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CHAPTER 1
INTRODUCTION

Modeling, simulation, optimization, and synthesis of chemical reactor
systems are important to a number of chemical engineers who are involved
in various areas including chemical, physical, biological and environmental
processes. Frequently, éundamental equations for hydrodymamics, and heat
and mass transport of a reactor system are not amenable to any available
solution schemes. Therefore, it is highly desirable to have a proper model
which takes into account sigﬁificant features of the system operation. It
should also be capable of assessing the combined effects of chemical rate
processes and physical phenomena such as mass and heat transfer on the
performance of the system. As a result of the evolution of a host of
disciplines, such as transport phenomena, reaction engineering and unit
6peration, a great deal of wofk in this field has been successfully performed
by chemical engineers during the past three decades (see e.g. Wen and Fan, 1975).
However, great difficulties still exist in the treatment of processes with
inherent random properties such as turbulent flow and flow involving more
than one phase. This is due to the fact thét the conventional chemical
engineering approach, that is deterministic approach, is being used to
approximate such processes. However, these complex systems could be more
realistically described by employing a probabilistic approach.

The deterministic approach which was developed based on the continuum
hypothesis is not valid for systems which are discontinuous. Such is the
case when the elements of the discontinuous phase experience random activities
such as collision and redispersion. A probabilistic model, or more speci-
fically, the stochastic model should be introduced in place of the deter-

ministic model in these situations.



The neglect of the stochastic elements of the problem can be attributed
to the lack of a mathematical theory capable of pro%iding satisfactory models
for such sfstems. However, the situation has been changed significantly
over the last twenty years. Following the pioneering work of Kolmogorov,
Doob and Ito, an interesting and useful mathematical theory has emerged.

This theory of stochastic differential equation is known as the "Ito
equation", in honor of Ito's pioneering work.

The control system is an example in which the stochastic differen-
tial equation is employed to describe the system performances. This system
is designed to provide good plant performance in the face of random distur-
bances and therefore needs a noisy feedback signal to do so. With comparatively
few exceptions, the theory of feedback-control systems is based on determin-
istic methods, and very little consideration has been given to the stochastic
nature. (King 1973).

The overall objective of this report is to demonstrate the applicability
of the stochastic approach to the chemical reactor system involving random
phenomenon. Three different chemical systems are utilized for this purpose.
They are discussed separately in CHAPTER 2, 3, and 4. In CHAPTER 2, a
stochastic diffusion model is used to portray the bed expansion in the gas-
solid fluidized bed. In CHAPTER 3, the same model is used to describe the
behavior of fluid-solid reactions. In CHAPTER 4, the concept of the pure
death process is applied to describe the transient age distribution in a
chemical reactor.

In conclusion, this report is by no means an exhaustive survey of the
stochastic model in the field of chemical engineering. It is hoped that
the coming years will sée increased application of this principle to more

challenging problems.
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A STOCHASTIC DIFFUSION MODEL OF FLUIDIZED BED EXPANSION
2.1 INTRODUCTION

The objective of this paper is to examine the validity of the so-called
stochastic or Kolomogorov diffusion model for characterizing both the transient
and steady state axial solid density distributions or, equivalently, axial
porosity diétributions.in a gas-solid fluidized bed. The porosity distribution
in the fluidized bed arises from the convective and diffusive tranmsport of
solids in the bed, which is often éxtremely complex or stochastic in nature.
| Knowledge énd understanding of the porosity distribution are essential for
rational design and operation of a fluidized bed reactor since the presence
of solid particles.and their vigorous motions are the key features of this
reactor.

Investigations on the axial porosity distribution in a bubbling fluid-
ized bed (see, e.g., Bakker and Hertjes, 1960; Fan et al., 1962; Urabe et
al., 1965) indicate that the bed consists of three zones, namely, the lower
entrance or jet zone of slightly increased porosity, the main zone of
-essentially constant porosity.up to the point corresponding to the bed
height at minimum fluidization, me, and the uppér lean phase zone of

increasing porosity to the bubbling bed height, L The differences in

£
characteristics of the porosity distribution in the upper two zones have
been explained in terms of the bubble hydrodynamics; the behavior of bubbles
in one zone has been considered to be different from that in the other (see,
e.g., Kunii and Levenspiel, 1969). The behavior of bubbles in the jet
zone appears to be least understood (Wgn, 1976).

It is known that the size and velocity of bubbles -do not remain inﬁar—

iant during their transit through the bed (see, e.g., Kunii and Levenspiel,

1969). Since the rising bubbles are mainly responsible for the solids
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motion in the bed, spatial variations of the bubble size and velocity induce

a biased probability of particle motion toward a certain direction. Conse-

quently, the mobility of particles is a function of the bed position and

time, as confirmed experimentally by Jinescu et al. (1966). The stochastic

diffusion model proposed in the present work can account for this observation.

The experimental data reported by Bakker and Hertjes (1960) are employed

to test the validity of the proposed model.

2.2 THEORY

Let us consider a fluidized bed at minimum fluidization as shown in

Fig. 1.

as

where

b
]

i=)
]

When

The solid volume fraction, Cmf’ at this condition can be expressed

It

1)

porosity at minimum fluidization
mass of the solid particles

static bed height at minimum fluidization

cross-sectional area of the bed

density of the solid particles

the gas flow exceeds that of the minimum fluidization velocity

Umf' the rising bubbles induce upward expansion of the bed, and simul-

taneously impart complex stochastic motions to particles in the bed. We

can visualize this as solid particles diffusing into the void space, or

alternatively, the void space diffusing into interstices of solids.
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Suppose that a solid particle was initially observed at zo(q§zoiLf),
and that after a certain period of fluidization the particle is found at
z(0<z<L.). Let us assume that {Z(t),t>0} is a random variable which obeys

the Markov process, and let us define a conditional probability function

and its density such that

F(zo, Eyi Zs t) = Pr[z(t)<z | Z(to) = zO] 55
g = 2F
f(zo, tO’ z,t) E Nz

In the above expression, F (zo, z, t) is the conditional probabi-

£
0
migrates to z during the time

lity that a solid particle originally at Z,

period At t-t

0"
From the assumption of the Markov property for the random variable,

2(t), we have

f(zo, t0 1z, t) = fzf f(zo, tos £, n)(E, n;z, t)dg (3)
where

OsESLf

COSnSt

Another assumption necessary for the derivation of the Kolmogorov
diffusion equation is that the probability of particle motion during an

infinitesimal time interval At is negligible compared to At, i.e.,



]
|
&~

lim 1 S f(z, t; &, t+it) dg

s+ OF
le-z|>6 (4)

It

lim 1 [ f(z, t-At; £ t)dE

ae=0 |E-2|>8

where

§>0 and QigiLf

Equations {3) and (4) give rise to the Kolmogorov diffusion equation

of the following form:

3f _ 52(DE) _ 3(VE)

at 2 9z (5)
dz
where
f= f(zo, tos 2 t)
lim 1 1 2
D(z,t) =,  n 7t f 5 (E-2)7i(z, t; £, tAt)dE
|£~z|<6
_lim 1 _ . £
Viz,t) = 4 Atf ’ (e-z)f(z, t; £, t+At)dE
|5‘21<5

Equation (5) is equivalent to

3C(z,t) _ 22[D(2,6)C(z,00] _ 3[V(z,t)C(z,t)] (6)
ot 2 3z
3z
where
t = time

z = upward distance from the gas distributor
D = axial diffusion coefficient of solid particles relative to the

"counter-diffusing" void space



C = axial volume fraction (= 1 - ¢_, where ¢

£ is the porosity)

f
V = drift velocity of solid particles

We now assume that D is a function of z only but not of t, and that

V is negligible. Then Egqn. (6) reduces to

3C(z,t) _ 32[D(2)C(z,0)]

= (7)
ot az2
The appropriate initial condition for this equation is
Cag(®> » 0<z<L.
Cclz,0) = ()
0
2 me 2 E2A Lf

If no particles elutriate from a batch fluidized bed, the particles are

conserved. Thus the following boundary conditions are valid:

__3[b(z)C(z,t)]

az

J =0 9)

where J is the flux of solids

Equation (?) can be solved subject to Egns. (8) and (9) to simulate
the transient porosity distribution in the bed when the diffusion coefficient
is given as a function of z. At the limit of t»w, the solution of Eqn. (7)
converges to the steady state porosity distribution.

At the steady state condition, solution of Eqn. (7) subject to (9) gives

rise to

D(=) = (o3 (10)
where
Cm(z) = equilibrium solid particle distribution
k = positive constant.

Solving Eqn. (7) analytically, subject to Eqns. (8) and (9), is extremely

difficult, if not impossible, when D(z) is a complex function of z. 1In
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general, we have to resort to a numerical solution. The computer package,
PDESOL (Sincovec and Madsen, 1975), is available for the numerical solution
of parabolic partial differential equations. It is based on the method of
lines which converts, by means of a finite difference method, the original
partial differential equation dependent on z and t into a2 set of ordinary

differential equations dependent only on z. Let
D(z)C(z,t) = Y(z,t) (11)

Then Eqn. (7) is transformed into
2
L o ] L (12)
ot 2
az

and Eqns. (8) and (9) are transformed, respectively, into Eqns. (13) and (14),

i.e.,
, 0<z<lL
‘— Cmf/D(Z) s —_ Z = mf
¥(z,0) =<L ' (13)
0
me £z < Lf
and
J = = g—Y = (0 (14)
= z=0
z=me

These three equations are more amenable to numerical solution by the finite
difference scheme than the original ones because the set of transformed
equations gives rise to smaller errors due to finite difference apprexima-

tions of derivatives than the set of original equations.

2.3 EXPERIMENTAL DATA

The solid particle distribution at the center of the bed, as a function
of the bed height, was experimentally determined by Bakker and Hertjes

(1960) in a bed of 9 cm in diameter. The ranges of operating conditions
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are summarized in Table 1. Two sets of experimental data are used in the
present work. One set contains the data illustrating the variation of
porosity with the gas velocity for a given bed mass, and the other set
illustrating the variation of porosity with the bed mass for a given gas

-

velocity.

2.4 RESULTS AND DISCUSSION

The normalized diffusion coefficient, D(z)/k, has been determined by
fittting Eqn. (10) to equilibrium or steady state porosity data. A typical
result is plotted in Fig. 2 for UO = 40.7 cm/s and M = 1000 g against the

dimensionless bed helfght, z/Lf.

From Fig. 2 we can observe that, for given U. and M, the value of

0
D(z)/k is larger in the jet and lean phase zones than in the dense bubbling
zone. It is essentially constant in the dense bubbling zone while it is a
monotoniéally increasing function of z in the lean phase zone. D(z)/k in
the dense bubbling zone is slightly smaller than that in the jet zone, and
much smaller than that in the lean phase zone. This is expected because
the motion of a particle in the dense bubbling zone tends to be more
restricted by the existence of the neighboring particles than the motions
of parricles in the other two zones, especially in the lean phase zone
where the particle densities are relatively lower than that in the dense
bubbling zone.

The constant, k, in Eqn. (10), which is generally a function of the
system parameters, cannot be estimated from the equilibrium data alone.
Additional data, such as the values of the diffusion coefficient or the
transient porosity data, are needed in order to determine k.

The-variation of D(z) witﬁ the gas velocity can be estimated using
the experimental data of Lewis et al. (1962) who measured the effective
* ]

axial thermal conductivity of solids in which the bottom and top of

fluidized bed acted, respectively, as the heat source and sink.
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Leéis et al. assumed that the particles were the only media of heat trans-
fer and thereby obtained the correlation of the effective thermal diffusion
coefficient with respect to the gas velocity. It must be noted that the
system of Lewis et al. is essentially identical to the system considered
here, i.e., what they actually measured was the axial solids diffusion
coefficient relative to the void space. Their experimental data
yield the average solids diffusion coefficient, ﬁ, over the entire
bed. The operating conditions  of their fluidized bed are shown
in Table 2, which are similar to those of Bakker and Hertjes considered
in this work (see Table 1). The results of Lewis et al. for glass beads
are reproduced in Fig. 3.

Since the average diffusion coefficient over the entire bed, 5, can

be represented by

Lg
_ IO D(z)dz
b7, (15)

L

combining Eqns. (6) and (11) results in

Lf D D .
k = T = (16)
;i _de d(f—)
o C_(2) 1 f
IQ C;(ﬁi)

i
Therefore, the value of k for different gas velocities can be estimated

using Eqn. (16) and Fig. 3, and D(z) can be obtained using Eqn. (10).
Figure 4 shows D(z) in terms of the normalized bed height with UO as a

parameter.
According to Lewis et al. (1962), for a given gas velocity, the

average diffusion coefficient, ﬁ, is relatively independent of the



bed mass. Also the data of Bakker and Hertjes (1960) indicate that,
except for a very shallow bed, the normalized equilibirium solids distri-
bution, C_ (z/Lf) is essentially independent of the bed mass for a given
gas velocity. Hence, using Eqn. (10), the effect of the bed mass on the
normalized diffusion coefficient, D(z/Lf), can be determined. In Fig. 5,
D(z)/k is plotted against the dimensionless bed height, z/Lf, with the
bed mass, M, as a parameter. As can be seen except for a shallow bed in

which the bed mass is 250 g and the ratio of Lm to the bed diameter, dt,

f
is about 1/3, D(z)/k is nearly independent of M. In this figure the
normalized initizl bed height corresponds to me/Lf which is identical
for all runs. Figure 5 shows that the rate of diffusion in the lower two
zones in the shallower bed is higher than that in a deeper bed. This is
probably due to the greater influence of the jet region in the shallower
bed. The trend is reversed in the uppermost zone.

Figures 2 and 4 indicate that the diffusion coefficient can be

approximated by

m
D(z) =exp[ £ a z'] (17)
n=0 L

Af ter substituting this expression into the transformed governing equation,
Eqn. (12), it has been numerically solved subject to Eqns. (13) and (14).
Results are illustrated in Fig. 6 for U = 40.7 em/s, M = 1000 g and Lf = 20 cm.
This set of conditions yields k = 9.3. The parameter is the dimensionless

time, 71, defined as
k (18)
The simulation also shows that the porosity profile virtually reaches the

steady state at 1T = 0.15. The time needed to attain the steady state is

approximately 6.5 seconds, indicating very fast solids movement.



.2=-10

The rate of bed expansion can be determined from the simulated porosity
distribution. At any moment t, a position z where the solid concentration,
C(z,t), becomes less than an infinitesimally small prescribed constant is

considered to be the top of the bed. Then, the extent of bed expansion

at t is
Lf = z - L (19)
‘ mf
and the final bed expansion AL is
- . (20)
AL Lf me

Figure 7 plots the normalized or dimensionless bed expansion %% against

the dimensionless time, 7 , for various M and for U0 = 40.7 cm/s. The
dimensionless time constant T, at which %% attains 66.3% of the steady
state value appears to be independent of the bed mass. 1In this case,
since k is independent of M, Egn. (13)-shows that the time constant of bed

expansion is proportional to L This feature of gas-solid fluidized

£ e
bed expansion during the start-up is similar to that of a liquid-solid

fluidized bed expansion in response to a relatively small perturbation

in the liquid velocity (Fan et al., 1963).

2.5 CONCLUSION

A mechanistic model of transient porosity distribution or bed expan-
sion of a fluidized bed has been defived. The model can portray the ex-
perimentally observed non-uniform equilibrium porosity distribution as
well as the transient porosity distribution. The diffusion coefficient
varies significantly along the bed height. Its average value increases
with increasing gas velocities; however, it is only slightly dependent
on the bed mass. The normalized time constant of bed expansion has heen

found to be nearly independent of the bed mass for a given gas velocity.
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cross sectional area of the bed (cmz)

volume fraction of solid (-)

equilibrium volume fraction of solid (-)

volume fraction of solid at minimum fluidization (-)
diffusion coefficient of solids (cmzlé)

diffusion coefficient of solids averaged over the entire
bed (cm?/s)

bed diameter (cm)

particle diameter (u)

volume flux of solids (cm/s)

positive constant defined in Eqn. (6) (cmzls)
static bed height at minimum fluidization (cm)
height of a bubhling fluidized bed (cm)

bed expansion height at steady state (cm)
extent of bed expansion at t (cm)

mass of solids in the bed (g)

time (s)

minimum flyidization velocity, superficial (cm/s)
gas velocity, superficial (cm/s)

drift velocity of solids (cm/s)

upward distance from the gas distributor (cm)
porosity at minimum fluidization (-)

porosity (-)

density of solids (g/cm3)

dimensionless time defined in Eqn. (16) (-)

dimensionless time constant of bed expansion (-)
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Table 1.

Experimental Conditions of Bakker and Hertjes (1960).
dt =9 cm
dP = 175 ~ 210 y, glass beads
ey = 2.53 g/cm3
€nf = 0.48
Umf = 8.7 cm/s
% ] !
[ U, em/s | 22.7 ~ 98.4 i
| ° * i
M, g | 1000 |Lg, cm | 16 - 32 |
i ! : |
! i
; me, cm 11 i
'
2 ;
r 3
i M, g [ 200 ~ 2000 l
| \
; L ‘ ~
i 0,cm/s 40.7 £ocm g 4 40 l
Ly¢» S0 | 242 ~ 22 I
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Table 2. Experimental conditions of Lewis et al. (1962).

! ]
| dy, cm 7.4
i dp, u 155, glass beads

Pgs g/cm3 2.53

Umf’ cm/s 2.33 o

UO’ em/s 12 - 64

Enf 0.44

Lf, cm i > 100
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Fig. 1. Schematic representation of the stochastic diffusion

model used in the present work.
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Fig. 2. Normalized diffusion coefficient of sclids as a function

of the bed height of a gas-fluidized bed.



2-17
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Fis. 3. Average diffusion coeificient of solids as a function of

the gas velocity - experimental results of Lewis et al.
(1962).



2-18

100

80

60

, CmYs

0

40

20

2/L¢

Fig. 4. Diffusion coefficient as a function of the bed height
for a constant bed mass. The parameter is the gas
velocity,
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Fig. 5. Norumalized diffusion coefficient as a runction of the bed

heizht for a constant gas velocity. UO = 40.7 cm/s.
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CHAPTER 3
STOCHASTIC DIFFUSION MODEL OF A FLUID-SOLID REACTION

3-1
3.1 INTRODUCTION

The objective of this paper is to propose an alternative model,
namely, the stochastic or Kolmogorov diffusion model, for a heterogeneous
reaction between fluid and solid reactants. More often than not, such a
heterogeneous reaction under isothermal conditions has been modeled by a

Fickian equation of the form (Wen, 1968; Borghi et al,, 1976; Fan et al.,

1977a, 1977b)

3(C.e) aC,
i~ _ 13 iy _ .3
TR (rlDfi 57 ) T 21Y5(C15Cgs- -Gy Cg)s
(1)
i=1,2,3,...,M
aC -
_B.t_ = -YS(CI’CZ,..'CM,CS) (2)
The initial conditions for Eqmns. (1)} and (2} are, respectively,
t=20 H Ci = (0 i i=1,2,...,M
(3)
t=20 : CS = CSO’
and the boundary conditions for Eqn. (1) are
) aci
r=290 : -a-r—=0, i=1,2, M
aci (%)
r =R ; Dfi(S;—) = kmi(CiO - Ci), i=1,2,...,M

3.2 STOCHASTIC DIFFUSION MODEL

A heterogeneous reaction between fluid and solid reactants is fre-
quently accompanied not only by molecular diffusion of the fluid reactant
but also by complex and stochastic phenomena including interfacial turbulence,
convective transport of the fluid reactant, pore formation, pore shape
disconfiguration and others under thé influence of a variety of internal

and/or external factors such as gravitational force, pressure force,



frictional force, and temperature difference. Therefore, the Fickian
diffusion model or any simple coqtinuﬁm model can hardly be considered as
a theoretical model for such a reaction. It can only be considered semi-
theoretical or mechanistiec at best. Strictly speaking, the diffusivity, Dfi’
is a proportionality coefficient relating the molecular diffusional mass
flux of 2 component in a continuum to the concentration gradient (Hirschfelder
et al., 1954; Bird et al., 1960).

It is proposed here that, because of the involvement of several complex
stochastic phenomena, a stochastie diffusion equation of the Kolmogorov

form (see, e.g., Bharucha-Reid, 1960; Seinfeld and Lapidus, 1974; Okubo,

1975),

-2C.»Co),

- a;v5(CysC M’"s

oo
(5)

coupled with Eqn. (2), is at least as valid a model for a heterogeneous
reaction as a model resorting to the Fickian diffusion hypothesis, e.g.,
Eqn. (1). The two models, Eqns. (1) and (5), have an identical form only

when both the Fickian diffusivity, D and the Kolmogorov or stochastic

fi’
diffusivity, Dsi’ are constant. The Kolmogorov diffusivity, Dsi’ is a
derived quantity (Bharucha-Reid, 1960; Seinfeld and Lapidus, 1974; Okubo,

1975) while the Fickian diffusivity, is, as stated previously, a

ey
phenomenological or empirical parameter relating the diffusional mass flux
to the concentration gradient in a continuum (Hirschfelder et al., 1954;

Bird et al., 1960). The boundary conditions for the stochastic model,

Eqn. (5), are



r=0 3; a—Ci=0 i=1,2 M

ar L] 3Ly eyl

e(nsici) -5
r =R : —ar " kpy Cyp-C) 5 i=1,2,...,M

For a simple irreversibie reaction involving one fluid reacting species,

- = qp
Yg = k,CiCs » k2]

Eqns, (2) and (5) of the stochastic diffusion model, in dimensionless

forms, become, respectively,

%é_ = —c9sP (8)
v
C (D C)
1,710 2 3(Cec) 1 5 A s v2 .q.P
e o B B e [E ] = g." €78 (9)
a CSO v GGV EA 3L 3t v

The corresponding initial conditions are

8 =10 5 c=20
v
(10)
B8 =0 : S =1,
v
and the corresponding boundary conditions are
- ac _
g = 0 s ag =0
20 C) WL
R L R
In dimensionless form, Eqn., (1) of the Fickian diffusion model becomes
110y, 23Ce) 1B (g 3C) 2 o (12)
a CSO v aev gx 3E f 5¢ v
The corregponding boundary conditions are
E=0 %% =0
/ (13)
aC
E=1 5 Df 3E Nshf (1-C)

The void fraction, e, in Eqmns. (9) and (12) can be related to the concen-

tration of the solid reactant as (Wen, 1968; Fan et al., 1977a, 1977b)
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e = + 7(1-c5/cso) (14)

‘0
The stochastic diffusivity, Ds’ is assumed to vary with respect to the

spatial distance and concentration of the solid reactant according to (Fan

et al., 1977a, 1977b)

_ 2
D_ = exn[wl(l-s)] [w2£ + 1) (15)

The same expression is also assumed for the Fickian diffusivity, D The

£

value of DS or Df is taken as unity at the center of the solid particle in

the initia% state of the reaction. The second derivative of DS with respect
3“D

to £, or ——55, must exist at any £ as required by the governing equation,

3E
Egn. (9), in the stochastic diffusion model while only the first derivative
9D
of Df with respect to £, or ——, needs to exist at any £ as required by

3E ?
the governing equation, Eqn. (12), in the Fickian diffusion model,.

Note that the stochastic diffusion model proposed here is capable of
producing a non-uniform steady fluid reactant concentration profile at
the limit of t»= for a solid reacting with a single fluid reactant under
isothermal conditions. In contrast, the Fickian diffusion model yields
a flat concentration profile of the fluid reactant at the limit of t+=e

independent of the spatial and temporal dependence of the reactant diffusivity.

The conversion of the so0lid reactant is defined as

X =1- (A1) 61 s £ de (16)

and the effectiveness factor as

actual rate of the reaction
reaction rate based on the fluid bulk concentration
and the initial solid concentration

o+1) st cd sP g ae (17)
0 .



3.3 NUMERICAL METHOD

Equations (B) and (12) of the Fickian diffusion model, subject to
the initial conditions, Eqn. (10), and the boundary conditions, Egn. (13),
and Eqns. (8) and (9) of the stochastic diffusion model, subject to the
initial conditions, Eqn. (10), and the boundary conditioms, Eqn. (11)
are solved numerically by the so-called "method of lines" (Liskovets,
1965; Madsen and Sincovec, 1974; Fan et al., 1977a, 1977b). The
second-order, centered, finite difference formula is used to discretize
the spatial coordinate of the parabolic partial differential equations.
The resulting set of time-dependent ordinary differential equations are

then solved by the method proposed by Gear (1971).

3.4 DISCHSSION AND CONCLUSION

The nominal values of the parameters in the models employed for the
present numerical calculation are given in Table 1. Figure 1 shows the
concentration prqfiles of the sclid reactant at various reaction times
computed from the stochastic diffusion model. The corresponding Fickian
diffusion model yields the concentration profiles of the solid reactant
shown in Fig. 2. TFigure 1 indicates that the stochastic diffusion model
is capable of yielding unexpected (or peculiar) concentration profiles of
the solid reactant which increase outwardly in the radial direction. Such
profiles imply that the rate of the solids conversion in the particle is
greater in the interior than in the exterior. This may partially explain
the coke deposition from the interior toward the exterior of a catalyst
in a consecutive reaction of dehydrogenation of n-butyl alcochol (Murakami
et al,, 1968). This may also explain the terephthalate formation from the

interior toward the exterior or in a wave band form in a potassium benzoate
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particle during the thermal decomposition in the presence of carbon dioxide
(Gokhale et al., 1975; Kulkarni and Doraiswamy, 1977). To model these
peculiar observations by a classical model requires an assumption of compli-
cated but ad hoc mechanism which often leads to a complex set of governing
equations of the model. In contrast to the stochastic diffusion model, the
Fickian diffusion model always yields the concentration profiles of the
solid reactant which decrease outwardly in the radial direction at

any given time and eventually become uniform as shown in Fig. 2. This
implies that the rate of solids conversion in the particie is always smaller
in the interior than in the exterior before the profiles become uniform.

The stochastic diffusivity, D_, as given in Eqn. (9) is proportional
to the mobility of the diffusing species, which may vary in a complex and
stochastic fashion from position to position in the particle. Thus, the
stochastic diffusion equation is capable of modeling reactive transport
of a fluid diffusing against its own concentration gradient, e.g., active
transport in a biological system (Lightfoot, 1974), mixing of cohesionless
solid particles which differ in sizes and/or density in a drum mixer (Fan
and Shin, 1977), and bacteria distribution in an ecological system (Keller
and Segel, 1971).

Figure 3 shows the history of the solids conversion based on both the
stochastic diffusion model and Fickian diffusion model. It can be seen that
the stochastic diffusion model gives rise to a higher solids conversion than
the Fickian diffusion model at any given time. Figure 4 shows the relation-
ship between the effectiveness factor and the solids conversion based on
both the stochastic diffusion model and the Fickian diffusion model. It

can be seen that the stochastic diffusion model gives rise toa higher
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effectiveness factor than the Fickian diffusion model at any given solids
conversion. Thus, the rate of fluid-solid reaction can be enhanced signi-
ficantly by the stochastic diffusion effect.

While the proposed model may be no more rigorous than classical models,
it is at least as meaningful and useful as many of the classical models.
However, the proposed model can sometimes be more versatile than the
classical ones because it can mechanistically model several unusual phenomena.
The proposed model can be extended to nonisothermal heterogeneous reactions
and other reaction systems involving more than one phase, e.g., two liquid

phases, and gas and liquid phases.



NOMENCLATURE

ai stoichiometric coefficient

c C1/C10’ (=)

Ci molar concentration of the fluid reactant i within the solid particle,
CiO in the bulk phase, (mol/m3)

CS molar concentration of the solid reactant: CSO’ for the initial
concentration, (mol/m3)

Dfi Fickian diffusivity of fluid i; D i0® for the initial Fickian
diffusivity at the center of the particle, (mz/s)

Dsi stochastic diffusivity of fluid i; D _,,., for the initial stochastic
diffusivity at the center of the par%icle, (mzls)

D¢ Dg1/Perpr )

Ds D51/D510’ -3

k. mass transfer coefficient of the fluid reactant i across the fluid

mi
film, (m/s)

+q- -

kv volumetric reaction rate constant, (mg'(p 9 l)!mol(p+q 1)5)

M total number of the fluid reactants, (-)

Nshf Tfiifled Sherwood number based on the Fickian diffusivity, kmlR/Dflo’

N . modified Sherwood number based on the stochastic diffusivity,

shs k _R/D £y

ml s10’

P,q order of reaction for the solid reactant and that for the fluid
reactant, respectively, (-)

T distance from the center of the sphere, (m)

R the radius of the soclid sphere, {(m)

S CS/CSO’ (=)

t time, {(s)

% overall fractional conversion of the solid reactant, (=)



void fraction of the particle, (-)

initial void fraction of the particle, (-)

r/R, (-)

local reaction rate based on the solid reactant, (mol/mBS)
constant defined by Eqn. (14), (=)

constant defined by Eqn. (15), (-)

q .p-1 .
k€8s tr )

index associated with the geometry of particle, » = 0 for flat
plate, 2 = 1 for cylinder, » = 2 for sphere

effectiveness factor defined by Egqn. (17), (-)
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Table 1. Nominal values of the parameters
) employed in the present calculation.

A= 2
CAO/CSO = (0.001
¢v =]

1 -
¢v—1
a=1
= 1
q = 1
€ = 0.5
y = 0.3
Nshf = 50,000
Nshs = 50,000
wl =1.0
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Parameter: ev’ {0, 0.05 (0.05) 3.35,=}

Fig. 1. Concentration profiles of the solid reactant as a function
of time calculated from the stochastic diffusion model.



Parameter: 8., {0, 0.05 (0.05) 3.95, =} 0"

1
1

5%
1

Fig. 2.

Concentration profiles of the solid reactant as a
function of time calculated from the Fickian
diffusion model.
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CHAPTER 4

A STOCHASTIC MODEL OF THE UNSTEADY STATE AGE DISTRIBUTION
IN A FLOW SYSTEM

4,1 INTRODUCTION

The knowledge of the age distribution in a flow system under the
unsteady or transient state is important for a variety of reasons. The
flow system operation is always in the transient condition during the
start-up and shut~-down periods; it is constantly exposed to external and
environmental disturbances; the transient solution of a governing equation
provides information on its dynamic characteristics, e.g., time constant
and stability, which are essential for design of the control devices of
the system; and the unsteady state operation may enhance or impede the
performance of the system.

Published age distribution analyses of flow systems focus mainly on
steady state systems (e.g., Himmelblau and Bischoff, 1968; Seinfeld and
Lapidus, 1974). Cha and Fan (1963) considered the transient age distribu-
tion of the completely mixed tank with a pulsating feed. Nauman (1969)
extended the Danckwerts—Zwietering treatment of micro-scale mixing, or micro-
mixing in short, to the homogeneously stirred, unsteady state flow system.
Chen (1971) used the population balance equation to describe the unsteady
state micromixing in flow systems. All the approaches, however, are essentially
deterministic. This work attempts to shed new light on the nature of unsteady

state age distributions in a flow system.

4.2 = PURF DEATH PROCESS

Let us consider a flow system containing incompressible fluid elements,
and visualize a single fluid element as it traverses the system. This

element enters the system at age 0, resides in it for a random length of
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time, and leaves the system at age &. If we identify the random exit of
the fluid element from the system as death, the process is a pure death
process (Chiang, 1968). The age of the fluid element coincides with the
real time of the operation in this situation.

Let the continuous random variable, 5, be the age or life span in a
pure death process (Chiang, 1968). The age distribution function can be
expressed as

F (8) = Pr (6 < 8)

|

where F_(€) is the probability that the individual will die prior to (or at)
6
age 0. Consider now the interval (0, ¢ + A) and the corresponding distri-

bution function, F (8 + A). For an individual to die prior to 6 + A, he

a <ol

must die prior to or else he must survive to 8 and die during the interval

(6, 8 + 4). Thus, the following relationship holds:

F (8 +2) =F (8) + [1~F_(8)][u(e)r + o(a)] (1)
9 E C

where u(8) is the force of mortality and [u(€)4 + o(A)] is the probability
that an individual alive at age S5 will die in the interval (&, 6 + A).
Rearranging Eqn. (1), we have
F (8 +24) - F_(8)

8 8
i

= [1- F(®)]u(e) + 22 2
6

Taking the limits of both sides of Egqn. (2) as A —2> 0 vields
dF_(6)
8

—— = 1 - F(®] u® (3)

8

Solution of Eqn. (3) subject to the initial condition of

F (0) =0 (4)
8



is
8
F_(8) = 1- exp {- / u(t)dr} (5)
& 0
Equation (5) gives the probability that an individual will die prior
&
to or at age &. Thus, {1 - F_(€)} or exp {- S u(1)dt} represents the
8 0

probability that one individual alive at age 0 will survive to age &. 1If

ko fluid elements come into the system with age O or are originally alive

at age 0, and if they survive independently, the number of survivors, X(8),
at age € is then a binomial random variable with the probability of success
(or being alive), {1 - F_(e)}, and that of failure (or being dead), F_(e).

8
Thus, X(5) has the probability distribution of

D

Prix(e) = ki X(0) = k,}

0
k k. -k
=(H n-r@ikrEe?
k 8 ]
ko e e
= (, Jexp{-k / u(t)dt} - {1 - exp[- [/ uw(1t)d1}] (6)
K 0 o

This expression gives the expected number of elements that remain in the

system or are alive with age 6, Ea(k), as

8
Ea(k) - koil = Fé(e)] kg exp{- é u(t)dr} (7)

The expected number of elements that exit from the system or die prior to

age 8, Ed(k), is
6
- F (8) = k_{1 - exp[- / u(r)dr]} (8)
0 3 0 0
The variance of the number of elements alive with age & or that die prior

Ej(k) =k

to age 9, Dz(k), is

8 6
exp[- J u(7)dt]{1 - exp[~- S u(tr)dr]} (9)
0 0

200 =
D7(k) = ko



The probability density function of 2 is defined as

dF (8) ”

£ (8) = —75— = u(8) exp{- [ p(1)dt}, & >0 (10)
6 0

=O,

|

fa ]
A
o

4.3 MODEL

Consider a flow system that contain an inventory of N fluid elements
initially. At time O+, new fluid elements flow into the system at a
constant rate of n fluid elements per unit time. Meanwhile, n fluid
elements, which consist of both new and inventory elements, flow out of
the system. Note that while the rate of flow is constant, both the inven-
tory and new fluid elements undergo temporal variations with respect to
their composition.

It is assumed that the inventory-fluid elements and the new fluid
elements that flow into the system at any time behave stochastically and
independently. The force of mortality of the fluid elements, u{€), varies
with the age, 8, and the type of the fluid elements which include the inventory-
fluid and new fluid elements.. Furthermore, the stochastic behavior of the
fluid elements that remain in the system (or are alive) or exit from the
system (or die) obeys the pure death process (see, e.g., Parzen, 1962;
Chiang, 1968). Thus, the expected number of inventory-fluid elements in the

system at any time, t, is

t
N exp {- f u(1)dtl (11)
0

and the expected number of new elements in the system at t is

t t'
nf exp {- f u{gddtlat’. tL23
0 0
Therefore, the expected total number of fluid elements in the system at t becomes
t t t'
ENt(k) = N exp{~ f u(t)dr} + n /f exp{- / u(1)drldc’. (13a)

0 0 0



Since the fluid elements are assumed incompressible, the overall mass of
fluid elements in the system remains invariant throughout the process.
Thus, ENt(k) is equal to N, and Eq. (13a) reduces to the equation of mass

conservation in the system

t t t!
expi~ [ p(r)dz} +-% S exp{~ f u(r)dz} dt' = 1. {(13b)
0 0 0

At any time, t, the number of particles that are of age € is WI(t,H)
where I(t,8) is the intermal age density function. This is equal to the

sum of the number of inventory particles of age 6,

g

Nexp [ - f u(1)dr] & (t-8),

0
and the number of new particles of age &,
8
n expl- J u(t)dr] U(t-8).
0

In other words,

e
NI{t,8) = N exp[- / u(t)dr] 8(t-8)
0
s
+ n exp[~ / u(t)dr] U(t-8) (14a)
0

Thus, we obtain from Eqn. (l4a) the internal age distribution in the system

at t as
6 9

I(t,8) = expl- f u(r)dr} 6(t-6) +‘§ exp[- [ u(t)dt]U(t-8) (14b)
0 0

where & is the unit impulse function and U is the unit step function.
The expected number of inventorv-fluid elements that leave the system
(or die) in the time interval of (t, t + At) is equal to the product of

the number of fluid elements that are alive at t

t
N exp[- J u(t)dz]
0
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and the probability of fluid elements to die in the time interval of (t, t + 2t),

u(t)At. The result is
t
Np(t) expl- J u(r)drlat (15)
0

Similarly, the expected number of new elements that leave the system in

the same time interval is
t t'
n{at) 5 {u(texpl- /S u(z)dr]}}dt’ (16)
0 0
and, therefore, the expected total number of fluid elements that leave the

system in this time interval is

t t
E* (k) = Nu(t)expi~ [/ u(t)drlat + n(at) / {u(t")
nt 0 0
tf
exp(- £ w(r)dr]lat’ (172)
0

The expected total number of fluid elements that leave the system per unit

time, E' (t), becomes
? nt( )s

Ex
E;;t(k) =T (17b)

As stated, the total number of fluid elements in the system remains unchanged
during the process. Consequently, the total number of fluid elements in

the exit stream also remains invariant during the process. Thus, E;t (k)

is equal to n, and Eqn. (17b) is simplified to the equation of mass conserva-

tion in the exit stream as
i t t A
= u(t) exp{~- S u(v)dr} + 5 {u(t"exp[-/ wu(r)dr]}dt' =1 (17¢)
0 0 0
The age distribution function of fluid elements in the exit stream at t,

E(t,8), can be derived using the same argument as employed in deriving

Eqns. (l4a) and (1l4b) by replacing N with n. Thus, we obtain the expression



. 8
E(t,8) = % 4(8) expl- / u(1)dr]s(t=6)
0
8
+ u(8) expl- / w(r)dt]U(t-8), (18)
N

LV}

and the cumulative age distribution functiom, F(t,8), as

e
F(t,8) = [ E(c,8)de
0
N g
= — u(8) exp[- J u(r)dr]é(t-8)
n 0
8 g'
+ J p(8') expl- /7 wu{t)drlids' U(t-8) (19)
0 0
Note that u{f) needs to satisfy both Egns. (13b) and (17c). When t approaches

infinity, Eqns. (14b) and (18) reduce, respectively, to their steady state

counterparts:

e

I(t,e) = (n/N) expl- J v(m)d1] (20)
0
3]

E(t,8) = u(6) exp[~- J u(1)dr] (21)

0

Two special cases are considered below:
(i) Spatially Uniform Flow System. TFor this system, p(€) is independent

of time and has a constant value of py. Thus, Eqn. (10) becomes

£ (9) = v exp(-u8), 6 >0
B

and Eqns. (13b) and (1l7c) are simplified, respectively, to

BiE el ® 1;—% [1 - expl-ut)] = 1 (23a)
and
;’p swiy o) % [T - espleatil= 0 (23b)
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To satisfy both Eqns. (23a) and (23b), the following relationship must
hold:

(24)

=g

Since N/n is the mean residence time, o, of the new fluid elements passing
through the system, we have

a == (25)
From Eqns. (24) and (25), both I(t,6), Eqn. (14b), and E(t,8), Eqn. (18),
are simplified to

I(t,8) = E(t,9) = exp(-u8)8(t-6) + u exp(-us)U(t-6) (26)

{(ii) Piston Flow System. For this system,

u(g) = Q, 6 < g

u(B) = =, B >a 27
for the new fluid elements, and

4(8) = (e - &)Y, - 6 <a

plBy ==, 6 >ua (28)

for the inventory-fluid elements. Thus, Eqn. (5) gives rise to
F (3) =0, 6 < o
9
F_(8)
6

1, 6> a (29)

for the new fluid elements, and

F_(8)
e

F_(8)
g

B/as, 8 <a

1, B > a {30)

for the inventory-fluid elements. Note that u(6)'s given in Egns. (27) and

{28) satisfy the equations of mass conservation given in Eqms. (13b) and (17¢).
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Because of Egns. (14b), (27), and (28), I(8,t) can be expressed as

I(6,t)

6(t-8)(1-8/a) + (1/a)U(t-8), t <o

(1/2)U(e=-8)U(t-6), . t > a (31)

I(6,t)

From Eqmns. (18), (25), and (26), E(5,t) becomes

E(8,t) &(t-0), - t <a

E(e’t) 5(0-9)[}({:—8) ] t>a (32)

4.4 CONCLUDING REMARKS

The results given in Eqns: (26), (31) and (32) have been deterministi-
cally derived by Chen (1971); However, they are the special cases of the
generalization expressed by Eqns. (14b) and (18) which have been derived
from the probabilistic point of view. Variation of u(3) generates the

age distributions in a variety of flow systems.

NOMENCLATURE

ko number of fluid elements alive at age 0 in the pure death process.

n number of fluid elements in the exit stream in the continuous flow
system.

N number of fluid elements in the reactor in the continuous flow system.

t real time.

() force of mortality, intensity of risk of dying or failure rate at age €.
A small time (or age) increment in the pure death process.

8 age.

fas] ]

continuous random variable for age that varies between 0 and ©.

; ; N
o mean residence t1me,<;.
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This report describes the application of the stochastic processes to the
chemical reaction and reactor systems which possess inherent random pro-
perties. Three examples, each corresponding to a particular chemical
system, are used to demonstrate its applicability. These examples are,
solid movement in a fluidized bed expansion, fluid diffusion in a fluid-
solid reaction, and life expectancy of fluid elements in a chemical reactor.

Expansion of a fluidized bed may be visualized as upward stochastic
diffusion of fluidized solid particles or, equivalently, downward stochastic
diffusion of "void" in the bed. Such a visualization of the fluidized bed
gives rise to the so-called stochastic or Kolmogorov diffusion model when
the stochastic motion is assumed to be Markovian, which is markedly dif-
ferent from the Fickian diffusion model. In the limit of t-~, the stochastic
diffusion model proposed here is capable of reproducing the non-uniform
steady state axial solid concentration or void distribution in the fluidized
bed. Available experimental data have been employed to test the applica-
bility of the proposed model. The model can explain the transient porosity
distribution as well as the transient bed expansion.

The stochastic or Kolmogorov diffusion model is proposed as an alternative
model for a heterogeneous reaction between fluid and solid reactants. The
model 1s capable of mechanistically modeling several unusual phenomena.

Finally, a discrete state continuous time stochastic process, or more
specifically, a pure death process, is used to portray the performance of
the fluid elements in the reactor. The internal age distribution, external
age distribution, and external cumulative age distribution are derived for
the general case where the parameter, i.e. the force of mortality, varies

with respect to time.



