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NOMENCLATURE

a Dose angular distribution empirical constant

a' Build-up factor constant

a_ Dose rate albedo defined by Eq. (24)

A Least squares constant

a Gaussian quadrature weights defined for the x integration

a • Gaussian quadrature weights defined for the 6 integration

a^ Gaussian quadrature weights defined for the <!> integration

a Gaussian quadrature weights defined for the y integration

A._
5

Constants in Chil ton-Huddleston formula

b Build-up factor constant

b' Parameter defined in Eq. (96)

B Dose build-up factor for isotropic source defined by Eq. (10)

B' Least squares constant

c Velocity of light

c' Parameter defined in Eq. (96)

C,C Chilton-Huddleston constants

d Distance between ceiling of i floor in multistory building and
source plane (feet)

d' Distance between ceiling and floor, feet (Figure 2)

dA Elemental area in an infinite plane isotropic source

D Displacement of the window center from the x = position, feet

D' Dose rate registered by an isotropic detector at a height d above
an infinite plane source of radiation

D. Total incident dose rate at a point (x,y) in the ceiling

D Dose rate at a height of 3 feet above an infinitely contaminated
o

plane, (reference dose rate)
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D
r

Differential reflected dose rate at a point (x,y) in the ceiling

D
u

Dose rate from unscattered radiation at a distance r from a point

isotropic source

D Dose rate at a point (xx.yy, zz)

e Charge of the electron

E Energy of radiation reflected from the ceiling

E
o

Energy of incident radiation

F Total flux from a point isotropic source defined by Eq. (14)

F
a

Parameter defined by Eq. (25)

F
P11

Dose angular distribution of radiation for a plane isotropic

source, not normalized

F
u

Unscattered flux from a point isotropic source defined by Eq. (13)

h Sill height (feet)

H Distance from the ceiling to the horizontal centerline of the

aperture, feet (Figure 2)

K Order of Gaussian quadrature in integrations over polar and

azimuthal angles

1 Dose angular distribution of radiation from an infinite plane

isotropic source integrated over all azimuthal angles

T Dose angular distribution of radiation from an infinite plane

isotropic source of radiation normalized to D

L Order of Gaussian quadrature employed in x-integration

]

u
Dose angular distribution of unscattered radiation from an

infinitely contaminated plane, normalized to D

m Mass of the electron

m' Parameter defined in Eq . (96)

M Order of Gaussian quadrature employed in y-integration

Vi Differential photon flux from a plane isotropic source of radiation

P Ratio of emergent to incident energy

P Percentage aperture



r Distance from point isotropic source to detector

r' Radial distance in plane surface geometry, feet (Figure 5)

R Aperture half-width, feet

R
F

Eccentricity correction factor defined in Figure 9

Rp Reduction factor for first floors of square buildings defined in

Figure 7

R.F. Reduction factor at a point (xx.yy.zz)

R Sill height correction factor defined in Figure 10

R Upper stories correction factor defined in Figure 11

R Secondary eccentricity correction factor defined in Figure 10a

R Variable distance between contaminated plane and position (x,y) on

ceiling, feet (Figure 5)

Ro Classical radius of the electron

t Thickness of floors, feet

u- Zeroes of the Legendre polynomials for the order of Gaussian
quadrature employed

V Aperture half-height, feet

w. Christoffel numbers defined for the Gaussian quadrature

W Constant of proportionality defined by Eq. (11)

x Ceiling rectangular coordinate parallel to plane of aperture, feet

x
f

Distance from a point to a plane source of radiation measured in psf.

XMAX Half-width of the ceiling, feet

xx Detector rectangular coordinate parallel to plane of aperture, feet

y Ceiling rectangular coordinate perpendicular to plane of aperture,
feet

y Dummy variable in y-integration

YMAX Total lenyth of the ceiling, feet

yy Detector rectangular coordinate perpendicular to plane of aperture,
feet



IX

Perpendicular distance measured positive downward from the ceiling,

feet

Creek Symbols

a Conversion factor defined by Eq. (5)

e Eccentricity defined in Eq. (49)

n Parameter defined in Eq. (49)

6 Polar angle of reflection, radians

e Polar angle of incidence, radians

G
;
,6 2

Polar limits of the aperture, radians

Total scattering angle defined by Eq. (21), radians
s

*

*o

Ratio of Compton scattering energies multiplied by the Klein-

Nishina cross section

Total linear gamma ray attenuation coefficient in air at STP, cm

Total energy absorption coefficient for air at STP, cm

Total energy absorption coefficient for floor materials, cm

Direction of incident gamma ray

Direction of reflected gamma ray

Distance from any point of an infinite plane isotropic source of

radiation to the detector, feet

Distance from a unit area dA to the perpendicular from the detector

to the source plane, feet

Distance from a point (x,y) in the ceiling to the detector in the

building, feet

Azimuthal angle of reflection, radians

<,' Total change in azimuth between directions of incident and emergent

gamma ray defined by Eq. (22), radians

Azimuthal angle of incidence, radians

<;-><>
z

Azimuthal limits of the aperture, radians

x Dummy variable in x-integration



Dummy variable in ^-integration

Solid angle fraction

Dummy variable of integration over polar angles

Cosine of incident polar angle

Solid angle, steradians



1.0 INTRODUCTION

Radioactive fallout is observed whenever a nuclear weapon is exploded.

Because fallout contains radioactive atoms, and thus emits nuclear radia-

tions that can cause damage in the cells of living tissue, the presence of

fallout is usually equated with a potential radiological hazard to living

matter. It is not surprising, therefore, that great concern has been

devoted to the problem of fallout radiation exposure and that, in particular,

many investigations have been made in the effort to determine the ability of

existing or proposed structures to offer protection against fallout radiation.

Because of the rapid change of the absolute radiation intensity inside

a structure following a fallout-producing event, it is not realistic to

determine the absolute dose rate (1); rather it has become customary to

measure the radiation protection afforded by a given structure in terms of a

"standard unprotected position". The ratio of the dose rate at a given posi-

tion in a structure to the dose rate in the unprotected position is commonly

called the "reduction factor". The reciprocal of the reduction factor is

called the "protection factor".

The standard unprotected position is presently defined as a detector

location three feet above a hypothetical source of radiation of the same

character as the fallout on the ground. The fallout is presumed to lie on

a perfectly smooth, infinite plane. The ground is assumed to be replaced by

compressed air of the same density, so that accurate theoretical analysis can

be made (2). The reference dose rate can be calculated to within two to

three percent accuracy, given the spectrum and strength of the fallout field.

A commonly accepted value of the reference dose rate for a plane contaminated

with one curie per square foot of Cobalt-60 is 485 roentgens per hour (3).



Several methods (2,4,5,6) are currently available for estimating the

reduction factor of structures. There is a continuing trend toward indi-

vidual consideration of each contributing factor thus increasing the relia-

bility of the reduction factor concept. In the methods mentioned above,

radiation which scatters from the ceiling is not considered as a separate

contributing factor to the total radiation received at a point in the

structure, but is lumped with the air scattered contribution into a single

skyshine term. This term is then considered in conjunction with direct and

wall scattered radiation for estimating the ground contribution from a field

of fallout radiation.

There are instances, however, where ceiling scattered radiation,

"ceiling-shine", does make a significant contribution to the total radiation,

at times exceeding skyshine; for example, in buildings with a high band of

windows and a roof overhang which cuts out skyshine.

The intent of this thesis was to undertake a systematic analytical

investigation of the problem of ceiling-scattered radiation, trying, insofar

as possible, to be consistent with the Engineering Method described in refer-

ence 4, so that the results from this work could eventually be incorporated

in the above method. To this end the nomenclature used in (4) was followed

wherever and whenever possible.

FORTRAN programming was employed throughout this study, utilizing the

IBM-1410 facilities at the Kansas State University Computing Center and the

CDC-3600 facilities at the Argonne National Laboratory Computing Center.

This thesis considers a multistory structure with windows. The size of

the structure, as well as the percentage aperture and position of the win-

dows, are varied. Ceilings are assumed to be semi-infinite reflective media

and fallout is assumed to be uniformly distributed horizontally over exposed



surfaces. This is a standard assumption made in virtually all treatments of

structure shielding against fallout radiation. The theoretical model is also

based on the two following assumptions: 1) the dose angular distribution of

radiation at the ceiling is not affected by the presence of the structure in

the infinite field of radiation, and 2) the walls of the structure have zero

linear thickness, yet are completely opaque to incident radiation.

Radioactive fallout consists of both fission fragments and neutron acti-

vated materials. The fission fragments constitute about 95% of the total

radioactivity at one hour after a fission explosion (3). The fallout radia-

tion energy spectrum changes with time. This feature comes about because of

the different decay rates of the many radionuclides present in the fallout.

Because of the time variation of the gamma-ray fission spectrum, it was nec-

essary to make some decision regarding the choice of a spectrum to be utilized

in this study (Appendix A).

The energy spectrum from fission at 1.12 hours after fission, with the

volatile components removed, was chosen for three main reasons: (a) the

spectrum at this time is representative of the spectra at earlier times, and

most of the exposure to radiation is apt to occur during the first few hours,

(b) volatile components would to a great extent remain separated from the

fallout material, and (c) the penetration properties of fallout are, except

for very large penetrations, not very sensitive to spectral changes (2).

This spectrum is shown in Figure 1.

Utilization of this spectrum for all calculations would have required

an inordinate amount of computer time; thus a few situations were analyzed,

making use of the spectrum, and compared with results obtained for the same

situations but using an infinite field of Cobalt-60 radiation (average energy
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1.25 Mev). The purpose of these calculations was to ascertain how well the

use of a Cobalt-60 field of radiation would simulate an infinite field of

fallout radiation. By such comparison it is possible to establish some

criterion whereby results obtained by using Cobalt-60 radiation can be cor-

rected to obtain the equivalent results, had an infinite fallout field been

used. It was found (Appendix C) that an infinite field of Cobalt-60 radia-

tion simulated the infinite field of fallout radiation with sufficiently good

accuracy (five percent on the average), thus a Cobalt-60 infinite field of

radiation was subsequently used for all remaining calculations.



2.0 THEORETICAL DEVELOPMENT

2.1 Derivation of Ceiling Shine Equation

The geometrical model utilized for the evaluation of the ceiling shine

reduction factor is illustrated in Figure 2. This figure represents an

idealized 1th floor of a multistory building. The parameter d is the eleva-

tion of the 1th ceiling above the source plane while d' is the distance be-

tween the ceiling and the floor. The surface of the first floor is consid-

ered to be in the source plane. Each floor contains a single window, not

necessarily located centrally either horizontally or vertically in the wall.

A combination of cartesian and polar coordinates is employed. The spherical

coordinates of the window are represented in rectangular coordinates through

the following transformations.

<t>j
= tan

_1
[(x+D-R)/y] + n (1)

* 2
= tan-MU+D+Rj/y] + it (2)

6j = tan- 1 {[y/cos(<t)0 -iT)]/(H+V)} (3)

e 2
• tan-Mly/cosUo-uJl/tH-V)} (4)

where V is the half-height of the aperture,

R is the half-width,

H is the distance from the center of the aperture to the ceiling, and

D is the offset of the aperture from the wall centerline.

Solution of the time independent Boltzmann equation for a plane source

of radiation in an infinite homogeneous medium isotropically emitting one

photon per unit area per unit time of energy E , yields a differential photon

flux dependent on position, energy and direction. This flux,
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Figure 2. Schematic diagram of the ith floor of a multistory building.



N v.(cl,E,.s,o)dEsinodOd«, represents the number of photons per unit area per

unit time, with energies in dE about E, <ind direction o and $ in the solid

angle sinndod«, where the unit area under consideration is normal to the

direction and $.

The exposure dose rate is proportional to the product of the flux N
pl i>

the energy E, and the energy absorption coefficient u (E). The dose angular

distribution for the plane isotropic source is then

F
pl

.(d,e,4) =M'
0,

'a<
E > EN

pli<
d ' E '*' e) dE C5)

where a is the conversion factor needed to give the resultant distribution

units of exposure dose rate.

By definition,

«.'(ti,0,<j>) = F
li

(d,e,*)/D
c

(6)

where D is the dose rate at the standard unprotected position, of Eq. (73)
o

in Appendix C. Integrating over all azimuthal angles yields

n(d,cosa ) 2 7i £'(d,cose ,ii> ). (?)

The dose angular distribution of radiation, s.(d,cose ) , from a cobalt-60

plane isotropic source has been calculated by Spencer (2) and is shown in

Figure 3. It can be noted from this figure that for small penetrations, the

dose angular distribution is sharply peaked in directions parallel to the

source plane. This results in the high penetrability of the cobalt-60 (or

fallout) radiation through vertical barriers. As the distance from the

source plane is increased, however, the distribution becomes less sharply
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Figure 3. Dose angular distribution for cobalt-60 and concrete. (2)
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peaked as the scattered component becomes increasingly dominant. Indeed,

for great penetrations, the distribution becomes peaked at cose - 1 (i.e.,

the oblique component is removed). The ordinate of Figure 3 is fixed so

that an isotropic detector registering D
Q

roentgens per hour at the standard

unprotected position, registers

dD' = (D
o
/2ir)!l(d,cose ) sinO^Ogd^ (8)

due to photons striking it from directions within the solid angle sineodSod^o.

For reasons of economy of computer time and storage, it was necessary to

represent J,(d,cose ) by an analytical function. Implicit in ii(d,cose )
is

dependence on the energy E of the source of radiation. Furthermore, for

this work, d is a fixed parameter. Spencer (2) has pointed out that, when

unscattered photons predominate (such as, near the source plane), J.(d,cose )

resembles (coseo^expf-a/cosBo) , where a is a constant (dependent on the

source photon energy and the height d). Referring now to the development

inAppendix C, particularly Eq. (78), we choose to represent £(d,cose ) by

the approximating function:

£(d,cos8 )
= W(E

o
,d,cose )B(E

o
,d,cos8 )(cos9 )"exp[-p(E

o
)d/cose ] (9)

where, as noted, «.(d,cose ) is implicitly a function of E
Q

. B(E
o
,d,cose )

is the dose buildup factor for a point isotropic source:

B(E
o
,d,cos6 )

= 1 + a'(E
o
)ii(E

o
)d(cose )" 1

exp[b(E
o
)u(E

o
)d/cose ]. (10)

a'(E ) and b(E ) are parameters for the build-up factor approximation of

Chilton, Holoviak, and Donovan (7). These parameters depend on the composi-

tion of the medium, and are shown in Figure 4.
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As it is pointed out in Appendix C, Eq. (78) is, at best, a very crude

approximation to the dose angular distribution, and applies only to the

range < cose < 1. It was therefore necessary to include another factor

W(E ,d,cose ) in the approximation to the dose angular distribution. The

following linear function of cose was found to be satisfactory:

W(E .d,cose )
= A(E ,d) + B'(E ,d)cose c

(11)

Again, E and d are parameters, rather than independent variables.

Since u(E ), a'(E ) and b(E ) were known, it remained only to determine

A(E ,d) and B'(E ,d) by .east-squares fitting of data from Figure 3. This

analysis is described in Appendix A of reference 1.

The expression for the total incident dose rate at any point (x,y) on

the ceiling utilizing Eqs. (1) through (4) is

r<t>2

D,(x.y) -f (A + B' cose

-
y (E )d/cose

cose

(12)

,'MfF Iri p
(b-l)u(E o )d/cose

+
a •i ^ t Q> a e

'

sin8 d9 d<j> .

COS 8q

Before proceeding with the development of the theoretical ceiling shine

equation, it is interesting to observe that an equation similar to equation

(12) can be obtained from "point kernel theory".

The total incident dose rate at the ceiling is proportional to the pho-

ton flux above an infinite plane isotropic source of photons. The unscatter-

ed flux from a plane isotropic source emitting one photon per unit area per

unit time is given by
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-i'(E )Ro

F
u
((0 =

. ~^
•'Area

dA. (13)

The total flux is the product of the proper build-up factor and the uncol-

lided flux of Eq. (13) ,

i.e., F(o)=[ [1 + a',(E
o
)R e

bl ' {E
o)

R0](4^e^ Ep) R0]- 1

dA. (14)

J Area

From the geometry of Figure 5,

R = d/cose » dA R dR d.t>

so that

(15)

i ($2 r
e
2

-nd/cos8„
a

,

ud e

coss cos z
e

(b-l)yd/cose
sine de . (16)

Figure 5. Pl.me surface source geometry.



Equations (12) and (16) are identical with the exception of the factor

(A + B
1

coso ) which is included in Eq. (12) to permit a better empirical

fit to the data from moments calculations (2) and a constant factor necessary

to convert Eq. (15) from units of flux to dose.

The expression for the total incident dose rate at any point (x,y) on

the ceiling is thus

f*?

D,(x,y) =£ (A + B' cose )

+
a'u(E n )d e

(b-l)u(E )d/cose
c

e
-u(E

o
)d/cose

cose

COS^Gn
sine de d<j> .

[12)

In order to obtain the total reflected dose rate at the ceiling, it is

necessary to define a reflection efficiency for the ceiling. This reflection

efficiency is commonly designated as the "albedo". A differential dose rate

albedo is used in this work (1). It is defined as the fraction of the dose

rate incident on a surface at a given a and <j> which emerges from that sur-

face into a solid angle da about n. The albedo used in this work is a modi-

fication of one developed by Chilton and Huddleston (8,9,10).

The albedo used in Appendix C for the comparison of fission product

results with the cobalt-60 results (1) is

a(e .9o; e »*)
=

1 - 293 cose [CK(e ) + C'](cose + cose)" . (17)

Here C and C are the Chilton-Huddleston constants. Table I presents values

for these constants at the thirteen energies of the fallout spectrum and at

the cobalt-60 energy. The scattering angle e can be obtained from the

geometry of Figure 2, and the following consideration.
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If t- is the Ji recti on of the incident gamma ray, and t
r

is the direc-

tion of the reflected ray, we can say that

cose
s

= tj • fr
O 8 )

From Figure 6 one can easily show that

|. = + sin8 sinUo-*)
\

f. = - sine cos(<t> -iO O 9 )

y

f. = - cose

z

and similarly

e = sine sin*
r
X

1 = sine cos* (20)

t
r

= cose

where £ , £ , £ are the components of £ in the x, y, and z directions.

7" ?^^
^i« v /

-*

'

/ S
°

e
\"\

/!"*-«

\ \— +X

4-/
&

+z

Figure 6. Coordinate system of albedo problem.



16

By substitution of Eq. (19) and Eq. (20) into Eq . (18) and carrying out the

indicated dot product we conclude that

cose = sine sine cosV - cose cose (21)

where

<j>' = $ -
<f

+ u. (22)

Table I. Values of C and C as a function of the

incident radiation energy (9).

Energy r c
.

(Mev)
L

0.2128 0.003369 0.071531

0.2354 0.006860 0.064591

0.3193 0.011891 0.054976

0.4257 0.019726 0.041085

0.5108 0.025504 0.031879

0.6386 0.033366 0.021235

0.8514 0.043641 0.014983

1.0217 0.051245 0.011373

1.2520 0.060872 0.007439

1.2772 0.061879 0.007075

1.7029 0.077531 0.002897

2.0435 0.086038 0.006731

2.5545 0.101482 0.004928

3.4059 0.124210 0.002916

The parameter k(8 ) is p times the Klein-Nishina cross section where

p = { 1 + E (1 - cose
s
)/0.51l}

_1
. (E

Q
in Mev) (23)

While Eq. (17) was used for all the calculations in Appendix C, a still more

accurate formula was used to evaluate the required data for the design curves
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This fonnu la is

a_(6 ;8, )
' 1.293 COS8 -

F,(e ,e,4,
d

)[Ck(8
s

) + C]
(24)

cose + (cose /I + 2 E (l-cose
s
))

where

r"

a
(e ;e,*) = Ai + A 2 I:i - cose )

2
+ A

3
(l - cose)

2
+ A„(l - cose )

2
(l

,2
- cose)

+ A;,(1 " cose )(l - cose)(l - cos*)

.

(25)

The values o-F the constants in Eqs. (24) and (25) are p resented in Table II.

Table 11 . V alues of albed parameters.

Parameter Ces ium-137 (0.662 Mev) Cobalt-60 (1.25 Mev_)_

C 0.0455 0.0710

C 0.0161 0.0114

Ai 1.512 1.555

A2
-0.606 -0.629

A3 -0.641 -0.605

A, 0.645 0.539

As -0.157 -0.168

An e>;pe rimentally dete rmined albedo equation (11) was considered.

However, its 1 i mi ted range, especially ir 1 the incident polar angle
,
precluded

its use ir 1 this work Comb ining Eqs. (15 '.) and (24) yieilds the differential

reflected do se rate at any point (x,y) oi
: the ceiling.



i.e., D ( x ,y; e , $ ) sin
1.293W D

° I

2 r°2
d<j>

I

de (A + B
1

cose )

j"

e
-pd/cose

a
.

yd e
(b-1)ud/cos6

[Fie ;e„t>)][C,<(eJ + C] (26)

[cose + cose /l + 2 E (1-cose )] cose sine sine

This differential reflected dose rate can be thought of as a plane source of

gamma radiation with strength varying with ceiling position and emergent

polar (e) and azimuthal {<t>) angles.

For a ceiling located at an elevation d, the distance from a point (x,y)

on the ceiling to the detector located at a point (xx.yy.zz) is given by

[(xx-x)
2

+ (yy-y)
2

+ zz
2

]

1/2
. (27)

From the geometry of Figure 2, the emergent angles are given by the following

relations:

e = cos
_1 (zz/p)

tan
_1

(yy-y'

(28)

(29)

The dose received by an isotropically responding detector located at

(xx.yy.zz) is

r (x,y;e,<t>)cose dx dy

D = -I .

J Area p

(30)

The reduction factor at a point (xx,yy,zz) in the structure can be obtained

by dividing both sides of Eq . (30) by D , substituting Eq. (26) for D
r
(x ,y ;8 ,$)

,

and integrating over the ceiling area. The equation for the total reduction
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factor must incorporate attenuation and build-up terms to account for the

media traversed by the reflected radiation prior to striking the detector

(this could include floors or interior partitions). This results in the

following equation for the reduction factor anywhere in a structure.

R.F.(xx,yy,zz)
1.293

2ti

XMAX rYMAX
dx

-XMAX >
o

dy

c
-,(E )d/cose n ,

a'"(E )"e

TJ

(b-l)u(E o )d/cose

cose

(A + B' cose )

F^e ;8,*)[C K (6
s

) + C;

cose{l + a' [p(E)(p-t/cose) + u
c
t/cose]exp[b(y(E)(p-t/cose)

+ y
c
(E)t/cose)]}{exp[u(E)(p-t/cosa) + p

c
(E)t/cose]

}

_I

[p (cose + cose /I + 2 E (l-cose
s
))]" sine de

(31)

where F(e ;6,4>) is given by Eq. (25),
a

t is the thickness of any floor between the ceiling in consideration

and the detector, and

y (E) is the total gamma-ray linear attenuation coefficient for the

material of a floor between the ceiling and the detector.

This equation was solved numerically.

2.2 Transformation of Equations for

Computer Utilization

An IBM-1410 digital computer, with 4000 word storage capacity, and a

CDC-3600 computer with 64,000 word storage capacity, were used alternatively

for all machine calculations necessary in this thesis. FORTRAN IV and CDC-

F0RTRAN languages were utilized.
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The numerical technique known as Gaussian quadrature was employed to

integrate Eq. (31). This technique and its accuracy are discussed in Appendix

B. Gauss' mechanical quadrature formula is

1

f(x)dx = I w f( Ul )

ii 1-1

(32)

where w. are the Christoffel numbers and u. are the zeros of the Legendre

polynomials. Values of w. and u. are tabulated for order n from 3 to 20 in

Appendix B (12,13).

First the integration over the incident azimuthal angles is performed by

application of Eq. (32). This is accomplished by letting

*o = \ (* 2 (x) - *j(x)) v(x) + \ (* 2 (x) + ^(x)) (33)

dfo = \ U 2W - fjfx)) d*(x) (34)

Note that the limits of the integration ct> 2 (x) and $ (x) are directly dependent

on x through Eqs. (1) and (2). Thus

f<t>2 "h"*! f

1

§z-$i K

d* f(*o) = —5—
J

d * fM = T-
"

I
a
k

f'V ' 35 '

*! -1 k =l

where the explicit dependence on x is tacitly assumed. Substitution in Eq.

(31) will essentially remove the integration over the azimuthal angles,

substituting in its place the right hand side of Eq. (35), and leaving every-

thing else unchanged.

Since e always appears in the form cose 0> it is convenient before one

integrates, to make a change in variables from 6 to u > where
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oi '
= cose (36)

Again we let

ul = 2 [^(y^ot*)) - oi
1
(y,iti («))] u(y,*U (x)))

(37)

+ 2- [w2(y.«o(*)) + ^(y.^U))]

^2(y.*o)
=

"!(y.*o) *

cosD 2 (y,<tio)

cose^y.^o)
(38)

The explicit dependence of 81 and e 2 on y and
<t>

is given by Eqs. (3) arid (4),

and 4>o itself is explicitly dependent on i|i and x, as s hown in Eq. (33)

du = - j ["2(y> |
t
| o( )) o)

1
(y,* ('lO)] du(y,((io( *(x)}) (39)

f">2

"'Ol

1

oi,-oi 2 fl
0). -UI2 K

do) f(oi) * —o
I a

1
3=1 J

^j) (40)
o

T l"o) 2

where, again, the arguments indi eating the explicit de pendence o1
: each vari-

ablei have been deleted for simpl icity.

The y and x integration are now performed by the usual changes

y = A YMAX • y + j YMAX (41)

dy = L YMAX dy (42)

,YMAX
. t , > YMAX f

1

dy f(y) = —2~

-1

dy f(y) - *f.j .

m-

1

f
(yJ (43)
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x =
\ (XMAX + XMAX) X

(W)

dx = XMAX dx
(45)

L

|

mX
dx f(x) = XMAX [' d x f(x) = XMAX \ a

c
f(x

c
)

(«)

J -XMAX -l
c*'

so that finally the equation for the total reduction factor at a point (xx,

yy.zz) in a structure becomes

R.F.(xx,yy,zz) =

L
M K

1;JM YMAX • XMAX • I
a [* 2 (x c

) " <i>iU c
)] I a

m I a
k

Ion c =i
u rn=l K-

1

(47)
K

• MW\og» - ^v o(*"^ )>>3
j=i

Sj F(xtfVj ,* fcl

where F(x^,^-v
k

) is the interrand of Eq. (31) after the indicated changes

in tne independent variable u have been performed.
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3.0 RESULTS OF CALCULATIONS

3.1 The Design Curves

3.1.1 Development of the Design Curves

Figure 2 illustrates many of the parameters that must be taken into con-

sideration in calculations leading to sets of curves for determining the

ceiling shine reduction factor in a structure. These parameters can be clas-

sified into four groups: ceiling parameters, window parameters, detector

parameters, and energy parameters. While the first three types have a geo-

metrical nature in that they only relate to the geometrical arrangement and

dimensions of the structure, the energy parameters arise indirectly from the

treatment of the fallout field as a superposition of monoenergetic sources.

These energy parameters are considered in great detail in Appendix C. These

four groups can be further defined as follows.

A. Ceiling parameters:

Window parameters:

Those relating to the size of the structure and

the height of the ceiling above the source plane.

There are four parameters of this type.

1) XMAX, defined as half the length of the

wall in which the window is located,

2) YMAX, the total length of the adjacent wall,

3) d, the height of the 1th ceiling above the

source plane, and

4) t, the thickness of each floor slab.

Describe the location and dimension of the window.

There are four parameters of this type.
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1) H, the distance of the window horizontal

centerline from the ceiling,

2) V, the half height of the window (these first

two parameters determine the sill height and

upper level of the window),

3) R, the half width of the window, and

4) D, the offset of the window vertical centerline

from the wall centerline.

C. Detector parameters: Relate to the position of the detector with respect

to the ceiling.

1) xx, the x coordinate of the detector,

2) yy, the y coordinate of the detector, and

3) zz, the z coordinate of the detector.

D. Energy parameters: Do not enter directly into the calculation of the

reduction factor in a structure exposed to fallout

radiation, in that, as was previously stated, it is

possible to simulate the fallout field with an

infinite field of monoenergetic cobalt-60 radia-

tion. Energy parameters are, however, used in

verifying the accuracy of simulating the infinite

field of fallout radiation with a field of cobalt-60

radiation.

It should be pointed out that, while physical dimensions are used directly

in the calculations for the design curves, they do not necessarily appear as

parameters in the sets of curves themselves. It becomes more convenient, in

the presentation of these curves, to utilize some other parameters, (e.g.,



25

solid angle fraction, eccentricity, percentage aperture, etc.) which are func-

tions of the geometrical parameters.

The building eccentricity, E, is defined as the ratio of the dimension of

the side in which the window is located (2 x XMAX) to the dimension of the

adjacent side (YMAX). It is not the ratio of the smaller to the larger side

of the building as given in reference 4.

The fraction of solid angle subtended by the ceiling at the detector is

a function of the ceiling dimensions and the perpendicular distance from the

ceiling to the detector. The equation for the solid angle fraction (2) is

given by

u>(e,n) = - tan" 1
c- rn (48)

n(l+c 2 +n 2
)

1/2

where e W/L and n = 2(zz)/L. (49)

The function w(e>n), plotted in Figure 41.2 of the Engineering Manual (4), is

reproduced as Figure 8. The percentage aperture of one wall is the ratio of

ten feet times the width of the window to the area of the wall plus the window.

Not all values of the eleven physical parameters discussed above were

used in the calculation of design curves for determining the ceiling scattered

reduction factors. As each of the parameters could assume a large number of

values, this would have required an inordinate amount of time on the digital

computers employed (CDC-3600 and IBM-1410). Preliminary studies were conducted

to ascertain the relative importance of each of the parameters. Final calcula-

tions were performed for various selected geometrical situations which provided

a sufficient representation of the reduction factor variation. Table III sum-

marizes the values of various parameters employed in the calculations. All
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possible combinations of the parameters listed in this table were utilized

except for ceiling heights different from thirteen feet and sill heights other

than three feet, only five of the percentage apertures and two of the sill

heights were employed.

Table III. Design curve parameters.

Ceiling height above source
plane (feet)

13 39 65 91

Ceiling Width, W (feet) 10 20 30 50 100

Ceiling Length, L (feet) 10 20 30 50 100

Sill height (feet) 3 5 7 8 9 10 11

Percentage Aperture {%) 5 1 10 15 20 30 40 50 50 70 76.9*

* This is the maximum possible percentage aperture with thirteen foot high

rooms and three foot sill heights (i.e., 10/13 = 0.769).

The design curves are presented in Figures 7, 8, 9, 10, 10a, and 11.

Following is a brief description of the procedure used to develop these

curves. Solutions of Eq. (31) for different size square buildings were plotted

directly to obtain Figure 7.

The procedure employed in obtaining the eccentricity correction curve

(Figure 9) follows.

1. The reduction factor in rectangular buildings was determined for

different percentage apertures while holding the eccentricity

constant.

2. For a given eccentricity and solid angle, the ratio of the reduction

factor in the eccentric building to that in a square building was

determined for each percentage aperture, and an average ratio calcu-

lated. A standard deviation was also calculated.
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3. The average ratio (eccentricity factor) was plotted versus the

eccentricity for which it was obtained.

4. The same procedure was repeated for different eccentricities.

To determine the sill height factor R (m,h) for Figure 10, the following

procedure was followed.

1. Several reduction factors were evaluated for a given structure by

keeping the upper level of the window at ceiling height and the

window width unchanged while allowing the window sill height to vary.

2. The ratios between the reduction factors obtained for each sill

height to the reduction factor calculated with the sill height at

three feet were plotted as function of the solid angle fraction.

The curves in Figure 11 were obtained by determining the ratio of the

reduction factors obtained for identical geometrical situations at the given

height to that at a height of thirteen feet.

3.1.2 Using the Design Curves

Because of the relatively large number of parameters involved in the cal-

culation of a ceiling shine reduction factor, it was necessary to develop a

set of curves for some standard structure. Correction factors are applied to

the standard structure results to obtain reduction factors for other structures.

The standard structure was chosen to be the first floor of a square con-

crete building. A single window was located centrally in one of the walls with

the sill height at three feet above the floor and the upper level flush with

the ceiling. The detector was positioned three feet above the center of the

floor. The distance between floor and ceiling was set at thirteen feet.

Eq. (31) was solved for standard structures ranging in floor area from

100 to 10,000 square feet. The resulting reduction factors are plotted for
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0.0 0.1 0.2 0.3 0.4 0.3 0.C 0.7 0.0 O.S 1.0

SOLID ANGLE FRACTION,*)

Figure 7. First floor reduction factor irva square building.
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TT X S 3i .95

SOLID ANGLE FRACTION , u

Figure 11. Correction factor for the detector positioned in upper stories. Ru
-
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different percentage apertures (ten feet times window width/window plus wall

area for one wall) as functions of the fraction of solid angle subtended by

the ceiling at the detector in Figure 7. The solid angle fraction may be

obtained through the use of Figure 8 (chart 1 in reference 4).

The ceiling shine contribution in a rectangular building of equivalent

ceiling area and percentage aperture may be obtained by multiplying the reduc-

tion factor for a square building taken from Figure 7 by the correction factor

plotted in Figure 9. This correction is called the eccentricity correction

factor. The eccentricity, E = W/S, is defined as the ratio of the length of

the side containing the window to the adjacent side. Figures 7 and 9 used

together will therefore yield the reduction factor three feet above the center

of a rectangular building with a window of the same dimensions as that of the

standard structure.

The reduction factor three feet above the center of the first floor of

either a square or a rectangular building with windows located anywhere in the

wall can be determined with the additional use of Figure 10.

The reduction factor three feet above the center of the floor of the

structure in Figure 12 is given by Eq. (50),

R.F. - R
f
(u.,P) R

E
(E) {R

s
U,h!) - R

s
U,h 2 )}, (50)

where R
f
(ui,P) is the reduction factor for a square building with percentage

aperture P and solid angle fraction u> (Fig. 7),

R
F
(E) is the eccentricity factor (Fig. 9), and

R (iD,h) is the multiplicative correction factor for a sill height of

h feet (Fig. 10).

A differencing technique can be used for windows located in off-center posi-

tions in one of the walls (Fig. 13). The general expression for the reduction
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factor can be written as

r.f. - 1r
e
(e) (R

s
(.,.,in) - R

s
(«.»>*>} IM«" p "- ) "

R
f
(w>P2)} 51)

Mere P, is the percentage aperture determined using R, as the window width,

and P 2
is the percentage aperture with R z

as the window width.

The factor of one-half in Eg. (51) is introduced because the differencing

technique yields the reduction factor for two identical windows symmetrically

located about the wall center-line. If the windows are not symmetrical or are

of different size, the reduction factor contributions must be evaluated for

each of the windows and tnen added.

A \

N OJ /

\ L J2

i

i©
D-_j—L

Elevation Pla"

Figure 12. Sample structure describing Eq. (50).

R
. j

~Z

"\ /
y

iw /

Figure 13. Structure used in description of Eg. (51) and (52).
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Special attention must be paid to situations for which the window is

located in the narrow side of the building (i.e., E<1.0). For such cases,

the correction factor for sill height was found to have a value lower than

that obtained from Figure 10. This can be attributed to a secondary eccen-

tricity effect. For rectangular buildings with the window located in the

narrow side, the main contribution from the ceiling to the reduction factor

will originate from the very front of the building. Little contribution will

come from the back. Thus the structure behaves as if it were actually of

smaller size, and the reduction factor will be lower. Figure 10a provides

the means of correcting for the added effect. This factor is termed R
X
(E).

The factor obtained from Figure 11 corrects for the reduction factors

three feet above the center of the floor of upper stories. The additional

correction factor R (E) (Fig. 10a) must again be used whenever the reduction

factor is calculated for rectangular buildings with eccentricities less than

one.

With the geometry of Figure 13 for a ceiling at an elevation other than

thirteen feet, the reduction factor can be determined from

R.F. = ^R
X
(E) R

e
(E) R

u
U,d) {R

s
(co,h

1 )

- R
s
(u.,h 2 )} {R

f
(u),Pi) - R

f
(u,P 2 )}.

(52)

where R (E) is equal to 1.0 for E>0.6 and

R (w,13') = 1.0.

The contribution from the floor above the detector floor can be approxi-

mately determined with the use of chart 1 in reference 14. Since the ceiling

shine contribution is part of the general ground contribution, the correct
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factor to be employed on this chart is BJ(Xo). defined as the ceiling barrier

factor for the ground contribution. XJ is the thickness of the floor slab in

pounds per square foot (psf) and BqUq) is equal to unity for a zero thick-

ness floor slab.

The general expression which yields the ceiling shine contribution in

the center of a structure is

R.F. = 1r
£
(E) R

x
(E) R

u
(<o

1
,d

1 ) {RfUiA) " R
f
Ui»P 2 )}

(R^un.hi) - ly^.M} +1bJ(XJ) R
e
(E) R

x
(E) R

li

(oJ2 .d 2 ) (53)

{R
f

(co2 ,Pi) - R
f
(u)2 ,P 2 )} {R

s
(ui2 >M " R

s
(w2 .h 2 )}-

Equations (50) through (53) apply only to the case of a single window located

in one of the walls. The calculation must be repeated for all windows

located in the structure.

Although all design curves were based on a detector to ceiling distance

of ten feet, they can still be used for other distances as long as the correct

solid angle is utilized.

To better illustrate the use of the design curves, particularly in the

case where the detector is not centrally located, some numerical examples are

presented in the following pages.

The basic method for analyzing the ceiling shine contribution has been

described for situations where the detector is assumed to be centrally located

horizontally in a square or rectangular structure having only one window in

one of the walls. In most actual buildings, however, there will be many win-

dows present and the detector will not be symmetrically located. The follow-

ing describes a procedure whereby the contribution due to ceiling shine can
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Lio evaluated for such cases.

V. Identical windows symmetric! My located in each of the walls.

-; ) Square buildings

For the case of a single window located in each of the walls, the

reduction factor is four times the contribution from one window only.

If more than one window is located in each wall, the contributions

from eacii of the window, in the wall are added and multiplied by

four to obtain the total reduction factor. The analysis of a simple

square structure witn several windows equally spaced around the build-

ing is illustrated in Example 1. The plan and elevation of the struc-

*

ture are shown in Figure 14.

Example 1

13'

1

1
6

'

_L
o i__p

I >

i

//d ^/.a _

i

1

1

i

1

[
1

30'

V

1
! [

^ 30'

Figure 14. Structure elevation and plan for Example 1.

*In the following examples, for clarity, the plan views of buildings are

shown in section through the windows.
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Given the structure in Figure 14, the reduction factor three feet

above the center of the floor must be determined. The contribution

from each of the windows in one wall is obtained by a differencing

technique. For all three windows, the contribution to the reduction

factor is equal to the difference between the contribution obtained

with the sill height placed at three feet (hi) and that obtained with

the sill height at six feet (h 2 ). To evaluate the contribution from

the two outer windows a differencing technique must be further employ-

ed. The reduction factor contribution is computed by subtracting the

value obtained for a window width of twelve feet (corresponding to a

percentage aperture P 2 ) from that obtained for a window width of

twenty-four feet (percentage aperture P]). The reduction factor for

one wall is calculated by adding the individual window contributions

and the reduction factor for the structure is just four times that

for one wall only.

A functional equation, which expresses these operations, follows,

a) Functional Equation

R.F. = [R
f
(u>,Pi) - R

f
(a.,P2)][R

s
(io.hi) " R

s
(«J,h 2 )]

+ R
f
(o.,P

3
)[R

s
(^,hi) - R

s
(u).h 2 )] (54)

Total reduction factor = 4 R.F. (55)

where P l5 P 2 > and P
3
represent the percentage apertures of the

wall for window widths of 24, 12, and 6 feet respectively, with

the sill height at three feet and the upper level flush with the

ceiling. The window sill and window top heights are respectively

hj and h 2 .
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Determi nation of Parameters

The following table lists the values of the parameters utilized

in the solution of the problem. The numbers in the left column

refer only to subscripts. Thus P 2 = .308 and R
f
(ui,P 2 )

"

1.65x 10" 3
. It should be noted that while in this case u (the

solid angle fraction) and E (the eccentricity) have only one

value and therefore do not need to be subscripted, they are

listed with subscript 1 as in many cases they can take on more

than one value.

Table IV. Parameters for Example 1

P h E
Fiqure 8 Figure 7

R
f
(w,P)

Fiqure 10

R
s
(«.h)

1 0.615 3' 1.0 0.49 3.06xl0"
3

1.0

2 0.308 5' — -- 1.65xl0"
3

0.90

3 0.154 - — -- 9.1 xlO"
4 -

c) Sol ution

R.F. = (3.05 - 1.65)xl0"
3

• (1.0 - 0.90) + (9.1xl0~
4

)

•(1.0 - 0.90)

= 1.41xl0"
4

+ 0.91xl0"
4

= 2.32xl0"
4

[one window only]

R.F. = 9.3xl0"
4

. Answer

ii) Rectangular buildings

The contribution from windows in the wide side of rectangular

buildings must be differentiated from those in the narrow side of
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the structure since the eccentricity factor will be different for

the two cases. The procedure employed is otherwise the same as that

for square structures. An example of this follows. The plan and

elevation for the structure used in this example are shown in

Figure 15.

Example 2

15'

| 1

+ t"----'

"1

il.

3

9' L J
r

Elevation

1 \

50

Plan

Figure 15. Structure elevation and plan for Example 2.

The reduction factor contributions from opposite walls are identical

as the windows are located symmetrically. Thus it is only necessary

to determine the reduction factor from two adjacent walls and multiply

the answer by two. Before writing the functional equation expressing

the reduction factor for this example, some clarification is necessary.

Pj and P
2

are the percentage apertures in the long side of the struc-

ture for window widths of 30 and 10 feet respectively, P
3

is the per-

centage aperture in the adjacent side for a window width of 20 feet.*

The sill and window top heights are hj and h 2 and Ej and E 2 refer to

*The percentage aperture P is always calculated for the standard

window height of ten feet.
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the eccentricities of the structure with apertures in the long and

narrow sides respectively.

a) Functional Equation

R.F. = Z(,h) R
E
(E!) R

u
(u,d) [R

f
(u.,Pi) - R

f
(u.,P 2 )]

• [RjU.M - R
s
(o.,h 2 )] R

x
(Ei) + 2(k) R

E
(E 2 ) R

u
(u.,d) (56)

• R
f
(o),P 3 ) [R

s
(u,h!) - R

s
(co,h 2 )] R

X
(E 2 )

b) Determination of Parameters

Table V. Parameters for Example 2

p h E
Fig. 8 Fig. 7 Fig. 10 Fig. 11 Fig. 9 Fig. 10a

u. R
f
(u,P) R

s
(u.,h) R

u
( tll ,d) R

E
(E) R

X
(E)

1 0.462 3' 1.667 .5620 2.80xl0"
3

1.00 0.89 1.30 1.0

2 0.154 9' 0.60 --- 1.12xl0~
3

0.68 -- 0.74 1.0

3 0.513 - -- — 3.20xl0~
3

--

In the table above, it should be noted that ui is subscripted as

1, although no subscript is needed. Furthermore, since only one

ceiling height is considered (d = 26 feet), d is also subscripted

as 1.

c) Solution

R.F. = (1.30) (.89) [2.80 - 1.12]xl0"
3

[1.0 - .68]

+ (.74) (.89) (3.2xl0
-3

) [1.0 - .68] = 6.2xl0"
4

+ 6.7xl0"
4

= 1.3xl0"
3

. Answer
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d) Discussion

This example illustrates the principle of adding the responses

from adjacent sides of a rectangular building. The same tech-

nique can be followed for any number of windows located in each

of the walls

.

2. Asymmetrically located windows.

For structures with asymmetrically located windows, the reduction factor

must be calculated by adding the contributions due to each individual

window. The same procedure is used if the windows have different sizes.

With irregularly shaped buildings or the detector in an off-center posi-

tion, the ceiling shine contribution can be evaluated by utilizing ficti-

tious buildings (4,14)

.

3. Fictitious buildings (4).

A fictitious building must

i) have the same type construction as the actual building being analyzed,

ii) be symmetrical about the detector, and

111) coincide with the ceiling being analyzed when superimposed over the

actual building.

Example 3

This example illustrates the use of fictitious buildings for the ceiling

shine contribution. The geometry for this example was taken from Example

7-1 in the Engineering Manual (4). With the building plan shown in

Figure 16, the following must be determined:

i) the azimuthal sectors and associated decimal fractions for each section

of the building that is treated separately.
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ii) the fictitious buildings, indicating dimensions and walls incorporated

in each. (Figure 17)

.

40

g '"INI

50

©

20'

4

T-A

1 Glass walls - upper

level 13'

sill height 3'

2 Windows - upper level 10'

sill height 5'

width 5'

Detector located 3' above

the floor
One story with 13' floor

height

Figure 16. Plan of structure

in Example 3.

A) Determination of Azimuthal Sections

Fictitious Building A B C

Azimuthal Section 3M =0 - 250
36.9

360
' 0.1027

110 - 6
= 307

360

34.2
360

= 0.095
16.3
360

0.0453
72.0
360

0.20

Total

1.000
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B) Analysis of Fictitious Buildings (Figure 17).

i) Fictitious Building A.

a) Functional Equation

R.F. = R
E
(E){[R

f
(u),P 2 )

- RfU.Pi) + R
f
(u),PJ - R

f
U,P 3 )

(57)

+ R
f
U,P 6 ) - R

f
(u) ,P 5

)][R
s
(o,,h

1 )
- R

s
(w,h 2 )]}

Here hj and h 2 have the usual meaning; Pj through P
6

represent

the percentage apertures determined from window widths of 10,

20, 60, 70, 110, and 120 feet respectively.

b) Determination of Parameters

Table VI. Parameters for fictitious building A

p ,
c

Fig. 8 Fig. 7 Fig. 10 Fiq. 9 Fig. 10a Fig. 11

R
f
(o,P) R

s
U,h) R

E
(E) R

x
(E) R

u
(U ,d)

1 0.048 5' 2.667 0.78 4.6xl0"
4

0.89 1.70 1.0 1.0

2 0.096 10' - - l.OxlO"
3

0.48 - -

3 0.288 - - - 2.9xl0"
3 ...

4 0.336 - - - 3.3xl0~
3

- - -

5 0.529 - - - 4.8xl0"
3

-

6 0.577 - - - 5.1xl0"
3

-

c) Solution

R.F. = 1.70 {(1 - 0.46 + 3.3 - 2.9 + 5.1 - 4.8)xl0"
3

}

x {Ci.89 - 0.48} = 8.64xl0"
4

.

There is no contribution from walls 3 and 4. The contribution

from wall 2 is identical to that from wall 1.
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The reduction factor for fictitious bui 1 dine ! A i s 1

.

73xl0"
3

.

An swer

ii ) Fictitious Building B.

a) Functional Equation

R.F. = (R
E
(E){[R

f
(u.,P

:

x [R
s
(",h

;

,) - R
f
(oi,Pi) +

) - R
s
(a.,h 2 )]}

R
f
(u,P^) - R

f
U, P 3 )l

(58)

Pi through P 4 represei it percentage a|Jertures obtainec 1 for window

widths of 60, 70, 110 and 120 feet respectively.

b) Determination of Parameters

R
u

( u ,d) = 1.0. (Fig. 11)

Table VII. Parameters for fictitious buil dine
1
B.

p h E
Fig- 8 Fig. 7 Fig. 10 Fig. 9 Fiq . 10a

U) R
f
(ld,P) R

s
(w,h) R

E
(E) R

x
(E)

1 0.288 5' 5.33 ,62 2.1xl0~
3

0.913 2.50 1 .0

2 0.337 10' - 2.4xl0"
3

0.559 -

3 0.529 3.6xl0~
3 - -

4 0.577 3.9xl0~
3 - -

c) Solution

R.F. = (2.5){[2.4 - 2 .1 + 3.9 - 3.6]:<10"
3
}{0. 913 - 0. 559}

= ,53xl0"
3

The contribution from fictitious bui lding B is

1 ,06xl0"
3

. Answer
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iii) Fictitious Building C.

a) Functional Equation

R.F. = (R
E
(E))[(R

s
(o.,h

1 )
- R

s
( u> h 2 )][Rf

(a1> P 2 )
- R

f
(^,Pi)] (59)

?i and P 2 are the percentage apertures corresponding to window

widths of 30 and 40 feet respectively.

b) Determination of Parameters

Table VIII. Parameters for fictitious building C.

p n e
Fi 9- 8 Fig. 7 Fig. 10 Fig. 9 Fig. 10a

R
f
(u,,P) R

s
Uh) R

E
(E) R

x
(E)

1 0.288 5' 1.333 0.75 2.70xl0~
3

0.89 1.13 1.0

2 0.385 10' - - 3.45xl0"
3

0.50

c) Solution

R.F. = (1.13)(.39)[(3.45 - 2.70)xl0~
3

]
= 3.3xl0~

4

-4
Reduction factor from fictitious building C = 6.6x10 . Answer

iv) Fictitious Building D.

a) Functional Equation

R.F. = 4 R
E
(E) R

f
(i»,P) (60)

b) Determination of Parameters

ill = 0.68 R
£
(E) = 0.50

E = 0.307 P = 0.769

R
f
(u.,P) - 5.4xl0"

3
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c) Solution

R.F. = 4(0. 50)5. 4xl0~
3

= 1.08xl0~
2

_2
Reduction factor from building D = 1.08x10 . Answer

v) Fictitious Building E.

a) Functional Equation

R.F. = 4 R
£
(E) R

f
U,P) ( 61 >

b) Determination of Parameters

u,
= 0.62 R

E
(E) = 2.26 R

f
U,P) = 4.8xl0~

3

c) Solution

R.F. = 4(2.26)(4.8xl0"
3

)
- 4.33xl0~

2
.

Reduction factor from building E « 4.33x10 . Answer

vi ) Fictitious Building F.

a) Functional Equation

R.F. = 4 R
E
(E) R

f
U,P) (62)

b) Determination of Parameters

E = 3.25 R
£
(E) = 1.9 a- 0.68 R

f
(u,P) 5.4 x 10" 3

= 4(1. 9)(5. 4x10
3

) « 4.1xl0"
2

Reduction factor from building F = R.F. * 4.1x10 . Answer

C) Total Reduction Factor for Building in Figure 16 .

R.F. = 0. 250(1. 73xl0"
3

) + 0.1027(1 .06xl0"
3

)

+ 0. 307(6. 6xl0"
4

) + 0. 095(1. 08xl0"
2

) + 0. 0453(4. 33xl0"
2

)

+ 0.20(4.1xl0"
2

)
= 1.19xl0"

2
= 0.012. Answer
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D) Discussion

The total reduction factor in a complex structure is equal to the sum of

the reduction factors for each fictitious building employed, multiplied

by the respective azimuthal sectors.

3.1.3 Accuracy of the Design Curves

Several errors are introduced in the calculation of the reduction factor

inside a multistory building. There are errors associated with the use of the

Chilton-Huddleston formula (5 to 10%, reference 8); errors in simulating a

fallout field with a cobalt-60 field (5%, Appendix C) , inaccuracies involved

in the values for the dose angular distribution of radiation (10 to 15%) and

uncertainties introduced by the particular choice of the build-up factor (7).

Spencer has estimated the possible error of the integrated dose angular dis-

tribution curve to be 8%.* Difficulties in reading the dose angular distri-

bution curve in reference 1 would raise the 8% to 10-15%, assuming the 8%

estimate for the integrated dose angular distribution curve applies to the

dose angular distribution curve. The uncertainty in the build-up factor will

not result in a significant deviation, because of the small value of the

build-up factor per se in these calculations.

These errors appear in every calculation of the reduction factor and

should be combined with the uncertainty resulting from the use of numerical

Gaussian quadrature in the integration of Eq. (31) to obtain a total error.

To this error, common to each of the design curves, must be added the uncer-

* LeDoux, J. C, "Various Sources of Uncertainties in Fallout Shielding
Methods of Analysis" (unpublished).
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tainty introduced by the averaging processes and plotting techniques utilized

in developing such design curves.

To determine the error resulting from the use of Gaussian integration,

several different order quadratures were employed in the solution of Eq. (31).

The reduction factors thus obtained were plotted versus the order of quadra-

ture employed. For even order quadratures, an asymptotic increase in the

value of the reduction factor was obtained for orders greater than six. The

difference between the apparent asymptotic value and that of an even order

Gaussian quadrature of six (or greater) was less than one per cent.

Figure 7 is accurate within the error involved in all design curves as

examined above, which is estimated from the above standard deviations to be

approximately fourteen per cent. The uncertainty introduced by the averaging

processes in Figure 9 varies from three to about thirty-four per cent. Thus

the accuracy of the eccentricity factor ranges from fourteen per cent to

forty-two per cent. The accuracy is best for eccentricities less than and

close to 1.0, and becomes progressively poorer as the eccentricity becomes

much larger than 1 .0.

The error associated with Figure 10 varies from fourteen per cent to

about thirty-three per cent, the error increasing with increasing solid

angle. The same general considerations hold true for Figure 11; that is,

the accuracy of this figure decreased as the solid angle is increased. In

addition the accuracy decreases at greater distances from the source plane.

This latter characteristic is because of larger errors in the values used

for the dose angular distribution of radiation.



51

3.1.4 Comparison With Other Ceiling Shine Measurements

A comparison is made in Figure 18 among the reduction factors obtained

through use of the current model and two other techniques. The ceiling shine

contribution obtained through the use of Eisenhauer's technique (15) could

only be directly plotted for a roof approaching infinite size. The method

of Batter and Velletri (15) is based on a semianalytical formula derived

from measurements of scattering of radiation from point sources off concrete

and steel slabs. This formula could not be applied to the infinite ceiling

case. The model developed in this work yields the reduction factor in any

concrete structure as a function of building dimensions, aperture sizes and

locations, and detector locations.

According to Figure 18, Batter and Velletri 's method appears to under-

estimate the ceiling shine contribution while Eisenhauer's technique over-

estimates it for the only comparison which can be made.

3.2 Discussion and Conclusions

The set of charts developed in this study have been obtained for detector

locations three feet above the floors of a multistory structure whose floor

to ceiling distance is thirteen feet; thus, although they can be used in

almost any case, strictly accurate answers can be obtained only for struc-

tures meeting these specifications. The reliability of the curves decreases

as the floor to ceiling distance deviates more and more from thirteen feet.

Since, however, for actual cases reasonable deviations will be at most a few

feet, the accuracy of the charts is not greatly affected for aboveground

stories. In the case of an exposed basement, however, the portion exposed
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to direct radiation would be treated by the curves as the first floor of a

building, thus the deviation from thirteen feet would be very great and the

charts could at best provide only an estimate of the correct reduction

factor.

There is also another factor, inherent in the initial assumptions of

the model used, which affects the accuracy of the design curves. In the

theory the walls of the structure are presumed to have zero linear thickness.

In actuality the walls will have a finite thickness so that it will be phys-

ically possible for the incident radiation to penetrate through the edges of

the window and contribute to the ceiling shine dose rate. Thus, if the phys-

ical dimensions of the window are used the charts will yield a non-conserva-

tive answer, as they would fail to take into account the lip penetration

through the window edges. To obtain a more realistic answer from the charts,

one should determine an effective window size (i.e., the physical dimensions

of the window are enlarged to account for lip penetration).

The statistical deviations associated with the charts appear to be

rather large. The accuracy of all charts would be improved by use of more

recent values for the dose angular distribution of fallout radiation at

various heights and a more exact formula for the dose rate albedo. Unfor-

tunately some compromise had to be reached in the development of the curves

themselves. The sill-height and ceiling-height correction factors depend

not only on the solid angle subtended by the ceiling at the detector, but

also, to a lesser extent, on the eccentricity of the structure and the per-

centage aperture of the window. The substantially large deviations associ-

ated with the development of these charts are solely due to the averaging

processes that had to be employed in order that all charts could be presented

in a relatively easy form.
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3.3 Further Investigations

The problem of ceiling shine radiation, as studied in this monograph,

has been restricted to the analysis of radiation which enters through a

window and scatters off the ceiling of the structure. There is, however,

one other aspect of the ceiling shine problem which offers excellent oppor-

tunity for further investigation.

The model, presented in this study, can be extended to cases in which

radiation is first downscattered and then enters an aperture. One such

problem, for instance, is afforded by the case of a structure with roof

overhang and a high band of windows. This problem can be further extended

to determine the amount of overhang needed to minimize the simultaneous

effects of ceiling shine and skyshine.

A study should also be made of the effect of interior partitions on the

reduction factor due to ceiling shine radiation alone, and also of the effect

of a floor barrier placed between the ceiling and the detector.

The set of curves presented in this report is developed for a structure

exposed to an infinite field of fallout radiation. In many instances this

is not the case, as the fallout will lie in a strip around the building in

question. Thus an identical study should be conducted for limited strips of

contamination and a comparison be made with the results achieved with the

infinite field of fallout radiation. This study will require a knowledge of

the dose angular distribution of radiation at various heights above different

limited strips of contamination.

Finally the set of curves should be extended to include cases in which

the first floor ceiling is at a height different from thirteen feet, i.e.,

the case of a partially exposed basement.
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APPENDIX A

Fallout Spectra and Characteristics

Radioactive fallout is observed whenever a nuclear weapon is exploded.

The concentration of fallout in the vicinity of the point of detonation

(ground zero) is dependent on the distance above (or below) the surface of the

earth at which the detonation occurs, and upon the yield of the weapon. The

spectral characteristics of fallout radiation, however, do not appear to be

strongly dependent on weapon yield, type, or conditions of detonation (17).

Fallout is usually classified into local and world-wide. World-wide

fallout normally results only from large explosive yields. It is composed of

very small particles which are dispersed in the stratosphere. Because of the

long delay period before deposition, only the relatively long-lived nuclides

such as Sr-90 and Cs-137 remain as radioactive nuclides. The wide distribu-

tion over the world results in only light deposits of the world-wide fallout

compared to the deposit density possible for local fallout.

The exact distribution of radioactive fallout is dependent on the

meter2ological conditions at the time of burst and shortly thereafter. Quite

naturally the dose received from fallout radiation will be related to the

fallout distribution at different times after the explosion. Figure 19

illustrates the total fallout exposure from a large explosion, indicating

how the fallout was carried by the winds from the point of detonation. It is

clear from the figure that intense fallout can occur in areas far beyond blast

and heat effects associated with the explosion. This makes it reasonable to

consider fallout as a problem separate from blast and heat complications.

When the detonation takes place near the earth's surface, large quantities

of debris are sucked up in the fireball. This debris mixes intimately with the
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radioactive products yielded by the weapon, and upon cooling settles to the

earth's surface, bringing much of the radioactivity back to earth within a

few miles of ground zero. If the burst is at high altitude, however, the de-

bris is absent, and the radioactive products of the weapon form the fallout.

These products are in the form of an exceedingly fine aerosol, due to the

extremely high temperatures, and can be carried by the winds for many hun-

dreds of miles before diffusing down to the earth's surface. Thus for a

sufficiently high burst, the only residual radioactivity observed near ground

zero is that induced in the soil by activation by the neutrons from the

weapon. In most soils the most significant gamma-ray emitting radioisotopes

are Na-24, Al-28, and Mn-56.

Fallout, therefore, consists of the fission products and whatever isotopes

are produced by neutron activation of the materials in the immediate environ-

ment of the explosion. One such neutron-induced radioactivity occurs because

238 239
of the presence of U-238 in nuclear weapons. The U (n,y)U reaction pro-

239 239
duces U which decays to Np by beta emission with a half-life of 23.5

minutes. Because of the relatively short half-life and the low energy of the

239
emitted gammas (73 Kev), the radiation of U is of importance only in the

early stages after detonation, and its contribution to the spectral character-

239
istics of fallout at later times can be altogether neglected (18). Np ,

however, decays with a half-life of 2.3 days, and the photons emitted have

energies of 106, 223, and 278 Kev, so that it is possible for the radiation

239
from Np to contribute to the low energy portion of the spectrum (18).

The fallout radiation energy spectrum changes with time. This feature

comes about because of the different decay rates of the many radionuclides

present in the fallout. Since each nuclide decays at its own rate, a different
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spectrum can be considered in existence at different times. Examples of

fission spectra at successive times are given in reference 19.

Because of the time variation of the gamma-ray fission spectrum, it has

been necessary to make some decision regarding the choice of a spectrum to

be utilized in this study.

Nelms and Cooper (19) have made two types of tabulation of gamma radia-

235
tion energy spectra from U prompt fission products as functions of time.

In one tabulation the radiations from all radioactive fission product nuclides

are included, and in the other, radiations from selected volatile fission pro-

ducts have been removed. The values listed in those tables, being for fission-

239
product activity only, neglect the contribution of Np to the fallout

spectrum.

The energy spectrum from fission at 1.12 hours, with the volatile com-

ponents removed, was chosen for three reasons: a) the spectrum at this time

is representative of the spectra at earlier times, and most of the exposure

to radiation is apt to occur during the first few hours, b) volatile fission

products would to a large extent remain separated from the fallout material,

and c) the penetration properties of fallout are, except for very large pene-

trations, not very sensitive to spectral changes (2).

The choice of the 1.12 hours spectrum leaves open the possibility of three

239
sources of uncertainty: a) the contribution at low energies of the Np

photons is neglected, b) the removal of the volatile components seems to depend

on the half-life of the gaseous material (longer half-life materials have

larger percentage of removal than shorter lived ones), and c) the energy spec-

trum does depend not only on time but also on the variation in distance from

ground zero and the particle size, which affect the "fractionation" number (20).
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Neither of the first two errors appears to be too critical. The contri-

bution of the lower energy portion of the spectrum to the total dose from

fallout radiation is less than five tenths of one percent, and the half-

lives of the volatile components removed by Nelms and Cooper, Br, Ru, Kr, I,

and Xe, are long enough to warrant the assumption that the percentage of

removal be one hundred percent.

The third error is caused by the fact that there is such a large range

in the thermal stability of the condensates of the fission product nuclides

that the normal abundance ratios of the fission nuclides in fallout are

changed. Any alteration in the abundance ratios of the fission products rela-

tive to the original fission yield abundances ratios is called fractionation

(20). Fractionation varies depending on the size of the particles and, as

the different size particles have different deposition times, fractionation

will vary as the distance (and time) from the location of the explosion is

varied.

In large fallout particles (short deposition times) the relative concen-

tration of volatile radionuclides is low and that of the more refractory

radionuclides is high. Thus for relatively short times following the nuclear

event, the concentration of the volatile components is low and the chosen

spectrum is a good approximation of the fallout spectrum. As the time from

the explosion is increased, however, smaller particles will begin to settle,

which will be relatively rich of volatile nuclides, thus the assumed spec-

trum is not a satisfactory approximation.

Table 9 was obtained from the values listed in reference 19 by multiplying

the yield at each energy by the width of the respective energy group.
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content of gamma rays from prompt fission
(volatile components removed)

Group Energy Fraction of Total Energy
(Mev) Content of Spectrum

1

2

3

4

5

6

7

8

9

10

11

12

13

0.2128 0.0062922

0.2554 0.0015466

0.3194 0.0324561

0.4257 0.0413492

0.5108 0.0110158

0.6386 0.1065483

0.8514 0.0941630

1.0217 0.1053941

1.2772 0.1059866

1.7029 0.2684871

2.0435 0.0511426

2.5545 0.1706286

3.4059 0.0049896
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APPENDIX B

Gaussian Quadrature Accuracy in Quadruple Integration

of the Ceiling Shine Equation

The complexity of the required integrations in this thesis made it

necessary to fit the data with an empirical expression and then use formal

analytical methods. This technique is commonly known as numerical integra-

tion. The method of numerical integration used in this study is called

Gaussian Quadrature. This procedure notes the values of the ordinate y at

n predetermined values of x. The sum of the products of the ordinate y,

multiplied by a predetermined constant, is multiplied by the difference in

the integration limits of x to yield the desired integral.

Suppose that

b

f(x)dx (63)

a

where f(x) is a known function but whose integral is not easily evaluated.

The principle of the Gaussian Quadrature is to obtain the best subdivision

of the interval (a,b), the value of f(x) at these points, and the coeffi-

cients to multiply the functional value to yield the desired integral (12).

First the limits of integration must be transformed from (a,b) to

(-1,1). This is accomplished by letting

x = \ (b-a)u + \ (a+b) (64)

so that f(x) = f[l (b-a)u + \ (b+a)] - v(u) (65)
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and dx = j (b-a)du (66)

and the integral becomes

i:
f(x)dx = \ (b-a)

f

1

v(u)du (67)

We then state that

v(u)du = Wjv(u

-l

j) + w 2 v(u 2 ) + w
3
v(u 3 ) + .

.

. + w v(u
n * r)

(68)

In this fashion, utilizi ng n predetermined values o f X
; i

a pol ynomial of (2n-l

)

degree would be exactly fitted.

The u- are the points of subdivision of the in terval (-1 J) , and are

chosen to be the zeroes of the Legendre polynomials of order n. These zeroes

are known and tabulated, and then the corresponding va'lues o1:w
i

can be eval-

uated (Christoffel numbs:rs). Table X lists values of Uj and w
i

for different

values of n (order of qiladrature). Since u. = -u
1+1

and w. = Vi+r only

half of the values are tabulated (13).

Table X. Root; , and weights for Gaussian q uadi-ature.
*

n i u
i

w.

3 1

2

0.0000000000
0.7745966692

0,

0,

,8888888889
,5555555556

4 1

2

0.3399810436
0.8611363116

,6521451549
,3478548451

* This table is reproduced directly from reference 13.
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Table X (continued)

.

n

5

i

1

2

3

u
i

0.0000000000
0.5384693101
0.9061798459

w
i

0.5688888889
0.4786286705
0.2369268850

6 1

2

3

0.2386191861
0.6612093865
0.9324695142

0.4679139345
0.3607615730
0.1713244924

7 1

2

3

4

0.0000000000
0.4058451514
0.7415311856
0.9491079123

0.4179591837
0.3818300505
0.2797053915
0.1294849662

8 1

2

3

4

0.1834346425
0.5255324099
0.7966664774
0.9602898565

0.3626837834
0.3137066459
0.2223810344
0.1012285363

9 1

2

3

4

5

0.0000000000
0.3242534234
0.6133714327
0.8360311073
0.9681602395

0.3302393550
0.3123470770
0.2606106964
0.1806481607
0.0812743884

10 1

2

3

4

5

0.1488743390
0.4333953941
0.6794095683
0.8650633667
0.9739065285

0.2955242247
0.2692667193
0.2190863625
0.1494513491
0.0666713443

15 1

2

3

4

5

6

7

8

0.0000000000
0.2011940940
0.3941513471
0.5709721726
0.7244177314
0.8482065834
0.9372733924
0.9879925180

0.2025782419
0.1984314853
0.1861610000
0.1662692058
0.1395706779
0.1071592205
0.0703660475
0.0307532420

20 1

2

3

4

5

0.0765265211
0.2277858511
0.3737060887
0.5108670019
0.6360536807

0.1527533871
0.1491729864
0.1420961093
0.1316886384
0.1181945320
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l

20 6

7

8

9

10

0.7463319065
0.8391169718
0.9122344282
0.9639719273
0.9931285992

0.1019301198
0.0832767416
0.0626720483
0.0406014298
0.0176140071

It is difficult to determine accurately the magnitude of the error

associated with the use of different order quadratures. A test is performed

to determine the accuracy of the quadruple integration involved in this

thesis.

First the accuracy of the 6 and $ integrations is determined by calcu-

lations of the reduction factor at a position three feet above the source

plane in the center of a structure of dimensions 19 x 19 x 8.17', with a

centrally located window covering approximately 4.6% of one wall (21).

(The dimensions of this particular problem is so chosen because they repre-

sent the physical dimensions of the blockhouse at the Kansas State University

Nuclear Engineering Shielding Facility.) In these calculations the order of

the Gaussian quadratures in the x and y integrations is held constant, while

the order of the quadratures for the integrations over the incident polar

and azimuthal angles is increased for each successive calculation. The

results are tabulated in Table XIa.
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Table XIa. Reduction factor in square blockhouse

(19 x 19 x 8. 17'), three feet above

the source plane-4.6% aperture

(o, $ Integration-x,y fixed).

Gaussian Quadrature Order Reduction Factor

x y 4>

3 6 3 3 0.00017489

3 64 4 0.00017494

3 6 5 5 0.00017495

3 6 6 6 0.00017495

Inspection of these values shows that an order three in the e and «

integrations is adequate. Increasing the quadrature order would increase

the accuracy by less than 0.04%. Thus a Gaussian quadrature of order three

accurately simulates the integration.

Having determined the accuracy of the angular integrations, the inte-

grand of the x and y integrations of Eq. (31) (e and * integrations are

performed with a quadrature of order three) is evaluated and plotted in

Figure 20. The volume contained by the surface represents the true value

of the reduction factor. This volume, however, cannot be determined accu-

rately so that other means must be employed to ascertain the true value of

the reduction factor.

To this end different order quadratures in the x and y integrations are

again used to determine the reduction factor at the central point three feet

above the floor (0' ,9,5' ,5.17' ) in the structure. Table Xlb. lists the

values obtained for each quadrature.
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Figure 20. Graphical representation of integrand of Eq. (31).
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Taole Xlb. Reduction factor in square blocknousc

(19 x 19 x 8.17'), three feet above

the source plane-4.68 aperture

(x, y Inte>,ration-o,| fixed).

G a

i

;ss ian ^Quadra ture Order
Reduction Factor

7

10

b

7

3

9

10

1

3

20

0.00017457
0.00019464
0.00017489
0.00013893
0.00017371
0.00018497
0.00017408
0.00018013
0.C00174C6

Figure 21 is a plot of the value of the reduction factor versus the

order of the quadrature employed. This figure is obtained for a window of

dimensions 3 feet wide by 2.34 feet high, located centrally with respect to

the x-axis, and with the sill at a distance four feet above the source plane.

Symmetry with respect to the x = axis is employed. One can see that even

order quadratures yield values oscillating around a value of 1.740 x 10
,

while odd order values are constantly decreasing with increasing order of

quadrature. A value of 1.741 x 10" 4 can be obtained from Figure 21 as the

best estimate of the true value of the reduction factor for this configuration.

An analysis of Figure 21 can furnish some interesting information,

a) Odd order quadratures yield answers which are conservative,

o) The true value of the reduction factor lies close to the solutions

obtained by even order quadratures, but these orders yield values which

are not conservative.



72

m
1 1 1 1

fO

" o

c/>

z
o
1-

<
cro
LU
h-
Z

4- O
O -i-

s- ro

•a en

CJ
o +->

OJ -r-

«+- +-)

CD
o

Z C= •«-

_J o
o r- -O

-
I ]

UJ
u

+-> ai
CJ N
C •!"-

3 i

—

z 4- -r-
o

(D 3 Wl
o a>
UJ t/1 CU "O
>- iO L o
o Z5 U
-J S- 4-1

s a. O <o S-

s
u

UJ
(T
Zt

<
a:
a

uction

fact

ssian

quadr

the

compute

/ C

X E

1
g <

O
u.
o
<r
UJ
a
(£
o

ure

21.

Red Gau in

Of iO Ol
jr/

J

Li_

1 1 1 1 o
o O) CD N t

!

CO

(
v
oix) aoiovd NOiionaaa



73

c) The error associated with the use of even order Gaussian quadrature of

order six in the y integration and order three in the x integration,

instead of larger orders, is less than one per cent. Because of this

last characteristic, this particular order has been chosen for the x

and y integrations in this thesis.
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APPENDIX C

Accuracy of Simulating an Infinite Field of

Fallout Radiation by an Infinite Plane

Isotropic Source of Cobalt-60 Radiation

Ideally, all calculations for the design curves should have been per-

formed utilizing the energy spectrum for fallout radiation, shown in Figure 1.

This, however, would have required an inordinate amount of computer time.

Thus it was decided to analyze several situations making use of the spectrum

and to compare them with results obtained for identical situations with an

infinite field of cobalt-60 radiation. Such comparison establishes a criterion

for correcting the cobalt-60 results. Use of the discrete fission spectrum

for design calculations requires a knowledge of the dose angular distribution

of radiation at the height of the ceiling under consideration for each of the

discrete energies of the spectrum. Although the dose angular distribution

for the 1.12 hour fallout spectrum is given by Spencer (2), equivalent curves

are not presented for each separate energy. Ordinarily, such distributions

are calculated by the moments method (22). This involved and lengthy method

was discarded in favor of a somewhat less accurate, but much shorter approxi-

mate solution.

Consider an infinite field of fallout radiation as an infinite plane

isotropic source of gamma radiation (23). Let D (r) be the unscattered dose

rate at a distance r from a point isotropic source (23). The differential

unscattered dose rate from area dA shown in Figure 22 is given by

e-"
(Eo)r

w,(E ) Eo
L) - 7 n pupUCDfi
u 4irr^ce

dD„ =
„ ,

a
° ° pdpd* (69)
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where E is the energy of the incident radiation,
o

y(E ) is the total linear gamma ray attenuation coefficient for the

medium,

u (E„) is the linear gamma ray energy absorption coefficient for the
a o

medium, and

a is a constant necessary to convert the units of the expression to

milliroentgens per hour.

•<JA

Figure 22. Plane-detector geometry.

Utilizing trigonometric relations, the equation above can be rewritten

dD.,
a
-p(E o )d/cose

WosBo
-

y
a
(E

o
)E

o
d+od(cos8 ). (70)

An integration is then performed over the azimuthal and polar angles.

e
-y(Eo )d/cose

w: 2aC0S6 n
u
a
(E )E d(cose ) (71)
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The total dose rate will be the product of the unscattered dose rate

times the proper build-up factor.

°
i;

'• a,

""sir.i
Eo '

d, '0i"
».<w, «-•.> iw

The unscattered and total dose rates at any height must be normalized to

the total dose rate at three feet above the source plane so that results

may be compared with dose rates obtained by Spencer (2). The dose rate

three feet above the source plane is given by

w UE )E B[u(EJ37cose ] e
-^o)37cos£

d(cos8 )
-

1
u
a
(E

o
)E

o
K

(73)

where < is a constant determined through evaluation of the integral in Eq. (73)

The build-up factor equation used is again of the form

3(up) - 1 + a'y(E
o
)p e

ME )p
(10)

where a' and b are parameters dependent on the energy of the radiation and

the composition of the medium.

From Eqs. (71), (72) and (73),

-yd/cose
d(cose ), (74)

and

>1 At « \ -pd/COS8n
3(Md/cosen) e 1 d(cos9o)> (75)
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where, as defined by Eq. (73).

, B(y(En)37cose ) e-^ Eo) 3 '/ cose
o

1 ±±J>1 ~ -d(cose ). (76)

Substituting Eq. (10) Eq. (76) may be solved analytically be letting

v 3'y/cose , so that

k E
1
(3'y(E )) +

1
^exp[(tf-l)3'»{E )l. (77)

The terms in brackets in Eqs. (74) and (75) represent the true unscattered

and a crude approximate total dose angular distribution respectively. To

have obtained an expression for the true total dose angular distribution,

the build-up factor would have to have been angularly dependent (23). The

dose angular distributions become

... „ -ud/cosBn

*(d,ccse ) - (1 + a'ud/cose e
» M/cose

°)
e

<cos9o
(78)

and

-yd/cose

V d ' C0S °°> ° KCOS9 •
(79)

The unscattered and approximate total dose angular distribution for an

infinite plane isotropic source of fallout radiation were calculated for

ceiling heights of 13 feet, 39 feet, 65 feet and 91 feet above the source

plane. The results are shown in Figures 23 through 26. The dose angular

distributions shown were calculated by superposition of thirteen dose angular

distributions from plane monoenergetic source fields, in the following way:
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o- Calculated total

.- Calculated unscattered

1.0-

.5

COSO n

.9

Figure 23. Dose angular distribution of radiation from a

plane isotropic source of fallout radiation at

13 feet above the source plane. (U-235, 1.12 hrs.)
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Figure 24. Dose angulai distribution of radiation from a

plane isotropic source of fallout radiation at

39 feet above the source plane. (U-235, 1.12 hrs.)
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c\
-o-Calculated total

1.0

-—Calculated
unscattered

--

0.5 ""\V
"CI

0.2

i 1 1 1 1 1 1 1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

COSO)

Figure 25 Dose angular distribution of radiation from a

plane isotropic source of fallout radiation at

65 feet above the source plane. (U-235, 1.12 hrs.)

"Q^. -o- Calculated total

0.5 r

^\ -"- CalculatedN^ unscattered

—

,

1

-" * ^^\
a
o
-a

0.2

1

/"

i i i i i i i i

•

.1 .2 .3 A .5 .6 .7 .8 .9 1.0

COSOo

Figure 26. Dose angular distribution of radiation from a

plane isotropic source of fallout radiation at

91 feet above the source plane. (U-235, 1.12 hrs.)



81

A. Equations (78) and (79) were solved to obtain the dose angular

distribution at some height above an infinite plane isotropic

field of radiation of energy equal to one of the energies of the

fallout spectrum shown in Figure 1.

B. The results thus obtained were multiplied by the appropriate

weighting factor corresponding to that energy contributing to

the dose angular distribution of radiation from the fallout field

(E.). The weighting factors are readily obtainable from Eqs. (72)

and (73) and are given by the following equation:

^(t.) C. K( Ei )

1 W E
i
)ei^r

(80)

where <{£) are given by Eq. (77), e. are the energy fractions of

Figure 1, and y,(E.) are the energy absorption attenuation coeffi-
a i

cients.

C. An identical procedure was followed for the remaining energies of

the spectrum.

D. The distributions weighted by the respective weighting factors were

added to obtain the total and unscattered dose angular distribution

from the infinite field of fallout radiation.

It is not meaningful to compare the calculated total dose angular distri-

bution with that of Spencer (2). The calculated distribution is really a dose

angular distribution for unscattered radiation modified in such a way that the

integral of the dose angular distribution at a given height yields the dose at

that height. However, the integral under the calculated distribution repre-

sents the dose at a given height and it should be equal to the dose at the
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same height calculated by Spencer. To obtain the total dose rate at a given

height Eq. (75) is integrated an;ilytically. With the usua 1 substitution,

v = ud/cose , Eq. (75) becomes:

D
c

= E i(iid)/K + -p^^expMfb-l)]. (83)

The calculated dose, D , can ther i be compared with Spencer 's.

Table XII.

to Spencer
Comparison of calculated doses, D

's doses, D , at different heights.
1

d (feet) D
c

L(d] = D
S

13 0.73 0,,76

39 0.51 0,,54

65 0.41 0,,44

91 0.33 .36

It should be noted that the calculated doses did not completely agree

with those of Spencer, and that the approximation for the total dose angular

distribution decreases in accuracy as the distance above the source i)lane is

increased. This can be attributed to the increase of the scattered <:omponent

of the rad
-

ation as the distance above the source plane is increased . As was

stated, the build-up factor used was the weakest part of the approximation.

Thus, as the scattered component becomes more predominant, the error introduced

by the bui'Id-up factor will increase.
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The calculated dose angular distributions were useii to determine the

reduction factor in the center of d ifferent size structures exposed to an

infinite field of fallout radiation . The form of the dose angular d istribution

given in Eq. (78) was used in the solution of Eq. (31).

Equation (33) was solved numerically to obtain the reduction factor in

the center of different structures. The comp uter code, a modification of

which was used for the solution, is presented and explained later in Appendix

E. Table XIII lis-ts values of the reduction factors obtained in fou r different

square concrete st oictures for the thirteen energies of the 1 .12 hour fission

spectrum, the coba lt-60 energy and the comple te fallout spectrum.

Table XIII. Reduction factors three feet above the first floor
in the center of concrete structures thirteen

feet high with a 5% aperture.

Source Energy Weight factor
Reduction ractor x 10 3

10'xlO' 30'x30' 50'x50' 100'xlOO'

Fallout 0.2128 0.01278 0.198 0.717 0.862 0.730

Spectrum 0.2554 0.00286 0.186 0.683 0.835 0.733

0.3193 0.05728 0.168 0.628 0.789 0.732
0.4257 0.06556 0.137 0.531 0.693 0.695

0.5108 0.01619 0.115 0.459 0.616 0.655

0.6385 0.14252 0.090 0.368 0.518 0.598

0.8514 0.11042 0.070 0.297 0.436 0.542

1.0217 0.11500 0.058 0.254 0.385 0.503

1.2772 0.10040 0.043 0.200 0.318 0.448
1.7090 0.22088 0.027 0.140 0.238 0.367

2.0440 0.03851 0.033 0.155 0.251 0.369

2.5540 0.11465 0.025 0.123 0.206 0.319
3.4060 0.00295 0.017 0.087 0.153 0.253

Total
Fallout Fal lout 1.0 0.065 0.275 0.398 0.483

Spectrum

Co 60 1.252 1.0 0.059 0.258 0.389 0.509
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To compare the results obtained for an infinite source of fallout radia-

tion with those obtained with a similar source of cobalt-60 radiation, the

dose angular distribution used in the calculation of the reduction factor was

normalized to a value which, upon integration, would yield the dose given by

Spencer (2). It is evident that it is possible to simulate an infinite field

of fallout radiation by an equivalent field of cobalt-60 radiation. Thus all

calculations for reduction factors can be performed for incident cobalt-60

radiation and the results obtained are directly applicable to the actual

situation of fallout radiation exposure.

The loss of accuracy involved in this approximation ranged from -10 per

cent to 5 per cent. It appears to be directly proportional to the ceiling

area of the structure considered. Based on these calculations, it was con-

cluded that it was sufficiently accurate to simulate the fallout field of radia-

tion with an infinite field of cobalt-60 radiation and thus all subsequent

calculations for the design curves were performed using an infinite field of

cobalt-60 radiation. For an average structure, the accuracy of simulating

the fallout field of radiation by an infinite field of cobalt-60 radiation is

estimated to be approximately five per cent.
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APPENDIX D

Albedo Study

The total albedo is a measure of the efficiency of a surface in reflect-

ing incident radiation. Of the three most commonly used total albedos

(number, energy, and dose) only the total dose albedo will be of concern to

us in this study.

The total dose albedo is defined as the ratio of the product of the

number of reflected photons by their energies and by the appropriate linear

(or mass) attenuation coefficients to the number of incident photons multi-

plied again by their energies and energy absorption coefficients. The differ-

ential dose albedo is then the fraction of photons of energy E , multiplied

by E and v (E ), incident on a surface at a given e and
<t> , which emerge

o a o

from that surface within a solid angle dn about a. The probability of that

occurrence is according to reference 24, P(E »9o»<(>oJE,e,<t>) dn

.

The differential dose albedo, a,, is therefore:

a
d
(E

o
,S2 ;E,fi)dfi = [u

a
(E)E/p

a
(E

o
)E

o
]P(E

o
,fi ;E,fi)dn. (84)

The dose albedo is not the ratio of emergent dose rate to incident dose rate,

since dose is proportional to energy flux. This ratio of dose rates is

given by the differential dose rate albedo, i.

a;n > n ) dR = ° (cose /cose)a . dn dE. (85)

o

Raso (24) defines a quantity termed the "differential scattered dose

rate" as:
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SD
ik
(E

o
,o o .0o;E.o.*) [Ep

a
(E)P(E

n
,n ;E,n)dn dE]

(86)

COSB. + coso.
+1

-1

( 9 )

These SD., represent the dose rate per incident gamma ray per cc produced by

the emergent flux whose direction of flow lies within a certain solid angle,

2AS!.

By combining equations (84) and (86) we see that

SD
jk

(E
o

,Sl ;E,n)

*.,, 8,., E
r J

+ 1
r k+1 r o

= 2u
a
(E

o
)E

o
/(cose

k
+ cose

k+1
) j

a
d
(E

o
,« ;E,tt)dfi dE (87)

*j
9
k

and substituting this equation in (85) we obtain

a(f2 ,fi)dn =
C

-

?|
B

fer
SD.

k
(E

o
,n ;E,n)dn (88)

The differential dose rate, a_{a ,n)dti was utilized in computing the reduction

factors in structures. Because of the large number of a_'s required for the

different incident and emergent polar and azimuthal angles, it was deemed

inadvisable to attempt to interpolate among the tabulated results of refer-

ence 24. Attention was therefore devoted to semiempi rical formulas which

yield values for somewhat different differential dose albedos.

Chilton and Huddleston (9) developed a formula which yields values for

a differential dose albedo as function of the incident and emergent polar

angles and the total scattering angle between the incident and the emergent

gamma ray. The theoretical derivation of this formula assumed that the
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actual scattering process can be approximated by a term involving a single

Coinpton scattering event, and another term involving isotropic scattering.

CV(eJ + C
«d<

e o;e,*) - 1+ cos
$

6 sece
(85)

The authors stated that the weakest part of the development was the

assumption that the attenuation coefficient is not greatly dependent on energy.

When, however, they compared their results with those in reference 24, they

found satisfactory agreement.

The parameters C and C were determined by a least squares analysis

providing the best fit to Monte Carlo results by Raso (24), and also to

similar results by Davisson and Beach (10). The parameter k(q ) is p x 10 26

times the Klein-Nishina cross section, where p is defined as

E (1 - cose )

p
= {UE

o
)

=
[1 +

-nnsn— ]
"'• (E

o
in Mev) (90)

The differential cross section per unit solid angle, Q, derived by Klein and

Nishina is given by

^MR;p) 2 n/P + P-sin 2 e
s
]/2

e1ec^sterad
(91)

where R' is the classical radius of the electron,

R' * -4t 2.818 x 10" 13 cm. (92)
o mc z

<(o ) is therefore equal to

k(9 ) = 3.9706 k p
2
[l + p

2 - p(l - coso )]. (93)



Table XIV lists values of C and C as function of incident energy. Values

utilized in this thesis were obtained by interpolation among those values.

Table XIV. Parameters for semiempi rical formula for

differential gamma ray dose albedo (10).

I (Mev)
o

o. 0.0023 * 0.0033 0.0737 4 0.0065

0.662 0.0347 * 0.0050 0.0197 '- 0.0035

1.00 0.0603 * 0.0056 0.0118 * 0.0025

2.50 0.0999 * 0.0078 0.0051 * 0.0011

6.13 0.1717 4 0.0103 0.0048 * 0.0005

The relationship between the differential dose albedo in reference 9 and the

differential scattered dose rate as given by Eq. (86) is

SD
1k
(cose

k
+ cose

k+1
)/2 ^

a
d 1000 E

Q
p^[2A<t)(cose

k
- cose

k+1 )]

where 6$ is 15° for the tabulated results of reference 21. Substituting

Eq. (89) in Eq . (94), and solving for SD-
k>

we obtain

1000 ]j'(En )E
n
[2A,(,(cose, - cose,^ )] [Me ) + C]

So =
a ° ° — (95)

jk cose
k

+ cose
k+1

(1 + cose sece)( s '—

)

Again we substitute Eq. (95) in Eq. (88) and divide by 2A* so as to

make the resultant albedo dimension less.

a(o ,.> ;9><l>)dsi = 1.293[Ck(0J + C'][l + cose seceoT'dtt (17)
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The factor of 1.293 comes about from the product of 1000 times the density

of air at STP. This product is necessary since m' in Eq. (95) has units of

cm 2 /gm, and p in Eq. (84) has units of cm -1
.

a

Equation (17) was used in verifying the accuracy of simulating a fallout

field by an infinite plane source of cobalt-60 radiation. In calculations,

however, leading to the design curves for ceiling shine radiation, using the

cobalt-60 infinite field, a new and improved Chil ton-Huddleston formula,

utilizing seven parameters, was used. The final albedo equation, utilizing

the new Chilton-Huddleston formula is (8):

F(e ;e,<|>)[C<(o ) + C]
a_(6 ,e,«) = 1.293 cose - —===r- ( 24 )

cose + cose /l + 2E
Q
(1 - cose

s
)

where

F(6 ,e,(j)) = Ai + A2 (l-cose )

2 + A 3 (l-cose)
2 + A,,(l-cose )

2 (l-cose) :

+ A 5 (l-COS6 )(l-COS0)(l-COS<j>)

(25)

The values of the constants in Eqs. (24) and (25) are presented in Table II.

Baran (1) has compared results obtained by use of the Chilton-Huddleston

formula (9) with those tabulated in reference 24. The main difference be-

tween the two appears to be at large emergent polar angles, and even so the

Chilton-Huddleston formula yields a higher and therefore more conservative

albedo.

Scofield and co-workers at NRDL have developed another semiempirical

formula for the differential dose albedo by fitting an exponential curve to

empirical data they have obtained (11). Their formula is of the form:
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-m'e.
A
d
(a) = c' e

s
+ b' (96)

where c
1

, m', and b' are parameters dependent on the incident energy and the

incident polar angle. The NRDL formula is probably the more accurate of the

three mentioned, being derived directly from experimental data; unfortunately,

however, it cannot be used in this study, since the parameters c', m' , and

b
1

are only tabulated for three distinct polar angles of incidence, and

accurate interpolation to obtain the values of the parameters for the many

angles of incidence required in this work, would be impossible.

The authors at NRDL have made a comparison of their results with equiva-

lent results obtained by using the Chilton-Huddleston formula. They found

that in general there was a difference of not less than 20 percent between

the two values for the dose albedo, the C-H albedo being the less conserva-

tive of the two. They also stated that, although the discrepancies between

the results could possibly be due to some systematic error in the Monte

Carlo calculations, they felt it more likely that they be due to the use of

the Klein-Nishina cross section, and that considering only incoherent

scattering from free electrons was an oversimplification which was not

physically accurate in the derivation of the C-H formula.

It should be said, however, that their comparison was made with the

old Chilton-Huddleston formula (9), and that results obtained with the newer

formula (8) might provide better agreement.



91

APPENDIX E

Description and Explanation of

CDC-3600 Program Used to Calculate Ceiling
Shine Reduction Factors

The FORTRAN source program which solves Eq. (31) is listed as Table

XV. Approximately 1.5 seconds of CDC-3600 computer time were required to

solve Eq. (31) with a Gaussian quadrature of order three for the e and *

integrations, order six for the y integration, and order three for the x

integration (symmetry was used along the x centerline).

Total reduction factors were calculated for five ceiling areas, ten

window apertures, six window sill elevations, and four ceiling heights above

the source plane. The total number of points used in these calculations was

approximately nine hundred.

The alphameric characters utilized in this program are defined in

Table XV.

Table XV. Input data and variables required for the total

reduction factor program.

Symbol

ABSCEN

ACHD

ACHOD

ACHODO

ANCTHE

Explanation

Floating point constant determined by a least squares
analysis, and appearing in Eq. (11).

Tabulated linear absorption coefficient energies.

Build-up parameter a' for the energy of the incident
radiation.

Tabulated build-up parameters, a'.

Build-up constant a' for reflected energy.

Values for the three incident polar angles for which the

average reflected energy is tabulated.
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Table XV (continued)

Symbol Explanation

ATTENU Total attenuation of the incident radiation.

B Floating point constant determined by a least squares

analysis, and appearing in Eq. (11) as B'.

BCHD Build-up parameter b for the energy of the incident
radiation.

BCHOD Tabulated build-up parameters, b.

BCHODO Build-up constant b for reflected energy.

BILDUP Dose build-up factor for a point isotropic source
(outside structure)

.

BUILDU Dose build-up factor for a point isotropic source
(inside structure)

.

C,CPRIME,CHA1
CHA2,CHA3,CHA4,
CHA5

Chilton-Huddleston parameters.

CHDENG Tabulated build-up parameter energies.

CHRTNL Christoffel numbers in the x integration.

CHRTNO Christoffel numbers for Gaussian Quadrature 8 and $

integrations.

CHRTNS Christoffel numbers in the y integration.

COMPXS Klein-Nishina cross section times P,<(e ).

COSTHO Cosine of THETAO.

COSTHS Cosine of the total scattering angle e .

D Height of ceiling above the source plane.

DESENE Average reflected energy.

EABAIR Total linear macroscopic gamma ray absorption coeffi-
cients for air at STP (cm -1 ).

ENER30 Tabulated values of the average reflected energy for
the 30° incident polar angle.
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Table XV (continued)

Symbol Explanation

ENER60 Tabulated values of the average reflected energy for

the 60° incident polar angle.

ENER90 Tabulated values of the average reflected energy for

the 90° incident polar angle.

EO Energy of incident radiation.

GAMMA Partial contribution to the total reduction factor
from the mesh points of the Gaussian Quadrature.

H Distance from the ceiling to the window horizontal
centerline (feet).

IABSC Number of interpolation points for the determination
of the total mass absorption coefficient.

IC Fixed point x coordinate integration variable.

IJ Fixed point 8 coordinate integration variable.

IK Fixed point <|> coordinate integration variable.

IM Fixed point y coordinate integration variable.

INTERP Interpolation subroutine described in Reference 1,

Appendix C.

INTRPT Number of interpolation points for the average
reflected energy determination.

KMAX Degree of Gaussian Quadrature utilized in the e, o

integrations

.

LMAX Degree of Gaussian Quadrature utilized for the x

integration.

MAXENG Number of emergent energy intervals.

MMAX Degree of Gaussian Quadrature utilized for the y
integration.

OLEGNL Zeroes of the legendre polynomials in the x integration.

OLEGNP Zeroes of the legendre polynomials for use in the 6 and

<t>
integrations.
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Table XV (continued)

Symbol Explanation

OLEGNS Zeroes of the legendre polynomials in the y integration.

P Ratio of emergent to incident energies in a simple
Compton scattering process.

PERCE Percentage aperture of the window.

PHI Azimuthal angle between positions (x,y) on the ceiling
and position (xx.yy.zz) of detector, <j> (radians).

PHIO Arithmetic average of maximum and minimum values of the
azimuthal angles subtended by the aperture (radians).

PHI1 Azimuthal limit of aperture in the positive x-plane.

PHI2 Azimuthal limit of aperture in negative x-plane.

PTHLEN Number of mean free paths traversed by radiation from
ceiling position to detector.

PTHLGT Number of mean free paths traversed by radiation from
source plane to a point (x,y) on the ceiling.

R Half-width of the window (feet).

RHO Distance between position (x,y) on the ceiling and
position (xx.yy.zz) of the detector, p (feet).

SIG Total linear gamma ray absorption coefficient (mean
free paths).

SOLID Solid angle subtended by the ceiling at the detector
position.

THENER Emergent 5° polar angle intervals for the average
reflected energies.

THETA Polar angle between position (x,y) on the ceiling and
position (xx,yy,zz) of detector, e (radians).

THETAO Arithmetic average of maximum and minimum polar angles
subtended by aperture (radians).

THETA1 Polar angle subtended by bottom of aperture at given
PHIO (radians).
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Table XV (continued)

Symbol Explanation

THETA2

TOABAR

TO DORA

V

XMAX

XSYMTY

XX

XXSYM

YMAX

YY

11

Polar angle subtended by top of aperture at given PHIO

(radians)

.

Air attenuation coefficient for the reflected energy.

Total reduction factor at a point (xx,yy,zz) in the

structure.

Half-height of the window (feet).

Dimension of the structure in the positive x direction.

Has value of one when xx=0 and value of two otherwise.

Detector rectangular coordinate parallel to aperture
plane, xx (feet).

Has value of when xx=0 and value of XMAX otherwise.

Dimension of the structure in the positive y direction.

Detector rectangular coordinate perpendicular to aper-
ture plane, yy (feet).

Perpendicular distance measured positive downwards from
ceiling to detector, zz (feet).
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Logic Diagram for Ceiling Shine Reduction Factor Source Program

INTERPOLATES
TO OBTAIN
AVERAGE

REFLECTED
(.ENERGIES IN 30°/

60° 90° LISTS/

SET

IM = IM + I

READ

D,A,B,ACHD,BCHD.
X,V,YY,R,

XMAX.YMAX

FORM
PHIO, SET

THETA 2
1 K = 1

.

SET
IK=IK+ I

FORM
PHI 1

PHI 2

)K

LIMITS ON

X-INTEGRATION
FROM TO
XMAX

T

LIMITS ON

X-INTEGRATION
FROM-XMAX
TO XMAX

SET

1C= I

SET

IM=I

FORM

X

SET

IC = IC+I

PRINT
XMAX.YMAX, D,

H,R,V SOLID,
PERCE, TODORA

/ END
J
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FORM
ATTENU, BUILDU,

PTHLGT, BILDUP,

PTHLEN

FORM
COSTHS, P

COMPXS, ALPHA
ALPHA
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Table XVI. Source program for the ceiling shine reduction factor.

PROGRAM REDUX
DIMENSION OLEGNPf 10) ,CHRTNO( 10) .GLEGNSI2C) , ABSCEN ( 20 )

,

CHRTNS ( 20 1 ,

lENER3 0(2 0),ENER6Q(20),ENER9 0(20).THtNER(20),ANCTHE(20),EN<20),
?CHDENG(20 ) ,ACHOD(20) .BCHCDI20) ,EAuAIR(2C) .CLEGNLI20) >CHRTNL(20)

103 F0RMAT(3X,6H XMAX = F 8 . 4 , 3X , 6H YMAX= f- 8 . 4 , 9X , 3H D=F6.2)
10 J FORMATI3X.13H SOLID ANGLE=F6.4)

3 FCRMATOX.3H H=F6.4>3X.3H R=F8.4,3X,3H V=F6.4)
10? FORMATI3X.18H PERCENT APERTURE=F6 . 4

)

716 F0RMAT(3X,24H TOTAL REDUCTION F ACT0R=F1 4. 8 , /

)

•iC.r F0RMATIF6.2.2F10.4)
10 FORMATIF6.3.2F10.6)
18 FORMAT (20 I 3)

1
<5 FORMAT (E10. 3)

2C FORMAT! 7F8.4

)

21 FORMAT (F12. 8)

2? FORMAT (Fl 1.8)
27 FORMAT ( F7.4)

7^n f^pvat (4 r l 8. 10)
RFAD 1 8, KMAX, MAXENG, INTRPT, I ABSC . LMAX ,MMAX
D052I=1 ,3

52 PFAD 21.ANCTHEI I

)

00561=1 .MAXENG
56 RFAD 21»THFNER( I

)

DO63I=l»10
63 READ 27.EABAIRI I

)

D058I=l,lo
58 READ 27.ABSCENI I

)

D06i. 1 = 1,3
60 RFAD 27.CHDENGI I

)

D061 1=1,3
61 RFAD 27,ACHOD( I )

D062I=1,3
62 READ 27,BCH0D( I

)

D016I=1 .KMAX
RFAD 22,CriRTN0( I

)

16 RFAD 22.0LEGNPI I )

D017I=1,LMAX
READ 22.CHRTNL ( I )

17 READ 22,OLEGNL( I )

D0655I =1 »MMAX
READ 22.CHRTNM I )

655 RFAD 22.0LEGNSI I

)

30 RFAD 10.EC.XX.ZZ
RFAD?0,C,CPRIVF,CHA1 ,CHA2 , CHA 3 ,CHA4,CHA5
DO 531=1, MAXENG

53 RFAD 19,ENER3G( I

)
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Table XVI (continued)

nc54i=
54 RFAD ]

DC55I=
5 5 READ 1

RFAD 2

710 READ 5

READ 7

READ 7

25 TCDCRA
XSYMTY
XXSYM=
IFIXX

68 XSYMTY
XXSYM=

67 0"7ir=
X=(XMA
GAMMA=
DC6IM=
Y= ( YMA
RHC=SO
IF( Y.N

77 PHI=1.
60 TO

7 6 PMI=(A
I F ( Y . G

78 PHT=3.
79 CCSPHI

CCSTHF
SINTHE
THETA=
CALL I

ENID*
CALL I

E N ( 2 )

CALL I

FN(3) =

87 PH! 1=A
PHI2=A
PHI1P2
PHT2M1
6FTA=0
DC5IK=

89 ALPMA=
PHIO=<
CCSDIF
BILL=A
THFTA1
IPIH.G
CT1PT2
CT?MT1

MAXENG
ENER6GI I )

MAXENG
ENER90( I

)

SIG
•D»A.B
.ACHD.BCHD.
.YY.R.XMAX

H»V
YMAX

]

NE.O.O) GO TO 67
= 2.
XMAX
1 «L"AX
X*CLEGNL( IC)/XSYMTY)+(XXSYM /XSYMTY)
v. .

1 .MMAX
X*CLEGNS( IM)*G.5)+(YMAX#G.5>
RTF(((XX-X)*<XX-X))+((YY-Y)*IYY-Y))+(ZZ*ZZ))
t.YY) GC TC 76
57D7963
79
TANF((X-XX)/(Y-YY)))+3. 1415927
T.YY) GC TC 79
141 5927+PHI
=CCSF(PHI

)

=ZZ/RHC
=SORTF ( 1 .-CCSTHE*CCSTHE

)

ATANFISINTHE/CCSTHE)
NTERP(MAXENG.THENER.ENER30» INTRPT.THETA.E30)
E30*EC
NTERPt MAXENG iTHENER i ENER60. INTRPT.THETA.E60)
E60*EC
NTFRPI MAXENG. THENER , ENFR90 » I NTRPT .THE TA » E9 )

E90*FC
TANFI (X-R1/Y1+3. 1415927
TANF((X+R)/Y)+3. 1415927
=PHI 1+PHI2
=PHT2-PHt 1

l.KMAX
o .

PHI2M1*CLEGNP( U)/2. )+(PHIlP2/2.)
=CCSF(PHI0-3. 1415927)
BSF (CCSDIF)
=ATAMF ( Y/

(

(H+V)«SILL )

)

T.V) GC TC 90
=CCSF(THFTA1 )

=-CCSF(THFTAl

)
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Table XVI (continued)

GO Tf

on THFTA?
CT1PT2
CT2MT1

91 DC4IJ=
CCSTHC
SINTHO
THETAC
CALL I

CALL I

CALL I

CALL I

28 PTHLEN
BUILOU
ATTFNU
PTHLCT
BILDUP
CCSTHS
P=l ./(
CCMPXS
DFLTA=
VAL=DE
VAP =

(

1

CHPARA
1*DELTA
DENCM=
ALBEDC
ALPHA!
lbUILDU

4 ALPHA=
5 8FTA=B
GAMMA 1

1 ( RHO*R
GAMMA
TCDCRA
FTA=7.
GREEK=
FNGLA=
SOL ID=
PFRCF=
PRINT
PRINT
PRINT
PRINT
PRINT
IFIXMA
END

91

=ATANF
=COSFI
=CCSF<
1 ,KMAX
=( (CT2
=SQRTF
=ATANF
NTERP(
NTERPI
NTERPI
NTERPI
=TCABA
=1 .+AC
EXPFI

= I S I G*
= 1 . + AC
= (SIN
l.+(EC
=(3.97
( l.-CC
LTA*DE
.-COST
CHA1 +

»ci.-e
CCSTHE
=CHPAR
= ( A+P*
/(FXPF
ALPHA+
ETA-CT
=6ETA*
HO)
GAMMA+
=TCDCR
*ZZ/YM
(XMAX*
SQRTFI
(2.73.
I A.*R*
103 >XM
3 > H , R ,

101 , SC
102. PE
716, TC
X.LT.6

(Y/( (H

THFTA1
THFTA2

MT1 1*0
( 1 .-CO
(5INTH
3.ANCT
l&.ABS
3.CHOE
3.CHDE
R*RHC*
HCDC*P
PTHLEN
D*.0C1
HD*PTH
THC*OC
«( l.-C
0562 )

*

STHC)
LTA
HE)*(

1

CHA2*V
STHE)
(COST

A*( (C*
CCSTHC
(PTHLG
ALPHA!
2MT1*A
CHRTNS

GAMMA1
A+GAMM
AX
2. )/YM
ETA**2
141 592
V)/( 26
AX.YMA
V

LID
RCE
DCRA
0. ) G

-V>*RILL) )

1+CCSFI THETA2 )

)-C05F(THETAl )

LEGNP(IJ)/2.)+(CTlPT2*0.5)
STHO«CCSTHC)
/CCSTHC)

HE»EN»2»THETA0»0tStNE]
CEN.EA&AIR. IABSC.OEStNE.TCABAR)
NG,ACHCD,2,DESENE,ACHCDC)
NG»BCHCD.2>DESENt.BCHCD0)
30.48*. 003293
THLFN«FXPF ( BCHCDC*PTHLEN

)

)

793*30.48 ) /CCSTHC
LGT*FXPF(RCHD*PTHLGT)
SF(PHI-PHI0+3.1415927)*SINTHE)-(CCSTHC*CCSTHE)
CSTHS 1/0.511 )

)

(P*P)*(].+(P*P)-P*( 1. -( COST HS*C CSTHS) )

)

.-CCSTHE)
AL+CHA3*VAP+CHA4*VAL*VAP+CHA5
M 1.-CCSPH1 )

HC*SORTF ( 1 . +2.*tC*( 1. -CCSTHS) ) )

CCMPXS+CPRIMF)

)

)*ALBEDC*CCSTHE*CHRTNC(IJ)*BILnuP*
T)*ATTENU*DFNCM)

LPHA*CHRTNC( IK)
( IM)*PHI2M1*2.5 72 3417E-2*XMAX*YMAX*CHRTNL( IC)

/

AX
+GREFK**2+1 . )

7)*ATANF(GREFK/(ETA*ENGLA>)
•*XMAX)
X.D

TC 710
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ABSTRACT

Current engineering methods for structure shielding design and analysis

do not distinguish between the separate contributions to the dose rate in a

structure resulting from air scattered and ceiling scattered fallout radia-

tion. Although the latter contribution, known as ceiling shine, is usually

small, it can be a significant contribution for some situations, for instance,

for buildings with a high band of windows and a roof overhang which would cut

out skyshine. The purpose of this monograph is to present a method for

predicting the reduction factor in multistory buildings for ceiling shine

radiation.

A theoretical model is devised that yields the reduction factor in a

structure due exclusively to radiation penetrating through a window and

scattering off the ceiling. The final reduction factor equation, obtained

from the model, is solved numerically for buildings with different floor

areas, different percentage apertures in the walls, and for detectors

located in different floors. Results are presented in form of charts.

Although the charts are used to determine the ceiling shine reduction

factor from an infinite field of fallout, all the calculations were performed

utilizing an infinite field of Cobalt-60. This resulted in a considerable

reduction of the computer time needed for the solution of the problem. The

accuracy of simulating the fallout field with an infinite plane isotropic

source of Cobalt-60 radiation was found to be approximately five percent.

Direct use of the charts allows the determination of the reduction factor

three feet above the center of any floor of a multistory regular (square or

rectangular) building with floors spaced thirteen feet apart and with windows

the sill height of which is not less than three feet above the floor level.



Reduction factors for oddly shaped buildings are obtained by a technique

known as the "fictitious buildings" technique. Several examples accompany

the graphical presentation of the results in order to aid in understanding

the correct use of the charts.

No chart is presented to account for the contribution from the floor

above the detector floor; this contribution, however, can be approximately

obtained using existing methods. By definition there is no contribution

from the floor below.

The use of the charts can be extended to buildings with floor spacing

different from thirteen feet and to situations where the detector is located

at a height other than three feet above the floor; this extension, however,

is accompanied by a loss in accuracy.

The validity of the proposed model is also verified by comparison

with existing models.


