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Abstract 

Nutrition from whole grains has become an integral part of a healthy diet.  Consumers are 

focused on adding fiber and whole grains to be healthy and want the benefits of whole grain with 

the taste and appearance of refined flour.  A review of current commercial whole wheat flour in 

the marketplace indicated many options for food processors to use.  However, many of these 

options required processing changes and added ingredients to provide the consumer with a 

quality product.  A milling and baking study was done to compare commercially and 

experimentally milled whole wheat flours from both white and red wheat varieties.  Both white 

and red wheat varieties were kept identity preserved.  Experimental milling was done with a 

hammer mill and a roll stand to closely replicate the commercial milling process.  Baking was 

done using a sponge and dough method to closely replicate commercial baking conditions.  The 

results showed both particle size and wheat variety impact bake performance of whole wheat 

flour.  The most significant impact appeared to be dependent on the variety of wheat being 

milled.  The milling process also had an impact.  As particle size decreased, bake functionality 

improved.   However, some decreased functionality was seen when particle size became very 

fine.  It was concluded that additional work on a commercial flour mill needed to be done to 

determine if an optimal particle size for milling whole wheat flour exists.  Experimental milling 

equipment was not adequate enough to replicate particle size distributions of commercial whole 

wheat mills.   
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Chapter 1 - Literature Review 

 Introduction 

Current literature on whole wheat is scarce on the milling process of whole wheat, 

process improvements, and baking quality studies.  However, some general work has been done 

around support areas of this topic.  Three general areas of research have been identified:  whole 

grain nutrition and its importance in today’s dietary guidelines, baking with fiber and whole 

grain components, and certain technical aspects of adding fiber into the consumer diet to 

improve nutrition.  These areas support the general knowledge and understanding of milling, 

nutrition, and baking with fiber products.  However, they do not focus directly on how whole 

wheat flour is milled today, whole wheat particle size and impact on baking quality, and viable 

solutions to improve whole wheat flour functionality. 

By focusing on more specific research on whole-wheat flour milling and whole-grain 

baking, it is believed that this additional information would provide direction for the wheat 

milling industry, wheat breeding industry, and baking industry to provide a line of products that 

would meet the demand for increased fiber in today’s consumer diet.  A product line that would 

not diminish baking functionality and still deliver whole wheat nutrition with the functionality of 

white flour would benefit both the manufacturer and consumer.  This, along with a decreased 

manufacturing cost would potentially make this product more affordable and provide consumers 

with a lower costing whole grain alternative. 

 Impacts and Attributes of Milling Techniques 

  An area of milling that is often overlooked is the different types of mills available to 

reduce particle size and create unique and differentiated products.   The technical manual “Wheat 
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Flour Milling”, Posner and Hibbs (2005), provided a good overview of the grinding process and 

the machinery involved.  The grinding process is the most important step in milling.  The way 

that the kernel is broken impacts the remainder of the grinding and reduction processes.  The 

amount of energy used to break apart the kernel and reduce particle size in conventional flour 

milling is 50% of the power used in the milling process.  The four main forces used in grinding 

are compression, shear, friction/abrasion, and impact (Posner and Hibbs, 2005).  

The stone mill is one of the original mills used for grinding wheat, uses a combination of 

compression, shear, and abrasion.  The grinding action occurs between two stones.  The material 

is fed into the center of the top stone, which is fixed and does not rotate.  The bottom stone is 

driven by a drive mechanism.  The grinding gap between the stones is adjusted with a hand 

adjustment that raises and lowers the stone.  The raw wheat material is then ground between the 

stationary and moving stone and the material is pushed radially to the circumference by grooves 

and furrows cut into the face of the stone.  The ground material is discharged by the rotation 

motion and is conveyed out by the furrows (Posner and Hibbs, 2005). 

The roller mill is the principle grinding machine in a commercial wheat flour mill 

because of its range of selective grinding and ease of operation.  Particles are subject to shear and 

compression forces, caused by corrugations on the roll surfaces and pressure exerted by the rolls 

while pulling particles towards the grinding area.  The amount of stress applied to the particles 

during roller milling may be adjusted according to grinding conditions.  The rate and uniformity 

of the flow of stock to the rolls, roll velocities, ratio of speed known as differential, gaps between 

rolls, and condition of the roll surface impact the type of stress applied. 

The hammer mill is a type of impact mill that is most often used as a machine to break 

flakes and fracture the endosperm, supplementing the roller mill action before sifting.  The 
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hammer mill consists of a number of hammers spaced evenly on a rotating rotor.  The hammer-

rotor chamber is enclosed within a half circle, perforated cylindrical screen, the size of the 

perforations being dictated by the desired product size.  The material enters the top and is 

reduced in size mostly by impact between the hammers and the wall.  It is forced through the 

perforated screen by hammers, creating heat and friction.  This causes the product to be heated 

up and to lose moisture (Posner and Hibbs, 2005). 

Another unique processing step in milling that is being reviewed in today’s milling 

process is wheat pearling.  The wheat pearling article by Mousia and others (2003) reviews how 

removing the outer layer of bran helps with microbial counts and changes particle size of the 

flour. There may be an optimum to pearling, grinding, and reconstituting back in the pearled 

wheat bran after hammer milling to control excessive starch damage or to keep granulation more 

consistent.  Pearling also impacts the way wheat kernels are milled, how they shatter differently, 

and how bran has a negative impact on shelf-life, volume and bake functionality of flour.  Heat 

treatment or stabilization of the bran and germ products may enhance both microbial count 

reduction and shelf-life stability of these products (Mousia and others, 2003).   

Dziski (2008) reviewed methods to reduce energy required for the milling process and a 

way to improve final product particle size. As the hardness level increases, energy required to 

mill increases.  As the hardness level decreases, energy required for processing decreases.  Dry 

kernels are easier to grind and need less energy.  When milling flour, soft wheat has a larger 

distribution of smaller particles than hard wheat.  Dziski (2008) concluded that crushing the 

kernels before the hammer mill process may decrease the energy needed and change particle size 

distribution of the final flour.  A sieve analysis of their study showed that crushing kernels before 

grinding had a large influence on particle size distribution on softer wheat.  Average particle size 
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of ground material from crushed softer wheat was always lower than the whole kernel grind.  

When a hammer mill was used, fineness depended on the screen size used.  Kernel moisture also 

had a significant influence.  Specific grinding energy was most influenced by crushing before 

grinding and the moisture content of the kernels.  Crushing of kernels compared to impact 

grinding resulted in less energy being used.   However, the degree of fineness or finer particles 

produced also was lower (Dziski, 2008). 

Another common question is how the combination of farming practices and milling 

technique impacts the performance of whole wheat flour.  Kihlberg and others (2004) focused on 

whole wheat bread and influence of farming, milling, and baking. The study reviewed six 

samples, all Kosack variety.  Three of the samples were grown organically and three grown with 

conventional methods (Kihlberg and others, 2004).   All six wheat samples were each roller-

milled, stone-milled, and baked using two different mix times for the bread baking test.   

The results showed that conventional versus organic farming contributed to differences as 

well as the location and variety of the wheat that was grown.  Kihlberg and others (2004) 

examined whether organic or non-organic wheat bakes better bread, showing evidence that 

samples from organic wheat baked with higher variability than non-organic samples.  The 

discussion justified that final loaf volume is not the only criterion for acceptance.   

Not many studies have been done around product quality of organic versus non-organic 

whole wheat bread.  Kihlberg and others (2004) explored this issue by performing both a milling 

and baking examination of both organic and non-organic Kosack variety samples.  Roller milling 

and stone milling methods were compared to each other for baking functionality as well.  

Samples were milled, baked, and a sensory analysis was conducted with trained descriptive 

sensory analysis panel, using hard red winter wheat varieties.  For milling, all wheat was 
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tempered to 16% moisture and milled at 100% extraction.  For baking, the study had two flour 

levels for each variable, and two mix times each.  The samples were baked in a no-time dough 

process.  The product was baked, immediately frozen, and then evaluated ten days after the bake.  

The bread was reviewed by a sensory panel, and image analysis was done for review of crumb 

grain structures (Kihlberg and others, 2004). 

Results showed that milling process had the greatest impact on sensory quality over 

farming technique, mixing, and flour addition.  Roller milled wheat had a preferable taste to 

stone milled samples, with attributes of a higher cereal aroma, roasted notes, crispier crust, and a 

less sweet flavor.  The roller milled samples had higher levels of damaged starch, approximately 

7% compared to 3% from stone milled samples (Kihlberg and others, 2004).  Also, roller milled 

samples had approximately 4% higher farinograph absorption levels than stone milled samples.  

Mixing characteristics were different between roller milled and stone milled samples.  Samples 

that were roller milled showed an improvement with increased mixing tolerance from bake 

results (Kihlberg and others, 2004).  The stone milled samples showed a decrease in performance 

and final product volumes. 

The organic wheat had 0.2% higher ash and slightly lower test weights than the 

conventional wheat.  Damaged starch levels increased by approximately 1% (Kihlberg and 

others, 2004).  Enzyme activity increased with roller milled product.  Organic wheat showed 

larger variations in results than conventional grain varieties (Kihlberg and others, 2004).  

One often overlooked aspect of the milling process is the hardness value of the wheat 

being processed.  Osborne and others (2007) reviewed Single Kernel Characterization System 

(SKCS) analysis on milling potential.  This value is used as a quick and efficient way to 

determine grain rheology in wheat development.  These values will impact mill quality 
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performance, how wheat is purchased, how it mills, and the difference between hard and soft 

wheat.  The research showed that the SKCS machine can provide information on wheat varieties 

in breeding programs without the extensive method of dissection and isolation of bran and germ 

tissues and provide results to predict commercial milling quality (Osborne and others, 2007).  

One of the more popular types of whole wheat flour in the marketplace today is an ultra-

fine whole wheat.  Hemery and others (2011) conducted a study focused on ultra fine grinding 

and the milling process and how it impacts nutritive value.  Bran has value in terms of its health 

benefits related to fiber. This fraction represents 15% of the byproduct of wheat flour milling.   

Recent studies show that particle size reduction of those fibers can change their 

functionality from insoluble to soluble fiber types.  In studies using hamsters, this reduced the 

concentration of blood cholesterol, triglycerides, and lipids (Hemery and others, 2011).  It is 

believed that decreasing bran particle size improves digestibility of products and improves the 

solubility of compounds such as B vitamins and ferulic acid for humans (Hemery and others, 

2011).   

Hemery and others (2011) also reviewed grinding temperature and how it impacts the 

granulation of bran produced.  Temperatures reviewed were from ambient (25 °C) to cryogenic 

freezing (-46 °C), showing how grinding characteristics change, and how to make a more finely 

ground product. For the bran grinding study, two varieties were used, Crousty and Tiger hard red 

winter varieties.  The cryogenic freezing grind created finer particles after two minutes of 

grinding, however, between two and eight minutes, grind didn’t change particle size significantly 

(+15%).  Grinding at an ambient temperature showed a gradual and continual particle size 

reduction.  Ambient grinding produced particle size distributions with more ultrafine particles 



7 

 

(+16%) and more coarse particles (+18%) than products ground in cryogenic temperatures 

(Hemery and others, 2011). 

Another trial within this study was done to do ultra-fine grinding at both ambient (25 °C) 

and cryogenic (-46 °C) temperatures.  Several grinding steps were done in succession at ambient 

temperature.  The biochemical composition of the bran samples was not found to be significantly 

changed, except for a noted reduction in amounts of folates and phytic acid.  It is possible that 

some of these compounds were destroyed due to the increased heat present from increased 

grinding and some were lost in the grinding device.  The same process was repeated at the 

cryogenically cooled temperature (-46 °C).  The results show that this cooled grind allowed for 

finer average particle size with less energy required to process.  Also, the cooler temperature 

may help preserve heat-sensitive compounds such as vitamin E, and B in the process.  A finer 

grind with more available surface area may make these compounds more bio-available and 

digestible for improved health benefits (Hemery and others, 2011). 

 Fiber and Whole Grain Baking 

There is limited information on whole wheat baking and whole grain products.  When the 

search was widened to include baking with whole-grain components and with soluble and 

insoluble ingredients, much more information became available.  The challenges of baking with 

fiber and whole grain ingredients are very similar to whole wheat baking.   

Shah and others (2006) focused on xylanase enzyme addition to bread for whole wheat 

baking.  This ingredient may be used as a processing aid to enhance whole wheat baking 

properties as consumer diets evolve and shift to an increase in whole grain consumption.  

Making these breads is more difficult than standard white pan breads.   
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The xylanase enzymes create sugars from pentosans to improve fermentation processes in 

whole wheat breads.  This enhances gas production and improves oven spring, loaf volume, shelf 

life, and crumb structure.  It is important to select the correct type of xylanase from isolates that 

are considered GRAS (Generally Regarded As Safe) (Shaw and others, 2006). 

Shaw and others (2006) performed a whole wheat bread bake with 72% absorption on the 

control sample with no enzyme.  With the addition of enzyme, water absorption was reduced by 

8%, to 64% in the dough system.  A straight dough process with 45 min of fermentation and 45 

min of proofing was used.  Bread was evaluated for volume, final moisture, and a 100 point 

sensory evaluation.  Bread crumb texture profile was also completed with the control and 

enzyme added samples.  From a commercial baking perspective, this would be a problem and 

unwanted by commercial bakers.  A decrease in dough water absorption would add costs to 

overall ingredient usage levels of all dry ingredients and added enzyme usage.  

In dough mixing, an 8% reduction in absorption was needed when the enzyme was 

added.  More free water was created in the bake process with the enzyme, allowing for improved 

gluten hydration and better and final volumes, improving from 300 ml for the control sample to 

460 ml for the sample containing xylanase enzyme.  The final product moisture of the control 

bread was 32.3% compared to 40.5% moisture of the test sample (Shah and others, 2006).  It 

should be noted that the legal requirement for bread by the Food and Drug Administration is 

38% (FDA, 2011a).   

Results of sensory testing showed that the bread with added enzyme was favored in all 

categories of volume, crumb color, texture, grain, appearance, and flavor. The total score from 

sensory testing was a mean score of 42.6 out of 100 for the control sample, compared to a mean 

score of 74.4 out of 100 for the sample supplemented with xylanase.  The texture profile showed 
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a decrease in crumb firmness, less gumminess, and slightly chewy texture with the enzyme 

added.  The background of the sensory panel was unknown and the level of training was not 

identified (Shah and others, 2006).  

Tait and Galliard (1988) focused on the components of whole wheat flour and their 

independent and dependent activity on shelf life and functionality over time.  The study 

concluded that lipase activity in whole wheat flour, while in storage, has a negative impact on 

baking performance.  The decreased shelf-life of whole wheat flour is present because of lipid 

metabolizing enzymes present in the germ and bran.  The researchers tried to correlate changes 

in lipid composition to effects of storage on baking performance.  One of the suggested solutions 

was to develop a test that would easily measure bran lipase activity to give the expected shelf-life 

of whole wheat flour (Tait and Galliard, 1988). 

In the study (Tait and Galliard, 1988) bread was baked from whole wheat flour samples 

and stored over an eight week period at ambient temperature to determine bake performance over 

time.  Whole meal variable-A in the bake test had a higher lipase activity, resulting in more 

volume decrease over time, 526 ml after storage.  Whole meal variable-B in the bake test had a 

lower lipase activity, resulting in less volume decrease over time, 146 ml after storage.  A very 

lean baking formula was used to test these samples with no emulsifiers present. 

Another series of bake tests were conducted by adding fatty acids, oleic, palmitic, and 

linoleic acids directly to the freshly milled whole wheat flour.  Oleic and linoleic acids added to 

the freshly milled flour decreased bread volumes.  The control sample volume was 1369 ml, 

compared to 1155 ml volume with the addition of palmitic and linoleic acids (Tait and Galliard, 

1988).  The addition of palmitic acid showed no change on baked volume.   
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Another similar study was completed by Barnes and Lowy (1986) to understand which of 

the components of whole wheat flour: germ, bran, or endosperm, was the most responsible for 

decreased volume in bread baked from whole wheat flour.  Flour was milled and each of the 

three components of the whole wheat milling process gathered separately.  One sample was 

blended all back together to whole wheat flour, in the proper ratios, and stored at both 20ºC and -

20ºC.  The rest of the components were stored at the same temperatures over a 27-week period.   

The results of this study were unique and different from the previous study.  The 

separated germ, when added back into the whole wheat flour caused no decrease in volume.  

Flour and bran mixtures showed a 5% decrease in loaf volume over time, but not significant 

changes.  When the bake results were compared to the pre-blended whole wheat flour, the pre-

blended flours showed a significant volume loss of 10% over the same storage period (Barnes 

and Lowy, 1986).  From this, it could be concluded that a small level of interaction happens in 

the bread making procedure.  A much larger interaction occurs during storage if all three flour 

components are combined together.  When all three components were combined together, 

volume loss of 27% was recorded.  This had a much larger impact on bake quality than any of 

the other variables reviewed (Barnes and Lowy, 1986). 

Noort and others (2010) focused on the particle size of wheat bran and its impact on 

bread baking quality.  There are contrasting views of how bran particle size impacts bake quality 

of flour.  Some current industry practices used to counteract bran addition include soaking of 

bran, fermentation, and the addition of vital wheat gluten.  Theories such as dilution of gluten, 

hindrance of the gluten network with bran particles, and enzymes released with reducing 

properties in whole wheat bread are some common beliefs about how baking quality is reduced 

in whole wheat flour.  Other theories addressing physical changes, water binding ability of whole 
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wheat flour, and gluten agglomeration properties changing with the presence of ferulic acid were 

discussed (Noort and others, 2010). 

Noort and others (2010) reviewed two bran fractions, wheat bran and aleurone.  

Measurements done on these fractions included particle size, chemical analysis, water binding 

ability, gluten yield, and farinograph or dough rheology results.  Bread bake testing was 

completed.  However, target absorptions used in the bake process were based on farinograph 

absorption values.  A straight dough process with very short fermentation time of 15 min was 

used.   

The baking results showed some unique findings that do not support the previous theories 

discussed.  The addition of the coarse wheat bran had a small impact on loaf volume (-2%), 

indicating that gluten dilution is a minor factor in baking performance.  Noort and others (2010) 

concluded that fiber particles piercing gas cells to be an unlikely hypothesis.  Their results 

showed that gluten re-aggregation is impacted by the fiber fraction and a better explanation for 

lower stability of gas cells in the gluten network.  As the particle size of the bran added 

decreased, the bake volumes also decreased, suggesting that there are negative effects related to 

the increased surface area of the bran being added back into the formula (        .    The 

negative influence of smaller bran size may also be due to the aleurone cells being broken and 

releasing compounds such as enzymes and glutathione, negatively reacting with the gluten 

proteins.  The conclusion was that finer particle size created a greater surface area and more 

gluten interaction with enzymes and fibers.  This created a stiffer and less extensible gluten 

network that decreased final loaf volume by 15% (Noort and others, 2010).  

Ozboy and Koksel (1997) reviewed the impact of coarse wheat bran on baking. Very 

little is known about differences between bran from various wheat varieties and how it impacts 
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baking performance.  They reviewed two Turkish wheat varieties: Bezostaya, a hard red winter 

variety, 13.4% protein; and Gerek, a soft white wheat variety, 11.4% protein.   

Both varieties were milled, and each was added to a bread dough formula at 5, 10, and 

15% based on flour weight.  In addition, vital wheat gluten was added to the formula at 3, 6, and 

9% to compensate for the increased fiber addition.  The samples were baked using a lean straight 

dough process with potassium bromate added at 50 ppm as an oxiding agent.  The water 

absorption used was based off of a farinograph target. 

The results of the study were different than expected.  The addition of Gerek coarse bran 

was seen to strengthen the curve of the farinograph at all gluten and bran addition levels.  The 

Gerek coarse bran improved function in Gerek flour.  The impact of adding Gerek coarse bran 

was studied again using a stronger flour.  The results showed a slight increase at 5 and 10% 

addition (Ozboy and Koksel, 1997). 

All types of bran added to the different dough showed a decrease in volume of bread 

baked.  Because the flour tested was from two different varieties, there were two volume 

potentials.  Bread volume results were normalized as a result.  Ozboy and Koksel (1997) 

concluded that bran addition of Gerek had positive dough rheology impact based on farinograph 

results, increasing development times from 4 min with no bran added, up to 10 min with 15% 

bran added.    

Also, the Gerek wheat bran had a smaller impact on bake performance when compared to 

the Bezostaya variety.  The Gerek variety had a 6% higher normalized volume than the 

Bezostaya when added at levels of 15% to the bread formula (Ozboy and Koksel, 1997). More 

varieties like Gerek could be used as a fiber source to be added back into fiber breads.  The 

conclusion from the study was based only on the farinograph numbers and less on the baking 
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performance so it is difficult to relate the results to actual baking performance (Ozboy and 

Koksel, 1997).  

Kock and others (1999) reviewed the heat treatment and particle size of different bran 

types in whole grain bread.  This study looked at three bran particle sizes from ten wheat 

varieties.  All of the tests were run with a single base flour of 14% protein.  The bran particle 

sizes tested were >0.75 mm, <1.8 mm, and >1.8 mm.  The bran addition levels were 9, 12, and 

15% based on flour weight.  The objective was to prove the concept that the enzymes present in 

bran and glutathione present were the main causes of volume reduction when bran is added to 

wheat flour for commercial bread baking.   

To test this, samples were run with both heat-treated and untreated bran from all of the 

varieties tested.  The results showed that heat-treated bran did significantly improve bake 

performance.  Not all 10 varieties of wheat bran performed equally.  This would suggest that 

some physical attribute difference between the wheat varieties impacted performance (Kock and 

others, 1999). 

The testing showed that without heat treatment, coarser bran particles actually performed 

better and showed a smaller bake volume reduction (92% of control volume with a mean 

projection size of 3.2 mm) than the smaller bran particles (90% of control volume with a mean 

projection size of 0.6 mm).  However, when heat-treated, bran with a finer particle size (92% of 

control volume with a mean projection of 0.6 mm) had similar results in loaf volume than 

coarser bran (92% of control volume with a mean projection of 3.2 mm) (Kock and others, 

1999).   

From the results, it was concluded that heat treatment improves baking quality of wheat 

bran by reducing enzyme function.  Some of the reduction in bake performance is related to 
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physical properties of the wheat bran related to its origin variety.  Heat treatment of finely 

ground wheat bran (mean projection of 0.6 mm) showed a greater improvement than on coarse 

bran (mean projection of 3.2 mm).  The optimal bran to use for fiber addition to multigrain 

breads would then be untreated coarse bran, or finely ground, heat-treated bran (Kock and others, 

1999).  

Some studies focused less on final baking properties and more on rheological tools to 

predict quality of functionality and baking.  Penella and Haros (2008) reviewed the impact of 

wheat bran and enzyme addition on dough rheological properties by performing analysis on the 

farinograph and rheofermentometer.  There was a brief discussion around baking performance, 

however, most of the study focused on dough rheology as a key performance indicator of bread 

baking functionality.   

The farinograph test was used to measure dough rheology and was modified to take into 

account that whole grain dough requires a stiffer dough and higher viscosity to make bread.  The 

target farinograph torque was 700 BU’s, 200 BU’s higher than the standard farinograph test 

method used by the American Association of Cereal Chemists.  The rheofermentometer was used 

to measure fermentation rate and dough gas retention ability.  The findings showed that the 

percentage of bran addition and particle size of the bran impacted farinograph properties (Penella 

and Haros, 2008).  Enzyme addition impacted water absorption and decreased the tolerance for 

the dough to be over mixed.  The addition of bran and smaller particle size impacted farinograph 

water absorption by up to 5%.  In contrast, addition of fungal phytase or fungal amylase to the 

dough decreased farinograph water absorption between 2-8%.  As bran size increased, dough 

development time was longer and it was slower to hydrate.   
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Dough with smaller bran particle size was less tolerant to mixing, as stability times 

decreased and mixing tolerance index values, or torque measured 5 min after the peak, was 

lower.  The fine bran particles possibly have more impact on the gluten network.  It was 

discovered that the addition of fungal amylase also created lower tolerances to over-mixing and 

may not be a good bread improver for fiber and whole wheat dough systems, based on 

rheofermentometer results.  Parameters related to gassing power did not appear to be impacted 

by bran percentage, bran particle size, or added fungal phytase enzyme.  Alpha amylase enzyme 

was the only independent factor that impacted the amount of     produced.  These results were 

taken from the rheofermentometer and not verified by a bread baking procedure (Penella and 

Haros, 2008) 

While the usage of whole wheat and whole grains has grown in making high fiber 

products, another new source for fiber addition is the usage of soluble fiber and alternative fiber 

sources.  Wang and others (2002) focused on the addition of different fiber sources to bread.  It 

expanded the focus outside of whole grains and reviewed many different soluble and insoluble 

fiber sources and how they impacted final bread quality. The use of sensory panel determined 

what products and fiber sources were tested to be acceptable.   

Wang and others (2002) reviewed results using dough rheology information from a 

farinograph and viscoelastic properties from the alveograph.  Also, dough fermentation 

properties were measured using the rheofermentometer.  They showed that fiber addition 

increased water absorption, with pea and carob fiber showing similar changes to wheat bran.  

The results of this study were also unique, as it was concluded that fiber addition had no impact 

on dough development times, or mixing stabilities (Wang and others, 2002).  However, the 

alveograph results showed a decrease in elasticity as fiber was added.  The rheofermentometer 
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results agreed with the findings that proofing and fermentation rates were hindered with added 

fiber.  All of the fibers tested showed consistent results, except for the soluble fiber, inulin.  It 

showed opposite impacts on farinograph properties and extensibilities of dough. 

Wang and others (2002) concluded that the usage of other fiber sources instead of wheat 

bran may have a lesser effect on dough rheology.  The bread produced from carob fiber and pea 

fiber produced a softer crumb texture than when made with wheat bran.  Texture Profile Analysis 

from sensory testing indicated lower scores for the parameters of hardness and chewiness (Wang 

and others, 2002).   

Another similar study was completed by Peressini and Sensidoni (2009).  They reviewed 

the impact of soluble dietary fiber sources in dough rheology and bread making properties of 

fiber enriched breads. The source of soluble dietary fiber used was inulin.  Two types of inulin 

were used with two degrees of polymerization, DP=10, labeled Inulin ST, and DP=23, labeled 

Inulin HP.  Dough rheology was measured using a farinograph.   Dough expansion and 

fermentation were measured using a rheofermentometer.  A sensory evaluation was performed 

on the baked samples, and bread volumes, moisture, crumb firmness, and color were measured. 

The farinograph results showed that water absorption decreased with both types of inulin 

addition.  The control sample had a farinograph water absorption of 54.2%, compared to Inulin 

ST at 44.5% absorption, and Inulin HP at 51.4% absorption  (Peressini and Sensidoni, 2009).  

Stability and development times increased which indicated that it is possible to replace some of 

the white flour in a bread formula while maintaining machining tolerances.  The water 

absorption was believed to decrease due to lower molecular weight sugars present in inulin that 

may reduce dough consistency. During fermentation, dough expansion rate gradually decreased 
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with higher levels of inulin and this decreased the amount of gas retention during proofing 

(Peressini and Sensidoni, 2009). 

Inulin added at above 5% flour replacement resulted in unacceptable sensory scores 

because the bread tasted too sweet.  The inulin source with the lower degree of polymerization 

performed much better than the higher DP, however, too high of an addition level increased 

crumb firmness and made the final bread product feel stale according to the sensory feedback.  

This was possibly the result of the large decrease in water absorption required in the formula to 

make the product machineable, a 10% decrease from control water absorption.  While the 

addition of inulin may increase dough rheology on a farinograph, it decreases the amount of 

water that may be added and could potentially reduce shelf life due to an increased staling rate or 

dry crumb properties (Peressini and Sensidoni, 2009).  

Other studies reviewed the influence of bran type and the differences of bake 

performance between layers of bran.  Gan and others (1992) analyzed the impact of different 

types of bran on bread loaf volume.    Their test used different cultivars of wheat and different 

levels of bran addition rates to its testing.  Three different levels of bran pearling were used to 

replace flour: 2.5%, 7.5%, and 12.5%. 

Testing showed that lipase activity between the white flour control and whole meal flour 

was different.  The white flour control tested at 1.64 mg FFA/gram, compared to whole meal 

flour levels of 2.26 mg FFA/gram (Gan and others, 1992).   Also, wheat bran that was heat-

treated and enzyme inactivated did not show an improvement in loaf volume and baking 

performance.  From this, it may be concluded that enzymes from the bran fraction may not be a 

significant contribution to the decrease in baking functionality of whole wheat (Gan and others, 

1992). 
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More work was done using a scanning electron microscope that showed how bran 

fractions interrupt gas cells and the gluten network present in bread making.  This was believed 

to be the main contributor to irregular crumb grain and less functionality of whole wheat flour.  

The testing showed that when outer epicarp peelings were used with wheat hair attached, the 

most significant decrease in performance was observed (Gan and others, 1992). 

 Nutritional Significance of Whole Wheat/Whole Grain 

 

There is a growing demand for whole grains and whole wheat products to be introduced 

into today’s consumer diet.  The nutritional benefits of whole grains have been researched, 

however, more work will need to be done before all consumers and food companies are aligned.  

The article titled: Food Scientists Explore Refined Grains in American Diet, found in the weekly 

grain-based foods publication Milling and Baking News, reviews how the whole grains push 

may not be completely based on conclusive research (Anonymous, 2011b).  Some refined grains 

are different than others in terms of their glycemic index and should not all be viewed as the 

same.  Some components, such as phytate found in whole grains, actually block or reduce the 

absorption of zinc and iron.  Also, refined flour is enriched with iron, calcium, and folic acid.  

This source of nutrients may be lost and nutrient deficiencies may return if diets are restructured 

and enrichment standards for whole grain do not change.  There is some growing concern among 

dietitians over the switch to unrefined, non-enriched grains (Anonymous, 2011b). 

Another unique article, In Defense of Dietary Fiber, discussed whole grains and nutrition 

(Williams and Warber, 1997).  It offered an interesting perspective of whole grain addition to 

improve dietary fiber intake and how the consumption of whole grain products should be the 
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focus, not dietary fiber intake.  A rebuttal from a physician indicated that dietary fiber intake is 

more important.  

Williams and Warber (1997) emphasized that many foods are not whole grain and are 

rich in fiber, such as refined cereals and breads with fiber added back in from wheat bran.  The 

authors of the article responded saying that both aspects are important because whole grains offer 

other benefits besides fiber. These included anti-oxidants, phytochemicals, vitamin E, and 

selenium.  If only refined grains and supplements were emphasized in the consumer diet, these 

benefits would be missed.  The authors concluded by explaining the need for a universal 

definition of whole grain among the food industry (Williams and Warber, 1997). 

A study by the Whole Grains Council reviewed a new life for whole grains and discussed 

challenges and development opportunities (Edge and others, 2005). Whole grains have had 

resurgence in the consumer diet with the popularity of the Atkins and South Beach diets.  These 

diets both focus on how refined grains in foods impact glycemic index values.  There has been a 

lack of success in educating consumers about whole grains and their benefits even after new 

health claims have been released.  The average American consumer is only consuming one 

serving of whole grains per day (Edge and others, 2005). 

The Whole Grains Council has come up with a consumer friendly definition of whole 

grains and wants to educate people about the health benefits of consuming whole grains.  These 

health benefits include: reduced risk of cardiovascular diseases, improved response to glucose 

consumption and reduced risk of type II diabetes, decreased risk of certain cancers, and 

improved weight management and satiety.   Some scientists believe whole grains have more 

benefits than just fiber and vitamin claims (Edge and others, 2005). 
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No research has been conducted on how the synergy among bio-active substances works 

in whole grains.  The combination of resistant starches, lipids, antioxidants, phytosterols, and 

tannins may act in combination to provide a greater nutritional benefit.  The Whole Grains 

Council has identified several areas of focus and studies to explore these health benefits. 

The first area of focus is around the current consumption of whole grains.  Research is 

lacking with clinical studies on whole grain intake and long term health benefits on both healthy 

and unhealthy people.  These studies will be able to establish how whole grain consumption 

improves or impacts the health of both types of consumers.   

The next area of research should involve new research and development of whole grain 

products, including breeding of whole grains, milling and processing techniques, and formulation 

of whole grain products that will nutritionally benefit the consumer.  The development of new 

grain varieties with milling and processing techniques may allow for the use of whole grain in a 

new way.  There may be new ways to process the outer-grain fractions as an additive ingredient 

to deliver health benefits to other food products.   

The final area of focus by the Whole Grains Council involves educating the consumer.  In 

2005, 71% of consumers in the United States believed they eat enough whole grains on a daily 

basis.  They are consuming less than one good serving of whole grains per day, or approximately 

8-grams.  The recommended daily intake is three 16-gram servings daily (Edge and others, 

2005).   

Limited work has been completed on the potential of the fortification of whole wheat 

flour.  The study by Akhtar and Ashgar (2011) was a good review of conditions that focused on 

the fortification needs for whole wheat flour in India and other countries where food fortification 

and vitamin deficiency is a large concern.  The study uses the United States white flour 
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fortification program as a model to build from.  By using the correct type of enrichment, whole 

wheat flour may be fortified and still provide adequate nutrients and the benefits of whole grain.  

The fortification added should not impart unwanted changes to the ingredient or food, such as 

smell, flavor, color, or texture.  The study shows that whole wheat flour may also be a suitable 

carrier for fortification of vitamins and nutrients.  

Several more studies have been performed that compare whole grain nutrition to other 

commonly perceived nutritional foods such as fruits and vegetables.  Liu (2007) explained how 

phytochemicals and antioxidants present in whole grains are often overlooked compared to fruits 

and vegetables.  The presence of these antioxidant compounds in whole grains was 

underestimated.  Recent research has shown there is more present than previously reported.  The 

beneficial effects with whole grain consumption combine these phytochemicals and fiber to 

create unique health benefits that are different than fruits and vegetables.  The benefits of the 

bran and germ fraction of whole grains may have a larger impact when consumed on a daily 

basis and reduce the likelihood of certain chronic diseases such as diabetes and cancer.  

In contrast, a study by Gordon and Wrigley (2004) reviewed the new recommendations 

of adding whole grains into the consumer diet and believed that the nutritional significance of 

refined grains are understated.  Whole grains rich in dietary fiber, phytosterols, vitamins, and 

antioxidants are being encouraged to be the base of the food guide pyramid for these health 

benefits.  However, refined grains are being misperceived as poor to low nutrition foods and are 

being viewed as unhealthy for consumers.  Whole grains are being promoted as healthy 

compared to refined grains.  There are differences in fiber, vitamins, and nutrients in whole grain 

compared to refined grains.  Despite these differences, enriched refined grains provide good 
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levels of nutrients and vitamins as proven in ingredients such as white rice and white wheat 

flour. 

The United States is unique for the large amount of health claims it promotes, with 14-

FDA approved claims (Gordon and Wrigley, 2004). The FDA guidelines require a lengthy 

scientific or clinical study to support any health claim published.  Not all studies done for the 

claim may statistically support the claim or its benefits.  Some studies may show inadequate 

conclusions, no impact, or a reverse impact (Gordon and Wrigley, 2004). 

Gordon and Wrigley (2004) reviewed whole grain nutritional claims petitioned to the 

FDA.  They concluded that current whole grain nutritional claims are primarily focused on 

whole wheat products.  They supported the consumption of a larger variety of whole grains and 

not to promote a single source of whole grain model for approved FDA nutritional claims.   

One article of concern from The Economist, “Food Deserts: If you build it, they may not 

come”, focused on the logistical challenge of distributing healthy food to consumers.  Some 

larger urban areas contain pockets where low-income families are challenged with limited access 

to healthy foods or grocery stores.  These regions are defined as an area where 20% of the 

residents are below the poverty line and 33% or more live over one mile from a grocery store 

(Anonymous, 2011a).   

The USDA has performed studies on these areas to try to link these areas with no access 

to fresh produce and food with higher levels of obesity and health problems.  The results were 

interesting and unexpected.  They showed that improving access to healthy foods doesn’t change 

consumer behavior.  Some United States consumers don’t care to eat a balanced diet, while 

others aren’t able to pay the financial difference.  Healthy food prices have increased at twice the 

rate of unhealthy foods over the last four years (Anonymous, 2011a). 
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 Justification of Research 

More research is needed to be done to develop whole grain and whole wheat flour quality 

and products acceptable for consumers.  The first important step is to review the current whole 

wheat flours available in the market place today.  They currently offer unique and different types 

of granulation that come from a few different hard, soft, white, and red wheat varieties.  

Functional characteristics need to be reviewed by baking cross-section samples currently 

available in U.S. market and comparing the water absorption, loaf volume, and particle size 

distribution between flours. 

The next step in this process is to review the current available information on baking 

functionality relative to granulation distribution, variety of wheat used, and which types have the 

greatest positive impact to performance.  This may be accomplished by independently milling 

identity-preserved white and red wheat.  Both wheat varieties will be milled to a fine whole 

wheat granulation, an optimum whole wheat granulation, and an ultrafine whole wheat 

granulation.  The samples will be baked and compared to each other for final attributes. 

Finally, these results should be reviewed.  The goal of the findings are to find optimal  

range for granulation size for whole-wheat flour and provide some estimated benefit of savings 

for baking manufacturers on reduced usage of vital wheat gluten, dough conditioners, and shelf-

life extension.  Some of these estimated cost savings may come from reduced ingredient usage, 

increased processing efficiencies, and additional water absorption. 
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Chapter 2 - Experimental Whole Wheat Milling and Baking 

Research 

 Materials and Methods 

Several resources were used to obtain the necessary materials for the experiments 

performed.  From a commercial milling side, samples of commercially milled whole wheat flour 

were obtained from JM Swank, Gregory Foods, Horizon Milling, and the South Dakota Wheat 

Commission.  

Table 1: Wheat and Flour Sample Suppliers 

 

  

  

  

 

 

Sample Name: Supplier: City: State:

Medium Whole Wheat Flour, North 

Dakota Mills Gregory Foods Eagan MN

Coarse Whole Wheat Flour, Bay 

State Milling Gregory Foods Eagan MN

ConAgra Fine Whole Wheat Flour J.M. Swank North Liberty IA

ConAgra Medium Whole Wheat 

Flour J.M. Swank North Liberty IA

ConAgra Ultragrain Whole Wheat 

Flour J.M. Swank North Liberty IA

Progressive Baker Fine Whole 

Wheat Flour Horizon Milling Mankato MN

Progressive Baker Wheat Select 

White Whole Wheat Flour Horizon Milling Mankato MN

Alice Fine Whole Wheat Flour South Dakota Wheat Comission Pierre SD

936 Red Wheat Variety Westbred Bozeman MT

Snowcrest White Wheat Variety Westbred Bozeman MT

Capstone White Wheat Variety Westbred Bozeman MT

Paloma White Wheat Variety Westbred Bozeman MT

Alice White Wheat Variety South Dakota Wheat Comission Pierre SD
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 Grinding 

Four different grinding methods were used with the goal of obtaining a coarse, medium, 

fine, and extra-fine granulation out of each wheat sample.   

Table 2: Grinding Equipment 

 

 Coarse grind was obtained by running the hammer mill at 4,000 rpm’s, with a 3.0 mm 

screen size. 

 Medium grind was obtained by running the hammer mill at 6,000 rpm’s with a 3.0 mm 

screen size 

 Fine grind was obtained with a multi-step process. Kernels were run through the hammer 

mill at 6,000 rpm’s, with a 3.0 mm screen size.  The stock was then taken and run 

through corrugated break roll stand with the front roll set at 392 rpm’s and the back roll 

set at 266 rpm’s.  This method was created to closely resemble a commercial fine whole 

wheat milling process. 

 Extra fine grind was obtained with a multi-step process. Kernels were run through the 

hammer mill at 6,000 rpm’s, with a 3.0 mm screen size.  The stock was then taken and 

run through corrugated break roll stand with the front roll set at 392 rpm’s and the back 

roll set at 266 rpm’s.  To create the extra fine product, the milled stock was then taken 

and placed in a sifter box and sifted for 3 min.  The remaining stock with a particle size 

of equal to or greater than 414 microns was taken and put through a regrind to the 

hammer mill.  The over’s stock was reground through the hammer mill at 6,000 rpm’s 

through a 1.0 mm screen.   This stock was then recombined with the thru’s from the 

Equipment Name: Model: Supplier: City: State:

Hammer Mill PX-MFC-90 D Kinematica Bohemia NY

Roll Stand Custom Sid's Corrugation Wichita KS
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sifting process in a flour blender for 5 min to evenly redistribute the product.  This 

method was created to attempt to create an extra-fine grind whole wheat flour that had 

finer particle size than commercial fine whole wheat flour. 

 Bake Formulation and Procedure 

Table 3: Bake Formulation Ingredients 

 

Table 4: Bake Equipment 

 

Table 5: Whole Wheat Bake Formula 

 

Bake Formula Ingredients:

Ingredient Name: Supplier: City: State:

Whole Wheat Flour Variable, see sample names for specific samples

Water Horizon Milling Bake Lab/City of Minnetonka Minnetonka MN

Yeast Food 2232 AB Mauri Bakery Ingredients Fenton MO

Malted Barley Flour J.M. Swank North Liberty IA

Vital Wheat Gluten Cargill B.V. Morrow GA

Yeast, fresh compressed American Yeast Sales Corp Memphis TN

Salt, fine blend-TCP PP Cargill Salt Hutchinson KS

Sugar, United Fine Granulated United Sugars Corporation Fridley MN

Master Chef All Purpose Shortening Cargill Dressings, Sauces, and Oils Sidney OH

Bake Area Equipment:

Equipment Name: Supplier: City: State:

Hobart 10 Quart C-100 Mixer Hobart Manufacturing Akron OH

Reed Retail Oven Reed Ovens Kansas City MO

National Manufacturing Proof and 

Fermentation Cabinet National Manufacturing Lincoln NE

Peerless Straight Grain Molder Peerless Manufacturing Sidney OH

Wooden Benchtop and Drawer Custom, Ira Oak Minnetonka MN

Bake Process Formula:

Sponge Ingredients: Quantity: Dough Ingredients: Quantity:

Whole Wheat Flour 420 g Whole Wheat Flour 60 g

Water 330 ml Salt 4.0 g

Yeast Food 3.5 g Granulated Sugar 20.0 g

Malted Barley Flour 1.0 g Baker's Shortening 8.0 g

Vital Wheat Gluten 30 g Water 40 ml

Yeast, Fresh Compressed 33 g
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 Bake Procedure 

The procedure used was a sponge and dough bake method.  The first step to the process 

was to mix the sponge.  The sponge ingredients were deposited into a Hobart 10-quart, C100 

mixer and mixed for 1 min on low speed, then 2 min on 2
nd

 speed.  The sponge mass was then 

removed and scaled into 2, 270 g pieces and placed into 2 separate containers, a sponge for a 

short mix time of 7 min, and a sponge for a long mix time of 9 min The sponges were then 

placed into a fermentation cabinet for 3.5 hours at 29.44 ºC and 85% humidity.  

After 3.5 hours, the sponges were removed from fermentation cabinet.  They were 

removed from their troughs and added back in with the dough side ingredients.  The short mix 

sponge and long mix sponge samples were added individually to two different mixers.  Next, the 

short mix samples were mixed for 1 min on low speed, and then 7 min on 2
nd

 speed.  The long 

mix samples were also mixed for 1 min on low speed, and then 9 min on 2
nd

 speed. 

Once the samples completed the mixing cycles, they were removed from the mixers and 

individually scored for a mixing score.  The dough’s were then placed into the fermentation 

cabinet to rest for 30 min at 29.44 ºC and 85% humidity.   

After the resting period, the samples were removed and divided and rounded into 2, 175 g 

pieces.  While these samples were divided and rounded, they were given a benching or dough 

handling score by the person running the test.  After rounding, the samples were placed into an 

intermediate proofing drawer, at ambient temperature and humidity, and left to rest for 15 min 

Once the resting period was complete, the samples were run through the Peerless straight 

grain molder and panned into a pup loaf pan. Each sample scaled two dough pieces, so each mix 

time and variable had duplicate samples.  These samples were given a makeup score as they 

were being panned.  The panned samples were then placed into a proofing cabinet set at 40.6 ºC 

and 85% humidity. 
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The samples were proofed to the height of a template or a maximum of 70 min. Any 

samples that did not proof to height in the 70 min were removed and placed into the oven for 

baking.  Each sample was removed according to the criteria and baked at 204.4 ºC for 19 min in 

the Reed Oven.  

Once the baking cycle was complete, the samples were removed from the oven and de-

panned.  They were then placed on porous trays and allowed to cool for 20 min before being 

placed into a bread box container.  The samples were then measured for height of the baked loaf 

in cm the following day after the bread has cooled and been cut for scoring. 

 Interpretation of Baking Results 

The interpretation of bake results required scoring the samples at different points along 

the baking process. The three areas of focus were mixing score, dough handling score, and loaf 

height.  Each measurement helped determine how a sample might process in a commercial 

bakery at commercial processing speed and stress.   

The mixing and dough handling scores were based on subjective scores.  The subjective 

scores were assigned based on the scorer’s experience and participation in a monthly cross-check 

program.  This cross check program calibrated each participant using control samples that have 

previously been scored and agreed upon by the check-sample participants.  The agreement by 

committee allowed participants to score samples consistently among each other.   

To align on scoring agreement, a sample with a known score is prepared and baked.  

Each participant of the cross-check actively scores both the short and long mix time sample as it 

is pulled from the mixer.  Next, the sample is scored for dough handling and panning by each 

participant.  The samples are then baked and the finished bread is reviewed the following day.  

Scores, comments, and the final appearance of the baked bread are compared and reviewed 

among participants.  Any deviations from the group score are noted and cross-check participants 

are certified based on their results.   
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 Mixing Score 

The mixing score was measured immediately after the sample had completed the 

remixing process.  The sample was pulled from the mixer and placed in a dough trough.  The 

sample was then pulled by two hands up to shoulder height and stretched to display the 

developed gluten web.  A numerical score was then assigned based on a subjective scoring 

method listed (Table 6). 

Table 6: Mixing Score Description  

  

 Dough Handling Score 

The dough handling score (Table 7) was measured when the sample was divided and 

rounded into a scaled dough piece.  A numerical score was then assigned based on a subjective 

scoring method listed. 

Table 7: Benching Score Description 

 

 Loaf Height 

Loaf height was measured to the highest point of the crown of the finished baked sample.  

The height was measured after the baked sample was cooled and cut the following day for 

scoring.  Height was measured in centimeters using a ruler and measuring from the base to the 

crown. 

Mixing Score Scale: Description of Score:

85 Much stronger than optimum for bread baking

80 Stronger than optimum for bread baking

75 Slightly stronger than optimum for bread baking

65 Optimum for bread baking

60 Softer, but in optimum range for bread baking

55 Softer than optimumfor bread baking

45 Weaker than optimum for bread baking

40 Too extensible for bread baking

below 40 Undesirable for bread baking

Benching Score Scale: Description of Score:

11 Above optimal, stronger than needed for commercial processing

10 Optimal, good for commercial processing with minimal problems

9 Good, slightly softer, however, still good for commercial processing

6 Mellow, softer, adequate for some commercial processes

5 Soft, adequate for processing at low speeds, extensible
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 Bake Design and Scoring Ballot 

The bake test created for this experiment measured both a combination of qualitative and 

quantitative measures (Figure 2-1).   

Figure 2-1: Bake Scoring Ballot 

 

The qualitative measures involved giving samples a score directly out of mixing in the 

dough form, a score for how the dough handled at make-up and panning, and finally written 

comments as to how the dough felt and if absorption was an issue in the dough phase through 

tacky or wet comments.  The two main quantitative measures during the bake test measured the 

proofing time of the sample as well as the final bread height in centimeters.  Three series of bake 

tests were performed on combinations of experimentally milled wheat samples and commercial 

whole wheat samples. 

The first bake test was set up to test one identity-preserved variety of white wheat and 

one identity-preserved variety of red wheat experimentally milled to the same granulations to 

compare baking performance for both types of wheat.  In addition, samples of commercially 

milled white and red whole wheat flours were run at the same time to compare against the 

experimentally milled flours to determine if processing differences had significant impacts on 

bake functionality and dough handling.  

Baking Score Ballot:

Criteria: Score Possible:

Volume: 20

Grain: 20

Texture: 15

Color: 5

Absorption: 5

Mixing Tolerance: 15

Dough Handling 10

Make Up: 10

Total Bread Score: Possible score out of 100 points:

Mixing Strength: Separate score from previous day
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The second bake test was set up to understand how different granulations of commercial 

whole wheat flour samples would perform in the bake test method designed for this testing.  

Commercial samples with granulation ranging from coarse to extra-fine whole wheat were 

reviewed.  In addition, experimentally milled samples from two different wheat varieties with the 

same granulation were tested.   

The third bake test was designed to compare four different identity preserved white wheat 

varieties.  Each of the samples were milled to the same granulations and baked with the same 

procedure.  These samples were milled and baked within the same timeframe to eliminate the 

variable of oxidation or aging on flour performance.  The results from this bake were based on 

differences between wheat varieties and not processing. 

 Granulation Procedure  

The particle size and granulation were measured with a Ro-Tap and a Cilas particle size 

machine (Table 8).  The Ro-Tap machine was used as a traditional type of measurement for 

whole grain or whole-wheat granulation.  Many of the commercial whole-wheat specifications 

are written on the basis of this testing.  This testing method is, however, limited in the ability to 

measure fine to very fine particles.  One of the common issues with this test is excessive amounts 

of product remain on a sieve, preventing the flow of smaller particles through and into the 

correct final size sieve.  With this limitation, it was difficult to measure subtle differences 

between granulation of products.   

  Another form of testing particle size of fine products such as flour or powder is the Cilas 

1064 particle size machine.  This machine is able to measure very subtle changes in overall 

particle size and offers both a visual and statistical distribution of the mean average particle size 

of samples.  The limitations of this machine are in the ability to measure larger particles such as 
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coarse bran or germ.  This is why the combination of measurement with both testing methods 

became necessary to adequately cover the range of products produced from the experimental 

milling processes.  By using a combination of both methods, the differences between fine to very 

finely ground samples was quantified. 

 Ro-Tap Model E Procedure 

Table 8: Granulation Equipment Suppliers 

 

 Procedure 

The first step to running a Ro-Tap procedure is to weigh out 100 g of sample in a 

pourable container.  Next, push up two stoppers on Ro-Tap and remove the top cover.  Ensure 

sieves are clean and stacked correctly with the largest sieve on top (US 20 wire) and smallest 

wire placed at the bottom of the stack (US 100 wire), followed by the pan.   

Two rubber balls should be placed on each sieve except the top, US 20 wire.  Next, pour 

the 100 g weighed sample into top sieve using a brush to remove all the flour from the container. 

Replace the top cover making sure it is centered on top tray.  Push down on the two stoppers on 

the side of the instrument making sure the top cover stays even on both sides.  Twist stoppers to 

the right to tighten properly, keeping pressure equal on both the left and right side. 

The timer should be set for 3 min, fine analysis setting.  Press the start button to begin the 

test.  Once the machine has cycled and the test is complete, loosen stoppers along the side of the 

Granulation Equipment:

Equipment Name: Supplier: City: State:

WS Tyler Ro-Tap E Precision Eforming Cortland NY

Cilas 1064 Particle Analyzer Cilas Madison WI

Brass Sieves, US20, 40, 60, 80, 100, 

Pan Precision Eforming Cortland NY

Rubber Balls, 2 per Sieve Precision Eforming Cortland NY
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machine.  Push up and remove the top cover.  Remove all 6 sieves keeping them stacked.  Tap 

entire stack 2 or 3 times hard to loosen any remaining flour fines around the edges of the sieves. 

Next, place the empty container on the scale for weighing and tare the scale.  Remove 

first sieve (US 20 wire) and pour flour the over’s into the container.  Tap the side of the sieve 

several times with brush to remove all the flour from the edges.  Use the brush to sweep out any 

remaining flour.  Tap empty sieve on the counter a couple times to remove flour dust.  Turn 

upside down, set aside.  Document weight of the flour collected from the sieve. 

Remove 2 rubber balls from the next sieve (US 40 wire), dust off and place on the US 20 

wire sieve.  Repeat this process for remaining sieves, weighing the over’s for each sieve, 

including the pan. When complete, turn entire stack right side up and place back on the base of 

the Ro-Tap.   

 Cilas 1064 Dry Particle Size Procedure 

A sample is slowly added to machine at a target concentration of 100.  The machine 

integrates two sequenced laser sources positioned at angles of 0° and 45° to produce a diffraction 

pattern analyzed on a 64 channel silicon detector. Through the software, the distribution curve is 

represented by 100 classes over the range from 0.30 to 500 μm for dry analysis. 
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 Results and Discussion 

 Bake Testing Results 

The first bake test performed showed some functional differences between wheat types 

and yielded relevant data (Table 9).  The results from both the red and white wheat varieties 

showed a strong relationship of particle size versus loaf height.  As particle size decreased, loaf 

height of both wheat varieties increased (Figure 2-2 and Figure 2-3).  

This correlation contradicted findings from a study completed by Noort and others 

(2010).  Their study indicated that the addition of coarse bran particles had minor impact on final 

bake volumes and gluten dilution played a minor role in functional changes in flour with added 

bran.  Their conclusion believed as bran particle size decreased, glutathione levels increased 

from damaged aleurone cells, creating a less extensible and weaker gluten network (Noort and 

others, 2010).     

The population size of this bake test was limited to 4 samples in each set.  Because of this 

limitation, it was difficult to draw many statistical conclusions from the data related to 

granulation versus volume. 
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Table 9: Loaf Height, Mixing, and Dough Handling Scores of Bake Test 1; A Comparison of Commercial versus 

Experimentally Milled Samples 

 

Sample Mixing Time (min.) Mixing Score (mix score scale)Bench Score (bench score scale) Bench Comments Proof Time (min) Height (cm)

X-mill 936 coarse, red, 7 min. 7 60 9 stiff, putty 43 8.8

X-mill 936 coarse, red, 9 min. 9 35 10 putty 43 8.3

X-mill 936 medium, red, 7 min. 7 60 10 good 44 9.3

X-mill 936 medium, red, 9 min. 9 45 10 good 48 9.1

X-mill 936 fine, red, 7 min. 7 65 11 great 43 9.5

X-mill 936 fine, red, 9 min. 9 40 10 soft 48 8.9

X-mill 936 x-fine, red, 7 min. 7 55 10 very good 47 9.7

X-mill 936 x-fine, red, 9 min. 9 40 10 softer, sl. Tky 48 9

X-mill Alice coarse, white, 7 min. 7 55 9 tacky, extensible 49 9.2

X-mill Alice coarse, white, 9 min. 9 20 5 putty, poor, tacky 53 7.4

X-mill Alice medium, white, 7 min. 7 55 5 pliable 54 8.9

X-mill Alice medium, white, 9 min. 9 35 5 pliable, tacky 54 8

X-mill Alice fine, white, 7 min. 7 55 10 soft 51 9.4

X-mill Alice fine, white, 9 min. 9 35 6 tacky, extensible 53 7.8

X-mill Alice x-fine, white, 7 min. 7 60 10 soft 48 9.2

X-mill Alice x-fine, white, 9 min. 9 35 9 soft, extensible 51 8.5

Ultragrain, white control, 7 min. 7 55 10 putty 43 8.9

Ultragrain, white control, 9 min. 9 35 10 putty, dry 46 8.4

P.Baker, fine, red control, 7 min. 7 65 11 great, gassy 41 9.6

P.Baker, fine, red control, 9 min. 9 60 10 great 51 9

Mixing Score Scale: Description of Score:

85

Much stronger than optimum for bread 

baking

80

Stronger than optimum for bread 

baking

75

Slightly stronger than optimum for 

bread baking

65 Optimum for bread baking

60

Softer, but in optimum range for bread 

baking

55 Softer than optimumfor bread baking

45 Weaker than optimum for bread baking

40 Too extensible for bread baking

below 40 Undesirable for bread baking

Benching Score Scale: Description of Score:

11

Above optimal, stronger than needed 

for commercial processing

10

Optimal, good for commercial 

processing with minimal problems

9

Good, slightly softer, however, still 

good for commercial processing

6

Mellow, softer, adequate for some 

commercial processes

5

Soft, adequate for processing at low 

speeds, extensible
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Figure 2-2: Loaf Height versus Granulation of 936 Red Whole Wheat, Experimentally 

Milled Sample 

 

 

Figure 2-3: Loaf Height vs. Granulation of Alice White Whole Wheat, Experimentally 

Milled Sample  
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The results of the experimentally milled samples when compared to the commercially 

milled samples did not show any visible differences in functionality or bake volume.  The red 

wheat commercial sample performed very similarly to the fine and extra fine whole wheat 

samples that were experimentally milled.  The white wheat commercial sample actually had a 

very slightly lower volume than the experimentally milled sample, but the results didn’t appear 

to be significant.   

The comparison of red wheat to white wheat samples indicated that red wheat samples 

had consistently higher final bake height than the white wheat samples in all granulation types 

(Figure 2-4 and Figure 2-5).  This result contradicts a study completed by Ozboy and Koksel in 

1997.  In this study, white and red coarse wheat bran were added to flour samples and tested for 

dough rheology and baking performance.  The samples that had the white bran added had 

improved dough rheology and bake volumes compared to red bran addition (Ozboy and Koksel, 

1997). 

The bake results did not take into account the age of the commercial samples compared 

to the freshly-milled experimental samples.  Studies completed by Tait and Galliard (1988), and 

Barnes and Lowy (1986) reviewed shelf life of whole wheat flour and indicated diminished 

functionality as whole wheat flour ages.  These factors were not accounted for in comparing 

results and may have impacted final bake data. 
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Figure 2-4: 936 Red Whole Wheat, Experimentally Milled Sample, Loaf Height Results by 

Grind Type 

 

 

Figure 2-5: Alice White Whole Wheat, Experimentally Milled Sample, Loaf Height Results 

by Grind Type  
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Figure 2-6: Photos of Red Wheat Whole Wheat (WW), 936 Variety, 7 Min Mix Time  

 

 

Figure 2-7:  Photo of Red Wheat Whole Wheat (WW), 936 Variety, 9 Min Mix Time 
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Figure 2-8: Photo of White Whole Wheat (WW), Alice Variety, 7 Min Mix Time  

 

Figure 2-9: Photo of White Whole Wheat (WW), Alice Variety, 9 Min Mix Time 
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Table 10: Loaf Height, Mixing, and Dough Handling Results of Bake Test 2; A Comparison of White Wheat Varieties and 

Commercially Milled Samples

Sample Mixing Time (min.) Mixing Score (mix score scale) Bench Score (bench score scale) Bench Comments Proof Time (min) Height (cm)

X-mill Capstone, white, fine, 7 min. 7 45 10 soft 51 9.2

X-mill Capstone, white, fine, 9 min. 9 40 9 sl tacky, pliable 53 8.9

X-mill Paloma, white, fine, 7 min. 7 60 10 good, gassy 46 10.1

X-mill Paloma, white, fine, 9 min. 9 55 10 soft, sl extensible 46 9.7

X-mill Snowcrest, white, fine, 7 min. 7 60 10 good 44 10.3

X-mill Snowcrest, white, fine, 9 min. 9 60 10 good 44 10

Commercial Coarse WW, red, 7 min. 7 60 9 soft, sl tacky 61 9.8

Commercial Coarse WW, red, 9 min. 9 45 8 tacky, extensible 66 8.9

Medium WW, red commercial A, 7 min. 7 60 10 soft 49 9.4

Medium WW, red commercial A, 9 min. 9 55 10 soft 49 9.1

Medium WW, red, commercial B, 7 min. 7 60 9 soft 50 9.1

Medium WW, red, commercial B, 9 min. 9 55 8soft, tacky, extensible 64 7.8

Fine WW, red, commercial B, 7 min. 7 60 9 soft, extensible 50 8.3

Fine WW, red, commercial B, 9 min. 9 55 8soft, very extensible 59 8

Wheat Select, fine, White commercial A, 7 min. 7 60 11 great, gassy 51 10.5

Wheat Select, fine, White commercial A, 9 min. 9 60 10 good 56 10

Mixing Score Scale: Description of Score:

85

Much stronger than optimum for bread 

baking

80

Stronger than optimum for bread 

baking

75

Slightly stronger than optimum for 

bread baking

65 Optimum for bread baking

60

Softer, but in optimum range for bread 

baking

55 Softer than optimumfor bread baking

45 Weaker than optimum for bread baking

40 Too extensible for bread baking
below 40 Undesirable for bread baking

Benching Score Scale: Description of Score:

11

Above optimal, stronger than needed 

for commercial processing

10

Optimal, good for commercial 

processing with minimal problems

9

Good, slightly softer, however, still 

good for commercial processing

6

Mellow, softer, adequate for some 

commercial processes

5

Soft, adequate for processing at low 

speeds, extensible
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In addition to the commercial samples, three different varieties of hard white wheat were 

examined. Each one of these varieties was identity preserved and experimentally milled to a fine 

granulation that was intended to replicate commercially milled fine whole wheat.  These identity 

preserved varieties were baked over a two day period due to bake test sample limitations.  These 

samples were processed in a controlled setting to determine if granulation or wheat variety was a 

more important factor in functionality and if the extra-fine grinding step reduced final product 

functionality in the bake process.  

After baking all of the commercial samples it was difficult to initially see any differences 

in functionality of such wide range of products tested.  A solution for this was to plot the bake 

volume versus the granulation of each sample.  The results showed little to no relationship 

between particle sizes of the whole wheat flour tested to the resulted final product volumes 

(Figure 2-10).   

The commercial samples were comprised of unknown wheat originations and unknown 

age of samples.  Tait and Galliard (1988) and Barnes and Lowy (1986) both indicated that 

storage and sample age contributes to final loaf volume and functionality.   

Some of the coarser granulation products out performed the fine to very fine granulation 

products in loaf height.  While surprising, these results agree with a study performed by Penella 

and Haros (2008).  In this study, it was concluded that fine bran added to flour had more of a 

mixing tolerance impact than coarse bran.  As levels of fine bran increased, farinograph mixing 

tolerance decreased significantly compared to the same addition level of coarse bran (Penella and 

Haros, 2008).   

The results would indicate that final product bake quality may be less dependent on the 

whole wheat flour granulation and processing.  Instead, the proper wheat mix or combination of 
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wheat varieties that have better baking properties may be the more significant factor in 

functionality.   

The impact of variety on results with the same granulation was also reviewed by looking 

at three identity-preserved white wheat’s of Capstone, Paloma, and Snowcrest. The Paloma and 

Snowcrest varieties showed much improved loaf height compared to the Capstone variety.  A 

study completed by Kock and others (1999) agreed with these findings.  This study reviewed 10 

different varieties of wheat and performed heat treatment to eliminate enzymatic differences in 

the bran reviewed.  It concluded that bake performance was related to physical attribute 

differences between varieties (Kock and others, 1999).  It was very apparent after viewing these 

results that wheat variety or type is significantly related to differences in bake quality between 

samples if milled in the same way to the same particle size and granulation (Figures 2-12 to 2-

16).  

Figure 2-10: Commercial Sample Bakes, Comparison of Average Granulation versus Loaf 

Height 
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Figure 2-11: Commercial Samples, Loaf Height Results by Sample Type 

 

 

Figure 2-12: Identity Preserved White Wheat Varieties, Loaf Height Results 
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Figure 2-13: Photo of Commercial Bake Samples, ConAgra Medium Whole Wheat, 

ConAgra Fine Whole Wheat (WW) 
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Figure 2-14: Photos of Commercial Bake Samples, Bay State Coarse Whole Wheat, North 

Dakota Mills Medium Whole Wheat (WW) 
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Figure 2-15: Photo of Commercial Bake Samples, White Whole Wheat (Wheat Select), Red 

Whole Wheat (WW) (Progressive Baker Fine Whole Wheat) 
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Figure 2-16: Photo of White Whole Wheat Variety (WW) Comparison: Capstone, Paloma, 

Snowcrest, Experimentally Milled and Identity Preserved Varieties 
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The third bake test was designed to continue work from part of the second bake test and 

compare four different identity preserved wheat varieties.  Each of these samples were processed 

to the same granulation and milled the same way.  The only difference between samples was the 

variety of wheat used.  A commercial extra-fine white whole wheat sample was baked along 

these samples as a reference point (Table 11).   

The results confirmed the preliminary work done from bake 2, stating that the difference 

in wheat variety appeared to be more significant for final product quality than processing. The 

results showed significant difference between varieties that were milled the same day, with the 

same process (Figure 2-18).  These results agree with a study by Kock and others (1999).  This 

study reviewed 10 wheat varieties and noted differences related to variety type and physical 

attributes.   

The order from highest to lowest performer was Snowcrest, Paloma, Capstone, and then 

Alice.  The commercial sample, Ultragrain performed in between the Capstone variety and Alice, 

so the lower 50% of the samples.   
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Table 11: Loaf Height, Mixing, and Dough Handling Results of Bake Test 3, A Comparison of White Wheat Varieties, Extra-

Fine Grinding Step 

Sample Mixing Time (min.) Mixing Score (mix score scale) Bench Score (bench score scale) Bench Comments Proof Time (min) Height (cm)

Difference between X-

fine and fine (Height in 

cm)

X-mill Snowcrest, white, X-fine, 7 min. 7 65 11 great 42 10.6 10.6

X-mill Snowcrest, white, X-fine, 9 min. 9 60 10 good, soft 40 10 10

X-mill Capstone, white, X-fine, 7 min. 7 55 10 soft 44 9.3 1

X-mill Capstone, white, X-fine, 9 min. 9 40 9 pliable 49 8.5 0.5

X-mill Paloma, white, X-fine, 7 min. 7 65 10 great, very good 41 10 -0.5

X-mill Paloma, white, X-fine, 9 min. 9 55 10 slightly pliable 41 9.4 -0.6

Commercial, white, Ultragrain, 7 min. 7 55 9 extensible 41 8.9

Commercial, white, Ultragrain, 9 min. 9 40 6 putty, pliable 44 8.5

X-mill Alice, white, X-fine, 7 min. 7 80 9 dry, pliable 44 8.5

X-mill Alice, white, X-fine, 9 min. 9 60 10 soft, pliable 52 6.7

Mixing Score Scale: Description of Score:

85

Much stronger than optimum for bread 

baking

80

Stronger than optimum for bread 

baking

75

Slightly stronger than optimum for 

bread baking

65 Optimum for bread baking

60

Softer, but in optimum range for bread 

baking

55 Softer than optimumfor bread baking

45 Weaker than optimum for bread baking

40 Too extensible for bread baking
below 40 Undesirable for bread baking

Benching Score Scale: Description of Score:

11

Above optimal, stronger than needed 

for commercial processing

10

Optimal, good for commercial 

processing with minimal problems

9

Good, slightly softer, however, still 

good for commercial processing

6

Mellow, softer, adequate for some 

commercial processes

5

Soft, adequate for processing at low 

speeds, extensible
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Figure 2-17: Identity Preserved White Wheat Varieties, Comparison of Particle Size and 

Loaf Height Result from Bake 3 

 

 

Figure 2-18: Identity Preserved White Wheat Varieties, Comparison of Loaf Height 

Results of Short versus Long Mixing Times from Bake 3 
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Another important understanding was to determine if the extra processing, or the extra-

fine granulation created significant benefits or decreased functionality from the fine granulation 

processing.  The results of this comparison were mixed.  The Snowcrest variety showed a slight 

increase in volume from the extra fine granulation up from an average of 10.1 cm to 10.3 cm.  

The Capstone and Paloma varieties actually showed a slight decrease in volume with the extra-

fine granulation (Figure 2-19).   

Results from the Capstone and Paloma varieties agreed with studies performed by Noort 

and others (2010) and Kock and others (1999).  Both studies indicated a correlation between 

finer bran particles and increased bake volume reduction.  The height decrease appeared in the 

long mix times, possibly indicating a mixing tolerance issue.  Because the 3
rd

 bake only reviewed 

3 varieties with extra fine granulation, it was difficult to make any statistical conclusions from 

these results. 

Figure 2-19: Identity Preserved White Wheat Varieties, Comparison of Difference in Loaf 

Height of Fine vs. Extra-Fine Grinding Processing 

 

0.3

0

0.1

-0.4

-0.1

-0.3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Difference between X-fine and fine (Height in cm)

X-mill Snowcrest, white, X-fine, 7 min.

X-mill Snowcrest, white, X-fine, 9 min.

X-mill Capstone, white, X-fine, 7 min.

X-mill Capstone, white, X-fine, 9 min.

X-mill Paloma, white, X-fine, 7 min.

X-mill Paloma, white, X-fine, 9 min.



53 

 

Figure 2-20: Photos of Bake 3 Results, 7 Min Mix Time 

 

 

Figure 2-21: Photo of Bake 3 results, 9 Min Mix Time 
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 Milling Study and Granulation Results 

 

The commercial whole wheat flour samples reviewed had a wide range of particle sizes.  

The labeled fine, medium, or coarse whole wheat flours do not have a strict legal definition for 

particle size.  The current definition of whole wheat flour as defined by the U.S. Food and Drug 

Administration for granulation is: “not less than 90 percent passes through a 2.36 mm (US No. 8) 

sieve and not less than 50 percent passes through an 850 micron (US No. 20) sieve (FDA, 

2011b).” 

As a result, the average diameter of the fine whole wheat flour’s tested ranged from 128 

microns down to 72.9 microns.  Five of the seven commercial samples reviewed were able to be 

run through the Cilas 1064 particle size machine to determine the mean diameter particle size 

with 95% accuracy. The remaining two samples, however, were too coarse to be run through this 

machine, so their average particle size was estimated by using the Ro-Tap granulation results and 

calculating a rough weighted average particle size.   

The initial assumption was coarse, medium, fine, and extra fine whole wheat flour could 

be produced in an experimental mill using a hammer mill and a roll stand to closely reproduce 

the commercial whole wheat milling process.  After further analysis from particle size testing, 

the results show it is very difficult to replicate this process on a smaller scale.  The distribution of 

particle size was the most difficult characteristic to match.  Coarse and medium whole wheat’s 

could be somewhat replicated, but fine and extra fine whole wheat particle sizes were not easily 

copied from a lab scale process. 

The mean diameter for the lab scale fine grind whole wheat was approximately 200 

microns.  This mean particle size was approximately 80-120 microns larger than the commercial 

samples labeled as fine whole wheat.  The main difference between the two types of samples was 
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the amount of large particles above 200 microns present in the experimentally milled fine grind 

compared to the commercially milled samples containing a large amount of particles below 100 

microns.   

The experimental milling process for this granulation used the hammer mill to break open 

the wheat and reduce particle size initially. The broken and ground wheat pieces were then run 

through a roll stand with the primary purpose of separating the endosperm off of the ground 

wheat pieces to reduce some of the larger bran pieces.  No sifting or re-grinding was done in this 

process.  The flour produced from this type of process was closer to a commercial medium 

whole wheat granulation. 

The lab scale milling process was able to create a product with a similar mean diameter to 

commercial fine whole wheat by adding a sifting and re-grinding step.  The mean diameter 

particle size obtained from this process ranged between 107-122 microns, which was similar to 

some of the coarser commercial fine whole wheat’s.   

The added step of re-grinding did not occur until after the stock had been run through the 

hammer mill and roll stand.  The fine grind product was collected and run through a stock sifter, 

removing the particles greater than 414 microns and regrinding through the hammer mill. The 

hammer mill was equipped with a 1.0 mm screen for this regrind.  After the stock was reground, 

it was reconstituted back into the remaining product and blended for 5 minutes in a flour blender 

to create a homogenous blend, making sure none of the bran was removed from the process.   

This type of process reduced the coarse bran particles of stock to a finer particle sizes, 

however, it was unable to reduce the medium to fine particles created from the initial milling 

process to a finer size.  This type of re-processing and regrinding showed the limitations of the 

experimental milling process.  To create a finer granulation product it would be necessary to 
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have more sifting and a hammer mill or roll stand capable of reducing medium particles to a fine 

particle size.  While regrinding bran stock, the hammer mill would often choke or the stock 

feeding rate would be too fast or slow for the grinding process to be consistent.   

While the product created from this lab scale process had similar mean diameter particle 

size, the distribution of particles was still significantly different than a commercial mill, as noted 

by the particle size testing.  More fine particles were created with this added processing, 

however, the smooth and even distribution of particles from a commercial process was not able 

to be replicated.  With the limited equipment available, it was not possible to replicate an extra-

fine grind whole wheat granulation like the commercial Ultragrain sample has.  As a result, it 

was unable to be determined if products with a very fine granulation such as this one have been 

processed to a level of fineness that decreases final product bake functionality.   

 Conclusion 

The study and work completed involved many of the current whole wheat flours 

available in the market place today from a variety of the larger commercial miller’s in the United 

States.  A good sampling of products were reviewed with different granulations from coarse to 

extra-fine whole wheat.  The majority of the commercially milled flours tested were produced 

from red wheat’s, however, two of the products were made from white wheat’s.   

This cross-section of flour samples would appear to be representative of what is seen in 

today’s marketplace.  The majority of whole-wheat or whole grain products sold in the baking 

section of grocery stores are made from red whole wheat.  The reason for this is most likely due 

to the availability of hard white wheat and the extra costing involved with sourcing, 

procurement, transportation, and identity preservation of these varieties.  The extra costs 
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involved in creating a supply chain for hard white wheat products are something that most 

consumers would not pay more for.    

The functional characteristics as well as the particle size and granulation were reviewed 

on all samples through bake testing and two different particle size determinations.  The results of 

the experimental milling of the identity preserved varieties and baking of commercial samples 

had two significant findings. First, it was discovered that product milled more coarsely had lower 

loaf height’s, more open grain, and were drier to the touch, possibly impacting sensory attributes. 

Also, bread from both white and red wheat varieties showed an increase in loaf volume as 

particle size decreased with further milling and particle size reduction.  

However, Noort and others (2010) discussion would appear to support our findings with 

fine and extra-fine granulation products.  Results from both commercially milled products and 

experimentally milled products show similar conclusions that when particle size becomes very 

fine, less than 110 microns, baking functionality can decrease.   

The commercially milled Ultragrain product had the finest mean particle size at 

approximately 70 microns.  This product showed characteristics of a stiffer, less extensible 

gluten network and lower final product loaf volumes.  Comments from the makeup and mixing 

of dough’s from this flour often described the dough as pliable, putty, and dry.  In addition, some 

of the extra-fine grind samples produced from the experimental milling process actually showed 

a loaf volume reduction from the fine grinding, 200 micron particle size, to the extra-fine 

processing, 110 micron particle size. The results from the experimentally milled products were 

somewhat inconclusive, as not all extra-fine grind products showed a decrease in final bake 

volumes or dough handling issues.  



58 

 

In summary, it would appear that both granulation of whole wheat flour and wheat 

variety type used are directly related to flour functionality and baking quality. The abbreviated 

study performed using four separate white wheat varieties indicated that wheat variety type could 

potentially be more significant for final product functionality than granulation or processing.  

More studies are needed in this area to better understand these findings.   

Whole wheat processing, or granulation, also have significant impact on final product 

functionality.  There would appear to be an optimal granulation for whole-wheat functionality as 

baking performance and dough handling improved with the fine and extra-fine whole wheat’s 

tested.  The experimental milling process, however, does not match a commercially milled whole 

wheat product closely.  The limitations in the experimental milling process were determined by 

equipment available and ability to regrind coarse and medium bran pieces into fine and very fine 

particle sizes. It was not possible to effectively sift and regrind product in a lab scale without 

losing part of the bran due to equipment failure.  To effectively determine optimal whole wheat 

granulation size, further work would need to be completed on a larger experimental mill scale or 

a small commercial mill with improved process controls. 
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Appendix A - Experimental Milling 

Figure A-1: Photo of Experimental Hammer Mill Used for Initial Grinding 
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Figure A-2: Hammer Mill, Settings at 6,000 R.P.M.’s 

 

 

Figure A-3: Photo of Hammer Mill Screen Sizes, 3.0 mm, 2.0 mm, and 1.0 mm from Left to 

Right 
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Figure A-4: Photo of Experimental Roll Stand 

 

Figure A-5: Roll Stand Speed Settings 
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Figure A-6: Photo of 22 Stainless Steel Bolting Cloth, Coarse Stock 

 

 

Figure A-7: Photo of 24 Stainless Steel Bolting Cloth, Coarse Stock 
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Figure A-8: Photo of 28 Stainless Steel Bolting Cloth, Medium Stock 

 

 

Figure A-9: Photo of 48 Stainless Steel Bolting Cloth, Fine Stock  
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Figure A-10: Photo of Combined Stock of Over’s From Sifting 

  

 

Figure A-11: Photo of Stock Not Reground, Thru’s 
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Figure A-12: Ro Tap Granulations of Commercial Whole Wheat Samples (WW) 
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