
BENCHMARKING EXECUTION IMPROVEMENTS OF AN APPLE

MACINTOSH COMPUTER UPGRADED WITH A MATH

COPROCESSOR

by

ROBERT WAYNE MOSS

B. S., Kansas State University, 1985

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Approved by:

Major Professor

A112D6 E3203 l1

.Hi
Table of Contents

lift?

List of Figures iii

c U

Introduction 5

Methodology 6

Benchmark Descriptions 8

Fast Fourier Transform Benchmark 10

Fibonacci Benchmark 12

Eratosthenes Benchmark 13

Float Benchmark 14

Savage Benchmark 15

Dhrystone Benchmark 17

Whetstone Benchmark 19

Conclusions 21

Bibliography 23

Appendixes

Dhrystone listing 25

Fibonacci listing 35

Float listing 37

Whetstone listing 39

Savage listing 45

Eratosthenes listing 47

Fast Fourier Transform listing 49

i i

List of Figures

1. Timing Benchmarks 9

2. Fast Fourier Transform Benchmark 11

3. Additional Benchmarks 16

4. Dhrystone Performance 18

5. Whetstone Performance 20

1 1

1

Acknowledgements

I would like to thank Dr. Don Lenhert for the special interest

he has for his students. I would also like to thank my dear

Angie for being there when I needed her.

Introduction

The research objectives were to install an accelerator board in an

Apple Macintosh Plus computer system, benchmark the resulting speed

improvements and analyze the results. System benchmarks were established

by a variety of common programs including the Dhrystone and Whetstone.

The Motorola 68881 math coprocessor implements the complete IEEE

Standardfor Binary Floating-Point Arithmetic. In addition to the add,

subtract, multiply and divide operations, the coprocessor implements a full

set of trigonometric and transcendental functions. When used with the 68000

microprocessor, the 68881 is accessed as a memory-mapped peripheral

device, not as a true coprocessor.

Methodology

Speed improvements resulting from adding a math coprocessor and a

faster processor to a Macintosh Plus computer were measured. The

Macintosh Plus comes with a 7.8336MHz 68000 processor and 1MB of

RAM. An upgrade product, called TurboMax, available from MacMemory,

Inc. adds a 16MHz 68000, 1MB ofRAM (addressed without video wait

states), and a socket for a 68881 which is addressed as a memory mapped

peripheral because the 68000 does not support a true coprocessor. This

product includes a patch for the Macintosh SANE math library to support the

68881 . The SANE library is an IEEE standard set of floating point

operations implemented in firmware. Due to the overhead of the TurboMax

library patch, floating point operations run slightly slower with the

TurboMax when the 68881 is removed than on a regular Macintosh.

The TurboMax has additional circuitry that allows all access of its

local address space to be transparent to the actions of the mother board.

Mother board RAM is effectively slowed down by the addition of wait states

to refresh the video display. Programs present in daughter board RAM run

considerably faster because this RAM is not accessed by the video circuitry

on the mother board. The same circuitry allows the 68881 to be interfaced

without complications from mother board.

In view of the relative differences in memory speed, all benchmarks

were forced to run in the daughter board RAM and in the mother board

RAM to assess the memory dependency effects of each benchmark. A 1MB

7

RAM disc was created in mother board memory to force the benchmark to

run in daughter board RAM.

One benchmark expected to be highly dependent on floating point

speed is the fast Fourier transform. The fast Fourier transform was executed

for a variety of different transform sizes to determine the overall effect of

the RAM speed. With larger vectors the RAM overhead may become more

significant than the floating point overhead. Float and savage were also

chosen to evaluate two indices of mostly floating point speed. Neither the

float nor the savage programs compute anything useful. Float repeatedly

performs floating point multiplications and divisions. Savage repeatedly

performs a variety of transcendental functions.

Fibonacci and Eratosthenes were two programs chosen to evaluate the

effects of mostly memory and processor speed improvements, because they

rely solely on integer arithmetic. Fibonacci computes Fibonacci numbers

and Eratosthenes computes prime numbers with the Eratosthenes sieve

algorithm. In addition, the two more common benchmarks, Dhrystone and

Whetstone, were used. Dhrystone is an index of overall computer speed, and

is computationally balanced in several respects. One would expect the

Dhrystones to improve with the use of faster memory, but not to be

significantly affected by an increase in floating point performance.

Whetstone is an index which depends heavily on floating point performance.

The Whetstone benchmark program is balanced with respect to simple and

transcendental floating point operations, but spends little time on other

computations. Neither the Dhrystone or the Whetstone compute anything

useful. Their statements are performed only to determine execution time.

Benchmark Descriptions

Several benchmarks were run to determine the effects of the upgrade

in various configurations. Two systems were used in benchmarks:

• Standard Macintosh Plus system. This is a machine with a MC68000

processor running at 7.8336 MHz and with 1MB RAM.

• Macintosh Plus with TurboMax upgrade. This machine has a

MC68000 processor running at 15.6712 MHz, 1MB standard RAM,

1MB RAM accessed with no video wait states, and a 16 MHz MC68881.

In view of the faster memory on the TurboMax board, two sets of tests were

made, with all memory accesses falling in either slow or fast memory. By

creating a 1MB RAM disk in lower memory, lower memory was consumed

and applications were forced to run in the higher portions of faster memory.

Test configurations were as follows:

• Standard Macintosh Plus system.

• Macintosh Plus with TurboMax upgrade, no 68881,

slower memory (i.e low memory).

• Macintosh Plus with TurboMax upgrade, no 68881,

faster memory (i.e high memory).

• Macintosh Plus with TurboMax upgrade, using 68881,

slower memory (i.e low memory).

• Macintosh Plus with TurboMax upgrade, using 68881,

faster memory (i.e high memory).

The results of the benchmarks can be seen in Figure 1.

9

All times were computed by the executing programs from the

difference between starting time and ending time as obtained with the

standard unix C function : time(*tloc), which returns the time in seconds

since January 1, 1970 00:00:00. The values come from the Macintosh

interrupt-driven real-time clock and are accurate to within l/60th of a

second. The approach excludes operating system overhead associated with

launching and terminating programs from the measured time.

Figure 1 - Timing benchmarks (in seconds)

Macintosh

Plus

Macintosh

Plus

w TurboMax
(no 68881)
(Low Mem.)

Macintosh

Plus

w TurboMax
(no 68881)
(High Mem.)

Macintosh

Plus

w TurboMax
(68881)

(Low Mem.)

Macintosh

Plus

w TurboMax
(68881)

(High Mem.)

512 FFT 19 19 14 11 6

1024 FFT 41 43 31 23 12

2048 FFT 89 93 68 51 26
4096 FFT 194 203 148 110 56

8192 FFT 420 440 320 235 120

16384 FFT 758 816 569 626 352

Dhrystone 227 145 98 145 96
Whetstone 134 138 106 24 13

Float 125 124 104 39 20

Fibonacci 246 165 104 164 104

Eratosthenes 280 188 118 187 118

Savage 758 788 602 28 15

Dhrystones 881 1379 2040 1379 2083

Whetstones 7463 7246 9434 41667 76923
sec/Dhrystone 1/881 1/1379 1/2040 1/1379 1/2083

sec/Whetstone 1/7463 1/7246 1/9434 1/41667 1/76923

10

Fast Fourier Transform Benchmark

A fast Fourier transform (FFT) was chosen as one benchmark.

Generally the FFT gives an indication of the floating point performance of a

machine. This test also demonstrates that once one increases floating point

performance, memory manipulations become dominant of the algorithms

throughput. A common decimation-in-time, or Cooley-Tukey, algorithm is

used.l The subroutine first performs a bit-reversal of a complex data

sequence and then performs the Danielson-Lanczos algorithm which

recursively evaluates the discrete Fourier transform.^ The code is written in

the C language and is optimized to all extents where it still follows the

standards defined by Kernighan and Ritchie.3 Optimizations include:

assigning loop index variables to registers, using registers as pointers to

access data rather than repeatedly computing vector indices, shift operators

are used for integer multiplication, and assignment operators are used where

a variable is being modified from an old value. It is interesting to note that

this FFT algorithm performs many memory accesses for each arithmetic

operation. The benchmarks demonstrate that the memory overhead becomes

1 Ahmed, Nasir, and T. Natarajan. Dicrete-Time Signals and Systems . Reston: Reston

Publishing Company Inc., 1983.

1 Press, William H., et al. Numerical Recipes: the Art of Scientific Computing .

Cambridge University Press, 1986.

3 Kernighan, Brian W., and Dennis M. Ritchie. The C programming Language .

Englewood Cliffs: Prentice-Hall Inc., 1978.

1

1

quite significant when the data size increases and when the floating point

execution time is reduced.

Benchmarks of the FFT routine were run with the data vector size set

at 512, 1024, 2048, 4096, 8192, and 16384 complex points. Figure 2 shows

the relative execution times of the FFT with several system configurations.

When floating point operations are done in firmware, the use of fast memory

results in a 30% improvement in execution time. If the 68881 is used for

floating point computations, the resulting improvement in execution time is

closer to 54%. Note that when vectors larger than 8192 are used, the

execution speed gains due to the math coprocessor are smaller than the gains

from using faster memory, (see Figure 2.)

Figure 2 - Fast Fourier Transform Benchmark

Plus

H Turbomax

EH Turbomax,

fast memory

H Turbomax,

68881

Turbomax,

68881,

fast memory

2K 4K

Size of Transform

12

Fibonacci Benchmark

Several other benchmarks were also run. These programs are all

variations of programs from BYTE magazine's BYTEnet

telecommunications service. 1 The variations are limited to changing code

that is not portable into its equivalent in Lightspeed C. The modifications

consist mostly of altering the procedures used to compute timing

information.

The Fibonacci program computes the Fibonacci number of 24. The

recursive definition of a Fibonacci number is:

fibonacci (x)

if(x>2) then fibonacci = fibonacci (x - 1) + fibonacci (x - 2)

else fibonacci = 1.

Because this algorithm calculates only integer values, the floating-point

coprocessor does not affect the execution time. This is useful for

benchmarking integer operations and effective processor throughput for

simple calculations and recursive function calls. Running the program with

the faster TurboMax memory configuration gives a 37% decrease in

execution time from the slow TurboMax memory configuration. The slow

TurboMax memory configuration decreases execution time by 33% over the

original Macintosh. The fast TurboMax memory configuration decreases

execution time by 58% over the original Macintosh configuration, (see

Figure 3.)

1 BYTE Editorial Staff. "High-Tech Horsepower," BYTE , vol. 12, no. 8 (July 1987),

101-108.

13

Eratosthenes Benchmark

The Eratosthenes sieve benchmarks resulted in improvements of

execution time similar to the Fibonacci benchmarks. This program finds all

the integer prime numbers through 8190. Because integer arithmetic is used

the math coprocessor does not influence the results. This is useful for

benchmarking integer math and effective processor throughput for simple

calculations. Running the program with the faster TurboMax memory

configuration gives a 37% decrease in execution time over the slow

TurboMax memory configuration. The slow TurboMax memory

configuration decreases execution time by 33% over the original Macintosh

configuration. The fast TurboMax memory configuration decreases

execution time by 58% over the original Macintosh configuration, (see

Figure 3.) Both the Fibonacci and the Eratosthenes benchmarks indicate that

there is no linear correlation between doubling the speed of the MC68000

and gains in execution speed. It is obvious that memory wait states cause a

more serious degradation of system throughput than the CPU. It would be

interesting to see the same benchmarks run with an effective RAM cache to

minimize wait states. Because the Fibonacci computation is recursive, the

compiler must take advantage of the cache for much gain in performance.

14

Float Benchmark

Float is a benchmark of floating point speed which performs repetitive

multiplications and divisions. This is useful for benchmarking floating point

operations and effective processor throughput for simple calculations.

Because the Macintosh floating library is contained in ROMs which require

more than double the access time of the RAM, calls to these routines decrease

system throughput due to wait states. The result of this is that the original

Macintosh ran only slightly slower than the upgraded version. The speed

improvements due to the 68881 are 68% with the slow TurboMax memory

model and 81% with the faster TurboMax memory model over the original

Macintosh configuration. When floating point operations are done in

firmware, the use of fast TurboMax memory results in a 16% improvement

in execution time over the slow TurboMax memory configuration. If the

68881 is used for floating point computations, the resulting speed

improvement is 48% over the slow TurboMax memory configuration.

15

Savage Benchmark

Savage is another benchmark of floating point speed. This algorithm

repetitively performs the following expression:

a = tan (atan (exp (log (sqrt (a*a))))) +1.0

This is useful for benchmarking floating point math because the 68881

implements transcendental functions. The performance gains from this

benchmark are similar to those produced by the float benchmark, but because

transcendental functions require much more execution time than simple

floating point operations when implemented in software, the results are more

dramatic. The original configuration Macintosh ran slightly faster than the

upgraded version using firmware floating point operations. Due to the

68881, the execution time decreased 96% with the slow TurboMax memory

model and 98% with the faster TurboMax memory model over the original

Macintosh. When floating point operations are done in firmware, the use of

fast TurboMax memory results in a 23% decrease in execution time over the

slow TurboMax memory configuration. When the 68881 is used for floating

point computations, the use of fast TurboMax memory results in a 46%

decrease in execution time over the slow TurboMax memory configuration.

Benchmarks such as these demonstrate the improvements that a math

coprocessor can attain with highly intensive math applications. Using the

68881, the execution time of the savage benchmark decreases by 98% from

the time it takes to run on a standard Macintosh, (see Figure 3.)

16

Figure 3- Additional Benchmarks

Plus

B Turbomax

H Turbomax,

fast memory

01 Turbomax,

68881

Turbomax,

68881,
fast memory

Float Fibonacci Eratosthenes Savage

17

Dhrystone Benchmark

The Dhrystone is an index used for overall computer speed, and does not

depend heavily on floating point speed. One pass of the program consists of a

Dhrystone. The main loop of the program is executed 50000 times to find

the average Dhrystones / second. The program contains statements

distributed as follows:

assignments 53%

control statements 32%

procedure, function calls 15%

The program is balanced with respect to statement type, operand type (for

simple data types), and operand access (operand global, local, parameter, or

constant). It is readily apparent that the presence of the math coprocessor

does not significantly affect the benchmark times. Because the program is

also rather memory dependent, the use of faster memory significantly

impacted performance. To be consistent with the previously presented

benchmarks, performance of the Dhrystone is measured in seconds per

Dhrystone. The TurboMax configuration with slow memory produced a

36% decrease of execution time relative to the original Macintosh. The

TurboMax configuration with faster memory produced a 58% decrease in

execution time relative to the original Macintosh, (see Figure 4.)

18

Figure 4 - Dhrystone Performance

Turbomax,

fast memory
Turbomax,

68881,

fast memory

19

Whetstone Benchmark

The Whetstone benchmark is used as an index to compiler optimization

and floating point performance. The program executes ten million

Whetstone instructions and computes an average for Whetstones / second.

This benchmark resulted in improvements in execution time similar to the

savage benchmark. The original configuration Macintosh ran slightly faster

than the upgraded version. To be consistent with the previously presented

benchmarks, performance gains with the Whetstone are reported in seconds

per Whetstone. The decrease of execution time from the original Macintosh

due to the 68881 is 82% with the slow TurboMax memory model and 90%

with the faster TurboMax memory model. The decrease of execution time

from the original Macintosh is 21% with the faster TurboMax memory

model with floating point operations done in firmware, (see Figure 5.)

20

Figure 5 - Whetstone Performance

Plus Turbomax Turbomax, Turbomax,
fast memory 68881

Turbomax,

68881,

fast memory

21

Conclusions

A TurboMax accelerator board was installed in an Apple Macintosh

Plus computer system. Resulting speed improvements were benchmarked

and analyzed. Speed improvements were measured due to a math

coprocessor, a faster processor and memory accessed without video wait

states. Several programs were used to generate indices of floating point

speed, memory and processor speed improvements, and overall computer

speed.

It was determined that doubling the processor speed alone produced

little increase in speed. When the faster processor was coupled to memory

that did not have the video wait state overhead, the speed improvements

became significant. When the Macintosh was upgraded with the math

coprocessor, benchmarks involving many floating point calculations had an

effective execution gain of up to 90%. But in most benchmarks, this large

increase was not observed due to the other overhead of the programs. Of

course when the math coprocessor was used, the gains due to using faster

memory were even more visible. Once the floating point operations were

improved to a limit, memory accesses become the most significant

performance limiting factor. So, in this case, an improvement in effective

memory access speed will result in a more dramatic gain in execution speed.

Measurements made using the TurboMax upgrade board have

demonstrated improvements in performance for normal processing tasks as

well as dramatic improvements in the speed of floating point operations. The

amount of performance enhancement is largely dependent on the

22

computational characteristics of the benchmarking program. Fibonacci,

Eratosthenes and Dhrystone benchmarks showed the most dramatic

improvements with the use of only the faster memory and the processor on

the TurboMax board. Float, savage and Whetstone, which are primarily

floating point oriented, demonstrated additional gains due to the math

coprocessor. The execution time for the fast Fourier transform was highly

dependent on transform size. The addition of the coprocessor had the most

effect for small vectors. When using large vectors, a significant decrease in

execution time came both from faster memory and the coprocessor since

memory overhead increases with vector size.

23

Bibliography

Ahmed, Nasir, and T. Natarajan. Discrete-Time Signals and Systems .

Reston: Reston Publishing Company Inc., 1983.

BYTE Editorial Staff. "High-Tech Horsepower," BYTE , vol. 12, no. 8

(July 1987), 101-108.

Chernicoff, Stephen. Macintosh Revealed: Programing the Toolbox . Vol. I.

Berkeley: Hayden Book Company, 1985.

Chernicoff, Stephen. Macintosh Revealed: Programing With the Toolbox .

Vol. II. Berkeley: Hayden Book Company, 1985.

Kernighan, Brian W., and Dennis M. Ritchie. The C programming

Language . Englewood Cliffs: Prentice-Hall Inc., 1978.

MacMemory. TurboMax Owner's Manual . MacMemory Inc., 1987

Motorola. MC6881 Floating-Point Coprocessor User's Manual , lsted.

Motorola Inc., 1985.

Press, William H., et al. Numerical Recipes: the Art of Scientific

Computing . Cambridge University Press, 1986.

24

Appendixes

25

Dhrystone

Dhrystone benchmark in C.

. *

* Modified from posting on BYTEnet (617)861-9764, BYTE magazine *

* to be compatible with Lightspeed C.

* *

**

* *

* The following program contains statements of a high-level programming
*

* language (C) in a distribution considered representative:

* *

* assignments 53%

control statements 32%
* procedure, function calls 1 5%
. *

* 100 statements are dynamically executed. The program is balanced with
*

* respect to the three aspects:

- statement type

* - operand type (for simple data types)

* - operand access

* operand global, local, parameter, or constant.

* *

* The combination of these three aspects is balanced only approximately. *

* *

The program does not compute anything meaningful, but it is

* syntactically and schematically correct. *

a**/

#include "sane.h" /* ADDED */

#include "stdio.h" /* ADDED */

#include "math.h" /* ADDED */

#include "storage.
h"

#include "strings.h"

26

/* ADDED */

/* ADDED */

r Accuracy of timings and human fatigue controlled by next two lines */

#define LOOPS 200000

char VersionQ = "1.1";

#define structassign(d, s) d = s

typedef enum {Identl, Ident2, Ident3, Ident4, Ident5} Enumeration;

typedef int OneToThirty;

typedef int OneToFifty;

typedef char CapitalLetter;

typedef char String30[31];

typedef int Array1Dim[51];

typedef int Array2Dim[51][51];

struct Record

i
(

struct Record 'PtrComp;

Enumeration Discr;

Enumeration EnumComp;

OneToFifty IntComp;

String30

}:

StringComp;

typedef struct Record RecordType

typedef RecordType RecordPtr;

typedef int

27

boolean;

#define

#define

TRUE

FALSE

extern Enumeration Func1();

extern boolean Func2();

main()

ProcO();

exit(O);

* Package

*/

int

1

IntGlob;

boolean BoolGlob;

char Chan Glob;

char Char2Glob;

ArraylDim Array 1 Glob

Array2Dim Array2Glob

RecordPtr PtrGIb;

RecordPtr RrGlbNext;

ProcO()

{

OneToFifty IntLod

;

register OneToFifty lntLoc2;

OneToFifty lntLoc3;

register char CharLoc;

register char Charlndex;

Enumeration EnumLoc;

28

String30 StringlLoc;

String30 String2Loc;

extern char *malloc();

long time();

long starttime;

long benchlime;

long nulltime;

register unsigned long i;

starttime = time((long *) 0);

for (i = 0; i < LOOPS; ++i);

nulltime = timef (long *) 0) - starttime; /* Computes o'head of loop */

PtrGlbNext = (RecordPtr) malloc(sizeof(RecordType));

PtrGIb = (RecordPtr) malloc(sizeof(RecordType));

RrGlb->RrComp = RrGlbNext;

RrGlb->Discr = Identl

;

RrGlb->EnumComp = Ident3;

RrGlb->lntComp = 40;

strcpy(RrGlb->StringComp, "DHRYSTONE PROGRAM, SOME

STRING");

Array2Glob[8][7] = 10;

i*****************

-- Start Timer-

i

starttime = time((long *) 0);

for (i = 0; i < LOOPS; ++i)

{

Proc5();

Proc4();

IntLod = 2;

lntLoc2 = 3;

29

strcpy(String2Loc, "DHRYSTONE PROGRAM, 2'ND STRING");

EnumLoc= Ident2;

BoolGlob = ! Func2(String1 Loc, String2Loc);

while (IntLod < lntLoc2)

{

lntLoc3 = 5 * IntLod - lntLoc2;

Proc7(lntLoc1 , lntLoc2, &lntLoc3);

++lntLoc1

;

}

Proc8(Array1Glob, Array2Glob, IntLod, lntLoc3);

Prod(PtrGlb);

for (Charlndex = 'A; Charlndex <= Char2Glob; ++Charlndex)

if (EnumLoc == Fund (Charlndex, 'C'))

Proc6(ldent1 , &EnumLoc);

lntLoc3 = lntLoc2 * IntLod

;

lntLoc2 = lntLoc3 / IntLod

;

lntLoc2 = 7 * (lntLoc3 - IntLoc2) - IntLod

;

Proc2(&lntLod);

}

-- Stop Timer -

i

benchtime = time((long *) 0) - starttime - nulltime;

printf("Dhrystone(%s) time for %ld passes = %ld\n",

Version,

(long) LOOPS, benchtime);

printf(This machine benchmarks at %ld dhrystones/second\n",

((long) LOOPS) / benchtime);

}

Prod(PtrParln)

register RecordPtr PtrParln;

30

{

#define NextRecord (*(PtrParln->PtrComp))

structassign(NextRecord, *PtrGlb);

PtrParln->lntComp = 5;

NextRecord. IntComp = PtrParln->lntComp;

NextRecord.PtrComp = PtrParln->PtrComp;

Proc3(NextRecord.PtrComp);

if (NextRecord.Discr == Identl)

{

NextRecord.lntComp = 6;

Proc6(PtrParln->EnumComp, &NextRecord.EnumComp);

NextRecord.PtrComp = PtrGlb->PtrComp;

Proc7(NextRecord. IntComp, 10, &NextRecord. IntComp);

else

structassign(*PtrParln, NextRecord);

#undef NextRecord

}

Proc2(lntParlO)

OneToFifty "IntParlO;

{

register OneToFifty IntLoc;

register Enumeration EnumLoc;

lntLoc = *lntParlO + 10;

for(;;)

{

if (Chan Glob == 'A')

{

--IntLoc;

*lntParlO = IntLoc - IntGlob;

EnumLoc = Identl

;

31

if (EnumLoc == Identl

)

break;

}

}

Proc3(PtrParOut)

RecordPtr 'PtrParOut;

{

if (PtrGIb != NULL)

•PtrParOut = RrGlb->PtrComp;

else

lntGlob = 100;

Proc7(10, IntGlob, &PtrGlb->lntComp);

}

Proc4()

{

register boolean BoolLoc;

BoolLoc = CharlGlob == 'A';

BoolLoc |= BoolGlob;

Char2Glob = 'B';

}

Proc5()

f

Charl Glob = 'A';

BoolGlob = FALSE;

1

extern boolean Func3();

Proc6(EnumParln, EnumParOut)

register Enumeration EnumParln;

32

register Enumeration *EnumParOut;

{

*EnumParOut = EnumParln;

if (! Func3(EnumParln)

)

*EnumParOut = Ident4;

switch (EnumParln)

{

case Identl : *EnumParOut = Identl ; break;

case Ident2: if (IntGlob > 100) "EnumParOut = Identl

;

else *EnumParOut = Ident4;

break;

case Ident3: *EnumParOut = Ident2; break;

case Ident4: break;

case Ident5: *EnumParOut = Ident3;

}

Proc7(lntParl1 , lntParl2, IntParOut)

OneToFifty IntParH

;

OneToFifty lntParl2;

OneToFifty "IntParOut;

{

register OneToFifty IntLoc;

lntLoc = lntParl1 +2;

•IntParOut = lntParl2 + IntLoc;

}

Proc8(Array1Par, Array2Par, IntParh, lntParl2)

ArraylDim ArraylPar;

Array2Dim Array2Par;

OneToFifty IntParH

;

OneToFifty lntParl2;

{

register OneToFifty IntLoc;

33

register OneToFifty Intlndex;

IntLoc = IntParh + 5;

Array1Par[lntLoc] = lntParl2;

Arrayl Par[lntLoc+1] = Arrayl Par[lntLoc];

Array1Par[lntLoc+30] = IntLoc;

for (Intlndex = IntLoc; Intlndex <= (lntLoc+1); ++lntlndex)

Array2Par[lntLoc][lntlndex] = IntLoc;

++Array2Par[lntLoc][lntLoc-1];

Array2Par[lntLoc+20][lntLoc] = Arrayl Par[lntLoc];

IntGlob = 5;

}

Enumeration Func1(CharPar1, CharPar2)

CapitalLetter CharParl

;

CapitalLetter CharPar2;

{

register CapitalLetter CharLod

;

register CapitalLetter CharLoc2;

CharLod = CharParl

;

CharLoc2 = CharLod

;

if (CharLoc2 != CharPar2)

return (Identl);

else

return (Ident2);

}

boolean Func2(StrParl1, StrParl2)

String30 StrParM;

String30 StrParl2;

{

register OneToThirty IntLoc;

register CapitalLetter CharLoc;

}

34

IntLoc = 1

;

while (IntLoc <= 1)

if (Fund (StrParM [IntLoc], StrParl2[lntLoc+1]) == Identl)

{

CharLoc = 'A';

++lntLoc;

}

if (CharLoc >=W && CharLoc <= 'Z')

IntLoc = 7;

if (CharLoc == 'X')

return(TRUE);

else

{

if (strcmp(StrParl1 , StrParl2) > 0)

{

IntLoc += 7;

return (TRUE);

}

else

return (FALSE);

boolean Func3(EnumParln)

register Enumeration EnumParln;

{

register Enumeration EnumLoc;

EnumLoc = EnumParln;

if (EnumLoc == Ident3) return (TRUE);

return (FALSE);

}

35

Fibonacci

J***

* Fibonacci benchmark in C.

. *

Modified from posting on BYTEnet (617) 861-9764, BYTE magazine *

* to be compatible with Lightspeed C.

*
*

a***/

#include "stdio.h"

#include "unix.h"

#include "sane.h"

#include "math.h"

r ADDED */

r ADDED */

/* ADDED */

/* ADDED 7

#define NTIMES 100 /* number of times to compute Fibonacci value 7

#define NUMBER 24 /* biggest one we can compute with 16 bits 7

main() /* compute Fibonacci value 7

int i;

unsigned value, fib();

unsigned long time();

long starttime;

long finishtime;

long nettime;

/* ADDED 7
/* ADDED 7
/* ADDED 7
/* ADDED 7

p ri ntf(" Fibonacci\n")

;

printf("%d iterations: ", NTIMES);

36

starttime = time((long *) 0); /* ADDED */

for (i = 1 ; i <= NTIMES; i++)

value = fib(NUMBER);

finishtime = time((long *) 0); /* ADDED */

printf("Fibonacci(%d) = %u.\n", NUMBER, value);

nettime = finishtime - starttime; /* ADDED */

printf('Time = %ld sec\n", nettime); /* ADDED */

exit(0);

}

unsigned fib(x) f compute Fibonacci number recursively */

int x;

{

if (x > 2)

return (fib(x -
1) + fib(x - 2));

else

return (1);

}

37

Float

/********•*********** ************** ******** *************

Float benchmark in C.

Simple benchmark for testing floating point speed of c libraries

does repeated multiplications and divisions in a loop that is

large enough to make the looping time insignificant

Modified from posting on BYTEnet (617) 861-9764, BYTE magazine

to be compatible with Lightspeed C.

************ ************ ***************************************/

#include "stdio.h"

#include "unix.h"

#include "sane.h"

#include "math.h"

/* ADDED */

/* ADDED */

r ADDED */

/* ADDED */

#define CONST1 3.141597E0

#define CONST2 1 .7839032E4

#define COUNT 10000

main()

{

double a, b, c;

int i;

unsigned long time();

long starttime;

long finishtime;

long nettime;

I* ADDED 7
/* ADDED */

/* ADDED */

/* ADDED */

38

printf("Float\n");

starttime = time((long *) 0); /* ADDED 7

a = CONST1

;

b = CONST2;

for (i = 0;i< COUNT; ++i)

{

c = a*b

c = c / a;

c = a*b

c = c / a;

c = a*b

c = c/a;

c = a * b

c = c/a;

c = a*b

c = c/a;

c = a*b

c = c/a;

c = a*b

c = c/a;

finishtime = time((long *) 0); /* ADDED 7

nettime = finishtime - starttime; /* ADDED 7

printf("Time = %ld sec\n", nettime); /* ADDED 7

exit(0);

39

Whetstone

I***

* Whetstone benchmark in C.

* *

* Used to test compiler optimization and floating point performance.

Modified from posting on BYTEnet (617) 861-9764, BYTE magazine *

to be compatible with Lightspeed C.

*****#***##****************#***/

#include "sane.h" /* ADDED */

include "stdio.h" I* ADDED */

#include "math.h" /* ADDED */

#include "unix.h" /* ADDED 7

#define ITERATIONS 10

double xx1 , xx2, xx3, xx4, x, y, z, t, t1 , t2;

double e1[4];

int i,j, k, I, n1, n2, n3, n4, n6, n7, n8, n9, n10, n11;

main()

{

unsigned long time(); /* ADDED */

long starttime; /* ADDED */

long finishtime; /* ADDED */

long nettime; /* ADDED */

printf("\nWhetstone Benchmark\n\n");

starttime = time((long *) 0); /* ADDED */

40

/* initialize constants */

t = 0.499975;

t1 = 0.50025;

t2 = 2.0;

/* set values of module weights 7

n1 = * ITERATIONS;

n2 = 12 'ITERATIONS;

n3 = 14* ITERATIONS;

n4 = 345 * ITERATIONS;

n6 =210 'ITERATIONS;

n7 = 32 * ITERATIONS;

n8 = 899 * ITERATIONS;

n9 =616 "ITERATIONS;

n10= * ITERATIONS;

n1 1 = 93 * ITERATIONS;

/* MODULE 1 : simple identifiers */

xx1 = 1.0;

xx2 = xx3 = xx4 = -1.0;

for(i = 1;i <=n1;i+= 1)

{

xx1 = (xx1 + xx2 + xx3 - xx4)
*

t;

xx2 = (xx1 + xx2 - xx3 - xx4)
*

t;

xx3 = (xx1 - xx2 + xx3 + xx4)
*

t;

xx4 = (-xx1 + xx2 + xx3 + xx4)
* t;

}

/* MODULE 2: array elements */

41

e1[0]= 1.0;

e1[1] = e1[2] = e1[3] = -1.0;

for (i = 1 ; i <= n2; i +=1

)

{

e1[0] = (e1[0] + e1[1] + el[2] - e1[3])
*

t

e1[1] = (e1[0] + e1[1]-e1[2]+e1[3])*t

e1[2] = (e1[0] - e1[1] + e1[2] + e1[3])
* t

e1[3] = (-e1[0] + e1[1] + e1[2]+e1[3])*t;

}

/* MODULE 3: array as parameter */

for (i = 1 ; i <= n3; i += 1

)

pa(e1);

/* MODULE 4: conditional jumps */

1-1;

for (i = 1 ; i <= n4; i += 1

)

{

if(j==1)

j
= 2;

else

j
= 3;

ifQ>2)

i
= 0;

else

l-i;

ifG<i)

1-1;

else

i-0;

}

42

/* MODULE 5: omitted 7

/* MODULE 6: integer arithmetic 7

1-1:

k = 2;

I = 3;

for (i == 1;i<= n6;i+=1)

{

j = i* (k-J)*(I-k);

k=l''k-(l-j)*k;

l-(l-k)*(k + j);

e1[l- 2] = j + k + l;

e1[k-•2]=j*k*l;

}

/* MODULE 7: trig . functions 7

x = y;= 0.5;

for(i = 1;i<== n7;i+=1)

/* C arrays are zero based 7

x = t
* atan(t2*sin(x)*cos(x)/(cos(x+y)+cos(x-y)-1 .0));

y = t
* atan(t2*sin(y)*cos(y)/(cos(x+y)+cos(x-y)-1 .0));

}

/* MODULE 8: procedure calls 7

x = y = z = 1.0;

for(i = 1;i<=n8;i+=1)

p3(x,y,&z);

/* MODULE9: array references 7

1 = 1;

43

k = 2;

1 = 3;

e1[0] = 1.0

e1[1] = 2.0

e1[2] = 3.0

for(i = 1 ; i <= n9; i += 1)

P0();

/* MODULE10: integer arithmetic */

j
= 2;

k = 3;

for(i = 1;i <=n10;i +=1)

{

j
= j + k;

k = j + k;

i-k-i;

k = k-j-j;

}

/* M0DULE1 1 : standard functions */

x = 0.75;

for(i = 1;i<=M1;i+=1)

x = sqrt(exp(log(x)/t1));

finishtime = time((long *) 0); /* ADDED */

nettime = finishtime - starttime; /* ADDED */

printf("\nWhetstone runs in %ld seconds. %8.f whets/second\n",

nettime, 100000.0*ITERATIONS/nettime); /* MODIFIED */

44

exit(O);

I

pa(e)

double e[4];

{

register int j;

lab:

J-O;

e[0] = (e[0] + e[1] + e[2]-e[3])*t

e[1] = (e[0] + e[1]-e[2] + e[3])*t

e[2] = (e[0]-e[1] + e[2] + e[3])*t;

e[3] = (-e[0] + e[1] + e[2] + e[3]) / 12

l-i-i;

if(j<6)

goto lab;

P3(x, y.z)

double x, y, *z;

{

X =t '(x + y);

y =t ' (x + y);

}

*z = (x + y) Kl

P0()

{

e1[j] = = e1[k];

e1[k] = e1[l];

e1[l] =eiffl;

45

Savage

**

Savage benchmark in C.

Floating point speed and accuracy test.

Modified from posting on BYTEnet (617) 861-9764, BYTE magazine

to be compatible with Lightspeed C.

** *************

#include "stdio.h"

#include "unix.h"

#include "sane.h"

#include "math.h"

/* ADDED */

r ADDED */

/* ADDED 7
/* ADDED */

#define ILOOP 10000

mainQ

inti;

double a;

unsigned long time();

long starttime;

long finishtime;

long nettime;

/* ADDED */

/* ADDED */

/* ADDED */

/* ADDED */

46

printf("Savage\n");

starttime = time((long *) 0); I* ADDED */

a =1.0;

for (i = 1 ; i <= (ILOOP -
1) ; i++)

a = tan(atan(exp(log(sqrt(a*a))))) + 1.0;

finishtime = time((long *) 0); /* ADDED 7

nettime = finishtime - starttime; /* ADDED */

printffTime = %ld sec\n", nettime); /* ADDED */

printf("a = %20.14e\n", a);

exit(0);

47

Eratosthenes

*********************** ******************************

Eratosthenes sieve prime number benchmark in C.

Modified from posting on BYTEnet (617) 861-9764, BYTE magazine

to be compatible with Lightspeed C.

*** *********** **********

i

#include "stdio.h"

#include "unix.h"

#include "sane.h"

#include "math.h"

/* ADDED */

r ADDED */

/* ADDED */

/* ADDED */

#define TRUE 1

#define FALSE

#define size 8190

char flags [size + 1];

main()

int i, prime, k, count, iter;

unsigned long time();

long starttime;

long finishtime;

long nettime;

/* ADDED */

/* ADDED */

/* ADDED */

r ADDED */

printf("Eratosthenes\n");

printf ("500 iterations\n");

48

starttime = time((long *) 0); I* ADDED */

for (iter = 1 ; iter <= 500; iter++) /* do program 500 times */

{

count = 0; /* prime counter 7

for (i = 0; i <= size; i++) /* set all flags true */

flags [i] = TRUE;

for (i = 0; i <= size; i++)

{

if (flags [i]) r found a prime */

{

prime = i + i + 3; /* twice index + 3 */

for (k = i + prime; k <= size; k+= prime)

flags [k] = FALSE; /* kill all multiple */

count++; I" primes found 7

}

}

finishtime = time((long *) 0); /* ADDED 7

printf ("%d primesAn", count); /* primes found on 10th pass 7

nettime = finishtime - starttime; /* ADDED 7

printf("Time = %ld sec\n", nettime); /* ADDED 7

exit(0);

49

Fast Fourier Transform

* FFT benchmark in C. *

* *

Fast Fourier Transform.

* *

#include "stdio.h"

#include "unix.h"

#include "sane.h"

#include "math.h"

main() /* compute FFT */

{

long i.nn.isign;

float *data;

unsigned long time();

long starttime;

long finishtime;

long nettime;

/* allocate array structure */

data =(float *)NewPtr(sizeof(float)*32769);

for (i = 1 ; i <= 1 6384; i += 2)

{ •

data[i] = sin((i*3.0/1 000.0));

data[i+1]

50

: cos((i*3.0/2000.0));

};

starttime = time((long *) 0);

fft(data,(long)512,(long)1);

finishtime = time((long *) 0);

nettime = finishtime - starttime;

printffFFT time for 51 2 points = %ld sec\n", nettime);

starttime = time((long *) 0);

fft(data,(long)1024,(long)1);

finishtime = time((long *) 0);

nettime = finishtime - starttime;

printffFFT time for 1 024 points c %ld sec\n", nettime);

starttime = timef (long *) 0);

fft(data,(long)2048,(long)1);

finishtime = time((long *) 0);

nettime = finishtime - starttime;

printffFFT time for 2048 points • %ld sec\n", nettime);

starttime = time((long *) 0);

fft(data,(long)4096,(long)1);

finishtime = time((long *) 0);

nettime = finishtime - starttime;

printffFFT time for 4096 points %ld sec\n", nettime);

starttime = time((long *) 0);

fft(data,(long)8192,(long)1)

finishtime = time((long *) 0);

nettime = finishtime - starttime;

51

printffFFTtime for 8192 points = %ld sec\n", nettime);

starttime = time((long *) 0);

fft(data,(long)16384,(long)1);

finishtime = time((long *) 0);

nettime = finishtime - starttime;

printffFFTtime for 16384 points = %ld sec\n", nettime);

exit(0);

}

fft - Fast Fourier Transform

This subroutine is based upon a FORTRAN routine in:

Press, Flannery, Teukolsky, Vetterling, 1986,

"Numerical Recipes, The Art of Scientific Computing"

(Cambridge)

**/

fft(data,nn,isign)

float "data;

long nn;

long isign;

52

long n.mmax.istep;

double wr, wi,wpr,wpi,wtemp,theta,theta_prod,tempr,tempi;

register long i,m,j;

register float *datai, *dataj;

n = nn « 1

;

for (i = 1 , datai = data; i <= n; i++, i++, datai++, datai++)

{

if(j>i)

{

data) = data + j;

tempr = *dataj;

tempi = *(dataj+1);

*dataj = *datai;

*(dataj+1) = *(datai+1);

*datai = tempr;

*(datai+1) = tempi;

};

m = n » 1

;

while ((m >= 2) && > m))

{

j-m;
m »= 1

;

};

j+=m;

};

I* This is the Danielson-Lanczos section 7

mmax = 2;

theta_prod = 6.2831 853071 7959/isign;

while (n > mmax)

53

istep = mmax« 1

;

theta = theta_prod / mmax;

wpr = -2.0*ldexp(sin((0.5*theta)), (int) 2);

wpi = sin(theta);

wr= 1.0;

wi = 0.0;

for (m = 1 ; m <= mmax; m++, m++)

{

for (i = m, dalai = data; i <= n; i += istep, datai += istep)

{

dataj = data + i + mmax;

tempr = wr * *dataj - wi * *(dataj+1);

tempi wr * *(dataj+1) + wi * *dataj;

*dataj = *datai - tempr;

*(dataj+1) = *(datai+1) - tempi;

*datai += tempr;

*(datai+1) += tempi;

};

wtemp = wr;

wr += wr'wpr - wi*wpi;

wi += wi'wpr + wtemp'wpi;

};

mmax = istep;

BENCHMARKING EXECUTION IMPROVEMENTS OF AN APPLE

MACINTOSH COMPUTER UPGRADED WITH A MATH

COPROCESSOR

by

ROBERTWAYNE MOSS

B.S., Kansas State University, 1985

AN ABSTRACT OF A MASTERS REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

This report covers the upgrade of an Apple Macintosh Plus computer

system with a Motorola 68881 math coprocessor, a faster processor and

memory without video wait states. The MacMemory TurboMax product

was used to perform the upgrade on the Macintosh. The resulting speed

improvements were benchmarked and the results were analyzed.

It was determined that doubling the processor speed alone produced

little increase in speed. The speed improvements became significant when

the faster processor was coupled to memory that did not have the video wait

state overhead. By upgrading the Macintosh with the math coprocessor,

benchmarks involving many floating point calculations demonstrated an

effective reduction in execution time of up to 98%.

