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Chapter 1 Introduction

1. Overview

As computers become more integral to daily lives, the integrity of the computer activities

becomes increasingly crucial. To that end there has been increased research into the area

of maintaining integrity in a computer environment.

The definition of integrity from the NIST Workshop on Integrity, January 1989 is:

The property that data, an information process, computer equipment, and/or

software, people, etc., or any collection of these entities, meet an a priori expecta-

tion of quality that is satisfactory and adequate in some specific circumstance.

The workshop and its related activities were held because there is a growing concern for

integrity of information stored in computers and in machine readable format on storage

devices. The threats to this integrity are numerous and serious ranging from those that

can be considered unintentional to those that can be categorized as malice with fore-

thought.

Most of the problems with integrity of data and programs can be categorized as uninten-

tional. The entering of incorrect data is probably the largest threat to computer integrity,

followed in a close second place by errors caused unintentionally. There is a growing

concem about threats to integrity from programs whose actions intentionally do not meet

their program's specifications, known as Trojan Horses. A Trojan horse is a piece of

code that is surreptitiously placed in a program in order to perform functions not adver-

tised by the program specifications. [MAE87] A type of Trojan Horse that is particularly

dangerous is a computer virus. In this research a virus is defined as a program that can



"infect" other programs by modifying them to include a, possibly evolved, copy of itself.

With the infection property, a virus can spread throughout a computer system or network

using the authorizations of every user using it to infect their programs. Every program

that is infected may also act as a virus and thus the infection spreads [COH84]. Because

viruses can spread so rapidly and have the potential to destroy the integrity of large

amounts of data an effective means must be found to counteract this threat to integrity.

This thesis describes research which copes with the problem of detection of virus infected

files using techniques developed to maintain the integrity of files of data.

1.2 Models of integrity

Several models for insuring the integrity of computerized files have been advanced.

Although the Biba model [BIB77] was introduced twelve years ago, the past three years

has shown an increased interest in the integrity area. The recently introduced Clark and

Wilson model [CLA87] [WIL89] has drawn particular interest. These two models, Biba

and Clark & Wilson are described as follows.

1.2.1 Biba

The Biba Model is based on the definition of integrity as a multivalued quantity, versus

the binary propeny of the integrity definition of the NIST workshop. With the Biba

model, data and processes are given an integrity label in a range defined for the system.

An integrity lattice for the system can be constructed from the integrity labels on the data

items. If an implementation of the Biba model meets the model's specification, that

implementation insures that a process can not reduce the integrity label and thus the

integrity of a file of data.



The strict Biba model is a dual of the Bell-LaPadula lattice security model. [HEN87] A

process in the Biba model is not allowed to write to data which have a higher integrity

label (corresponding to "no write down" property of Bell-LaPadula) and is not allowed to

read from data which have a lower integrity label (corresponding to the "no read up"

property of Bell-LaPadula). Thus, information in a lower integrity level cannot corrupt

information in a higher integrity level. Using a proof by induction, if data is in a valid

integrity state it can be shown that at all future times it will remain in a valid state assum-

ing a Biba model of integrity is imposed.

Biba also proposed two variants of his strict integrity policy, ring policy integrity and low

water mark integrity. With the ring integrity policy no restrictions are placed on the

reading of data, but the constraints on writing to an object are the same as the strict

integrity policy. Low water mark integrity changes the subject's integrity label to that of

the object's integrity label when the object's integrity label is less than that of the

subject's integrity label. [HEN87] There are also other variations of the strict Biba

integrity policy. [DEN86] [SfflSl] [BOY78]

There are several problems with the Biba model and its variants. Strict Biba does not

appear flexible enough to be useful in practical applications since these applications must

have read and write access to various system tables and internal data structures in order to

perform their functions. [HEN87] Another serious problem with a strict Biba integrity

policy occurs when it is combined witii the Bell-LaPadula security model. This combina-

tion causes isolation of data at lattice nodes to occur (this combination partitions systems

into closed subsets under transitivity). [COH84] Strict Biba also has no automatic

mechanism to incorporate new data into die hierarchy. When flexibility is introduced to



counter the constraints of the strict Biba model there is migration of data to a lower level,

as occurs with the low water mark integrity, or there is the problem of integrity corrupt-

ing mechanisms migrating across integrity levels. [COH84] Managing a Biba type

implementation is also difficult. Most lattice model (Biba) designs to date have consid-

ered 64 categories to be a large number. [KAR88] Large systems will have thousands of

distinct categories because to effectively limit the operations between a subject and

similar objects that must be treated differentiy will require a separate label. Managing

large numbers of categories is not unique with Biba systems and will extract performance

penalties on all general integrity policies.

1.2.2 Clark & Wilson

The Clark & Wilson model insiu^es the expectation that the integrity of systems and data

remain predictably constant and change only in highly controlled and structured ways.

Though the original Clark & Wilson paper [CLA87] was expressed in terms of nine rules,

Lee captured the essence as:

All data (of interest) must be modified by, and only by, authorized

well-formed transactions where the principle of separation of duties is

used to limit who can perform what transactions and make what

changes to the system. [LEE88]

With the Clark & Wilson model internal consistency and good correspondence to real-

world expectations for systems and data are provided. [WIL89] Correspondence to real-

world expectations is accomplished by Integrity Verification Procedures (IVPs). These

procedures check the model formed by data in the computer system against the real

world perception of the model. The IVP not only provide correspondence to the real-

world but also checks the internal consistency of the data. After an IVP the data has



integrity. An example of a practical IVP is physically counting the inventory at a loca-

tion and checking that the computer system designed for tracking that inventory corre-

sponds to what was physically found.

A crucial second feature of the Clark and Wilson model is controlling change. Between

IVP execution on a set of data any changes to the data must be strictly controlled in order

to maintain internal consistency and thus integrity.

Controlling changes can take four forms determined by the structure and use of the data:

prevention of change, attribution of change, constraint of change, and partition of change.

For data that does not change in the real world the prevention of change is desirable.

Using the Clark & Wilson model, if it can be shown that the data was correct at one time

and has not been changed then the integrity of the data is maintained. An example of a

file where the use of prevention of change is appropriate would be a file of executable

programs that rarely change.

For unstructured data the integrity of data can be determined if the data and author (origi-

nal and of changes) are bound in an unforgeable way. If the data has been changed the

integrity can be maintained by binding the history of the changes and the authors of those

changes to the data. An example of data appropriate for the control mechanism of attri-

bution of change would be memos or reports.

Highly structured data, such as accounting records, should only be modified in very

controlled manners. If only certain programs and users are allowed to modify the data,

this method is called constraint of change.

5



In order to prevent fraud, the changing of some types of data should require that the

change be authorized by two different people, i.e. partition of change. Money transfers

by wire should be controlled by this separation of duty.

1.3 Prevention of Change

This section will elaborate on the concepts involved in the prevention of change as it is

the detection of change that we wish to focus upon. To prevent change, the system must

either prohibit change through access control or identify that change has occurred and

take appropriate action.

1.3.1 Access Control

It is possible to design a system in which there is a category of data that should not be

changed. The prevention of modification is accomplished by some form of an access

matrix model. The access matrix model consists of a triple (Subject, Object, Access

Matrix). Subjects are active entities. Objects are protected entities to which access must

be controlled, and the Access Matrix is a matrix in which rows correspond to subjects and

columns correspond to objects, where a entry stores the access rights of the subject to the

object. [MIZ87] Rights are the operations that the subject can perform on the object.

Since the matrix tends to be very sparse (i.e. most subject - object pairs have no rights)

the matrix typically is implemented as a list of subjects that have access rights to an

object (Access Control List) or as a list of objects to which a subject has rights (Capabil-

ity Lists). The two methods yield major differences in the type of protection provided.

Access Control Lists (ACLs) are the most common form of integrity (and security)

control. It is a column-based view of the Access Matrix derived from the nonempty



entries of an object. An object has a list of pairs (subject, right) indicating the subjects

that have access to the object and the rights for each subject. Rights typically are read,

write, and execute. If a subject, s, tries to access an object, the list of access (access

control list) for that object is searched. If an entry for subject, s, does not exist or if it

does exist but the requested rights do not occur in that entry the request is refused. Typi-

cally a subject acting on the request of another subject obtains the rights of the originat-

ing subject. For example, a user can execute a compiler which then will have all the

rights of the user.

ACLs suffer problems in regards to integrity in both implementation and theory. The

implementation is typically very coarse-grained in the size of objects and the small

number of rights that can be granted. ACLs normally are applied at the file level, so they

cannot maintain integrity for a part of a file that needs to be treated differendy for access

purposes. This is compounded by the small number of rights that are used. The combi-

nation of Read and Write are sufficient to accomplish all features of a computer system,

but if only these are used (or even with the addition of execute) then the user may not be

sure that data is modified in a manner maintaining integrity. The problem with implem-

entation is not one of ACL theory. It should be possible to decrease the size of objects

which are protected and increase the number of rights available but at an increase in the

cost of storage and efficiency.

The theory of the ability to transfer rights is a much more serious flaw with respect to

integrity. Programs operating on a user's behalf have all the rights of the user. Any data

that is accessible for change by the user is accessible for change by the program executed

for the user. This accessibility makes ACLs very vulnerable to any program that per-



forms a surreptitious or unadvertised function, i.e. a Trojan Horse. If a Trojan Horse

resides in tlie C compiler it then has tiie access rights to all the files to which the the user

has access rights. Thus it can modify or delete any objects to which the user has write

access.

The alternative form of the Access Matrix viewed from a row basis is the Capability List.

A subject has a list of objects it has capabilities (rights) to which defines the domain of

the subject. [MIZ87] When an object is invoked the system determines if it is in the

capability list of the subject and, if so, allows the operation to continue. The implementa-

tion of Hydra [COH75] allows rights amplification which handles abstract data types

easily. A good implementation of Capability Lists provides an excellent means of integ-

rity control because it naturally provides a mechanism for each program to be executed in

the smallest possible domain. [MIZ87] Due to other considerations such as the concept

of ownership there are very few systems using Capability Lists.

There have been attempts to provide die integrity protection of Capability Lists without

the drawbacks of Capability Lists. Two examples are the Four-tuple ACL [MIZ87] and

the Access Control Triple [WIL89]. Witii tiie Four-tuple ACL, each subject in an ACL

entry is represented by a four-tuple of user ED, class ID, module ID, and exported proce-

dure name. This effectively limits the domain available for Trojan Horses to the same

degree as the Hydra system. It also provides control over users because users can only

view or change data through the levels of the subject IDs. A simpler concept is the

Access Control Triple which binds user, program and data. Flexibility would not be as

great as in a Four-tuple ACL since fewer grouping are possible, but implementation

would be easier



1.3.2 Checksum Techniques

Another method of insuring that data has not changed is to attach additional information

that at some level of confidence assures that the data has not changed. This is typically in

the form of a checksum. A checksum, or digital signature, is any fixed length block

functionally dependent on every bit of the message, so that different messages will have

different checksums with a high probability. [DEN82] A checksum can be evaluated on

two features: the ability to prevent forgery and the computational complexity of the

algorithm that creates it. Checksums can be determined in two basic manners: using

cryptography or using a deterministic (noncryptographic) algorithm.

Cryptography is defined as the methods and process of transforming an intelligible

message into an unintelligible form and reconverting the unintelligible form into the

original message through a reversal of the process of transformation. The original mes-

sage is referred to as the plain text and the enciphered message is called the cipher text.

A cipher system consists of the following two items: 1. A set of rules that comprise the

basic cryptographic process (called the general system, is agreed upon in advance, and is

constant in nature), and 2. A key, which may be variable. [KAT73]

Converting plain text to cipher text is known as encryption, while converting cipher text

back to plain text is known as decryption. The process can be described by the transfor-

mation: plaintext —> cipher text—> plaintext or in other terms: f(plain text, encryp-

tion key) = cipher text; f(cipher text, decryption key)=plaintext. If the encryption key is

not equal to the decryption key the cryptographic system is known as a public key

cryptography system. If the encryption key is the same as the decryption key then the



cryptographic system is known as a private key cryptography system. When the keys

are different it is possible to broadcast or distribute (make public) the encryption key for

other parties to send messages that only the parties knowing the decryption key can

convert back to plain text. With private key systems since both the encryption and

decryption keys are identical the key must be kept secret (or private) in order to prevent

unauthorized parties from deciphering the cipher text.

Cryptographic checksum techniques use encryption in some manner to calculate the

checksum. Typically a form of public key algorithms like the Rivest Shamir Adleman

(RSA) scheme [RIV79] or private key algorithms like Data Encryption Standard (DES)

[DEN82] in feedback mode are used to produce a 32 to 128 bit value called the check-

sum. The checksum can be stored with the data that was checksummed or in a safe

location (safe from surreptitious modification). Using cryptographic checksums in which

the checksums are stored separately is more secure in terms of forgeability. Since a

cryptographic checksum requires a key, the ability to forge a cryptographic checksum is a

two step process when the checksum is stored separately. First, the key must be deter-

mined, and second a different set of data (or modification of the same data), with the

same checksum must be found to substitute in place of the real data. If the checksum is

stored with the data, or in a modifiable location, then only the key must be known since

any data with a legal checksum can replace the original data.

The use of cryptographic checksums in which the checksums are stored separately is

more secure in terms of forgeability. The use of cryptographic checksums with the

checksum stored with the data must be secure from known plaintext attacks and the key

management must be secure. If the key is known to an attacker then it will take on the
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average 2"'' mutations of the desired forgery to insert the forgery using the brute force

attack described in section 1.3.3.1, where n is the length of the checksum in bits. That is,

the checksum of each mutation has a probability of 2" of matching the stored checksum,

and there is a 50% chance of a match after ln(2)*2""' mutations. In order to increase secu-

rity the file can be checksummed and then encrypted to attempt to foil a plain text attack.

The encryption of the file every time it is used probably would be considered undesirable

on all but the fastest computers.

The drawback to cryptographic checksums is the high degree of Computational complex-

ity of the algorithms. Encryption typically is a very computationally complex activity

leading to very slow checksum computation. [HAR85] Implementing a secure crypto-

graphic checksum using RSA can take minutes or even hours for data of a reasonable

length. Cohen describes a hardware implementation with a speed of 6,500 bits/sec.

[COH86] This slow speed is inadequate for practical use.

DES is less secure but much faster, especially if implemented in hardware. However,

DES has the problem of private key management. Private key management is required

since the same key is used to encode and decode a message. Therefore the key can not be

stored where it can be accessed by an attacker. To remove access from an attacker

implies that tiie checksum must also be inaccessible to the checksum routine. The practi-

cal implication of this is that the key must be entered each time the checksum routine is

executed.

Noncryptographic checksums do not provide the same degree of security from forgery as

cryptographic checksums with the checksum stored in a secure place. A noncryptogra-
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phic checksum can be considered equivalent to a cryptographic checksum with a dis-

closed key (keys in public key encryption). Since the noncryptographic algorithm does

not need to be designed to prevent discovery of the key, typically such algorithms are

much less computationally complex. Being computationally less complex translates into

a much faster operating speed.

1.3.3 Attacks against Checksums

In this research three types of attacks by a forger on a set of data and its generated check-

sum are considered. All three attacks assume that the attacker knows the checksum

algorithm, can change the set of data, and can read the checksum. The three categories of

attacks, which are discussed below, are the brute force attack, the birthday attack, and the

trap door attack.

1.3.3.1 Brute Force Attack

A brute force attack involves generating many different sets of data until a set of data is

found that has the same checksum as the original set of data. Formally, given a set of

data X and a checksum algorithm f(x)=y; determine an x' such that f(x')=y. The set of

data, x', which has the same checksum as the original set x, is insened in place of the

original. Because x' has the same checksum as x, it is not detected as a forgery. A more

likely alternative to the generation of many sets of data is for the forger to insert the

desired data into the original set of data then mutate the rest of the original data until a

checksum match is found. This mutation technique allows the forger to change only

small sections of the data while keeping the rest of the data unchanged. Thus the user of

the data may remain unaware of the forgery because most of the data used is unchanged.

If the checksum algorithm provides an even mapping, described in section 2.1.1, then a

12



forger needs to generate on the average 2"'' sets of data, where n is the number of bits in

the checksum, before a checksum is found which matches the checksum of the original

data. For instance, a checksum with 16 bits would require a forger to generate 32,768

sets of data before there is a 50% probability of finding a checksum match.

1.3.3.2 Birthday Attack

The birthday attack is a forgery accomplished by the originator of the data. A birthday

attack involves generating many variations of an original set of data, the corresponding

checksums and many variations of the set of data to be inserted and their checksums.

Since any pair of original data and forged data provides a successful forgery the number

of variations needed to be generated is greatiy reduced. A description of the birthday

attack:

1) The attacker secretiy prepares a number of subtie and inconsequential changes to the

valid set of data and calculates a checksum for each one.

2) An equally large number of variations of bogus data sets is generated along with the

checksum for each one.

3) The checksums generated in step 1 are compared against the checksums generated in

step 2.

4) If no match is found additional variations are generated until a match is found.

5) The real data set which shares the same checksum with a bogus data set is placed on

the system. At a later time the bogus data set with die same checksum is substituted.

The birthday attack will succeed by producing a forgery on average after 2"^ checksums

are generated compared witii 2""^ for a brute force attack described in section 1.3.3.1. For
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a 16 bit checksum the number of checksums necessary to be generated on average for a

birthday attack is only 256, compared with 32,768 for the brute force attack.

1.3.3.3 Trap Door Attacks

A trap door attack is a variation of the brute force attack. The possibility of a trap door

attack occurs when the forger can invert the checksum algorithm to determine a set data

that produces the same checksum as the original data. Using the checksum algorithm

f(x)=y a trap door exists if it is possible to determine a function g(y) = x' where x' is one

or more sets of data satisfying f(x') = y or equivilently, g(f(x))=x. This g() is known as

the inverse of f(). If g(y) can be determined then the checksum algorithm is susceptible

to a trap door attack since the forger could generate sets of data that match the checksum

of the original.

Trap door attacks are much less expensive in terms of computation effort than brute force

attacks. A forgery is generated each time the inverse function is used. It is possible to

not only generate forgeries, but to analyze those forgeries for their desirability as forger-

ies. If an attacker wishes to insert a bit pattern into a set of data at any location he would

use this inverse function to generate forgeries with the same checksum as the original

until the desired bit pattern occurred in one of the forgeries. Then the attacker would

insert that forgery in place of the original data.

It is very difficult to show that a trap door does not exist since there is no standard

method for determining if a trap door exists.
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1.3.3.4 Comparison of Attacks.

Of the three attacks: brute force, birthday, and trap door, the trap door attack is the most

serious. As discussed, the birthday attack is not a genuine threat in the case where the

author of data is trusted. The brute force attack is good for a benchmark for general

forgery, but the effort to generate a single forgery is high and the effort to generate a

forgery that is useful to the attacker is very high. In contrast, the trap door attack, once a

trap door is determined, is a very serious threat. The effort to generate forgeries is small

compared to the brute force attack and the g(y) function can be used to generate possible

forgeries until a virus is formed. Any checksum algorithm against forgery should be free

from trapdoors.

1.4 Viruses

1.4.1 Description

A virus is a program that can 'infect' other programs by modifying them to include a,

possibly evolved, copy of itself. [COH84] A virus typically has the following capabili-

ties:

- identification - it can identify other files which can be modified.

- infection - it can modify zero or more of the files identified in any execution.

- action - it can take an action. The option to take an action and what action to take

can be based upon the value of a trigger which is usually the satisfaction of a logical

expression often based on external information, e.g. the date.

Viruses may have a "time bomb" feature such that when a logical expression is met then

a specified action is taken. Such actions in recent viruses have ranged from displaying a

message of world peace on tiie screen to reformatting tiie disk.
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A typical virus exists as a code segment usually as the first part of a useful program. As

the useful program is executed eventually the virus is executed. When the virus code

segment is executed it identifies possible programs to infect (replicate itself into) then

decides if it chooses to insert/append a copy of itself into the machine language code of

one or more of the identified programs. When one of the newly infected programs is

executed the insertion process is repeated. With the infection property, a virus can spread

throughout a computer system or network using the authorizations of every user using it

to infect their programs. Every program that gets infected may also act as a virus and

thus the infection spreads [COH84]. The trigger mechanism of the virus is executed as

pan of the virus code segment. The trigger determines what additional action the virus

takes. For example, on any Fridays that also fall on the 13th of the month all the files

accessible to the virus are erased.

In an attempt to hide the existence and/or spread of a virus, the designers can design more

complex viruses. Some of the features of more complex viruses include: insuring that

files ah-eady infected are not reinfected, not infecting additional programs every time the

host code of the virus is executed, mutating the code of the virus but with the desired

functionality preserved, and searching for threats to the virus and disabling those threats.

Most current viruses appear to be relatively simple, but in the future more complex

viruses with some or all of the features mentioned above will present threats. Though

advanced viruses will present formidable threats they must draw on the resources of the

computer system where they are running. Thus, viruses do not have infinite resources

available to them to provide defenses or break checksum detection techniques. This lack

of infinite resources makes it possible to use noncryptographic checksums to tell if a

16



program has been infected. Otherwise, if the virus had infinite resources, the system deg-

radation would call attention to the virus and speed its eventual eradication by system ad-

ministrators.

1.4.2 Current means of control

As expected, methods of protecting data from modification also provide protection from

viruses. There are several methods of protecting files against viruses. These include:

access control, virus filters, snapshots, runtime models and encryption.

Access control can do much to limit the spread and damage caused by viruses. Specifi-

cally, Capability Lists, or systems with similar benefits, provide the most comprehensive

protection from viruses. In a Capability List system viruses are essentially limited to

only the domain in which their host program is allowed to execute. Unfonunately,

capability lists exist only on a few computer systems. Access Control Lists are the

dominate form of access control protection. Access Control Lists do not prevent the

spread of viruses because of the large domain in which the programs operate. On a

typical ACL system a program being executed by a user has the same rights as that user.

Thus, a program not owned by but executed by a user can spread a virus to the user's

files. Even ACL systems designed for security can allow viruses to spread [COH84].

A virus filter is a program that takes a suspect program and determines if the suspect

program contains a virus. Deciding whether a program contains a virus is equivalent to

the Halting Problem [COH84]. Therefore, writing an all encompassing virus filter is im-

possible.
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It is possible to write a virus filter program to determine if a particular bit pattern indica-

tive of a certain virus exists in a given program. All current virus filters work using this

method. The drawback to this method is that the bit pattern of the virus must be known

in advance. These simple filters will not detect any new viruses or any old viruses that

have mutated.

A different type of virus filter would be able to separate programs into three classes:

those programs that contained viruses, those programs that do not contain viruses, and

those programs that the filter is not sure if the program does or does not contain a virus.

Programs that may have a virus would then need to be examined by other methods. Such

work will probably be system dependent and is at least five to ten years away.

By recording the state of the file system and examining these "snap shots" in conjunction

with auditing records, it is possible to tell if files are being modified without permission.

Such techniques can be used for virus identification after detection, but are currently not

feasible for virus detection.

The runtime models for virus detection are Program Flow monitors and N-Version

programming. [JOS88] A program can be uniquely determined by program trace infor-

mation as it executes. The trace information is generated at compile time and checked

against the executing program by a program flow monitor. In order for this method to

work it requires a change in compiler design in order to calculate this trace information.

There is also a significant runtime overhead.

18



N-Version Programming consists of executing several copies of a program simultane-

ously and followed by comparison of the outputs. This method will detect a virus if a

virus has been inserted into some but not all of the copies of the program. This will not

protect against fast spreading viruses where all of the copies of the program are infected.

There is also a corresponding increase in overhead when compared to a single execution

of the program.

Encrypting all files and only decrypting on need with a password unavailable to viruses

will stop the spread of a virus. When an infected file is decrypted, the original program

will be changed most likely causing a loss of functionality (especially when using cipher

block chaining, see section 2.3.3.2). For frequendy executed programs encryption will

involve a significant increase in overhead due to the computational complexity of encryp-

tion techniques.

1.5 Problem Statement

The Clark & Wilson model appears to be the most promising approach to maintaining

integrity in the commercial world. The area of the Clark & Wilson model to be used in

this thesis is the prevention of change of a file as described by Clark and Wilson.

The United States Department of Defense has published a criteria for rating systems in

regard to confidentiality in the Trusted Computer System Evaluation Criteria (TCSEC)

[DOD85] . This document is commonly known as the Orange Book. The TCSEC

provides seven levels of ratings for the ability of systems to maintain confidentiality.

The ratings range from A-1, which is a verified design, through D which provides mini-

mal protection. Though confidentiality does not automatically translate into integrity.
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there are many common features. Particularly, confidentiality does not protect against

viruses [COH84].

The access control implemented on most systems provides weaker protection than the

protection in the Orange Book rating of A or B. This gap between practice and the

standard provides many opponunities for the hidden destruction of integrity. The number

of commercial systems far outnumber the number of highly secure military and national

systems and to date there has been less concern with the commercial system. This thesis

concentrates on the commercial systems. Most of the commercial systems have some

form of limited access control. An additional problem with commercial access control

is that security was not considered a highly valued design criteria, thus the implementa-

tion of security tends to be less than desirable. To maintain reasonable confidence that

integrity is maintained, both of these problems must be solved. In the foreseeable future,

access control does not offer an adequate method to provide prevention change protection

for commercial systems.

The threat to preventing change in data items is that an attacker can change the data

without the user knowing it has been changed. When such a switch has occurred the user

will believe the data has integrity when it actually does not. This deception occurs when

the original set of data has the same checksum as the changed (or new) set of data in-

serted by the attacker. The attacker can either have legitimate access to change the data

(but wishes to disguise the fact the data has been changed) or the attacker can be a third

party who wishes to insert the forged data. The case of an attacker having legitimate

access to change the data is known as a "Birthday Attack" which is described in section

1.3.3.2. This thesis is only concerned with cases where the attacker does not have legiti-

mate access to change the data, i.e. a third party attack.
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In the field of cryptography it is assumed that the attacker has unlimited current state of

the art resources to employ against the encryption. This thesis does not make that as-

sumption. Instead, it makes the assumption that reasonable resources will be expended to

discover a set of data that advances the purpose of the attacker and produces the same

checksum. The use of unlimited resources is unreasonable economically and, in addition,

would call attention to the attack and trigger appropriate action to be taken by system

authorities.

The problem this thesis will solve involves the testing of checksumming methods for use

as deterrents to the integrity threat posed by viruses. General methods for constrution

and testing will be developed along with developing checksum algorithms secure against

viruses. The checksum algorithms to be used are variations of the QCMDCV4 [JUE86]

algorithm. This algorithm and the modifications to it created for this thesis will be dis-

cussed in Chapter 2. These algorithms will be tested on DEC VAX 1 1/780, AT&T 3B2,

and Harris HCX-9 systems and used to calculate checksums on a relatively large number

of programs. The results of the checksumming will be analyzed to discover the effi-

ciency and effectiveness of such methods. An implementation of one of these algorithms

will be demonstrated using the MINIX operating system.

This remainder of this thesis is organized as follows:

Chapter 2. Error Detection with Checksums.

Chapter 3. Testing of checksum algorithms.

Chapter 4. Implementation considerations.

Chapter 5. Conclusions and further research suggestions.
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Chapter 2 Error Detection with Checksums

This chapter discusses the protection provided against errors in general and against

forgeries and viruses in particular of checksum algorithms. The discussion includes a

general description of checksums, features of checksum algorithms including those

providing protection against forgery and viruses, and methods of constructing checksum

algorithms.

A checksum, or digital signature, is any fixed length block functionally dependent on

every bit of the message, so that different messages will have different checksums with a

high probability [DEN82]. Checksums are used to detect changes or errors in messages

or sets of data between the current time and the time they were created. A checksum on a

set of data is generated by a checksum algorithm. Examples of checksum algorithms

include Cyclic Redundancy Codes (CRC) used in networks and cipher block chaining

using the Data Encryption Standard (DES),

2.1 Features Required of General Checksum Algorithms

Good general checksum algorithms, in order to detect errors, produce checksums which

have the features of even mapping, overdeterminism, and permutation sensitivity. These

features are necessary in order to detect errors introduced in a set of data. [JUE86]

2.1.1 Even Mapping

Even mapping refers to the uniformity of the distribution of checksums generated by a

given population of programs. The even mapping of sets of data to checksums exists if
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the probability of generating any given checksum is approximately equivalent to the

probability of generating any other checksum over the set of all possible programs to be

checksummed. One of the goals of a checksum algorithm is that given two sets of data A

and B with checksums, it is desired that the checksum of A and the checksum of B be

identical if and only if the sets of data A and B are themselves identical. [JUE86] Since

there is many-to-one mapping from sets of data to checksums (the sets of data can be any

length while the checksum is a fixed length block, and thus there are many sets of data

for every checksum) the probability of two sets of data having the same checksum should

not be significantly different than 2- where n is the number of bits in the checksum. A

checksum algorithm which exhibits even mapping allows on the average ln(2)* 2"-* sets

of data that have errors or changes to occur before a set of data that is in error or has been

changed is judged not to have an error or not to have been changed (probability of 2")

.

2.1.2 Overdeterminism

An overdetermined checksum algorithm is an algorithm where the resultant checksum is

a function of all the bits of the set of data being checksummed. If a checksum algorithm

does not provide this overdetermanism then errors that occur in bits that do not affect the

checksum would not be detected by the checksum. Overdeterminism in a checksum

algorithm is crucial if errors are to be detected as dictated by the even mapping feature.

2.1.3 Permutation Sensitive

A checksum algorithm is permutation sensitive if it produces different checksums for

each permutation of the data elements. The permutation sensitive checksum algorithm

operating on a set of data ABC produces a different checksum than the algorithm operat-

ing on permutations of that data, i.e., ACB, BAC, BCA, CAB or CBA.
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2.2 Forgery

General checksum algorithms are designed to detect errors or bursts of errors that occur

on a random basis. If an attacker knows the general checksum algorithm, it is relatively

easy to surreptitiously insert a different set of data (a forgery) which, when using the

same checksum algorithm, generates the same checksum. The two factors that increase

the protection level of checksum algorithms against forgeries in general and viruses in

particular are the length of checksum and the difficulty of inversion of the checksum

algorithm (i.e. not having trap doors).

2.2.1 Length of the Checksum

The length of a checksum is defined as its length in bits. The checksum should be of

sufficient length such that the cost of generating enough variations to find a suitable

forgery (brute force attack) is unacceptably high. On the average the generation of 2"'

variations is necessary to produce a set of data for forgery. [JUE86] The length of the

checksum is the primary deterrent to brute force attacks.

2.2.2 Nonlnvertable Algorithms

A nonlnvertable algorithm, described in section 1.3.3.3, is a function that cannot be

inverted. Thus, given a checksum and the checksum algorithm, an attacker cannot gener-

ate an algorithm that produces sets of data that, when taken as the argument of the check-

sum algorithm, result in the original checksum. If a checksum algorithm cannot be

inverted then it has no trap doors and is not susceptible to a trap door attack.

2.3 Construction

The general techniques used to construct checksums are similar to those used in con-
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structing ciphertext. The techniques, described below, are substitution, transposition, and

feedback.

2.3.1 Substitution

Substitution involves replacing one block of data of the plaintext with a corresponding

block from the ciphertext alphabet. If the message is in the plaintext alphabet {a^,, a,, ...,

a^J then the corresponding ciphertext alphabet is (fCag), fCa^), ..., f(a^.i)}, where f() is a

one-to-one mapping from plaintext blocks to ciphertext blocks. A simple example of

substitution is to exclusive-or a constant to each character of the plaintext message to

arrive at its ciphertext equivalent.

2.3.2 Transposition

Transposition is the rearranging of bits or characters according to some scheme. Trans-

position was classically done with aid of some type of geometric figure. [DEN82] An

example given in Denning is the permutation of the characters of the plaintext with a

fixed period d. A plaintext message M=mj ... m^
j
m^ m^^j ... m^^ ... is transposed into the

ciphertext message m^^^^ ... m^^^^ m^^^^j, ... m^^^^^^ ... . For example, suppose for d=4 the

permutation is [DEN82]:

i: 1 2 3 4

f(i): 2 4 13

and for message M=RENA ISSA NCE
and the transposition: EARN SAIS CNE
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2.3.3 Feedback

Feedback is the use of previous information in the computation of the ciphertext of the

current block. This feedback mechanism can be expressed as Y.=f(g(X.),Y. ,,Y. ,...,Y )

where Y is the ciphertext for block i, g() is the encryption function, f() is the feedback

function, X. is die plaintext for block i, and Y^ is an initialization vector. Since the

ciphertext of die last block contains information on all die previous blocks, the last block

can be used as die checksum. The two most prevalent methods using feedback are

Cipher Feedback Mode and Cipher Block Chaining which are discussed below along

with non-linear feedback.

2.3.3.1 Cipher Feedback Mode

In Cipher Feedback (CFB) mode, ciphenext is fed back into die algorithm to generate a

cryptographic bit stream, Y. A bit stream, Y^, is used initially until there is cipher text to

combine widi die plaintext bitstream. Y is a function of k previous bits of die output. To

obtain the ciphertext, Y, die plaintext X. is added modulo 2 to Y.^. [JUE83] i.e. Y. = X. '^

Y.
j^.

The bit stream Yi may

be shifted and then encrypted

to enhance the security of the

resultant bit stream.

Cipher Feedback Mode (CFB)
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2.3.3.2 Cipher Block Chaining

In the Cipher Block Chaining (CBC) mode of operation successive blocks of ciphertext

are defined as: Y.=f(X. ^ Y. j) where Y^ is the initializing vector and ^ indicates bit-by-bit

modulo 2 addition (exclusive-or).

Cipher block chaining is more efficient than CFB in that it uses a single execution of the

block encryption algorithm for each block.

X.

'

'

'

'

1

' Yi

Initialization

r

i^^ J

)

1

'

Cipher Block Chaining (CBC)

2.3.3.3 Non-linear Feedback

A nonlinear function is a function, f(), where x/f(x) is not equal to a constant. A feedback

function, f(X.,Y. j,Y. 2...,Y^=Y., which is nonlinear provides positional dependance

[JUE83], i.e. permutation protection. Using non-linear feedback provides, but is not

always sufficient, a metiiod for constructing a noninvertable checksum algorithm. An ex-

ample of a non-linear feedback function is: Y.=(X.+Y.^)^ modulo N, where N is a con-

stant. The checksum is the ciphertext of the last block, Yn. Note tiiat the addition of

non-linear feedback produces a dependency of the checksum on every bit of the plaintext.

[JUE83]

27



2.4 Algorithms

Using the methods of construction discussed in section 2.3 several checksum algorithms

are presented in this section. These checksum algorithms fall into two categories:

cryptographic and noncryptographic. Cryptographic algorithms require additional infor-

mation, in the form of a key, to determine the checksum algorithm.

2.4.1 Cryptographic Algorithms

A cryptographic algorithm is an algorithm which requires additional information (known

as a key) to be used for encryption. The role of keys will be discussed below along with

examples of different types of encryption.

2.4.1.1 Keys

The function of the key is to hide the exact algorithm used from attackers. Hiding the

algoritiim allows the results of Uie cryptographic algorithm (either the ciphenext or the

checksum) to be stored in a location which can be modified by an attacker. The attacker

concentrates his/her efforts on determining the key to die algorithm, since, if the key is

known, then any set of data and its checksum can be used as a forgery. In this scenario

die legitimate user of die data generates a checksum with die cryptographic algoritiim and

compares it to die stored checksum Gocated in a modifiable location). Since the check-

sum of the forgery matches die stored checksum the legitimate user accepts the forgery as

valid.

Cryptographic algoridims must protect die identity of die key even when an attacker

knows die general cryptographic algoritiim and has a copy of plaintext and its corre-

sponding ciphertext (plaintext attack). Thus, die function h(p,c)= k, where p is the
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plaintext, c is the ciphertext, and k is the key should be computationly hard to determine.

The fact that the inversion function, h(), needs to be computationly hard to determine,

forces cryptographic algorithms to be computationly complex and time consuming to

execute.

The alternative to storing the cryptographic generated checksum witii a hidden key in a

modifiable location is to use a cryptographic algorithm with a hidden key and store the

checksum in a location diat is not modifiable by the attacker. The attacker then would

need to determine the key before attempting any of the attacks described in section 1.3.3 .

This method is more secure for identifying changes in a set of data than using the power

of cryptography alone.

2.4.1.2 Examples of Cryptographic Algorithms

The Rivest, Shamir, Adleman (RSA) [RIV79] cryptographic algorithm is a substitution

cipher based on computing exponentials over a finite field. The RSA algorithm with

cipher block chaining can be used as a checksum algorithm. The RSA algorithm is a

patented public key encryption method based on the difficulty of factoring large numbers.

The method has the property such that C=M'= mod n and M=D<' mod n with the prop-

erty that ed mod phi(n) = 1, where M is the message, C is the ciphertext, e and d are the

keys, n is a large prime number dependent on e and d, and phi(n) is the Euler totient

function.[RIS79] The Euler totient function, phi(n), is the number of elements in the

reduced set of residues modulo n. Equivalentiy, phi(n) is the number of positive integers

less than n that are relatively prime to n. [DEN82]

RSA with large keys is very secure; key lengths of over 1 10 digits can be considered

secure at this point in time. Using a plaintext attack the computations are on the order of
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exp(sqrt ( In (n) In (In (n)))). [DEN82] Since computational complexity is of the order

of O(n^), key length is crucial to both computational intensity and security. [USE89]

The disadvantage of using RSA as a checksum algorithm is the large computational

intensity of calculating a checksum. This computational complexity precludes its use for

checksums on all but the fastest computers.

Cohen [COH88] suggested a method to reduce the computational complexity of using

RSA for checksums. Instead of encrypting each block of data, Cohen suggested first

breaking the data into larger fixed size segments. Each segment is reduced in size by

using modulo division with a large prime. RSA with cipher block chaining is then

applied to the reduced segments. The last block of ciphenext is used as the checksum.

This method reduces the computational complexity to the computation complexity of

RSA for creating ciphertext because fewer RSA block encryptions are necessary.

Cohen's original method illustrates the difficulty of detecting and preventing trap doors.

In some instances, the checksum did not depend on certain parts of the file making it

possible to determine a set of programs that had the same checksum [COH88]. Cohen

has subsequently published a revised algorithm which corrects this problem. [COH88]

The data encryption standard (DES) was the official scheme approved by the National

Bureau of Standards [NBS78] in 1978 to be used by federal departments and agencies for

the cryptographic protection of unclassified computer data. The DES uses a block cipher

method that includes a product cipher on each individual block. Formally, the DES

encryption may be described as a product cipher
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DES = (II>')J.6-J,(IP)

performed on each 64 bit block P of plaintext. IP is the bit-wise permutation with inverse

IR'. The 64 bit result of the permutation is expressed as the concatenation of two 32 bit

halves:

IP(P) = LoRo

X(L.
J
R. j) for 1 <= i <= 16 is defined as:

R = L,Af(R^,K)

where K. is derived from the secret 56 bit K, or private key.

The ciphertext is given by C = IP iCRjg LJ = DES(P)

The source of security derives from the nonlinear many-to-one function f, which is

applied to the R. half blocks. Transposition and substitution are the main internal compo-

nents of f. [MAE87] DES can be used with cipher block chaining or cipher feedback

mode as a checksum algorithm.

One advantage of using the DES encryption scheme for generating checksums is that the

DES algorithm is available as a chip which can be incorporated in the computer. If

encryptions are generated using the DES algorithm implemented with software the

process is time consuming because the DES algorithm is computationally intensive.

2.4.2 Noncryptographic Checksum Algorithms

A noncryptographic checksum algorithm is a checksum function which does not require

additional information in the form of a key. Using the methods of substitution, transposi-

tion and feedback described in section 2.3, noncryptographic checksum algorithms are
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generated. Examples of checksum algorithms will be examined to show the specific op-

erations that can be used in checksum algorithms. Note that some of these algorithms

were not meant to be used for active forgery, or if so, appended to the end of a set of data

with the resultant set encrypted. The noncryptographic checksum algorithms examined

range from the simple X-OR and K-bit Linear Addition to the moderately complex

Cyclical Redundancy Checksum and finally the more complex Quadratic Congruential

Manipulation Detection Code (QCMDC) and its variations.

X-OR Checksum. This is a simple checksum algorithm technique which involves

exclusive-oring the blocks of a message togetiier: Y=Xj '^ X^ '^ ... ^ X_^ where X is the

blocks of the message. This X-OR checksum algorithm was initially proposed by the

National Bureau of Standards and was in the original draft of Federal Standard 1026.

[JUE83] The exclusive-or mechanism is die feedback mechanism to insure that the

checksum is dependent on all the bits of the original data. This simple checksum is very

susceptible to attacks such as inserting the same block of data twice while keeping the

rest of die message die same ( X '^ X '^ Y = Y). Additionally, blocks of data can be trans-

posed without detection. Even if this simple checksum is added to a message which is

then encrypted by DES widi eidier Cipher Feed Back (CFB) or Cipher Block Chaining

(CBC), manipulation detection is still not provided, even if die key is not known

[JUE83].

K-bit Linear Addition. In Uiis type of algorithm the blocks of data are linearly added

modulo 2"
: Y=(X^+X2+ ... -i-X_^) mod 2" where Y is the resultant checksum, k is a con-

stant, and X. are die blocks of data. [MEY82] To forge a checksum, an attacker inserts

the desired blocks while changing or reducing odier blocks to match the proper check-
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sum. The K-bit Linear Addition algorithm was designed to be used in the same manner

as the X-or algorithm, i.e., a checksum generated and then the entire message encrypted.

The K-bit Linear Addition algorithm provides more protection than the X-or algorithm,

but it does not provide acceptable protection against manipulation of the data, especially

transposition of blocks. [JUE83]

Cyclical Redundancy Checksum (CRC). This method includes a set of checksum algo-

rithms which are widely used in detecting errors in messages passed over a network and

implemented in hardware for efficiency considerations. A basic description of the proc-

ess of CRC is that a polynomial of order n is chosen: f(x)= cn*x''-i- c *x""' -i- c *x"'^ + ...
n-1 n-2

+ c*x^+ Co*x° where c. is eitiier or 1. The checksum is the block of data, n bits long,

that must be concatenated to the right hand side of a set of data to be checksummed such

that the combined set of data and checksum when divided, modulo two, by the chosen

polynomial gives a remainder of zero. The choice of polynomial is important in detect-

ing errors. For example, if die polynomial can be factored by (x-1) then the checksum

will detect all error cases where tiiere exists an odd number of errors. [TANS 8] Typical

polynomial examples include CRC- 16: f(x)=x"*+x'* +1, CRC- 12: f(x)=x'2+x"-i-x3+x2+x'+l

[TAN88].

Quadratic Congruential Manipulation Detection Code (QCMDC) [JUE83] This al-

gorithm is an example of die use of nonlinear feedback. The QCMDC algorithm is

Y.=(X. -I- Y. j)2 mod N witii Y^ an initial seed and N a large prime number. Nonlinearity

is introduced by die squaring. The modular arithmetic allows the precision to be speci-

fied in advance. The QCMDC algorithm has a trap door in diat it is possible to insert the

desired blocks and calculate counterbalancing blocks to add in order to maintain the same
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checksum. For example, to insert block j between blocks i and i+1 it is necessary to

determine X^ such that Y.=(X. + Y.f mod N and Y.=Y|^=(X^ +Y.y mod N. The non-

linearity makes it more difficult to calculate the additional blocks to insert into the set of

data than either the X-OR checksum or the K-bit Linear Addition checksum.

MDC2. This algorithm, which I created, is a variation of the QCMDC checksum algo-

rithm. It consistes of a simple combination of exclusive-or (^), modulo division (mod),

squaring (**2), addition (+), and subtraction (-) and transposition of data in a two equa-

tion format. The substitution on a byte level is provided by the exclusive-or and the

addition, transposition is provided by the changing of the order of the two data terms

between the two equations, nonlinearity is introduced by the squaring operation followed

by the modulo division, and feedback is provided by the two equations depending on the

results of the previous equations for the byte level substitution. The use of two equations

reduces the ability to determine a successful trap door attack because both equations must

be satisfied before a forgery can be found.

Pseudo Code for MDC2:

Nl = large prime a

N2 = large prime b

Ml = large prime c

M2 = large prime d

While data in file

read first block of data into Tl

read second block of data into T2
Ml = ((Ml^Tl + M2'^T2)**2) mod Nl
M2 = ((MZ'^Tl -I- M1^T2)**2) mod N2

Endwhile

Checksum= Ml concatenated with M2
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MDC4. This algorithm, which I created, is a variation ofMDC2 with increased feedback

mechanisms. To reduce the possibility of construction of trap door attacks the MDC4

checksum algorithm uses four equations with four block level substitutions. The use of

additional interrelated terms between the four equations increases the difficulty of finding

a function that will generate an executable file from a checksum.

Pseudo Code for MDC4:

Nl = large prime a

N2 = large prime b

N3 = large prime c

N4 = large prime d

Ml = large prime e

M2 = large prime f

M3 = large prime g
M4 = large prime h

While data in file

read first block of data into Tl

read second block of data into T2
read third block of data into T3
read fourth block of data into T4
Ml = ((Ml'^Tl + M1^T2 - M3^T3 + M4'^T4)**2) mod Nl
M2 = ((Ml'^Tl - M3'^T2 + M4'^T3 - M1'^T4)**2) mod N2
M3 = ((M3'^T1 + M4^T2 - M1^T3 + M2'^T4)**2) mod N3
M4 = ((M4^T1 - M1^T2 + M2'^T3 - M3'^T4)**2) mod N4

Endwhile

Checksum= Ml concatenated with M2 concatenated with M3 concatenated with M4

MDC2T. This algorithm, which I created, is a variation ofMCD2 witii additional feed-

back mechanisms to defeat trap door attacks. The checksum algorithm MDC2T employs

an additional substitution witii feedback at the byte level. A term, tss, is formed by con-

catenating half of tiie first data block with half of the second data block. This term is

used as a feedback mechanism for substitution at the block level. This additional feed-
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back makes the task of determining trap doors more difficult.

Pseudo Code for MDC2T:

Nl = large prime a

N2 = large prime b

Ml = large prime c

M2 = large prime d

While data in file

read first block of data into Tl

read second block of data into T2
TSS= MSH of Tl ored with MSH of T2
Ml = ((Ml'^Tl + M2'^T2)**2+TSS) mod Nl
M2 = ((Ml'^Tl + M1'^T2)**2-TSS) mod N2

Endwhile

Checksum= Ml concatenated with M2

MDC4T algorithm. This is a generalized version of the QCMDCV4 algorithm suggested

by Juenman to improve upon the QCMDC algorithm. [JUE86] The true QCMDCV4 al-

gorithm uses 32 bit blocks resulting in a 128 bit checksum and set values of the primes

and initial seeds. The MDC4T checksum algorithm has the general form of the

QCMDCV4 algorithm but can be used witii shorter block lengths to facilitate efficient

computation. In order to introduce additional non-linearity, substitution was added to the

QCMDC algorithm which only uses feedback. The substitution was provided by exclu-

sive oring intermediate checksum totals to tiie data before use. To prevent trap doors a

transposed history function was added. The result is that tiiere are multiple different

references to previous blocks tiiat would need to be satisfied in order to surreptitiously

insert blocks of data. The MDC4T algorithm is:
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Nl = large prime a

N2 = large prime b

N3 = large prime c

N4 = large prime d

Ml = large prime e

M2 = large prime f

M3 = large prime g
M4 = large prime h

While data in file

read first block of data into Tl

read second block of data into T2
read third block of data into T3
read founh block of data into T4
TSS= MSQ of Tl ored with MSQ of T2 ored with MSQ of

T3oredwithMSQofT4
Ml = ((Ml'^Tl + M2^T2 - M3'^T3 + M4^T4)**2+TSS) mod Nl
M2 = ((M2'^T1 - M3^T2 + M4^T3 - M1^T4)**2-TSS) mod N2
M3 = ((M3'^T1 + M4AT2 - M1^T3 + M2^T4)**2+TSS) mod N3
M4 = ((M4^T1 - M1^T2 + M2^T3 - M3^T4)**2-TSS) mod N4

Endwhile

Checksum= Ml concatenated with M2 concatenated with M3 concatenated with M4

The QCMDCV4 algorithm appears very strong in terms of defeating forgery attacks in

that it provides noninvertability and at 128 bits is long enough to defeat birthday attacks.

[JUE86] The MDC4T algorithm maintains the noninvertability aspect, but for checksum

lengths of less than 128 bits, does not protect against birthday attacks. [JUE86]

2.4.3 Comparison of Cryptographic and noncryptographic algorithms

The theoretical difference between cryptographic and noncryptographic algorithms is that

with cryptographic algorithms the attacker does not possess the total algorithm and thus

cannot perform the attacks described in section 1.3.3. A drawback to cryptographic algo-
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rithm is that the key must be provided to the checksum algorithm each time the algorithm

is to be used.

A practical disadvantage of cryptographic algorithms is that they are designed to conceal

the identity of the key. This makes cryptographic checksums very complex computation-

ally, effectively eliminating their use on present microcomputers.

The strengths of cryptographic algorithms are in the substitution and transposition of

blocks of data. Typically little is provided in terms of feedback mechanisms. Noncrypto-

graphic algorithms generally provide little (compared to cryptographic algorithms) in

terms of substitution or transposition, but provide very strong feedback mechanisms. For

example, DES encryption alone without feedback requires, per 64 bit block of data, 2

transpositions each of 64 bits, 16 transpositions each of 32 bits, 16 transpositions com-

bined with substitutions each of 48 bits, 16 transpositions with substitution each of 48

bits, 16 permutations each of 32 bits, and 16 permutations each of 48 bits. In contrast,

MDC4, using 16 bit blocks with a 64 bit checksum, has 32 substitutions each of 16 bits,

and 16 transpositions each of 16 bits.

Since nonlinear feedback is the primary mechanism to prevent trapdoors and because of

the large computational complexity of cryptographic algorithms, tiiis research has fo-

cused on noncryptographic algorithms. The noncryptographic algorithms MDC2,

MDC2T, MDC4, and MDC4T were selected for further study because of their abiUty to

provide protection firom forgery while providing efficient execution on small computers.
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2.5 Conclusions

In this chapter we have described the features that a checksum algorithm must have in

order to detect errors and to defeat attempted forgeries by an attacker. These features

include even mapping, permutation sensitivity, overdeterminism, length and noninvert-

ablity. A general basis for construction of these checksum algorithms was provided and

examples of both cryptographic and noncryptographic algorithms presented. Noncrypto-

graphic checksum algorithms were shown to be better for detection of change in the small

computer environment because of their lower computationally intensity. Four noncrypto-

graphic algorithms (MDC2, MDC2T, MDC4, MDC4T) were chosen for funher study and

testing in chapter 3.
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Chapter 3 Testing of Checksum Algorithms

This chapter describes methods of testing checksum algorithms. These testing methods

are broken into three areas: statistical tests for even mapping, mutation tests for forgery

protection, and computational complexity tests for efficiency. The checksums tested

were the MDC2, MDC2T, MDC4, MDC4T with resulting 32 bit checksums.

3.1 Statistical Tests

Statistical tests are used to determine if a checksum algorithm produces checksums that

map evenly over the range of the checksum, i.e. the checksums are evenly distributed

between the range and 2" -1, where n is the number of bits in the checksum. The even

mapping of checksums produced by a checksum algorithm is important because of the

protection it provides against brute force attacks. The method we use to accomplish this

test is to use the null hypothesis that the distribution of checksums from a checksum algo-

rithm is an even distribution with the alternate hypothesis that the checksum distribution

is not evenly distributed. The chapter is organized into the following sections: descrip-

tions of the statistical tests, description of the generation of simulated programs, and the

results of the statistical tests.

3.1.1 Description of Statistical Tests

This null hypothesis is tested using several statistical tests including Chi-square, Colli-

sion, and Binomial tests.

3.1.1.1 Chi-square Test.
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The chi-square test which is based on the chi-square statistic provides a measure of the

goodness of fit between observed data and the expected values of that data. The chi-

square statistic is used to attempt to show that the null hypothesis, that the checksums

produced by a checksum algorithm are randomly distributed, is contradicted by the data.

The chi-square statistic is also used to determine the statistical significance of results of

other statistical tests. In this instance, the chi-square statistics employed to evaluate the

results from the binomial test.

Chi-square (X^) statistic is a measure of the difference between the observed value and

the expected value. The chi-square statistic is expressed as:

U = 2w (observed - expected)^ / expected

The statistic, U, of a chi-square test is examined to determine the confidence we have in

the fit that U describes. In order to evaluate the value of U, the chi-square statistic it is

necessary to know the number of degrees of freedom. For our applications, the number

of degrees of freedom is one less than the number of possible outcomes.

For a large number of degrees of freedom the following values are calculated using the

formula given in Knuth [KNU81]:

X^ = v+(2v)^ Xp + (2/3)*(xp2 -1)+ OCIM { 1

}

where xp=l%:-2.33, 5%:-1.64, 25%:-.675, 50%: 0, 75%: .675, 95%: 1.64, 99%: 2.33

If one has 99 degrees of freedom the results of calculating a value for { 1 } is:
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p=.01 p=.05 p=.25 p=.50 p=.75 p=.95 p=.99

v=99 69.23 77.04 89.14 98.33 108.14 123.23 134.64

where p is the probability that the result, or a more extreme (unlikely) result could have

occurred under the null hypothesis. If p is small then either an extreme (unlikely) event

has been measured or the null hypothesis is false.

It is desirable that there be five or more expected observations per category [KNU81],

therefore checksums are sorted into a smaller number of distinct categories. For this

work a value of 100 categories was chosen, resulting in 99 degrees of freedom.

The chi-square statistic is excellent in examining the overall distribution of the check-

sums.

3.1.1.2 Collision Test

The Collision test is applicable when the number of possible outcomes of observations is

much larger than the number of observations taken. For instance, suppose there are m

urns and we throw n balls at random into those urns, where m is much greater than n.

Most of the balls will land in urns that were previously empty, but if a ball falls into an

urn that already contains at least one ball we say that a "collision" has occurred

[KNU81].

If the checksums generated by the checksum algorithm map evenly over its domain (the

null hypothesis) then it should be possible to predict the number of collisions (multiple

42



observations of a checksum). The number of collisions is dependent on the number of

observations taken (programs checksummed), m, and a number of possible values those

checksum can take, n (for a 32 bit checksum n is 2^^).

The probability that a given possible checksum will contain exactly k observations is:

pk=(
I

)m-^ (l-m-O^-"'

so the expected number of collisions (multiple observations of a possible checksum) is:

Z^ (k-l)p^ =^ (k*p^ - S (p^)) = n/m-l+Po. since Po=(l-m-')" = 1-n/m + (" )m-^

+smaller terms

Evaluating the equation shows that the average total number of collisions taken owqv all

m checksums is very slightly less than (n^)/2m [KNU81]. For a 32 bit checksum and

512,000 observations the expected number of checksum collisions is 30.5.

A table of expected probabilities of c collisions occurring is the probability that (n-c)

checksums are generated with m tests and n possible checksums, i.e. (m*(m-l)* ... * (m-

n-i-c+l))/(m**n) *
{ l^}.

An approximation [KNU81] of the probabilities for different numbers of collisions, c, are

shown below.

Probability .99 .94 .71 .44 .24 .05 .01

Expected Collisions 43 39 33 29 26 21 1.7
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3.1.1.4 Binomial Test

In the null hypothesis that checksums map evenly over the interval, the number of one

bits in checksums should follow a binomial distribution. The observed number of one

bits can be compared to the expected number based on an even mapping of checksums

and the difference can be tested for significance using the chi-square statistic.

If there is an even mapping, the probability of any bit in a checksum having a value of

one is .50. Thus the expected probability distribution is given by the formula:

p(x) = (f)(.5)Ml-.5p-^^

where x is the number of one bits in the checksum. The observed versus the expected

results are evaluated for significance using the chi-square statistic with the appropriate

degrees of freedom.

Since the expected value for observations at the ends of the scale is close to zero the

number of degrees of freedom for the chi-square test is reduced. Chi-square values for 26

and 36 degrees of freedom:

.01 .05 .25 .50 .75 .95 .99

v=26 12.15 15.30 21.50 26.00 30.50 38.95 45.75

v=36 19.18 23.21 29.91 36.00 41.36 51.04 58.72

3.1.2 Simulation of Executable Programs

In order to provide a sufficient number of programs to be able to test the properties of the

checksum algorithms it was necessary to simulate a series of executable programs. These
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simulated executable programs were generated by concatenating a series of random

numbers. The end of the program was determined by a specific terminator string chosen

at random thus providing programs of varying lengths. Since the addition of executable

statements at the end of the program constitute a new program, computation time was

reduced by generating new programs.

3.1.3 Results of Testing

This section presents the results of the statistical tests, Chi-square, Kolmogorv-Smimov,

Collision and Binomial tests, when applied to the four checksum algorithms MDC2,

MDC2T, MDC4, MDC4T.

3.1.3.1 Chi-square Test.

The chi-square test tests the whether to checksums generated by a checksum algorithm

are evenly distributed. The checksums for 512,000 observations partitioned into 100

distinct equal sized categories are graphically displayed below:
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Observed number of checksums per group, assuming even distribution, is 5120

After segmenting the checksums into 100 even groups the chi-square and their corre-

sponding p - values for each of the algorithms calculated:

chi-square p - value

MDC2: 106.27 .70

MDC2T: 101.97 .59

MDC4: 11347 1.00

MDC4T: 11419 1.00

The chi-square values for the MDC2 and MDC2T are not in an acceptable range for

rejecting the null hypothesis that the checksums are evenly distributed. The chi-square

values for MDC4 and MDC4T clearly provide evidence against the null hypothesis.
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This is also indicated by die graphical representation, especially at the high end points of

the interval and is the circled areas on the MDC4 and MDC4T graphs.

The reason MDC4 and MDC4T have high chi-square values is because of the prime

numbers used in the algorithm. Because the testing was done for 32 bit checksums, the

prime numbers used for modulo operation were significandy less than 2*. Furthermore,

in order to reduce the probability of trap door attacks, different primes were chosen, even

further eliminating potential checksum. In the graph of distribution of checksums, it is

clear that there is a significant decrease of observed checksums at the maximum possible

checksum.

Further tests were conducted using 64 bit checksums to determine if the choice of prime

numbers used in the 32 bit MDC4 and MDC4T algorithms were the reason for the large

chi-square values or if diere is an inherent flaw in those algorithms. The results for 64 bit

MDC4 and MDC4T checksums were determined:

chi-square value p - value

MDC4: 89.1 .25

MDC4T: 119.6 .90
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The values obtained for the MDC4 and MDC4T 64 bit checksum algorithms do not

reject the null hypothesis.

3.1.3.2 Collision Test

The collision test measures how many times there are multiple occurrences of a check-

sum (collisions) in a series of observations. With 512,000 observations the following

results were obtained:

Collisions Observed P - value

MDC2: 25 .20

MDC2T: 33 .71

MDC4: 33 .71

MDC4T: 38 .90

The collision test results for all four checksum algorithms indicate no evidence to reject

the null hypothesis.

3.1.3.4 Binomial Test

The binomial test tests to see if each bit of a checksum had a .50 probability of being a

one. The graphical results of observed versus predicted are shown below.
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Chi-square values for 26 and 36 degrees of freedom:

.01 .05 .25 .50 .75 .95 .99

v=26 12.15 15.30 21.50 26.00 30.50 38.95 45.75

v=36 19.18 23.21 29.91 36.00 41.36 51.04 58.72

MDC2:

chi-square value

31.196

p - value

.77
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MDC2T: 26.071

MDC4: 19,267.

MDC4T: 19,346.

.50

1.00

1.00

The chi-square statistics from the binomial test for the MDC2 and MDC2T algorithms do

not provide evidence to reject the null hypothesis. The chi-square values for the MDC4

and MDC4T algorithms provide evidence to reject the null hypothesis.

Along with the 32 bit MDC4 and MDC4T the 64 bit MDC4 and MDC4T were tested

using the binomial test. The following results were obtained:

chi-square value p - value

64 bit MDC4: 47.2 .87

64 bit MDC4T 39.0 .61

The chi-square statistics for the binomial tests on 64 bit MDC4 and MDC4T do not

provide evidence to reject the null hypothesis.

3.1.4 Conclusions from statistical testing

The results of die chi-square, collision, and binomial tests are used to test the null hy-

pothesis, that die checksums are evenly distributed.

For the MDC4 and MDC4T checksums algorithms with 32 bit checksums there is evi-
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dence to reject the null hypothesis that the checksums are evenly distributed. Of the three

tests only the collision test provided evidence of even mapping. The results of the other

two tests (chi-square and binomial) provide evidence to reject the null hypothesis. Ex-

tending the MDC4 and MDC4T algorithms to 64 bit checksums provides statistical

results which do not provide evidence to reject the null hypothesis. Thus we conclude

that it is die small relative primes used in the 32 bit four equation checksums that causes

the uneven distribution and not the form of the algorithm.

The null hypothesis cannot be rejected with the MDC2 and MDC2T checksum algo-

rithms. The three tests; chi-square, collision and binomial do not provide evidence to

reject the null hypothesis.

3.2 Mutation Testing

To simulate an actual attack on a given checksum a mutation test was used. Given a file

of blocks: F= Fq,Fj,...,F_^,F_^^j,... the attacker attempts to determine a V consisting of

Vq,Vj,...V_^ such that when it is inserted into the file with the resulting file, F' =

Fq,Fj,...,F_^,Vo,Vj,...,V_^,F_^^,,... the checksum of F' is equal to the checksum of F. This

insertion attack can be further specified that given a checksum function C() the attacker

must find a V such that

C(F„,F,,...,FJ = C(F„,F.,...,F„,V„,V,....V )

Note: If the checksum algoritimi is invertable ( in die manner that if given a resultant

checksum Y,
, block of data X,, and the checksum algorithm C() the value of Y. , can be

found) this is equivalent to the birthday attack.

In a real attack the first part of V would be die virus while the last part would be filler to
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make the equation above true. A mutation attack determines how many different fillers

must be examined before finding a filler tiiat makes the equation above true.

In a test of approximately 64,000,000 (2^) mutations, no mutation was found such that

C(F) was equal to C(F') for any of the checksum algorithms MDC2, MDC2T, MDC4,

MDC4T. The CPU time necessary to check 224 mutations was 624 seconds on a Harris

HC-9 computer. Extrapolating this result to the time necessary (in CPU seconds) to gen-

erate a forgery with following percentage probability:

12.5% 25% 50% 75% 87.5%

21,300 46,000 110,700 221,500 332,200

For virus protection on small computers these times should provide adequate protection

against a mutation attack.

3.3 Efficiency Testing

The efficiency test used in this work is the time a given checksum algorithm will generate

a checksum for a set length file. In order for a checksum algorithm to be used it must

execute in a reasonable amount of time. The time taken for file access and checksum

algorithm was tested on three different types of computers within the IBM PC family.

The computers tested were:

1) IBM PC with 8088 processor, 4.77 MHz clock speed, 20 megabyte hard drive with

access time 80 milliseconds. This type of computer represents the slowest type of ma-

chine on which checksum protection can be expected to be used.

an
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2) IBM PC clone with 8088 processor, 10 MHz clock speed, 40 megabyte hard drive with

an access time of 65 milliseconds. This computer represents the current entry computer.

3) IBM PC clone with 80286 processor, 10 MHz clock speed, 40 megbyte hard drive

with 28 millisecond access time. This type of computer represents the current mid-to-

high range. In the future this type of computer will represent the entry computer.

The algorithms tested were the 32 bit versions of MDC2, MDC2T, MDC4, MDC4T. The

implementations of these algorithms were written in the computer language C, and

compiled with the Turbo C compiler.

Results, in seconds, for 32 bit checksum:

Computer: 1 2 3

MDC2 32.9 17.1 4.6

MDC2T 40.4 21.1 4.7

MDC4 62.8 32.3 7.9

MDC4T 63.5 32.5 7.9

Results, in seconds, for 64 bit checksum:

MDC4 40.2 19.0 4.7

MDC4T 40.2 21.1 4.9

The dramatic differences between the times for these three machines are mainly due to

three factors: disk access speed, clock speed, and different execution times for opera-
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tions.

Disk Access: In order to identify the differences between algorithms a copy of the tested

programs without a null code checksum algorithm was run on the different computers.

The results were:

time published access speeds

computer 1: 10 seconds 80ms

computer 2: 7.4 seconds 65ms

computers: 2.4 seconds 28ms

This difference can be explained by the speed of disk access and represents a lower

bound to the speed of which any algorithm that examines the entire executable file can

execute.

Clock Speed: The speed of the CPU is an important factor in the elapsed time to execute

a checksum algorithm on a program. The faster cycle time is the primary difference

between the two 8088 based machines.

Execution Time for Operations: Certain instructions take significantly less time to

execute on a 80286 (and 80386) processor than on the 8088 processor. The two instruc-

tions where die speed was increased significantly were division and multiplication. The

number of clock cycles it takes for the 8088 processor to execute a divide is between 144

and 166 ( for 16 bit divides) compared with 22 for a 80286 or 80386 processor. Since

divide operations are a crucial operation for the modulo operation and are done 6 times

for each checksum in the MDC2 and MDC2T algorithms and 12 times in the MDC4 and
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MDC4T algorithms, division greatly increases the time necessary for execution. A

similar difference can be observed for multiplication which occurs two or four times in

calculating a checksum depending on the algorithm.

3.4 Conclusions

The checksum algorithms were examined from the perspectives of providing an even

mapping of checksum, insertion of filler data such that the same checksum is obtained,

and the speed of execution. The two algorithms, MDC4 and MDC4T with 32 bit check-

sums do not provide even mapping, and thus can be eliminated. In their place we also

considered the MDC4 and MDC4T algorithms with 64 bit checksums. These two algo-

rithms with 64 bit checksums did provide even mapping and are acceptable checksum

algorithms.

All the algorithms, as expected from an even mapping perspective, provided protection

against a mutation attack.

The efficiency of the checksum algorithms varied greatly with respect to computer. The

rank ordering of efficiency was: 1) MDC2, 2) MDC2T, 3) MDC4 (64 bit) and 4) MDC4T

(64 bit). On slower machines (and especially those with 8088 processors) the differences

are significant. On 80286 (and funher generations of the 80x86 family) processor based

machines the differences in execution speed are not significant.
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Chapter 4 Implementation

A virus detection program should reliably inform the user that a virus has entered the

system. This function can be broken into two parts: detecting the virus and informing the

user. Both of these functions rely on the operating system to insure the virus detection

code is executed before each program is started and that the virus detection code and

checksum value has not been changed. Unfortunately, with most microcomputers the

operating system provides only minimal protection at best

4.1 Goals

The goals for implementation of a virus detection mechanism using checksums are: 1)

that die virus detection mechanism is executed before each program is executed and that

the virus detection mechanism is not changed by a virus, 2) that the checksum generated

by running the checksum algorithm is stored in a place not easily modifiable to the user,

and 3) that the virus detection feature can be implemented without major changes in

system operation.

4.1.1 Protected Operating System/Checksum Routine

The change of an operating system to execute a virus detection program before the

execution of user programs is relatively simple. Insuring that the code tiiat calls the virus

detection program and tiiat the virus detection program has not been changed is difficult

on small and personal computer operating systems. If a virus knows the location and

operation of die virus detection code and has the ability to change that code, it is possible

for a virus to disable the virus detection routine. An example of change which would

nullify die work of a detection program would be to modify the return value of the com-

parison of old and new checksums such that the return value always indicated no virus.
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4.1.2 Protected Checksum Storage

The checksums for programs should be stored in a location not readily accessible to the

user or to the virus operating on behalf of a user. If a virus has "write" access to the loca-

tion used to store checksums and knows the checksum algorithm, the virus can calculate

a checksum on the virus infected program and insert the new checksum so that the virus

detection algorithm does not detect the virus.

4.2 Protection Features

Ideally users would be prevented from modifying either the virus detection code or the

checksums. This implies that the user's programs are limited to accessing only the

memory allocated to them. Methods of limiting programs to set memory ranges include

bounds checking, and virtual memory.

4.2.1 Bounds Checking

A program that employes bounds checking compares each requested address with the

bounds register(s). If the address is not within the acceptable accessible memory the

operation is not allowed to be executed and the job terminated with the proper error

message. [DIE84] Bounds checking can be done on all levels of memory and most

particularly main memory and secondary (disk) storage. Most microcomputers do not

employ bounds checking, tiiereby severely limiting its use in protection against modifica-

tion of the virus detection routine by viruses.
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4.2.2 Virtual Memory

The typical microcomputer is designed to be a single user system with that user having

total control over all available memory locations. These systems can use a virtual mem-

ory operating system.

When using an operating system employing virtual memory, each user process has a

private address space that contains its programs and data. Each word in the process's

address space has a fixed virtual address that the programs in the process use to access

that word. In executing a memory reference instruction, the hardware computes the

virtual address that identifies the target location of the reference by using a value or offset

contained in a field of the instruction plus some index registers and address registers.

The virtual address is then translated, or mapped, by hardware into a physical address.

This translation is transparent to the program. [GEL88] The translation from virtual

addresses to physical addresses can be as simple as adding a nonmodifiable base value to

all virtual addresses giving physical addresses to demand paging or segmentation

schemes.

Virtual memory systems are slower than nonvirtual memory systems because there is at

least one address conversion for each memory reference. Even if these functions are

implemented in hardware or microcode there is a performance penalty. For tiiis and other

reasons most microcomputers do not have virtual memory implemented by tiieir operat-

ing systems.
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4.2.3 Ignorance

One of the strongest protection features is the lack on knowledge on the part of the virus

of the exact location of the virus detection code. If the virus does not know where the

virus detection code is stored, then it must either search for that code or modify code at

random.

For the virus to search for the virus detection portion of the kernel, it must have a pattem

to search against. This implies that the virus designer knew a good deal about the virus

detection code and that the virus will carry around enough tell tale parts of the virus

detection code to be able to identify the virus. Since the virus detection code is not trivial

this often increases the size of the virus significantly. If this threat is considered serious

enough then multiple copies of the virus detection code can be used. A further step is to

have different implementations of the virus detection code in several different locations

so that a virus would need to carry information on each vuns detection code in order to

disable all of the virus detectors.

4.3 MINIX Example

MINIX is an operating system that is a subset of UNIX Version 7 (V7). MINIX was

developed by Tanenbaum and is described in his Operating Systems textbook. [TAN87]

MINIX contains nearly all the V7 system calls, and these calls are identical to the corre-

sponding V7 calls. MINIX was originally written for the IBM PC, XT, and AT and has

since been poned to the NS 16032 and the 68000. The version of MINIX used in this

research work is version 1.1 for the IBM XT. For further details refer to the textbook

which includes most of the operating system source code.
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4.3.1 General Description

MINIX is a layered operating system where communications between layers is accom-

plished by message passing thus insulating the kernel from the users.

When a process is created its cs register is set at the base address of the process. The

process is allocated the amount of space specified in a header file at the top of the pro-

gram to be run. This amount of space is typically 64K.

There is no checking for attempts to read or write outside the memory requested. All

addresses are physical addresses ( no virtual memory) and instructions can read or write

areas in the operating system space by changing the register values.

4.3.3.1 MINIX Protection Mechanisms

MINIX protection mirrors UNK protection and is a variation of an Access Control List

based system. Each user has a domain that it can operate in (files it has certain access

rights to) defined by its userid (uid) and group id (gid). If an object is not in the domain

of a process then the process is refused access to that object. The rights that processes

may possess are read, write, and execute.

4.3.2 Implementation

For the purposes of this thesis, it was deemed that the Operating System provides ade-

quate protection for both the checksum routine and the storage of checksums. The

checksum will be stored in a file readable by all, appendable by users, and changable by
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root.. When a process requests to execute a new procedure a execve call to the operating

system is made. The calling process passes the name of the procedure along with the

proper checksum is passed. The do_exec procedure in the memory manager calculates a

checksum and compares it with the checksum passed. Different values for the calculated

and the passed checksums terminate execution of the program.

4.3.4 Weaknesses

The weakness of this approach is not being able to limit user processes to proper memory

locations. Since there is no bounds checking or virtual memory, a virus potentially has

ability to change any memory location.

4.4 Suggestions for other Operating Systems

The weaknesses of MINIX are present in all operating systems that do not isolate a user

process in its own memory area. Most operating systems do not provide even the protec-

tion mechanisms of MINDC. Thus any file can be modified or executed by the user or a

virus acting on his/her behalf, instead of just those the process has "write" access.

Ideally, users will have the operating system source code to directly incorporate the virus

detection mechanism, and then recompile the operating system. This is not the case with

most operating systems. Instead the virus detection mechanism must be added on top of

the operating system. Placing the virus detection mechanism outside the operating

system makes its location better known and easier to disable.
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4.5 Conclusions

Modest protection by checksums can be provided even with an insecure operating sys-

tem. However, with these operating systems a virus can either attack the checksum

mechanism or determined programs with the same checksum. When a virus is limited to

the section of memory it is allocated (with either bounds checking or virtual memory)

then only brute force or trap door attacks are feasible.
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Chapter 5 Conclusions

This chapter provides a brief review and conclusions from the previous four chapters,

draws conclusions with respect to particular classes of computers, and discusses future

research possibilities.

5.1 Review

The virus problem is considered a subset of a larger integrity issue. Virus detection/pre-

vention can be directly classified under the control of change of static data in the Clark &

Wilson integrity model. The only method that currently shows promise for detecting any

virus other than the simplest virus is a checksum technique. These checksums can be

generated by either cryptographic or noncryptographic algorithms.

Checksum algorithms must have the properties of even mapping, permutation sensitivity,

and overdeterminism. To provide protection against an active attacker versus detecting

random errors, a checksum algorithm must produce checksums that are of adequate

length and the algorithm must be noninvertable. The active attacker can employ several

different types of attacks including the brute force attack and the trap door attack. An-

other attack, the birthday attack was deemed not applicable to the virus problem when a

strong checksum algorithm is employed The trap door attack was deemed to be the most

serious threat.

Checksum algorithms employ the techniques of substitution, transposition and feedback

to produce checksums that provide the necessary strength to deter attackers. Both crypto-

graphic and noncryptographic checksum algorithms employ these mechanisms. The

cryptographic algorithms typically employ large amounts of substitution and transposi-
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tion making the algorithms very computationally complex. The computational complex-

ity of cryptographic algorithms limits their use to fast computers. Noncryptographic

algorithms can provide adequate protection against attackers with fast enough execution

to use on small computers.

Four specific noncryptographic algorithms were investigated. The tests employed in-

cluded statistical, efficiency and a simulated attack. Two algorithms, MDC2 and

MDC2T were shown to provide adequate protection with 32 bit or greater checksum

length, while two other algorithms, MDC4 and MDC4T, provided adequate protection at

the 64 bit checksum length.

5.2 Particular Conclusions

This section discusses the effects of the general conclusions as they apply to specific

classes of computers.

The basic trade off with noncryptographic algorithms is efficiency versus trap door

protection. The trap door protection is provided by additional substitution and feedback

as described in section 2.3. The differences in feedback between the four algorithms dis-

cussed were either by adding an extra history term (tss) or by increasing the number of

equations for which a single data block is directly used (four equations versus two equa-

tions).

The additional feedback provided by the extra tss term in the MDC2T and MDC4T

algorithms should be more resistant to trapdoor attacks than the corresponding algorithms

without the tss term (MDC2 and MDC4). For example, the MDC2T algorithm should
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be more resistant to trap door attacks than the MDC2 algorithm.

The four equation algorithms, MDC4 and MDC4T, should provide more protection from

trapdoor attacks than two equation checksum algorithms, MDC2 and MDC2T. When

using 16 bit data blocks with the MDC4 and MDC4T algorithms (64 bit checksums) there

should not be a decrease in the effort to determine trap door attacks.

For computers that have fast disk access and low CPU cycle time the use of the MDC4T

(64 bit) algorithm is suggested. The additional protection against trap door attacks is

provided widi only a small time penalty. For computers that have medium disk access

time and medium CPU cycle time the recommended choices are the MDC4T (64 bits) for

best protection or the MDC2 for faster execution with less protection. For slow comput-

ers the MDC2 algorithm is recommended.

These results are summarized in the table below.

Disk Access Time

Fast Slow

Computer

Speed

Fast MDC4T MDC4T

Slow MDC2 MDC2

As a review, the basic forms of the algorithms:

MDC2: Two equations of the form

Ml = (Ml'^Tl + M2^T2)**2 Mod N
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MDC2T: Two equations with additional feed back term of the form
Ml = (Ml'^Tl + M2^T2-TSS)**2 Mod N

MDC4: Four equations of the form

Ml = (Ml'^Tl - M2^T2 + M3^T3 - M4^T4 )**2 Mod N

MDC2T: Four equations with additional feed back term of the form
Ml = (Ml'^Tl - M2^T2 + M3^T3 - M4^T4-TSS )**2 Mod N

5.3 Further Research

The virus detection/protection field offers areas of future research. It is desirable to be

able to prevent viruses from entering a computer system by examining the entering

information. Though virus detection is undecidable in the general case, it may be pos-

sible to partition programs into one of three categories: 1) program does not contain a

virus, 2) program contains a virus, and 3) cannot tell if the program does or does not

contain a virus. If Uie tiiird category can be reduced to a modest level this would repre-

sent significant progress in virus protection. Note that this would probably need be done

at the object code level.

The integrity field is a fertile area for future research. There is a need for work at all

levels including:

1) General Models. The models for integrity are generally considered inadequate at the

same time the need for integrity is increasing. Since lower level models depend on

tiieoretically sound higher level models advances in tiiis area are imponant.

2) Intermediate Concerns. The identification of integrity mechanisms that are common

across most or at least many applications are needed. These mechanisms provide the
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building blocks to enable applications to maintain integrity.

3) Implementation Concerns. The actual implementation and study of the use of general

integrity mechanisms is needed.
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Appendix - Chi-Square MDC2

Cht SquTg M0C2 - 32 M

51 20 00488281
5120 0.6345703 1 6S19S313
S120 0.63457031 2 28652344

2 75546875
5120 006328125
5120 3.15019531
5120 2 278125 8-24707031
51

,

20 0.253125
S120 0378125

5120 0.00488281
5120 3 10078125
S120 0.0017578

18 7482423
19 548242J

S223 5120 2.0720703 21 7328125

5120 3 5595703
0.14238281

25.9792968

-U 5120 0.98*5703 26 9638673
5120 0705078

5120 0.82519531 29 fl1269SJ

5120 56953125 30 3822266
5120 590B2031 30 9730468
51 20 4 16328125 35 13632
5120 98457031 36.1208984
51 20 1.61 738261 37.738281 3

51 20 078125 37 8164063
5120 0.48820125

39 8705078
5080 3125 40 1830078

5120 22361328 4 2 4 191406
5120i 0.56953125
51201 006328125 43 0519531
51 20 1.04082031 44 0927734
5120 0.16425781
51 20 3955078
51 20 32832031 44 980859*

2.194531 25 47 1753906
*7 2318358

5120 0.361 13281
06328125

S003 S120 2.71953125

5126 51 04296a<
5120 0.0007B125

54 9267578
55 7267578

_&5 0.65703125
56 9746094

59 5308594
^088 59 7308594

64 6685547
67 1 185547
67 1216797

-ill:

70 4226563
72 1484375

5120 0.2392578
73 2470703

8 75 2B632B
5T20 1.47832031 76 76464B4
5120 2.58300781
5120 2 32050781

79 3476563
81 6681641

5218 5120 1 87578125
5120 00703125

83 5439453

004394531
83 5509766
83 5949219

18769531 83 7026172
56953125 84 352148*
00019531
0158203'

0* 3523438
04 368164

Jt2.

86 3261 719
017578125

6062 S120
0.13203125 86 6339844

86.9160156
S146

_S203. ^120 1 34550781 88 393S547
88-6328125

_u 0.043945?1 69 1267578
0.153125

5120
90 9065234

92 488*766
132031251 92 6205078

2 1 1 25i 94 7330078
413201 2S| 95 1*6289

45j 95 5962891
548632811 96 1449219

5 3820312;
96 5949219
101 976953
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Appendix - Chi-Square MDC2T

CM SquOT MOCar 32 bi

2 49394S31
3 17302813
3.50214844

3.15019S31 6 65234375
6.69628906

03300781 672929688
6.74179688
9 01992188

12.1013672
Q 10332031

013203 I 25

12.4917969

1-15800761

0.00468281

-2^
5120 54863281

51 20 2392578 21 4433594
51 20 1 7626953
51 20 033007S1
5120 1423028

_LZ.
25.6037109

-21 0.08613281 25.6898438

8828125 27 2226563
0. 17578125 27 3904375

0.00957031
0.26738261 27 8753906

28 3068359

23925701 28 678t?S
0125 28 690625
5125 30.2031 25

2.53828125
07050781 32 01 19141

32.8121094

$095 5120 0.1220703
2

5120f 0078125

32.9373047
33.1373047
33.2154297

S120 0.13203125
5120 3.003125

33.3474609

5120 0.4689453
36.3605859

_il
5120 0.06328125
5120 0.0236328

41 4189453

5120 2.76502031

47 1068359

469238281
09453125 55 8876953

-LI.

,li

_i3

0.13203125 56.3642578
048828125 56.8525391

62.4919922

1 31328125 66.0414063
253125 66 2945313

S27 =

5120 13.1017578 79 3962891

5101

5070
5158

5024
S2S9
5102

5120

. 5.120

51 20
5120'

5120
5120'

4 5125 03 908709

1.3132 012 5

0.28203125

2 32050781

056658203

87 0173820

98,9722656

101.283398

102.287695

5005

078125 103 056836

5120) 2-583007811 T06 274414
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Appendix - Chi-Square MDC4 (32 bit checksum length)

Chi Squif M0C4 32 M

pfedkaxj

5120 168562695 168.562695
72 2 2<0 762695

5120 106.664250

51 20 *4 B126953 625 400594
5120 29.7070313
5120 34 453125

694 62207
26738281

017578125
696 223242

2.19453125
0.39550781

700 075781
2.71953125 702.795313
0.00078125 702.796094
022578125 703021875
2.67363281 705.695508
0.03300781 70S.72BS16
Q019S3125 705 748047

_2i 708 331055
5 9B144S31

7 503125 721.815625
04394531

722-300586
722 316406
723.167188

46894531
5120

28203125
2.85967031

S03S
736 375195

1642578'
01953125
26738281

749 983008
51 20 26738281
51 20 07050781
5120 3 1501953

750 320898

5120 08613281

0007
51 20 7267578
5120 0.02363281
5120 0.28203125
SI20 2 03203125

760 1 54688

S284 769 457813
28203125

-2i.

S264

S137
2 19453125

5067

773 853125
776.047656

-15

0. 378125 777.030859

29707031

780 52871

1

785 361914

S'54
51.20 0.1876953

785 723047

5120 22578125
786.149023

51 20 1220703 786 271094
5120 0048828' 786 275977
S120 0.08613281
5120 0.17578125 786 53789

838 205469

51 6007813

64.1267578

5120[ 5120J

1050.15801

1235 33867

1389-24746
622724141
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Appendix - Chi-Square MDC4T (32 bit checksum length)

Chi-SquOT MDC4T - 32 bi

ydiaed fo-cl'2/e
5120 187.961133

5120 0.2673828
5120 02363281 713805664
5 120 0095703'
5120 67988281 714.495117
5120 3955078

718 607617
03828125 718 645898

1.5125 720 158398
028135 72Q 186523

SI29

1.345507S1

5 120 4 8142578
5120 03828125
5120 2 49394S31
5120 0195312S
5120 1 0695312S
5120 056953125

512C 10332031
5120 7 1251953

23925781
5iia 739.162109

3 50703125
0.00019531 743 469336

743 481836
03828125

S1S6

_ili0

_£iiO 747,154102
747 4072^7
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72578125 755 2S1953
09453125 755 346484

078125 755 424609
25 755.537109

378125 756 915234

757 985547

a 760 216992

5095

23925781

0.1220703
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510t

5120
1.128125

0-72675781
2.32050781
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Q 54863281

0.0001953
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2 4064453
32832031
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4 6923828
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Appendix - Chi-Square MDC4 (64 bit checksum lengtii)

ChiSouwt MOC* - 64 brt

5120 5.06269531
5120 0.00957031 5.07304688

-SI25
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5120 Q. 09453125

0.7267578
t 25

14 8216797
15 5464375
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25 4400391
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51 20
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5249
0.225761 25 47 6599609

6093 -iUO
50.9101563

_&li
5120
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000488281
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S'10

5051
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000078125

2 36326125
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66.6734375
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5
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03300781
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Appendix - Chi-Square MDC4T (64 bit checksum lengtli)

Chi Squir» M0C4T 64 M

0.00703125 0.00703125

S 409S7031
5.08320313
8 39570313
1 1 49648*4

5120 0.0861328

5120J
1.31328125

5120 1 91425781

M 8357422
13.1490234

-1*

-ZS.

51 20 1 87578125
26.219'T266

51 20 22578125

03828125
2.03203125 30 6285156

07050781
10 4220703

_52i.

28.5964844

31.9804688

_5i

_ii

-IS

too

5120 09570312S
512QJ 07050781

S12Qf 32832031

5120^ 0.2392578
5120 1 7257812S

5257

5120 09453125
5120 39S50781
5120 1 44453125

61 5884766

Si 201 0.0236328
5120 98457031

5120 1 5470703
5120 1 18828125 71.844140^

2 72.0441406

5120 3.66S82031

5120 Q.7S07ai?S
5120 2.40644531

5263

5120
5

0.08613281

00703125

1 04082031

0.29707031,

69.1087891

76.159960^
76.2724605
77.0232422
79 4296875
79 561718a

79 73 75

79 8236321
81 336t32<
01 3431641
81 8917969
82 013867;

83 2804688

84.8058594

87 9830078

2 90.0365234

S12Q 399394531
$120 1.87578125

SI20
SI 20 2673828

0.Q632812S
5120 Q 8767578

00175781

51 20 028125
1.120 2.5830078
5120 1411 1328
5120

5120
5120

5120 t. 09863281
1.06953125
Q.T 0332031

51 20 1 2189453
5 1 20 1 72578125
51 20 43144531

98 1828125

100 2201 17

104214 2 58
104 326758

5120 3955078
5120 0.00078125
5120 2 71953125

1 14 647461
5120! 4 937695311 119.585156
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Appendix - Binomial Test MDC2

Binomial Distribution of MDC2

observed calculated (o-c)^2/c chi-square
0.0001 0.0001 0.0001

1 0.0038 0.0038 0.0039
2 0.059 0.059 0.0629
3 1 0.59 0.28491525 0.34781525
4 10 4.29 7.60002331 7.94783856
5 21 24 0.375 8.32283856
6 115 108.03 0.44969823 8.7725368
7 395 401.24 0.09704317 8.86957996
8 1295 1253.88 1.34849778 10.2180777
9 3377 3343.68 0.33203608 10.5501138

10 7697 7690.5 0.00549379 10.5556076
1 1 15161 15380.92 3.14446772 13.7000753
12 26765 26916.61 0.85395568 14.554031
13 41343 41410.16 0.10892171 14.6629527
14 56603 56199.51 2.89689679 17.5598495
15 67669 67439.4 0.78168192 18.3415314
16 71725 71654.37 0.06962027 18.4111517
17 67558 67439.4 0.20857184 18.6197236
18 56363 56199.51 0.47560877 19.0953323
19 41362 41410.16 0.05601006 19.1513424
20 26713 26916.61 1.54020258 20.691545
21 15243 15380.92 1.23672228 21.9282673
22 7563 7690.5 2.11380925 24.0420765
23 3311 3343.68 0.31940329 24.3614798
24 1221 1253.88 0.86219925 25.223679
25 369 401.24 2.59051341 27.8141925
26 96 108.03 1.33963621 29.1538287
27 22 24 0.16666667 29.3204953
28 2 4.29 1.22240093 30.5428963
29 0.59 0.59 31.1328963
30 0.06 0.06 31.1928963
31 0.003 0.003 31 .1958963
32 0.0001 0.0001 31 .1959963

observed calculated (o-c)'^2/c chi-square
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Appendix - Binomial Test MDC2T

Binomial Distribution of MDC2T

observed calculated (o-c)'^2/c chi-square
0.0001 0.0001 0.0001

1 0.0038 0.0038 0.0039
2 0.059 0.059 0.0629
3 1 0.59 0.28491525 0.34781525
4 9 4.29 5.17111888 5.51893414
5 27 24 0.375 5.89393414
6 116 108.03 0.58799315 6.48192729
7 432 401.24 2.35813379 8.84006107
8 1223 1253.88 0.76049893 9.60056
9 3380 3343.68 0.39451814 9.99507814

10 7779 7690.5 1.01843183 11.01351
1 1 15227 15380.92 1.5403088 12.5538188
12 26851 26916.61 0.15992624 12.713745
13 41345 41410.16 0.10253101 12.816276
14 56424 56199.51 0.89672953 13.7130055
15 67649 67439.4 0.65143166 14.3644372
16 71655 71654.37 5.5391E-06 14.3644427
17 67669 67439.4 0.78168192 15.1461247
18 56075 56199.51 0.27585187 15.4219765
19 41549 41410.16 0.4655028 15.8874793
20 26671 26916.61 2.24115415 18.1286335
21 15355 15380.92 0.04368051 18.172314
22 7546 7690.5 2.71507054 20.8873845
23 3278 3343.68 1.29015408 22.1775386
24 1217 1253.88 1.08474049 23.2622791
25 399 401.24 0.01250523 23.2747843
26 99 108.03 0.75479867 24.029583
27 22 24 0.16666667 24.1962497
28 2 4.29 1.22240093 25.4186506
29 0.59 0.59 26.0086506
30 0.06 0.06 26.0686506
31 0.003 0.003 26.0716506
32 0.0001 0.0001 26.0717506

observed calculated (o-c)'^2/c chi-square
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Appendix Binomial Test MDC4 (32 bit checksum length)

Binomial Distribution of MDC4

observed calculated (o-c)^2/c chi-square

0.0001 0.0001 0.0001
1 0.0038 0.0038 0.0039
2 0.059 0.059 0.0629
3 1 0.59 0.28491525 0.34781525
4 1 4.29 7.60002331 7.94783856
5 66 24 73.5 81.4478386
6 200 108.03 78.2975183 159.745357
7 729 401.24 267.736561 427.481918
8 1993 1253.88 435.686329 863.168247
9 4912 3343.68 735.604969 1598.77322

10 10507 7690.5 1031.48979 2630.26301
1 1 20073 15380.92 1431.35877 4061.62178
12 32861 26916.61 1312.78688 5374.40866
13 48784 41410.16 1313.04772 6687.45638
14 63562 56199.51 964.532591 7651.98897
15 72501 67439.4 379.893572 8031.88255
16 73673 71654.37 56.8683679 8088.75091
17 64639 67439.4 116.285734 8205.03665
18 49865 56199.51 713.992292 8919.02894
19 33459 41410.16 1526.70131 10445.7302
20 19362 26916.61 2120.33136 12566.0616
21 9284 15380.92 2416.78869 14982.8503
22 3792 7690.5 1976.24371 16959.094
23 1343 3343.68 1197.10034 18156.1943
24 305 1253.88 718.069715 18874.2641
25 61 401.24 288.513751 19162.7778
26 1 8 108.03 75.0291669 19237.807
27 24 24 19261 .807
28 4.29 4.29 19266.097
29 0.59 0.59 19266.687
30 0.06 0.06 19266.747
31 0.003 0.003 19266.75
32 0.0001 0.0001 19266.7501

observed calculated (0-C)'^2/C chi-square
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Appendix - Binomial Test MDC4T (32 bit checksum length)

Binomial Distribution of MDC4T

observed calculated (o-c)'^2/c chi-square

0.0001 0.0001 0.0001
1 0.0038 0.0038 0.0039
2 2 0.059 63.8556102 63.8595102
3 3 0.59 9.84423729 73.7037475
4 8 4.29 3.20841492 76.9121624
5 59 24 51.0416667 127.953829
6 190 108.03 62.1964352 190.150264
7 670 401.24 180.021776 370.172041
8 1901 1253.88 333.974778 704.146819
9 4784 3343.68 620.430694 1324.57751

10 10347 7690.5 917.624634 2242.20215
1 1 20058 15380.92 1422.22164 3664.42379
12 33126 26916.61 1432.44354 5096.86733
13 49214 41410.16 1470.65162 6567.51895
14 63374 56199.51 915.903124 7483.42207
15 72883 67439.4 439.398645 7922.82072
16 73417 71654.37 43.3590375 7966.17976
17 64515 67439.4 126.811854 8092.99161
18 50503 56199.51 577.411194 8670.4028
19 33198 41410.16 1628.5755 10298.9783
20 18870 26916.61 2405.50101 12704.4793
21 9358 15380.92 2358.47825 15062.9576
22 3851 7690.5 1916.8793 16979.8369
23 1238 3343.68 1326.05042 18305.8873
24 348 1253.88 654.463405 18960.3507
25 72 401.24 270.159948 19230.5106
26 10 108.03 88.9556688 19319.4663
27 1 24 22.0416667 19341.508
28 4.29 4.29 19345.798
29 0.59 0.59 19346.388
30 0.06 0.06 19346.448
31 0.003 0.003 19346.451
32 0.0001 0.0001 19346.4511

observed calculated (0-c)'^2/c chi-square
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Appendix - Binomial Test MDC4 (64 bit checksum length)

Binomial Distribution of MDC4 - 64 bit

obsewed calculated (0-C)«2/C chi-SQuare

1

2 C

3

4

5

6

7

e

9

10 0.004 0.004 0.004
1

1

0.02 0.02 0.024
12 0.09 0.09 0.1 14
13 0.36 0.36 0.474
14 2 1.33 0.3375188 0.8115188
15 6 4.43 0.55641084 1.36792963
16 7 13.56 3.17356932 4.54149895
17 46 38.3 1.54804178 6.08954073
18 106 99.97 0.36371812 6.45325884
19 238 242 0.0661157 6.51937455
20 552 544.56 0.1016483 6.62102285
21 1129 1140.98 0.12578696 6.74680981
22 2241 2230.09 0.05337368 6.80018348
23 3963 4072.34 2.93571647 9.73589995
24 6811 6956.91 3.06022762 12.7961276
25 11091 11131.05 0.1 4410163 12.9402292
26 16795 16696.58 0.58014853 13.5203777
27 23569 23498.89 0.20917635 13.7295541
28 31342 31052.11 2.70629635 16.4358504
29 38615 38547.45 0.11837365 16.5542241
30
3 1

45371
AQACA

44972.01 3.53982444 20.0940485

32 50712 50865.53 0.46340736 20.8994025
33 49416 49324.13 0.17111497 21.0705174
34 45196 44972.01 1.11561658 22.186134
35 38765 38547.45 1.22778556 23.4139196
36 30825 31052.11 1.661045 25.0749646
37 23290 23498.89 1.85689759 26.9318622
38 16437 16696.58 4.03566338 30.9675255
39 11075 11131.05 0.28223775 31.2497633
40 6765 6956.91 5.2939377 36.543701
41 3980 4072.34 2.09380248 38.6375035
42 2140 2230.09 3.63940832 42.27691 18
43 1111 1140.98 0.78774422 43.064656
44 562 544.56 0.55853092 43.6231869
45 237 242 0.10330579 43.7264927
46 94 99.97 0.35651595 44.0830087
47 39 38.3 0.01279373 44.0958024
48 14 13.56 0.01427729 44.1100797
49 3 4.43 0.46160271 44.5716824
SO 1.33 1.33 45.9016824
51 1 0.36 1.13777778 47.0394602
52 0.09 0.09 47.1294602
53 0.02 0.02 47.1494602
54 0.004 0.004 47.1534602
55 47.1534602
56 47.1534602
57 47.1534602
58 47.1534602
59 47.1534602
60 47.1534602
61 47.1534602
62 47.1534602
63 47.1534602
64 47.1534602
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Appendix - Binomial Test MDC4T (64 bit checksum lengtli)

10
1

1

12
13

15
1 6

18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36

38
39
40
41

42
43
44
45
46
47

49
50
51
52
53

55
56

58
59
60
61
62
63
64

Binomial Distribution of MDC4T 64 bit

observed calculated

13

100
231
522

1 154
2238
3999
6986

11 168
16762
23733
31 182
3891
45219
49325
50897
49248
45079
38478
30622
2319'

16598
11 148
6889
4039
2238
108
541
216

25
19

0.004
0.02
0.09

(0-c)'2/C

0.004

0.02

0.36

1.33

4.43

0.09
0.36

1.33

13.56
38.3

99.97
242

544.56
1140.98
2230.09
4072.34
6956.91
11131.05
16696.58
23498.89

0.04173815
0.02312684
0.48276762
9.0027E-06

0.004
0.024
0.11.

0.474
1.804

1.84573815
1.86886499
2.35163262

0.5

0.93461437
0.14857438
0.02805631
1.32080219
0.121638S

0.12265712
0.25632653

31052.1 1

38547.45
44972.01
49324.13
50865.53
49324.13
44972.01
38547.45
31052.11
23498.89
16696.58
11131.05
6956.9-

4072.34
2230.09
1140.98

2.33234387
0.54332579
3.4855458

1.35648952
1.5345E-05
0.01947018
0.1 1750389

2.35164162
2.85164162
3.78625599
3.93483037
3.96288668
5.28368887
5.40532737
5.52798449
5.78431102
8.11665489
8.65998068
12.1455265
13.502016

13.5020313
13.5215015

0.25453299
0.1251263
5.95755368
3.95584268
0.58203635
0.02581091
0.66290467
0.27295255
0.02805631

544.56
242

99.97
38.3

2.55380497
0.0232731

2.79338843
0.35651595

13.56
4.43

1.33

0.36

0.09
0.02

0.004

4.61853786
2.18241888
0.46160271
0.0818797

13.6390054
13.8935384
14.0186648
19.9762184
23.932061 1

24.5140975
24.5399084
25.202813

25.4757656
25.5038219
28.0576269

28.0809
30.8742884
31 .2308044
35.8493422
38.031761 1

38.4933638

0.36

0.09

0.02

38.5752435
38.9352435
39.0252435

0.004
39.0452435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
39.0492435
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Appendix - Program Code

P„l,, ,,^^ ., ^,^ pru-^ra; 5 r^n .1 1 a U,„e, oji structure
-^ V M I 3 f ! .? for u I I f D L ; .

t, = n <= r ri t •- s on & c H s L.. s f ; I :^ 1 <l » J j M I o r d i(i s 3 c c r J i n q to
'if : c J e I r; i o 1 1 1 -; p r o j r j '

.

Notp: if r, 'iff=.r-if n, •cri'.n.r, o:hcr tn^in mUu4 ,5 s
f^e is-, iuni:;-L lo criKsu'n ,nust -je ci'^njeo.

i e I e c t c I

« i nc ! ur-e "r n , n"

I n r -5 ^T 3n 2 4 <•
( ) ;

/'i-' v?ri?. bl«r. for jata ='••/

'°^^^ '"^ - /-= -twr. rcr j2 oil r.njorr, nu„:,cr -/
''^"^ '^^ '^^' /• .t.r.. rcr i :. o.t ...ocKi ^:v
'^^ ^^ ^f''^= '- ::^uro ;o/ . :. 1 . . , .c.'S ./
Inno ,nt r -a I

i
n ;- = .;• ; /.;• cn^racier lo eru; pro^r.., :?/

/* y^rinM-s an,! initj., valuas fur r:,^c equ.cons
I w i t h anri w i t^out L s sJ ^'^

/

Icm jnt -!-: = : S 033.:;,;^ ,, = 32707;

lO-in l-t m J=V20,,,2j = ;^^^. . ,^^.,^^-.^._,^^, ,,^. . ^

''I LP =^*^-l; . /=;^ t i If :^an^\^ f or b t r :. M e •.- /

onr, ,nt .,,i,,,p, /., .^^ n.n^l,,,, ,r,ocu,ar .ritn^atic '^ /
I r; n o I n t r. . r I J

f

I n q j n t :

r =-n 7 n ;

i f ( D<^) -C

n = n + n ; >

return p- :
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Appendix - Program Code (cont)

•r

I p n ^^ j n ^ '"f; 1 " *"
»

''^ Z "l S •

I o n o i
r, t m 1 s t . " 2 , 1 s L ;

r> 2 a s ='^; (1 1 ( ^ o I-* 1 ( -n 2 a s t « r 1

."" - ) + " o vJ i ( ;,'; Z a s c » n Z a ) » 1 1 Z a ) ;

>;

void '^•dc?2_2=,:_tss() /= 3d oic Z equation witn tss
{ a -1 u i ^ i n a I r e ^^ J j -t c k t, c r in ) v /

I o n n i
-1 1 '" 1 D s • "1 2 b V. t

lone lot ifi 1 ; t 1 .'! 2 s L ;

I ong t ss ;

ts5 = ( (bCOirOyf ' r f GIjO) | I o L 1 J
'. J x f f f f ; ) ;

ni>s t = {;^lo Ao r 01—nZ--"^ L IJ )
,"

m ihs=rricil ('-•0'-' 1( !i L uS I , .1 '.^ ) ^';.o :- i jiIl^ s l ,n i j ) , nlu ; i

fT'2bst = (". :>t. Af:'"" ^'^-'-i^JA^r l ] j ;

rT,2bs=^"ll{ -or' 1 (.;'2;, -SI .ri?!, } Ti,;,; J 1 ;;;;2 oS t, ;i.'!. J , n2u)i

mlb=mlhs;
m2 b= rn2hs !

VOID oetr^mf) /=;; fi.n.-*i"r- ir, ^

^
-. .. ' /. ^uOLcion iHcii qeis Lhe rariao.r, nu.-noer v/

&rij=(a^>i*:)f:n^ffff;
t r !)] = 3 c 'I x M ;

tf 2 1 = (a^>l6 ) r " ..
'

r

t [ 3 1 = ( d > > 7 '^ 1 f. " < f
f

>;

/* Su I i I I L I n to c Die criunr-. s
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Appendix - Program Code (cent)

.^ i t,
*•! r. r. f; ( a : a i L i J n <i I f e - o i<,^ c k ) ^^

/

lona int tss;

tss=( (MoirpvfO'jO)
: ( tL 1 J £ux- jfo;;) ;

rr2Hc;t=(-n2':.t r ;i_,^3^,^, - j^^,^,j^. r^ J-fni j s ^ L [ -i ]- tss) ;r?Hs = r,n,n(-0 U(,:?,SL. n^C) ^ i,: -J 1 I r. . a s t , n2u), 020;

r"3^st^(n.^,-.trM.-^-M-:.U2jt:- 1 j s ^ t [ .^ j -,r, 2 J :; . L [ -^ j - Lss; :

m^ds = -odl('no-Hl(,,4.sc, n-O + ...no i . n,. :: ^ t , ,,hO, r,',a);

rr 3 H = rp 3 H s ;

rr. ^ rj = Ti A H 5 ;

>;

2 I u c s a L s L a r L of ri ^j •„ o r o 9 r am -f /
void r =>

i n i
t ( ) / ;-

r p i e i

f. la = 160'^? : •M2a=327G7;
"iir-i^033;('i?j-L27:7;
'Hi c=2 29 ;

ni2 c =1 1 3 ;,:i?c =22 7 ;;i,4c =12 7;
tnlr^=2 29;r:7j=113;,i.3u=^27;m4u = i27 ;

>5
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Appendix • Program Code (cent)

V c i ri f" 1^ c "* Z ^ ^ ' ) / • i Z o i t • e 4 '^ u t i o n ,ii J c ''^/

"C

lone i r, t ;i' 1 c S L • ^i Z C 5 L > '' 3 C i t 5 i" -t C S I »

I
n a i n t r^i 1 c s ^ : . ? c r^ 1 t 3 c 3 • ::. '- c 5 ;

rr. ] r s t = f in 1 c A t r n - T> 2 c A t [ .? J + .-

, 1 c A L [ ^ ] -r:; -H c A :: L '• J ) ,

m 1 c s = rr n d 1 ( Ti c " 1 ( .:: 1 c ; c ? n 1 c ) + n. o J 1 i Hi i c :3 r. . (i 1 c ) « n 1 c ) j

m ;? r s t = ( rn ? c A t r 1 ] - :; 3 c A t L ? J + I'i 4 c A t L 3 ] -rr, i c s A I [ ^ J ) ;

f'i^r s =nca 1 ( mc '^ 1 f ^2 c s I » ritlc ) « uiOvj 1 i ;;i,l cs t > n Z c ) » n^lc i j

p3 i-s t= f trBc A t r 1 ] -ir '• ca t [ ^: j lul c s A t L 3 j-n,£ c sa l i. 4 j j ;

m 3 c S = '- no 1 (
"^ r; '' 1 ( •;, 3 C S * • : 3 C ) * ,1, J 1 ( li J C 3 t » (1 3 C ' j ri i C } »

pAcst = 'rnAcAt[l/|-niiCSAt[i:']trq£CSA:[iJ-T.JC5ALillj;
rT>H r s^l-- nj 1 (

^0 -i 1 (
:-;A c S t. » 'I -t C i t ,'.';> d 1 ( ri '-t C 3 t » ri1C)» ll-^C);

rr, 2r = T?rs;
rr. 3r='"3''sl

>

;

- - ^ •
••

.
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5 f-*'

Appendix - Program Code (cont)

f
1 & i n (

in*- th i 5r.n*;.=n , nc fi t =2 O'' i c n t. = ^ , en 1 1 =u ; /^ c oun r e r s cc Keep
LracK of place in rrogram

j n t r o n t ;

1 1 n '^
i o n f* n i

'^ t i; "^ 3 '^ I ''j V [ J. j J

u n s i
"^ n T" I o n r; c n !•< s ' J :;

!

f n T = f p " n (
" / '

1 s r c / V a f n e y / "; J 2 . 't . t . d a c a "
1
" w "

) ;

f P r ( c n t
= : c n t

''
.' ; ': n t.

* T 1 s e e J 1 '.,• v i. o > 1 1 j = j I
/ '• initialize r ri s e t d ''I

c n < = :

5 ^j p (] A p ( s r e '! 1 '^^ V ) ; / * i f i i I i a i I 7 e r > i a u : i c r a t, o r ••= /

cont = TPMP ;

\r' n i I e (cont;)

r

getranon: /- je: t.- <; ran -o:.! prcbrd-'. v/

c n 1 + + ;

if f r [Ol = = ^p.;; I I ne l! tn i sc r, t + + = = ncn U v / =•= end of a pr'joi */

n c n t = t [ 2 ] ;

t h i : c -1 1 = !} ;

en : 1 -^ +

chi' S'j.p- ( •::lr <<<L-t J
+

I 'iic <s< iu ) -^ I
."' JC^-vo ) f lite J / =' m a K fc cnksuii */

n r i n • f ( f T i . " /. y \ t. -. '- \ !- -. \ ri " . c n ft i u !. » c I'; t i » t- P i ) ;

if ( ^ -
t 1>-:1^')'jO ) ccn t-r^ALiZ ; /is i '«, ^rie l-ast prqm? =: /

i f ( :: [ ]==cnn I I ne ) ' un g I i n c = u i x ] i r c i n 1 1 ( ) i c n t = ; j\

}

/=^fr>.-ic 32_2eq ( ) ; v/ /v j2 ii i t 2 equation niCC ='

/

/^friHri, ?_2<:.c_css();-i'/ /•' J2 oit 2 equdtion ..:rjc */

mdc3 2_'t e T ( ) j / •'•' j2 oit -^ e.iuation iiiQc '/

/* :ndc32_'^'?.;_lss(i;v/ /v ^^ bit 't et^uation mcc =^/

>
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ABSTRACT

This thesis deals with the construction and testing of checksum algorithms for computer

virus detection on small computer systems. Checksum algorithms need to produce

checksums with the following features: even mapping over the range of possible check-

sums, permutation dependency, and every bit of the checksum is an overdetermined

function of all the bits of the set of data being checksummed. Checksum algorithms to

protect against viruses also need to be noninvertable and produce checksums with ade-

quate lengdi because viruses can employ either a brute force or a trap door attack against

the checksum. A birthday attack was shown to be not applicable in the case of strong

checksum algorithms. The methods to construct checksum algorithms with these proper-

ties include substitution, transposition and feed back. Cryptographic checksum algo-

rithms were found to be too inefficient for small computers and effort was concentrated

on noncryptographic algorithms. Several noncryptographic checksum algorithms were

created and shown to have the necessary features. These algorithms were also tested for

efficiency (speed of execution). On the basis of the strength and efficiency of the check-

sum algorithms a recommendation of checksum algorithms for different types of small

computers was presented.


