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IMTHCMJCTIOa

Mass transfer is Basic to many of the processes in chemical engineering.

The unit operations of distillation, absorption, and crystallisation, for

example, are basically mass transfer operations. It is imperatire, for a

continuing growth in chemical engineering practice, that there he advances

in the development and understanding of the basic concepts and in the overall

knowledge of mass transfer.

Most of the experimental work directed toward the understanding of the

basic mechanisms in mass transfer have been carried out on apparatus having

simple geometry. Systems frequently studied include a single sphere, a bed

of spheres, and a flat plate (l). Plates are usually positioned in a vertical

or a horizontal plane. This study dealt with a vertical flat plate.

The problem of the recovery of a component contained in a low concentra-

tion within a gas stream has received relatively little attention. This

problem has received serious consideration on an industrial basis only when

the recovered oomponent is of high economic value or has toxic or obnoxious

properties (2). A very low quality gas stream was studied in this work.

In general, the amount of an absorbate transferred from one phase to

another is controlled by the equilibrium properties of the system, by the

concentration driving force (i.e. the difference in concentration between

the gas phase and the liquid phase with allowance for the equilibrium exist-

ing at the interface) , and by the transfer or contact time. In most indus-

trial oases, the composition of the gas stream fed to the absorber is fixed.

In this case, the total quantity of material transferred, per unit quantity

of absorbent, may be increased by increasing the change in composition of



the absorbent. The change in composition of the absorbent may he increased

by increasing the time during which the absorbent is in contact with the gas.

The objective of this study was to determine a method of designing an

absorption tower capable of handling a large quantity of low quality gas and

specifically to determine a method of calculating the transfer area required

under these conditions. In order to achieve this objective, it was necessary

to investigate three areas:

1. A mathematical model:

This includes the theoretical considerations of heat and mass transfer

and of the characteristics of flow of fluid over the tower.

2. Materials:

Seleotion of suitable tower materials and consideration of tower layout

so that desirable control of holdup of absorption liquid and of turbu-

lence within the body of the absorption liquid layer as well as optimum

gas movement past absorption surfaces are obtained.

3. Scale-up:

Istablishment of appropriate parameters and the relationship between

these parameters such that the results from small scale equipment say

be used to predict the behavior of scaled-mp equipment.

The seleotion of materials encompasses the seleotion of the absorbing

liquid and the absorbed gas as well as the selection of tower materials

which are suitable for use in an absorption tower. Water vapor in the air

was chosen as the gas for the obvious reasons of abundance and economy.

Glycols were chosen for the absorbing liquids because of their ease of hand-

ling, their relatively low toxicity, and their wide range of physical prop-

erties.
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in initial literature survey was conducted in an effort to obtain in-

formation on free-convective, simultaneous heat and mass transfer. Simultan-

eous heat and mass transfer was expected because of the heats of condensation

and solution involved in the transfer of mass from the vapor to the liquid

phase. She free-convective condition was chosen for reasons of simplicity

and economy. The use of forced convection would increase the expense of

equipment beyond the economic limits because of the cost of the blower re-

quired.

Only two papers relating to free-convective heat and mass transfer were

found in the literature.

Somers (3) and Mathers, Madden, and Piret (4), starting with the esse

physical model but using a slightly different approach, formulated basically

the same equation. However, Mathers, Madden, and Piret carried the analysis

farther and evaluated the constant present in the equation. The equation

they derived is:

(Table of nomenclature on page 23)

Hu =s 0.670 {Pr [fir + (Pr/Sc)* Or»jJ • (1)

The dimensionless groups of Equation (1) are the conventional ones

except fir 1 which is a mass transfer analogy of the firashof number.

This model suggests a theoretical relationship between heat and mass

transfer. The equation is valid for 0.9< T
8
/T

Q
< 1.0 and 0.7<Pr<1.0.



DIMENSIONAL ANALYSIS

A dimensional analysis was male to determine which dimensionless group*

would he involved in an equation describing the mass transfer relation. The

result of this dimensional analysis, given in Appendix A, is the dimension-

less equation:

IA/0M^ A (Sc)
B

(Z)° (Ga)
D

(Re
G

)

B (He/ (a/// ( &̂)
H

{/*Jfy
l

(2)

Equation (2) expresses a relationship between mass transfer and flow properties

of a liquid and vapor. Equation (1) is a relation between heat transfer and

mass transfer. The two equations do not relate the same quantities and are

not comparable.

The final form of the absorption model was simplified to exclude heat

transfer. This simplification was possible because of the extremely small

amount of absorbate transferred to the liquid phase. If the materiel trans-

ferred made up a substantial part of the absorbent solution, so that the

heats of condensation and mixing significantly influenced the heat balance,

this simplification would not be possible.

N
A/0M is the ratio of the mass rate of absorption of the absorbate to

the mass rate of flow of the absorbent.

The Schmidt number, Sc, is the ratio of momentum diffusivity to molec-

ular diffusivity. It appears in most correlations involving mass transfer.

The Ohnesorge number, Z, it the ratio of viscous force to the square

root of the product of inertial and surface tension forces. It commonly

appears in problems involving the atomisation of fluids. In this study, it

is involved in the breakdown of liquid streams and is therefore associated

with the problem of channeling.



The Galileo number, Ga, is the ratio of the product of inertial foroe

and gravitational force to the square of the viscous force. In general, it

is related to the circulation of viscous fluids. In this study, it is proh-

ehly concerned with internal orossflow in the ahsorhent, i.e. flow perpen-

dicular to the mass transfer surface. As such, it tends to influence the

concentration gradient of the ahsorhate in the liquid phase. The effective

gravitational force has a direct influence on the Galileo number aad is,

therefore, a very important factor in the group. A value of 32.2 feet per

second per second for gravitational acceleration was used in this study.

The ratio of absorptivity to ahsorhent density is a parameter expressing

holdup. Absorptivity, a, represents the amount of liquid per unit volume of

carrier tower material. The ratio, a/ Â. 1 »» therefore, the volume of liquid

per unit volume of carrier.

Because of the nature of the equation resulting from a dimensional

analysis, a constant error in the value of some factor used will not affect

the value of the exponent on the group involved. For example, if 64.4 feet

per second per second had "been used for gravitational acceleration in the

Galileo numher, so that the gravitational foroe calculated would have heen

twice the true value, D, the exponent on the Galileo mmfcer in Equation (2),

would not have heen affected. This can he shown simply. In the relation,

7 = «*, if the value x* = tat it used instead of x, then the resulting

equation will he y ss a'x'
b

. But x* * tau Therefore, y s a'kV. The

exponent on x is unaffected while the regression constant is in error hy a

factor of x*. This fortunate circumstance, which allows the effect of a

group to he determined in spite of a constant error in the calculation of

the value of the group, is one factor which makes dimensional analysis

such a powerful tool.
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In this study, absorbate was to be removed from a very large volume of

low quality gas. It was realised that the energy requirements for moving

large quantities of gas through reasonably sized columns of conventional

design, such as perforated plate columns or packed towers, would be high.

Also, column diameter, of a size sufficient to effect desirable total mass

transfer, would be extremely large.

In order to circumvent these design problems, it was decided to design

a tower such that the gas: liquid interface would be in the main body of the

gas phase and natural currents (wind) would serve to move the gas over the

absorbing surface. This would eliminate all costs of moving the gas phase

and would permit simple tower construction.

It was anticipated that the overall mass transfer coefficient would be

relatively low, therefore, it was decided to design the tower so that the

interfacial surface per volume of liquid absorbent and the time of contact

between gas and absorbent per unit volume of absorbent would be high.

These requirements suggested that the liquid absorbent should be spread

into a thin layer. It was reasoned that a screen would provide a support

for such a liquid surface.

Contact time per unit volume of liquid could be varied by varying the

mass of absorbent per unit of interfacial area. This variable may be recog-

nized as holdup, Haldup may be changed by changing the effective gravity,

i.e. by changing the slope of the absorbent liquid support, or it may be

varied by changing the depth of the liquid on an absorption surface having

a constant slope.



A second possible type of liouid support was cloth which was itself

supported by a stiff material of some kind. The same arguments concerning

contact time and holdup that apply to the screen support also apply to the

cloth support.

The absorption tower was designed in two parts, a feeding system and a

liquid support. The feeding system was required to transport the liquid

absorbent from storage at a constant flow rate and distribute it evenly over

the top of the support tower. The flow rate control consisted of an overhead

tank in which the liquid head was held approximately constant. A siphon in-

serted in a floating block of styrofoam with a drawn glass tip at the outlet

completed the constant flow portion of the feeding section.

The initial distributor was required to distribute the absorbent evenly

over the top of the liquid support so as to eliminate channeling as much as

possible. The first distributor used consisted of a Y-shaped trough covered

with cloth into which the absorbent flowed. In the second distributor, the

trough was filled with cellulose sponge. It was expected that the cellulose

sponge would absorb the liquid and distribute it evenly over the top of the

support. This model distributed the liquid more evenly than the first type

had, but still did not provide as even distribution as was desired. Therefore,

a third model, consisting of a short section of packed column, was designed.

A box of Lucite which fit over the top of the liquid support was made. The

box was filled with approximately nine inches of crushed porcelain. The ab-

sorbent flowed from the overhead storage and constant head tank, through the

siphon, to the bed of crushed porcelain, where it was evenly distributed by

the time it reached the liquid support.



The liquid support was designed to serve as a carrier and support for

the liquid film of absorbent which is required if there is to be any mass

transfer taking place. In order to achieve a desirable rate of mass trans-

fer, it is necessary that the absorbent be spread evenly over the surface of

the liquid carrier. Thus, it is necessary to minimise channeling as far as

possible*

Channeling 1b the tendency for a flowing liquid to form streams cover-

ing only a portion of the surface available for flow but containing a large

fraction of the liquid. The remainder of the surface available for flow

may hold a very thin film of liquid or may be completely dry. Channeling is

undesirable in a mass transfer operation since it reduces the effective area

available for mass transfer.

In order to eliminate channeling as much as possible, redistributors

are conmonly used within a tower to redistribute the flowing liquid evenly

over the entire tower. A redistributor may be of the same design as the

initial distributor or it may be completely different in design. The only

necessary criterion is that the liquid become evenly distributed over the

tower once again.

The first support material which was used was a common household metal

window screen msde up of square meshes. The screen was mounted in a vertical

plane. The screen was supported between two wooden frames which were clamped

tightly together to minimise the possibility of the screen's shifting.

liquid flowing over the tower channeled badly whether the wires were

mounted in a vertical and horisontal position or diagonally to the horison.

The channeling was severe enough that it was easily detectable by the eye

in normal runs. Redistributors were added to the tower in attempts to reduce



the amount of channeling. The first attempt at redistribution involved

the use of crimps in the screening. The screening was crimped and bent up

to form shallow cups running the width of the tower. This method was unsuc-

cessful sines the channeling was nearly unaffected by the redistributors.

The remaining redistributors tried were various forms of cellulose sponge.

The first attempt with the cellulose sponge was to attach horizontal strips

of the sponge to the tower. This improved the liquid distribution consid-

erably but channeling was still apparent. Staggered redistributors were

tried with no more success than with the full horlsontal redistributor. A

third type, a redistributor in the shape of an inverted T, was also used.

This model gave the best liquid redistribution of all the redistributors

used to that time, but channeling was still easily perceived by eye.

At this point, it was decided that the single screen would not provide

the desired even distribution of liquids. Therefore, a double screen, con-

sisting of two single screens placed as closely together as possible with-

out forcibly pressing, was tried. Two models of the double screen were used.

In one, the wires of the two screens wsre parallel to one another, while in

the other, the wires were diagonal. The double screen model channeled very

badly. Erea when inverted T-shaped redistributors wsre placed between the

screens, the channeling was much worse than in the single screen tower.

Two other types of screening were used, with little success. A small

mesh screen, automobile carburetor filter screen, was used in hopes that

ths closer weave would improve distribution. The closer weave proved to

have the opposite effect. The other type of screen tried was en aluminum

shads screen. This screen is formed from a flat sheet of aluminum which

has had short slits cut into it. The part of the shset immediately below
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the slit is pressed down to form a cuplike opening. There are several col-

umns of these openings on one screen. It was hoped that if the shade screen

were attached as tightly as possible to a flat surface, the openings would

act as snail dans aid serve to redistribute the flowing liquid over the

surface. The shade screen was attached to a piece of pine lumber. A stream

of liquid was introduced at the top of the column in a well distributed

manner. An extremely large amount of channeling was apparent on the screen

between the columns of openings.

The next trial was made on an apparatus which consisted of a piece of

cotton sheeting stretched over a 1-in. by 1-in. pine board about three feet

long. This system showed quite good flow characteristics. Ebwever, a dye

tracer showed that there was some initial channeling which decreased slightly

as flow continued down the tower. It soon became apparent that a thicker

cloth and one which could provide its own redistribution would result in

improved operations. A length of corduroy was stretehed over the board

with the ribs in a horisontal position. After a short time the board became

warped, allowing the cloth to loosen. This allowed gross channeling in the

open space in the center of the board. In order to avoid further problems

with warpage, narrower, thinner boards with a large capacity for absorption

were utilised. The final liquid film support consisted of a i-in. by 6-in.

by 36-in. balsa board with corduroy tightly stretched around it.

£XP£RIU£NTAL PROCEDURE

Three towers were set up to take experimental data. In the final setup,

the towers were arranged so that a fan placed at one end of the row of three
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Absorption tower with components.

1. Distributor.

2. Liquid film support.

3. Wooden tacking.
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towers could hot* air past each one parallel to the face of the tower. Bach

tower was supplied with absorbent fluid from a different head tank. With

this arrangement, three runs with different absorbent fluids could be made

at the same time.

The experimental procedure was as follows. The tanks containing the

absorbent were filled and the siphon started. After the liquid flow over

the column had reached steady state conditions, approximately six hours,

samples to be analysed for water content were taken. It was determined that

steady state conditions were reached by observation and by checking the

change of water concentration with time at a spsoifio point on the tower.

Seven samples were taken from the tower each time it was sampled. One

sample was taken from the top of the tower, one from the bottom, and the

remaining five from points spaced at six inch vertical intervals along the

column. All samples were taken from points lying on the oenterline of the

tower in order to avoid edge effects as much as possible. The samples were

taken with an eye dropper and were held in the dropper until they were ana-

lysed for water concentration. Composition was determined by refractive

index. The droppers were held in tightly capped bottles until analysis in

order to eliminate the absorption of additional water from the atmosphere.

Five readings of refractive index were made for each sample. These

five readings were averaged to yield the average refractive index whioh was

used to determine the concentration of water in the sample. The standard

deviation of the sets of samples was 3 x 10"9
.

The thickness of the liouid film on the tower was measured with a

modified precision micrometer. The modified micrometer had a tripod base

between the legs of which a needle point was lowered to measure the height
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of the film surface. The needle point was brazed directly to the measuring

face of the micrometer.

Atmospheric temperature and pressure were recorded and atmospheric

humidity was determined with a sling psychrometer.

DATA PROCESSING

All data reduction was performed on an IBM 7094 computer. Equations

for the required physical properties such as glycol density, viscosity, etc.,

wars obtained by curve fitting and specific values wore calculated as rehired.

All curve fits wore made by a standard linear regression program. The models

to which the physical properties were fit and comparisons between values

calculated from the regression aquations and the values reported by Dow

Chemical Co. (5) , from which the curve fits were made, are given in Appendix

B.

The dimensionless groups were calculated by a computer routine written

for that purpose. A sample calculation and the computer flow sheet for these

calculations are given in Appendix C The dimensionless groups were curve

fitted by the saws linear regression routine as were the physical property

correlations. The model to which the groups were fit 1st

*
A
/o
M

:= a(8c)
b

(z)
c

(Ga)
D (a./ <*./ (a/// Vklf<f (^//y

1

The results of this analysis are given in the next section.
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Modified aicroaeter showing method of use.
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PLATE II
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RESULTS USD CGNCLUSIOHS

Two sets of results were obtained, one for ethylene glycol and the other

for propylene glycol. These are •unmerited la Table I. Equation (2), the

normal form of the model to which the mass transfer data were fit, with the

exponents for ethylene glycol 1st

1^ = 1.729x10-22 (Sc)
8 ' 981 U) ' (Ga)°-° (Rea

)-°'°1339 (E.^ 8191

(a//^1.329 (
^y-4.704 (

^)-1.557

The same equation hut with the exponents calculated for propylene glycol is:

N
i/0M

=8.764xlO-4 (So)-23.166 U) 2.707 (0a)0.0 (^-0.008595 (e.^-0.9281

(a/^)20.433 ^JsJ*'™* <^ )0-0

The two regression equations were then rerun, dropping the least sig-

nificant term, until all remaining terms had t values showing significance

at the 96# level. The equations resulting from this procedure, summarised

in Table XI, are:

Bj/0,,- 3.511xl0-10 (ie^"
0,7254 (//j)"

1 ' 940
for ethylene glycol, and

Mj^= 2.512X10"18 (SC)"21 - 773 (2)2.661 (a.^-0.8714
(^lT.lW

f„

propylene glycol.

H2 it the coefficient of determination which is a numerical value for

the fraction of variance in the dependent variable which can be explained in

terms of the variance of the independent variables. The low K2 f 3?.l£ for

ethylene glycol and 28.4# for propylene glycol indicates that this model could

be improved. That ie, the model may not be complete; there may be other

factors not being adequately considered.
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The value of Student 1 8 Mt N is an indication of the importance of the

variable, for example, the Galileo number, Ga, appears to be of little

importance ae related to maas transfer by absorption over the range of

conditions studied. However, it may be extremely important under other

conditions. If the either the tower material or the liouid film had been

thicker so that internal crossflow would have been stronger, the exponent

on the Galileo number might have had a different value and a larger "t".

The facts that the exponente on the Schmidt number. So, the Ohnesorge

number, Z, and the holdup parameter, a/ A, are significant for propylene

glycol and are not significant for ethylene glycol agree with the intuitive

judgment that these parameters should be more significant for propylene

glycol. Propylene glycol' s higher viscosity and lower density would lead

to the same conclusions independently. On the other hand, the appearance

of the viscosity ratio as a significant term for ethylene glycol is somewhat

surprising. Intuitively, it would seem that the viscosity term would play a

more important part in the propylene glycol correlation than in the ethylene

glycol correlation.

The Reynold 1 s number of the absorbent appears to be of vital importance

since it has a Nt H of 6.464 and 4.514 for ethylene and propylene glycol

respectively, compared with a t0#05 of 1.99 for both sets of data. The

status of the other exponents is more uncertain, ranging from extremely to

only moderately unlikely that the exponent is significantly different from

sero; and even then, the decision varies with the system as has been seen.
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Table I. Values of coefficients, standard errors of

estimate, and "t" values for all groups •

Ethylene Glycol Propylene Glycol

A, Regression coefficient -50.118 -89.949

(Exponent on •) 0.849 1.054

SEE 59.032 85.341
- ts

B, Exponent on So 8.981 -22.165

SEE 35.933 23.890

•t« 0.346 0.928

C, Exponent on Z 0.0 2.707

SEE 0.0 0.731

9%* 0.0 3.705

D, Exponent on Ga 0.0 0.0

SEE 0.0 0.0
1*1 0.0 0.0

E, Exponent on Re(j -0.01339 -0.008595

SEE 0.009775 0.01507
D^N 1.370 0.5703

7, Exponent on He^ -0.8191 -0.9281

SEE 0.1389 0.2262% 5.896 4.103

G, Exponent on a/ A
Sxir-

1.329 20.433

6.509 7.548

«t« 0.2042 2.917

H, Exponent on ^//o -4.704 -8.293

SEE 25.971 28.429
H^H 0.1811 0.2917

I, Exponent on A/Ai -1.557 0.0

SEE 0.8384 0.0
•
fc* 1.858 0.0

R2 , Coefficient of determination 0.392 0.288

*0 05* 8twUnt ' * at 96^ 1,Tel 1.99 1.99
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Table II. Values of coefficients, standard errors of estimate.

and "t" rallies for significant groups.

Ethylene Glycol Propylene Glycol

A, Regression coefficient -a. 774 -29.938

(Exponent on e) 0.8435 1.045

SEE 25. 813 28.652

•fl

B, Exponent on Sc - -21.773

SEE — 10.283

»t" - 2.117

C, Exponent on Z - 2.661

SEE - 0.6992
»%l - 3.807

F, Exponent on He.
SEE

-0.7254 -0.8714

0.1122 0.1930

•% 6.464 4.514

G, Exponent on a//A
h» 17.159

SEE — 4.632
•41 - 3.704

I , Exponent on 'J/'q -1.940 -

SEE 0.5263 ™

tS 3.686 —

E2 , Coefficient of determination 0.371 0.284

*0.05» Student's t at 96ft level 1.99 1.99
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In view of the low value of R2 for the two correlation* end the varying

valuee of "t" for the exponents, It Is recommended that further etudiee he

conducted in order to ohteln a clearer view of the relationship Between the

variables. In order to do this, it will prohahly he necessary to use a

different relation as the model. A model hased on the two film theory or

some other theoretical hasis might he sufficient. The Reynold' s numher of

the glycol will, in all probability, he present and one or more of the

other variables used in this correlation might he present.

Speoific experiments to examine the effects of individual variables

may he set up as desired. For example, to study the effect of the Galileo

numher, the tower may he tilted from the vertical so that the gravitational

force in the plane of the tower can he varied. Other experiments can he

devised for the other variables.
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TABLE Of NOMENCLATURE

a = absorptivity, *- g./cu.cm.

A - coefficient in linear regression equation

A — area, fr sq.oa.

B - coefficient in linear regression equation

• = concentration, U= lb/cu.ft.

Cp _ heat capacity, ^ B.T.U./lb.

C - coefficient in linear regression equation

D =r coefficient in linear regression equation

DT - diffusivity, ^ sq.ft. /hr.

X — coefficient in linear regression equation

f s= force, 4£ lB«r.

f — coefficient in linear regression equation

g — acceleration due to gravity, ^ ft. /see. /see.

gc ss: Newton's law constant, -9= (ft.) (lb.) / (lb. force) (sec /sec.)

t= coefficient in linear regression equation

G|f - absorbent mass flow rate, ~tfc aols./(min.) (sq.cm.

)

Ga — Galileo nuaber, * gL3̂ /*2

Or s= Orasbof nuaber, V (gL^fe/A2)^-*,)

Gr» - aodified Grashof nuaber, * (gL^2*//2) (e - c s )

h= heat transfer coefficient, *r B.T.U./(eq.ft.)(hr.)(°R)

H = coefficient in linear regression equation

Z ~ coefficient in linear regression equation

k J= thermal conductivity, 4^ B.T.U./(ft.)(hr.)(*R)

1 — length of indlTidual section of transfer tower, * in.



L =r characteristic length, -fcfc- unite of length

Lp — wetted perimeter, ^ in.

M — aolecular weight, * g./g.aol.

% - water traneferred, * ael./ain.

*X- aass transfer rate, * nol./(min. ) (sq.cm.

)

Hu = Husselt number, *= hL/k

p. -= partial pressure of water in ambient air, #= mm. Eg

p — wspor pressure of absorbent solution, * an. Hg

P — pressure, -3*= aa. Hg

Pr a= Prandtl number, "3t e^/k

q s= voluaetric flow rate, ^9= eo./ain.

la ss Reynold's nuaber, * 4f/l^

8 - molar flow rate, 8^ aol./ain.

So ~ Schmidt number, * ^P°^r

»t" = Student' s t

= thickness of absorbent film, #- in.

c
~ thickness of cloth carrier, --%= in.

= temperature, ¥= °F

_ air Telocity, * ft./ain.

— width of absorbing tower, 5^ in.

= aass Telocity, ^ g./ain.

= weight fraction water in absorbing liquid

-= Ohnesorge number, *\S
'HlfgJ**?-

-= has units of

s= has dimensions of
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Greek Symbols

<x — speciflo densifioation coefficient, ^S= on. ft. /lb.

Jb zs. coefficient of compressibility, *S= °ST1

— time, ^ sin.

y = thermal conductivity, =* cal./(min.)(cm.)(°C)

J* = viecosity, 33= centipoiee

f> = density, 4£ «./ml.

(7— r: surface tension, * dynes/cm.

Subscripts

a — average conditions over section of absorption tower

= absorbent stream

f = conditions at bottom of section of absorption tower

9 — gas stream

i - conditions at top of section of absorption tower

• = conditions at infinite distance from tower surface, in Appendix C,

conditions at top of absorption tower

t — conditions at tower surface
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APPENDIX A

DIMfcHSlONAL ANALYSIS

There are fourteen variables which need he considered in the analysis

of the system. These ere:

»1 Rate of mass transfer ^F m/l2©

°k Absorbent aass flow rate *F- m/l2©

*0 Vapor mass velocity -2= M/w

L Characteristic length ^2P L

DV Diffueivity IF L2/©

A Absorbent viscosity -*F m/l©

A Absorbent density JF M/L3

So Newton's law constant * Ml/©2!

f Acceleration due to gravity 3f= l/©2

<^A
Absorbent surface tension & *#k

a Absorptivity & k/L
3

A Vapor viscosity 3? m/l»

A Vapor density * M/L3

*A Absorbent mass velocity & M/©

•

However, G^ can be expressed im wa/a, where A is the area through whioh

flow is measured. In tents of the above \rariables, this would be expressed

as W^L2. This, then, reduces the number of variable s by one. The function

to be analysed Is:

SA
=-f(W , L. »T.^i»A» «o» «• <Tf«

*•A» A» *A>
(1-D

whioh can he represented dimensionally as e
e



i
A id/w* (V

9 ^Z <4>
e

<«/ <«>
g
<^>

h
<>*

U )
J <// (*/ <«-*>

The remainder of the dimensional analysis i« carried out by the Bridgmaa

method (7, 8). The dimensions are substituted for the rariables. The ex-

ponents on the dimensions are then elated to giro four equations whioh

must he solred simultaneously to yield eolutione which can he need to form

dimensionlese groups.

M/L2©^/©)* (D* <L2/©)
C (M/L»)

d (M/L3)
6 (ML/©2*)' (L/©2)«

(F/L)
h (M/L

3
)
1 (m/L©)^ (m/L3)* (M/©)

1 (3-D

Equating exponents on each dimension:

Mt i « »+ * + • + 1 + 1 +i + fc+!

L: -3-h-t-3ei-d-3e^f + g-h-2i-j-ac

0: -l--a-c-d-2f-2g-J-l

f : - -f i- b.

Equations (4-1) are solved simultaneously hy a straightforward method.

In this solution, four of the exponents are stated in terms of the remain-

ing eight. The four exponents for which solutions were found are b, d, e,

and f. The twelve exponents can he stated as:
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a^= a

o-o

d-l-a-o-3f-2&-J-l
e-o+2g^h-i-k

f = h

f = f

h - h

i = i

t - )

k^ k

/

It should be explained that the above solution is only one possible

solution. Other solutions, i.e. choosing to solre for different sets of

four exponents, will give different dimensionless groups.

The liquations (5-A) are then substituted into Equation (a-A).

k
l-a-c-2g-2h-4-l

(5-A)

^o.ag.h-i-k
(

^h
(g)

g ^h
(a)

i
(^}

j (yy
k

(Wa)
i

(6-A)

When all variables with like powers are collected, the dimensionless equation

is formed.

t^/zy' (4 Â)
k

(f/fc/y
1 (7Ui)
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When & dimenBionles8 solution has been formed, it is necessary to inspect

it to be certain that all the diaensionless groups are meaningful. In general,

any desired diaensionless grouping can he formed by proper selection of ex-

ponents, but in practice, the selection of exponents is controlled by a desire

to obtain as many dimensionless groups as possible which hare recognised mean-

ing. In spite of this restriction, some groups whose physical meaning is not

clear are usually formed. Two groups in Equation (7-A) fall into this cate-

gory. The dependent group, *" .'//*• although diaensionally correct, would be

more meaningful if stated as N^/Gy. The first group on the right side of the

equation is the second Questionable group. It has mixed units, that is, the

mass Telocity of the gas and the viscosity of the absorbent. The last group

on the right side has the same form, but units of the absorbent on all vari-

ables. Therefore in the first term, the viscosity of the absorbent was

changed to the viscosity of the absorbent was changed to the viscosity of the

gas.

Five of the terms in Sanation (7-A) are recognised as accepted diaension-

less groups. These are Reynold's number of gas and of absorbent, Schmidt

number, Galileo number, and Ohnesorge number. With the changes made above

and conversion to accepted nomenclature, Equation (7-A) becomes:

H
A
/GM

- A (Be )
a

(So)" (Ga)« (Z)"
2̂

(a//
1/ t^j//^

A change can be made in a/A to put it in a form which is more easily

worked with. The units on absorptivity, a, are mass of absorbent per unit

volume of carrier. Since the area in the plane of the carrier is the same

for both the carrier and the absorbent, then a//A is the same as the ratio
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of the absorbent film thickness to the thickness of the carrier, t/t .

One other change is made to make the equation easier to work with. If the

viscosity and density ratios are inverted, the computer program coding is

made slightly easier. The final form of the dimensionless equation ist

tja^ = a (B.8)

m
<a»* (ori° (if (»/»„)* </^y* V"W i*»j)*

CM
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APPENDIX B

PHYSICAL PROPERTIES

The physical properties of the system; absorbent density, absorbent

viscosity, surface tension, vapor pressure, and air viscosity, were corre-

lated by models to which the data were fit by the least squares method.

The models used were empirical but were chosen to give as good a fit as was

possible. The models and coefficients for each of these physical properties

will follow.

The value of the diffusivity of water vapor in the air at 33°? of

0.853 sq.ft./hr. was taken from Perry (7).

Absorbent Density

y°A
- A -t BT -+- CT2 -t Dx + ITx + IT3* + Ox2 + Htx2 + IT2!2

Ethylene glycol Propylene glycol

A 1.138375 1.052936

B -0.0003734119 -0.00007300824

C -0.00000004586764 -0.000002319983

-0. 6186632 0.1134615

1 0.0 -0.001554638

F -0.0000005761387 0.00001022476

-0.1080837 -0.2039127

B 0.0008893013 0.002447069

X -0.000003149034 -0.00001448998
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Absorbent Viscosity

la/^ -= A + BT + CT2 -+ Dx + HPx t FT2* t Ox2 + HTx2 -f IT2*2

ethylene glycol Propylene glycol

A 4.828053 7.004401

B -0.03301962 -0.06275448

C 0.00006172340 0.0001379838

D -3.301962 -6.031601

£ 0.0 0.0

J 0.0000653676? 0.0001344718

a -1.769806 2.866028

E 0.03804016 0.0008449554

I -0.0001945049 -0.0001546144

Surface Tension

lmj^ = A + Bx + Cx2 + Dx8 + Ex4 * Tx5

Ethylene glycol Propylene glycol

A 3.850768 3.590716

S 0.3061910 0.3115540

C 0.1461029 -0.3100586

D -0.2784729 3.173828

X 0.0 -6.080078

J 0. 2344513 3.850586
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Vapor Pressure

lapA
- A + B/(T 460) + C/x + D/x2 * B/x3

Ethylene glycol Propylene glycol

A 21.41319 a. 84841

B -9893.922 -10119.93

G -0.1335599 -0.1103056

D 0.002019504 0.001487864

1 -0.00001064019 -0.000007103517

Air Viscosity

la/4 = A+ Bq -*" Cq2 ^ Dq3 + Bq4 + Jq5 * Oq8

where q = ln(I 460)

A -10.81196

B 1.459709

0.0

D -0.006287456

1 o.o

r o.o

a -0.000001342385

The following platee giro a graphical ooaparieoa between the original

data (5) end the ourre fite. la all oaeee la which the property le a

foactioa of both the temperature aad the composition. only one composition

is shown. The compositioa ehowa was chosen at random from the compositions

giwea la the hack ealculatioas ia the curre fit routine. Bepresentatiwe

walues are showa for both ethylene sad propylene glycol where necessary.



PLJffE B-I

Effect of temperature on absorbent density.

Water concentration is 30$ by weight.
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PLJffE B-II

Effect of temperature on absorbent viscosity.

Water concentration it 10$ by weight.
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PLATi B-III

Effect of water concentration on surface tension.
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PLATE B-IV

Effect of temperature on vapor pressure of absorbent.

Water concentration is 5$ by weight.
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PLATS B-Y

Effect of temperature on air viscoeity.
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JPPEHDII C

SAMPLE CALCULATIONS

The sample calculations are hased on sample 29 of the ethylene glycol

data. The raw data used in the calculations are:

t - 6 in.

1 - 6 in.

u ~ 458.8 ft./min.

Q> = 10.85 oc./min.

T - 86.4°F

P - 734.4 mm. %

pA = 17.00 bob. %
x = 0.0306

Xi = 0.0986

Xf = 0.1053

% = 0.069 in.

tc
- 0.026 in.

The physioal properties of glycol and air were calculated with the

curre fits of 4>pendix B. The following physical properties values were

calculated.

fn
- 1.1037 g./nl.

J> % - 1.0985 g./ml.

ja = 9.1315 centipoise

^ = 48.5799 dynes/cm.

p. - 8.8458 am. %
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./§«. 0.04499 lD./(hr.)(ft.)

/q = 0.07016 lh./cu.ft.

The compositions used in calculating /£, y^, and cr^ are the arithmetic

averages of the top and oottoa compositions.

1. Calculation of H^/G^.

& = (l-x )Q

0= (1-0. 0306) (10. 85) (1.1037)= 11.6089 g. glycol/min.

f^j^O/d-j^) - (0.0986) (11. 6089)/ (1-0.0986) = 1.2898 g. water/min.

f
f
= Xfdlil'Xf) —(0.1063) (11. 6009)/ (1-0. 1053) -1.3663 g. water/mia.

% = (If-W^/M.^, =(1.3663-1. 2698) /18.016 = 0.005353 moi. water

traneferred/min.

»= 'yft/wl- 0.005353/(15. 24) (15.24) - 0.00002306 mol./(min.)(sq.cm.

)

A P = pA-p#
= 17.00-8.8458 = 8.1542 am. %

fa^ <VVa ^d* 2698 l«3663)/2 =1.3181 g. water/mln.

8 ^ °/Mglycol +VMwat.r

ft/M
x col

= 11.6089/62.1 =0.1869 mol. glycol/min.

f /UwtLter
- 1.3181/18.016 -0.07316 mol. water/min.

S - 0.1869 + 0.07316 - 0.2601 aol./min.

= 0.069(2.64) -0.1753 cm.

A- wt - 15.24(0.1753) ss 2.6710 sq.cm.

a - s/A- 0.2601/2.6710 -0.09738 mol. /(min.)( sq.cm.)

H^Gn = 0.00002305/0.09738 - 0.0002367

2. Calculation of So.

Dy
-= 0^2^/(54460) /492 = 0.853^(86.4 460)/492 = 0.8989 sq.ft./hr.

So - /^//ffDT
= 0.04499/ (0.07016) (0. 8989) = 0.7132
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3. Calculation of Z.

* -AJ i/ZW10!" ' 32«loV(68. 55) (4. 169*108 ) (0.005667) (0.003329) ^0.02988

4. Calculation of Ga.

0* Vj^fy/i = (68.65)
3(0.005667) 2(4.169x108)/(22.10)

2 -9,092.000

5. Calculation of ReG .

H«a = Wo/A -0. 6(27,530) (0.07016)/0.04499 ^21,470

6. Calculation of K«A.

B*
A

- (g^H/tw/J

g - 600/454 - (60)(U.61)/454 -1.534 lb. glycol/hr.

T ~ 60W /454 = (60)(1.318)/454 -0.1742 lb. wat«r/hr.

tw =0.002875 sq.ft.

H«
A
- (l.634f0.1742) (0.005667)/(0.002875) (22.10) ar. 590.1546

7. Calculation of t/te .

t/t ~ 0.069/0.026 = 2.654

8. Calculation of fjff

JUFq- 0.07016/(1.099) (62.4) n 0.001024

9. Calculation of y^V

y^g- 0.04499/ (9. 131) (2. 42) - 0.002036



The computer language used in this program is set up so that data

processing is most easily done as column rector operations. This language

makes the coding of a problem of this type much simpler than would he the

ease for Fortran.

During checkout runs, the source progreo is translated into machine

language hy an intermediate program. Once the source program has been

checked out, program cards are cut in machine language so that translation

time can he avoided in future runs.

The calculations of the physical properties of the fluids was made

easier hy curve fitting the properties to the models given in Appendix B.

The properties were then calculated from the curve fits as needed and used

in the calculation of the dimensionless groups of Kepation (2).

The flow sheet for the computer program is given on the following pages.

The flow sheet is cuite simplified in that each block may include several

calculations leading to the results shown. In all cases, the calculations

are identical in form to the sample calculations shown above.
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At'1'i.iWlA D

COMPOSITION PROFILE

Plat* 2-1 shows an example of each of the two typos of composition

profile encountered. The curve showing an increasing concentration gradient

is typical of a feed having a low concentration of water. The second curve

is typical of a feed with a higher concentration of water. In the second

case, the ahsoroent stream is approaching eauilihriu* end the concentration

gradient decreases down the column.
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.APPENDIX I

RAW DATA

The following pages give the rear data from which the dimensionless

groups were calculated by the IBM 7094 computer. The data are identified

"by column heading and sample number. These data were used to calculate the

dimenslonless groups as shown in Appendix C.
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ETHXLENE GLYCOL

w 1 - u Q T P

1 6. 6.0 0. 10.850 84.2 738.00

2 6. 6.0 0. 10.850 84.20 7 3 8. 0.0

3 6.0 6.0 0. 10.850 84.20 738.00

4
5

6.0
6»0

6.0
6.0

0. 10.850
10.850

84.20
84.20

73 8.0
738.000.

6

7

6.0
6.0

6.0
6.0

0. 10.850
10.85

84.20
82.20

738.0
737.000.

8_ 6.0 6.0 0. 10.850 _82..2 0. 737.00

9 6. 6.0 0. • 10.850 82.20 737.00

10 6.0 6.0 0. 10.85 82.20 737.00

11 6.0 6.0 0. 10.850 82.20 737.00

12
13

6.0
6.0

6.0
6.0

Cr. 10.850
10.850

82.2
80.40

.737.0
733. 00203.00

14 6.0 6.0 2 3.00. 10.850 _8 0.4 0. 738.00

15 6.0 6.0 203.00 10.850 80.40 738.00

16 6.0 6.0 203.00 10.850 80.40 73 8.0

17 6.0 6.0 203.00 10.850 80.40 738.00

18 6.0 6.0 203.00 10.850 80.40 J73 8.0

19 6.0 6.0 466. 10 10.850 84.20 735.20

20 Ju_Q 6.0 466.10 J..0...850. _84..20. 735.20

21 6.0 6.0 466.10 10.850 84.2 ' 735.20

22 6.0 6.0 466.10 10.850 _84aJJL 735.20

23 6.0 6.0 466.10 10.850 84.20 735.2

24 6.0 6.0 466.JJL 1 ,_8 50. _8A*J2JL _735.2

25 6.0 6.0 458.80 10.850 86.40 734.40

26 _6.0 _6 . _4.58.8 0. J..0.85 0. J36..-4.0. 734.40

27 6.0 6.0 458.80 10.850 86.40 734.40

28 6.0 6.0 458.80 10.850 86.40 734.40

29 6.0 6.0 458.80 10.850 86.40 734.4

30 6.0 6.0 458.80' 10.850. 86.40 734.40

31 6.C 6.0 778. 60i 10.850 79.70 734.80

32 6.0 6.0 .778.60* .10.850 .79.70 734.80

33 6.0 6.0 778.601 10.850' 79.70 734.80

34 6.0 6.0 778.60 10.850 79.70 734.80

35 6.0 6.0 778.60 10.850 79.70 734.80

36 6.0 6.0 773.60 10.850 79.70 734.80

37 6.0 6.0 0. 10.850 73._4_Q_ 741.30

38 6.0 6.0 0. 10.850 73.40 741.30

39 6.0 6.0 0. 10.850 73.40 741.30

40 6.0 6.0 0. 10.850 73.40 741.30

4_1_

42
_6_._0

6.0
6.0
6.0

o- tO. 850
10.850

J3.AJ1
73.40

741.3
741.300.

A3_ 6.0 6.0 £L. J.0-. 85 0. 77.7 740.20

44 6.0 6.0 0. 10.850 77.70 740.20

45 6.0. 6jdL __o^_ 10.850 77.70 74 0.2

46 6.0 6.0 0. 10.85 77.70 740.20

47 6.C 6.0 0. 10.850 77.7 740.20
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w 1 u Q \ T P

48 6.0 6. . 10.850 77.70 740.20

49 6.0 6.0 311.80 _ 1.950 80.10 738.10

50 6.0 6.0 311.80 1.950 80.10 738.10

51
52

6.
6.C

6.

6.

311.80 _
311.80

1.950
1.95

80.10
80.10

738.10.
738.10

53 6.0 6.0 '311.80 1.950 80.10 738.10

54 6.0 6.0 311.80 1.950 80.10 738.10

55
56

_6_._0.

6.0
6.0
6.0

353.50
353.50

1.950
1.950

77 ..2.0.

77.20
739.80
739.80

57 6.0 6._0 353.50 . _ 1.950 77.20 739.80

58 6.0 6.0 353.50 1.95 77.20 739.80'

59 6._0_ 6.0 353.50 1.950 77.20 739.80

60 6.0 6 . 353.5 1 . 95 77.20 739.80

AL_ 6.0 6.0 .267.8 0. .1. 9 5.0. 8 3..1.0. 739.80

62 6.0 6.0 267.80 1.950 83.10 739.80

63 _6i_0 6.0 267i_80 _ 1.950 83.10 .739.80

64 6.0 6.0 267.80 1.950" 83.10 739.80

65 6.0 6^0. 267.80 1.950 B3..10 739.80

66 6.0 6.0 267.80 1.950 83.10 739.80

67 _6.«_0. 6_._0. 353.00. 1.950 34. 0.0. 735*70

68 6.0 6.0 353.00 1.950 84.00 735.70

_6_9_
70

"

_6_a_0_

6.0
6.0
6.0

353.00
353.00

1.950
1.950

84.00
84.00

735.70
735.70

7JL_ 6.0 6.0 353.00 1.95 84.0 735.70

72 6.0 6.0 353,00 1.950 84.00 735.70

73 6.0 6.0 JL14.70 1.950 83.50. 731.60

74 6.0 6.0 414.70 1.950 83.50' 731.60

75 6.0 6.0 414.70 1.950 83.50 731.60. .

76 6.0 6.0 414.70 1.950 83.50i 731.60

77 6.0 6.0 414.70 1.950 83.50 731.60

78 6.0 6.0. 414.70 1.950 83.50 731.60

79 "6.0 6.0 411.10 1.950 78. 3C 729.60

80 6.0 6.0 411.10 1.950
.

78.30 .729.60

81 6.0 6.0 411.10 1.950 78.30 729.60

_8.2_ .6.0 _6_. 411. 1 JL.95.0 7ft. 30 729.60

83 6.0 6.0 411.10 1.950 78.30 729.60

84 6.0 6.0 411.10 1.950 78.30 729.60

85 6.0 6.0 417.00 1.950 81.30 727.50

86 6.0_ 6.0 417.00 1.950 81.30 727.50

87 6.0 6.0 417.00 1.950 81.30 72 7.5

88 ,6 ._0. 6.0 .417.00 1.950. .81.30. . 727.50

89 6.0 6.0 417.00 1.950 81.30 727.50

90 6.0 6.0 417.00 1.950 81.30 727.50



ETHYLENE GLYCOL
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PA
X
o

X
i

1 • ]L4.13 0.0194 0.0194
__. 14.13 0.0194 J). 0317.
3 ]L4.13 0.0194 0.0428

__ L4. 13 0.0194 J}.0 54 0_

5 L4.13 0.0194 0.0696
_6 14.13 J. .0194 _0...0 8..08_

7 15.48 0.0205 0.0205
-8. 15.48 0.0205 0.0320
9 15.48 0.0205 0.0428

10 15.48 - 0.0205 0.0529
11 15.48 0.0 20 5 0.0688
12 15.48 0.0205 _0.0843..

13 14.69 0.1137 0.1187
1A 14.69 0.1187 0.1344
15 14.69 0.1187 0.1396
16 LA. 6.9 0.1187 JL. 143 3..

17 14.69 0.1187 0.1462
18. 14.69 .0.1187_ .0.1 4.8 9_

19 15.89 0. 1122 0.1122
2.0. 15_. 8 9 0.1122.. _0„. 121 0„

21 15.89 0.1122 0.1299
21. 1.5..J39 0.J.1 2_2_ . 13.8 9_

23 15.89 0.1122 0.1479
24l 15.89 0.1122 _D_._152.7_

25 17.00 0.0306 0.0306
Z6. 17.00 0.0306_ 0.0540_
27 17.00 0.0306 0.0573
2_8_ 17.00. 0.0306 0.0585
29 17.00 0.0306 0.0986
3JL 17.0.0.- 0.03 06_ 0.10 53_

31 15.84 0.1202 0.1202
32. 15.84 0.120 2_ 0.1339
33 15.84 0. 1202 0.1476
34 15.841 0.1202 0.1616
35 15. 84^ 0.1202 0.1724
36 15.841 0.1202 0.1758
__. 12.42' 0.2621 0.2621_
38 12.42« 0.2621 0.2639
39 12.42. j0__2621 0.267..8_

40 12.42 0.2621 0.2776
41 12.42 0.2621 0.2870
42 12.42 0.2621 0.2888
43 12.70 0.1300 0.1300
44 12. 70" 0.1300 0.1377
45 12.70 0. 1300 0.14 8.3.

46 12.70 0.1300 0.1696
47 12.70 0.13C0 0.2064

0. 0317
0. 0428.
0. 0540
0. 0696_
0. 0808
JL .104.2_

0. 0320
JL .0.4 2 8_

0. 0529
0, _0_6_88_

0. 0843
J)...0.864_

0, 1344
JL 1396
0. 1433
JL 1462.
0. 1489

J3___»___
0..1210
JL 1299
0.,1389
0.1479
0,,1527
JL,.1545,

0.,0540
0,,0575
0,.0585
JL,J986_
0.,1053
JL 1071
0,.1339
0..1476
0..1616
0..1724
0..1758
0,.1769
0. . 2639_
0,.2678
0.2776
0,.2870
0..2888
0,.2889
0..1377
0..1482
JL.1696
0.,2064
0..2256

0.0680
0.0680.
0.0680
0. 06 80
0.0680
J). 0680
0.0680
.0.068 0..

0.0680
_0. 06 8 ._

0.0680
. 6 8 0_

0.0740
.0.0 74 0.

0.0 74
0.0740
0.0740
0.0740
0.0690

.0. 0690.
0.0690
_Q.069 0_

0.0690
_0.._069.0.

0.0690
_0.0690
0.0690

J)._DJ6J9J3_

0.0690
_0.0690
0.0700
0.0700
0.0700
0.0700
0.0700
0.0700
0.07.0 0.

0.0700
0.0700
0.0700
J). 0700
0.070
0.0700
0.0700
0.0700
0.0700
0.0700



57

,

PA
X X.

l
X
f

t

48 12.70 0.1300 0.2256 0.2380 0.0700
49 12.34 0.0610 0.0610, 0.0855 0.0700
50 12.34 0.0610 0.0855 0. 1125 0.0700
51 12.34 Q.0610 C.1125_ 0.1510 0.0700
52 12.34 0.0610 0.1510 0.1740 0.0700
53 12.34 0.0610 0.174JL . 1 8 40_ 0.0700
54 12.34 0.0610 0.1840 0.1910 0.0700

55. 11.13 0.0475 0.0475_ _0..0927_ 0.0700
56 11.13 0.0475 G.0 9 27 0.1320 0.0700
57 11.13 n.0475 _0. 1.320. _0 ...15.8 0_ 0.0 70

58 11.13 0.0475 0.1580 0.1720 0.0700

__9_ 11.13 0.0475_ 0__JJ_20_ . 1810 0.07.00

60 11.13 0.047 5 0.1810 0.1870 0.0700

_JL 13.12 0.072 5^ 0.0 7.2 5_ ..0.1115 .0.070 0_

62 13.12 0.0 72 5 0.1115 0.1522 0.0700
6.3_ _13.12 0.0 725_ _0..1522_ _0.JL8_05.- 0.0700
64 13.12 0.0725 0.1805 0.1930 0.0700
6_5_ 13.12 0.0725 0.193JL 0. 1985„ 0,0700
66 13.12 0.0725 0.1985 0.2023 0.0700
.67 14.09. 0.1459 0.1459. 0.1576. 0.0700.
68 14.09; 0.1459 0.1576 0.1763 0.0700
69 _14.0 9_ 0_._L45.9_ 0.1763. „0..216 0_ 0.0700
70 14.09 0.1459 0.2160 0.2285 0.0700

J__ 14.09 0.1459_ 0.2285_ 0.2347 0.0700
72 14.09 0.1459 0.2347 0.2378 0.0700

7.3- 13.22 0.0770 0.0770. 0.113JL 0.0700.

74 13.22 0.0770 0.1130 0.1451 0.0700
75 ' 13.22 „0.0770 . 0.145L. _0. 1720. 0.0700
76 13.22 0.0770 0.1720 0.1900 0.0700
77 13.22 0.0770 0.1900 0.2180 0.0700
78 13.22 0.0770 0.2180 0.2250 0.0700
79 12.19 0.0955 0.0955 0.1486 0.0700
80 12.19 JL..0 955_ .0.1486_ J1....16 7 5 0.0700
81 12.19 0.0955 0.1675 0.1902 6.0700
82 12.19 0.0955 0.1902_ 0.2220 0.0700
83 12.19 0.0955 0.2220 0.2558 0.0700
84 12.19 0.0955 0.2558_ 0.2658 0.0700
85 13.65 0.1316 0.1316 0.1415 0.0700
86 13.65. 0.1316 0.1415_ _0_..155 6 0.0700
87 13.65 0.1316 0.1556 G.1758 0.0700
88 13.65 0.1316 0.1758. 0.2109 0.0700
89 13.65 0.1316 0.2109 0.2345 0.0700
90 13.65 0.1316 0.2345 0.2436 0.0700
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PROPYLENE GLYCOL
•

w 1 u Q T P

1 6.0 6.0 0. 0.900 84.00 734.00

2 6.0 6.0 0. 0.900 84.00 734.00

3 6.0 6.0 0. . 0.900 84.00 734.00

_4_ 6.0 6.0. o. 0.900 84.00 734.00

5 6.0 6.0 0. 0.900 84.00 734.00

6 6.0 6.0 0.. ..0.9 0. _84.0 0.
734.00

*-*

7 6. 6.0 0. 0.900 84.20 738.00

8
9

6.0
6.0

6.0
6.0

0. 0.900
0.900

84.20
84.20

738.00
738.000.

10 6.0 6.0 0. 0.900 84.20 733.00

11 6.0 6.0 0. 0.900 84.20 733.00

12 6.0 6.0 0. _0.._900 .84.2.0. 738.00

13 6. 6.0 0. 0.900 77.40 737.00

15

6.0
6.0

6 ... 0.

6.0
0. 0.90 0.

0.900
77.40
77.40

737.00
737.000.

16
17

6.^0

6.0
6.0
6.0

0. 0.900
0.900

77.40
77.40

737.00
737.00• 0.

18 .6 . 6.0 0. 0.900 77.40 737.00
PI Tn -

19 6.0 6.0 728. 0Q 3.850 80.40 738. 00

20 6.0 6.0, 728.0 3.850 80.40 .73 8.0.0

21- 6.0 6.0 728. GO 3.850 80.40 738.00

22
23

6.0
6.0

6.0
6.0

728.00
728.00

3.850
3.850

80.40
80.40

738.00
738.00

_2.4_ 6.J) 6...0. 728.00 3.850 _8 0.4 738.00

25 6.0 6.0 924.60 3.850 84.20 735.20

26_ 6. 6.0 924.60 3.850 84.20 735.20.

27 6.0 6.0 924.60 3.850 84.20 735.20

28 6.0 6 .0 924.60 3.8 50 84.20 735.20

29 6.0 6.0 924-60 3.850 84.20 735.20

_30 _6.0 6.0 924.60 .3.85.0 _84.20. 735.20

31 6.0 6.0 1245.80 3.850 86.40 734.40

32 6.0 6.0 1245.80 3.850 86.40 734.40

33 6.0 6.0 1245.80 3.850 86.40 734.40

34 6.0 6.0 ' 1245.80 3.850 86.40 734.40

35
36

6.0
6.0

6.0
6.0

1245.80
1245.8

3.850
3.850

.86.40
86.40

734.40
734.40

37
38

6.0
6.0

_6.0
6.0

2 0.8 .0 0.

208.00
3.850
3.850

79.70
79.70

734.80
734.80

39 .6.0. _6 . .0 208.00 _3..85 79.70 734.80

40 6.0 6.0 203.00 3.850 79.70 734.80

41 6.0 6.0 208.0 0_ 3.850 79.70 734.80

42 6.0 6.0 208.00 3.850 79.70 734.80

43 6.0 6.0 0. 3.850 73.40 741.3

44 6. 6.0 0. 3.850 73.40 741.30

45 6.0 Jl* o .3.85 _73...40 741.30

46 6.0 6.0 0. 3.850 73.40 741.30

47 6.0 6.0 0. 3.850 73.40 741.30
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w 1 u Q T p

48 6.0 6.0 0. 3.850 73.40 741.30
49 6.0 6.0 0. 3.850 77.70 740.20
50 6.0 6.0 0. 3.850 77.70 740.20
51 6.0. 6.0 0. 3.850. 77.70 740.20
52 6.0 6.0 0. 3.850 77.70 740.20
53 6.0 6.0 0. 3.85 77.70 740.20
54 6.0 6.0 0. 3.850 77.70 740.20
55 6. 6.0 148._3 0_ 0.950 80.10 .73 8.10
56 6. 6.0 148.30 0.95 80.10 738. 10

51 6.0 .6.0 _JL4..8.._3.0. 0.9 50. 80.10 738.10
58 6.0 6.0 148.30 0.950 80.10 738.10
59 _6..J> 6.0 148.30 0.950. _8 0^10 738.10
60 6.0 6.0 148.30 0.950 80.10 738. 10

61 6.0 6.0 131.50 0.95 0. 77.20 739.80
62 6.0 6.0 131.50 0.950 77.20 739.80
63 .6. 6.0 131.50 0.95Q .77.20 739.80
64 6.0 6.0 131.50 0.950 77.20 739.80
65. .6 .0 _6..0 131.50 .950 _77_. 2 739.80
66 6.0 6.0 131.50 0.95 77.20 739.80
6_7 6.0 6.0 127.40 0.950 83.10 739.80
68 6.0 6.0 127.40 0.950 83.10 739.80
65. .6 . .6.0 _12 7..AQ. .0...95 .83..J..0 739.80
70 6.0 6.0 127.40 0.950 83.10 739.80

11 _6_,-Q _6_«_Q 127-..40 0.95J). _83..^L0 739.80
72 6.0 6.0 127.40 0.950 83.10 739.80

13. 6.0 .6..0 _JL32_._6 0.950 84.00 735.70
74 6.0 6.0 132.60 0.950 84.00 735.70
75 .6.0 .6.0 __132.6 .0.950 84.0 735.70
76 " 6.0 6.0 132.60 0.950 84.00 735.70
77 6.0 6.0 132.60 0.950 84.00 735.70
78 6.0 6.0 132.60 0.950 84.00 735.70
79 6.0 6.0 153.60 0.950 83.50 731.60

flJL 6.0 6.0 153.60 _0.95 0. 8 3..5 731.60
81 6.0 6.0 153.60 0.950 83.50 731.60
82 6.0 6.0 153.60 0.950 .83.5 731.6
83 6.0 6.0 153.60 0.950 83.50 731.60
84 6.0 6.0 153.60 0.950 A3. 50 731.60
85 6.0 6.0 155.20 0.950 78.30 729.60
86_ 6.0 6.0 155.20 0.950 .78.3 729.60
87 6. 6.0 155.20 0.950 78.30 729.60
88 6.0 6.0 155.20 0.950 78.30 729.60
89 6.0 6.0 155.20 0.950 78.30 729.60
90 6.0 _6.J3. 155._2J. _0 .950 78.30 729.60
91 6.0 6.0 125.00 0.950 81.30 727.50

32. .6...Q. 6.0 JL25..0 0. 0.950 .81.3 0. 727.50
93 6.0 6.0 125.00 0.950 81.30 727.50
94 6.0 6.0 125.00 0.950 „81._3 727.50
95 6.0 . 125 . 00 0.950 81.30 727.50
96 6.0 JuJJ 125-.00 0.95 .81.30. 727.50
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PROPYLENE GLYCOL

Pa X
o

X
i

X
f

1 15.83 0. 0. 0.0123

_2 15.33 .0.. .0.0123 .0.0183.

3 15.83 0. 0.0183 0.0246
4 15.83 0. 0.0246 .0.0 307

5 15.83 0. 0.0307 0.0329

6_ 15.83 0. J. 32 9 .0.0340

7 14.13 0.0143 0.0143 0.0421

8 14.13 0.0143 .0.0421. .0.0494.

9 14.13 0.0143 0.0494 0.0538
10 14.13 0.0143_ 0.0538 0.0640

11 14.13 0.0143 0.0640 0.0771

12 14.13 0.0143 0.0771 _Q_. 8 1

5

13 13.34 0.0713 0.0713 0.0888
14 13.34 0.0713. _0.0 388_ _0..0.9_9Jt

15 13.34 0.0 713 0.0994 0.1077
16 13.34 0.0713 0.1077 0.1140

17 13.34 0.0713 0.1140 0.1225

18 13.34 0.0713 0.1225 .0.12.98.

19 14.69 0. 1035 0.1035 0.1444

20 14.69 ..0.1035 0-1444 .0.15 07.

21. 14.69 0.1035 0.1507 0.1529

22 14.69 . 10.3.5. 0.1.529 _Q.._1340.

23 14.69 0.1035 0.1540 0.1544

_24_ 14.69 0.1035. 0.1544 0.1546.

25 15.89 0.0 343 0.0843 0.1152

_2.6_ 15.89 JL..0 84 3 _0.115.2_ fl-l»>

27 15.89 0.0843 0.1232 0.1270

23. 15.39 0.0843 J3...1270 0.1296.

29 15.89 0.0843 0.1296 0.1317

30, 15.89 0.0.843. 0.1317 _0_. 1333

31 17.00 0.0210 0.0210 0.0269

_32. 17.00 0.0210 .0.0269 0.0568.

33 17.00 0.0210 0.0568 0.0762
34 17.00 0.0210 0.0762 0.0822
35 17.00 0.0210 0.0822 0.0844
36 17.00 0.0210 0.0844 0.0857

3JL 15.84 0. 122Z 0.1222. n. 14U
38 15.84 0.1222 0.1417 0.1485
39 15.84 0.122 2 0.1485 0.1504
40 15.84 0.1222 0.1504 0.1514
41 15.84 0.122.2. . 1514 ..L5.2.0.

42 15.84 0.1222 0.1520 0.1523
.4 3 12.42 0.2 023 0.2 23 .0 . 20 9.5

44 12.42 0.2023 0.2095 0.2140
45 12.42 0.2023 0.2140 0.2174
46 12.42 0.2023 0.2174 0.2204
47 12.42 0.2023 0.2204 0.2247

0.0640
0. 064 0..

0.0640
0.0640
0.0640
.0. 0640
0.0640
0. 64 0.

0.0640
0. 0640
0.0640
.0.0640.
0.0640
.0. 0640
0.0640
0. 64 0.

0. 0640
0..0640.
0.0740
0. 740
0. 0740
0.074
0.0740
.0.0740
0.0700
0.0700
0.0700
0.0700
0.0700
.0.070
0.0700
0.0700
0.070
0.0700
0.0700
0.0700
0.0700
0.0700
0.0 70
0.0700
0.0700
0.0700
0. 07Q
0.0700
0.0700
0.0700
0.0700
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PA
X.
i .

X
f

t

48 12.42 0.2023 0.2247 0.2306 0.0700
49 12.70 0.1224 0.1224 0.1575 0.0700 •

50 12.70 0.1224 0.1575 0.1692 0.0700

51 12.70 0.1224 0.1692 J). 1708 0.0700..

52 12.70 0.1224 0.1708 0.1780 0.0700

53 12.70 0.1224 0.1780 0. 1935. 0.0700

54 12.70 0.1224 0.1935 0.1970 0.0700

_____ 1 2 . 34 0.0830 0.0830.. .0.117 0.
• . 07.0

56 12.34 0.0 830 0.1170 0.1475 0.0700

57 12.34 0.0830 0.1475 J). 1710 0.0700.

. 58 12.34 0.0830 0.1710 0. 1820 0.0700

59 12.34 0.0830 0.1820 0.1870 0.0700

60 12.34 0.0830 0.1870 0.1882 0.0700

_6.t. 11.13 0.0742 J). 0742. .0 .1 1 15. 0.0700

62 11.13 0.0742 0.1115 0. 1445 0.0700

63. 11.13 0.0742 0.1445 0. I 570 .0. 0700

64 11.13 0.0742 0.1670 0.1770 0.0700

65 11.13 0.0742 0.1770 . 1 7 8 5_ . 7 0_

66 11.13 0.0742 0.1785 0.1832 0.0700

6 7 13.12 0.0 760. 0.0760 0.1115 0.0700

68 13.12 0.0760 0.1115 0.1340 0.0700

69 13.12 0.0760 0.1340 0..149JL 0.0700.

70 13.12 0.0760 0.1490 0. 1600 0.0700

71 13.12 0.0760 0.1600 0.1750 0.0700

72 13.12 0.0 760 0.1750 0.1790 0.0700

73. 14.09 0.1700 0.1700 0.177 0.0700.

74 14.09 0.1700 0.1770 0. 1810 0.0 7

75 14.09 0.1700 0.1810 0.1830 0.0700. •

76 14.09 0.1700 0.1830 . 0.1840 0.0700

77 14.09 0.1700 0. 1840 0. 1850 0.0700

78 14.09 . 0.1700 0.1850 0_._186 0_ 0.0700

79 13.22 0.0991 0.0991 0.1200 0.0700

80 13.22 0.0 99L 0.1200. 0.1370 0.07 0.

81 13.22 0.0991 0.1370 0.1460 0.0700

.82_ .13.22 JL..0 991. ..0.146Q. .0^.1520- 0. 07

83 13.22 0.0991 0.1520 0.1560 0. 0700

84 13.22 0.0991 0.156 0. 0..1580_ 0.0700

85 12.19 0.0742 0.0742 0.1285 0.0700

86 12.19 0.0742
J). 128 5 .0.1417 0. 07 0.

87 12.19 0.0742 0.1417 0.1493 0.0700

88 _12.19 _0.0 742. .0.1493 0.155.0. . 7

89 12.19 0.0742 0.1550 0.1987 0. 0700

90 12.19 J0..0 742 J___1_>__L 0_.2 0.86_ 0.0700.

91 13.65 0.0845 0.0845 0.1332 0. 0700

92 13.65 _0_.0 845 0. 1332 0_O4_48. C.07C0

93 13.65 0.0845 0.1448 0.1500 0.0700

_94_ 13.65 0. 0845 .0.1500. .0.1590 0.0700

95 13.65 0.0 845 0.1590 0.1765 0.0700

96 13.65 0.0845 0.1765 0.188 2 0.0700
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Two-phase mats transfer was studied in which water was absorbed from

air with ethylene glycol and propylene glycol.

Equipment was designed to enable a large quantity of low concentration

vapor to he brought into contact with the absorbing liquid. The contact

equipment consisted of a vertical, flat plate which supported a liquid

surface.

Dimensional analysis was used to pro ride a model with which to correlate

the absorption data. The correlation was performed by the least squares

method on the linearised model.

Statistical analysis of the correlated data showed that the model

selected does not provide a complete explanation of the variation in the

data. The coefficient of determination, H2 , which is a measure of how well

the model explains variation in the data, is 3?.l£ for ethylene glycol and

28.-0 for propylene glycol. The low values of a2 indicates that further

study should be done to provide a better model.


