting invertebrate densities 

were similar among all reaches in 2009 and 2010, but densities were an order of magnitude 

higher in the upstream and downstream reaches compared to the inundated secondary channel in 

2011 (Figure 2.6). 

Dissimilarity among reaches was often high for the drifting invertebrate assemblages 

during flooding (NMDS, stress = 0.08; Figure 2.7). Drifting invertebrate assemblages were 

similar in the upstream and downstream main channel reaches but were dissimilar from the 

assemblage observed in the inundated secondary channel. Similarity percentage analysis 

indicated that upstream and downstream main channel reaches were most strongly associated 

with Chironomidae, Oligochaeta, and Trichoptera. Drifting invertebrate assemblages in flooded 

habitats were primarily associated with Corixidae and Chaoboridae.  

Benthic Invertebrates 

 We collected 102 benthic invertebrate samples from upstream, downstream, and 

inundated secondary channels during flooding conditions in 2009, 2010, and 2011. Among 

benthic samples, 1,155 macroinvertebrates were collected including individuals from 9 orders 

and 19 families. Chironomidae were the most abundant benthic taxa in upstream main channel 

and inundated secondary channel reaches whereas Oligochaeta was most abundant in the 

downstream main channel reach (Table 2.2b). Among all samples, eight taxa represented at least 

5% of the total catch and were retained for further analyses.  
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 The model with year and reach (wi=1.00) was the only supported model for benthic 

invertebrate assemblages during flooding (Table 2.1). No consistent patterns were observed for 

benthic invertebrate densities among reaches during flooding (Figure 2.6). However, in 2009 

benthic invertebrate densities were much higher in the inundated secondary channel compared to 

upstream and downstream main channel reaches. In 2011, relatively high benthic invertebrate 

densities were observed in the downstream and inundated secondary channel reaches compared 

to the upstream reach. Large spikes in average benthic invertebrate densities were not observed 

in any reaches in 2010. 

Benthic invertebrate communities were similar between the upstream and downstream 

main channel reaches but less similar to the inundated secondary channel (NMDS; stress = 0.11; 

Figure 2.8). Similarity percentage analyses indicated Corixidae and Coleoptera were generally 

positively associated with the inundated secondary channel whereas Ephemeroptera and 

Oligochaeta were generally positively associated with main channel reaches. 

 

Fish community response to flooding 

 Among all reaches from 2009 – 2011 we collected 257 fish samples including 84 

electrofishing samples, 21 gill net samples, and 152 seine hauls. From all samples, a total of 

23,686 fishes were collected including 498 fishes collected during electrofishing, 116 collected 

with gill nets, and 23,072 fishes collected with seines. Individuals were collected from 31 species 

representing 6 families and 19 species accounted for at least 5% of the total catch and were 

retained for further analyses.  

 A total of 37.3% of the variation among fish communities in upstream, downstream, and 

inundated secondary channel habitats during flooding was explained by two axes that were 
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retained for the non-metric multidimensional scaling plots examining variation in fish 

community structure (Figure 2.9). Variation along the first axis was most strongly positively 

correlated with species found in the main channel habitats (shovelnose sturgeon, Scaphirhynchus 

platorynchus; blue sucker, Cycleptus elongates; and red shiner, Cyprinella lutrensis) and most 

strongly negatively correlated with species found in the inundated secondary channel (longnose 

gar, Lepisosteus osseus; river carpsucker, Carpiodes carpio; and freshwater drum, Aplodinotus 

grunniens; Figure 2.9). In general, fish communities from the main channel (shortnose gar, 

Lepisosteus platostomus; goldeye, Hiodon alosoides; and smallmouth buffalo, Ictiobus bubalus) 

were associated with positive axis 2 scores whereas fishes found in the inundated secondary 

channel (gizzard shad, Dorosoma cepedianum; white bass, Morone chrysops; and sauger, Sander 

canadensis; Figure 2.9). 

DISCUSSION 

Floods can impact many aspects of lotic ecosystems including increasing energy sources 

(prey) for fishes. Our results indicate that floods result in a pulse of higher macroinvertebrate 

densities that may be used as prey for fishes in secondary channel and main channel habitats. 

Specifically, flooding increased the density of drifting macroinvertebrates in main channel 

habitats of the Kansas River compared to base flow conditions before and after flooding in all 

three years of this study. Additionally, highest total (sum of upstream and downstream) benthic 

invertebrate densities were observed either before or after, but never during, flooding in each of 

the years of this study. These findings are consistent with other studies that found that increased 

discharges during flooding can increase shear stress near the benthos and cause “catastrophic 

drift” where a majority of benthic invertebrates enter the drift thereby lowering the density of 

benthic invertebrates and subsequently increasing the density of invertebrates in the drift 



 

25 
 

(Callisto and Goulart 2005; Lauridsen and Fribert 2005; Gibbins et al. 2007). Although 

invertebrates can enter the drift voluntarily, most voluntary drift occurs overnight with peaks 

often observed just after sunset and just before sunrise (Elliott 1969; Brittain and Eikeland 1988; 

Sagar and Glova 1992). Because all of our samples were collected during daylight hours we 

surmise that invertebrate drift in our study was primarily involuntary drift as a result of 

entrainment disturbance to the benthos. Involuntary drift related to increasing flows is especially 

pervasive in sandbed rivers where relatively small increases in velocity can lead to entrainment 

of substrate and benthic invertebrates (Beisel et al. 1998; Allan 2007; Gibbins et al. 2010). As 

such, it is likely that invertebrates captured in drift samples were dislodged from upstream main 

channel habitats as well as brought into the main channel from inundated terrestrial habitats. 

The highest densities of benthic and drifting invertebrates were observed in 2011. 

Additionally, drifting invertebrate densities were similar in 2009 and 2010 but were an order of 

magnitude higher in main channel habitats in 2011. The spikes observed in 2011 may likely be 

explained by the timing of sampling in 2011 relative to the timing of flooding. In 2011 we 

sampled on the first day of flooding immediately after flooding conditions began (i.e. 

hydrograph rising limb). The strong spike that we observed indicated that floods may instigate an 

initial period of high energy influx followed by sustained increased, though less extreme, 

invertebrate densities in the drift compared to baseflow conditions (Junk et al. 1989). However, 

because the spike was not observed in 2009 or 2010 it is possible that this pulse quickly subsides 

to a level where macroinvertebrate density is relatively equal among all habitats and similar to 

baseflow. 

Year and flood stage were important predictors of both drifting and benthic 

macroinvertebrate densities suggesting that floods impact macroinvertebrate densities. Although 
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many metrics of the flood (e.g. magnitude, timing, duration) may alter the impact of a particular 

flood on macroinvertebrates densities, our results are confounded by not sampling on the same 

day of a flooding event among years (e.g. first day of rising limb). Therefore, we do not fully 

understand the impact of our flood sampling timing on macroinvertebrate densities. However, 

aquatic macroinvertebrate emergence rates are highly correlated with water temperature (Thorp 

et al. 1997; Boulton and Lloyd 2006). As a result, aquatic macroinvertebrate densities may be 

lower during early season floods and these floods may transport fewer inverts downstream than a 

comparable flood later in the season (Boulton and Lloyd 2006). Water temperatures collected 

from USGS Station 06887500 near Wamego, Kansas were on average 12-14°C lower for early 

season (i.e. April) floods compared to later season (i.e. July) floods so it is likely that more 

invertebrates would have emerged during later season floods and could further explain how flood 

timing could alter the benefits of flooding. Main channel drifting invertebrate samples during 

flooding were dominated by Chironomidae and Oligochaete, which were predominantly found in 

benthic samples prior to flooding suggesting that scouring is at least partially responsible for the 

increase in drifting invertebrate density during flooding. Chironomidae are among the most 

susceptible benthic taxa to enter the drift (Rader 1997; Cross et al. 2011).  

Fish feed on drifting invertebrates (e.g. Cadwallader 1975; Flecker 1992) and fishes 

benefit from increased drift resulting from floods (Valdez et al. 2001; Lagarrigue et al. 2002). 

Drifting invertebrate concentrations increased during flooding in every year of our study 

suggesting that floods may benefit fishes by increasing drift rates and moving invertebrate prey 

from inundated habitats to the main channel. Invertebrates can colonize and breed in inundated 

habitats, such as the secondary channel in this study, during baseflow conditions if the habitat 

has previously been inundated or there is sufficient precipitation to create standing pools of water 
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(Paillex et al. 2007, Starr et al. 2014). As such, some main channel fishes may benefit from 

inundations of terrestrial habitats without directly moving into inundated habitats by feeding on 

invertebrates that enter the drift and are carried to the main channel. Invertebrate densities were 

higher in main channel habitats during flooding indicating that high flow events may enhance 

feeding habitats for many fish (e.g. Galat and Zweimuller 2001; Jardine et al. 2012).  

Habitat variation among sites likely accounted for many of the differences observed for 

drifting and benthic invertebrate communities in the main channel and secondary channel 

habitats. Main channel sites were dominated by sandy benthic substrates whereas the benthic 

substrate of the inundated secondary channel was predominantly mud (J. Gerken personal 

observation). Sand and mud benthic zones often support different invertebrate communities 

(Ward 1992) and may account for many of the differences observed between main channel and 

secondary channel habitats.  

The higher benthic invertebrate densities generally found in the inundated secondary 

channel may benefit some fishes by increasing prey availability in main channel habitats during 

flooding. This supports the idea that inundated habitats provide energy for main channel fishes 

(e.g. Galat and Zweimuller 2001). However, we cannot definitively show how energy varied 

among main channel and inundated habitats because we examined invertebrates densities instead 

of biomass. For example, although chironomids were found in the highest densities in many of 

our samples, these species may not be as valuable energetically as invertebrates that were found 

in lower densities but likely had greater biomass (e.g. ephemeroptera). Our results suggest that 

the contribution of macroinvertebrates from one inundated habitat to the main channel may be 

negligible compared to the number of invertebrates in the main channel, but the cumulative 

influx from a combination of inundated riparian and floodplain terrestrial habitats may provide a 
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considerable influx of macroinvertebrates into the main channel (Tockner et al. 2000; Baxter et 

al. 2005; Thorp et al. 2006).  

The contribution of inundated floodplain habitats may also depend on flow rates into and 

through inundated habitats. Flows through the secondary channel of our study were always less 

than 5% of the flows observed in the main channel (K. Costigan, Kansas State University, 

unpublished data). In inundated habitats with minimal flows, invertebrates may drift into 

inundated habitats from the main channel and settle out in areas of lower flow making them a 

sink of invertebrate energy. Conversely, if higher flows are present in inundated habitats 

invertebrates may not be able to settle out and instead we may see invertebrates derived from the 

floodplain washed into the main channel and therefore the inundated habitat would serve as an 

energy source to main channel habitats. Drifting invertebrate concentrations were always higher 

during flooding compared to before or after flooding indicating that higher flows may carry 

invertebrates from inundated floodplain habitats to main channel habitats. Our results contrast 

Smock (1994) who observed in two headwater streams in Virginia where a net loss of 

invertebrate abundance was observed from the floodplain to the main channel but a net gain of 

invertebrate biomass occurred from the main channel to the floodplain. However, the distance 

between main channels and floodplains was relatively small because the study was conducted in 

headwater streams and invertebrate crawling accounted for much of the movement of 

invertebrates among reaches (Smock 1994). It is unlikely that large quantities of invertebrates 

would be able to traverse the high flows and relatively large spatial distance between main 

channel and floodplain habitats in our study, and drift into or out of inundated habitats likely 

accounts for a large proportion of invertebrate movement during flooding in our system (e.g. 

Brittain and Eikeland 1988; Gibbins et al. 2007). Understanding how flow dynamics of 
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inundated habitats may impact transfer of invertebrates into or out of flooded habitats may 

provide more resolution on the importance of inundated habitats as potential energy sources.  

The majority of the fishes captured during this study were captured in the inundated 

secondary channel at least once suggesting these habitats are used by most fishes. Many 

generalist (e.g. river carpsucker, freshwater drum) and fluvial dependent fish species (e.g. 

longnose gar) were commonly found in the inundated secondary channel indicating that these 

habitats may serve as a refugia habitat for fishes to escape high flows in the main channel. In 

contrast, some fluvial specialist species, such as shovelnose sturgeon and blue sucker, were 

rarely captured in inundated habitats. Whereas many fluvial specialists were captured in 

secondary channel habitats at least once, fluvial specialists were not consistently observed in 

these reaches highlighting the importance of main channel habitats for some fish species (Galat 

and Zweimüller 2001). Our results are consistent with the findings of Galat and Zweimüller 

(2001) for large river fishes in the United States and Europe and indicate that fluvial dependents 

and fluvial generalists are likely using inundated habitats but that most fluvial specialists tend to 

remain in main channel habitats during flooding. 

Fishes may serve an important role in the transport of energy among inundated and main 

channel habitats by feeding in inundated habitats and moving to the main channel (Jardine et al. 

2012). Though we could not conclusively identify a link of invertebrate prey from the inundated 

secondary habitat to the main channel, fishes likely move energy from inundated habitats to main 

channel habitats by feeding directly in the inundated habitats before returning to the main 

channel. This may be especially important during periods of high flow when increased turbidity 

may constrain feeding processes of fishes in main channel habitats (Abrahams and Kattenfeld 

1997). Whereas there are higher densities of invertebrates in the main channel, fishes may be 
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more efficient feeders in inundated habitats and therefore exhibit a net gain by feeding in 

inundated habitats where invertebrate densities are lower (but still increased compared to 

baseflow) compared to staying in the main channel where invertebrate densities are higher but 

more energy may be required to remain in higher flows and faster currents for fish to use the 

increase in prey availability (Balcombe et al. 2012, Jardine et al. 2012). Future studies should 

examine feeding efficiency of fishes in inundated and main channel habitats especially during 

periods of flooding when differences in turbidity may be exacerbated. 

CONCLUSIONS 

 This study provides empirical evidence on the impacts of high flows on fish and 

invertebrate communities during flooding. We found that high flows result in higher drifting 

invertebrate densities likely from upstream reaches and inundated secondary channels which 

may benefit fishes in a variety of ways. We did not observe definitive movement of invertebrates 

from inundated to main channel habitats but we observed patterns of fish utilizing inundated 

habitats. As such, the importance of floodplain habitats may vary based on size and shape of the 

habitat and characteristics of high flows (e.g. duration, magnitude, and timing). Although the 

energy input provided by one inundated habitat may be negligible in itself, the total influx of 

energy provided by all inundated terrestrial habitats is likely to provide benefits to the riverine 

ecosystem. Maintaining lateral connectivity in large rivers may benefit many native fishes found 

in these systems and management and restoration efforts focused on large river fishes may 

benefit by increasing or maintaining lateral connectivity between main channel and inundated 

terrestrial habitats. Future studies should quantify invertebrate biomass and use a bioenergetics 

approach to gain further insight into how floods and lateral connectivity impact fish and 

invertebrate communities in large rivers. 
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 Our study provides a framework for the benefits of floods and shows that the duration 

and magnitude of flooding may considerably alter invertebrate communities and related benefits 

to fishes. However, we were not able to provide the resolution necessary to identify specific 

factors linking floodplain energy to main channel productivity. Future studies should examine 

how changes to the timing, duration, and magnitude (i.e. specific parts of the natural flow 

regime) impact temperate river ecosystems and the applicability of the FPC.
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Table 2.1. Results for models examining benthic and drifting invertebrate densities before, during, after flooding are affected by year 

of sampling, reach (upstream main channel, downstream main channel), and river stage (before, during, after flooding) in main 

channel reaches (Hypothesis 1) of the Kansas River and during flooding conditions (Hypothesis 2) in upstream, downstream, and 

inundated secondary channel habitats of the Kansas River. 

 

 Hypothesis 1 Benthic   Drift 

Model Parameters AICc ΔAICc wi   AICc ΔAICc wi 

Intercept; Year; Stage 415.48 0 0.72  510.89 0 0.69 

Intercept; Year; Stage; Reach 417.52 2.04 0.26  512.44 1.56 0.31 

Intercept; Year 423.60 8.12 0.01  729.62 218.73 0 

Intercept; Year; Reach 425.60 10.12 0  731.55 220.67 0 

Intercept 514.11 98.63 0  722.81 211.92 0 

Intercept; Stage 519.15 103.67 0  642.03 131.15 0 

Intercept; Stage; Reach 521.16 105.68 0  643.74 132.86 0 

Intercept; Reach 521.56 106.08 0   809.41 298.53 0 

Hypothesis 2        

Intercept; Year; Reach 248.77 0 1  298.13 0 1 

Intercept; Year 268.32 19.55 0  345.11 46.98 0 

Intercept; Reach 269.31 20.53 0   395.55 97.42 0 

Intercept 276.53 27.76 0  431.47 133.34 0 
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Table 2.2. Dominant taxa for drifting and benthic invertebrates for A) invertebrates collected before, during, and after flooding in 

main channel habitats upstream and downstream of the secondary channel and B) invertebrates collected during flooding in the 

inundated secondary channel and main channel reaches upstream and downstream of the secondary channel. Percentage of overall 

catch is identified parenthetically. Some dipterans were identified to family (i.e. Ceratopogonidae, Chaoboridae, and Chironomidae) 

whereas other Dipterans (predominantly terrestrial and adult Dipterans) were classified as “grouped Ddiptera”. 

a)     

  Overall Before Flooding During Flooding After Flooding 

Drifting Chironomidae (46.3) Grouped Diptera (28.1) Chironomidae (48.7) Ephemeroptera (38.1) 

 Oligochaeta (14.7) Ceratopogonidae (16.7) Oligochaeta (15.8) Chironomidae (22.9) 

 Grouped Diptera (12.6) Chironomidae (15.2) Grouped Diptera (12.4) Trichoptera (20.8) 

     

Benthic Chironomidae (50.8) Chironomidae (39.8) Chironomidae (59.7) Oligochaeta (32.7) 

 Oligochaeta (27.1) Oligochaeta (33.7) Oligochaeta (23.4) Chironomidae (31.3) 

  Grouped Diptera (8.1) Corixidae (9.1) Grouped Diptera (10.1) Trichoptera (13.7) 

 

 

     

b)     

  Overall Upstream Downstream Secondary Channel 

Drifting Chironomidae (45.7) Chironomidae (50.0) Chironomidae (47.0) Chaoboridae (32.6) 

 Oligochaeta (15.0) Oligochaeta (16.2) Oligochaeta (15.4) Corixidae (23.6) 

 Grouped Diptera (13.1) Grouped Diptera (12.3) Grouped Diptera (12.5) Grouped Diptera (21.8) 

     

Benthic Oligochaeta (48.9) Chironomidae (51.8) Oligochaeta (71.6) Chironomidae (34.6) 

 Chironomidae (30.3) Oligochaeta (23.9) Chironomidae (23.1) Corixidae (26.3) 

  Corixidae (5.2) Ephemeroptera (13.1) Ephemeroptera (2.5) Oligochaeta (12.3) 
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Figure 2.1. Conceptual framework showing how invertebrate assemblages develop in secondary channels and contribute to main 

channel habitats in various hydrologic conditions and how main channel fishes may benefit from these invertebrates. Invertebrates can 

colonize standing water in secondary channel habitats and then flush into the main channel during flooding (i.e. source) come directly 

from the main channel and settle in the secondary channel (i.e. sink) or a combination of the two.
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Figure 2.2. Aerial photograph of study sites on the Kansas River near Manhattan, Kansas. Lines indicate the upstream main channel 

(solid), downstream main channel (dashed), and inundated secondary channel (dotted) study reaches.
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Figure 2.3. Mean daily discharge (m3 sec-1) for the Kansas River near Wamego, KS in 2009, 

2010, and 2011. Lines indicate sampling dates for pre-flood (dash dotted), during flood (solid), 

and post flood (dashed) for each year. Shaded areas indicate periods of flooding. Discharge 

values were obtained from United States Geological Survey Station #06887500. 
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Figure 2.4. Mean (±SE) drifting and benthic invertebrate densities for upstream and downstream 

main channel reaches of the Kansas River before, during, and after flooding in 2009 – 2011.  
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Figure 2.5. Non-metric multidimensional scaling biplot for drifting and benthic invertebrate 

assemblages (abundance) in upstream and downstream main channel reaches of the Kansas River 

before, during, and after flooding in 2009 – 2011. 
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Figure 2.6. Mean (±SE) drifting and benthic invertebrate densities samples collected in the 

upstream and downstream main channel reaches and the inundated secondary channel of the 

Kansas River during flooding from 2009 – 2011. 
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Figure 2.7. Non-metric multidimensional scaling biplot for drifting invertebrate assemblage in 

upstream and downstream main channel and inundated secondary channel reaches of the Kansas 

River during flood conditions. 
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Figure 2.8. Non-metric multidimensional scaling biplot for benthic invertebrate assemblage 

(abundance) in upstream and downstream main channel and inundated secondary channel 

reaches of the Kansas River during flood conditions in 2009 - 2011. 
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Figure 2.9. Non-metric multidimensional scaling biplot for fish presence or absence in upstream 

and downstream main channel and inundated secondary channel reaches of the Kansas River 

during flood conditions in 2009 - 2011. Species listed are strongly associated with axis and 

indicated direction.
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Chapter 3 - Flood-induced lateral connectivity alters fish and 

invertebrate assemblages in the Kansas River 

ABSTRACT 

Lateral connectivity between main channel and floodplain habitats is an important driver of 

ecosystem function in many large river systems. Many fishes and invertebrates rely on floodplain 

habitats for life history needs, but our understanding of how the duration and timing of lateral 

connectivity affects fishes and food web dynamics in large rivers is limited. We examined 

changes in fish and invertebrate densities and assemblage structure before, during, and after 

flooding in main channel and adjacent permanently-connected and seasonally-connected 

secondary channels to identify the role of lateral connectivity on fish and invertebrates in the 

Kansas River. Benthic invertebrate densities declined during and after flooding in these reaches. 

During flooding, drifting invertebrate concentrations were higher in main channel than 

seasonally and permanently connected secondary channel reaches but benthic invertebrate 

densities were higher in secondary channels compared to main channel reaches. Drifting 

invertebrate concentrations were almost twice as high (186%) in seasonally connected secondary 

channel reaches (p<0.01) whereas benthic invertebrate densities were higher (170%) in 

seasonally connected secondary channels (p<0.01). Permanently connected secondary channels 

had fish assemblages with higher prevalence of shortnose gar and emerald shiner whereas 

quillback were more prevalent in fish assemblages of seasonally connected secondary channels. 

Our results suggest that flooding affects the densities of drifting and benthic invertebrates both in 

secondary channels and main channels and may provide alternative prey sources for fishes in the 

river. Additionally, secondary channels with permanent and seasonal connectivity maintain 

different fish and invertebrate assemblages in this large river ecosystem, suggesting that the 

degree of connectivity is important in shaping aquatic communities. Maintaining a diversity of 
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secondary channels with varying degrees of lateral connectivity may be useful in preserving 

native biota in these habitats. 

INTRODUCTION 

Lateral connectivity between main channel and secondary channel or floodplain habitats 

is an important component of many large river ecosystems. Many organisms rely on floodplain 

habitats for important life history needs and river floodplains are among the most biologically 

diverse habitats in the world (Tockner and Stanford 2002). The combination of aquatic and 

terrestrial inputs in floodplain habitats provides many ecological benefits to lotic ecosystems and 

many organisms, including fishes (Tockner and Stanford 2002; Winemiller 2005).  

Many fishes are dependent on floodplain habitats for important life history needs. High 

flows may cue movement of fishes into floodplain habitats to spawn (Górski et al. 2011, 

Steffensen et al. 2014), but also these floodplain habitats provide nursery areas as they are often 

more productive than main channel habitats and juvenile fishes reared in these habitats may 

benefit from increased food sources (Winemiller 2005, Jeffres et al. 2008, Górski et al. 2011). 

Floodplain habitats are also important feeding habitats for many adult fishes as they move into 

floodplains to benefit from higher productivity (Bellmore et al. 2013). Energy derived from 

floodplain habitats may also benefit organisms in the main channel that do not move directly into 

floodplain habitats (Junk et al. 1989, Bellmore et al. 2013). The flood pulse concept (FPC) 

suggests that lateral connectivity between main channel and floodplain habitats is the primary 

factor regulating large river productivity (Junk et al. 1989). Specifically, the FPC postulates that 

floods benefit riverine ecosystems by bringing nutrients and allochthonous inputs from 

floodplain to main channel habitats (Junk et al. 1989). In addition, variation in other hydrologic 

variables including flow variability and flood timing can influence fish and invertebrate 
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composition (Lytle and Poff 2004). Examining hydrologic changes to the system can provide us 

with a better estimate of how fish and invertebrates are using and being transferred throughout a 

large river system.  

Floodplain habitats are diverse and connectivity between the main channel and floodplain 

habitats varies both spatially and temporally (Paillex et al. 2007), which may affect species 

composition and the benefits of a particular floodplain habitat to overall ecosystem function. The 

complexity of lateral connectivity results in high habitat heterogeneity among floodplain habitats 

and the benefits of a floodplain habitat may vary depending on its degree of connectivity to the 

main channel or with changes in discharge (Baxter et al. 2005, Winemiller 2005). Fish species 

richness and diversity may be higher in floodplain habitats with more spatial connectivity to 

main channel habitats (Ward et al. 1999, Bolland et al. 2012, Franssen et al. 2015). Connectivity 

between floodplain and main channel habitats can alter food web structure with fish shifting 

from lotic to lentic invertebrates as connectivity decreases (Bellmore et al. 2013). In addition, 

habitat heterogeneity is among the primary factors impacting the abundance and composition of 

invertebrate prey items in lotic ecosystems (Baxter et al. 2005). Differences in seasonal and 

permanent connectivity on input of allochthonous material to the system have yet to be explicitly 

tested, but high flows can promote fish movement between the channels (Lyon et al. 2009; 

Gorski et al. 2014). More connected floodplain habitats are predicted to experience more 

frequent and longer duration flooding than less connected floodplain habitats, which may lead to 

differences in invertebrate and fish composition. For example, zooplankton abundance and 

diversity was higher in backwaters (connected to main channel only on downstream end) than in 

chutes (connected to main channel upstream and downstream) in the lower Missouri River 

(Dzialowski et al. 2013). Many fishes prey on zooplankton during their larval development and 
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as a result, fish growth and recruitment may be higher in backwaters where these prey are more 

abundant than in chutes (Burrow et al. 2011, Nunn et al. 2012, Steffensen et al. 2014). Therefore, 

not all floodplain habitats provide the same benefits to fishes and invertebrates. 

Humans have altered the flow regime of many large river systems resulting in reduced 

lateral connectivity and decreased habitat heterogeneity in floodplain habitats (Tockner and 

Stanford 2002), which has led to declines in biodiversity in these habitats (Vörösmarty et al. 

2010). Furthermore, populations of many native fishes dependent on lateral connectivity and 

floodplain habitats have declined or been otherwise negatively impacted by human activities 

(Bunn and Arthington 2002, Poff and Zimmerman 2010). However, many restoration projects 

have been implemented to restore lateral connectivity and minimize the impact of anthropogenic 

changes on large-river ecosystems (Bernhardt et al. 2005). For example, human development 

throughout the Upper Mississippi River System aimed at controlling flooding and facilitating 

navigation have reduced lateral connectivity and led to declines in fish populations (Sparks 1995; 

Galat and Zweimueller 2001). Restoration efforts to increase lateral connectivity and reduce the 

impacts associated with anthropogenic changes have been developed in some cases (e.g. 

Rasmussen et al. 1999). 

To examine the impact of connectivity on invertebrates and fish communities, we first 

tested the importance of flooding for main channel habitats by examining macroinvertebrate 

communities in main channel habitats before, during, and after flooding. Specifically, we tested 

the hypothesis that macroinvertebrate diversity and densities will increase in main channel 

reaches during flooding as a result of inputs from benthic habitats. Next, to evaluate the 

importance of lateral connectivity we tested two hypotheses focused on the difference between 

secondary and main channels on prey flow and food web dynamics. First we hypothesize that 
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macroinvertebrate diversity and density will be higher in permanently connected secondary 

channel reaches compared to main channel reaches during flooding. Next, we examined fish 

assemblage structure between permanently connected secondary channel and main channel 

reaches. Species richness and diversity is often higher in floodplain habitats, especially those 

with high degrees of connectivity, and inundated habitats often support higher abundances of 

habitat generalists than similar main channel habitats during flooding (Baxter 2005; Bolland et 

al. 2012; Phelps et al. 2015). As such, we hypothesize that fish assemblages will have more 

habitat generalists (fish that utilize lotic and lentic habitats and are able to complete their entire 

life cycle without flowing water) in permanently connected secondary channel researches and 

more fluvial specialists (fish that require lotic habitats for a majority of their life cycle) in main 

channel reaches during flooding (Travnichek et al. 1995, Galat and Zweimüller 2001). 

Since habitats in secondary channels and floodplains are often diverse (Paillex et al. 

2007) and different levels of flow connectivity may alter food webs and energy flow dynamics 

(Bolland et al. 2012, Bellmore et al. 2013) it is unclear how well trends observed in one 

secondary channel can be applied to other channels or floodplain habitats. To gain clarity on 

differences in secondary channel connectivity, we compared the results of the permanently 

connected secondary channel for the first three hypotheses with a seasonally connected 

secondary channel to identify how different flow regimes affect fish and invertebrate assemblies 

in these two types of secondary channels. Our final hypothesis is that permanently connected and 

seasonally inundated secondary channels will support similar fish and macroinvertebrate 

assemblages during flooding. 

METHODS 

Study Site 
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The Kansas River is a 7th order sandbed river found in the Flint Hills Region of Northeast 

Kansas and is characterized by wide shallow channels with an abundance of sandbar habitats. 

The main stem of the Kansas River is relatively unimpacted with the exception of one lowhead 

dam and one water diversion weir both located >127 km downstream of our study sites. 

However, 18 large reservoirs (>650ha), are present in the Kansas River Watershed (Eitzmann 

and Paukert 2010) but most of the reservoirs are located >105 km downstream of our study sites. 

The flow regime of the Kansas River is primarily controlled by reservoir releases from 

tributaries. Our study sites were located in forest and agricultural riparian land use and wider, 

shallower, and more braided channels than downstream reaches (Eitzmann and Paukert 2010).  

Samples were collected from three reaches (1.7 – 2.1 km long) of the Kansas River near 

St. George, Kansas (39°9’33”N, 96°20’34”W; Figure 3.1) and an adjacent permanently 

connected secondary channel in a primarily unregulated portion of the Kansas River (Eitzmann 

and Paukert 2010). Macroinvertebrate and fish samples were collected in two main channel 

reaches and a permanently connected secondary channel reach before (April), during (June-July), 

and after (September) flooding in 2010. Each study reach was divided into four equidistant 

transects and samples were collected at the left, middle, and right of each transect for a total of 

twelve samples from each study reach during each sampling period (i.e. flood stage).  

Samples were collected from a seasonally connected secondary channel near Manhattan, 

KS (39°11’24”N, 96°30’53”W), 22.6 river km upstream from the sites mention above before 

(May), during (June), and after flooding (August) in 2010 to address our final hypothesis of 

differences between permanent and seasonally inundated secondary channels (i.e. varying 

degrees of connectivity). Discharge for main channel and secondary channel habitats were 

collected during flooding (June) using an acoustic doppler current profiler. 
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Main channel macroinvertebrate diversity and density during flooding 

Drifting invertebrates were collected at each site using a paired-bongo net with a 50 cm 

diameter opening and 202 µm mesh deployed just below the water surface for 150 seconds from 

the bow of the boat. A mechanical flow meter attached to the opening of the net was used to 

measure water velocity and quantify the volume of water sampled. The paired-bongo net was 

attached to the bow of the boat with a 10 m tow rope and reverse thrust from the outboard motor 

was used to hold the net in place during sampling. Benthic invertebrates were collected at each 

site using a mini-ponar dredge (15.24 cm × 15.24 cm opening), elutriated in the field using a 250 

µm sieve to remove inorganic material (i.e. sand), and the contents of the sieve and the collection 

pan were washed into a collection bottle and retained for identification and enumeration in the 

laboratory.  

All drifting and benthic invertebrate samples were preserved in 10% neutral buffered 

formalin stained with Rose Bengal, and returned to the laboratory for identification. Preserved 

samples were examined under 10x magnification and identified to order or family (when 

possible) and enumerated. A Folsom Plankton Splitter was used to split prohibitively large 

samples as necessary. For split samples, one half of the sample was randomly selected for sorting 

and all abundance values were subsequently doubled to obtain estimated abundance values of the 

entire sample and facilitate comparisons among samples. 

Data Analysis 

Invertebrate abundances were standardized by calculating catch per unit volume 

(invertebrates m-3) for drifting invertebrates and catch per unit area (invertebrates m-2) for 

benthic invertebrates. All continuous variables were log10 (x + 1) transformed prior to analyses to 
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better meet assumptions of normality. Drifting and benthic invertebrate samples were analyzed 

separately because different catch per unit effort (i.e. density) values were calculated for each. 

We used an information theoretic approach to identify hypotheses affecting macroinvertebrate 

densities in main channel reaches before, during, and after flooding. Three candidate models 

were developed to examine the importance of habitat type (permanently connected secondary 

channel, upstream channel, and downstream main channel) and flooding condition (before, 

during, after flooding) on macroinvertebrate density (Table 3.1). An intercept model was also 

examined to provide a baseline for interpreting model performance. Akaike’s Information 

Criterion corrected for small sample size (AICc) was used to identify best fit models (Burnham 

and Anderson 2002). We considered models with ΔAICc <2 to be competing models and Akaike 

weights (wi) were used to calculate relative support for each competing model. In such cases we 

used model averaging on predictor variables of competing models to minimize the impact of one 

model and provide a more conservative representation of the importance of each predictor 

variable (Burnham and Anderson 2002) 

We also examined differences in invertebrate assemblages among reaches and flood 

stages using non-metric multidimensional scaling (NMDS). Pair-wise differences among groups 

were identified with analysis of variance using distance matrices (ADONIS). The similarity 

percentage (SIMPER) function was used to identify the relative importance of each invertebrate 

taxa to the overall dissimilarity among groups. All statistical analyses were conducted in R 

version 2.13.1 (The R Foundation for Statistical Computing 2011).  

 

Macroinvertebrate diversity and density in main channel and permanently connected 

secondary channel habitats during flooding 
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Drifting and benthic invertebrates were collected from upstream and downstream main 

channel reaches and a permanently connected secondary channel reach during flood conditions 

in 2010 using the collection methods of our first hypothesis. Invertebrate densities were 

compared among reaches using analysis of variance (ANOVA) with an alpha level of 0.05. Pair-

wise differences were identified using Tukey HSD tests if ANOVA results were significant. 

Similarities in macroinvertebrate assemblages among reaches were examined using 

analysis of similarity (ANOSIM) and non-metric multidimensional scaling (NMDS) was used to 

visually examine assemblage structure among reaches during flooding. Significant differences 

among all groups were identified for NMDS plots with analysis of variance using distance 

matrices (ADONIS). We identified the relative contribution of each species to overall 

dissimilarity among groups by calculating similarity percentage (SIMPER) for each NMDS plot.  

 

Fish assemblages in main and permanently connected secondary channels during flooding 

Fish were collected from upstream and downstream main channel reaches and a 

permanently connected secondary channel reach using a combination of boat electrofishing, 

experimental gill nets, and shoreline seines. Samples were collected from main channel reaches 

before, during, and after flooding but only during flooding in the permanently connected 

secondary channel reach. Large bodied fishes were primarily captured using DC-pulsed boat 

electrofishing using protocols by Guy et al. (2009) and Miranda et al. (2009). One bank was 

randomly selected at each transect and sampled for 300 seconds resulting in a total of four 

electrofishing samples in each reach during each sampling period (i.e. before, during, after 

flooding). Upon capture, fishes were identified, measured (mm), and released. 
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Monofilament experimental gill nets were set overnight at a randomly selected location 

(left bank, middle, or right bank) along each transect for a total of four nets in each reach. Nets 

were set using standardized protocols established by Lester et al. (2009) and Curry et al. (2009). 

Experimental gill nets were 1.8m tall and 30.5m long with four 7.6m panels of mesh sizes of 1.9, 

3.8, 5.1, and 7.6cm. During all sampling periods, nets were set parallel with the flow to minimize 

drag during high flow conditions. Captured fishes were identified, measured (mm), and released. 

Small bodied fishes were collected from each reach using 6.0m long by 1.2m deep straight seines 

with 0.64cm mesh using standardized methods established by Curry et al. (2009). Three to five 

seine hauls were conducted at each transect per reach. Habitats suitable for seining were sparse 

during high flow conditions so seining locations were selected opportunistically in each reach. 

Habitats suitable for seining were randomly selected during periods of low flow or when more 

than one habitat was identified at a transect during high flow. Large fishes (e.g. > 200mm) were 

identified in the field, measured (mm), and released. All other fishes were euthanized in a 

250mg/L buffered solution of tricane methane sulfonate (MS-222), preserved in 10% formalin, 

and returned to the laboratory to be measured (mm) and identified. 

Data Analysis 

Catch rates for fishes were highly variable during flooding primarily as a result of gear 

inefficiency. Therefore, fish abundance data were converted to presence or absence which still 

provides a conservative approach when quantitative data are biased (Kwak and Peterson 2007). 

We used NMDS of a Jaccard distance matrix to test the hypothesis that fish assemblages (using 

species presence/absence) were consistent among all reaches during flooding. Differences in fish 

assemblages between sites were identified using ADONIS. The contribution of each species to 
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overall dissimilarity among groups was calculated using SIMPER values. All statistical analyses 

were conducted using R version 2.13.1 (The R Foundation for Statistical Computing 2011).  

 

Permanently connected and seasonally inundated secondary channel invertebrate and fish 

assemblages during flooding 

In addition to fish and invertebrates collected in the permanently connected secondary 

channel, samples were collected from a seasonally connected secondary channel located ~24 km 

upstream near Manhattan, KS before, during, and after flooding in 2010. Fish and invertebrate 

samples were collected using the same methodology described previously for the permanently 

connected secondary channel (see second and third hypotheses this chapter and chapter 2). All 

fish samples were converted to presence/absence and invertebrate samples were converted to 

density using the same methods as in previous hypotheses. Drifting and benthic invertebrate 

densities were compared separately between secondary channel types (i.e. permanent or 

seasonally connected) using student t-tests.  

Fish assemblage structure (using presence/absence data) was compared among secondary 

channel types using NMDS of a Jaccard distance matrix. Stress values were used to indicate how 

much variation was explained by the NMDS plot. We identified variation in fish assemblages 

among sites with an ADONIS using 1000 permutations. Individual species contribution to 

overall dissimilarity among groups for each axis was identified using SIMPER.  

RESULTS 

Main channel macroinvertebrate diversity and density during flooding 

Drifting Invertebrates 
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A total of 72 drifting invertebrate samples were collected from upstream and downstream 

main channel reaches before, during, and after flooding in 2010 which included a total of 2,893 

drifting invertebrates from 15 orders and at least 21 families captured at least once in main 

channel reaches (Table 3.2). Invertebrates from 10 taxa accounted for greater than 5% of the 

total catch and were retained for further analyses (boldface text Table 3.2). For all sampling 

periods combined, Ephemeroptera were the most abundant taxa in main channel drift before and 

after flooding and densities were 3 – 4 times higher before and after flooding compared to 

densities during flooding when Chaoboridae and Diptera both had higher densities.  

Two competing models had support as best fit models explaining drifting invertebrate 

concentrations in main channel reaches before, during, and after flooding (Table 3.1). The top 

model indicated that flood stage had the greatest effect on drifting invertebrate density in main 

channel reaches. Drifting invertebrate concentrations in both main channel reaches was higher 

during flood conditions compared to before and after flooding (Figure 3.2). However, the 

competing model had both flood stage and reach, and upstream densities were lower than 

downstream reaches during post-flood conditions (Figure 3.2). Thus, support for the competing 

model is likely a result of post-flood conditions when drifting invertebrate concentration is 

higher in the downstream main channel reach (Figure 3.2). Furthermore, drifting invertebrate 

assemblages were similar between upstream and downstream main channel reaches before and 

during flooding but differed after flooding (ADONIS p=0.041, Figure 3.3) likely driven by 

higher densities of Chironomidae in upstream reaches and higher densities of Ephemeroptera and 

Oligochaeta in downstream reaches (Table 3.2). 

Benthic Invertebrates 
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Seventy-two total benthic invertebrate samples were collected from main channel reaches 

before, during, and after flooding in 2010 with a total of 466 invertebrates collected representing 

11 orders and 15 families (Table 3.3). Among all invertebrates, seven taxa accounted for at least 

5% of the total catch and were retained for further analyses (boldface text Table 3.3).  

Flood stage and reach both influenced benthic invertebrate densities in main channel 

reaches before, during, and after flooding. The best supported model suggested that flood stage 

was the best predictor of benthic invertebrate density in main channel reaches (weight=0.8) but a 

competing model with flood stage and reach also had limited support (weight=0.2) indicating 

that patterns in benthic invertebrate density may vary during different flow conditions (Table 

3.1). Benthic invertebrate densities were about twice as high in main channel reaches before 

flooding compared to densities during and after flooding (Figure 3.2). However, densities were 

similar between upstream and downstream reaches before and during flooding but higher in the 

downstream main channel reach after flooding (Figure 3.2) which is most likely driving the 

competing model of flood stage and reach.  

Benthic invertebrate assemblage structure was generally similar between upstream and 

downstream main channel reaches during all sampling periods, with post-flood upstream and 

downstream reaches being marginally significantly different (Figure 3.3; ADONIS p=0.062). 

However, Ephemeroptera densities were higher in the downstream reach during and after 

flooding compared to upstream reaches (Table 3.3). With the exception of Hymenoptera, 

densities of all dominant benthic invertebrate taxa decreased during flooding compared to 

densities observed before flooding. Additionally, densities for most taxa increased after flooding 

although only Odonata densities were higher after flooding compared to pre-flood conditions. 
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Macroinvertebrate diversity and density in main channel and permanently connected 

secondary channel habitats during flooding 

Drifting Invertebrates  

We collected 36 drifting invertebrate samples among upstream and downstream main 

channel and secondary channel reaches during flooding in 2010. Among all samples, 1,299 

drifting invertebrates representing 10 orders and 12 families were collected. Six taxa represented 

at least 5% of the total catch and were retained for further analyses (boldface text Table 3.4).  

During flooding, drifting invertebrate densities were on average 33% – 47% higher in 

upstream and downstream main channel reaches compared to the permanent secondary channel 

(p<0.01; Figure 3.4). In addition to supporting different concentrations of drifting invertebrates, 

NMDS for drifting invertebrate assemblage structure (Figure 3.5), mainly differentiated between 

the upstream and downstream main channels and the secondary channel. Variation along the first 

axis was most positively associated taxa found in secondary channel habitats (Chaoboride and 

Corixidae) and most negatively associated with main channel taxa (Chironomidae, Trichoptera). 

The second axis primarily differentiated sites by year and was positively associated with 

Ephemeroptera and Coleoptera and negatively associated with Ceratopogonidae. Drifting 

invertebrate assemblages varied among habitats the permanently connected secondary channel, 

upstream, and downstream main channel reaches (ADONIS, p<0.01).  

The six most abundant taxa in the upstream and downstream main channel accounted for 

95.9% of the total catch and were identical for both the upstream and downstream main channel 

reaches but showed differences in the permanently connected secondary channel (Table 3.4). 

Mean densities of the two most abundant taxa in main channel reaches, Chaoboridae and 

Diptera, were about 7 to 10 times higher in main channel reaches compared to the permanently 



 

66 
 

connected secondary channel. Conversely, the mean density of Corixidae, the most abundant 

taxa in the permanently connected secondary channel, was about 9 times higher in the secondary 

channel than in the main channel reaches. 

Benthic Invertebrates 

A total of 36 benthic invertebrate samples were collected among upstream and 

downstream main channel reaches and the permanently connected secondary channel reach in 

2010. A total of 216 benthic invertebrates were collected representing 10 orders and at least 12 

families. However, only 5 taxa represented at least 5% of the total catch and were retained for 

further analysis (boldface text Table 3.5).  

During flooding, mean benthic invertebrate densities in the permanently connected 

secondary channel were more than double the densities in upstream and downstream main 

channel reaches (P=0.016; Figure 3.4), driven by Chironomidae and Oligochaeta densities that 

were 3 to 5 times higher in the permanently connected secondary channel compared to main 

channel reaches (Table 3.5). NMDS for benthic invertebrate assemblage structure primarily 

differentiated between main channel and secondary channel habitats (Figure 3.5). Variation 

along the first axis was most positively associated with secondary channel species 

(Chironomidae and Oligochaeta) and most negatively associated with dipterans. The second axis 

was primarily differentiated among secondary channel sites and was most positively associated 

with Ephemeroptera and negatively associated with hymenoptera. However, assemblage 

structure did not vary among reaches (ADONIS, P=0.19).   

 

Fish assemblages in main and permanently connected secondary channels during flooding 
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We collected a total of 1427 individual fishes from all sites during flooding including 

1076 from seines, 67 from overnight gill nets, and 284 from electrofishing. These fish 

represented 23 species from 11 families. Cyprinidae was the most abundant family and sand 

shiner (Notropis stramineus) was the most abundant species among all reaches and was found at 

every site (Table 3.6). Among all samples, 12 species represented at least 5% of the total catch 

and were retained for further analyses (boldface text Table 3.6). Because sampling was 

consistent with each gear at each sampling site, collection data were pooled among all gears for 

each site and analyzed together.   

The NMDS analysis indicated fish assemblages (using presence/absence) primarily 

separated the upstream and downstream main channel reaches from the permanently connected 

secondary channel reach (Figure 3.6). Fish assemblages were similar in both main channel 

reaches (ADONIS, p=0.48) where suckermouth minnow (Phenacobius mirabilis) and shovelnose 

sturgeon (Scaphirhynchus platorynchus) were present at a majority of main channel sites but 

were not as prevalent in the permanently connected secondary channel. Sand shiner was the only 

species captured in all samples and emerald shiner (Notropis atherinoides) and red shiner 

(Cyprinella lutrensis) were present in all main channel samples. Gizzard shad and red shiner 

were also found at all sites except one (11/12) in the permanently connected secondary channel. 

Among all species, blue sucker (Cycleptes elongates), fathead minnow (Pimephales promelas), 

goldeye (Hiodon alosoides), and shovelnose sturgeon (Scaphirhynchus platorhychus) were found 

exclusively in main channel reaches and bluegill (Lepomis macrochirus), white bass (Morone 

chrysops), and white crappie (Pomoxis annularis) were found exclusively in the permanently 

connected secondary channel (Table 3.6). 
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Permanently connected and seasonally inundated secondary channel invertebrate and fish 

assemblages during flooding 

We collected a total of 1052 drifting invertebrates during flooding in 2010 including 368 

from the permanently connected secondary channel and 684 from the seasonally connected 

secondary channel reach. Mean drifting invertebrate densities were about twice as high in the 

seasonally connected secondary channel (𝑥̄=57.0 per m3) compared to the permanently 

connected secondary channel (𝑥̄=30.7 per m3, t-test, p<0.01). A total of 309 benthic invertebrates 

were collected during flooding in 2010 including 212 from the permanently connected secondary 

channel and 97 from the seasonally inundated secondary channel. Mean benthic invertebrate 

densities in the permanently connected secondary channel (𝑥̄=17.7 per m2) were more than 

double those observed in the seasonally connected secondary channel (𝑥̄=8.1 per m2, t-test, 

p<0.01). 

We collected a total of 2,620 fish during flooding in 2010 including 1,427 fish from the 

permanently connected secondary channel and its adjacent main channel and 1,193 collected 

from the seasonally connected secondary channel and its adjacent main channel. From all 

samples, 24 species representing 11 families were collected at least once but 11 species 

accounted for at least 5% of the total catch and were retained for further analyses (Table 3.6).  

Fish assemblages (using presence/absence) in main channel reaches (St. George versus 

Manhattan) were similar before (ADONIS, p=0.42) and during (ADONIS, p=0.22) flooding 

suggesting that, although these sites were ~24 river km apart the fish assemblages in these 

reaches were similar (Figure 3.7). In contrast, shortnose gar and emerald shiner were more 

common in the permanently connected secondary channel but generally absent from the 
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seasonally connected secondary channel and quillback (Carpiodes cyprinus) was more common 

in seasonally connected secondary channels (p<0.01).  

DISCUSSION 

Flooding can affect fish and invertebrate communities both directly and indirectly (e.g. 

mortality, voluntary and involuntary movement, prey availability, refugia). Our results suggest 

that flooding may lead to differences among fish and invertebrate assemblages and that the 

duration of lateral connectivity (seasonal versus permanent) may be an important factor in 

determining the function of secondary channels. Flooding increased the concentration of drifting 

invertebrates in main channel reaches providing support for a pulse of prey in the main channel 

reaches as described by the Flood Pulse Concept (Junk et al. 1989). Our results support the river-

wave hypotheses and suggest that the pulse observed during flooding is a combination of inputs 

from floodplain habitats and upstream reaches. Upstream inputs are likely the result of 

involuntary or catastrophic drift because all samples were collected during daylight hours when 

most drift is accidental or involuntary (Waters 1965; Callisto and Goulart 2005, Gibbins et al. 

2007). Drifting invertebrate concentrations did not differ between upstream and downstream 

main channel reaches during flooding which may suggest the absence of changes in input of 

drifting invertebrates from the permanently connected secondary channel during a high flow 

event. Concentrations downstream would be expected to equal upstream concentrations plus 

input from the permanently connected secondary channel reach and would be higher than 

upstream main channel densities if floodplain habitats were the primary source of an energy 

pulse as proposed by the Flood Pulse Concept. These results may indicate that floodplain 

habitats are not primarily responsible for higher densities of drifting invertebrates during 

flooding. Our findings may also be an artifact of flood control measures in our system and that 
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our definition of flooding included high flows that inundated sub-bankful habitats but did not 

exceed bankful width and inundate true floodplain habitats.  

Secondary channel flows are dynamic and influenced by channel morphology and main 

channel discharge (Le Coz et al. 2010). During peak discharges observed in this study in July 

2011 (𝑄̅=989m3/s), 3.7% of the main channel flow was diverted into the permanently connected 

secondary channel. However, during more typical flood discharges (𝑄̅=221-424m3/s) observed in 

2009 and 2010, only 0.6 – 1.3% of main channel discharge was diverted into the permanently 

connected secondary channel. With flows from the permanently connected secondary channel 

representing a relatively small amount of overall main channel discharge, the increase in drifting 

invertebrate density is likely the result of collective input from terrestrial habitats, including 

floodplain habitats and main channel riparian habitats inundated below bankfull flows (Tockner 

et al. 2000, Thorpe et al. 2006). Alternatively, it is possible that we did not detect a sizable input 

from the secondary channel we sampled because it is permanently connected and therefore not 

found in a classic floodplain habitat which may have higher productivity (Tockner and Stanford 

2002). However, our results indicate that the collective inundation of multiple terrestrial habitats 

(i.e. the secondary channel plus riparian vegetation) may still benefit fishes by increasing 

macroinvertebrate densities in main channel habitats. These findings are consistent with other 

studies that suggest that the collective inundation of riparian habitats in both main channel and 

secondary habitats, and not just the inundation of floodplain habitats, is important for the transfer 

of prey from terrestrial to aquatic habitats (e.g. Puckridge et al. 1998, Tockner et al. 2000, 

Thorpe et al. 2006). Tockner et al. (2000) explained such events as “flow pulses” and highlighted 

the importance of such events in creating a diversity of habitats and regulating functional 

processes in large river systems. The inundation of terrestrial sub-bankful habitats along the bank 
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could provide important sources of energy and inundation of these habitats, along with 

floodplain habitats, should be considered when determining the importance of floods as prey 

sources for fishes and other large river organisms.  

Benthic invertebrate densities were highest in main channel reaches before flooding and 

declined during and after flooding suggesting flooding may disrupt benthic assemblages and 

affect the recovery of benthic invertebrate assemblages in main channel reaches. These decreases 

are likely the result of “catastrophic drift” where benthic organisms are involuntarily entered into 

the drift as a result of high benthic shear stress during high flows (Callisto and Goulart 2005, 

Gibbins et al. 2007). Organisms in sand-bed rivers are especially susceptible to catastrophic drift 

compared to organisms in systems with larger gravel or cobble substrate because relatively small 

increases in velocity can disrupt sand benthos compared to other benthic substrates (Allan 2007, 

Gibbins et al. 2007, 2010). Substrate composition may also explain the higher densities of 

benthic invertebrates we observed during flooding in secondary channel compared to main 

channel reaches. Most of the benthic substrate in the secondary channel was predominantly 

muddy instead of the sandy substrate found in the main channel. Additionally, flow rates tended 

to be lower in secondary channel habitats (𝑄̅=9.3m3/s) compared to main channel reaches 

(𝑄̅=545m3/s). High flows in the main channel likely resulted in entrainment of many benthic 

invertebrate during flooding leading to the decrease in benthic invertebrate density in main 

channel habitats during and after flooding. Bowen et al. (2003) found that varying flows may 

alter habitats and nutrient cycling in floodplain habitats so the combination of muddy substrates 

and lower flows (and resulting reduction in entrainment compared to main channel) in the 

secondary channel reach of this study may explain higher densities of benthic organisms found in 

secondary channel habitats compared to those observed in the main channel. 
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More fluvial dependent fish species were captured in the permanently connected 

secondary channel than the seasonally inundated secondary channel. These findings are similar 

to other studies which found that ecological benefits of floodplain habitats vary with abiotic 

variables (e.g. water temperature, Tockner et al. 2000) and that some fish (e.g. habitat 

generalists) rely on floodplain habitats whereas others (i.e. fluvial specialists) thrive in main 

channel habitats (e.g. Dettmers et al. 2001, Galat and Zweimuller 2001). Many fishes use 

floodplain habitats for many life history needs including refugia, reproduction, and feeding 

(Scheimer 2000, Galat and Zweimuller 2001, Burgess et al. 2012). We found that habitat 

generalist species common carp and red shiner were prevalent in all reaches indicating that these 

species can persist in a variety of habitats. Fluvial dependents, such as quillback, were more 

prevalent in seasonally connected secondary channels compared to permanently connected 

secondary channels. Our results provide evidence that secondary channel habitats with varying 

degrees of connectivity may be beneficial in supporting fish assemblages. Whereas fish may 

move into inundated habitats for different reasons (e.g. increased prey, spawning habitat, random 

movement) and these habitats can be beneficial, movement into these habitats does not come 

without risk as fish may become stranded when flows recede (Humphries et al. 1999, Bolland et 

al. 2015). Bellmore et al. (2013) also found differences in food web structure and fish 

assemblages among secondary channels with varying degrees of lateral connectivity. 

Specifically, they found that larger predators such as chinook salmon (Oncorhynchus 

tshawytscha) and steelhead (Oncorhynchus mykiss) used a wide variety of habitats whereas 

important prey fish such as sculpin and whitefish were common in main channel and connected 

secondary channels but generally absent from reaches that were not connected to the main 

channel (Bellmore et al. 2013).  
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Seasonally connected secondary channels had higher densities of drifting invertebrates 

whereas permanently connected secondary channels had higher densities of benthic invertebrates 

during flooding in our study. Fish species, such as red shiner, that feed primarily on drifting 

invertebrates may benefit more from moving into these seasonally connected secondary 

channels. However, most fishes that primarily feed on drifting invertebrates in the Kansas River 

predominantly feed on aquatic invertebrates and seldom feed on terrestrial invertebrates 

(Eitzmann 2008). Permanently connected secondary channels may be more beneficial to fishes 

feeding predominantly on benthic invertebrates, such as smallmouth buffalo, and during high 

flows, movement into these laterally connected habitats may benefit these species of fish with 

greater access to prey. Our results suggest that it may be important to maintain a secondary 

channels with varying degrees of lateral connectivity and show that benefits to fish and 

invertebrates may diverge in relation to the degree of connectivity between the main channel and 

secondary channel habitat. 

Because upstream and downstream reaches were relatively equal in the amount of 

drifting and benthic invertebrates, the main tenet of the Flood Pulse Concept that floods are the 

primary source for energy in large river systems does not follow in this large river system. The 

Flood Pulse Concept was originally designed for unaltered large-rivers (Junk et al. 1989), but 

almost all large rivers have been altered to some degree to meet human needs which has affected 

the ecology of secondary channels and floodplains and the organisms that rely on these habitats 

(Bunn and Arthington 2002, Poff and Zimmerman 2010, Carlisle et al. 2011).  

Our results may help improve the success of restoration efforts for fishes in large river 

systems by identifying the importance of secondary channel and floodplain habitats for fishes 

and invertebrates. Restoration efforts to mitigate the effects of human actions on aquatic 
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ecosystems are widespread and an estimated average of at least $1 billion is spent on river and 

stream restoration in the United States each year (Bernhardt et al. 2005). We found that the 

degree of lateral connectivity (i.e. permanently or seasonally connected) changes how fish use 

these habitats. For example, flooding resulted in an increase in drifting invertebrate density but 

subsequently decreased the density of benthic invertebrates in main channel reaches. These 

patterns were switched in secondary channel reach where benthic invertebrate densities were 

higher than drifting invertebrate densities. Because invertebrates are an important food source for 

many fishes, these patterns and the flooding responsible for them, may be important in predicting 

the importance of secondary channel habitats for fishes. Food web dynamics are important in 

shaping fish communities and increasing our understanding of food web dynamics may increase 

our ability to protect native fishes (Winemiller 2005).   

Although we did not directly quantify feeding or food web structure in this study, we 

provide evidence that flooding and lateral connectivity are important factors influencing 

invertebrate densities (i.e. fish prey). Although some fish taxa were commonly found in all 

habitats (e.g. common carp, emerald shiner, sand shiner), assemblages differed depending on the 

degree of lateral connectivity with shortnose gar and emerald shiner indicative of permanently 

connected secondary channels and quillback indicative of seasonally connected secondary 

channels. Our results suggest that flooding and inundation of terrestrial habitats during flooding 

is important for many large river systems and may help guide restoration efforts by identifying 

the importance of flooding and floodplain inundation. Specifically, the degree of lateral 

connectivity can influences fish assemblages and invertebrate densities and these differences 

may help guide conservation efforts for native fishes. However, the importance of different 

secondary channels may be scale dependent or may benefit non-native fishes more than natives 
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(Franssen et al. 2015) and restoration efforts should consider other factors (e.g. distribution of 

other secondary channels) when determining the importance of lateral connectivity. Restoration 

and conservation efforts focused on ecological benefits of lateral connectivity should consider 

the degree of connectivity between the secondary channel and main channel habitats to ensure 

that target taxa will benefit from such efforts. Future efforts to examine fish assemblages at 

numerous secondary channels with varying amounts of connectivity within and among large 

rivers may further elucidate which fish taxa use inundated secondary channel habitats. Such 

efforts would help increase our understanding of how connectivity influences fish and 

invertebrate communities and may help increase our understanding of the importance of lateral 

connectivity and the importance of flooding as part of the flow regime for large-river systems. 
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Table 3.1. AIC results for candidate models examining trends in benthic and drifting invertebrate 

densities in upstream and downstream main channel reaches of the Kansas River before, during, 

and after flooding in 2010. 

 

  Benthic   Drift 

Model Parameters AICc ΔAICc wi   AICc ΔAICc wi 

Stage 312.1 0 0.8  618.0 0 0.6 

Reach; Stage 314.0 1.9 0.2  619.1 1.1 0.4 

Reach 323.6 11.5 0   625.1 7.1 0 

Intercept 326.8 14.7 0  643.9 25.9 0 
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Table 3.2. Mean ± standard error (SE) of density of drifting invertebrates per 100 cubic meters in main channel reaches of the Kansas 

River upstream and downstream of a permanently connected secondary channel before, during, and after flooding in 2010. Bold 

values indicate taxa that accounted for at least 5% of the total catch and were retained for analyses. 

  Before Flooding   During Flooding   After Flooding 

Taxa Downstream Upstream  Downstream Upstream  Downstream Upstream 

Amphipoda 6.1 ± 4.1 2.8 ± 2.8  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Arachnid 6.3 ± 4.2 2.9 ± 2.9  10.0 ± 7.0 6.5 ± 4.4  0 ± 0 0 ± 0 

Ceratopogonid 73.9 ± 41.5 37.1 ± 15.3  3.6 ± 3.6 6.9 ± 4.7  54.0 ± 18.1 21.5 ± 9.8 

Chaoboridae 12.9 ± 7.2 5.7 ± 3.8  57.1 ± 39.4 32.8 ± 22.2  46.1 ± 13.2 36.5 ± 19.8 

Chironomidae 223.3 ± 48.6 200.7 ± 40.9  148.9 ± 26.3 144.3 ± 37.8  182.1 ± 26.5 170.1 ± 30.3 

Coleoptera 15.5 ± 8.5 15.8 ± 10.1  14.7 ± 6.3 7.0 ± 4.8  8.7 ± 4.6 17.9 ± 7.1 

Corixidae 24.5 ± 6.9 20.5 ± 7.9  682.8 ± 69.4 678.0 ± 94.6  38.5 ± 13.4 8.0 ± 4.2 

Diptera 36.7 ± 14.8 48.3 ± 17.3  281.7 ± 50.9 287.2 ± 48.6  48.4 ± 11.7 19.6 ± 9.0 

Ephemeroptera 1160.4 ± 214 1231.7 ± 211.8  210.8 ± 33.7 224.2 ± 85.6  795 ± 101.8 471.9 ± 92.2 

Gastropoda 0 ± 0 3.0 ± 3.0  10.9 ± 7.8 3.7 ± 3.7  3.2 ± 3.2 8.7 ± 4.6 

Geriidae 9.2 ± 4.8 0 ± 0  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Hirudinae 0 ± 0 3.2 ± 3.2  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Hymenoptera 9.5 ± 5.0 18.5 ± 10.9  18.1 ± 6.5 17.3 ± 6.2  15.7 ± 5.6 2.8 ± 2.8 

Lepidoptera 5.8 ± 3.9 0 ± 0  7.2 ± 4.9 3.3 ± 3.3  3.0 ± 3.0 0 ± 0 

Megaloptera 0 ± 0 5.8 ± 3.9  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Naucoridae 0 ± 0 2.9 ± 2.9  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Odonata 19.3 ± 9.0 11.8 ± 6.7  3.1 ± 3.1 0 ± 0  0 ± 0 0 ± 0 

Oligochaeta 27.4 ± 13.0 17.5 ± 6.9  13.9 ± 5.9 19.3 ± 7.2  46.2 ± 15.4 6.2 ± 4.2 

Plecoptera 15.3 ± 5.5 6.0 ± 4.0  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Trichoptera 233 ± 47.2 130.5 ± 29.5  90 ± 22.2 125.6 ± 42.0  212.6 ± 34.8 145.3 ± 34.3 

Veliidae 36.1 ± 10.3 17.1 ± 6.7  3.4 ± 3.4 6.5 ± 4.4  54.6 ± 13.9 32.8 ± 11.3 

Total 1902.9 ± 295.9 1776.1 ± 242.8  1445.7 ± 122.4 1476.9 ± 89  1508.3 ± 134.2 941.2 ± 108.6 
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Table 3.3. Mean ± SE density of benthic invertebrates per square meter in main channel reaches of the Kansas River upstream and 

downstream of a permanently connected secondary channel before, during, and after flooding in 2010. Bold values indicate taxa that 

accounted for at least 5% of the total catch and were retained for analyses. 

  Before Flooding   During Flooding   After Flooding 

Taxa Downstream Upstream   Downstream Upstream   Downstream Upstream 

Arachnidae 3.6 ± 3.6 0 ± 0  7.2 ± 4.8 7.2 ± 4.8  0 ± 0 0 ± 0 

Ceratopogonidae 14.4 ± 8.1 14.4 ± 8.1  0 ± 0 0 ± 0  14.4 ± 8.1 7.2 ± 4.8 

Chaoboridae 0 ± 0 3.6 ± 3.6  0 ± 0 3.6 ± 3.6  0 ± 0 3.6 ± 3.6 

Chironomidae 118.4 ± 34.6 89.3 ± 12.4  50.3 ± 19 50.3 ± 10.4  78.2 ± 15.2 56.8 ± 11.3 

Coleoptera 0 ± 0 0 ± 0  0 ± 0 3.6 ± 3.6  0 ± 0 0 ± 0 

Decapoda 3.6 ± 3.6 0 ± 0  0 ± 0 0 ± 0  3.6 ± 3.6 0 ± 0 

Diptera 36.1 ± 18.6 48.8 ± 15.6  25.1 ± 6.4 18 ± 9.9  30.7 ± 11.6 20.6 ± 11.8 

Ephemeroptera 81.6 ± 41.8 98.2 ± 31.3  39.5 ± 12.4 7.2 ± 4.8  62.3 ± 24.1 19.9 ± 8.3 

Gastropoda 0 ± 0 7.2 ± 7.2  0 ± 0 3.6 ± 3.6  0 ± 0 0 ± 0 

Hirudinae 3.6 ± 3.6 0 ± 0  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Hymenoptera 7.2 ± 4.8 3.6 ± 3.6  14.4 ± 8.1 21.6 ± 9.9  7.2 ± 4.8 0 ± 0 

Odonata 0 ± 0 3.6 ± 3.6  0 ± 0 14.4 ± 6.1  7.2 ± 4.8 7.2 ± 4.8 

Oligochaeta 151.6 ± 82.1 182.5 ± 78.7  39.5 ± 35.8 35.9 ± 13.9  93.6 ± 46.2 88.4 ± 37.1 

Tricoptera 3.6 ± 3.6 0 ± 0  7.2 ± 4.8 0 ± 0  3.6 ± 3.6 0 ± 0 

Veliidae 0 ± 0 3.6 ± 3.6  0 ± 0 0 ± 0  0 ± 0 0 ± 0 

Total 423.7 ± 103.2 454.8 ± 91.2   183.2 ± 47.5 165.2 ± 23.0   293.3 ± 56.6 197.1 ± 48.1 
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Table 3.4. Mean ± standard error (SE) of concentrations of drifting invertebrates per 100 cubic 

meters in upstream and downstream main channel and permanently connected secondary channel 

reaches of the Kansas River during flooding in summer of 2010. Bold values indicate taxa that 

accounted for at least 5% of the total catch and were retained for analyses. 

 

Taxa Secondary Channel Downstream Upstream Total 

Ceratopogonid 0.0 ± 0.0 3.6 ± 3.6 6.9 ± 4.7 3.5 ± 3.4 

Chaoboridae 48.2 ± 18.0 682.8 ± 69.4 678 ± 94.6 469.7 ± 109.7 

Chironomidae 172.4 ± 40.9 148.9 ± 26.3 144.3 ± 37.8 155.2 ± 34.7 

Coleoptera 9.1 ± 6.5 14.7 ± 6.3 7.0 ± 4.8 10.3 ± 5.8 

Corixidae 279.6 ± 69 57.1 ± 39.4 32.8 ± 22.2 123.2 ± 56.5 

Diptera 29.9 ± 10.8 281.7 ± 50.9 287.2 ± 48.6 199.6 ± 53.2 

Ephemeroptera 108.1 ± 34.6 210.8 ± 33.7 224.2 ± 85.6 181.0 ± 57.2 

Gastropoda 53.5 ± 24.5 10.9 ± 7.8 3.7 ± 3.7 22.7 ± 15.9 

Hymenoptera 9.0 ± 4.7 18.1 ± 6.5 17.3 ± 6.2 14.8 ± 5.8 

Oligochaeta 36.0 ± 19.0 14.5 ± 6.2 20.3 ± 7.6 23.6 ± 12.3 

Trichoptera 20.5 ± 11.0 90.0 ± 22.2 125.6 ± 42.0 78.7 ± 30.2 

Veliidae 21.6 ± 10.4 3.4 ± 3.4 6.5 ± 4.4 10.5 ± 7.0 

Total 787.9 ± 105.4 

1536.6 ± 

136.3 1553.9 ± 100.8 1292.8 ± 153.2 
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Table 3.5. Mean ± SE density of benthic invertebrates per square meter in a permanently 

connected secondary channel and main channel reaches of the Kansas River upstream and 

downstream of the permanently connected secondary channel during flooding in summer of 

2010. Bold values indicate taxa that accounted for at least 5% of the total catch and were retained 

for analyses. 

 

Taxa Secondary Channel Upstream Downstream Total 

Arachnidae 0 ± 0 7.2 ± 4.8 7.2 ± 4.8 4.8 ± 4.0 

Chaoboridae 3.6 ± 3.6 3.6 ± 3.6 0 ± 0 2.4 ± 2.9 

Chironomidae 158 ± 69 50.3 ± 10.4 50.3 ± 19 86.2 ± 43.2 

Coleoptera 3.6 ± 3.6 3.6 ± 3.6 0 ± 0 2.4 ± 2.9 

Diptera 0 ± 0 18 ± 9.9 25.1 ± 6.4 14.4 ± 7.3 

Ephemeroptera 32.3 ± 32.3 7.2 ± 4.8 39.5 ± 12.4 26.3 ± 20.0 

Gastropoda 7.2 ± 4.8 3.6 ± 3.6 0 ± 0 3.6 ± 3.5 

Hirudinae 7.2 ± 7.2 0 ± 0 0 ± 0 2.4 ± 4.1 

Hymenoptera 3.6 ± 3.6 21.6 ± 9.9 14.4 ± 8.1 13.2 ± 7.8 

Odonata 3.6 ± 3.6 14.4 ± 6.1 0 ± 0 6.0 ± 4.4 

Oligochaeta 204.7 ± 52.6 35.9 ± 13.9 39.5 ± 35.8 93.4 ± 43.2 

Tricoptera 3.6 ± 3.6 0 ± 0 7.2 ± 4.8 3.6 ± 3.5 

Total 427.4 ± 110 165.2 ± 23 183.2 ± 47.5 258.6 ± 76.8 
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Table 3.6. Proportion of sites (of 12 sampled) where species were detected in upstream and downstream main channel or permanently 

connected secondary channel reaches of the Kansas River during flooding in 2010. Bolded species represented at least 5% of the total 

catch and were retained for further analyses. 

Common Name Scientific Name Family Upstream Downstream Secondary Channel 

Blue sucker Cycleptus elongatus Catostomidae 16.7 8.3 0.0 

Bluegill Lepomis macrochirus Centrarchidae 0.0 0.0 25.0 

Bluntnose minnow Pimephales notatus Cyprinidae 16.7 25.0 16.7 

Bullhead minnow Pimephales vigilax Cyprinidae 8.3 16.7 8.3 

Channel catfish Ictalurus punctatus Ictaluridae 8.3 8.3 16.7 

Common carp Cyprinus carpio Cyprinidae 50.0 58.3 58.3 

Emerald shiner Notropis atherinoides Cyprinidae 100.0 100.0 75.0 

Fathead minnow Pimephales promelas Cyprinidae 8.3 0.0 0.0 

Flathead catfish Pylodictis olivaris Ictaluridae 33.3 58.3 75.0 

Freshwater drum Aplodinotus grunniens Sciaenidae 16.7 25.0 66.7 

Gizzard shad Dorosoma cepedianum Clupeidae 16.7 33.3 91.7 

Goldeye Hiodon alosoides Hiodontidae 25.0 25.0 0.0 

Longnose gar Lepisosteus osseus Lepisosteidae 41.7 25.0 66.7 

Quillback Carpiodes cyprinus Catostomidae 0.0 8.3 16.7 

Red shiner Cyprinella lutrensis Cyprinidae 100.0 100.0 91.7 

River carpsucker Carpiodes carpio Catostomidae 33.3 66.7 83.3 

Sand shiner Notropis stramineus Cyprinidae 100.0 100.0 100.0 

Saugeye Sander sp. Percidae 8.3 8.3 50.0 

Shortnose gar Lepisosteus platostomus Lepisosteidae 25.0 16.7 75.0 

Shovelnose sturgeon Scaphirhynchus platorynchus Acipenseridae 75.0 83.3 0.0 

Smallmouth buffalo Ictiobus bubalus Catostomidae 50.0 41.7 75.0 

Suckermouth minnow Phenacobius mirabilis Cyprinidae 100.0 91.7 16.7 

White bass Morone chrysops Moronidae 0.0 0.0 8.3 

White crappie Pomoxis annularis Centrarchidae 0.0 0.0 25.0 
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Figure 3.1. Aerial photograph of the Kansas River near St. George, KS. Lines indicate upstream main channel (solid), downstream 

main channel (dashed), and permanently connected secondary channel (dotted) study reaches.  
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Figure 3.2. Mean density (±SE) of drifting and benthic invertebrates in upstream (US) and 

downstream (DS) main channel reaches of the Kansas River before, during, and after flooding in 

2010.  
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Figure 3.3. NMDS plots for drifting (left panels) and benthic (right panels) invertebrate 

assemblages in upstream (white circles) and downstream (black circles) main channel reaches of 

the Kansas River before, during, and after flooding in 2010. Significance values examining 

differences among groups using ADONIS are presented. 
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Figure 3.4. Mean (±SE) densities of drifting and benthic invertebrates collected in 2010 from 

upstream and downstream main channel reaches and a permanently connected secondary channel 

reach of the Kansas River. Letters above bars indicate significant differences among groups. 
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Figure 3.5. NMDS plots for drifting and benthic invertebrate assemblages in upstream (white 

circles) and downstream (black circles) main channel and secondary channel (black triangles) 

reaches of the Kansas River during flooding in 2010. 
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Figure 3.6. NMDS plot for fish assemblages (using presence/absence data) in upstream (white 

circles) and downstream (black circles) main channel and secondary channel (black triangles) 

reaches of the Kansas River during flooding in 2010. 
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Figure 3.7. NMDS plots for fish assemblages (using presence/absence) in main channel reaches 

before flooding and in main channel and secondary channels during flooding in 2010. Samples 

for the permanently connected secondary channel and adjacent main channel were collected near 

St. George, KS (dark symbols) and samples for the seasonally connected secondary channel and 

adjacent main channel were collected near Manhattan, KS (hollow symbols). Significance values 

for ADONIS pair-wise comparisons are presented.
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Chapter 4 - Impacts of Hydrologic Variability on Recruitment 

Patterns of Fishes in the Kansas River 

ABSTRACT 

 Humans have altered the hydrology and function of many lotic ecosystems in the United 

States and these changes may affect native fish recruitment. We examined recruitment patterns 

for four native fishes at three reaches of the Kansas River with varying in-stream and hydrologic 

characteristics. Patterns in hydrologic variation were examined using principal component 

analysis which primarily differentiated among years with high flows (>125% of 20-year mean 

annual flow) and years with numerous summer low-flow (<25% of 20-year mean annual flow) 

days. Age class structure for freshwater drum (Aplodinotus grunniens), flathead catfish 

(Pylodictis olivaris), river carpsucker (Carpiodes carpio), and shovelnose sturgeon 

(Scaphirhynchus platorynchus) were examined using an information theoretic approach. Models 

were constructed from catch curve residuals and principal component scores of hydrologic 

variables to identify the relationships among native fish recruitment and flows. Flathead catfish 

and shovelnose sturgeon recruitment increased in relation to metrics of high flows. We did not 

identify any consistent trends between freshwater drum and river carpsucker recruitment and 

hydrologic variables characterizing high and low flows. Overall, our results indicate that 

variability in flow events among years adequately supports these native river fishes examined, 

with high flow events significantly benefiting some species but not others. A diversity of 

hydrological conditions may be necessary to increase recruitment success of all native fishes and 

restoring flow regimes to mimic natural hydrology may be a viable option of mitigating human 

influences in many rivers and maintaining a strong native fish community.  
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INTRODUCTION 

Most riverine ecosystems in the United States have been altered by human activities and 

as a result, only about 2% of the rivers in the United States remain in their original and 

unmodified conditions including many in the Great Plains (Graf 1993; Lytle and Poff 2004). 

Dam construction, dredging, and agricultural and urban land use are widespread and have altered 

the hydrology and function of many lotic ecosystems (Bunn and Arthington 2002; Vörösmarty et 

al. 2010; Costigan and Daniels 2012). These changes often have detrimental impacts on native 

fishes and may reduce the biodiversity and recruitment success of fishes and other organisms in 

altered systems (Bunn and Arthington 2002; Poff and Zimmerman 2010). Though the 

mechanisms by which human alterations have impacted aquatic ecosystems are diverse, changes 

to the natural flow regime of aquatic ecosystems are especially pervasive and have altered abiotic 

factors and biotic communities in many large rivers (Bunn and Arthington 2002; Poff and 

Zimmerman 2010; Górski et al. 2011).  

Changes to the natural flow regime can considerably modify the habitat of large rivers 

and subsequently alter fish recruitment patterns (Warren et al. 2000; King et al. 2003; Dutterer et 

al. 2013). Among abiotic aspects, flows are especially important in defining physical habitats 

including river channel structure, substrate characteristics, and connectivity between main 

channel and inundated floodplain habitats (Bain et al. 1988; Poff et al. 1997; Bunn and 

Arthington 2002). Recruitment of fishes is often linked to flow regimes in large rivers and may 

be considered among the most important factors shaping fish population structure (King et al. 

2003; Zeug and Winemiller 2007). High flows are especially important for many aspects of 

spawning and successful recruitment (Welcomme 1985, Górski et al. 2011) and floods are often 

the primary environmental factor impacting recruitment success for fishes (Sparks 1995, 
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Agostinho et al. 2004, Górski et al. 2011). Whereas high flow events can benefit species such as 

shovelnose sturgeon by initiating spawning, providing nursery habitats, and facilitating larvae 

and egg movement (Bramblett and White 2001; DeLonay et al. 2007; Goto et al. 2015), other 

fishes, especially those without drifting egg or larval stages, may show increased recruitment 

success in response to low flows that provide increased densities of prey for developing larvae 

(Humphries et al. 1999; King et al. 2010; Baumgartner et al. 2014).The timing, duration, and 

intensity of high and low flow events are especially important for fish recruitment (Poff et al. 

1997, Rolls et al. 2013) as these events can provide cues to initiate spawning and connect the 

main channel to important spawning and nursery habitats in side channels and backwater habitats 

(Junk et al. 1989, Zeug and Winemiller 2007, Górski et al. 2011).  

Although flow events are essential for successful spawning and recruitment of many 

fishes, dam construction has altered the hydrology of many streams and constrained high and 

low flow extremes throughout the Great Plains (Costigan and Daniels 2012). As a result, 

anthropogenic impacts and changes to hydrology can decrease recruitment success of native 

fishes in impacted systems (Agostinho et al. 2004; Zeug and Winemiller 2007, Carlisle et al. 

2010). By limiting and constraining flood events, anthropogenic changes may limit fish access to 

floodplain and backwater habitats and subsequently decrease the recruitment success for fishes 

that rely on flooded habitats for spawning and nursery sites (King et al. 2003, Galat et al. 2005; 

Górski et al. 2011). When hydrological variation is reduced, floodplains may become 

disconnected and fish that rely on inundated habitats may be forced to less suitable spawning 

grounds or refrain from spawning altogether (Górski et al. 2011). Gaining an understanding of 

how hydrology (i.e. high and low flows) relates to recruitment of native fishes is important for 

protecting the biodiversity of fishes in many rivers including those in the Great Plains. 
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We examined recruitment patterns of four native fishes: flathead catfish (Pylodictis 

olivaris), freshwater drum (Aplodinotus grunniens), river carpsucker (Carpiodes carpio), and 

shovelnose sturgeon (Scaphirhynchus platorynchus) in three reaches of the Kansas River to 

identify how spatial and temporal variation in hydrologic characteristics influence fishes with 

different reproductive strategies. These species are common native fishes in many large rivers of 

the Great Plains and they represent a variety of recruitment strategies and fish management 

interests throughout the Great Plains.  

Flathead catfish, river carpsucker, and shovelnose sturgeon all have adhesive eggs 

(Kansas Fishes Committee 2014). Shovelnose sturgeon have a drifting larval stage (Kynard et al. 

2002; Braaten et al. 2008) and therefore may rely on high flows for successful recruitment. High 

flows may also be important for freshwater drum eggs that mature as they drift downstream 

(Balon 1975; Kansas Fishes Committee 2014). In contrast, hydrologic variation and floodplain 

inundation may not be as important for successful recruitment of flathead catfish and river 

carpsucker because they have adhesive eggs and flathead catfish build sedentary nests that are 

guarded by males as they develop (Balon 1975; Fuselier 2014). Floodplain habitats with slower 

discharges may be especially important for successful recruitment in upstream reaches of the 

Kansas River where impoundments (i.e. Bowersock Dam) may prevent upstream recruitment of 

juveniles that drift downstream, for fishes such as shovelnose sturgeon and freshwater drum but 

not as much for species such as flathead catfish. Shovelnose sturgeon often migrate long 

distances (>200km) to reach spawning locations (DeLonay et al. 2007) but Bowersock Dam 

likely limits many of these fishes from migrating into the upper reaches of the Kansas River. 

Additionally, low-flows and anoxic habitats in the transition zone upstream of Bowersock Dam 

may trap eggs and larvae and be a sink for recruitment of fishes with drifting egg and larval 
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stages (Guy et al. 2015). Additionally, shovelnose sturgeon is treated as a threatened species in 

downstream portions of the Kansas River under the Endangered Species Act because of its 

similarity to the federally endangered pallid sturgeon (Quarterman 2010). As such, increasing 

our understanding of shovelnose sturgeon recruitment patterns may also help increase our 

understanding of other similar species including the federally endangered pallid sturgeon.  

Our study assesses the relationship of recruitment patterns of four native fishes to 

hydrology variables that encompass high and low flows in the Kansas River, including mean 

annual flow variability, mean spring flow variability, and number of low flow days during 

summer months (for complete list see Table 4.1). Our first hypothesis is that recruitment of 

species with drifting egg or larval stages (freshwater drum and shovelnose sturgeon) will 

increase in years with high flows (e.g. flows exceeding 175% of 20-year mean annual flow) 

because high flows will facilitate the drift component of their life history and help developing 

eggs and larvae develop and survive. Our second hypothesis is that recruitment of fishes without 

a drifting egg or larval stage (flathead catfish and river carpsucker) will be higher in years with 

low flows (e.g. many days with flow below 25% of 20-year mean annual flow) because low 

flows will increase the density of prey for these non-drifting, developing larvae easing the effort 

of the larvae to obtain food for growth (Humphries et al. 1999; Baumgartner et al. 2014). 

Identifying trends in recruitment patterns and factors that impact recruitment success of native 

fishes may aid in conservation efforts focused on protecting these and other native fish species. 

METHODS 

The Kansas River is a 7th order river located in northeast Kansas that flows 274 km from 

its source near Junction City, KS to the confluence with the Missouri River near Kansas City 

Kansas. The Kansas River watershed encompasses 155,695 km2 throughout the Great Plains 
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including portions of Colorado, Kansas, and Nebraska. Although impoundments on the main 

stem of the Kansas River are rare, the Kansas River Watershed contains 18 large reservoirs 

(>650ha) and numerous small impoundments (Eitzmann and Paukert 2010) and the flow regime 

is largely regulated by releases from these reservoirs. Samples were collected from upper, 

middle, and lower reaches of the Kansas River to ensure that a gradient of habitats were sampled 

so we could identify the impact of environmental variation (i.e. hydrology) on native fish 

recruitment (Table 4.1). Upstream reaches are characterized by agriculture and forest riparian 

habitat with more instream habitats, i.e. grass islands and sandbars (Eitzmann and Paukert 2010). 

Downstream reaches are characterized by greater urban land use (Eitzmann and Paukert 2010). 

In addition, upstream reaches tended to have lower mean annual flows and floods of lower 

intensity and shorter duration than downstream reaches (Table 4.1). 

Fishes were collected at each reach using pulsed-DC boat electrofishing following the 

standardized methodology presented by Guy et al. (2009) and Miranda (2009) from April to 

August 2009 and 2010. Six 300-second electrofishing samples were collected from each reach 

for a total of 18 samples for each round of sampling. After capture, fishes were measured and 

had an aging structure removed (otoliths for freshwater drum and principle fin rays for flathead 

catfish, river carpsucker, and shovelnose sturgeon).  

Aging structures were used to calculate fish age and evaluate recruitment patterns among 

species. At least 50 individuals were aged at each reach for all species except shovelnose 

sturgeon which had at least 34 individuals aged at each reach. In the laboratory, freshwater drum 

otoliths were sectioned using a Buehler low-speed isomet saw and polished with sandpaper until 

annuli could be easily identified. Fin rays were air dried and mounted in epoxy following the 

methods proposed by Koch and Quist (2007), and cut into 1 mm sections using a Buehler low-
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speed isomet saw. Otolith annuli and fin ray radii were counted using a computer mounted 

microscope and Image ProPlus image analysis software (Image ProPlus; Media Cybernetics, 

Inc., Bethesda, MD). Aging structures were aged independently by two readers without knowing 

the fish’s length. If readers disagreed on the age of the fish by less than two years they discussed 

the differences and tried to reach an agreeable age. Fish were excluded from analyses if readers 

could not agree on an age, or if the original age discrepancy between readers was greater than 

two years. Only age-classes that were fully recruited to the gear and consistently represented 

with at least 2 fish among samples and captured in 2 of 3 of the reaches, were retained for 

analysis. Catch curves were constructed by plotting abundance by year class for each species at 

each reach. Older age classes that were not captured at all sites were excluded from analyses. 

Standardized residuals of weighted catch curves were used to examine recruitment variability. 

Positive residuals represented strong year classes whereas negative residuals indicated weak year 

classes (Maceina 1997; Maceina and Pereira 2007). Differences in maximum and minimum 

residuals were calculated by year for each species to identify spatiotemporal differences in 

recruitment patterns among species.  

Hydrologic parameters were calculated using daily discharge values collected for 1999 – 

2009 from the Kansas River near Wamego, KS (United States Geological Survey (USGS) 

Station 06887500), Topeka, KS (USGS Station 06889000), and DeSoto, KS (USGS Station 

06892350). The hydrologic metrics used were calculated by reach for each year analyzed (Table 

4.1). The 20 year mean was calculated from all years collected (1999-2009). We used the 

inundation of sampled secondary channels in the Kansas River near Manhattan, the most 

upstream reach, as our base metric to define flooding. Secondary channels in this reach were 

inundated when flows were 137% above the 20 year mean annual flow (Figure 4.1). Lateral 



 

102 
 

connectivity is more prevalent in this reach than more channelized downstream reaches. As such, 

we used a cutoff of 175% of the 20 year mean annual flow at each reach as a conservative and 

consistent threshold to defining flooding among all reaches (sensu Carlisle et al. 2010).  

We used numerous hydrologic variables to examine the role of high and low flows on 

native fish recruitment for each reach of our system (Table 4.1). High flow events have been 

identified as a primary factor impacting the recruitment of many large river fishes (Górski et al. 

2011); thus, we chose variables to examine various metrics of high flows, including duration, 

timing, and magnitude (Poff et al. 1997) on fishes of the Kansas River (Table 4.1). Mean flow 

and coefficient of variation were also calculated for spring months (March, April, and May) as 

flows in these months may regulate spawning success of native fishes in the Kansas River. We 

also examined metrics related to low flow during summer months for each reach to test our 

hypothesis that low flows are affecting fish recruitment patterns in the Kansas River. Number of 

days below 25% of the 20 year mean during summer months, mean summer flow, and summer 

flow variability (coefficient of variation) were also used for low flow metrics (Table 4.1). 

Summer months are defined as June, July and August and correspond with the time of 

development for fish eggs and larvae.  

Spatiotemporal relationships among hydrologic variables were identified using principal 

component analysis (PCA) to assess which hydrologic variables best characterized reaches 

among years. Hydrologic variables were selected a priori for inclusion in the PCA to ensure 

metrics of high and low flows were examined. All continuous variables were log10 (X + 1) 

transformed prior to analyses to address the assumption of normality. We retained two axes as 

they explained greater than 70% of the variance while still allowing for easy visual interpretation 

of the relationships among samples (Kwak and Peterson 2007). We interpreted variables that had 
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had PC loadings with absolute values greater than 0.4 to be important factors for each principal 

component (Stevens 1992; Kwak and Peterson 2007). Native fish standardized catch curve 

residuals and principal component scores were plotted to identify the strength and direction of 

the relationship between hydrologic variables and recruitment patterns of each fish species.  

We examined the importance of the hydrologic parameters (e.g. flood intensity, duration, 

magnitude) and habitat characteristics (i.e. reach) on native fish recruitment with an information 

theoretic approach using Akaike Information Criterion (AIC). Principal component scores for the 

first and second axes were included in models to examine relationships between spatiotemporal 

hydrologic conditions and native fish recruitment. We also included a model with reach as a 

predictor variable to help identify if recruitment patterns varied among sampling locations and a 

null model with just the intercept to serve as a baseline for comparison of model performance 

(Table 4.2). In total, five candidate models were developed to identify how native fish 

recruitment (i.e. catch curve residuals) varied in relation to hydrologic parameters at each reach 

(Table 4.2). AIC corrected for small sample size (AICc) was used for evaluation of model 

performance. The lowest AICc score indicates the best fit model; however, models within two 

AICc values are considered competing models with similar support and a best fit model cannot be 

calculated using AICc values alone (Burnham and Anderson 2002). We calculated ΔAICc scores 

(ΔAICc = AICc – AICc(minimum)) to identify competing models within 2 AICc values of the best fit 

models. When competing models were identified, Akaike weight (wi) was used to identify 

support for competing models (Burnham and Anderson 2002). Results of these analyses were 

compared to identify recruitment patterns among species. All statistical analyses were conducted 

using R version 2.13.1 (The R Foundation for Statistical Computing 2011). 

RESULTS 
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Mean daily discharge varied among years in our study and resulted in a gradient of high, 

intermediate, and low flow years (Figure 4.1). Lowest flows were observed in 2006 (mean daily 

discharge = 34.52 m3/s) and highest flows were observed in 1999 (mean daily discharge = 

216.61 m3/s). Three years (1999, 2005, and 2007) were high flow years that had mean daily 

discharge values that exceeded the 20 year mean daily discharge of 148.9 m3/s. Conversely, 

2002, 2003, and 2006 were low flow years with mean daily discharge values below 33% of the 

20 year mean daily discharge (49.64 m3/s).  

A total of 816 aging structures were collected in 2009 (n=283) and 2010 (n=533; Table 

4.3). Of these, 724 aging structures were precisely aged between two readers and retained for 

further analyses including structures from flathead catfish (n=186), freshwater drum (n=179), 

river carpsucker (n=239), and shovelnose sturgeon (n=120). In general, recruitment was more 

consistent (i.e. difference in minimum and maximum residual) for river carpsucker than other 

fish species (Figure 4.2). 

Principal component analyses of hydrologic variables largely separated samples among 

years and grouped samples by reach (Figure 4.3). The first principal component accounted for 

70.3% of the variation among samples and was generally positively associated with high flow 

metrics including mean summer flow, flood duration, and flood intensity and negatively 

associated with higher numbers of summer days below 25% of the 20 year mean annual flow 

(Table 4.4). The second principal component accounted for 12.7% of variation among samples 

and primarily separated sites based on higher annual and summer flow variability (positive 

scores) and decreased mean spring flow (negative scores; Table 4.4). 

Freshwater drum maximum age ranged from 10 years in Kansas City and Manhattan 

reaches to one fish aged 18 years in Topeka (Table 4.3). Catch rates became sporadic (many 



 

105 
 

zeros) for fishes greater than 10 years (2001 year class) and fishes 11 years and older were 

removed from analysis. The only year that strong year classes (positive residuals) were observed 

for freshwater drum at all reaches was 2004 but strong or average year classes were observed at 

all reaches in 2002, 2003, and 2006 (Figure 4.2). Year class strength was weak at all reaches in 

2007. Recruitment was variable among reaches in 1999, 2000, and 2001 with some reaches 

exhibiting strong year class strength and others exhibiting weak year class strength (Figure 4.2). 

Two competing models were identified relating freshwater drum recruitment to PC loadings of 

the hydrologic variables PCA (Table 4.5). However, the null model with just the intercept was 

also identified as a competing model indicating that freshwater drum recruitment patterns in our 

study are not related to the hydrologic variables we examined. 

Maximum age of flathead catfish varied from 8 years in Manhattan to 17 years in 

Topeka. Flathead catfish exhibited strong year classes at all reaches of the Kansas River in 2001, 

2003, and 2007 and consistently weak year classes among all reaches in 1999, 2006, and 2007 

(Figure 4.2). Flathead catfish recruitment was variable among reaches for the 2000, 2002, and 

2004 year classes. Three competing models were identified relating flathead catfish recruitment 

to hydrology including high flows (i.e. PC1) and flow variability (i.e. PC2) in the Kansas River 

(Table 4.5). Flathead catfish recruitment increased with (r2=0.12) with PC1 indicating that 

flathead catfish recruitment increases during years with high summer flows and longer, higher 

intensity flooding (Figure 4.4). Flathead catfish recruitment decreased with PC2 (r2= 0.15) 

meaning that flathead catfish recruitment decreased in relation to increasing annual and summer 

flow variability (Figure 4.4). 

River carpsucker maximum age ranged from 10 years in the Manhattan reach to 16 years 

in Topeka and Kansas City. Strong year class strength was observed at all reaches for 2000 – 
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2004, with the exception of the Kansas City reach in 2003 that had a slightly weak year class, 

whereas year class strength was weak at all reaches in 1999 and 2005 (Figure 4.2). Two models 

had reasonable support as top models relating river carpsucker recruitment patterns to hydrologic 

variables (Table 4.5). However, the intercept model was one of the candidate top models 

indicating that flow had little impact on river carpsucker recruitment in our study. 

 Maximum age of shovelnose sturgeon ranged from 9 years in the Manhattan reach to 14 

years in the Kansas City reach. Shovelnose sturgeon year class strength was more variable 

among reaches than the other species examined in this study (Figure 4.2). With the exception of 

2005 and 2007 when year class strength was consistently positive and 2006 when year class 

strength was consistently negative among all reaches, year class strength was highly variable 

among reaches for each year of the study (Figure 4.2). The top candidate model for shovelnose 

sturgeon indicated that recruitment patterns were positively associated with high flows (i.e. PC1; 

Table 4.5). In general, shovelnose sturgeon recruitment increased in response to higher PC1 

scores (r2 = 0.19) indicating that shovelnose sturgeon recruitment may benefit from high flows 

(Figure 4.4). 

   

DISCUSSION 

We found that recruitment was positively related to high flows for two of the four native 

fish species (flathead catfish, shovelnose sturgeon) in our study. Whereas the responses of these 

two species were similar, the mechanism explaining why recruitment increases with high flows 

is likely different for flathead catfish and shovelnose sturgeon. Recruitment variability is often 

linked to abiotic factors that decrease survival of larvae (Houde 2009; Lobón-Cerviá 2014). 

Flathead catfish build sedentary nests that are protected by adult males as eggs and larvae 
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develop near the nest (Balon 1975; Fuselier 2014). As such, flathead catfish recruitment may 

increase in response to high flows because they increase nursery habitats and increase survival of 

age-0 fishes (Schramm and Eggleton 2006; Steffensen et al. 2014). Similar responses were 

observed for many large river fishes including shovelnose sturgeon in the Missouri River during 

flooding in 2011 (Steffensen et al. 2014) and side-channel chutes are often constructed or 

restored in the Missouri River to create low-flow nursery habitats that may benefit sturgeon and 

other fishes (Ridenour et al. 2011; Gosch et al. 2015). However, age-0 sturgeon are often found 

in deeper main channel habitats and may not benefit from these nursery habitats as much as other 

species (e.g. flathead catfish) in similar large rivers (Ridenour et al. 2011; Gosch et al. 2015). 

Instead, high flows may increase shovelnose sturgeon recruitment by facilitating downstream 

drift of eggs and larvae. Shovelnose sturgeon require prolonged drift to successfully develop and 

high flows likely increase the survival of these developing eggs and larvae (Delonay et al. 2007; 

Goto et al. 2015). Reduced flows in reservoirs upstream of large dams often create a “dead zone” 

where drifting eggs and larvae settle out of the water column, are covered in silt, and die (Guy et 

al. 2015). Although large reservoirs are not present in the Kansas River, similar results (i.e. egg 

and larval death) may occur if flows necessary to maintain downstream drift are not sustained. 

We did not identify a relationship between the hydrologic factors we examined and 

freshwater drum or river carpsucker recruitment patterns indicating that flow patterns (e.g. high 

and low flows) may not influence recruitment of these fishes as much as other species. Intra-

annual recruitment was generally consistent among reaches for river but was not consistent 

among reaches for flathead catfish, freshwater drum, or shovelnose sturgeon. These findings 

indicate that spatial scale may play an important role in regulating recruitment patterns with local 

(i.e. reach) factors driving recruitment patterns for river carpsucker and more large-scale (i.e. 
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river) factors regulating recruitment patterns for the other fishes. Our results are consistent with 

other studies that found that river carpsucker recruitment was often variable and not strongly 

related to flow (e.g. Peterson and Jennings 2007; Quist and Spiegel 2011). Peterson and Jennings 

(2007) found that abundance of age-0 river carpsucker decreased in response to high flows in the 

Oconee River in Georgia indicating that high flows may negatively influence river carpsucker 

recruitment. Whereas we did not find a link between hydrology and recruitment of these species, 

high flow events are often associated with increased growth rates for both freshwater drum and 

river carpsucker (Peterson and Jennings 2007; Quist and Spiegel 2011; Jacquemin et al. 2015). 

Our study showed that shovelnose sturgeon and flathead catfish recruitment increased in 

relation to high flow events but no relationship was found between high and low flows and 

recruitment of river carpsucker and freshwater drum. However, all four native species in our 

study are abundant throughout the Kansas River and had years with strong recruitment in our 

study indicating that they may benefit from some aspect of the flow regime. These results are 

consistent with other studies and suggest that variability in flow patterns among years may be 

important to maintain successful recruitment for a variety (i.e. community) of native freshwater 

fishes (King et al. 2010). Variable flow patterns (i.e. natural flow regime) may conserve or 

restore native fish species (Carlisle et al. 2010, King et al. 2010) and simultaneously inhibit 

nonnative species that are not adapted to flourish in response to high and low flows (Kiernan et 

al. 2012). Gido and Propst (2012) found that densities of native fishes generally increased in 

years with prolonged summer flooding whereas densities of native fishes generally increased in 

years with prolong low flow periods. The relationship between recruitment and hydrology is not 

always consistent among species. King et al. (2003) found that some fishes (e.g. golden perch 

Macquaria ambigua) in the Murray River, Australia increase their spawning activity during 
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major flood events whereas spawning activity of other species (e.g. trout cod Maccullochella 

macquariensis) remains constant or declines. Humphries et al. (1999) developed the Low Flow 

Recruitment Hypothesis to explain the importance of low flow events for successful recruitment 

of some fishes in response to increased prey densities during prolonged periods of low-flow. 

Recruitment of river carpsucker and shovelnose sturgeon both increased in relation to metrics of 

increased flow indicating that increased hydrology may be more beneficial for these species. Our 

results indicate that the low-flow recruitment hypothesis may not be relevant for river carpsucker 

and shovelnose sturgeon in the Kansas River. Whereas the inundation of floodplain habitats may 

benefit fishes such as freshwater drum by serving as spawning and nursery habitats, these same 

events may negatively impact recruitment patterns of other fishes by flushing larvae downstream 

or limiting recruitment opportunities (Humphries et al. 1999; King et al. 2003; Rolls et al. 2013). 

This high to low, inter-annual variability tends to benefit the fish community as a whole and 

maintaining large river systems that are allowed to naturally flux and mimic the natural flow 

regime may be a critical component to restoring native fish communities 

Models examining differences in recruitment patterns among reaches were not identified 

as strong models for any of the fishes in our study showing that recruitment patterns were 

generally consistent throughout the Kansas River. Reaches in our study were characterized by 

variation in urbanization and agricultural riparian land use (Eitzmann and Paukert 2010). In 

contrast with our results, anthropogenic influence to the reaches of the river system may create 

alternative habitats that may influence fish recruitment. For example, recruitment in highly 

fragmented systems may decrease due to decreased upstream migration (Dudley and Platania 

2007). All of the fish in our study were large-bodied fishes that can migrate long distances which 

may limit our ability to identify differences among reaches, especially reaches upstream of 
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Bowersock Dam where fishes can move freely among the sampled habitats without being 

restricted by the dam. Although we included a measure of habitat and anthropogenic influence 

(Reach) future studies should include river reaches of distinct anthropogenic influence to 

explicitly identify the impacts of urbanization and anthropogenic impacts on recruitment of 

native fishes. 

Our results show that for shovelnose sturgeon and flathead catfish high flow was 

associated with increased recruitment among reaches in the Kansas River. Hydrologic variables 

examined in this study did not influence recruitment patterns of freshwater drum and river 

carpsuckers but further examination of flow by years shows low variation among reaches in 

freshwater drum in a low flow year (2006). In addition, intra-annual recruitment was not 

consistent among reaches for three of the four species in our study indicating that, in addition to 

hydrology, differences among reaches (e.g. land use) may be related to recruitment patterns of 

these species. Overall, our results indicate that variability in flow events among years adequately 

supports these native river fishes examined, with high flow events significantly benefiting some 

species but not others. Consistent with these results and current literature (e.g. Gido and Propst 

2012, Pool and Olden 2015), restoration of natural flow regimes by controlling dam releases to 

mimic natural hydrology may be a viable option of mitigating human influences in many rivers 

and maintaining a strong native fish community (Bernhardt et al. 2005; Kiernan et al. 2012).   
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Table 4.1. Description and mean values of hydrologic parameters considered for each study reach and used in analysis of candidate 

models. Each parameter was calculated separately for each year and study reach for analyses. Mean values were calculated from 

hydrologic data obtained from reaches of the Kansas River near Manhattan (USGS Station #06887500), Topeka (USGS Station 

#06889000), and Kansas City (USGS Station #06892350) from 1999 – 2009.  

Hydrologic Variable Description Manhattan Topeka Kansas City 

Flood Timing Julian date of first day of the year that flows exceeded 

175% of 20-year mean annual flow 

60.67 53.78 52.67 

Flood Duration (Total) Total number of flood days in a year 21.67 22.56 26.78 

Flood Duration (Consecutive) Longest number of consecutive flood days in a year  12 12.78 17.22 

Flood Intensity Greatest discharge value for year / 20 year mean annual 

flow 

3.97 5.37 6.12 

Flood Frequency Number of times that flows exceed 175% cutoff 

following at least one day below threshold 

2.22 2.22 3.33 

Annual Flow Mean daily discharge / 20 year mean annual discharge 

(m3/sec) 

94.95 110.60 151.08 

Flow Variability Coefficient of variation of mean annual flow 0.92 0.98 1.01 

Spring Flow Mean spring (March – May) daily discharge / 20 year 

mean spring annual discharge (m3/sec) 

130.29 158.75 217.78 

Spring Flow Variability Coefficient of variation of mean spring flow 0.77 0.79 0.84 

Summer Flow Mean summer (June – August) daily discharge / 20 year 

mean summer discharge (m3/sec) 

141.88 165.02 222.68 

Summer Flow Variability Coefficient of variation of mean summer flow 0.66 0.75 0.78 

Summer Low Days Number of days discharge was 25% below 20 year mean 

annual discharge 

34.56 35.22 36.56 
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Table 4.2. List of candidate models used to examine relationship between principal components (PC1, PC2) of PCA for hydrologic 

variables, spatial location (reach), and native fish recruitment (standardized catch-curve residuals) for flathead catfish, freshwater 

drum, river carpsucker, and shovelnose sturgeon in the Kansas River. 

Model 

Name Model Variables 

Intercept Model Species standardized catch-curve residuals ~ Intercept 

Flooding Model  Species standardized catch-curve residuals ~ Intercept + PC1 

Flow Variability Model Species standardized catch-curve residuals ~ Intercept + PC2 

All Hydrologic Variables Model Species standardized catch-curve residuals ~ Intercept + PC1 + PC2 

Reach Model Species standardized catch-curve residuals ~ Intercept + Reach 
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Table 4.3. Total abundance by year class of flathead catfish, freshwater drum, river carpsucker, and shovelnose sturgeon captured 

from three reaches the Kansas River in 2009 and 2010. Fish from 2009 and 2010 year classes were not recruited to the gear and were 

not included in analyses. Additionally, catch rates for older fishes (2000 and earlier year classes) were sporadic (many zeros) and these 

fishes were not included in analyses. Bolded values indicate fishes included in analyses. 

Year Class Freshwater Drum Flathead Catfish River Carpsucker Shovelnose Sturgeon 

2010 4 8 1 0 

2009 7 13 7 1 

2008 33 46 30 8 

2007 44 25 35 24 

2006 22 18 22 17 

2005 34 21 38 23 

2004 17 29 31 19 

2003 14 13 24 11 

2002 8 22 32 7 

2001 13 11 18 9 

2000 1 5 2 11 

1999 4 0 9 3 

1998 0 2 7 0 

1997 1 0 3 1 

1996 2 0 1 0 

1995 0 0 3 0 

1994 0 1 0 0 

1993 0 0 0 0 

1992 1 0 0 0 

Total 205 214 263 134 
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Table 4.4. Principal component (PC) loadings for hydrologic factors obtained from three reaches of the Kansas River near Manhattan 

(USGS Station #06887500), Topeka (USGS Station #06889000), and Kansas City (USGS Station #06892350) from 1999 – 2009. 

Bolded values indicate variables with high loadings (absolute value ≥ 0.4) that were used for interpretation. 

 

Variable  PC1 PC2 

Flood Timing 0.732 0.260 

Flood Duration (Total) 0.610 0.052 

Flood Duration (Consecutive) 0.835 -0.076 

Flood Intensity 0.810 0.078 

Flood Frequency 0.772 0.138 

Annual Flow 0.761 -0.408 

Annual Flow Variability 0.715 0.457 

Spring Flow 0.700 -0.468 

Spring Flow Variability 0.376 0.280 

Summer Flow 0.800 -0.131 

Summer Variability 0.365 0.674 

Summer Low Days -0.834 0.568 

Eigenvalue 8.44 1.52 

Percent Variance Explained 70.3 12.7 

Total Variance Explained 70.3 83.0 
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Table 4.5. AIC results for models with strong support as best model (ΔAICc < 2) explaining spatiotemporal relationships between PC 

loadings of PCA of hydrologic variables and recruitment of four native fishes in the Kansas River. Model strength was assessed using 

Akaike Information Criterion corrected for small sample size (AICc) to identify best fit models. Akaike weights (wi) were used to 

identify support among competing candidate models and total Akaike weights show overall support among candidate models.  

 

Species Model Variables AICc ΔAICc wi Total wi 

Freshwater drum Intercept Model 77.94 0 0.49 0.49 

 Flooding Model 79.68 1.74 0.26 0.75 

 Flow Variability Model 79.82 1.88 0.23 0.98 
      

Flathead catfish Flow Variability Model 77.97 0 0.68 0.68 

 Flooding Model 79.59 1.62 0.15 0.83 

 All Hydrologic Variable Model 79.76 1.78 0.14 0.97 
      

River carpsucker Flooding Model  78.23 0 0.38 0.38 

 Intercept Model 78.29 0.06 0.37 0.75 
      
Shovelnose sturgeon Flooding Model  78.34 0 0.96 0.96 
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Figure 4.1. Hydrograph of mean daily discharge in the Kansas River near Wamego, KS from 

1999 - 2009. Flooding threshold for this study is indicated by the dotted line. Discharge values 

were obtained from United States Geological Survey Station #06887500. 
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Figure 4.2. Residuals of catch curves from fishes captured at three reaches of the Kansas River in 

2009 and 2010. Positive residuals indicate strong year class strength whereas negative values 

indicate weak year class strength. 



 

125 
 

 

Figure 4.3. PCA ordination examining the relationship among hydrologic variables from three reaches of the Kansas River from 1999 

– 2007. See table 4.1 for a complete description of hydrologic variables. 
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Figure 4.4. Relationship between native fish recruitment (standardized residuals) and principal 

components scores of PCA examining spatiotemporal variation in hydrologic factors in the 

Kansas River. Line of best fit and coefficient of determination are shown for variable 

relationships identified in top-ranked models for species with models that had support and varied 

from the null.
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Chapter 5 – Dissertation Summary 

Anthropogenic changes to freshwater ecosystems are widespread and almost all running 

water systems in North America have been impacted by humans in some way (Strayer and 

Dudgeon, 2010; Vörösmarty et al. 2010, Dodds et al. 2013). In many cases, natural flow regimes 

of lotic systems are particularly susceptible to anthropogenic impacts (Poff et al. 1997; Carlisle 

et al. 2011). Hydrologic changes can alter habitat structure, water quality, and many other abiotic 

components of lotic systems and subsequently lead to changes in the organisms found in these 

systems (Vörösmarty et al. 2010). Altering the natural hydrology of lotic systems can also reduce 

lateral connectivity between main channel and secondary channel habitats which serve many 

important functions for many freshwater organisms. For example, many organisms feed in 

secondary channels and many fishes use them as spawning and nursery habitats (Welcomme 

1985; Zeug and Winemiller 2007). 

The research we presented further advanced our understanding of the role and importance 

of lateral connectivity for freshwater ecosystems. In chapter 2 we found that a seasonally 

connected secondary channel supports different invertebrate communities than main channel 

habitats. Additionally, invertebrate densities were generally higher in these secondary channels 

compared to the main channel. These differences may benefit fishes moving into these habitats 

during flooding to use them as a feeding habitat. A majority of the fishes captured during this 

study were found both in the main channel and in the seasonally connected secondary channel 

indicating that many fishes are highly mobile during flooding. We observed similar trends in 

chapter 3 although our focus was more on identifying differences between seasonally connected 

and permanently connected secondary channels. We found that seasonally inundated secondary 

channels had higher densities of drifting invertebrates whereas permanently connected secondary 
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channels had higher densities of benthic invertebrates. These findings may indicate that fishes 

may benefit from secondary channels differently depending on their feeding habits with fishes 

preferring drifting invertebrate prey benefiting more from seasonally connected secondary 

channels and fishes preferring benthic invertebrate prey benefitting more from permanently 

connected secondary channels. In chapter 4 we examined recruitment patterns of native fishes 

and found that these fishes respond to hydrologic cues in various ways. We found that flathead 

catfish and shovelnose sturgeon recruitment increased during high flow years. However, we did 

not identify any relationship between freshwater drum and river carpsucker recruitment and 

metrics of high and low flows.  

Our findings indicate that high flows and resulting lateral connectivity are important for 

large river ecosystems and the fishes found in these systems. We found that riverine biota, 

including fishes, rely on high flows and lateral connectivity in many ways and the degree of 

lateral connectivity can influence fish assemblage structure and invertebrate densities. We also 

found that recruitment patterns of some native fishes respond to hydrologic cues. Our research 

demonstrates the importance of high flows and lateral connectivity and advances the 

understanding of these events for fishes and other large river organisms. 

Taken as a whole, our results indicate that lateral connectivity is important for fish and 

invertebrates in the Kansas River. Whereas flooding and lateral connectivity play important roles 

in regulating fish and invertebrate communities, the importance of these events are likely 

variable depending on individual species of interest. Future studies should build on our findings 

to link lateral connectivity to fish productivity and energy flow in large river systems.  

The increased density of drifting invertebrates in main channel reaches during flooding in 

2011 supports the idea of a “pulse” of energy as proposed by the Flood Pulse Concept. 
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Additionally, inundated secondary channels had different fish and invertebrate communities 

compared to main channel habitats indicating that lateral connectivity is important in maintaining 

community diversity in the Kansas River. Fish and invertebrate communities were also variable 

between secondary channels with different amounts of connectivity to the main channel 

indicating that the role of inundated habitats are not consistent among habitats. These findings 

suggest that maintaining variable flows, including flows capable of inundating floodplain 

habitats, may be most beneficial to fish and invertebrates in the Kansas River and other similar 

large rivers.   
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