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INTRODUCTION

In a variety of situations, motions may be generated in modern
structures involving thin circular plates which lead to vibrations
with moderately large amplitudes of the order of magnitude of the
plate's thickness. The study of such motion is greatly complicated
by the mathematical complexity connected with the non-linearity of the
governing field equations, Explicit solutions to the set of governing
non-linear partial differential equations of motion are not available
in the literature. Various approximation methods were employed in
specific cases to improve the understanding of these motions in the
non-linear range.

In 1954, H.M, Berger [21] formulated and solved the problem of
large deflection of circular plates in his paper under the assumption
that the strain energy due to the éecond-invariant of the strains in
the middle surface of the plate is negligible. J. Nowinski [19] in 1962
derived and solved the same problem using an orthogonalization procedure.
In 1963, A.N. Sherbourne [17] transformed the static case of the two-point
boundary-value problem into an initial-value problem and obtained solu-
tions by an iterative method. A.V. Srinivasan [12] in 1966 approximated
the dynamic case using the Ritz method and N. Gajender [9] in 1967
using Berger's assumption and Garlerkin's method solved the problem for
elastic foundations. All the aforementioned studies were concerned with
isotropic circular plates of uniform cross-section.

In recent years problems in large deflections of circular plates
were investigated either for orthotropic with constant thickness or

isotropic with variable thickness. Different approximations such as



the dynamic relaxation method used by K.R. Rushton [6], the Ritz method
used by B.Ya, Kantor and L.M. Afanaseva [5] for varying thickness cir-
cular plates in 1968, and the asymptotic integration used by O.E,
Widera [1] for anisotropic plates in 1969 were used. But relatively
few investigations have been made to study the problem of moderately
large deflection of an anisotropic solid circular plate with variable
thickness.

The present investigation is concerned with harmonic, free vibra-
tions of orthotropic axisymmetric, thin solid circular plates with
\variable thickness of the form h = ho(l-mgn) clamped at the edges.

The derivation of the governing equations leads to a set of two coupled
non-linear differential equations; one describing the transverse motion
and the other describing the in-plane motion.

The shooting method is then employed to obtain frequency response
curves. The effect of the ratio af elaséic constants of the material
in the radial direction to that in the circumferential direction on
frequency responses of the plates are first separately studied, then
their combined effect is studied. Results of these effects and the
bending and membrane stresses are presented in graphical forms. Graphs
are also presented to visualize the effect of moderately large ampli-

tude on shape functions of harmonic vibration and on stress distribu-

tions.



DERIVATION OF THE GOVERNING EQUATIONS

The following assumptions are made:

1, the maximum thickness of the plate is small in comparison
with the radius of the plate*,

2. middle plane is the plane of symmetry,

3. an element of the plate along a normal to the middle plane
in the undeformed plate remains straight and normal to
the deformed middle plane and its extension is negligible,

4, transverse shear deformations are not considered [15], and

5. within the elastic limit.

The above assumptions lead to the strain-displacement relations:

wedein, @

in cylindrical co-ordinates (Fig. 3), where e, € are radial and cir-

cumferential normal strains and u,w are radial and lateral displacements
respectively.

Next, it is assumed that the plates are made of cylindrically
orthotropic materials, i.e. the elastic properties of the plate in the
radial and circumferential directions are different. In view of this,

the pertinent stress-strain relation may be written as:

es = a Oe +a o
11 12 ¥

e =a 0, +t+a ©
r iz 8 22 T (2a)

*Yon Karman equations are not good approximations for non-linear bending of
clamped circular plate of moderate thickness with large load [12].



a a

o =__u_z(e __12.ee)
r a a - a r a
11 22 12 11

a a
e R e - =12
GB a a =~ a° (Ee a er)
11 22 12

(2b)
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wherea , a , a are elastic constants and ¢ , G, are normal radial
11 12 22 r 0

and circumferential stresses.

I. DISPLACEMENT FORMULATION
The stress-strain relations together with the strain-displace-
ment relations of Eq'nm (1) may now be used to derive expressions

for in-plane forces per unit length Nr, Ne and bending moments per

unit length Mr, He:

h
2 E B } 2 u
Hr = I-E B, &= a (c=v=3) [c(u’r +3 w’r) +V -1:]
2 22 .
h
N, = IE dz = h [E +vu, +ow? ]
8 "Jh% T3 (v lr T T2 Yr (3)
2 22
h
2 v
M= -[-E o, dz = -D (cw,rr #s w,r)
2
h
: (
HB = J‘-F Ue Zdz = -D = W:r + W}rr)
3 (&)
where
a a
o BN e e
a a



a zﬁs
- ‘2
D 12fa a - a
11 22 12
and
- . n
s, (1 )

is the local thickness of the plate.
Now that the forces and moments per unit length are known at each
point of the plate we easily obtain the strain energy due to

stretching of the middle plane of the plate,

where
o 1 -]
e _=u, +35Ww
r r 2 7?
e =2
8 r

are the normal strain components at the middle plane.

Denoting
a a - a®
d=-—1l22 12
a
22

and the mass density of the plate by p,



upon substituting the above equations and Eq'n(3)

2 C _4 u u _2
c + c +-w,_+ 2V +V-=w
1 dJ‘ [u’ sy o r 7% ¥or r Ur r ’r

+ (}ri)] hrdr (5)

and the strain energy due to bending of the plate

dv =-l(}1w, +E.iw,)r&rd9
2 2 r’rr r r
substituting Eq'n (4)
3
_ oy 2(v - ¢%) ]
V T J [(C W, + ) + = Wy rrw’r rdr (6)

Since we consider only moderately large amplitude of the order of
maximum magnitude of 2h°, and ho is small in comparison with other
dimensions, the radial displacement and the time rate of radial

displacement U, is small, therefore we can safely neglect the

kinetic energy due to the time derivative of radial displacement,

thus the kinetic energy will be

....-

all a
T = Ej-h J‘ J p w, rdrdfdz

a

m o h ¥, zd (1)
_l;p trr

Define the Lagrangian by L= T -(V +V ), substituting Eq’'ns
1 2

(5), (6) and (7) we obtain



a a

2 cC 4
L=TrJ;ph w?t rdr - _[:[cu,ar+cu,rw,r+zw,r

(=W =]

" a
Bu oot (2] o o o[
+ 2 ru,l_-l-\a';w,r-l- - h (r)rdr 'zTcD oy

2V
+—w,_ w, +Lz wf]rdr
r rr ‘'r r r

(8)
Since Hamilton's Principle states that the true motion of a

system within a certain arbitrary chosen interval of time is charac-

terized by the fact that the increment of the integral
- )
J L dt
t
%
vanishes for any continuously varying wvirtual displacement provided

the displacement vanishes at the limits t and t of the chosen in-
1

terval i,e. t
2 ']
GI Ldt=20
t
1 =
therefore, substituting Eq. (8)
t
_ 2
H = 6J L dt
t

t a
2 ]
”» h 4
o[ ] n oo, - K2t e ut, 450,
t c
1

-3

u u_= (u)a:] h (1‘2[ ) pay) 1 a]}

V= V= =] [- =
+ 2 = u,r + = w,r + = 12d cw,rr + : w’rrw’r -r-?g w,r rdrdt
t

]

a
2
6J. :l:(r'w,u;w, s Wy Uy »W )drdt': 0
tz a * £ e e (9)



Introducing dimensionless quantities:

r = af W = ax u = an
h,a =
t = +— T h - hoh
o
and orthogonal harmonic functions of transverse and radial
vibrations:
x = Ag(E) sinyT
n= AJ[ (E) sinyT
letting _
= H
= o ena)?
o o
we obtain

f- —f‘fg 6 {v?eng? - o(a ﬁ)a“[“gﬂf
+c§£g +—§g +2v:[:j:+v:[:g +-—‘[_—:l

- h [cgg? + 2 \Jggg gg + —5—]} d€ = ——— - (10)

where the derivatives are now ordinary ones,

2
Set a = (Ah—a-) » we hence obtain the Lagrangian in the final form

yehg® ~ 90h[¢§£ + c§3[ g (s Egg
zvf£+ V{ g; +£§-] - hs[cggzg +2Vg g

g€

"
Il

+

E
£
i -
Using Euler's equations for

1

63[: L’
t
1



Ly - (L’w,'),t - (L’w, ),r & (L’w,r ),rr =0 (A)

- | L ) =0
by ( Yuyt/,r (8)
With equations (11), (A) and (B), we easily arrive at the desired

set of governing differential equations:

h®| cg 4 28 g - —1;;- g + 1 g
| gggE 5 g o g S §]
+ h® 2cg + (Zct g - —135 g

g[ g 5 g ° g]

! hzg[cggg i -\é gg]

- Y hg

gl 549 ]

and

{of +eF, - dre s +524)

g } g &8
[ +54+F]
=0 (II)

II. STRESS FORMULATION
From the strain-displacement relations

1 2
e_ = u, - Zw, + 5w,

r r rr 2 r

]
Hie
RN

w
‘r

]
we have strains at the middle plane which can be regarded as the

average values of strains throughout the thickness
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=1
9 =t
Using the stress-strain relations

EB=a 09"‘& (o)
11 12 r

e =a + o
r 1209 aaz r
and integrating throughout the thickness we obtain the total

deformations as follows:

B B i
= 12 5 e J’z 2
ee I eedz = an = Oedz + a1z J__ﬁcrdz
2 2 3
B B B
s 2 2
e = e dz = a O,dz + a C dz
r Jy T 1229 6 22% T
2 2
or
— 0 —
e9=e9h=a !éla+a21\lr
= &
e = e h=a NB +a N
r r 12 22 T
substituting Eqs. (la):
u n —
- h = anNS + aler
[u-+lw2]h=aﬂ+aﬂ
’r 2 r 12 © 22 T (12)

Refer to Fig. 2 and agsuming radial displacement and time derivative
of radial displacement are negligible with the same reasoning as

that in the displacement formulation, we have

rN + N - N
Tyr r ]

]
o



11

or ]
("“r),r = By (13)

Define a stress function Y such that

N8=‘¥,

N =
r

(14)
obviously the function ¥ satisfied Eq'n (13). By substituting Eq'nms

(14) into Eqn (12) we derive the following set of equatioms:

E=_.Ei..(cvf’ -_\,i)
r T

Bh(r) (15)
Introducing dimensionless quantities and orthogonal harmonic
functions as before
w=ax=a.1§g (€) giny'r
u=an-s= aAz:F (€) sin® YT
r = af
h=hh
o
and
Y = aA®p (E) sin®yT
Eq'ns (15) tako the form
a
L3 -an (B -v)
§ o g
! a
J = s ( -V ©
I WS- (16)
Hence
- 1



a
F(8) = £2 (¢ -V (®)
o

then

Eq'n(1I) becomes:

h® cg + &8 g
[ gege 5 geg
2c+V

+ h3 2cg- +

g - g
el gze g B g

’ hgg[cgaf-;% ggj

- ahg

" ¥ [gg F]-*:

and Eq'n (II) becomes:

12

(18)

(19)

()

(I’
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BOUNDARY CONDITIONS FOR
CLAMPED CIRCULAR PLATES

At the edge where r = a, the lateral displacement and its partial
derivatives with respect to r vanishes, also the in-plane displacement
is zero, Hence, we have for:

(1) Displacement Formulation:

g =0
at € =1 s,g =0 (I11)
u=20
and
(1I) Stress Formulation:
g=0
at £ =1 8g = 0 (111')
cF,. - VF =0
g

The third of this set of equations is derived from the second of
Eq'ns (15) together with ¥ = afm(g) sinyT, Equation (18), and the

condition u = 0 at £ = 1,
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THICKNESS VARIATION

The form

- h0 - h._:1 Af n 1>m=0
h=ha[1'T(;) TR (- me) 020
has been selected for thickness variation along r.

The following functions of E are studied for later use in

removing singularity:

h=1-m"

= . n-1
b, nmé
¥ o=Q-ms")

2
By = 3™ 1 - me™)
tﬁgg = - 3@ - D™ 2q - mg’:‘)a +erfre D o me?
forn # 1, for n = 1,

h) =1 h(@) =1
h,g(ﬂ) =0 h.g(ﬂ) = -m
1 (0) = 1 @O =1
1?.5(0) =0 hs,g (©) = -3m
W__(0) =0 W, (0) = 6énf

E¢g 3
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_ B ™!

h B =

l - of
w = .}_:gi - e 3n(ﬂ'l)lﬂ'5.n-2(12-m§n) 2 6manag2(n-l)
(1-m")
u = P - ome™!
-
ifn#1l ifn=1

u:.) = 0 u: = - 3m
w =0 u = 6u
uo =0 uo - -



METHOD OF SOLUTION - THE SHOOTING TECHNIQUE

16

(I) Reduction of the Eq'ns (I') and (II') into first degree equations -
g q

The set of two coupled non-linear differential equations with

variable coefficients will be transformed by introducing

Y1

Y2

Ya’

Ya =

¥s

Ye

and their derivatives:

Dy,

Dy,
Dys

Dy, =

Dys
Dye

=B

gsg

¥a

¥s

Bregee
= ¥Ys

= Foge

(20)

(21)

into a system of 6 simultaneous first degree differential equations:



where

V. Vo 2
+Elys +-B_YQ
v
oi®
gy o By
C C Cc
1 2 c+v
1. _JL_:_li u = Pug
- 2(l+€y)
%
ch®
1 _ME
c ¢ Us
Eu; - 1
_ {e-v)®h
2¢c

and boundary conditions at § = 1:

C¥s

¥a
Y

- vys

=0

0

L+ B

g

(Ya¥s + %o ¥e)

17

(22)

(23)

(24)
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(I11) Singularity at the origin of the co-ordinate system -

An examination of the Equations (22) immediately reveals that
the origin £ = 0 is a singularity point and thus needs further
exploration. Maclaurin Series Expansion is employed to remove this
singularity, thus the fourth and the sixth equations of the system

can be written as:

o o 1,0
0t n(Rred B B s Gl )

cB (e de + 40 b))

+§-(y; + ViE +—§§{,&L° g2 +)
vi (30 + 0i2°% +)

0

+§5-[(y; + yaE +-(1‘b—' )(ys + VoE +-(25-L§3+...)

+ (y—f-i—y;?g +‘2‘:; g2 +%*_:‘Lo §"’+---)(Y: + (Ys')°€+---)]

(25)
and
o
(Yeo),g + =g§'(}75 "‘Ysg + 2! §2 +)
V. o 7,0
+E'L(y +(ys}§+...)
+.YE.(D+°+£.§3+_(Z‘;.)_°3+ )3 2
3 b ¥a € 2! 3! g (26)

Substituting Equations (23) and after regrouping, Equations (25)

and (26) become:
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Oe)e =£r y

+ cE - uz ¥z
1 - 4¢ 1 -2v - 8¢ o V& + 2¢cE o)o
*\2e YTz Uy 2c =%

1 - 6¢c . B - 3vE - 18 o _-v - 3c o) £0
+( 3c + 6c " 6c & ) ()

ol o0 o0 00 00 o o
+ T \Ya¥s + VeVl + 29335 + v2¥e + Y2 () §)

... @7)
)%y = =% o$)ss

e

4 eV b ;;,‘; B D) 2 "-;f—hsé’y;

% (28)

o
atg =0, c=1, y3 =y. =y5 =0 (29)
and uf = 0 which is equivalent to the demand that n # 1.
With these conditions at £ = 0, Equations (25) and (26) finally

become

(30)

(s ),g =0

as a result to remove the singularity point.



20

(II1) The Shooting Method - Frequency Search:

In order to ensure a unique relation between @, the
adjusted amplitude parameter, and y, the frequency parameter,
we enforce the transverse displacement at the origin to take the
value of unity, Thus by fixing the amplitude parameter, we are
able to search for 1its corresponding frequency parameter in the

frequency domain. Hence an additional condition is introduced

1 =1 (31)
At this point the problem can be completely described as
a two-point boundary-value problem represented by the system of
Equations (22) with boundary conditions Equations (29), (31) and

(24); in a more compact form we have

i,g =HE, Vo)) - - 0<E<1 (32)

where Y,H are vector functions of six-dimensions, and A = y® is

an amplitude parameter, and boundary conditions:

1
b ¥() = ° (33)
0
0
. 0
BYQ) =|o (34)
0

where



100000
01000 O
=10 0 01 0 of
0000TL10
0 0
B=Jl0 0 Of

0 0 0 -v ¢

Eq'ns (33) and (34) serve to determine 7 unknown quantities y,...
¥s, and the particular frequency parameter 10 corresponding to a

given entity Q.
Instead of solving this non-linear two point boundary-value
problem we proceed to solve the much easier equivalent initial-
value problem as follows:
with initial conditions at £ = 0
1
0
e

1

(o]
[}
o
')
=
A
>
]
o

where K., L, and A; are guessedevalues and the rest of the initial

conditions are those corresponding to the boundary values at § = 0.

Substituting Eq'ms (36) into (32) and carrying out the integration
throughout the interval (0,1), should the outcome ?i(g,ki,ai) at

g =1 satisfy the condition (34), that is, if

21

(35)

(36)
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B ?(I,Ai,ai) ={lo (37)

then a solution to the problem is obtained and kf is the frequency

parameter corresponding to ai. The problem is now apparently
equivalent to that of finding a functional relation
A=y =6 (38)

which satisfies Eq. (37) for every Q.

Newton's Method is employed to obtain a solution to the initial-

value problem satisfying Eq'n (37); that is, if

0
B Yi(l.,Ga @).00) # |0
0
we replace the guessedcvalues wiFh
K K
=fu] +[E (39)
Maa B i

where [E]i is the correction matrix given by

b4 1
Y2

-1
(E}; =- (BJ,) "B %

Ya i,§=1 (40)

- (9
3, = (&Wﬂs})g .

Repetition of this procedure until the boundary conditions are met

@)

to within a required degree of accuracy will lead to a solution
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Starting with ¢ = 0, which corresponds to the linear problem
of free vibration possessing well known solutions in the isotropic,
constant thickness case, this method converges rapidly to solutions
in the linear ortnotropic, variable thickness cases. By gradually
increasing and incorporating parabolic extrapolation techniques, a
functional relation between the frequency parameter and the adjusted

amplitude parameter can easily be found in each case.

(IV) Comstruction of gy
Accordingly, taking derivatives of Eqs. (22) with respect

to K, L and A and setting

Wy va) =&
YQ) = % R OKS
YO) = % Y(9) = %{4
Y(®) = v vao = & “
¥(5) = v vap= &
¥6) = e vaz=- &



Y(13) = %%L
vas) = &
ras) = &
v(6) = Lo
van = &=
vas) = &

we have for 0 < g < 1

DY (1)
DY(2)

DY(3)

DY (4)

DY (5)
DY (6)

DY (7)
DY (8)

DY (9)

DY(10)= V, Y(7) +

= Y(2)

= Y(3)

Y(4)

v, Y(1) +§§~

24

- N

Y(19) S
- 9%

Y (20) S\
= OYa

Y{21) 3
= OYa

Y(22) n
e

Y(23) S\
Y(24) = oY

o\

v(2) +§a~ Y(3) + &

= T +§i [¥(3) ¥(5)

+ Y(2) Y(6)]

Y(®)

¥
oG

Y (8)

¥(9)

Y(10)

Yo

(42)

Y(5) + 32 Y(6) + = ¥(2) Y(2)

g

Y(8) + g} Y(9) + %‘a Y(10)

+‘E’5 [Y(9) Y(5) + Y(3) ¥(IL) + ¥(8) Y(6) + Y(2) Y(12)]
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DY (11) = Y(12)

_y v 2w
DY(12) Eg— Y(11) +-§—=’— Y(12) + 3 Y(2) Y(8)
DY(13) = Y(14)
DY(14) = Y(15)
DY (L5) = Y(16)
DY(16) = V, Y(13) + -;—’g- Y(14) + %’g Y(15) + -;-’&- Y(16)

+ 'gYE' [Y(L5) Y(5) + Y(3) Y(17) + Y(2) Y(18) + Y(14) Y(6)]

DY(17) = Y(18)

_ Y % 2, |
DY(18) = 2B Y(17) + 2% Y(18) +_ 2= Y@) Y(4)
DY(19) = ¥(20)
DY (20) = Y(21) .
DY(21) = Y(22)

DY(22) = V, Y(19) + %’g— Y(20) +§3 Y(21) +‘E’i Y(22)

+35 [y(21) Y(5) + Y(3) Y(23) + Y(2) Y(24) + Y(6) Y(20)]

g
DY(23) = Y(24)
DY (24) = ‘ég— 1(23) +Y2ves) + 22 y2) v@0)
g g
with initial values at € = 0
Y(1) =1.0
Y(3) =K
Y6) =1L (43)
Y(Q) =1.0
Y(18) = 1.0
for I=1,....24 except for

Y(I) =0 1=1,3,6,9, and 18.



and corresponding equations at § = 0

DY(1)
DY@)
DY (3)

DY(&) ' =

DY (5)
DY (6)
DY (7)
DY (8)

DY(9)

DY(10)

DY(11)
DY(12)
DY (13)
DY (14)
DY (15)

DY(16) =

DY(17)
DY (18)
DY(19)
DY (20)

DY (21)

n

Y(2)
Y(3)

Y(4)

3\ 27a

8h

Y(6)
0.0

Y(8)
Y(9)

Y(10)

g; v@) + ‘;gg [Y(3) Y(12) + Y(9) ¥(6)]

Y(12)
0
Y(14)

Y(15)

= Y(16)

3

Sh Y(13) +

= Y(18)

=0

Y(20)
Y(21)

¥(22)

27a

== Y(l) == 41_!.5 Y(3) Y(6)

[Y(S) Y(18) + Y(15) Y(16)]

26

(44)



pY(22) = D v(19) + s ¥(1)
8 8

+.§%? [Y(2L) Y(6) + Y(24) Y(3)]
(o]

DY(23) = Y(24)

DY(24) = 0
Simultaneous integration with initial conditions will yield values

necessary to construct the Jacobian at every step.

27
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EVALUATTON OF MAXIMUM BENDING AND MEMBRANE STRESSES

From the theory of pure bending, we deduce that the maximum
bending stress is

_ 6M
o=

hence we have maximum bending stresses in radial and circumferential

directions in the following respective forms:

B_ 6D v
cr__ﬁz-(w’rr+rw’r)
- 45
oB=-6D(-]*w +vw ) “
e B \r"r ‘rr
where
e _ b
12a55 (c-V° )  12a,, (e-V°)
(e = £ il P gDy =
h(r)-ho[l-m(a)] h (1-ng™) = b h
and
w = ax = aAg(€) sinyT T=‘;’2E
Since
Wmax=aAs(iE)
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and

= A
“rr a ggg
substituting these into (45) and upon simplifying we arrive at the

following equations for evaluating maximum bending stresses at every

point £:
B
&3201_5 _ h J\/CZ ( . v )
W 2(e-F) \Bgg Tt B
(46)
aascgaa hJa 8
= = - + v )
i 2(c-V) .\ “E
Similarly we have for maximum membrane stresses
u_N
cr h .
- : A7)
M_N
% "%
and by equs. (14), (47) becomes
M _
9 i
(48)
Mm_Lor
% " h
now since
¢ = afQE) sinyT
and
Vpax = al’p €) (49)



where

h FE)
= o
°®) e

gsubstituting equs. (49), (50) and its derivative into equs.

and simplifying, we have for maximum membrane stresses

M
aﬂﬂoraa - o F_
o (c-) Eh
o]
aaaﬁggg __a F
CA (c-V°) Eh

2%a

(50)

(48),

(51)

Obviously the origin of the polar cylindrical co-ordinates represents

removable singularity point, upon taking limiting process, we come

up with the following equations for evaluating stresses at the origins:

B
8330 & . {a - o) ~ aaacgaz
5 2(1-v) Zee e
M
8320 & o RO azaoga"‘
[ c-VvV h [

(o] o [+]

(52)



CASES STUDIED IN THIS REPORT

In this paper, the following axisymmetric solid circular plates
are investigated by this.method and the results are studied:
a) Anisotropic Constant Cross-section Plates of
c = 0.5, c =1, and c=1.5
b) Isotropic Variable Thickness Plates for
m= 0.1 and m = 0.3

¢) Anisotropic Variable Thickness Plates

m= 0.1
c=0.5

m= 0.3

m= 0,1
c=1.5

30
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GENERAL CONCLUSIONS

In studying the free harmonic vibrations of axisymmetric orthotropic
variable thickness solid circular plates clamped at the edges - their
frequency response curves, mode shapes, stress distributions and amplitude -
stress relations, quite a few conclusions can be drawn. And due to the
amazing regularities in the results, considering the non-linear nature of
the problem, these conslusions can be safely generalized to problems of
this class concerning anisotropic variable thickness plates which have
not been investigated in the present work.

(A) Frequency Response Curves:

In general, the frequency response airves for moderately large
amplitude deflections are smooth parabolic deviations from that of
small deflection theory. They exhibit the anticipated behavior that
the rate of increases in frequencies is increasingly greater for
larger amplitudes. Some relationships between frequency and the
material property constant c, frequency and the plate gecmetry
parameter m, and frequency and the combined effect of ¢ and m can
be established.

1) Effect of c on frequency:

As ¢ increases, i;e., the numerical value of the elastic con-
stant in the circumferential direction becomes greater than that of
radial direction; the frequency parameter increases, and vice versa,
But it is not a linearly proportional relation; it appears that the
rate of change in frequency due to changes in c is greater for ¢ < 1
than for ¢ > 1. However, the rate of change in frequency due to

amplitude increment is greater for ¢ > 1 than for c < 1,
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2). Effect of plate geometry on frequency:

The study conducted on thickness variation has been limited,
results on isotropic plates with different thickness variations are
readily accessible in literature, Nevertheless, it does reveal that
clamped plates with m < 1 have lower frequencies than that of con-
stant thickness and plates with m > 1 would have higher frequencies
as would be expected, The sensitivity of frequency to thickness
variation is quite noticeable,

3) Combined effect of material property and thickness variation
on frequency:

It is quite amazing that in spite of the complexity and non-
linear nature of the problem, the frequency responses come very
close to the superposition of orthotropic constant thickness plates
and isotropic variable thickness ?}atest In other words, the com-
bined effect of ¢ and m can roughly be approximated by the sum of
individual effects, It is also interesting to note that for thin
plates in common practice, the effect of material property has a
more dominant influence on frequency that the effect of thickness
variation,

(B) Stress Distributions and Stress-Amplitude relations:

The condition necessitated in the removal of singularity that
c has to be equal to unity at the center introduces discontinuities
at r = 0 for orthotropic plate stress distributions., In fact they
assume the corresponding values of the isotropic case at the center
while in the immediate neighborhoods the continuities resume., The

author chose to consider the physically more probable continuous stress
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distributions while keeping in mind the ficticious mathematical
singular point where the actual nature of the ratio of elastic
constants is unknown,

In moderately large deflection of plate, stretching had been
coupled with bending and thus produced the complicated non-linear
nature of the problem. However, as the results manifest, for small
magnitude, membrane stresses are usually insignificant in comparison
to bending stresses, especially the circumferential membrane stresses.
As the magnitude of amplitude increases, they gradually gain their
place with respect to bending stresses; this is particularly so for
c = 1.5 at the immediate neighborhood of the center of the plate.

It is worth noting that the shapes of stress distributions are pretty
much preserved as amplitude increases while the numerical values are
magnified. 1In all cases, maximum stresses are those of radial bending
and they occur at the clamped édgeﬁ of the plates.

1) Orthotropic constant thickness plates:

The magnitudes of stresses increase rapidly with larger values
of amplitude. The stress distributions are well ordered with
smallest ¢ having the greatest bending stresses at the edge and at
the center, Membrane stresses are relatively small except for
¢ = 1.5 in which comparable membrane stresses developed at the
center,

2) Isotropic variable thickness plates:

Plates ﬁith larger values of m develop higher stresses at the

edge and lower stresses at the center than those of plates with

smaller values of m. In all instances, membrane stresses are small



as compared to bending stresses and radial stresses are more
dominant than circumferential stresses.
3) Orthotropic variable thickness plates:

The stress distributions of these plates seem to exhibit the
superposed characteristics of orthotropic constant thickness plates
in that the stresses are greater in magnitude for small values of
¢ and larger values of m,

For ¢ = 0.5, the stresses are considerably higher than those
of ¢ = 1.5 and radial stresses are much more pronounced than cir-
cumferential stresses. And plates with larger m have higher
stresses at the edge and lower stresses at the center than the
corresponding stresses for smaller m, For ¢ = 1.5, the phenomenon
of the increasingly significant membrane stresses best illustrates
the need for considering the stretching of plate in those deflections

of the plate exceeding the plate's thickness.
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NOMEN CLATURE

Amplitude
Plate radius

Elastic constants

Edge boundary-value selection matrix
Center initial-value selection matrix

= ;LL ratio of elastic constants

22
= - Ea(r) Ea r R I
—iE%§ 2 -aZ ) 125 ) plate flexural rigidity
11 22 12
a h®
o
12( - a® )

Radial and circumferential normal strains
Normal strain components at the middle plane

Correction or error matrix

a

= Eaa'(c-\Jz)m normalized in-plane stress function
o

Shape functions of g

By rr\2
= ho[l-—E——- (;) ] plate thickness
o

Plate thickness at the edge and at the center

=1 - mg“ normalized thickness variation
Jacobian
Lagrangian function

Radial and circumferential bending moments per

unit length



Nr’ HS

o
In-plane radial and circuﬁferential forces
per unit length

Exponent of thickness expression

Kinetic energy

Time variable

Radial displacement

Strain energy due to stretching

Strain energy due to pure bending

Laterial displacement
Cylindrical co-ordinate in the undeformed
configuration
= (A % )2 revised amplitude parameter
o

=(EEE§— frequency parameter

Mass density of the plate
Circular frequency in rad/sec

Normal radial and circumferential stresses

Bending and membrane stresses respectively

= E}g Poisson's ratio
22

L dlmen51on1ess radial co-ordinate

(p )t dimensionless time variable

Dimensionless displacement functions associated

with u, w respectively

non-dimensional thickness coefficient
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= aAatp(g)sinavT in-plane harmonic stress
function

Shape function for stress function

-y

Partial derivatives with respect tor and t

Ordinary derivative with respect to §
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ABSTRACT

The present study is concerned with free, harmonic vibrations
of clamped, axisymmetric, orthotropic, solid circular plates of
variable thickness with moderately large deflection. A range of
orthotropism from 0.5 to 1.5, a thickness variation of the form

n
h = ho(l-mfi) ) and an amplitude range of 0 to 2ho have been selected.

The derivation of the two non-linear differential equations governing
the motion of the plate is based on the large deflection theory of
plates. The solution of the set of equations is obtained by the
shooting method. An initial guess utilizing the numerical values
from the linear small deflection problem for isotropic plate of
constant cross-section with clamped edges has been used to obtain

a starting puiﬁt. Frequency response curves and bending and membrane
stress distribution curves are presented for plates of various thick-

ness variations and various values of orthotropy.



