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NOMENCLATURE

S stress, pounds per square inch

b distance from neutral axis to outer fiber, inches

I section moment of inertia, inches to the fourth power

P bending load, pounds

L length, inches

m mass, slugs

c coefficient of viscous daniping, pound-seconds per inch

k spring constant, pounds per inch

X amplitude of vibration, inches

t time, seconds

cu damped natural frequency, radians per second

n number of cycles

S logarithmic decrement, dimensionless

Ln natural logarithm

A^ initial amnlitude, millimeters
o

A^ amplitude after n cycles, millimeters

A amplification factor, dimensionless

X amplitude of vibration at resonance, inches
res

X amolitude at zero frequency, inches
st

^ damping factor, dijT,ensionless

C critical dashpot constant, pounds-seconds per inch
c

C -- equivalent dashpot constant, pounds-seconds per inch

IV



F force, pounds

Q quality factor, drr.ensionless

W stored energy, inch-pounds

D specific da.'nping energy, inch-po\inds per cubic inch per cycle

E» elastic modulus, poxinds per square inch

E" dissipative elastic modulus, pounds per square inch

f undamped natural frequency, radians per second
o



INTRODUCTION

The amplitude of s. free vibrating system will diminish in time and the

rate at vhich this motion is depleted is the damping. This damping is a

resiilt of the energy dissipated by the material and other effects while vmder

cyclic stress. The many parameters affecting damping have not been described

analytically because of no known relationships among them. All work done

in this area has been in isolating a few of the param.eters involved and

obtaining trends in the damping capacity of materials.

The engineering significance of the damping properties of uniform

solid materials has been studied for almost two hundred years. In 178U

Coulomb l^lj speculated on the microstructural m.echanisms of damping

and performed experiments showing that damping under torsional oscillations

was caused by internal losses in the m.aterial.

The study of damping in solids expanded rapidly because of its

engineering applications. It was soon realized that the optimization of

total damping with a structural system provides a useful concept for

controlling resonant frequencies. Lazan ll2j reports that the basic

approach used thus far is to determine the unit properties of materials

by testing simple specimens under simplified conditions and the idealization

of the properties or the formulation of equations. Then an analysis can be made

of local stress, strain, temperature, and so on, in a nonhomogeneously

loaded part or configuration to determine both localized and gross behavior,

»• Numbers in brackets designate references at the end of this report.



Lazan [[ 31 also reports that mr.terial damping displays a variety of

behavioral patterns. In general, damping is highly nonlinear and not

representable by a viscous damping model. However, if generalizations are

made, it is important to define clearly the scope of the testing conditions.

The successful engineering utilization of damping as an important

design property is dependent on the success of the damping research being

conducted. Before this can be accomplished, the proper interpretation and

effective utilization of damping data in engineering situations requires

more general theories and computational procedures than are presently

available.



DISCUSSION OF PROBLEM CONSIDERED

The purpose of this report is to isolate the effects of pressure and

frequency on the damping of a cantilever bear.. This was done by holding

constant all but one of the variables that change the damping capacity of

a vibrating member.

The large number of parameters that change the damping of a

vibrating system are apparently unrelated. It is generally knovn how

these parameters individually affect the damping, but a correlation among

them remains unknown. Later in this chapter, each parameter is discussed

separately.

It is necessary to define damping in an analj-tical manner. The usual

approach is. based on the decay rate of a vibrating system. The method

used in this experiment for defining damping is the logarithmic decrement.

A description of this method and others are presented later in thJ.s

chapter.

Factors Affecting Damping

The major parameters that affect damping are listed below with

their known trends,

1. Stress Amplitude: The most important variable affecting internal

friction in solids is the stress or strain amplitude of the cyclic action.

Rowett CUH as well as others have noted in their experiments that the

damping capacity varied as the third power of the stress amplitude.

2. Stress Distribution: Damping change due to different stress



distributions in a vibrating system h-.s also been noted. For this reason,

most experiments have been conducted on thin walled tubes to give a

uniform stress throughout the specimen when it is subjected to a torsional

stress.

3. Temperature: The internal damping increases as the temperat'jre is

increased in most materials. Hatfield, Stanfield, and Rotherham C5D

showed that the specific damping capacity increased rapidly with increase

in temperature.

U. Stress History: The dependence of damping on prior stress history

has been observed. Most materials show an increase in damping under cyclic

stress, but exceptions have shown the opposite effect. In practically

all structural materials, however, the stress history effect is very small

until the stress approaches or exceeds the fatigue strength of the material

and then the change in damping with number of fatigue cycles may become

pronounced.

5, Magnetostrictive Damping; Anderson \I6J showed that if a

ferromagnetic material is placed in a magnetic field, the internal damping

will decrease Tontil the specimen has been saturated. Some reports indicate

that this decrease in damping can be as large as half of the total internal

damping in certain materials. Specimens have also been placed in an

alternating magnetic field and this also decreased the internal damping.

6. Pressure and Frequency: The effects of pressure and frequency on the

damping of a vibrating system are the parameters discussed in this

experiment. The development and discussion of their effects are presented

in later chapters.



Methods of Definir.i^ Damping

Almost all descriptions of damping are derived from the linear single

degree of freedon system with a viscous damper in parallel with the spring.

Plunkett C3l] gives the six major descriptions used and the relationships

among them.

1, Logarithmic Decrement: This method of defining damping is the one

most commonly used. It is based on the concept of energy dissipated per

cycle of vibration. For a system that is vibrating in a single mode shape,

the frequency is a determined quantity and the energy loss per cycle is a

function only of amplitude or stress level. The equation used is

5 » 1 Ln A (See Aptjendix A). (1)

n A
n

2, Amplification Factor: If a constant sinusoidal excitation force

is applied with gradually increasing frequency, it is found that the

amplitude of vibration steadily increases to a maximum and then decreases as

the frequency is further increases. There is one value of frequency, near

where the am-plitude is a maximum, at which the applied force is exactly in

phase with the vibrating velocity. The applied force is then completely

dissipated in dam.ping at the resulting amplitude and this amplitude is a

measure of damping. The ratio between the vibrational amplitude at resonance

and that at zero frequency is the amplification factor. The equation used is

j;^ - A . (2)

^-st

3, Equivalent Dashpot Constant: The damping factor is expressed in

terms of critical damping. The equation used is j *" C (3)

*

C
c



where C »„ - F and C « 2 ^TST

res

U. Quality Factor: If the amplitude is constant, the sum of the

kinetic and potential energies is almost constant, and the energy stored may

be measured by the maximum value of either one. The quality factor is defined

in terms of the ratio of the energy dissipated to the energy stored. The

equation is Q •= 2tTW ,

AW
(U)

vhere AW is the energy supplied to the system per cycle by the external

force.

5, Complex Modulus: The complex spring constant is defined in terms

of the steady state response to forced vibration. The real part is that portion

of the spring force in phase with the displacement divided by the

resulting displacement, and the imaginary part is that part in quadrature

divided by the displacement. The specific damping energy is

D " 2TrE" W . (5)

6, Bandwith: This method is based on the difference in the two

frequencies at which the amplitude is the same if the exciting force is the

same. The equation is 2 ^ » A_f , (6)

f

where Af is the difference between the two frequencies at which the

amplitude is x •

The relationships among the various definitions of damping may be

established only for a linear single degree of freedom system. The

comparison is ^ " 1_ " Af = S_ = B'

'

° 1 • (7)

2Q 2r 2rr 22' 2A
o



other methods of expressing dcmring which are less used are:

1. A frequency phase method C7ll

2, A loss factor C8J

3» Bluntness of resonance curve CS]]

h» Specific damping capacity CS"!!



PAIL'iKETERS STUDIED

Effects of Pressure on Damping

The effect of air pressure on the damping of a vibrating system has

been known for some time. The vibrating cantilever beam displaces air as

it is cycled. Some air flow around the beam is produced and both a viscous

drag and pressure drag is produced by the vibrating system.

In a report published by Baker and Allen £93 ^^ was found that the

pressure drag air damping is proportional to amplitude and that viscous drag

air damping is independent of amplitude. Both the analytical solution and

experimental results show that damping is a linear fixnction of air pressure.

As the air pressure is decreased, the damping also decreased until a

level is reached where air has no more effect on the damping. KcWithey

and Hayduk ClOU showed that the damping caused by air pressure drag and

viscous air drag may become a significant portion of the damping present at

atmospheric pressure. These contributions to damping become negligible

below a pressure of 0.3 inches of m.ercury.

The two reports listed above are in agreement on the effect of pressure

on damping of cantilever beams. However, a disagreement arises on the

pressure at which damping has no effect on a vibrating system. Since both

reports used different sized specimen for their e:q)erim.ents , they indicate

that the damping due to pressure is dependent on the size or effective flat

plate area of the specimen. Both reports do agree that a pressure was reached

where no effect on damping is observed. Balcer and Allen {^93 derived a

relationship where the effect of air pressure can be predicted from the size

8



of the specimen. KcWithey and Haydiok Tiol] also noted that once a

pressure is reached so the effect of air on daiiping is negligible, the

vacuum environment has no significant effect on the damping characteristics

of a vibrating beam.

Effects of Frequency on Damping

The effect of frequency on the damping of a vibrating bean is not

entirely established. A disagreement of the frequency effect is apparent

in the literature surveyed,

Kimball and Lovell Til] state that over a considerable frequency

range and stress amplitude for a nvunber of solids of different physical

properties > the frictional loss per cycle of stress at a point in the

solid is independent of the frequency, Foppl Ul23 also found that there

is no frequency effect except at very low frequencies for materials subject

to creep when the frequency is so low that the strain velocity is of the

same order of magnitude as the creep velocity. A report by Robertson and

Yorgiadis C^3~} also shows that damping is independent of frequency.

The above experimenters performed their tests using tubes in torsion.

This provided a constant stress level throughout the specimen, Ockleston

ClUl and other investigators found a slight frequency effect on damping

when vibrating a beam. The vibrating beam does not have a constant stress

level throughout the specimen and therefore the measurements recorded at

different frequencies were not necessarily at the same stress amplitude.



EXPKRIMENT.^L PROCEDURE

The two test specimens chosen for this experdjnent were a 3/8 inch by

2 inch mild steel bar, hereafter referred to as the "large bean", and a

3/16 inch by Zfh inch bar hereafter referred to as the "snail beam". Both

the large and snail beans were used for the pressure effects tests. Only

the small beam was used for the frequency tests.

Both pressure and frequency tests specimens were mounted securely to a

support inside a vacuum tank. The beams used durLng the pressure tests were

mounted in a 8 inch by U inch support hereafter referred to as the "small

support". The small bean used for frequency tests was mounted in a 23 inch

by U inch support hereafter referred to as the "large support". An electric

coil was also mounted inside the vacuum tank to provide a magnetic field,

A strain gage was mounted on the beam next to the support before

each test. The gage output was recorded directly on a Sanborn Recorder,

See Appendix B for the complete list of equipment used.

The tests conducted to find the effect of pressure on damping were done

on both the small bean and the large bean. The experimental procedure that

follows is for both beans unless otherwise noted.

Both the small beam and large beam were tested at a constant stress

level. The large bean tests were conducted at a stress level of 3000

pounds per square inch. Due to the limited amount of deflection possible

in the vacuum tank, the small beam was tested at a stress level of 1000

pounds per square inch.

10
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The recorder and strain gage amplifier were first balanced. The strain

gage was then calibrated with the recorder to read stress as a function of

recorder stylus displacement (See Appendix C). Preliminary tests were then

conducted to determine the saturation magnetization current needed to insure

that sufficient field strength existed to align the domains of the two

specimens (See Appendix D). Before each test, the recorder and amplifier

were rebalanced and the calibration procedure was repeated.

The vacuum tank was then evacuated to a pressure of 700 microns. The

beams were then vibrated and the output of the strain gages was recorded.

The pressure in the vacuum tank was increased and the above procedure

repeated. A minimum of two recordings of the vibration was taken at each

pressure. At pressures where the data points did not conform to the trend

established, the tests were repeated and better results were obtained. All

tests were conducted at room temperature, approximately 70 degrees F,

The increments of pressure increase in the vacutm tank varied from

100 microns in the lower pressure range to 1 inch of mercury in the higher

pressure range. All tests were conducted with the specimen in a saturated

magnetic field.

The tests conducted to find the effect of frequency on damping were

performed on the small beam in the large support. The apparatus was

balanced, calibrated, and tests were run to determine required saturation

magnetization current.

The beam was then placed in the large support, vibrated, and the

results recorded. The length of the large support was then shortened to

change the frequency of the beam. The above procedure was then repeated.

All tests were conducted at room temperature and at a stress level of 1000



12

pounds per square inch. The pressure in the tank during these tests was no

greater than 1000 microns. Preliminary tests were also run to insure that

damping due to air vas not present. A minlrnum of 8 tests were conducted at

each frequency.



RESULTS AND DISCUSSION

The test results show conclusively that at a stress level of 3000 or

1000 pounds per square inch, pressure does have an effect on the damping of

the two test specimen. Both the large beam and the small beam show a

decrease in damping as the pressure is reduced. The damping, measured by

the logarithmic decrement, decreases in a linear marjier as the pressure is

reduced.

Several differences between the plot of pressure versus logarithmic

decrement for the large beam (Figure 1), and the plot of pressure versus

logarithmic decrement for the small beam (Figure 2) are as follows:

1, The straight line portion of the graph for the large beam ends

around 10 pounds per square inch pressure while the straight line ends

around U pounds per square inch for the small beam. These results indicate

that the damping due to pressure is dependent on the shape and size of the

beam.

2, The decrease in damping of the small beam is greater than that of

the large beam over the pressxire range. This was observed because the small

beam was excited at a larger amplitude to obtain the 1000 pounds per square

inch stress level.

Below a pressure of 10 pounds per square inch for the large beam, and

U pounds per square inch for the small beam, the damping approaches a

constant value. This result is anticipated since the density of the air

media is becoming very small. The effect of damping due to air pressure is

not present in either test specimen below a pressure of 0.1 inch of mercury.

13



Figure 3 shows a plot, of pressxire in the low range versus logarithmic

decrement for the small beam. For the large beam, a sijnilar cirrve can be

drawn.

In all cases in this phase of the experiment, the logarithmic

decrement was used to measure damping, with n being equal to $0o

lU
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The results of the damping effect due to frequency tests show that for

the vibrating small beam at a stress level of lOCO po-onds per sq^oare inch,

a change in beam frequency does change the internal damping of the beam.

This result is shown in Figure U.

In this phase of the experiment, the logarithmic decrement was used to

measure internal damping. The value of n was adjusted so that the stress

level was 1000 pounds per square inch at Aq and 700 pounds per square inch

at A^, The gain was adjusted on the Sanborn Recorder so that the same

indicated amplitude corresponded to the stress level desired in each case.

The logarithmic decrement was calculated using the formula

£ = 1 Ln A,^ (See Appendix A) (1)

in all tests.

The highest fundamental frequency obtained during these tests was

15 #65 cycles per second, tdiich was well withiJi the frequency response

range of the recording instrument.
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CONCLUSION

This experiment demonstrates that air pressure has an effect on the

damping of a cantilever bean. The damping decreases in a linear manner

as the pressure is decreased. In both specimen tested, the air pressure

ceases to have an effect on damping below 0.1 inch of mercury.

It is also apparent from this experiment that frequency has an effect

on the internal damping of a cantilever beam. The damping of the material

tested shows a decrease as the frequency is decreased. These tests are not

conclusive because the vibrating cantilever beam does not have a constant

stress distribution. A damping effect due to the nature of the stress

may be present.

Much work needs to be performed on finding the true damping characteristics

of different materials. This is a definite prerequisite before a correlation

can be made among all the causes of damping in materials.

20
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APPEl^^DIX A

DERIVATION OF LOGARITHMIC DECREMENT

Friction may be presented in various forms in mechanical systems. The

quantitative description of friction in a system is much more difficult than

that of the elastic or the inertial properties of the system. Therefore

the treatment of friction or damping in vibration is approached from the

point of view of convenience. Introduced largely for this reason, the term

"viscous damping" specifies that the damping force is proportional to the

velocity of the motion. This type of damping occurs when the resisting

force is due to viscous resistance in a fluid medium such as the fluid

friction in an ideal dashpot.

The general equation for a free damped vibration of a simple spring

mass system is

nii + ci + kx = . ZlSl (8)

The standard solution of a differential equation of this type is to assume

a solution of the form

where r and r are the two roots of the auxiliary equation
1 2

mr^ + cr + k = , Cl6ll (10)

and C and Cp are arbitrary constants. The solution of equation (10) gives

the two roots as

2U



2$

r - -c + 1 Jfcf - Uk
'

.
(11)

1,2 ^ - 2 VU/ m

Equation (11) simplifies to

r-j-c+l^-AJc^-Uto. (12)

1>2 2ra
" 2m

If the algebraic sign of 'Vc^ - him is positive, then the motion given by

equation (9) represents a gradual subsidence since the exponents are both

negative and decreasing with increasing tdjne. Therefore, the displacement

x(t) approaches the equilibrium position asymptotically.

If ^c^ - Ulcn « 0, then the system is critically damped and the

displacement again approaches the equilibrium position asymptotically.

If 4c^ - U>3n is negative, the roots r.j_ and r^ are a pair of complex

conjugates with negative real parts. The roots are

(13)

2m " 2n

where i » Y-1 • r r
If we now define the damped natural frequency a» to be "1/ U^^n - c ,

then the following simplifications are

c_t i^.^ |_t i^t
- 2m ^ 2m 2n - 2p.

x-C^e e +C2ee ,
(la)

"1

- 2m

X - e

and c
^

Pc, (cos cut + i sin ^t) * C (cos uj_^ - i sin co.t)
1

f d^)
L -^

2m 2m
'^

2m 2m J

X e

-2m _
(C + C )cos co,^ + i(C - C2)sin cu^ 1 ,

(l6)

1 '^ 2m 2m J
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or

- 2:n _
X » e Acos 6o_^ + Bi sin ai^~| > (17)

L 2in 2iri J

where A - C^ + Cg and B = C^ - C • (18)

We now consider the amplitude at some tine t and at a later time

t + T, where T is the period of vibration and is

T » 2_Tr . (19)
CO

From equation (17 )» the result of the ratio is

^t
- 2m

x(t) - e , . (20)

^^^ * ^T-* £^(t + nT)
- dm

e

where n is the nvmber of cycles. Equation (20) is true because

cos ujj^ " cos uj^u + nT) * (21)
2ni 2m

and

sin cu^ » sin u^(^ + nT) • (22)
2m 2m

The ratio then becomes

or

x(t)
x(t +

C3

nT)

r L^L- 2ra

e

+

2m
C7f n~[
cu m_

x(t)
x(t + nT)

cTfn

e •

But

(23)

(21;)

CTfn"Ln/x(t) "j , (25)^ m 1 x(t + nT)/
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cTf 1 Ln /x(t) \ • (26)
a; m n I x(t + nl)/

The logarithmic decrement, S , is defined as

S - 1 Ln fx{t)_\ , (1)

n \x(t + nT)

err

Ln e «= cTfJ - Ln e «= err . (27)



APPENDIX B

EQUIR'lENT LIST

The following is a list of equipment and measuring instrvments used for

this experiment. An explanation of the experimental equipm.ent is given to

clarify the figures. The numbers refer to the notation on Figures 5> 6,

and 7.

1, Vacuum Tank; A 12 inch inside diameter pipe U feet long. Both ends

are sealed by an 0-ring and a 15 inch square 3/Ii inch thick glass plate.

2, DC Povrer Supply: Consolidated Electrodynamics Corporation,

Type 3-131, variable range up to U.5 amperes at 31 volts, M.E. no. l66U.

This power supply was used in the frequency tests.

3, DC Power Supply: Electronic Instrument Company, model no, lC6u,

serial no. 6812, M.E. no. 3555* This power supply was used when testing with

the small support only.

h» Sanborn Recorder: Model no. 127, serial no, 1352, with Sanborn

Strain Gage Amplifier, model no, lliOB, serial no, 7U, M.E. no. 1067.

5, DC Ammeter: Weston model 901, no, 106, M,E. no, 13U8, ajmp,

to 10 amp, full scale.

6, Actuator: A 3/l6 inch diameter brass welding rod with an 0-ring

seal, hand operated. The actuator excites the beam by a displacement and

release method,

7, Mercury Manometer: King Manometer, model BUS 36, King Engineering

Corporation, -M.E, no, 3663,
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8, Vacuum Pump: Disto-Pump, model no, 1399, serial no, 3539, Welch

Scientific Company,

9, Pirani Vacuum Gage: Type GP-110, Consolidated Electrodynamics

Rochester Division, M.E, no, 1711;. The Pirani Gage was calibrated against

the Mechanical Engineering McLeod Gage,

10, Large Support: Two 3A inch by U inch steel plates 23 inches long,

A l/li inch by 2 inch steel web was welded on the top of the support to

promote rigidity.

11, Sm.all Beam: A 3/I6 inch by 3A inch hot rolled steel bar U3

inches long used for both the pressure and frequency tests,

12, Large Beam: A 3/8 inch by 2 inch hot rolled steel bar U3 inches

long used for the pressure tests,

13, Coil: A 10 inch inside diameter cylinder, 36 inches long, wound

with liiOO turns of wire,

lU, Calibration Weights: 1/5 pound to h pounds,

15. Small Support: Two 3/I1 inch by 1; inch steel plates 8 inches long.

The strain gages used were Budd Metalfilm Strain Gages, type C6-121,

1/8 inch gage length. The gages were bonded with Eastman 910 Adhesive,
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APPENDIX C

CALIBRATION PROCEDURE

The naximTim stress in a cantilever beam is a function of the load and

the beam characteristics. For the cantilever beam loaded at the. end, the

maximum stress is given by

S •» Mb = PLb , (28)
I I

For the large beam, the moment of inertia v:as 0.00879 in., the beam

length was 35.375 inches, and b was 3/l6 inch. Using these values, the

stress-load relationship was found to be

S « 75U P . (29)

For the small beam, the moment of inertia was O.OOOUI3 in,, the beam

length was 35.313 inches, and b was 3/32 inch. The stress-load relationship

was S " 800 P , (30)

The length of the small beam was changed during the frequency tests.

The stress-load relationship found for these cases was

S = 22.7 PL . (31)

Before each test, the beam was loaded progressively from 1/5 pound

to U pounds. The resulting strain from this loading was measured by a

strain gage mounted on the beam next to the support and recorded as a

deflection on the Sanborn recorder. This gave a direct relationship between

the maximum stress on the beam and a deflection on the recorder. After

calibration, the recorder deflection is independent of the gage factor and

33
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temperature of the strain gage and all other strain gage or recorder

characteristics

.

Calibration c\jrves were made for each case. Figure 8 is the calibration

curve for the large beam in the small support. Figure 9 is for the small

beam in the small support. Figure 10 is a typical calibration curve for

the small beam in the large support.
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APPENDIX D

DETERMINATION OF MAGNETIC SATURATION

Before the tests could be conducted, it vas necessary to show that

the magnetic field was strong enough to completely align the domains in

the beams to insure magnetic saturation. This was done by increasing the

current flowing through the coil and ploting magnetization current versus

logarithmic decrement.

In the cases when the small support was used, saturation cxirrent was

approximately 2,5 amperes. All tests were then conducted with 3 •3 amperes

flowing through the coil.

When the large support was used, the saturation level was approximately

3,5 amperes. All tests using the large support had lj.,5 amperes flowing

through the coil.

Figure 11 shows the magnetization curve of the large beam in the small

support. Figure 12 shows the magnetization curve of the sm.all beam in the

small support. Figure 13 shows the magnetization curve of the small beam

in the large support.

Saturation tests were not conducted for the cases when some of the

metal on the large support was removed to change the frequency of the beam.

However, the current was maintained at k-S amperes to instire saturation*
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Figure 12 Saturation Ciorrent versus Logarithmic Decrement,
Small Beam in Snail Support,
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APPENDIX E

TYPICAL DATA

Calibration Data: S = 75U P , where P is the load in potinds.

Load, lbs. Deflection, mm. Stress, _psi

O.U 2.0 301

1.0 U.3 75U

l.U 5.7 1055

2.0 8.8 1503

2.U 9.1 1660

3.0 11.1 2262

U.o 15.0 3016

Experimental Data: For snail beam in small support, 3.3 amperes

magnetization current.

Pressure, in. stress, psi Ao

29.00 1000 33.2
27.00 1000 ^•;>.5

25.00 1000 32.9
23.00 1000 33.5
21.00 1000 33.2

19.00 1000 33.3
17.00 1030 33.0
15.00 1000 33.2
13.00 1000 33.U
11.00 1000 33.U

9.00 1000 33.3
7.00 1000 33.

h

5.00 1000 33.0
3.00 1000 32.9
1.00 1000 33.^

0.06 1000 33.0
o.ou 1000 33.1

An B 50 g

19.8
20.0
20.2
20.6
21.0

21.1
21.2

21.7
22.0
22.3

22.3
22.7

23.1
23.2

23.9

23.7
23 o7

50 0.519
50 0.516
50 O.U88
50 O..U86

50 0.1;57

50 O.U56
50 0.uii3

50 O.U25
50 o.m
50 O.UOli

50 o.Uoo
50 0.385

50 0.356
50 0.3U8
50 0.336

50 0.335
50 0.335
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