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INTRODUCTION

The purpose of this report is to discuss vector spaces over

a finite pseudo field. In order to do this, it is necessary

that the properties of the finite pseudo field, P/fm}, be shovm.

In the process of establishing properties of this system, it

will be seen why the system is referred to as a pseudo field.

Once the properties of the system, ?/im1, are known, a def-

inition of a vector space over this system can be formulated.

It will be found that many of the properties of the system are

similar to the properties of the vector spaces over P/{m}.

Linear independence and linear dependence are discussed at

great length because they are two important concepts in the

study of vector spaces. Most of the discussion of linear in-

dependence is concerned with the following problems:

1, How is linear Independence related to the unique

representation of the zero vector,

2, How to find the number of linear combinations of

a set of linearly Independent vectors which represent

a vector.

3, How to determine whether or not a given set of

vectors is linearly Independent,

ALGEBRAIC SYSTEM, P/{ral

The purpose of this section is to give properties of the

system P/fm] where P is the ring of integers and m - p^. The

integer p is prime in P and k is any positive integer. For
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convenience the system P/{inl will be denoted as Q,

The elements of the system Q can be expressed as polynomials

over P, The general elements are of the form:

The Cj^ belong to P such that Oic^ip-l, The Is referred to

as the coefficient of p^ in the element. Since there are never

more than k coefficients it is obvious that Q is finite.

The concept of degree is Important in the discussion of the

system Q.

Definition 1 . The degree of an element c is the minimal

Index of the that are nonzero. The degree of an element c

is denoted as deg(c).

The element with all Cj^»0 is the zero element. By Defini-

tion 1 the zero element does not have a degree thus It is con-

venient to say its degree is k. The familiar symbol, is used

to denote the zero element.

Definition 2 . Two elements c and d are equal, where deg(c)

«r and deg(d)«3, if and only if r«3 and c^^d^ for each i.

There are two binary operations in Q, They are the two

familiar operations of addition and multiplication. The defini-

tion of the sum is as follows.

Definition 3 . The sum c+d is defined as the element of Q

formed by first adding corresponding coefficients of c and d.

Then these coefficients whose sums are greater than or equal to

pare reduced by p with 1 added to the next higher coefficient.
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Ci+di)p'

To find the degree of a sura of elements of Q, the following

lemmas are needed.

Lemma 1 . Let c and d be elements of Q. If deg(c)=r and

deg(d)=3, r< s, then deg(c+d)«r.

Proof. Since deg(c)=r, c^^O for i»=0,l, . . .,r-l. Since

deg(d)=s then d^=0 for i«0,l, , . .
, s-1. Hence c^+di^O for i»0,l,

,.,,r-l and since r< s, Cj,+dj,«Cp+0=Cj,)^ . Thus deg(c+d)«r.

Lemma 2 . Let c and d be elements of Q. If deg(c)«r and

deg(d)«s, r»s, the r ^deg(c-fd) ^k.

Proof. Since deg(c)«=r and deg(d)«s, r=s, then c^^dj^-O

for all i«0,l, . . .
,r-l. Hence Ci+di«0 for i»0,l, . . .,r-l so the

degrees is at least r.

Prom this lemma it can be seen that the sum of two elements

can be the zero element. This implies the possibility of the

existence of an additive inverse.

The definition of the second binary operation in Q is

Definition k . The product cd is defined as the element of

Q obtained after simplifying the coefficients in the formal

product

,

When the coefficients in the formal product are greater than p

then the coefficients are expressed as x p^ where x, is

k-1 k-1 k-1 k-1

'0



added to the next coefficient. If the exponent of p is greater

than or equal to k then the coefficient involving that p is

equal to zero.

The lemma concerned with finding the degree of a product

follows

.

Lemma 3 . Let c and d be elements of Q. If deg(c)=r and

deg(d) = s then deg(cd)«r+3, if r+3<k. If r+s^ k then cd is the

zero element,

k-1 k-1
Proof, The product cd »

J""
S Cj^dj p^'*'J

.

Cj,dg^O, hence the degree of cd is r+s if r+3<k. If r+a^k then

deg( cd)=k.

Theorem 1 can now be stated.

Theorem 1 . Q is a commutative ring with unity.

Proof, (i) c+d « d+c.

By the definition of addition,

Since P is the ring of integers, {o^+d^) « (d. +c ) . Therefore

Since deg(c)=r, c^«0 for i»=0,l, , . ,,r-l and deg(d)«s, dj»0 for

J=0,1, , , . ,s-l, Cj^dj«0 for i+j«0,l,,,,, r+s-l. On the other hand

k-1

S ic^ + d^) p^ - (d^ + 0^) p^ « dipi +
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/
Cj^p^ » d+c.

(il) (b+c)+d » b+(c+d). By the definition of addition

k-1 . ^ ^ ^ 4

Since P is the ring of integers its elements are associative

vinder addition. Thus

k-1 . k-1

fe) i-O

(b, + (cj + d^)) pi

k-1 . k^J, .

which is equal to ^^ bj^p^ + {c^ + dj^) p^ » b+(c+d) by the

definition of addition.

(iii) c+0«=c. By the definition of addition

k-1 k-1 k-1

i«0 fe)

Because c^+0 » Cj^ in P,

k-1 , k-1

^ (c^ + 0)
pi - |-

i«0 i«0

^ - c.

(iv) The inverse of c under addition, c*, is an element of

Q such that c*+c « 0, Suppose c has degree r then

c* - c; p^ + f- (cl - 1) pJ.

J^+1
^
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where is defined such that o^+c^ « 0+1 -p in Q. Thus

k-1 , . „ k-1

^ c^pi + (c; p"* + ^ - 1) p^)

+ Cj.) p^ + (Cj + Oj - 1) pJ.

By the definition of c^^ this is the zero element.

(v) cd=dc. By the definition of multiplication

cd
^ 1

1=3 l^r j=s

Since P is the ring of integers multiplication and addition are

commutative and the distributive property holds. Therefore

k-1 k-1 . , k-1 k-1 kjil

1^ }=s J«s l«r yTs

1^
dc

(vi) (bc)d « b(cd). By the definition of multiplication

If deg(b)«t then

(bc)d « ('

k-1 k^J. , . . k-1

Jl Vi p ^jp^)
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1=1 ^ ^LET 'V
1^ l«=r j=3

h+l+J
Ci)dj p

Since P is the ring of integers its elements are associative

with respect to multiplication. Therefore

(b^c,)dj p^+i+j

'TTT' ^^^"^"^^^
^^^^^^

pi fel pi

which is equal to b^p^) ^ c^^dj p^"*"^) « b (cd) by the

h«£ 1^ j»s

definition of multiplication.

(vii) The unit element, I is an element of Q such that bl

-b. Let

k-1
,

I « 1 + ^ O-p^

where 1 is the unit element of P. The unit element has degree

zero and can be written simply as 1, Therefore

bl
h ^ k-1 , k-1 .

» by)i - (y b^xi) - y- (Db^ . V- by
h?l fel

by the property of the unit element of P.

(viii) b(c+d)«bc+bd. By the definition of addition and

multiplication

kzl V,
k-1 . k-1 k-1 ^ ,

b(c+d) - {y (Ci + di) p ) - 2" y" ^h(ci+di)p^-'^
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since P Is the ring of Integers Its elements possess the dis-

tributive property, thus

h«=t 155 1«0

By the definition of addition

k-1 k-1 k-1 k-1

^ ^ ^^'^^^ ^^^^
" ^ ^^^^

k-1 k-1
+ ^ > b^di p^"^^ « be + bd.

Since Q is a commutative ring is it also a field? The

answer is no. By Lemma 3 there are proper divisors of zero in

the system.

Two properties of Q are now discussed.

Lemma k . If cd»0, d/^0 then c has degree greater than zero.

Proof. From Lemma 3 it is seen that if deg(c)«r and deg(d)

»s then the product od»0 if r+s^k. Hence s^k-r. If r«0 then

8 2k. This contradicts the fact that d^^O.

The degree of the unit element, I in Q is zero. Let a be

a nonzero element in Q. If deg(a)»u>0, suppose there is an

element of Q, a~^, such that aa"'^ « a'^a -I. If deg(a~'^)«v

then deg(aa''^)«u+v. By the definition of degree v > hence

u+v>0. Thus no multiplicative inverse exists for nonzero ele-

ments of Q with degree greater than zero,

A field is defined as a commutative ring with unity having



9

the property that every nonzero element of the field has a mul-

tiplicative inverse. Thus Q is certainly not a field. This is

why Q is referred to as a pseudo field,

VECTOR SPACES

Definition and Properties

Vectors can be defined as a special type of matrices which

have only one column or one row. The general definition of a

vector space is given.

Definition 5 . A vector space Vj^(F) consists of a field F

with elements c and a nonempty set V with elements A« |a,a2. . .a^^

where F such that:

(1) there is an operation of addition defined on V such

that V forms a commutative group.

(ii) there Is an operation of scalar multiplication cA de-

fined for all c€F and all A€V with the following properties,

(a) lA « A, 1 is the unity of F

(b) (c^ + c^) A « c^A + C2A

(c) c^(c2A) - (c^C2)A

(d) c(Aq^ + Ag) " cA-^ + cA^

Let F be the finite pseudo field Q, The elements of V (Q)n

are of the form ^I'J^n^is.' * '^In^ where a^^j^ Q, J«l,2,..,,n.

Theorem 2 follows.

Theorem 2 . The set of all vectors of the form A-Ja^ag...

a^Q over Q is a finite vector space V^(Q)

.
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Proof. The sum of two vectors A+B is defined as the vector

over Q whose components are the sums of the two corresponding

components of A and B, Hence

A + B - [a,a2...aj ^EVz" ""^ ' V2-"V'>n3-

Since Q is a commutative ring and (aj^+bj^)6Q then (a^+b^^)

(bj^+aj^). Therefore

^2*^2 • • •V^] - r^^^l ^2+^2 • • •V^n]

which is 3+A by the definition of addition in V^^CQ) .

If A,B,C,6-Vjj(Q) then (A+B) +C « A + (B+C) . By the defini-

tion of addition in V^(Q)

El^^l ^Z-'^Z '
• •V^n] + [}l °2 • • -^n]

"

[r(a^+b^)+c^) ( (a2+b2)+C2) ...((a^+b^)+Cj^y| .

Since Q is a commutative ring its elements are associative. Thus

jr(a^+b^)+c^) ((a2+b2)+C2)...((a^+b^)+c^2] "

[Ta^ + (b +c )) (a +(b +c.))...(a +(b +c ) j]Llll 222 nnn-J
which is equal to A+(B+C) by the definition of addition.

The identity vector of addition is the vector with all of

its components zero and is denoted as Z. For any vector A the

vector Z has the property that A+Z«A.

For each vector A"[3i*2 * * '^q] there exists a vector A*«

[a*]^ a*2...a*j^ where a*jL+aj^»0, such that A+A*=Z , This is the

additive inverse of A, Therefore V (Q) forms a commutative
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group

.

For all c or d that belong to Q and A^^V, scalar multipli-

cation is defined in the following way:

cA " J^ca^ ca^ ...

The properties of scalar multiplication hold in V^(Q,) ,

(a) IA=A, I is the unity of Q. By the definition of scalar

multiplication

lA - ^ai Ia2 ... la^ .

Since I is the unity of Q then laj^-a^^, hence

lA . [ia^ Ia2 ... laj - [a^ a2 ... aj « A.

(b) (c+d)A « cA4dA. By the definition of scalar multipli-

cation

(c+d) [a^ a2 [(c+d)a^ (c+d)a2 ... (c+d) aj.

Since Q is a commutative ring the distributive property holds.

Therefore

]Tc+d)aj^ (c+d)a2 ... (c+d)aj - [Ica^+da^) (ca^+da^)

... (ca^+da^)]

which is cA+dA by the definition of addition.

(c) c(dA) - (cd)A. Thus by definition of scalar multipli-

cation

c(dA) - [}(da^) c(da2) ... c(da^)[].

Since Q is a commutative ring its elements are associative.
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Therefore,

[c(da^) c(da2) ... c(da^)]] - [j[cd)a^ (cd)a2 ... (cd)a^

which is (cd)A by the definition of scalar multiplication.

(d) cCA-j^+Ag) « cA^+cA2, thus by the definition of scalar

multiplication

c(A^ + A^) » [c(a^^ + a2^) c(a^2 ^ ^22^ °^^n ^ ^2nD '

Since Q is a commutative ring the distributive property holds.

Therefore

E^^l ^ ^21^ ^^^2 ^ *22^ °^^n ^ ^2nG'

D°^l ^ °^21^ ^°^2 °^22^ ••• ^°^n ^ °^2n!I" °^2-

Different symbols for the zero vector and the zero element

of Q have been used. Henceforth the symbol for the zero element

of Q will also be used for the symbol of the zero vector.

The following definition aids in identifying subspaces of

given vector spaces.

Definition 6 . A nonempty subset U of Vj^(Q) is a subspace

of Vyj(Q) if U is a vector space over Q.

By Definition 6 it can be proved that U is a subspace of

Vj^(Q) if U is closed under addition and scalar multiplication.

The definition of a vector space implies that if and A2

belong to Vj^(Q) then A-j^+A2 belong to V^(Q), The vectors cA^ and

dA2 belong to Vj^(Q) for all c,d€ Q, hence cA^+dA2 belong to

Vj^(Q), The next definition is a generalization of this concept.
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Definition 7 . A linear combination of a set of vectors,

f^x* ^Zf*»^t^ ^3 the vector, ^ Cj^A^ where Q,

It Is now easily verified that the set of all linear com-

binations of a set of vectors, {A^, A2,...,A^3 of ^^(Q.) is a

sub space of ^^^(Q) .

Let W be the set of all linear combinations of the set of

vectors. If B and C are elements of W, then

t t

^ " X and C » ^ c A
1=1 1«1

where b^^ and belong to Q, Then

t t t

B + C - ^ b^A + 53 c^A^ « 52 ^Vi ""ih^
•

i-1 1-1 i-1

By the property (b) of scalar multiplication,

t t

53 (b^A^ + c^Aj^) - 21 +

1=1 1-1

Thus B + C is a linear combination of the set of vectors, £a^,

Ag, •..,A^"J and therefore an element of W, Closure under addi-

tion has been shown. If d ^ Q then

t t
dB « d 21 b-Aj^ - £2 d(b A ).

i-1 1-1

By the property (c) of scalar multiplication,

1-1 1-1
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Therefore dB belongs to W and closure under scalar multiplica-

tion has been shown. Thus W is a subspace of Vj^(Q) since it is

a nonempty subset of V^(Q) and it is closed under addition and

scalar multiplication.

For a linear combination of any set of vectors the zero

vector can be obtained. The next section will consider this.

Linear Dependence and Linear Independence

In a vector space Vj^(F) the trivial linear combination is

the linear combination where all the scalars are zero. The set

of vectors is said to be linearly independent if the zero vector

is given only by the trivial combination of the set, otherwise

the set is linearly dependent.

For the system Vjj(Q) a change has to be made in the defini-

tions of linear independence and linear dependence.

Definition 7 . A set of vectors, Ja-j^, A2,...,A^'5 is linearly

t
independent if ^ c^Aj^ » 0, implies that all have degree

i=l

greater than zero. Vectors which are not linearly independent

are linearly dependent.

Definition 8 . A set of vectors, [a^, k^^ , ,

,

is linearly

t
dependent if Ci^i " 0, implies that at least one Cj^ can have

i»l

degree zero.

Fundamental properties of linear dependence and linear in-

dependence are given in the following lemmas.
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Lemma 5 » The set of vectors, ^A^, A2,...,A^7 is linearly

dependent if at least one of the vectors of the set is the zero

vector.

Proof. Let k-^ be the zero vector. By property (a) of

k-1
scalar multiplication in V^(Q) lA^ « A^ « 0, thus (lA^^ + ^
O'A.^) » 0. Since the scalar for A^^ is of degree zero, the set

is linearly dependent.

Lemma 6 . The set {aI consisting of one vector is linearly

Independent if Aj^Z.

Proof. Since A/Z, then cA= [ca-j^ca2. . .ca^J « if and only

If the scalar c has degree greater than zero by Lemma 1^.. Hence,

the set is linearly independent by definition.

Lemma 7 » If the set {a^^, A2,...,A^3 is linearly independent

then any nonempty subset of this set is linearly independent.

Proof. Consider a subset, {a^, A2,...,Aj^^ where 1< h< t

h
and Ci^i 0. Then

h t

(r; c^Aj^ + y- o-a^) - o.

i^ i-h+1

Since the set A^, A2,.,.,A^ is linearly Independent, it follows

that all c^ have degree greater than zero. Thus c^^ where i «=

l,2,.,,,h must have degree greater than zero. Hence A^, A2,...,

is a linearly independent subset.

Lemma 8 . A set of vectors, A^^, A2,...,A^ containing a

linearly dependent set is linearly dependent.
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Proof. Let {a^, ^2* * " *^m^
^® linearly dependent sub-

set where l^m-et. Thus ^ ^i/^i
" implies that at least one

i«l

has degree zero. Obviously

m t

iy c^A^ +
J"

O-A^) = 0.

i^ l«ni+l

Thus the set of vectors ,£ A-^^,
A2,...,A^} is linearly dependent

by definition.

If U is the set of all linear combinations of a set of vec-

tors, -fA^, * °^
^n^*^^*

°^ vectors, £A^, A^,

..,,A^'J is linearly independent, then is each vector of U

uniquely expressible as a linear combination of the vectors

A^, A2,...,A^? An answer to this question is illustrated in

Example 1 by considering the basic question, is the zero vector

uniquely expressible as a linear combination of the vectors

^1* ^2* * * * '^t^

Example 1. Consider the subset U of"V2(Q), where k«3,

spanned by the vector jjp • A scalar multiple of this vector

would be of the form

a
[p P^] - (a^ + a^p + a^^P^) [p p^] - |Ja^p + a^p^ a^p^j .

If this were the zero vector then a^^a-j^^O. Yet can have any

one of p values; thus there are p expressions for the zero vec-

tor. If

a [p pf]
- b

j}
p2j then [a^,p + a^^p^ a^p^J - [b^p + b^p^ b^pj

.
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This implies that aQ^b^, ^I'^i ^2 does not have to equal &2^,

Thus linear independence does not imply \anique representation of

a vector.

Example 1 implies that each vector of U cannot be represented

uniquely as a multiple of a linearly independent vector. Thus if

a set of linearly independent vectors is given, then how many

linear combinations of these vectors can represent a given vector

of U? In order to answer this question the concept of the degree

of a vector is needed.

Definition 9 . The degree of a vector is the minimal degree

of the components of the vector.

To find the degree of a scalar multiple of a vector the

following lemma is given.

Lemma 9 . If A is a vector of degree u and deg(c)"=v, then

cA is a vector with degree u+v. The case where u+v > k can occur

when A»0, c«0 or when both A and c are of degree greater than

zero.

Proof. By the definition of scalar multiplication

cA «= {3°^! • • * °^n3*

Let a^^ be one of the components of A with degree u. By Lemma 3

deg(can)«u+v. If u+v^ k then by Lemma I4. c»0, a^^-O or both c and

a.^ are of degree greater than zero.

It is now possible to prove the following theorem.

Theorem 3. If the single nonzero vector. A, has degree u

then the number of possible expressions for the vector dA is p^.

Proof, Any multiple of a vector dA can be written as (c+d)A
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where cA»0. Therefore all representations for dA are obtained

by adding each representation for cA=0 to dA (this set includes,

when c=0, the multiple d)

,

The zero vector has degree k, hence by Lemma 9 if the vec-

tor cA«0 then c is of degree at least k-u.

Let A be of degree zero then c has degree at least k. Thus

c is the zero element and there is only one representation for

any vector cA,

Let A be of degree one then c has degree at least k-1.

There is only one possible nonzero coefficient of c. Hence c

can be any of p values. Thus there are p representations for

any vector cA.

Let A be of degree two then c has degree at least k-2.

There are two possible nonzero coefficients of c. Each coeffi-

cient can assume any one of p values. Since c can be anyone of

P 2
p values, there are p representations for cA.

Thus by induction if c is of degree at least k-u then there

are u possible nonzero coefficients of c that can be anyone of

p values. Since c can assume p^ values, the vector cA can be

expressed in p^ ways.

The following corollary is a special case of Theorem 3 and

a proof will not be given.

Corollary 1 . For a single vector A with degree zero each

multiple of A is uniquely expressible.

The next theorem considers a set of more than one vector.

Theorem k . If vectors A , A , .,,,A have degrees u.
,
U-,



19

...,u. respectively, then the number of possible expressions
t

for the vector

i: ciAi is IT p^'.

1=1 i«=i

Proof. By Theorem 3 for each 1 there are p^i ways of ex-

pressing c^Aj^, For each pair 1 and j there are p"i p^J ways of

expressing Cj^Aj^+CjAj. Thus by Inductive reasoning It Is obvious

that the number of expressions for

l^c^A^ is JTp^i.
1»1 1«1

The next paragraphs consider the question of determining

whether a given set of vectors Is linearly Independent,

Example 2. Consider the subspace of ^^^(Q), where k=3,

spanned by the set of two vectors, [p^ P ^ P . If

»! P l] + &2. Cp P P?)

*• ^^10 ^llP + *12P^Cp^ P J"" ^^20 ^2lP ^22P^^[P ^ ^3

-I a, a p + a p^ a +a, ,p+a-_p^l + fa^ p + a p^ a p^ 10*^ 10 11 10 11 1^ J L 20 2r 20*^

^2lP ^20^ '2

\0 ^ ^iP <^12 ^ ^20^p3

Is the zero vector then

^l * "21 ° ^1 •° "12 * "20 ' °-
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Since and are equal to zero the deg(a^) and deg(a2) are

greater than zero. Thus the set is linearly Independent,

The number of imknowns and equations required from this

set can be determined as follows. The vectors can be used to

form a matrix

P

> P

The degree of each row is zero and one respectively; hence there

would be three unknowns to determine for a^ and two for a^. The

degree of each column vector is one, one and zero respectively.

Thus the number of equations determined for each component is

two, two and three.

The general case and explanation of Example 2 follows.

Consider a set of m vectors {a^, ^2* ' * ' * ^^^^ with n

components. If ^
'

c j^A^ »0 then the number of unknowns are deter-

mined as follows.

The vectors are used to form a matrix

The degree of the row vector determines the number of unknowns

involved for each vector. Each scalar has k coefficients so if

the vector has degree then scalar c^^ has k-Uj^coefficients
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that need to be determined. Hence there are rak- ZI^i unknovms.

The maximum number of unknovms possible is mk. The degree of

each column vector determines the number of equations for each

component. If the degree of the J*^ column vector is Uj then

there are k-Uj equations for this component. Hence there are

nk-][2Uj possible equations. The maximum number of equations

possible is nk.

If given a set of m vectors such that each vector has n

components, m<n, then the set is not necessarily linearly in-

dependent. If one of the m vectors is a multiple of another

vector then the set is linearly dependent, because there are

more unknowns than equations.

If given a set of m vectors such that each vector has n

components, m>n, then the set is always linearly dependent.

Since there are more unknowns than equations. Some of the un-

knowns are solved in terms of an arbitrary set of values for the

remaining unknowns . Thus the unknowns are dependent upon each

other in order to obtain the zero vector. Since each linknown

can only assume p values there is a finite number of solutions.

There is always the solution with all scalars bl^^O,

CONCLUSION

The elements of a vector space are usually from a field.

In this report it has been shown what occurs in vector spaces

when the elements are not from a field but from a given finite

pseudo field. The properties of the elements of the finite



22

pseudo field, Q, affect the operations defined on the vector

spaces and the properties of the vector spaces. The basic con-

cepts involving vector spaces over Q have been discussed although

there are concepts which were not covered in this paper.
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The study of vector spaces over a given finite pseudo field,

Q is considered in this report. In order to study the vector

spaces, Q is defined and operations defined in Q are stated.

The concept of the degree of elements in Q is defined. Lemmas

concerned with the degree of a sum and the degree of a product

in Q are proved.

The general definition of vector spaces over a field is

given. Vectors with components belonging to Q, are considered.

Since all the properties of a vector space are satisfied, it is

easily verified that the vectors over Q form a vector space which

is denoted as Vjj(Q) . Subspaces of Vjj(Q) are defined. The con-

cept of linear combination is defined and it is shown that all

linear combinations of V^(Q) form a subspace of Vj^(Q) .

The concepts of linear dependence and independence are used

in answering the question, what type of linear combination of

nonzero vectors results in the zero vector? Linear dependence

and linear independence are defined. Properties of linear depend-

ence and linear independence are verified by lemmas. An example

is presented to illustrate that linear independence does not imply

unique representation of the zero vector. The concept of the de-

gree of vectors in Vj^(Q) is defined. This concept is used to prove

that the number of linear combinations for any particular vector

can be found, if given a set of linearly independent vectors. A

problem then arises of determining whether a given set of vectors

is linearly dependent or independent. Another example is pre-

sented which hints at the solution of the problem. Linear
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dependence or independence depends on the number of vectors in

a set, the number of components in each vector, and the compo-

nents themselves.

/


