UNCOLLIDED FLUX FROM FINITE RIGHT-CIRCULAR CYLINDER VIEWED ENDWISE

by

LARRY A. RASH

B. S., Kansas State University, 1957

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

TABLE OF CONTENTS

LD 2668

74 1962 R37 C,2 Documents

INTRODUCTION	1
NOMENCLATURE	2
THEORETICAL DEVELOPMENT	3
Problem	3
Solutions	5
Stacked Disk Solution	5
Large Cone Approximation	6
Small Cone Approximation	6
Equivalent Volume Cone Approximation	6
Equivalent Circular Plane Source Approximation	7
NUMERICAL ANALYSIS	8
Method of Solution	8
Preliminary Investigations	8
Accuracy Analysis of Stacked Disk Solution	8
Parameter Analysis	11
Data Analysis	12
DESIGN CONSIDERATIONS	20
Use of Design Curves	20
Sample Problem,	22
DATA PRESENTATION	24
CONCLUSIONS,	42
ACKNOWLEDGMENT.	44

ii

TABLE OF CONTENTS (conc1)

REFERENCES		45
APPENDICES		46
APPENDIX A:	Description and Explanation of the IBM 650 Computer Program Used to Calculate the Centerline Uncollided Flux from the End of a Finite Right-circular Cylinder	47
APPENDIX B:	Description of IBM 650 Computer Program Used to Calculate the Error in Centerline Uncollided Flux Determination from the End of a Finite Right-circular Cylinder by the Use of an Equivalent Circular Pláne Source	58

INTRODUCTION

The cylinder is a shape quite frequently encountered in engineering work, and the nuclear field is no exception. They reactors, many fuel elements, and many other sources of radiation have shapes approximating cylinders.

It is not uncommon to need to know the flux from the end of such a cylinder, whether the flux is composed of neutrons or gamma rays or both. This information is required for such reasons as the design of adequate shielding and for calculation of dose rates. To the author's knowledge, there is no method of calculation available at this time which can be performed without a computer in reasonable time periods and give answers with predictable accuracy.

An approximate solution has been developed by Rockwell (6) for determining upper and lower limits on the flux from the end of a cylinder. This technique, while bracketing the flux, in many cases provides such a large bracket that the actual flux is still very much in doubt.

An IEM 704 Computer code has been developed by Gillis et al. (3), which calculates the uncollided flux at any point outside a cylinder.

It is the purpose of this paper to develop empirical techniques enabling one to determine the centerline uncollided flux from the end of a finite cylinder without the aid of a computer.

NOMENCLATURE

Φ	Scalar flux $(cm^{-2} sec^{-1})$
SA	Source strength of plane source (cm ⁻² sec ⁻¹)
sv	Source strength of volume source $(cm^{-3}sec^{-1})$
μ_{i}	Macroscopic cross section of ith shield material (cm^{-1})
μ _s	Macroscopic cross section of source material (cm^{-1})
ti	Thickness of ith shield material (cm)
to	Thickness of source disk (cm)
a	Distance from end of cylinder to observation point (cm)
μ	$\sum_{i}^{n} \mu_{i} t_{i} / a (cm^{-1})$
^b 1	ⁿ Σμ _i t _i
z	Effective self-attenuation distance (cm)
^b 2	$b_1 + \mu_B z$
h	Cylinder height (cm)
^b 3	b ₁ + µ _s h
h'	Cone height having same volume as cylinder (cm)
^b 3'	b _l + µ _s h'
Ro	Cylinder radius (cm)
θ	tan-1 R ₀ /a
θ2	$\tan^{-1} R_{o}/(a+h)$
NMAX+1	Number of disks in cylinder
δ	Depression of equivalent circular plane source (cm)
$\theta_{\rm N}$	$\tan^{-1} R_o / (a + Nt_o + \delta)$
θz	$\tan^{-1} R_o/(a+z)$
E _n (b)	$b^{n-1} \int_{b}^{\infty} \frac{e^{-t}}{t^{n}} dt n > 0 , E_{o}(b) = \frac{e^{-b}}{b}$

THEORETICAL DEVELOPMENT

Problem

The equations for calculation of uncollided flux from some geometrically simple sources are developed in Rockwell and those used in this work are listed here. From a circular plane source (Fig. 1) of radius R_0 emitting S_A particles per square centimeter - second,

$$\Phi (a) = \frac{S_A}{2} \left\{ \mathbb{E}_1(b_1) - \mathbb{E}_1(b_1 \sec \theta) \right\} . \tag{1}$$

From a truncated cone (Fig. 2) of height <u>h</u> emitting $\underline{S}_{\underline{V}}$ particles per cubic centimeter - second the flux at <u>P</u>, the imaginary apex of the cone is,

$$\Phi (\mathbf{a}) = \frac{s_{\mathbf{v}}}{2\mu_{\mathbf{g}}} \left\{ \mathbb{E}_{2}(\mathbf{b}_{1}) - \frac{\mathbb{E}_{2}(\mathbf{b}_{1} \sec \theta)}{\sec \theta} - \mathbb{E}_{2}(\mathbf{b}_{3}) + \frac{\mathbb{E}_{2}(\mathbf{b}_{3} \sec \theta)}{\sec \theta} \right\} (2)$$

The flux from the end of a cylinder (Fig. 3) is not so easily obtained and must be calculated by approximation techniques. There are several approximate solutions available and these are listed and discussed. In all following discussion the orientation of the cylinder will be assumed to be such that the centerline is vertical and the detection point <u>P</u> is above the cylinder. All the solutions require that the point <u>P</u> be on the centerline of the cylinder. All solutions also require that the source S_V be of constant strength throughout the cylinder.

There are six parameters which must be considered in this problem area. Those associated with the cylinder are $\underline{\mu}_{\underline{B}}$, $\underline{R}_{\underline{O}}$, and $\underline{\underline{h}}$. The parameters associated with the shield are $\underline{\underline{b}}_{\underline{1}}$, $\underline{\underline{a}}$, and $\overline{\underline{\mu}}$. The shield is assumed to be composed of slabs perpendicular to the cylinder centerline.

Fig.I. Circular plane source.

Fig.3. Right-circular cylindrical source viewed endwise

Fig. 2. Truncated rightcircular cone source.

Solutions

<u>Stacked Dick Solution</u>. In order to determine empirical relationships for the flux, it was necessary to determine the flux accurately and this solution served that purpose. A cylinder is assumed to be made up of a series of thin stacked disks. The flux at <u>P</u> from each disk will be calculated by assuming each disk to be an equivalent circular plane source with $S_A = S_V t_0$. The shielding of all disks above the one under consideration must be considered so each disk will "see" a different amount of shielding.

The self-shielding of each disk is considered by locating the plane source some distance \underline{b} beneath the upper surface of the disk as shown in Fig. 3. Since the location of the plane source within the disk is actually a weighting function applied to the source distributed within the disk, \underline{b} is expected to be less than $\underline{t_o}/2$ because the upper portion of the disk is more important due to the fact that it "sees" less shielding.

A second reason exists for choosing $\delta \leq t_0/2$; that being the desire to always make conservative calculations where possible exposure to nuclear radiation may be involved. As the plane source is moved closer to the upper surface of the disk, it "sees" less of the shielding in the disk than is actually the case so the resultant flux calculation will be too high. As the disks are made thinner, the neglected shielding in the source will decrease and the solution becomes more accurate.

The mathematical expression for the flux is

$$\Phi (\mathbf{a}) = \frac{8\gamma \mathbf{t}_0}{2} \sum_{N=0}^{NMAX} \left\{ \mathbf{E}_1(\mathbf{b}_1 + N\mu_{\mathrm{S}}\mathbf{t}_0 + \mu_{\mathrm{S}}\mathbf{b}) - \mathbf{E}_1[(\mathbf{b}_1 + N\mu_{\mathrm{S}}\mathbf{t}_0 + \delta\mu_{\mathrm{S}})\sec\theta_N] \right\}, \quad (3)$$

where <u>MMAX</u>, $\underline{t_o}$, and $\underline{\delta}$ will be chosen to assure the calculated flux is within 1% higher than the true flux. Equation 3 is identical to Eq. A-1 in Appendix A which explains the computer code used to solve the equation.

Large Cone Approximation. This solution assumes the cylinder to be a truncated cone the same height as the cylinder with <u>P</u> at the apex. The angle subtended by the cone is $\theta_{\underline{1}}$ on Fig. 3, and the cone is obviously larger than the cylinder it represents. The flux from this approximation is calculated by

$$\Phi (\mathbf{a}) = \frac{\mathbf{S}_{V}}{2\mu_{s}} \left\{ \mathbf{E}_{2}(\mathbf{b}_{1}) - \frac{\mathbf{E}_{2}(\mathbf{b}_{1}\sec\theta_{1})}{\sec\theta_{1}} - \mathbf{E}_{2}(\mathbf{b}_{3}) + \frac{\mathbf{E}_{2}(\mathbf{b}_{3}\sec\theta_{1})}{\sec\theta_{1}} \right\} \quad . \tag{4}$$

This solution provides an upper limit on the flux from the cylinder. Equation 4 is identical to Eq. A-3 in Appendix A which explains the computer code used to solve the equation.

<u>Small Cone Approximation</u>. This solution also assumes the cylinder to be a truncated cone which is the same height as the cylinder with <u>P</u> at the apex. The angle subtended by the cone is θ_2 on Fig. 3, and the cone is obviously smaller than the cylinder it represents. The flux from this approximation is calculated by

$$\Phi(\mathbf{a}) = \frac{g_{V}}{2\mu_{\mathbf{a}}} \left\{ E_{2}(\mathbf{b}_{1}) - \frac{E_{2}(\mathbf{b}_{1} \sec \theta_{2})}{\sec \theta_{2}} - E_{2}(\mathbf{b}_{3}) + \frac{E_{2}(\mathbf{b}_{3} \sec \theta_{2})}{\sec \theta_{2}} \right\} \quad . \tag{5}$$

This solution provides a lower limit on the flux from the cylinder and when coupled with the large cone approximation provides a bracket on the expected flux. Equation 5 is identical to Eq. A-5 in Appendix A which explains the computer code used to solve the equation.

Equivalent <u>Volume Cone Approximation</u>. This solution also assumes the cylinder to be a truncated cone with <u>P</u> at the apex. The angle subtended by the cone is θ_{1} on Fig. 3, and the height of the truncated cone is such that the volume is equal to that of the cylinder it represents. The flux from this approximation is calculated by

$$\Phi (a) = \frac{s_{V}}{2\mu_{s}} \left\{ E_{2}(b_{1}) - \frac{E_{2}(b_{1} \sec \theta_{1})}{\sec \theta_{1}} - E_{2}(\theta_{3}) + \frac{E_{2}(b_{3}^{*} \sec \theta_{1})}{\sec \theta_{1}} \right\} .$$
(6)

Equation 6 is identical to Eq. A-4 in Appendix A which explains the computer code used to solve the equation.

Equivalent Circular Plane Source Approximation. This solution assumes that the cylinder can be represented by a single circular plane source the same radius as the cylinder. The equivalent source is assumed to be located somewhere within the space occupied by the cylinder it represents so that the shielding it "sees" is that of the cylinder within the confines of the cylinder. To allow for self-shielding within the source, the strength of the equivalent source must be considered in two parts. For cylinders with small mean free path height $(\mu_{\Sigma}h)$ the equivalent source strength will be assumed to be $\underline{S_A} = S_V h$. For cylinders with a mean free path height greater than some value \underline{K} , which is chosen empirically, the source strength will be assumed to be $\underline{S_A} = \underbrace{KS_V}_{-\overline{K_S}}$. The flux from this approximation is calculated by

$$\Phi (\mathbf{a}) = \frac{\mathbf{S}_{\mathbf{V}}^{\mathbf{h}}}{2} \left\{ \mathbb{E}_{1}(\mathbf{b}_{2}) - \mathbb{E}_{1}(\mathbf{b}_{2} \sec \theta_{z}) \right\}, \text{ if } \boldsymbol{\mu}_{s}^{\mathbf{h}} \leq \mathbb{K}.$$
(7)

or

$$\Phi (a) = \frac{\kappa S_V}{2\mu_g} \left\{ E_1(b_2) - E_1(b_2 \sec \theta_g) \right\}, \text{ if } \mu_g h > \kappa.$$
(8)

Equations 7 and 8 are identical to Eqs. A-6 and A-7 respectively in Appendix A which explains the computer code used to solve the equations.

NUMERICAL ANALYSIS

Method of Solution

This problem has six parameters which may vary; \underline{P}_{o} , $\underline{\mu}_{g}$, \underline{h} , \underline{b} , \underline{b}_{1} , and <u>a</u>. In order to consider all possible combinations of parameters adequately, a large number of problems had to be solved. To do this an IEM 650 Computer code was written which solved the problems by each of the five previously listed solutions. This code is described in Appendix A.

By proper choice of disk thickness the stacked disk solution could be used to solve the problem with any desired degree of accuracy. This solution was used to provide an answer accurate to within 1%. The choice of disk thickness to assure this accuracy will be discussed later.

The three conical approximate solutions were compared with the stacked disk solutions and the relative error of each solution was calculated. The results were examined in an effort to determine some simple method of empirically presenting the data to enable one to calculate the correct flux within some set limits of accuracy without the use of a computer.

The plane source approximation was used as a trial and error calculation to determine the self-absorption distance which forced the solution to approximate the stacked disk solution within specified limits. The results were examined in an effort to determine a simple empirical relationship between the self-absorption distance and the flux.

Preliminary Investigations

<u>Accuracy Analysis of Stacked Disk Solution</u>. Using the computer code, it was first necessary to determine the disk thickness which gave sufficient accuracy. As the disks became thinner the solution became more accurate, so very thin disks were preferred. On the other hand, computer running time increased as disk thickness decreased since more disks were then required for any given problem. A compromise was made such that the flux was always calculated to within 1% of the asymptotic value, the result being always higher than the true value. The required disk thickness could then be determined for different combinations of parameters.

In order to better understand the problems associated with the work undertaken, it was necessary to approach the problems of disk thickness and location of the equivalent plane source within each disk in an oblique fashion. It was first assumed that the plane source was on the upper surface of each disk, i.e. $\underline{\delta} = 0$, and disk thicknesses were determined. Problems solved with this choice of $\underline{\delta}$ were quite lengthy, due to the necessity of using extremely thin disks since no self-absorption in each disk was considered. This extreme location of $\underline{\delta}$ was used initially since the results would satisfy the original requirement that the flux always approach the correct flux from some higher value.

With the information provided from the initial set of problems, it was possible to compare the results with those obtained when $\underline{\delta}$ was varied. Three facts were immediately apparent when these comparisons were made. First, the optimum location for $\underline{\delta}$ was quite near $\underline{t_0/2}$. Second, the optimum location for $\underline{\delta}$ varied as the parameters of the cylinder and shield varied. Third, the major portion of the advantage of the depression of the plane source was observed as $\underline{\delta}$ varied from $\underline{0}$ to $\underline{0.4t_0}$. The choice was made for $\underline{\delta}=\underline{0.45t_0}$ and proved to be satisfactory. The advantage of this depression of the plane source was a decrease in the number of disks

required for any given cylinder, the decrease being at least a factor of ten which saved considerable computer time.

In the search to determine the proper disk thickness for each problem, three parameters were shown to have an appreciable effect on the thickness necessary to provide the 1% accuracy required. The results of this search are shown in Table 1 with the variation of a single parameter from some intermediate value shown as the cause with the change of disk thickness while still maintaining 1% accuracy of the calculated flux shown as the effect.

Table 1. Effect on disk thickness required to determine flux within 1% of the asymptotic value as parameters are varied from intermediate values.

Cause	:	Effect	
Increase b _l Increase B _o Increase µ _s		Thicker Thicker Thicker	

The disk thickness was determined in terms of mean free paths, $\mu_{\underline{s}^{\dagger}\underline{o}^{}}$. Use of mean free paths makes it easier to explain the dependence on $\mu_{\underline{s}}$ while not affecting the other results.

By the choice of \underline{b} , the location of the circular plane source within each disk representing the disk, some small amount of the shielding within each disk has not been considered. This was done, as previously explained, to force the flux calculation to always approach the asymptotic value from some higher value. Certainly one expects this neglected shielding to become less important as the total amount of shielding is increased. This expectation is borne out by the observed effect that increasing $\underline{b_1}$ has on disk thickness. In considering the dependence on \mathbb{R}_{0} , it is only logical to assume that to represent a disk by a plane the disk must "look like" a plane, that is, $\mathbb{R}_{0} \gg t_{0}$. This being the case, one expects that disks with larger radii could be thicker and still "look like" a plane. This expectation is borne out by the observed effect that increasing \mathbb{R}_{0} has on disk thickness.

The effect of $\underline{\mu}_{\underline{s}}$ on disk thickness is again one of geometry. As $\underline{\mu}_{\underline{s}}$ increases, the disk thickness in terms of mean free paths is expected to increase because this tends to hold the shape of the disk constant. If the thickness did not increase, the disk would approximate a plane even more closely than necessary. The expected results were observed and disk thickness did increase as $\mu_{\underline{s}}$ increased.

<u>Parameter Analysis</u>. Having chosen $\underline{\delta}$ it was possible to calculate the flux from cylinders whose parameters were chosen at random, as were the parameters of the shields. These problems were solved in an effort to determine which approximate method of solution or combination of methods showed the greatest promise as a tool to be eventually used in the simple empirical presentation of data which was desired.

The three conical solutions were shown to have little promise. As $\mu_{\rm B} {\rm P}_{\rm O}$ decreased no single solution or average combination of the approximate conical solutions could provide accurate results. Errors were greater than a factor of 10 in some cases. The errors varied in such inconsistent fashion that no pattern which might make the application of correction factors to the approximate solution(s) feasible could be observed. In most cases the large cone approximation and the equivalent volume cone approximation were more nearly correct and the large cone approximation was the more reliable of these two because it always gave a conservative result.

The equivalent plane source approximation was chosen as the only approach which showed some promise of lending itself to the empirical fit of large amounts of data. It was observed that for large $\mu_{\rm B}R_{\rm o}$, the selfabsorption distance in terms of mean free paths, $\mu_{\rm B}z$, depended only on $\underline{b_1}$ for a given cylinder height and it was decided to present the results as a family of curves for different $\mu_{\rm s}h$ with $\mu_{\rm s}z$ plotted versus b_1 .

It was possible at this point to choose a value for \underline{K} , the mean free path cylinder height that fixed the constant source strength, for cylinders whose height exceeded K mean free paths. The artificial circular plane source having $S_A = S_V$ h kept increasing as <u>h</u> increased, although the flux from the cylinder did not. The self-absorption distance z necessarily increased as the plane source increased and these compensating effects were undesirable since the flux did not continue to increases. The value of K was fixed at 1.5 so that all cylinders more than 1.5 mean free paths tall were assumed to have an equivalent circular plane source strength such that $S_A = 1.5 S_V/\mu_s$. The plane source strength then fell into one of two categories: if $\mu_{s}h \leq 1.5$, $s_{A} = s_{V}h$; if $\mu_{s}h > 1.5$, $s_{A} = 1.5 s_{V}/\mu s$. The figure of $\mu_{s}h$ = 1.5 was chosen as the minimum value which could be used to fix a constant source strength without a risk of developing a negative z, which is not anticipated in the computer program. The minimum value was desired since the accuracy of the empirical relationships improved as the cylinder height used to fix a constant source strength decreased.

Data Analysis

Typical values for $\underline{R_0}$ and $\underline{\mu_3}$ were chosen and problems with varying $\underline{\tilde{\mu}}$, a, b₁, and <u>h</u> were solved and the resultant curves in Figs. 4a and 4b were

determined. The self-absorption distance $\underline{\mu_{s}z}$, expressed in terms of mean free paths, refers to the equivalent circular plane source which is assumed to replace the cylinder. Presentation of the data in this manner requires that $\underline{\mu_{s}z}$ be dependent only on the shield mean free paths, $\underline{b_{1}}$, for a given cylinder height. This requirement is satisfied for large $\mu_{s}R_{o}$.

For the cases of small $\underline{\mu_{s}R_{o}}$, marked deviation of $\underline{\mu_{s}z}$ from that suggested by Figs. 4a and 4b was observed. In general, $\underline{\mu_{s}z}$ increased as $\underline{\mu_{s}R_{o}}$ first dropped below some critical value dependent on $\underline{b_{1}}$, and eventually decreased rapidly as $\underline{\mu_{s}R_{o}}$ continued to decrease. Figure 5 indicates the area where fluxes may be calculated to within 10% of the actual value without the use of correction factors. As $\underline{\mu_{s}R_{o}}$ exceeds the critical value shown for any b_{1} , correction factors are not required.

The maximum deviation of $\mu_{s}z$ from the values predicted by Figs. 4a and 4b is observed for large $\overline{\mu}$. For a given value of $\mu_{s}R_{0}$ the deviation was greater for smaller μ_{s} as $\overline{\mu}$ was held constant. The relative deviation was slightly dependent on $\mu_{s}h$ and quite dependent on \underline{b}_{1} . It was necessary to develop correction factors for $\mu_{s}z$ which depend on \underline{b}_{1} , $\overline{\mu}$, and μ_{s} . This has been done in Figs. 6 through 12. These correction factors were determined by assuming cylinders having $\mu_{s}h = 2$. and the results are most accurate for this case. For values of $\mu_{s}h$ not equal to two the error in the calculated flux for small $\mu_{s}R_{0}$ increases. Largest errors are noted when μ_{s} is small, \underline{R}_{0} is small, and $\overline{\mu}$ is large. Errors are greatest for the smallest $\mu_{s}h$. Errors are positive, i.e. the empirically determined flux is greater than the flux determined by the stacked disk solution, for most cases, and the estimated maximum negative error is <25%. The estimated maximum

positive error is $\leq 175\%$ and these extreme errors apply only in isolated cases. Table 2 lists the estimated maximum errors anticipated for varying $\mu_{\rm B}$ and varying $\mu_{\rm S}h$ at values of $\mu_{\rm S}h$ other than 2. The comparable errors resulting from the use of the large cone approximation are included in Table 2. Appendix B explains the computer program used to calculate the error in flux determination by the empirical method.

l to stacked dis approximation f	n		e : Curves : in this ox. : paper *	5 155.8 3 139.9 5 97.1 1 57.3			.6 -6.3 .1 -13.8 .7 -16.6 .5 -20.2	-2 -4.6 -9.1 -7 -8.0 -9.7 -6.7
tion compared e large cone	determinatio	∏=1.0	ves : Larg this : cone er * : appr	1312 268 4 114 39 39	8 2756 0 2118 3 808 8 356	.0 2943 917 917 3 407 148	554 2554 2554 2554 2554 2554 2554 2554	8 3160 6 2693. 1 1070. 6 480. 178.
Lux determina per and by th	rors in flux		re : Cur e : in i rox. : pape	145 5 145 6 45 0** 19	8 4 8 0 6		-7- -28 -14. -15. -15.	
errors in [] s in this pay arameters.	Percentage en	д =0.1	rves : Lar this : cor per * : app	854 0.0 3.2 29 0.1 10 0.7	0.9 2370 1.3 2370 1.3 362 4.5 97 4.5 40 2.0 97	8.5 2645 1.2 414 2.5 113 2.5 414 7.13 2.5 414 113 2.5 113 2.5	L.8 2851 55.0 126 5.6 126 1.5 53 53	2004 3004 4 3004 7 137 58 9 58
m percentage by the curve and shield p			rge : Cu ne : in prox. : pa	-3.9 -3.6 -3.9 -3.9	90.7 79.1 21.1 8.8	82.11 82.111	0.6.90 0.6.90 0.6.90	81-00- 0.00-00- 0.00-00- 0.00-00- 0.00-00-00- 0.00-00-00-00-00-00-00-00-00-00-00-00-00
udy of maximu termination, rying source		μ=0.02	urves : La 1 this : co aper * : ap	36.7 23 1.5 0 1.1	22.56 25.66 26.110	70.07 44.03 0.03	22.9 8.10 1.6 4.1 1.0 4.1	66 - 4 - 4 - 1 - 2 - 0 - 2 - 0
lable 2. Str def var		P1 : Ld	57 ĕ	10000000000000000000000000000000000000	10.01416	0°1 1°0 300 00 00 00 00 00 00 00	300000	100 00 00 00 00 00 00 00
E		H _s H H _s h		0.02 0.25	0.02 1.00	0.02 1.25	0.02 1.50	0.02 1.75

.

. .

							Percent	tag	e errors	in	flux dete	irmi	nation				
ц.	ч ^s н	L ^d	17	0.0	02		0= Ħ	0.1				11	1.0		<u> </u>	0	
			Curves in this paper *		Large cone approx.		Curves in this paper *		Large cone approx.		Curves in this paper *		Large cone approx.	in Pa	irves 1 this 1 ther *	Larg cone appi	e ox.
0°02	3.00	0°1 1°0 30 30	8 4 - 8 4 - 8 0 - 3		1064.9 136.4 38.1 15.4		4.2 9.6 13.1 1.11 6.6		3353.1 572.7 166.3 72.6 24.7		-0.6 11.2 18.8 23.2 22.0		3338.0 3013.9 1239.0 563.3		0-0-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	3014 2675 2230 1510 679	ڛٛۄۛۏۺ
0*02	0.25	0.1 1.0 30 30	13.1 -0.1 0.02 0.3		92.4 9.3 4.7		7.7 7.8 4.0 0.0 4.0 0.0		341.5 46.9 11.9 3.5 -7.0		107.4 58.9 20.5 6.1 0.3		509.3 299.8 108.1 45.9 15.6	2009	<u>6</u> 00000	292 292 130 130	و ښه ه غ
	1.00	0°-1 1°0 30 30	61-1 6.0 6.0 7.0 7.0 7.0		289.9 32.4 3.7 3.4		14.4 3.2 4.5 2		973.9 152.1 40.2 16.1 1.4		18.4 -1.5 -6.2 -6.8		1099.1 869.1 337.9 149.2 52.8		5-6-4-5-6 5-1-6-4-5-6 4-5-6-	988 806 625 411 180	9.01.1.4 9.01.1.4
0°02	1.25	1.0 10 30 30 30	22.25 4.25 8.95 8.95 8.95 8.05 8.05 8.05 8.05 8.05 8.05 8.05 8.0		332.2 38.2 2.6		13.1 5.9 1.6 5.6		1090.4 175.9 47.4 19.0 4.6		14.1 4.9 -5.4 -5.4		1176.5 975.0 387.5 172.9 62.0		0,00,00,00 0,00,00,00 0,00,00,00	1057 888 708 470 208	0, 10, 4, 0, 10,
0.05	1.50	1.0	00000		365-9 43-1 10-7 4-2	i.	6.7 6.7 6.1 6.0	-	1177.8 195.1 53.3 21.7 5.3				1229.4 1054.6 425.2 191.5 69.6		0°-1-0 0°-0 0°-0 0°-0 0°-0	1104 948 767 515 230	40040 8

Table 2. (cont).

(cont).	
å	
Table	

	-	Large cone approx.	1136.8 990.7 814.8 551.3 248.9	1202.4 1081.8 923.4 640.2 295.7	214.6 131.1 95.1 62.7 27.3	481.1 395.9 314.4 209.4 92.3	516.8 439.7 359.0 241.3 107.7
	4.0						
	1 I	Curves in this paper *	-2.5 -2.5 -2.1	0.4 6.2 18.0 31.6	69.2 57.1 31.0 11.0 1.8	14.8 12.2 -7.5 -8.5	11.5 6.6 -9.2 -8.2
ination		Large cone approx.	1266.2 1114.5 455.9 206.8 76.0	1340.1 1251.1 532.8 246.8 93.8	241.7 241.7 54.1 22.7 7.6	541.2 443.7 174.9 76.6 26.7	581.4 500.4 202.2 89.4
erm	1.0						
flux det	ιΞ	Curves in this paper *		5.5 11.5 20.5 14.3	60.9 36.5 9.1 1.5 -0.02	3.4 111.7 -0.9 -3.3 .3	5.9 12.8 -1.6 -1.0
s in							
ge error	0.1	Large cone approx.	1243.2 210.5 58.3 24.0 7.0	1392.5 251.2 72.7 30.9 9.5	169.3 23.5 5.9 1.0 -7.9	498.1 78.4 20.4 7.8 -1.4	560.3 91.4 24.1 9.3 11.8
enta	1 =1:						
Perc		Curves in this paper *	7,77,77 7,70,00 7,70,00	10.2 13.7 9.4 0.8	28.7 2.1 0.3 0.2	4.7 -0.6 -0.6 -1.2	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	12	Large cone approx.	392.5 47.2 12.0 4.1	460.7 59.4 15.7 6.2	46.3 4.5 4.9	150.0 16.4 1.2	173.4 19.4 4.9 0.5
	0.0						
	ц	Curves in this paper *	0.8 1.5 1.5		200 200 200 200 200 200 200 200 200 200	3.8 0.7 0.5	7.4 4.6 3.2 3.2
• ••	: Lą		0.1 1.0 10 30	0°1 0°1 00 30	0.1 1.0 10 30 30	0.1 1.0 30 30	0.1 1.1 10 30
	ц ⁸ п		1.75	3.00	0.25	1.00	1.25
	ц ^ю		Ø.05	50°0	T°0	1.0	0.1

	٠
(+uoo)	(TOD)
, c	
Pohlo	DTODT

	0	Large cone approx.	541-3 469-3 391-4 267-0 120-4	558.4 492.7 417.3 286.6 130.5	592.9 542.9 477.5 337.5 158.2	24000 2000 2000 2000 2000 2000 2000 200	23.1 21.4 25.2 20.3 9.3
	μ= 4.«	Curves in this paper * :	0.6 -4.7 -6.3 -16.1 -12.5	1.5 0.1 1.8 8.7 -7.4 -7.3	6.2 17.1 28.4 20.4 18.1	1.1 -0.8 -0.6 -0.6 -0.6 -0.6	1
mination	0.	Large cone approx.	609.1 541.9 223.3 35.8	628.3 574.7 240.7 108.7 39.2	667.2 650.8 285.2 132.5 49.7	41 13.0 10.2 10.2 20 10.2 2	34.1 43.4 7.7 2.5
n flux deter	ц 1 1 1 1 1	Curves : in this : paper * :	-4-2 -2-2 -2-1		112.5 113.5 115.5 115.5 12.2	-10000 0.0.0.00 0.0.0.0	
age errors i	1.1	Large cone approx.	607.1 102.0 27.3 10.8 1.7	642.4 1100.9 11.9 11.9 2.8	723.4 135.2 38.4 15.7 4.1	15.8 1.5.8 1.22 -0.0 -9.00	50.9 7.9 0.3 4.2
Percent	0=11	Curves in this paper *	00 00 00 00 00 00 00 00 00 00 00 00 00	-1 22:1 22:8 12:6 22:6 12:6	4.5.20 4.2.60 4.	-0-0 -0-06 20-06	0-1-1-0- 0.2 0.2 0.2 0.2 0.2 0.0
	22	Large cone approx.	192.2 21.9 5.2 1.8	207.3 24.2 5.9 1.7	247.0 31.1 7.9 2.8	4.3 0.07 -5.3	15.7 1.4 0.0 9.0
	n=0.(: Curves : in this : paper * :	4.54 2.54 2.50 2.50	4610 2006 2006	20-4-1- 0-0-4-1- 0-0-0-1-1-		5.6 1.0 .3
	L ^d		0.1 1.0 10 30	0°1 0°1 30 30 30	1.0 0.1 30 30 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 0.1 00 00 00 00 00 00 00 00 00 00	0.1 1.0 30 30
	μ ^s μ		1.50	1.75	3.00	0.25	1.00
	, ⊐		1.0	0.1	0.1	1.0	1.0

Table 2. (concl)

±°°	μ ^s μ	Τą)*0= Ħ = :	02) = ri	1.0	 n = 1	0.	•••••	1 1	¢*0	
			Curves : in this : paper * :	Large cone approx.	 Curves in this paper *	Large cone approx.	 Curves : in this : paper * :	Large cone approx.		Curves in this paper *	: La : co : ap	rge ne prox.
0.1	1.25	0.1 0.1 10 30	11.0 5.7 2.5	18.6 0.3 0.3	1240 <i>m</i> 124005	58.6 9.44 2.02 2.04	01219 0.0200 0.0200	37.8 21.6 9.2 0.2		0.1 0.5 1.1 0.5 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	20000H	14 0 % 6
1.0	1.50	1.0 0.1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.5 7.4 7.4 2.7	21.1 2.0 1.3	<i>м</i> к к к к 0.4.6.6.1.	64-8 10-8 2-6 2-6	10- 1- 48. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24	40.7 55.9 10.3 3.2		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ñ ñ m ñ H	10100 00460
1.0	1.75	0.1 1.0 10 30	0.0 0 1.1 8 1.4 1.4	23 23 23 23 23 23 23 23 23 23 23 23 23 2	1 6 7 0 0 4 6 7 0 0 7 6 7 6 0	69.7 12.0 2.9 -1.1	0.15 0.58 0.58 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	42.8 60.4 27.0 3.9		1-1-1-1 0.1-7-6 0.1-7-0 0.1-7-	$m \sim m m - 1$	4.01%90
1.0	3.00	0.1 1.0 30 30	1.7 6.2 3.4	29.9 3.0 0.6	1	82.1 15.7 1.2.2 1.22		47.8 71.9 34.1 15.3 5.0		847922 84792	ww4w4	28088 24.030

determination which exceed these estimated maximum errors. In no case is the error expected to increase by more than 5%. ** For large g, i.e. large b₁ and small <u>D</u>, the limitations of the computer were such that the large cone approximate calculation of flux was less than the stacked disk solution.

DESIGN CONSIDERATIONS

Use of Design Curves

The following curves are to be used to determine the location or self-absorption distance of a circular plane source assumed to represent a cylinder for purposes of calculating the centerline uncollided flux at some point <u>P</u>, at distance <u>a</u> beyond an end of the cylinder. The selfabsorption distance is measured from the end of the cylinder closest to <u>P</u>. Necessary input data are $\underline{\mu}$, <u>a</u>, $\underline{\mu}_{\text{B}}$, <u>R₀</u>, <u>h</u>, and <u>b₁</u>. The following step-by-step procedure enables one to determine the self-absorption distance and the resultant flux. The following limits on the values of the parameters must be observed:

$$\frac{R_{o} \ge 1 \text{ cm}}{0.1 \le b_{1} \le 40}$$

$$0.02 \text{ cm}^{-1} \le \mu_{g}$$

$$0.02 \text{ cm}^{-1} \le \overline{\mu}$$

To determine the self-absorption distance proceed as follows:

Step 1. Calculate $\mu_{\rm s}h$.

Determine $\mu_s z$ from Fig. 4a or 4b.

- Step 2. Calculate $\mu_{\underline{s},\underline{c},\underline{o}}$. From Fig. 5 determine necessity of correction factor application. If correction factor is necessary go to step 3; if not, go to step 6.
- Step 3. Using Figs. 6b, 7b, 8b, 9b, 10b, 11b, or 12b select the Figures at the b₁ values immediately larger and smaller than the given b₁. From these two Figures determine a relation to the appropriate F₁, G₁, H₁, J₁,

<u>K₁</u>, <u>L₁</u>, or <u>M₁</u> curves. For example, at <u>b₁</u> = 4, on Fig. 8b at $\mu = 0.3$ and $\mu_s = 0.1$ a location between <u>H₂</u> and <u>H₂</u> is observed approximately one-third of the distance from <u>H₂</u> towards H₃.

- Step 4. With the relations determined in Step 3, use Figs 6a, 7a, 8a, 9a, 10a, 11a, or 12a as appropriate, and by interpolation determine correction factors at the two values for b₁ used in Step 3.
- Step 5. Interpolating between $\underline{b_1}$ values, determine correction factor, <u>CF</u>, to be used at the given $\underline{b_1}$, and multiply <u>CF</u> by $\mu_{\underline{s}\underline{z}}$ which is then the $\underline{\mu_{\underline{s}\underline{z}}}$ to be used in succeeding steps.

Step 6. Calculate sec
$$\frac{\theta_z}{\theta_z}$$
 and $\frac{z}{z}$ from $\frac{\mu_B z}{\mu_B z}$,
where sec $\frac{\theta_z}{\theta_z} = \sqrt{1 \frac{R_o^2}{(a+z)^2}}$.

Step 7. Calculate
$$b_2 = b_1 + \mu_8 z$$
.
Calculate $\left\{ E_1(b_2) - E_1(b_2 \sec \theta_z) \right\}$,
where $E_1(x) = -0.5772 - \ln x + x - \frac{x^2}{4} + \frac{x^3}{18} \cdots$
if x <1, Refs. (1,2,6).
 $E_1(x) = \frac{e^{-x}}{x} \left\{ \frac{0.251 + 2.335x + x^2}{1.082 + 3.331x + x^2} \right\}$,
if x >1, Ref.(3).

If the flux is desired at some point \underline{P} not on the centerline of the cylinder a conservative estimate can be obtained by assuming the point \underline{P} is on the centerline of the cylinder at the same vertical distance above the source, and solving the problem in the manner outlined above.

Sample Problem

The following problem will serve to illustrate the use of the design curves. The parameter values have been assumed to be as follows: $\mu_s = 0.07$, $\bar{\mu} = 0.3$, $b_1 = 6$, $R_0 = 10$ cm, h = 40 cm, a = 20 cm. Step 1. $\mu_s h = 2.8$ From Fig. 4b, $\mu_s g = 0.497$ Step 2. $\mu_g R_0 = 0.7$ From Fig. 5, correction factor is necessary. Step 3. From Fig. 8b, observe a location between H_2 and H_3 close to H_3 . From Fig 9b, observe a location between J_1 and J_2 close to J_2 . Step 4. From fig. 8a, by interpolation, the correction factor is estimated as 0.97. From Fig. 9a, by interpolation, the correction factor is estimated as 1.01. Step 5. Correction factor is 0.983 for $b_1 = 6$.

Corrected µ_sz is 0.489.

Step 6. z = 6.96 cm.

 $\sec \theta_{z} = 1.0665.$

Step 7. b2 = 6.489.

$$\begin{split} b_2 & \sec \theta_z = 6.920, \\ E_1(6.489) = 2.078 \times 10^{-4}, \\ E_1(6.921) = 1.273 \times 10^{-4}. \end{split}$$
 Step 8. $S_A = 21.428 \text{ cm}^{-2} \text{ sec}^{-1}$

Step 9. $\Phi(a) = 8.625 \times 10^{-4} \text{ cm}^{-2} \text{ sec}^{-1}$

The stacked disk solution to this problem is 7.8 x 10^{-4} cm⁻² sec⁻¹. The error in the empirical solution is 10.6%. The error in the large cone approximate solution is 64.7%. DATA PRESENTATION

μ_s h ≤ 1.5 Fig. 4 a. Equivalent circular plane source self-absorption distance for

Fig. 4b. Equivalent circular plane source self-absorption distance for $\mu_{\rm s}$ h > 1.5

Fig. 5. Correction factor applicability.

Fig.Ga. Correction factors for equivalent circular plane source self-absorption distance for b,=0.1.

Fig. 7a. Correction factors for equivalent circular plane source self-absorption distance for b.=1.0.

Fig. 8a. Correction factors for equivalent circular plane source self-absorption distance for b_{i} = 4.0.

Fig. 8b. Source and shield cross sections correlation for b,= 4.0.

plane source self-absorption distance for b_i= 10. 9a. Correction factors for equivalent circular Fig.

Fig. 9b. Source and shield cross sections correlation for b_i= 10.

Fig. 10a. Correction factors for equivalent circular plane source self-absorption distance for bi= 20.

Fig. 10b. Source and shield cross sections correlation for b,= 20.

Fig. 11b. Source and shield cross

s sections

correlation for b,= 30.

CONCLUSIONS

The largest errors in determination of fluxes by use of the curves presented in this paper will occur in the region where correction factors are necessary, due to the interpolation required to determine correction factors. Even so, this is the region where the greatest benefit is derived from this work, for it is here that currently used conical approximations are most in error.

For any given cylinder height, \underline{h} , the cylinder ceases to look like a disk and becomes a slender rod as \underline{R}_0 decreases. Similarly, for a fixed mean free path height, $\underline{\mu}_{\rm S}h$, as $\underline{\mu}_{\rm S}$ decreases the cylinder becomes longer and for a fixed radius the cylinder again appears rod-like. Certainly the artificial nature of the plane source approximation would be expected to have adverse effects in this region, if at all, and the correction factors necessary for small $\underline{\mu}_{\rm S}R_0$ were no surprise although their shape could not be anticipated.

An empirical solution similar to the one presented herein is presented in Rockwell (6) which enables one to determine the flux from the side of a cylinder by approximating the cylinder by a line source located within the cylinder. This empirical solution provides a method amenable to hand calculation to reproduce the results shown by Taylor and Obenshain (7). This original work is applicable only for cylinders having $h \gg R_0$ and $h \ge 1/\mu_B$. These limitations are not mentioned by Rockwell and therefore his empirical solution may be frequently applied in instances which exceed the restrictions placed on the original data.

It is recommended that work be done in the area of accurate flux solutions from the side of a cylinder for cases excluded by Taylor and Obenshain (7), and that an effort be made to combine the results. Further effort should be made to present these results in some empirical form which lends itself to hand calculation. In particular, it is recommended that an effort be made to present the results in a manner analogous to that used in this paper.

ACKNOWLEDGMENT

The author wishes to express his gratitude to Dr. William R. Kimel, Head of the Department of Nuclear Engineering, for his encouragement and help throughout this course of study. Sincere thanks are extended to Mr. John R. Fagan of the Kansas State University Nuclear Engineering Staff for his guidance, to Professor R. C. Bailie and to fellow student R. E. Kaiser for their help in computer programming techniques.

REFERENCES

- Goldstein, Herbert. Fundamental Aspects of Reactor Shielding. Reading: Addison-Wesley, 1959.
- (2) Grotenhuis, M.
 Lecture Notes on Reactor Shielding.
 ANL-6000 (TID 4500, 14th Ed.), 1959.
- (3) Gillis, P.A., T.J. Lawton, and K.W. Brand. Span -2 - An IBM 704 Code to Calculate Uncollided Flux Outside a Circular Cylinder. WAPD-TM-176, 1959.
- (4) Gillis, P. A. Spic -1 -- An IEM 704 Code to Calculate the Neutron Distribution Outside a Right-Circular Cylindrical Source. WAPD-TM-196, 1959.
- (5) Hastings, C. Approximations for Digital Computers. Princeton: Princeton University Press, 1955.
- (6) Rockwell, T., III. Reactor Shielding Design Manual. Princeton: Van Nostrand, 1956.
- (7) Taylor, J. J., and R. B. Obenshain. Flux from Homogeneous Cylinders Containing Uniform Source Distributions. WAPD-213, 1953.

APPENDICES

APPENDIX A

Description and Explanation of the IEM 650 Computer Program Used to Calculate the Centerline Uncollided Flux from the End of a Finite Right-circular Cylinder

This program was written to calculate the centerline uncollided flux from the end of a finite cylinder, both accurately and by existing approximation methods, and to calculate the self-absorption distance of an equivalent source. This program was written in Soap II computer language using floating point operations. The logic diagram and the object program are given in this appendix.

The accurate solution is designated FLUX and the solution programmed was

$$\Phi (a) = \frac{S_{V_{t_{0}}}}{2} \sum_{N=0}^{NMAX} \left\{ E_{1}(b_{1} + (N + 0.45) \mu_{s_{t_{0}}}) - E_{1}[(b_{1} + (N + 0.45) \mu_{s_{t_{0}}}) \sec \theta_{N}] \right\}$$

$$\sqrt{\frac{R^{2}}{2}} \qquad (A-1)$$

where
$$\sec \theta_{\rm N} = \sqrt{1 + \frac{r_0}{(a + (N + .45) t_0)^2}}$$
 (A-2)

Equation A-1 is derived as Eq. 3, the stacked disk solution on page 5, with \underline{b} set at 0.45.

The solution to the large cone approximation was designated FLUXB and the solution programmed was

$$\Phi (a) = \frac{s_{V}}{2\mu_{s}} \left\{ E_{2}(b_{1}) - \frac{E_{2}(b_{1} \sec \theta_{1})}{\sec \theta_{1}} - E_{2}(b_{3}) + \frac{E_{2}(b_{3} \sec \theta_{1})}{\sec \theta_{1}} \right\}.$$
(A-3)

Equation A-3 appears as Eq. 4 on page 6.

The solution to the equivalent volume cone approximation was designated FLUXM and the solution programmed was

$$\Phi (a) = \frac{s_{V}}{2\mu_{s}} \left\{ E_{2}(b_{1}) - \frac{E_{2}(b_{1} \sec \theta_{1})}{\sec \theta_{1}} - E_{2}(b_{3}^{1}) + \frac{E_{2}(b_{3}^{1} \sec \theta_{1})}{\sec \theta_{1}} \right\}$$
(A-4)

Equation A-4 appears on page 7 as Eq. 6.

The solution to the small cone approximation was designated FLUXS and the solution programmed was

$$\Phi (a) = \frac{s_{V}}{2\mu_{s}} \left\{ E_{2}(b_{1}) - \frac{E_{2}(b_{1} \sec \theta_{2})}{\sec \theta_{2}} - E_{2}(b_{3}) + \frac{E_{2}(b_{3} \sec \theta_{2})}{\sec \theta_{2}} \right\}.$$
(A-5)

Equation A-5 appears on page 6 as Eq. 5.

The solution to the equivalent circular plane source approximation was designated FLUXZ and the solutions programmed were

$$\Phi (a) = \frac{S_V h}{2} \left\{ \mathbb{E}_1(b_2) - \mathbb{E}_1(b_2 \sec \theta_2) \right\}, \text{ if } \mu_g h \le 1.5$$
 (A-6)

and

$$\Phi (a) = \frac{g_V(1.5)}{2\mu_s} \left\{ \mathbb{E}_1(b_2) - \mathbb{E}_1(b_2 \sec \theta_2) \right\} \text{ if } \mu_g h > 1.5.$$
 (A-7)

This was a trial and error solution where \underline{z} was altered as necessary to cause FLUXZ to approximate FLUX within a specified accuracy. Equations A-6 and A-7 appear on page 7 as Eqs. 7 and 8 with \underline{x} set at 1.5.

The program subrouting for $E_1(x)$ used different solutions for values of $x \le 1$ and for $x \ge 1$.

$$\mathbb{E}_{1}(x) = -0.57721566 - \ln x + x - \frac{x^{2}}{4} + \frac{x^{3}}{18} - \dots$$
 (A-8)

For
$$\frac{x \ge 1}{E_1(x)} = \frac{e^{-x}}{x} \left\{ \frac{a_0 + a_1 + x + a_2 + x^2 + a_3 + x^3 + x^4}{b_0 + b_1 + x + b_2 + x^2 + b_3 + x^3 + x^4} \right\}$$
 (A-9)

where

a _o	=	0.26777373	^b o	Ξ	3.9584969
^a 1	=	8.6347609	b _l	=	21.099653
^a 2	=	18.059017	b2	=	25.632956
a3	=	8.5733287	b3	=	9.5733223

Equation A-8 is an infinite series and the choice of number of terms used was set by requiring that the ratio of the absolute value of the last term to the complete series be less than some specified value. Equation A-9 is an approximate solution developed by Hastings (5), accurate to within the limitations of the computer.

Input and output data associated with this program are listed in Tables A-1 and A-2 respectively.

Table A-1. Input data required for use of the IEM 650 Computer program which calculates the centerline uncollided flux from the end of a finite rightcircular cylinder.

Symbol	Explanation	Drum Storage Location
NMAX	One less than the number of disks in the cylinder	0100
TZRO	Disk thickness (cm)	0101
MUS	Cylinder cross section (cm ⁻¹)	0102
BONE	Shield mean free paths	0103
A	Shield thickness (cm)	0104
R	Cylinder radius (cm)	0105
S	Source strength $(cm^{-3} sec^{-1})$	0106
CHK	Check to calculate or pass by a given cylinder	0107
ZZRO	Initial self-absorption values (cm)	0108
CRIT	Required precision of equivalent source flux calculation	0500
CRIT1	Cylinder height (mean free paths) for constant equivalent source strength	0550
PT45	Ratio of & to disk thickness	0350

Card	Word	Symbol and/or Explanation
1	1	FLUX
	2	FLUXB
	3	FLUXM
	4	FLUXS
	5	FLUXZ
	6	z Self-absorption distance (cm)
	7	(FLUX - FLUXZ) / FLUX
	8	Haz Self-absorption distance mean free paths
2	1	FLUXB - FLUX
	2	(FLUXB - FLUX)/FLUX
	3	FLUXM - FLUX
	Ĩ.	(FLUXM - FLUX)/FLUX
	5	FLUX - FLUXS
	6	(FLUX - FLUXS)/FLUS
3	ĩ	HITE Cylinder height (cm)
-	2	NMAX
	3	TZRO
	Ĩ.	MUS
	5	BONE
	6	A
	7	B
	8	S
1.	1	HTTE+ A
*	2	(HITE) (MUS) Cylinder height mean free paths
	3	(TZRO) (MUS) Disk thickness mean free paths
	1	(R) (MUS) Radial mean free paths
	5	MI Shield cross section (cm ⁻¹)
	6	A +R
	7	A/P
	8	A/HTTE
	0	

Table A-2.	Identification table for print outs for centerline
	uncollided flux calculation from the end of a
	finite cylinder.

Approximate running time for the program is 5 minutes for NMAX equal to 100. The program is faster when $\underline{b_1 > 1}$ due to the difference in the series calculations to be made.

LOGIC DIAGRAM APPENDIX A

OBJECT PROGRAM FOR CALCULATION OF FLUX AND EQUIVALENT CIRCULAR PLANE SOURCE SELF-ABSORPTION DISTANCE

	BL R	1951	1960		13	0000	00	0000	0000	-000000000-00000
	SYN	NMAX	0100	DISKELESSI OLSKTHENES	4	0000	00	0000	0000	-000000000-000000
	SYN	NUS	0102	SOURCE A88	67	0000	00	0000	0000	-00000000000000000000000000000000000000
	SYN	A	0104	SHIELO THE		0000	00	0000	0000	-000000000-00000
	8 Y N	8	0106	BOURCE	10	0000	00	0000	0000	-000000000-000000
	SYN	ZZNO	0108	POS OK NEG	12	0000	00	0000	0000	-000000000-000000
ZRO	SAN	8TANT 0000	1000	ZERO	14	0000	00	0000	0000	-0000000000000000
O NE TRO	10	0000	0051	TWO	16	0150	20	0000	0051	
THNEE	30	0000	0051	THREE	17	0200	30	0000	0051	
TEN	10	0000	0052	POINT 45	19	0300	10	0000	0052	
FP 100	10	0000	0053	NUNOREO	21	0400	10	0000	0053	
CNIT	50	0000	0047	Z CRITERIA	23	0500	50	0000	0047	
PI	31	4159	2751	P 1	25	0600	31	4159	2751	
START	641	8000			27	0011	46	8000	0015	
	FBB	1700			29	0007	33	1700	0027	
	LOO		EOOCL		31	0030	69	0033	0036	
	PCH	1977			32	0033	71	1977	0127	
1.081	PCN	1977	LOPI		34	0127	71	1977	0031	
	FNP	8003			36	0009	39	8003	0013	
	MAU	NHAX			30	0021	60	0100	0005	
	8 TU	01588			40	0177	21	0032	0035	
	STU	NITE		CYL NEIGHT	42	0001	21	0006	0059	
	STU	CYMEP		CVL NFP	44	0002	21	0056	0109	
	F A 0 8 T U	BUNE			46	0029	21	0034	0037	
	LOD ST0	ZRO			47	0037	69 24	0000	0003	
1.022	STONAU	ANS	LOPS		49 50	0159	24	0012	0065	
	FAO	PT 4 5 T 7 H 0			51	0061	32	0350	0227	
	BTU	0187			53	0051	21	0206	0209	
	FAO	BONE			55	0052	38	0103	0079	
	FSB	FP 100			57	0087	33	0400	0277	
	NAU	ARO	5000		59	0080	60	0084	0039	
	810	EDWEX	EONE		61	0042	81	0046	0049	
	FAD	A			63	0111	32	0104	0081	
	5 T U	8003			65	0081	39	8003	0043	
	RAU	N 5 0 0 R 8 9 0			67	0151	60	0018	0151	
	FOV	NEGO			68	0023	34	0048	0327	
	100 8 T U	8501	SOROT		70	0327	69 21	0130	0083	
	FMP	ARGAR			72	0137	39	0084	0184	
	FSN	FP 100	LOP3		74	0041	33	0400	0377	
	HAU	ANGBE	FONE		76	0180	60	0038	0093	
1.023	510	EONEY	LOP4		78	0096	21	0650	0053	
	STO	EONEY	L 0 P 4		80	0153	24	0650	0053	
	FBN	EDNEY			82	0201	33	0650	0427	
	stu	ANS			64	0139	21	0012	0115	
	FSO	NNAX			85	0115	33	0100	0133	
	RAU	N	LOPS		87	0133	45	0136	0167	
	FAOSTU	ONEN	LOPS		89 90	0161	32	0050	0477	
LOPE	RAU	ANS			91	0187	60	0012	0017	
	FOY	Ť ₩ 0 T 7 N 0			93	0256	34	0150	0700	
	STU	FLUX			95	0251	81	0306	0259	
	RAU	HITE			97	0 8 3 0	60	0006	0211	
	FNP	RBQO			99	0750	39	0018	0068	
	FNP	THREE		STE FOLOME	101	0025	39	0000	0800	
	FOV	R\$00			102	0800	34	0600	0850	
	FAO	Â			104	0118	32 39	0104	0181	
	LOO	A	CBROT		106	0004	39	0104	0054	
	F 8 8	AHPH		FOULY HITE	108	0231	33	0104	0231	
	FNP	MUS			110	0189	39	0108	0152	
	FAD	BONE			118	0309	32	0103	0129	
	RAU	RSOO			114	0237	60	0018	0073	

	FOV 4			116	0154	34 0104 38 0050	020
	STU SECHI	SOROT		118	0527	69 0280 81 0284	008
	RAU HITE FAD A			120	0887	60 0006 32 0104	058
	STU HPR2 FMP 8003			122	0281	21 0236 39 8003	023
	STU HPR25 RAU R800			124 125	0143	21 0148 60 0018	030
	FOV HPR28 FAO ORE			126	0123	34 0148 38 0050	019
	STU BECLO	8 B R O T		120	0577	69 0330 21 0334	033
	RAU BOME	ET#0		130	0337	69 0060	006
	STU PAR1 RAU BONE			138	0060	81 0014 60 0103	020
	STU ABC1			135	0207	21 0000	009
	FSR FP100 8M1	LOPS		137	0627	46 0380	033
	RAU ASC1 LOO	ETWO		138	0360	60 0088 69 0146	019
	STU PARS	LOP7		141	0434	31 0138	014
LOPS	STO PAR2	LOP7		143	0203	24 0138	014
1.000	LOO	£7#0		145	0289	69 0098	006
	RAU OTHRE			147	0099	60 0034	033
	STU ASC2			149	0484	21 0188	019
	8N1	LOPS		151	0677	46 0430	030
	LOO	E T # 0		153	0243	69 0246	006
LOPA	STU PARA	LOPS		155	0534	21 0238	024
1 0 8 9	STU PAR4	LOPS		157	0253	81 0238	024
	FMP SECHI			159	0257	39 0284	058
	FS8 FP100	LOPIC		161	0291	33 0400	072
	RAU A8C3	ETWO		163	0480	60 0288	029
	FOV SECHI STU PARS	LOP11		165	0296	34 0204	063
L 0 P 1 0	LOO ZRO STO PARS	LOP11		167	0431	69 0000	030
L 0 P 1 1	RAU STHRE			169	0341	60 0034 39 0284	030
	8TU A8C4 F88 FP100			171	0684	81 0388	039
	SMI RAU ABC4	L0P12		173	0777	46 0530 60 0388	048
	FOV SECHI	ETWO		175	0343	69 0346 34 0284	006
LOP12	STU PARS LOO ZRO	LOP13		177	0734 0481	81 0438 69 0000	044:035
LOP13	STO PARG RAU SJPRM	LOP13		179	0353	24 0438 60 0234	044
	STU PAR7	ETWO		181	0439	69 014 B 21 0396	006
	FMP SECHI			183	0149	50 0234 39 0284	048
	F88 FP100			185	0491	33 0400	049
	RAU ABCS	5780		188	0580	60 0488	039
	FOY SECHI	10815		190	0446	34 0284	083
LOP14	LOO ZRO	LOPIS		192	0531	69 0000	040
LOP15	RAU PARI	20723		194	0541	60 0014	001
	FAO PAR4			196	0165	32 0238	031
	BTU ABC6 RAU 5			198	0173	21 0028	058
	FOV HUS FOV TSO			200	0311	34 0102 34 0150	020
	STU A8C7 FMP A8C6			202	0900	21 0254 39 0028	030
	RAU PAR1		SHALL CORE	204	0078	21 0082 60 0014	008
	88 PARS			206	0268	33 0338 21 0020	026
	F88 PAR3			208	0223	32 0438 33 0196	031
	STU FLUX8		SIG CORE	210	0273	21 0008	030
	F88 PAR7			213	0361	33 0396	007
	FMP A8C7			215	0365	32 0538	036
	LOO ZZRO		HEO CONE	217	0411	69 0108	041
	LOO ORE			219	0117	69 0050	045
	RAU CYNFP			221	0359	60 0056	0511
	BAU 8	LOPSO		223	0877	46 0630	063
	FMP HITE			225	0561	39 0006	0454
LOPSO	BTU ABCO	L 0 P 5 1		227	0950	21 0404	035
	FOV NUS			229	0155	34 0103	025
	FOV TSO	10251		231	0506	34 0150	105
L O P 5 1	RAU Z	CALC		233	0357	60 0064	011
LOP17	BHI LOP17	LOPRO		235	0072	46 0175	0020
	F88 IRCRE STU Z			237	0169	33 0406	018
	SHI LOP17	CALC LOP19		239	0167	69 0070 46 0175	013
L 0P 19	FOV TER			241 242	0024	60 0406 34 0300	061
LOP20	RAU Z	LOPSO		243	1100	81 0406 60 0064	0020
	FAO IRCRE			245	0219	38 0406	021

53

	ED0 RMI	L0P21	CALC			247	0217	69 46	01200373	0125
L 0 P 2 1	9.4.11 17.7.11	INCRE TEN				249	0373	60 34	0406	0561
LOP16	919 RAU 019	ABC 9	LOP17			251	1150 1200	81 60 24	0406	0175
	STU	1981				254	0415	21	1981	0084
	STD	2280				256	0267	24	0108	0711
	LOD	FLUX8 1978				258	0135	69	0008	0761
	100 570	FLUXM 1979				260	0681 0811	69 24	1979	0811 0132
	5 T D	FLUX8 1980				262	0132	89	1980	0185
	\$ 7 0	1983				265	0539	24	1983	0336
	FMP	NUS 1984				267	0269	39	0102	0302
	PCH	1977	EDOCL			269	0387	71	1977	0927
	RAU F58	FLUX®				271	0680	50	0008	0113
	8 T U F O ¥	1977 FLUX				273	0333	34	1977	0730
	RAU	1978 FLUXM				275	0731	60	1978	0163
	810	1979				278	0383	21	1979	0182
	STU	1980				280	0606	21	1980	0433
	F 8 8	FLUX8				202	0861	33	0082	0409
	FOV	FLUX 1982				284	0934	34	0306	0656
	PCH LOO	1977 HITE				286	0235	71 69	1977	0977
	8 T O L O O	1977 NWAX				388	0459	69	1977	0780
	LOB	1978 TZR0				290	0553	69	0101	0454
	LOO	NUS 1980				293	0232	69	0108	0205
	LOO	80NE				295	0483	69	0103	0706
	LOO	A 1982				297	0984	69	0104	0457
	570	R 1983				299	0265	69	0105	0158
	6 T 0	8 1984				301	0306	69 24	0106	0509
	LOD	1977 HPR2				303	0437	71 69	1977	1027
	RAU	CYNFP		HT PLUS		305	0509	60	0056	0911
	FOV	01568		DIGK N		308	0831	34	0032	0262
	RAU	RMUR				310	0332	60	0105	0559
	STURAU	1980 80NE		RADIAL	NEP	312 313	0352	21 60	1980	0533 0507
	STU	1981		NU		314	0507	81	1981	0504
	FAO	A				310	0609	38	0104	0861
	RAU	A				319	0335	60	0104	0659
	STURAU	1983		A OVER	R	321	0255	21	1983	0436
	FOV	HITE 1984		A OVER	нт	323	0709	34	1984	0756
	LOD	1977 8 D H E				325	0487	71 69	1977	1077
	LOO	1700	EOOCL			387	0806	69	1700	0036
CALC	STD	CALI	8000			330	0125	24	0128	0931
	FAO	BONE				332	0402	32	0103	0179
	LOD	FORFI	EONE			334	0537	69	0040	0045
	FAD	Å Z				336	0047	60 32	0104	0759
	STU	8003 HT800				338	0591	39	5003	0095
	FOV	HTSOD				340	0653	34	1250	1300
	LDO	ARCI	8 9 R 0 T			343	1127	69	0880	0083
	STU	A 8 C 1 5				345	1134	21	0588	0641
	RAU	A8C15	LOPSS			347	1177	46	0930	0981
	LOOSTU	EDNES	EONE LOP 53			349	0443	89	0496	0045
0952	8 10	EONES	LOP53			351 358	0961	69 24	1350	0753
LUP53	FSS	EDNE1 EONE2				353	0703	33	1350	0199
	STU	A8C8		Z FLUX		355	1227	39	0404	0554
	8 T U	ERROR				358	0583	81	0638	0691
	FAN	ERROR				360	0305	37	0638	0465
	STU FSS	CRIT				362	0956	31	0286	0639
	RAU	LDP16 ERRDR	CALL			364 365	1277	46	1200	1031 0128
D NE CR D	10	0000	0051	ZERO		366	0050	10	0000	0051
ONOT	NZE	TEMPA	TEMPA		001	368	0010	24	0213	0016
	STU	ARGUM			003	371	0074	21	0178	1081
	STD	TEMPR	PROCE		005	373	0587	24	0090	0493
	0 T U	TENPO			007	375	0689	21	0090	0543

	STU A	RGUN	PROCE	008	376 0543 377 0228	39 0178 0228 31 0178 0493	
PROCE	570 U	PONE	CONT4	010	379 0637 380 0593	24 0140 0593	
	FOVU			013	381 0633 382 0190	34 0140 0190 34 0140 0240	
	FSS U FOV T	NNEE		015	383 0240 384 0317	33 0140 0317 34 0200 1400	
	FOV U	NECK		017	386 0557	34 0140 0290	
	NAU FSR P	8 0 0 2 8 F C 7		020	368 0097 389 0355	60 800 8 0355 33 0208 0385	
C 0 H T 3	NAU C	EMPC	CONTS	023	390 0385 391 0739	46 0686 0739 60 0604 0309	
	FAD U		CONT4	025	393 0367	21 0140 0593	
1 E MP C	FAD U	ENPO		027	395 0859 396 0417	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
FPDNE	10	0000	TENPA 0051	030	397 0340 398 1184		
PHECT	10	0000	0044	032 FXIT 18818	400 0208	10 0000 0044	
	NZE BMI L	N X 1 4	L N X 1 4		402 1006 403 0110	45 U110 0961 46 0961 0114	
	STU L RSL F	NX09 PDNE			404 0114 405 0071	21 0166 0071 66 1184 0769 24 0182 0145	
	STL L	NX02 NX02			407 0145	20 0249 0452 60 0168 0583	
	STL L	N X05 N X11			409 0523 410 0980	20 1327 0980 20 0435 0738	
	SLT SUP F	0008 IFTV			411 0738 412 0607 413 0515	11 0160 0515 45 0218 0319	
	8 M I H S U	8003	L # X 03		414 0216 415 0121	46 0121 0122 61 8003 0229	
	STO L	PONENXOS	L N X 0 3		416 0829 417 0687	69 1164 0687 24 0249 0122	
L N X O 3	SRT	0000			418 0122	36 0000 0263	
	SUP	8002			421 0171 422 0279	11 8002 0279 60 8003 0737	
	FMP L	NXOZ			423 0737 424 0299	39 0249 0299 39 0502 0552	
LNX04	RAL L	N X 0 5	LNX04		4 ¥ 5 055E 4 26 0319 4 27 0573	65 0166 0573 0 0002 0329	
	RAU ALO F	6002 IFTY			428 0329	60 8002 0787 15 0160 0565	
	SLT FAO F	0002 P0NE			430 0565 431 0221	35 0002 0221 32 1164 1011	
	870 L	PTRO			432 1011 433 0271	33 0124 0351 34 0168 0268	
	STU L	NX13 NX12			435 0268	21 0172 0225 24 0276 1131	
	STO L	N X 11 8 0 0 1			437 1131 438 0788	24 0435 0768 39 8001 0791	
LNXO6	RAUL	NX10	LNX08		440 0349	60 0192 0147 32 0124 0401	
	STU L	NX10 NX13			442 0401	21 0192 0195 60 0172 1377	
	FNP F	ACTN NX10			444 1377 445 0596	39 0546 0596 34 0192 0242	
	FAO L	NX13 NX12			446 0242	21 0178 0275 32 0278 0405 21 0278 1181	
	FBB L	N X 1 1 N X 1 1			449 1181 450 1061	33 0435 1061 34 0435 0485	
	RAM	8003			451 0485 452 0643	67 8003 0643 60 8002 0431	
	8M1 L	NX07			454 1231	46 1234 0535 69 0278 1281	
	STO L NAU L	N X 1 1 N X 1 3			456 1281 457 0838	24 0435 0838 60 0172 1427	
	STU L	NX10 NX13	LNX 06		458 1427 459 0292	39 0192 0292 31 0172 0349 60 0278 0683	
LAXON	FMP F	PTWO	LNXOB		461 0663 462 0174	39 0124 0174 33 1327 0803	
FPONE	10 20	0000	0051		463 1184 464 0124	10 0000 0051	
LNTEN	23	0250	5151	CRITERIA	466 0502	23 0252 5151 50 0000	
BIXTY LNX14	00	2345	0060	HALT	468 0066 469 0961	00 0000 0060 01 2345 6789	
ETOX	STU 4	A A 1 4		STONE ANG	470 1500 471 1056 472 0313	24 0853 1036 21 0210 0313 60 0116 0321	
	FAN A	AA14 AA3			473 0321 474 0837	37 0210 0837 21 0342 0245	
	5 T O A	A A 3 A A 4		COEFF	475 0245 476 0501	69 0248 0501 24 0704 0657	
****	FS8 A	A A 5		FIVE	478 0197	33 1550 1477 46 1030 1331	
	NAU A	A A 2 A A 4			480 1331 481 0295	81 0348 0395 60 0704 0909	
	STUA	8.8.4		E TO 5	482 0909	21 0704 0657	
	FS8 A	A A 3 A A 26		OME	465 0247	33 0246 0325 46 0328 0379	
	NAU A	A A 2 A A 4			487 0379 488 0345	81 0348 0345 60 0704 0959	
	STU A	A A 4		E TO 1	469 0959 490 0262	39 0212 0262 21 0704 1030 40 0342 0297	
	FSS A	AA10 AA11		POINT TWO	492 0297	33 1600 1597 46 1000 1381	
	STU A	A A 2 A A 4			494 1381 495 0395	21 0348 0395 60 0704 1009	
	STU A	A A 4		E TO PT 8	497 0362	21 0704 0326	
	LOO FMP A		A & & 17		499 0347 500 1650	69 1650 0903 39 0704 0754	
	STU A	AA13 AA14			501 0754 502 1111	#1 0258 1111 60 0210 0615	
44415	NAU A	AA13			504 0369 505 0316	60 0258 0853 60 0248 0953	

	FOX				506 0953	34 0258 0853
A A A 17	STO	4418		EXIT INSTR	507 0903	34 1106 1059 60 0248 1003
	FAO	442			509 1003	32 0342 0419 21 0224 1577
	L00	4437		TWO	511 1577	69 1130 0733
	810	4421		ÖENOM	513 0839	24 0392 0445
	FNP	1442		********	515 0397	39 034 2 0442
88444	FOV	4421	*****	NUMERATOR	517 0399	34 0392 0492
	FAO	4 4 1 9		NIN IERN	519 0449	32 0224 0351
	RAU	14419		TOTAL	520 0551	60 0696 0601
	FS8			CRITERIA	523 0874	33 1677 1053
	NAU .		A A A 2 6 A A A 1 ft		524 1053 525 1156	46 1156 0707 60 0224 1106
***26	FAO	11120			526 0707	32 0248 0375
	FMP I	4420		NEW N	528 0375 529 0889	21 0486 0889 39 0392 0542
	RAU	4421		NEN DENOM	530 0542 531 0495	21 0392 0495 60 0646 0651
	STU S	4423	8 8 8 8 A		532 0651 533 0598	39 0348 0598 21 0646 0399
A A A 3 A A A 5	10	0000	0051	FIVE	534 0248 535 1550	10 0000 0051 50 0000 0051
A A A 7 A A A 9	14	8413	1653 1851	E TO S	536 0112 537 0212	14 8413 1653 27 1828 1851
A A A 1 0 A A A 1 2	20	2140	2050	E TO PT 2	538 1600 539 0312	20 0000 0050 12 2140 2051
A A A 1 6 A A A 2 5	00	0000	0000	ZENO CNITENIA	540 0116 541 1677	00 0000 0000 10 0000 0044
AAA27 SOROT	20	0000	0051	Two	542 1130 543 0083	20 0000 0051 24 0536 0939
	NZE	BONTS.	8 9 R T 1	002	544 0939	45 0642 0536
	810	BORT3	80 H T 5	004	546 0746	21 1750 1103
8 9 R T 5	FOV	SORT4		006	548 1109	34 1306 1256
	FOV	PTHO		008	550 0783	34 0124 0324
	F 8 8	BORT4		010	558 1431	33 1206 0833
	RAM	8003		011	553 0833	67 8003 0363
	FS8 I	8002		013	555 0363 556 0371	60 8002 0371 33 0374 0701
	LOD	5 G R T 7 5 G R T 6		015	557 0701 558 0455	46 0604 0455 69 0378 1481
	STO : RAU	BORT4	00815	017	559 1481	24 1206 1159 60 1750 1109
\$ OR T 7	RAU	80NT6	80RT1	019	561 0804	60 0378 0536
FPTHO	20	0000	0051	021	563 0124	20 0000 0051
ETHO	810 0	21			565 0063	24 0166 0469
	LOO		EONE		567 1777	69 1180 0045
	STU	23			569 0474	81 0420 1531
	LOO		ETOX		571 0429	69 0382 1500
EOOCL	810	221	681	EXIT INSTR	573 0388 573 0036	33 0426 0166 24 0989 0692
	510	1977			574 0692 575 0298	69 0595 0298 24 1977 1230
	810	1978			576 1230 577 1581	24 1978 1581 24 1979 0432
	8 T 0 5 T 0	1980			578 0432 579 0883	24 1960 0863 24 1961 1284
	3 T 0 8 T 0	1982			580 1284 581 0585	24 1982 0585 24 1983 0586
22210	8 10	1984	2221		582 0586 583 0595	24 1984 0989 00 0000 0000
EONE	STO E	EE1		EXIT INSTR ARGUNENT	584 0045	24 0348 0751
	F 5 8 0	ONE	FONEL		586 1209	33 0050 1827
EONES	RAUE	6.5.3	18751	SMALL ARG	588 1280	60 1356 1161
	STU E	EE5		LN EEE2	590 0164	21 0368 0421
	F 5 8 8	EES			592 0479	33 0368 0645
	STU	EE18		PARTIALANS	594 0933	21 0868 0891
	\$T0 8	6.6.9		м	596 0505	24 0308 1211
	STU E	EE10		DENON	598 0665	39 8003 0685
	STO E	EEO	EEE7	NUM	600 1259	69 1356 1259 24 0412 0715
EEET	FHP E	EES			602 1261	61 1356 1861 39 0412 0462
	FOVE	E E 8 E E 10		NUNERATOR	603 0468 604 0765	21 0412 0765 34 0220 0270
	FAO E	E E 1 1 E E 1 2		NTH TERM	605 0270 606 1877	21 0574 1877 32 0888 0815
	RAU Z	EE12 NO		TOTAL BUM	607 0815 608 0941	21 0858 0941 60 0000 0555
	FAM E FOV E	EE11 EE12			609 0555 610 0801	37 0574 0801 34 0868 0938
	F 5 0 E 8 H I	EE15	EEE14		611 0938 612 0467	33 0991 0467 46 0380 0471
EEE14	RAU E	EE12 FF10	EEE1		613 0320	60 0888 0348
	FOV E	EE9 FF10			615 0425	34 0308 0358
	NAU E	EE9			617 0673	60 0308 0413
	STU E	EE9		NEW N	619 1927	21 0306 1311
	FMP E	EE10			621 0865	39 0220 0370
55513	57	7215	6650	GANMA	623 0524	57 7215 6650
ZRO	00	0000	0000	ZERO	635 0000	10 0000 0044
TNO	30	0000	0051	TWO	627 0150	10 0000 0051 20 0000 0051
CONEL	FAO O	003		LARGE ARG	628 1631 629 1361	60 1356 1361 32 0214 1041
	FAD 0	002			630 1041 631 1406	39 1356 1406 32 1309 0635
	FAD 0	001			632 0635	39 1356 1456 32 1359 0685
	FNP E FAO O	000			634 0685	39 1356 1506
						1407 0193

APPENDIX B

Description of IEM 650 Computer Program Used to Calculate the Error in Centerline Uncollided Flux Determination from the End of a Finite Right-circular Cylinder by the Use of an Equivalent Circular Plane Source

This program was written to calculate the error of a flux determination by the empirical method developed in this thesis. The program was written in Soap II computer language using floating point operations. The logic diagram and the object program are given in this appendix.

The solution to the equivalent circular plane source approximation was designated ABC9 and the solutions programmed were

$$\Psi(a) = \frac{s_V}{2} \left\{ E_1(b_2) - E_1(b_2 \sec \theta_2) \right\}, \quad \text{if } \mu_{\rm s}h \le 1.5; \tag{B-1}$$

$$\Phi(a) = \frac{s_{V}(1.5)}{2\mu_{B}} \left\{ E_{1}(b_{2}) - E_{1}(b_{2} \sec \theta_{2}) \right\}, \text{ if } \mu_{s}h \ge 1.5. \tag{B-2}$$

Equations (B-1) and (B-2) appear as Eqs. A-6 and A-7 in Appendix A. The program subroutine for $E_{\gamma}(x)$ is identical to that described in Appendix A.

Input data and output data associated with this program are listed in Tables B-1 and B-2 respectively.

Table B-1. Input data required for use of the IBM 650 Computer program which calculates the error in the empirical solution of the centerline uncollided flux from the end of a finite right-circular cylinder.

Symbol	Explanation	Drum Storage Location		
HITE	Cylinder height (cm)	0000		
BONE	Shield mean free paths	0001		
FLUX	Actual flux (cm ⁻² sec ⁻¹)	0003		
S	Source strength (cm ⁻³ sec ⁻¹)	0004		

Table B-1. (concl)

Symbol	Explanation	Drum Storage Location
R A MUS MUSZ	Cylinder radius (cm) Shield thickness (cm) Source cross section (cm ⁻¹) Empirically determined self-absorption distance (mean free paths)	0005 0006 0008 0009

Table B-2. Identification table for print outs for error calculation.

Card	Word	Symbol and/or Explanation
1	1	FLUX accurate flux solution
	2	ABC9 approximate flux solution
	3	ERROR ABC9 - FLUX
	4	PCT (ABC9 - FLUX)/FLUX
	5	z self-absorption distance
	6	A
	7	R
	8	BONE
2	1	HITE
	2	MUS
	3	Wh Cylinder height (mean free paths)
	Ĩ.	L Shield cross section
	5	MUSZ
	6	MUSZ + BONE
	7	A + R
	8	A/R

LOGIC DIAGRAM APPENDIX B

OBJECT PROGRAM FOR CALCULATION OF ERROR IN EQUIV-ALENT CIRCULAR PLANE SOURCE FLUX DETERMINATION

	RLR 1951 BLR 1977 BLR 1700 SYN HITE SYN FL0X SYN FL0X SYN FL0X SYN FL0X YN S YN S	1960 1984 1749 0000 0001 0004 0004 0005 005		1254567890				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
F # 100	SYN START 10 0000	1000	NUNDREU	12	0000	10 0	000 0000	-00000000000000000
ONE TWO CRIT1	10 0000	0051 0051	ONE	14	0100	1 0 2 0 15 0	000 0051	
START	RAU RONE F88 1700	1001		17	1000	60 0 33 1	001 0055	
	L00 PCR 1977	EDOCL		20	0030	69 01 71 1	033 0036 977 0077	
1.081	PCH 1977 PCH 1977	L 0 P 1		22	0077	71 1	977 0127 977 0031	
2072	FNP 8003 STO RSNO			25	0059	39 81	003 0013	
	RAD MOSZ FOV MOS STD. Z			28	0021	34 04	009 0063	
	RAD HITE FMP HUS			30	0015	60 00 39 00	000 0105	
	FSR CRITI BNI RAD S	LOPS		33	0108	46 01	200 0177	
	FMP HITE FUV TWO			35	0109	39 00	000 0250	
LOPS	RAD CRITI FOV MOS	LOP 3		37	0300	60 01 34 00	000 0155 008 0158	
	FMP S FOV TWO			40	0158	39 04 34 0	04 0104	
L 0 P 3	RAU Z	CALCO		42	0007	60 00 69 00	0007	
	LOO FLOX 870 1977			4 5 4 6	0020	69 00 34 1	0 3 0 0 5 6	
	STO 1978			47 48 49	0130	34 19 69 00	0085 078 0131 034 0037	
	5T0 1979 LDO PCT			50	0037	84 11 69 00	079 0032 035 0038	
	LOO Z STO 1981			53	0133	69 00 24 11	012 0065	
	8T0 1983			33 56	0084	69 00 24 11	006 0159	
	8T0 1983 LOO BONE			58 59	0208	24 11 69 00	003 0136	
	8T0 1984 8T0 1700 PCH 1977			60 61 62	0154	24 1	284 0087 200 0053 277 0227	
	RAO HITE STU 1977			63	0227	60 00 21 19	000 0205	
	8T0 1978 8T0 1979			66 67	0258	24 19	008 0258 078 0181 079 0082	
	RAO BONE. FOV A			68	0082	60 00 34 00	01 0255	
	LDO NUSZ STO 1981			71	0183	69 00	009 0062	
	510 ARG0 510 1982			73	0134	69 01 84 19	37 0040	
	FÃO R STO 1983			76	0011	32 00	05 0231	
	RAO R FMP WOB			78	0186	60 00 39 00	03 0209	
	PCH 1977	£00CL		81	0187 0277	71 15	77 0277 30 0036	
CALCR	STO CAL1 FMP MUS	8000		83 84 85	00230	24 00	026 0029 026 0029	
	FAO NONE STO ARCO			86 87	0358	32 00	01 0327 37 0090	
	STO EONE1 RAG A	EONE		88	0090	69 00 81 00	43 0046	
	FAD 2 FMP 8003			91 98	0061	32 00	12 0039	
	RAU SSUD FDY HTSOD			93	0101	60 00 34 00	18 0073 0H 0148	
	FAO ONE LOD	SRROT		907	0148	32 01	00 0377	
	STO ARCIS FSB FP100			99 100	0237	21 00	42 0045	
	RAD ARC15	EONE		101 102	0025	46 00	28 0079	
LOP52	STU EONES LOO ZRO	LUPSS		104	0400	21 01	04 0057 50 0103	
60P53	RAD EONES FSH FONES	LOPSS		106	0103	84 02 60 00	48 0153	
	FMP ABC8 STO ARC9		ZFLUX	109	0281	39 00	54 0254	
	STO ERRON FRV FLUX			1112	0236 0129 0287	33 00	03 0129	
ONE	10 0000	CAL1 0051	0 M E	$\frac{114}{115}$	0203	21 00 10 00	35 0026	

ZHO SQRUT	810	0000 39871	0000	ZEND	117 0233	24 0286 0089
	NH1	STROS	04411	003	119 0092	46 0095 0096 21 0450 0253
	STU	SQNT4	SORTS	005	121 0253	24 0156 U259 34 0156 0206
8 V N I J	FAD	SORT4		007	183 0406	32 0156 0283 34 0336 0386
	STU	SQRT6 HORT4		009	125 0386	21 0140 0143 33 0156 0333
	FOV	SQRT4 HOO3		011	127 0333 128 0256	34 0156 0256 67 HOU3 0113
	RAU	8002		013	129 0113 130 0071	60 8002 0071 33 0024 0151
	8 4 1	SORT7		015	131 0151 132 0305	46 0304 0305 69 0140 0193
	STU	SORT4	SERIS	017	133 0193 134 0309	84 0156 0309 60 0450 0859
SQRI7 SORT2	RAU	SONT6 MBBB	50RT1 8598	019	135 0304 136 0095	60 0140 0286 01 8888 8588
FPTWO	20	0000	0051 0044	021	137 0336 138 0024	20 0000 0051 10 0000 0044
ETUX	STO	***1		STORF ARG	139 0500 140 0306	24 0303 0306 21 0010 0163
	FAN	AAA16 AAA14		ZERO	141 0163 148 0181	37 0010 0337
	LOO	A A A 2 A A A 3		ONE	144 0145	69 0240 0201
	STU	A A A A A A A A A A A A A A A A A A A		0000	146 0107	60 0148 0097
	F 8 B 8 H I	A A A S A A A O		PIVE	148 0427	46 0330 0331
	RAU	A A A 4			150 0195	60 0354 0359
	STO	A A A 4		6 10 3	152 0162	21 0354 0107
A A A 6	FSH	A A A 2 A A A 3		ONE	154 0147	33 0248 0075
	STU	8 8 8 8 8			156 0179	21 0142 0245
	FMP	A A A 4 A A A 9		E TO 1	158 0409	39 0212 0262
	RAU	A A A A	***0		160 0078	60 0142 0197 33 0600 0477
	PSB	A A A 11		POTAT 100	162 0477	46 0380 0381
	RAU	A A A 4		E TO BT B	164 0295	60 0354 0459 39 0312 0368
	5 T U	A A A 4	A A A 2 U		166 0362	21 0354 U078 60 0142 0247
***11	LOO		A A A 1 7		168 0247	69 0650 0353 39 0354 0404
	STU	A A A 1 3			170 0404	21 0408 U111 60 0010 U115
	SHI	A A A 15	4.4.4.1		172 0115 173 0019	46 0068 0019 60 0408 0303
A A A 1 5	RAU	A A A 3	4 4 4 3		174 0068	60 0248 U403 34 0408 0303
A A A 17	STO	A A A 1 8		EXIT INSTR ONE	176 0353 177 0509	24 0356 0509 60 0248 0453
	FAU	A & A 2 A & A 19			178 0453 179 0069	32 0142 0069 21 0074 0527
	L00 570	A A A 27 A A A 20		TWO	180 0527 181 0303	69 0430 0383 24 0436 0139
	STORAU	A A A 21 A A A 2		DENOM	182 0139 183 0345	60 0142 0297
	F M P 5 T U	A A A 2 A A A 23	85444	NUMFRATOR	185 0242	21 0146 0049
¥ ¥ ¥ 5 5	F 0 V 8 T U	A A A 21 A A A 24		NTH TERM	187 0292	21 0196 0099
	STU	A A A 19		TOTAL	189 0251	21 0074 0577
	FOV	A A A 19			191 0301	34 0074 0124 13 0627 0503
	81/1		44426		193 0503	46 0406 0157 60 0074 0356
A A A 2 6	RAU	A A A 20			195 0157	60 0436 0041 32 0248 0125
	STU	A A A 20 A A A 21		NEW N	197 0125 198 0189	21 0436 0189 39 0192 0342
	STORAU	A A A 21 A A A 23		NEW HENOW	199 0342 200 0393	21 0192 0395 60 0146 0351
	F M P 8 T U	8 8 8 8 8 8 8 8 8	A & A 2 2		202 0351	39 0142 0392 21 0146 U049
A A A 3 A A A 5	10	0000	0051	FIVE	203 0246	50 0000 0051
A A A 7 A A A 9	14	8413 1828	1851	F TO S	206 0212	27 1828 1851
A A A 1 2	13	2140	2851	E TO PT 2	208 0312	12 2140 2851
A A A 1 6 A A A 7 5	00	0000	0000	CRITERIA	210 0627	10 0000 0044
EOOCL	STU	2221	0051	EXIT INSTR	212 0034	24 0239 0442
	NTH LTO	1977			214 0298	24 1977 0480
	8 T 0	1979			216 0431	24 1979 0138 24 1980 0433
	810	1981			218 0433 219 0184	24 1981 0184 24 1982 0185
	510	1983	7771		220 0185 221 0486	24 1983 0486 24 1984 0239
Z Z Z 1 0 L N X 5 1	8 7 0	- 0000 LNX08	0000	EXIT INSTR	222 0445	00 0000 0000 24 0553 U456
	NZE	LNX14	L N X 1 4		224 0456	45 0060 0161 46 0161 0014
	STU RBL	LNX09 FPONE			226 0014 227 0171	21 0118 0171 66 0174 0229
	STO	LNX10 LNX02			228 0229	24 0182 0235 20 0289 0492
	RAUUTL	LNX09 LNX05			230 0492 231 0123	60 0118 0123 20 0677 0530
	STL	LNX11 0008			232 05J0 232 05J0	20 0285 0088 35 0008 0207
	NZE	FIFTY	LNX04		234 0607	11 0110 0165 45 0168 0119
	RSU	8003	LNX03		236 0168	46 0221 0022 61 8003 0279
	810	LNX02	LNXO.3		239 0727	69 0174 0727 24 0289 0022
CNX03	SCT	0000			241 0091	36 0000 0213
	BUP	8002			243 0271	11 8002 0329
	FMP	FNX03			245 0387	39 0289 0339

62 ·

	FUP LNTEN			246 0339	39 0548 0598
1 8 7 0 4	STU LNXOS	LNX04		247 0592 248 0110	21 0677 U119 65 0118 U173
C 4 4 0 4	SRT 0002			849 0173	30 0002 0379 60 H002 U437
	ALO BOOS			851 0437	15 0110 0215
	SLT 0002			258 0815	38 0174 0401
	STO LNX09			254 0401	21 0118 0371
	FOR FPINO FOR LNX09			256 0263	34 0118 0218
	STU LNX13			257 0218 258 0175	24 0128 0481
	STO LNX11			259 0481	24 0285 0138
	STO FACTR	LNX06		861 0141	21 0246 0149
LNXOG	RAU LNX10			262 0149 263 0487	32 0336 0313
	STU LNX10			264 0313	21 0182 0335
	FHP FACTR			266 0777	39 0246 0296
	FOV LNX10			267 0296	21 0072 0225
	FAO LNX12			269 0885	32 0128 0355
	FRR LNX12			271 0531	33 0285 0211
	FOV LNX11 RAM BOD3			272 0211 273 0365	67 0003 0243
	RA0 8002			274 0243	60 8002 0451
	BMI LNX07			276 0561	46 0234 0435
	LDD LNX12 STD LNX11			278 0631	24 0285 0168
	RAD LNY13			279 0188	60 0072 0827 39 0182 0282
	STU LNX13	LNX06		281 0282	21 0072 0149
LNX07	RAU LNX12 FMP FPTWO			283 0403	39 0336 0536
*****	FOR LNXOS	LNXOR		204 0536	33 0677 0553
FPTHO	80 0000	0051		286 0336	20 0000 0051
SIZE7	10 0000	0044	CRITERIA	287 0454 288 0542	23 0258 5151
FIFTY	50 0000	0000		289 0110	50 0000 0000
LNX14	01 2345	6789	HALT	291 0161	01 2345 6789
EONE	810 EEE1 810 EEE2		ARGOMENT	293 0002	21 0506 0559
	FSR ONE NH1 EONES	FONEL		294 0559 295 0877	46 0580 0681
EONES	S333 UAR		SWALL ARG	296 0580	60 0506 0261
	STO EEES	LNXSI	LN FEER	290 0064	21 0268 0421
	RBU FEE13 FBR FFF5		GANMA	300 0421	33 0268 0495
	FAD FEE2		PARTIALANS	301 0495	32 0506 0533 21 023H 0191
	RAU THO			303 0191	60 0150 0405
	FHP BOO3		N	305 0311	39 8003 0265
	STO EEE10		DENOM	306 0265	69 0506 0609
	STU EEEB	€ € € 7	NUM	300 0609	24 0412 0315
EFFA	FNP LEEN			310 0361	39 0412 0462
	STO LEER FOV EEE10		NUMFRATOR	311 0462	34 0070 0120
	STU EFE11		NTH TENM	313 0120	21 0274 U927 32 0230 U415
	STU EFE12		TOTAL SOM	315 0415	21 0238 0241
	FAN EEE11			317 0455	37 0274 0501
	FOV EEE12 FBR EEE15			318 0501 319 0888	33 0291 0067
	8H1 810 65510	E E E 1 4		320 0067	46 0170 0471 60 0238 0199
E E E 1 4	RAU LEELU	ecc.		322 0471	60 0070 0275
	STU ÉEE10			324 0508	21 0070 0273
	RAO EEE9 FAO ONE			325 0273	32 0100 0977
	STU EEE9		NEN N	327 0977	21 0458 0411 39 H003 4465
	FHP EEE10	5512		329 0465	39 0070 0220
66613	57 7215	6650	GAHMA	331 0484	57 7415 6650
EFE15 780	10 0000	0044	ZERO	332 0291 333 0050	10 0000 0044
ONE	10 0000	0051	ONE	334 0100	10 0000 0051
EONEL	RAU EEEN	0031	LARGE ARG	336 0601	60 0506 0461
	FAD DB03 FMP EEER			337 0461 330 0341	39 0506 0556
	FAD DHO2			339 0556	32 0659 0485
	FAU DUO1			341 0606	38 0709 0535
	FAD 0000			343 0656	32 0759 0585
	STU EEES		OENOHNATUR	344 0585	21 0190 0293
	FAU CCC3			346 0511	38 0164 0391
	FMP EFE2 FAU CCC2			347 0391 348 0706	39 0506 0706 32 0009 0635
	FHP EEE2			349 .0635	39 0506 0756
	FNP ELEZ			351 0685	39 0506 UR06
	FDV FEES		RATIO	353 0806	34 0190 0240
	FUY PEEZ STU FEFA		ALLBUTETOX	354 0240	34 0506 0856
	ASU LEES			356 0413	61 0506 0561
	FIP EFEA	EEE1	FONFOFELES	358 0214	39 0160 0199
0000	26 7773	7350		359 0909	36 7773 7350 36 3476 0951
0002	18 0590	1754		301 0800	18 0590 1758
0000	39 5849	6931		303 0759	39 5849 6951
0001	21 0996	5354		365 0659	21 0996 5352
0003	95 7338	2351		300 0114	95 7332 2351

.

63 •

UNCOLLIDED FLUX FROM FINITE RIGHT-CIRCULAR CYLINDER VIEWED ENDWISE

by

LARRY A. RASH

B. S., Kansas State University, 1957

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

An IEM 650 Computer code was written to solve for the flux from the end of a finite circular cylinder. This code was then used to solve. for the flux from cylinders of varying size and absorption coefficient as well as for varying shield thickness and absorption coefficients.

From the information obtained, a method was developed to determine fluxes from cylinders by considering them to be replaced by a circular plane source. This circular plane source is located within the confines of the cylinder and has the same radius as the cylinder. This method makes it possible to determine the uncollided flux from the end of a cylinder more accurately than has previously been possible with only a desk calculator.

Curves and supporting information as necessary are presented to enable users to determine the source strength of the circular plane source and its location within the cylinder.