MATRIX ANALYSIS OF CONTINUOUS PARABOLIC ARCHES

$$
\text { by } 1,4
$$

CHAO-SHYONG HSU

Diploma, Taipei Institute of Technology, 1963

A MASTER IS REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1967

Approved by:
67
73
TABUE OF CONTENIS
page
SYNOPSIS 1
INIRODUCTION 2
SIMOLE FIXED ARCH THEORX 4
MATRTX ANALYSIS OF COMTITUOUS ARCHES BY THE DISPLACEMENT METHOD 9
NOMERTCAL EXAMPLE 16
COMCLUSIONS 30
ACMIONLEDGMAT 31
RETPARENCVS 32
MOTATION 33
APPISNDIX A FLOW DTAGRAM FOR THE DISPLLAGERTNT METHOD 35
APPENDIX B CHEGK RESULTS OF EXAMPLE USTMO ENRRGY MLTHOD 48
APPENDIX C SINGLS ARCH TIFLUMNCE LTNES 55

SYNOPSIS

The purpose of this report is to present a method of analyzing continuous arches with varying crose section on elender piers by obtaining influence Iinee of the redundants. The analysie is based on the displacement method.

First, the single fixed arch theory is presented. Then, the continuous arch is analyzed by applying the displacement method. Finaliy, a numerical example consisting of two unsymetrical parabolic continuous arches with a central slender pier is given to illustrate the use of the method.

Influence linee for the redundants are drawn. The influence coefficients are checked by using the energy method. The comparison shows that the results agree closely with each other.

A detailed flow diagram is given to demonstrate the solution of the continuous arch problem by a digital computer. The flow diagram is based on the following assumptions: (1) it applies to any number of arch apans, with interior arch joints on piere; (2) the equation of the centroidal axis of each arch can be expressed as $y=\alpha x^{2}+\beta x+\gamma$ with origin at either end; (3) the ratio of the moment of inertia at any section of the arch to the moment of inertia at the orown is sece, where θ is the angle between the tangent to the arch and the horizontal axds; and (4) the ratio of the moment of Inertia of the pier to that of the crown is oonstant.

INTRODUCTIOK

Matrix andiysis is a relatively new approach to structural analysis. The main advantage of analyzing a structural system by the matrix method is that the analyses can be performed by a computer convenientily. The matrix method is particularly easy to handle if a structure must be analyzed for the effects of several loading patterns, such as that used in determining influence Iines.

Fig. 1 Typical continuous arch on slender piers.
"An arch is a girder (beam or truss) usually curved in form, that develops reactions with inwardly directed horizontal corponents under the action of vertical loads alone." ${ }^{1}$ A typical continuous arch on slender piers is shown in FIg. 1. The effect of slender plers 1s, in general, to decrease the horizontal thrusts, to increase the crown moments and to throw stress onto adjacent arch spans and onto other piers. The slendor piers are a necessary provision for a large span.

1. John I. Parcel and Robert B. B. Moorman, Analysis of Statically Indetorminate Structures, John Wiley and Sons, Inc., Now York, 1962, p. 457.

The matrix method presented in this report is the displacement method. Basically, it makes use of the single fired arch theory, namely the method of analyzing a single fixed arch. The analysis requires a knowledge of the equations of the centroidal adis of each single arch and of the relative moments of inertia.

This method also involves application of the Naller-Breslau Principle and numerical integration. Although it is quite tedious to use for manual computations, the basic idea of each method is simple. It should be introduced whenever a computer is available.

SINGLE FIXED ARCH THEORY

An unsymmetrical fixed arch is shown in Fig. 2(a). It is statically indeterminate to the third degree. Figure 2(c) indicates the statically determinate base structure obtained by making a free end at point 0 .

(a)
(b)
(c)

Fig. 2 Fixed arch analysis by superposition.

In the following discussion, stresses are assumed to be below the elastic limit, that is, Hooke's law applies.

Superposition can be used as long as Hooke's law applies. From Mg. 2, the following three equations exist:

$$
\begin{aligned}
& x_{1} \delta_{11}+x_{2} \delta_{12}+x_{3} \delta_{13}=\Delta_{10}, \\
& x_{1} \delta_{21}+x_{2} \delta_{22}+x_{3} \delta_{23}=\Delta_{20}, \\
& x_{1} \delta_{31}+x_{2} \delta_{32}+x_{3} \delta_{33}=\Delta_{30}
\end{aligned}
$$

In matrix notation,

$$
\left[\begin{array}{lll}
\delta_{11} & \delta_{12} & \delta_{13} \\
\delta_{21} & \delta_{22} & \delta_{23} \\
\delta_{31} & \delta_{32} & \delta_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left(\begin{array}{l}
\Delta_{10} \\
\Delta_{20} \\
\Delta_{30}
\end{array}\right]
$$

Where
$x_{1}=$ horizontal force at origin point 0,
$X_{2}=$ vertical force at point 0 ,
$X_{3}=$ moment at point 0 ,
$\delta_{1 y}=$ displacement in base structure at point 0 in X_{1} direction, due to $x_{j}=$ uni acting only,
$\Delta_{10}=$ displacement in base structure at point 0 in X_{1} direction, due to $a 71$ external. loads acting.

The δ terms can be determined by using the durum unit load method,

$$
\delta_{11}=\int_{\text {Area }} \frac{\mathrm{m}_{1} m_{1}}{\mathrm{EI}} d s=\int_{A} \frac{y^{2} d s}{\overline{\mathrm{KI}}}=\int_{0}^{L} \frac{y^{2} d x}{\mathrm{EI} \cos \theta}
$$

$$
\delta_{22}=\int_{A r e a} \frac{\mathrm{~m}_{2} m_{2}}{E I} d s=\int_{A} \frac{x^{2} d s}{E I}=\int_{0}^{L} \frac{x^{2} d x}{E I \cos \theta},
$$

$$
\delta_{33}=\int_{\text {Area }} \frac{1}{S I} d s=\int_{0}^{L} \frac{d x}{E I \cos \theta},
$$

$$
\delta_{12}=\delta_{21}=\int_{A r e a} \frac{\mathrm{~m}_{1} m_{2}}{\mathrm{KI}} \mathrm{ds}=\int_{A} \frac{x y d s}{k I}=\int_{0}^{\mathrm{L}} \frac{3 y \mathrm{dx}}{\mathrm{EI} \cos \theta},
$$

$$
\delta_{13}=\delta_{31}=\int_{A r e a} \frac{m_{1}}{E I} d s=\int_{A} \frac{y \mathrm{ds}}{E I}=\int_{0}^{L} \frac{\mathrm{y} \mathrm{dx}}{E I \cos \theta},
$$

$$
\delta_{23}=\delta_{32}=\int_{\Delta r e a} \frac{m_{2}}{E I} d s=\int_{A} \frac{x d s}{E I}=\int_{0}^{L} \frac{x d x}{E I \cos \theta}
$$

Defining

$$
\begin{aligned}
& \int_{0}^{L} \frac{y^{2} d x}{E I \cos \theta}=I_{x}, \int_{0}^{L} \frac{x^{2} d x}{E I \cos \theta}=I_{y}, \quad \int_{0}^{L} \frac{d x}{E I \cos \theta}=A, \\
& \int_{0}^{L} \frac{\pi y d x}{E I \cos \theta}=I_{x y}, \quad \int_{0}^{L} \frac{y d x}{E I \cos \theta}=A \bar{y}, \quad \int_{0}^{L} \frac{x d x}{E I \cos \theta}=A \bar{x} .
\end{aligned}
$$

Eq. (1) becanes,

$$
\left[\begin{array}{lll}
I_{x} & I_{x y} & A \vec{y} \tag{2}\\
I_{x y} & I_{y} & A \bar{x} \\
\overrightarrow{A y} & \stackrel{A x}{x} & \Delta
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
\Delta_{10} \\
\Delta_{20} \\
\Delta_{30}
\end{array}\right)
$$

x_{1}, x_{2}, and x_{3}, which are obtained by setting $\Delta_{10}=1, \Delta_{20}=0$, and $\Delta_{30}=0$, will cause a unit displacement in the x_{1} direction only when X_{1}, x_{2}, and x_{3} are applied simultaneously at 0 . In other words, this is the way to determine the reactions at the origin point 0 due to a unit horizontal displacement at point 0 .

The same argument applies to the other two cases, that is, $\Delta_{10}=0, \Delta_{20}=1$, $\Delta_{30}=0$ and $\Delta_{10}=0, \Delta_{20}=0, \Delta_{30}=1$.

Substituting for Δ_{10}, Δ_{20}, and Δ_{30} in Eq. (2),

$$
\left(\begin{array}{lcc}
I_{x} & I_{x y} & \overrightarrow{A \bar{y}} \\
I_{x y} & I_{y} & A \vec{x} \\
\Delta \vec{y} & \overrightarrow{A x} & A
\end{array}\right)\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

then,

$$
\left(\begin{array}{l}
x_{1} \tag{3}\\
x_{2} \\
x_{3}
\end{array}\right)=\left[\begin{array}{lll}
I_{x} & I_{x y} & A \bar{y} \\
I_{x y} & I_{y} & \overrightarrow{A \bar{x}} \\
A \bar{y} & A \bar{x} & A
\end{array}\right]^{-1}=\left(\begin{array}{lll}
H_{1} & H_{2} & H_{3} \\
\nabla_{1} & \nabla_{2} & \nabla_{3} \\
M_{1} & H_{2} & H_{3}
\end{array}\right)
$$

where
H_{1}, V_{1}, and M_{1} will cause a unit displacement at 0 in the X_{1} direction, H_{2}, V_{2}, and M_{2} will cause a unit displacement at 0 in the X_{2} direction, $\mathrm{H}_{3}, \mathrm{~V}_{3}$, and M_{3} will cause a unit displacement at O in the X_{3} direction.

To obtain the influence lines, Mijler-Breslau's Principle plays an inportent role. "The ordinates of the influence line for any stress element (such as axial force, shear, moment, or reaction) of any structure are propertional to those of the deflection curve which is obtained by removing the restraint corresponding to that element from the structure and introducing in its place a corresponding deformation into the primary structure which remains. ${ }^{4}$ Furthermore, "In the case of an indeterminate structure, this principle is limited to structures the material of which is elastic and follows Hooke's lawn. n^{2} In other words, Minler-Breslau's Principle states that "an influence Line may be drawn by producing artificially a unit displacement corresponding to the 'stress' for which the influence line is desired. The term 'stress' includes reaction, thrust, moment or shear, as the case may be. ${ }^{3}$

[^0]Thus, the influence Iine for the hordsontal force X_{1} is the deflection curre caused by H_{1}, ∇_{1}, and M_{1}; the influence line for the vertical force X_{2} is the deflection curve oaused by $H_{2}, \mathrm{~V}_{2}$, and M_{2}; and the Influence line for the moment X_{3} is the deflection curve caused by H_{3}, ∇_{3}, and M_{3}.

To find the deflection curves, the conjugate beam method is used. The deflection curve of the real beam is obtained by double integration of the area of the elastic weight on the conjugate beam. That is

$$
\text { defl } I^{n}=\int_{A} \int_{\mathrm{M}} \frac{M}{\mathrm{EI}} \mathrm{ds},
$$

where

$$
\begin{aligned}
M & =M_{1}+\nabla_{1} x+H_{1} y, \\
\text { or } \quad M & =M_{2}+\nabla_{2} x+H_{2} y, \\
\text { or } \quad M & =M_{3}+\nabla_{3} x+H_{3} y .
\end{aligned}
$$

This can be performed by a digital computer. The Gaussian 5-point Integration Formula ${ }^{4}$ is used for the first integration and Simpson's Rule is used for the second integration.

A detailed flow diagrem for single fixed arch theory is given in the first part of the flow diagram of the displacement method in Appendix A, to 111ustrate the computer approach.

[^1]

Fig. 3 The choice of recundents.

Figure 3 shows a series of arches on slender piers. The arches may or may not be identical and symmetrical. It is assumed that the equation of the centroidal axis of each arch is given and that the relative moments of inertia are known. It is also assumed that the material obeys Hooke's law.

The structure shown in Fig. 3 is statically indeterminate to the ninth degree. In other words, nine redundants must be removed to obtain a statically determinate structure, or base structure. Among munerous base structures, the one shown in Flg. 3 is sugeested. The reason for this selection is that with this base structure identical redundant patterns can be assigned to each single arch.

The redundants for the continuous arches can be analyzed by the displacement method once the stiffness values are known. These values can be conveniently doternined by applying single ifxed arch theory.

FIg. 4 Degrees of freedon.

Figure 4 shows the four degrees of freedan of the structure shown in Fig. 3. The degrees of freedon at the joints are indicated by arrows d_{1}, d_{2}, d_{3}, and d_{4}. The poeitive sense of rotations, displacements, maxents, and forces is as indicated by these arrows. The q terms are the unbalanced joint monents or unbalanced horizontal forces due to the external load P.

The displacement method of analysis may be divided into the following operations:
(a) Analysis of each single arch assuming that they are fixed ended and determination of the end marents and thrusts due to $d_{1}=1,1=1,2,3,4$.

This can be done by applying the single fixed arch theory disoussed in the previous section. Furthermore, influence lines for the reactions of each single arch can also be obtoined.
(b) Determination of the moments and horizontal forces on the piex due to $d_{1}=1,1=1,2,3,4$.

FHg. 5 Pier subjected to a unit rotation.

FHgure 5 shows a pier subjected to a unit rotation, with no translation and with the far end fixed.

Then, by the slope-deflection method,

$$
\begin{aligned}
& M_{B C}=\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{C}\right)=\frac{2 E I}{L}(2)=\frac{4 S I}{L}, \\
& M_{C B}=\frac{2 E I}{L}\left(\theta_{B}+2 \theta_{C}\right)=\frac{2 E I}{L}, \\
& H_{B C}=\frac{-1}{L}\left(M_{B C}+M_{C B}\right)=-\frac{6 E I}{L^{2}} .
\end{aligned}
$$

FIg. 6 Pler subjected to a unit translation.

Figure 6 shows a pier subjected to a unit translation, with no rotation and the far end fluxed.

Also, by the slope-deflection method,

$$
\begin{aligned}
& v_{B C}=\frac{2 E I}{L}\left(-3 \frac{1}{J}\right)=-\frac{6 E T}{L^{2}}, \\
& M_{C B}=\frac{2 E I}{I}\left(-3 \frac{1}{L}\right)=-\frac{6 E I}{L^{2}}, \\
& H_{B C}=-\frac{1}{L}\left(M_{B C}+M_{C B}\right)=\frac{12 E I}{L^{3}} .
\end{aligned}
$$

(c) Determination of [S], the stiffness matrix for a single arch and pier; and of [K], the stiffness matrix of the whole structure.

The values of the S terms are found in step (a). For instance, $S_{i j}$ is the value of end manet or thrust for a single arch in X_{1} direotion due to $\mathrm{d}_{j}=1$. Figure 7 shows the determination of $\mathrm{s}_{1 j}$ due to $\mathrm{d}_{j}=1, j=1,2,3,4$.

(a) $d_{1}=1$.

FIg. 7 Determination of [S].

Pg. 7 Deternination of [S]. (Continued)

The stifiness coefficients of [X] at the joints are then obtained by combination of the $S_{i j}$ values and the stiffnesses of the piers obtained in step (b). In other words, $K_{i j}$ is the value of moment or force in the q_{1} direction due to $d_{j}=1$. For exanple,

$$
\begin{aligned}
& \mathrm{K}_{11}=S_{21}+S_{41}+\left(\frac{4 \mathrm{EI}}{\mathrm{~L}}\right)_{\text {pier }} \\
& \mathrm{K}_{21}=S_{31}+S_{61}+\left(\frac{-6 \mathrm{EI}}{\mathrm{~L}^{2}}\right)_{\text {pier }}
\end{aligned}
$$

(d) Deternination of the resultant reactions, $\{\mathbb{T}\}$.

Since [K] is obtained in step (c), the unlenown rotations and displacements can be found fram $\{D\}=[\mathbb{D}]^{-1}\{q\}$. Whth the rotations and displacements known, correction moments and forces at the ends of the members may be obteined, maling use of the single arch stiffness [S]. The reactions, due to the correction of $\{D\}$, are given by $\{F D\}=[S]\{D\}$. Then the final moments and forces are obtained by $\{F T\}=\{F F\}+\{F D\}$, Where $\{F F\}$ is the fixed end moment or force due to the external load P.

Influence coefficients of the redundents are determined by varying the position of P, where P is a unft load. A numerical example will be given to demonstrate the method of analysis.

A corrplete flow dagram for deternining the influence coefficient of the redundants by the displacement method is given in Appendix A. This flow diagram can be used to analyze any number of arches with interior arch joints on piers. The flow diagram has been formulated based on the following assumptions: (1) the equation of the centroidal axis of every single arch can be
expressed in the form $y=\alpha x^{2}+\beta x+\gamma$, with origin at each end point; (2) the ratio of I, the moment of inertia at any section of a single arch, to I_{e}, the moment of inertia at the crown of the arch, is equal to sece, Where θ is the angle between the horizontal ads and the tangent to the arch at the corresponding section; (3) the ratio of I_{p}, the monent of inertia of the pier, to I_{c} is constant.

NOMERICAL EXAMPLE

(b) Degrees of freedom.

Fig. 8 Munerical example.

Given: A two-span continuous parabolic arch on a slender pier is given in FIg. 8.

For arch AB: $y_{1}=-0.008 x_{1}^{2}+1.12 x_{1}$

$$
y_{2}=-0.008 x_{2}^{2}+0.8 x_{2}
$$

For arch BC: $y_{3}=-0.008 x_{3}^{2}+0.8 x_{2}$

$$
y_{4}=-0.008 x_{4}^{2}+0.48 x_{4}
$$

origin at pt. A origin at pt. B origin at pt. B ordgin at pt. C

Required: Influence Ines for $M_{A B}, M_{B A}, H_{A B}, M_{B C}, M_{C B}$, and $H_{B C}$.

Solution:

Step 1. Determination of the end moment and thrust for each arch due to $\mathrm{d}_{1}=1$, and $\mathrm{d}_{2}=1$.

$\mathrm{M}_{\mathrm{g}} .9$ End moments and forces of each arch due to $d_{1}=1, d_{2}=1$. (in terms of $E I_{c}$)

The monent and forces of each arch at support B due to $d_{1}=1$ or $d_{2}=1$ are determined by applying Eq. (3) from the single fixed aroh theory. The moment at the opposite end, such as support A or support C, is then calculated from the equations of statics. The results are shown in Fig. 9.

Step 2. Determination of the end moment and horizontal force for the pier due to $d_{1}=1, d_{2}=1$. The results are iliustrated in Fig. 10.

FLg. 10 End moments and horizontal forces due to $d_{1}=1, d_{2}=1$. (in terms of EI_{c})

Horizontel force due to $d_{1}=1$, is

$$
H=-\frac{6 E I}{L^{2}}=-\frac{6 E\left(5 I_{c}\right)}{30^{2}}=-0.033333 E I_{c} .
$$

Moment due to $d_{y}=1$, is

$$
M=\frac{4 E I}{I}=\frac{4 E\left(5 I_{c}\right)}{30}=0.666667 E I_{0} .
$$

Horizontal force due to $\mathrm{d}_{2}=1$, is

$$
H=\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}=\frac{12 \mathrm{E}\left(5 I_{\mathrm{c}}\right)}{30^{3}}=0.0022222 \mathrm{EI}_{0} .
$$

Moment due to $d_{2}=1$, is

$$
M=-\frac{6 E I}{L^{2}}=-\frac{6 E\left(5 I_{c}\right)}{30^{2}}=-0.033333 E I_{c} .
$$

The values determined in Step 1 and Step 2 are listed in Table I.

Table I Stiffness of single arch and pier.

		$\mathrm{d}_{1}=1$	$d_{2}=1$
ARCH AB	$\mathrm{M}_{\text {AB }}$	-0.0250000914	-0.002170142256
	${ }^{\mathrm{M}} \mathrm{BA}$	+0.075000525	+0.002170152
	H_{BA}	+0.002170152	+0.00011302843
ARCH BC	M_{CB}	-0.03749994224	-0.007324270436
	M_{BC}	+0.11249952	+0.0073241912
	$\mathrm{H}_{B C}$	+0.0073241912	+0.00085830888
PIER BD	${ }^{\mathrm{M}} \mathrm{BD}$	+0.666667	-0.033333
	$H_{B D}$	-0.033333	+0.0022222

Step 3. Dotermination of the stiffness for single arches and pier. They are determined in Step 1 and Step 2, namely,
$[\mathrm{s}]=\left(\begin{array}{ll}-0.0250000914 & -0.002170142256 \\ +0.075000525 & +0.002170152 \\ +0.002170152 & +0.00011302843 \\ +0.11249952 & +0.0073241912 \\ -0.03749994224 & -0.007324270436 \\ +0.0073241912 & +0.00085830888\end{array}\right)$

Step 4. Determination of [K], the stiffness matrix of the whole structure. Hence $[\mathrm{X}]^{-1}$ follows.

$$
\begin{aligned}
& \mathrm{K}_{11}=0.075000525+0.11249952+0.666666667=0.854166712 \mathrm{EI}{ }_{c}, \\
& \mathrm{~K}_{21}=0.002170152+0.0073241912-0.03333333=-0.0238389901 \mathrm{EI}_{\mathrm{c}}, \\
& \mathrm{~K}_{12}=0.002170152+0.0073241912-0.03333333=-0.0238389901 E I_{\mathrm{c}}, \\
& \mathrm{~K}_{22}=0.00011302843+0.00085830888+0.002222222=0.00319355953 \mathrm{EI}_{\mathrm{c}} .
\end{aligned}
$$

Or,

$$
\left[\mathrm{K} \mathrm{]}=\mathrm{EI}_{c}\left[\begin{array}{cc}
0.854166712 & -0.0238389901 \\
-0.0238389901 & 0.00319355953
\end{array}\right]\right.
$$

Then,

$$
\left[\mathrm{K} \mathrm{]}^{-1}=\frac{1}{\mathrm{SI}_{\mathrm{c}}}\left[\begin{array}{cc}
1.4788182 & 11.038946 \\
11.038946 & 395.53273
\end{array}\right]\right.
$$

Step 5. Set up [q] and [FF].
By applying single fixed arch theory, the influence lines for $M_{A B}, M_{B A}$, $H_{B A}$ in single arch $A B$ and influence lines for $M_{B C}, M_{C B}, H_{B C}$ in single arch $B C$ are obtained in Appendix C.
[q], the matrix of umbelanced joint moments and unbalanced horizontal forces, is set up from the influence coefficients of $M_{B A}, M_{B C}, H_{B A}, H_{B C}$; while [FF], the matrix of moments or thrust due to fixed ends, is set up from the influence coefficients of $M_{A B}, M_{B A}, H_{B A}, M_{B C}, M_{C B}, H_{B C}$. [q] and [FF] are given in Table II and Table III respectively.

Table II Matrix $q_{1 j}$

(1	1	2
1	+0.	+0.
2	+0.663706	+0.060493907
3	+2.1570424	+0.2086422
4	+3.840006	+0.40000031
5	+5.214817	+0.5975311
6	+5.925919	+0.771605
7	+5.759987	+0.900000
8	+4.6459	+0.9679008
9	+2.65475	+0.9678999
10	-0.00009	+0.8999978
11	-2.96309	+0.7716017
12	-5.73645	+0.5975266
13	-7.68019	+0.399996
14	-8.01205	+0.208637
15	-5.8076	+0.060488
16	+0.	+0.
17	+4.85994	-0.189866
18	+5.11994	-0.600026
19	+2.93993	-1.033621
20	-0.00005	-1.3500243
21	-2.500032	-1.464864
22	-3.840012	-1.3500151
23	-3.780003	-1.0336038
24	-2.56	-0.6000052
25	-0.8999988	-0.13984518
26	+0.	+0.

Table III Matrix FF $_{1 \mathrm{j}}$

$3{ }^{1}$	1	2	3	4	5	6
1	+0.	+0.	+0.	+0.	+0.	+0.
2	-5.80789	-0.663706	-0.0604939	+0.	+0.	+0.
3	-8.01236	-2.1570424	-0.2086422	+0.	+0.	+0.
4	-7.68051	-3.840006	-0.40000031	+0.	+0.	+0.
5	-5.73677	-5.214817	-0.5975311	+0.	+0.	+0.
6	-2.96343	-5.925919	-0.771605	+0.	+0.	+0.
7	-0.0004	-5.759987	-0.9000	+0.	+0.	+0.
8	$+2.65448$	-4.6459	-0.9679008	+0.	+0.	+0.
9	+4.64567	-2.65475	-0.9678999	+0.	+0.	+0.
10	+5.759802	+0.00009	-0.8999978	+0.	+0.	+0.
11	+5.925783	+2.96309	-0.7716017	+0.	+0.	+0.
12	+5.214722	+5.73645	-0.5975266	+0.	+0.	+0.
13	+3.83995	+7.68019	-0.399996	+0.	+0.	+0.
14	+2.1570159	+8.01205	-0.208637	+0.	+0.	+0.
15	+0.6636984	+5.8076	-0.060488	+0.	+0.	+0.
16	+0.	+0.	+0.	+0.	+0.	+0.
17	+0.	+0.	+0.	-4.85994	-0.900001	+0.189866
18	+0.	+0.	+0.	-5.11994	-2.559999	+0.600026
19	+0.	+0.	+0.	-2.93993	-3.779982	+1.033621
20	+0.	+0.	+0.	+0.00005	-3.839956	+1.3500243
21	+0.	+0.	+0.	$+2.500032$	-2.499904	$+1.464864$
22	+0.	+0.	+0.	$+3.840012$	+0.00015	+1.3500151
23	+0.	+0.	+0.	+3.780003	$+2.94021$	+1.0336038
24	+0.	+0.	+0.	+2.56	+5.12026	+0.6000052
25	+0.	+0.	+0.	+0.8999988	+4.86028	+0.18984518
26	+0.	+0.	+0.	+0.	+0.	+0.

Step 6. Determination of [FI], the matrix of influence coefficients for $M_{A B}, N_{B A}, H_{B A}, M_{B C}, M_{C B}$, and $H_{B C}$.
[FT] is obtained in the following manner.
$[F T]=[F F]+[F D]$
$=[F F]+[S][D]$
$=[F F]+[S][K]^{-1}[q]$

The results of [FT] are drawn in FIg. 11 through FIg. 16.
These results are checked in Appendix B using the energy method. A comparison of the influence coefficients obtained fram the two methods shows excellent agreement (see FIgs 11-16).

Energy Method	Displacement Nethod	
+0.0	+0.0	0
+0.27015	+0.27018	
+0.83647	+0.83658	-
+1.40257	+1.40276	H
+1.76510	+1.76533	-
+1.81372	+1.81397	$+$
+1.53117	+1.53139	
+0.99320	+0.99335	
+0.36862	+0.36869	
-0.08074	-0.08073	
+0.0	+0.0	∞
$+0.94874$	+0.94892	-
$+2.40805$	+2.40850	
+3.85338	+3.85415	
+4.88537	+4.88643	
+5.22975	+5.23106	
$+4.73745$	+4.73891	
+3.38450	+3.38600	
+1.2.7209	+1.27350	
-1.37346	-1.3722 4	
-4.20065	-4.19974	
-6.73289	-6.73229	
-8.36842	-8.36820	
-8.38033	-8.38045	
-5.91658	-5.91695	
$+0.0$	$+0.0$	

Energy Mothod

+0.0	+0.0
-0.44148	-0.44152
-1.35694	-1.35705
-2.25258	-2.25276
-2.79418	-2.79442
-2.80712	-2.80737
-2.27632	-2.27654
-1.34632	-1.346488
-0.32121	-0.32130
+0.33531	+0.33528
+0.0	+0.0
+5.12633	+5.12634
+7.28354	+7.28330
+7.31942	+7.31889
+5.97126	+5.97039
+3.86576	+3.864.61
$+1.51910$	+1.51774
-0.66308	-0.66455
-2.38566	-2.38715
-3.46409	-3.46548
-3.82435	-3.82555
-3.50295	-3.50389
-2.64695	-2.64759
-1.51395	-1.51429
-0.47209	-0.47218
+0.0	+0.0

$+$
Energy Method

+0.0	+0.0
-0.01705	-0.01705
-0.05260	-0.05261
-0.08781	-0.08782
-0.10980	-0.10981
-0.11171	-0.11172
-0.09269	-0.09270
-0.05786	-0.05787
-0.01838	-0.01838
+0.00863	+0.00862
+0.0	-0.0
-0.08222	-0.08222
-0.23000	-0.23002
-0.40673	-0.40676
-0.58201	-0.58207
-0.73176	-0.73183
-0.83812	-0.83820
-0.88952	-0.88961
-0.88065	-0.88074
-0.81245	-0.81253
-0.69214	-0.69221
-0.53321	-0.53326
-0.35538	-0.35542
-0.18468	-0.18470
-0.05338	-0.05338
-0.0	-0.0

Displacement Method
\qquad

[^2]Energy Method

+0.0	+0.0
+5.61124	+5.61152
+7.45553	+7.45579
+6.87745	+6.87766
+4.99324	+4.99340
+2.69084	+2.69096
+0.62983	+0.62991
-0.75855	-0.75845
-1.27132	-1.27123
-0.93390	-0.93381
+0.0	+0.0
+0.59136	+0.59135
+0.40143	+0.40132
-0.27726	-0.27750
-1.19609	-1.19646
-2.15036	-2.15084
-2.97926	-2.97983
-3.56591	-3.56653
-3.83732	-3.83794
-3.76440	-3.76499
-3.36199	-3.36249
-2.68882	-2.68922
-1.84754	-1.84780
-0.98468	-0.98483
0.29072	-0.29076

| +0.0 | +0.0 |
| :--- | :--- | :--- |
| +5.61124 | +5.61152 |
| +7.45553 | +7.45579 |
| +6.87745 | +6.87766 |
| +4.99324 | +4.99340 |
| +2.69084 | +2.69096 |
| +0.62983 | +0.62991 |
| -0.75855 | -0.75845 |
| -1.27132 | -1.27123 |
| -0.93390 | -0.93381 |
| +0.0 | +0.0 |
| +0.59136 | +0.59135 |
| +0.40143 | +0.40132 |
| -0.27726 | -0.27750 |
| -1.19609 | -1.19646 |
| -2.15036 | -2.15084 |
| -2.97926 | -2.97983 |
| -3.56591 | -3.56653 |
| -3.83732 | -3.83794 |
| -3.76440 | -3.76499 |
| -3.36199 | -3.36249 |
| -2.68882 | -2.68922 |
| -1.84754 | -1.84780 |
| -0.98468 | -0.98483 |
| -0.29072 | -0.29076 |

| +0.0 | +0.0 |
| :--- | :--- | :--- |
| +5.61124 | +5.61152 |
| +7.45553 | +7.45579 |
| +6.87745 | +6.87766 |
| +4.99324 | +4.99340 |
| +2.69084 | +2.69096 |
| +0.62983 | +0.62991 |
| -0.75855 | -0.75845 |
| -1.27132 | -1.27123 |
| -0.93390 | -0.93381 |
| +0.0 | +0.0 |
| +0.59136 | +0.59135 |
| +0.40143 | +0.40132 |
| -0.27726 | -0.27750 |
| -1.19609 | -1.19646 |
| -2.15036 | -2.15084 |
| -2.97926 | -2.97983 |
| -3.56591 | -3.56653 |
| -3.83732 | -3.83794 |
| -3.76440 | -3.76499 |
| -3.36199 | -3.36249 |
| -2.68882 | -2.68922 |
| -1.84754 | -1.84780 |
| -0.98468 | -0.98483 |
| -0.29072 | -0.29076 |

| +0.0 | +0.0 |
| :--- | :--- | :--- |
| +5.61124 | +5.61152 |
| +7.45553 | +7.45579 |
| +6.87745 | +6.87766 |
| +4.99324 | +4.99340 |
| +2.69084 | +2.69096 |
| +0.62983 | +0.62991 |
| -0.75855 | -0.75845 |
| -1.27132 | -1.27123 |
| -0.93390 | -0.93381 |
| +0.0 | +0.0 |
| +0.59136 | +0.59135 |
| +0.40143 | +0.40132 |
| -0.27726 | -0.27750 |
| -1.19609 | -1.19646 |
| -2.15036 | -2.15084 |
| -2.97926 | -2.97983 |
| -3.56591 | -3.56653 |
| -3.83732 | -3.83794 |
| -3.76440 | -3.76499 |
| -3.36199 | -3.36249 |
| -2.68882 | -2.68922 |
| -1.84754 | -1.84780 |
| -0.98468 | -0.98483 |
| -0.29072 | -0.29076 |

Displacement
Method

$$
-3.56591 \quad-3.56653
$$

$$
\begin{array}{ll}
-3.83732 & -3.83794
\end{array}
$$

$$
-3.76440 \quad-3.76499
$$

$$
-3.36199 \quad-3.36249
$$

$$
-2.68882 \quad-2.68922
$$

$$
-1.84754 \quad-1.84780
$$

$$
\begin{array}{ll}
-0.98468 & -0.98483 \\
-0.29072 & -0.29076 \\
+0.0 & +0.0
\end{array}
$$

CONCLUSIONS

The following conclusions can be made fron the work canpleted in this report.
(1) Since the influence lines for the redundants are obtained, the moment, shear and thrust at any section due to any loading condition on the structure can be calculated.
(2) The matrix analysis presented in this report can be preformed convenientily by a digit computer rather than by hand computations.
(3) The method, presented in detail in the flow diagram, may be applied to any continuous arch, symmetrical or unsymetrical.
(4) The flow diagram, given in appendix A, is based on the assumptions that the arches are parabolie; that the ratio of I, the monent of inertia at any section of the arch, to I_{c}, the moment of inertia at the orown, is sece. However, with minor modffications the method is applicable to any other shape of arches and applicable to the oase where the ratio of I to I_{c} is a function of x.
(5) In this study, the influence coefffedents of the redundants, obtained by the displacement method and by the energy method, have been shown to agree very closely. It is evident that any structure may be analyzed by one method, and then independentily checked by the other.

ACKNONLEDOMENT

The writer wishes to express his sincere gratitude and deep appreciation to his major professor, Dr. Peter B. Cooper, for his valuable advice, criticism and suggestions curing the preparation of this report.

1. James Michalos and Edvard N. Wilson, Structural Mechanics and Analysis, The Macmililan Company, New York, 1965.
2. Samuel T. Carpenter, Structurel Mechanics, John Wiley and Sons, Inc., New Yoric, 1960.
3. Alexander Hrennikoff, "Analysis of Multiple Arches," Transactions, ASCE, Vol. 101, p. 388 - p. $421,1936$.
4. John I. Parcel and Robert B. B. Moorman, Analysis of Statically Indeterminate Structures, John Wiley and Sons, Inc., New York, 1962.
5. Henry L. Lenghaar, Energy Methods in Applied Mechanics, John Wiley and Sons, Inc., New York, 1962.
6. William G. Godden, Numerical Analysis of Beam and Column Structures, Prenticem-Hall, Inc., New York, 1965.
7. S. D. Conte, Elementary Numerical Analysis, McGraw-Hill Book Company, New York, 1965.
8. P. C. A. Concrete Information ST 41-2, "Concrete Bullaing Frames Analyzed by Manent Distribution," p. 2.

NOTATION

E
I moment of inertia at any section of arch.
I_{c} moment of inertia at crown.
Ip moment of inertia of pier.
θ the angle between the tangent at any section of the arch and horizontal axis.

A total area of an arch divided by $B I$.
\bar{x} the distance from centroid to 7 -axis.
\bar{y} the distance from centroid to x-adds.
I_{x} moment of inertia of the area A with respect to the x-axis.
If moment of inertia of the area A with respect to the y-axis. product of inertia of the area A with respect to x - and $y-$ axes.
x_{1} horizontal force at origin point 0 .
x_{2} vertical force at origin point 0 .
x_{3} moment at origin point 0 .
$\delta_{m n}$ displacement in bee structure at 0 in X_{m} direction, due to $X_{\mathrm{n}}=$ unit acting only.
Δ_{10} displacement in base structure at 0 in X_{i} direction, due to sill external loads acting.
m_{1} moment anywhere in the structure due to $X_{1}=$ unit.
m_{2} moment anywhere in the structure due to $\mathrm{X}_{2}=$ unit.
d_{j} degree of freedom.
α, β, γ arbitrary constants.
q_{i} unbalanced joint moment or horizontal force in d_{i} direction. $X_{1}, X_{2}, \cdots, X_{1}$ redundants.
$S_{i j}$ the moment or force in X_{i} direction due to $d_{j}=1$.
$K_{i, j}$ the moment or force required at joint in q_{i} direction to cause $d_{j}=1$.

P external load.
D displacement of joint.
FF moments or forces due to fixed ends.
FD moments or forces due to displacement D.
FI total moments or forces, sum of FF and FD.
[] matrix notation.
\{ \} ~ c o l u m ~ m a t r i x . ~
[S] stiffness matrix of single arch.
[X] stiffness matrix of whole structure.

FLOI DIAGRAM FOR THE DISPLACEMENT MEIHOD

I. Single Arch Analysis

Number of arches \& intervel length

Constants of Gaussian 5-pt.
Integration
Fommla

APPENDIX B

CHECK RESULTS OF EXAMPLE USING ENERGY METHOD

The energy method may be divided into the following operations:
(1) Six redundants are treated as external loads acting on a statically determinate base structure. The energy of arch $A B, U_{1}$; of arch $B C, U_{2}$; and of pier $\mathrm{BD}, \mathrm{U}_{3}$; is then calculated. Thus,

$$
\begin{aligned}
& u_{1}=U_{1}\left(x_{1}, x_{2}, x_{3}\right), \\
& U_{2}=U_{2}\left(x_{4}, x_{5}, x_{6}\right), \\
& U_{3}=U_{3}\left(x_{2}, x_{3}, x_{4}, x_{6}\right) .
\end{aligned}
$$

The total energy is given by $U=U_{1}+U_{2}+U_{3}$. Thus,

$$
\left\{\frac{\partial u_{1}}{\partial x_{1}}\right\}=[c]\left\{x_{1}\right\} \quad i=1,2, \ldots, 6 .
$$

(2) $\left\{X_{i}\right\}=[C]^{-1}\left\{\frac{\partial U}{\partial X_{i}}\right\} \quad 1=1,2, \ldots$, 6. Let $[B]$ denotes [c $]^{-1}$, then

$$
\left\{\bar{x}_{1}\right\}=[B]\left\{\frac{\partial u_{1}}{\partial X_{1}}\right\} \text {. }
$$

(3) The influence line for X_{j} is the deflection curve caused by the $\left\{B_{i, j}\right\}$, where $1=1,2, \ldots, 6$.

Step 1 Set up $\left\{\frac{\partial U}{\partial X_{i}}\right\}=[c]\left\{x_{i}\right\} \quad i=1,2, \ldots, 6$.

FIg. B1 Free body of arch AB.

$$
\begin{aligned}
U_{1} & =\int_{0}^{I} \frac{x^{2}}{2 E I} d s=\int_{0}^{120} \frac{M^{2}}{2 E I_{0} s \theta e \theta} \frac{d x}{\cos \theta} \\
& =\frac{1}{E I_{0}} \int_{0}^{120} \frac{1}{2}\left(x_{1}+\nabla_{1} x+x_{3} y\right)^{2} d x \\
& =\frac{1}{E I_{e}} \int_{0}^{120} \frac{1}{2}\left[x_{1}+\frac{x}{120}\left(-x_{1}+x_{2}-19.2 x_{3}\right)+x_{3}\left(-0.008 x^{2}+1.12 x\right)\right]^{2} d x .
\end{aligned}
$$

$$
\frac{\partial v_{1}}{\partial x_{1}}=\frac{1}{B I_{c}}\left(40 x_{1}+20 x_{2}+1152 x_{3}\right),
$$

$$
\frac{\partial v_{1}}{\partial X_{2}}=\frac{1}{E I_{c}}\left(20 x_{1}+40 x_{2}+1152 x_{3}\right)
$$

$$
\frac{\partial v_{1}}{\partial X_{3}}=\frac{1}{E I_{0}}\left(1152 x_{1}+1152 x_{2}+53085.16 x_{3}\right) .
$$

Fig. B2 Free body of arch BC.

$$
\begin{aligned}
\mathrm{U}_{2} & =\int_{0}^{L} \frac{\mathrm{M}^{2}}{2 E I} d s=\int_{0}^{80} \frac{M^{2}}{2 E I_{c} \sec \theta} \frac{d x}{\operatorname{cose} \theta} \\
& =\frac{1}{E I_{c}} \int_{0}^{80} \frac{1}{2}\left(x_{4}+\nabla_{2} x+x_{6} y\right)^{2} d x \\
& =\frac{1}{E I_{c}} \int_{0}^{80} \frac{1}{2}\left[x_{4}+\frac{x}{80}\left(-x_{4}+x_{5}-12.8 x_{6}\right)+x_{6}\left(-0.008 x^{2}+0.8 x\right)\right]^{2} d x .
\end{aligned}
$$

$$
\frac{\partial U_{2}}{\partial X_{4}}=\frac{1}{E I_{c}}\left(26.66667 x_{L}+13.33333 X_{5}+341.33333 x_{6}\right),
$$

$$
\frac{\partial U_{2}}{\partial X_{5}}=\frac{1}{E I_{c}}\left(13.33333 X_{4}+26.66667 X_{5}+341.33333 X_{6}\right),
$$

$$
\frac{\partial U_{2}}{\partial X_{6}}=\frac{1}{E I_{c}}\left(341.33333 X_{4}+341.33333 X_{5}+6990.50667 X_{6}\right) .
$$

FIg. B3 Free body of pier BD.

$$
\begin{aligned}
& J_{3}=\int_{0}^{I} \frac{M^{2}}{2 E I} d x \\
&=\frac{1}{E I_{c}} \int_{0}^{30} \frac{1}{10}\left[x_{2}-x_{4}+\left(x_{6}-x_{3}\right) x\right]^{2} d x . \\
& \frac{\partial U_{3}}{\partial X_{2}}=\frac{1}{E I_{c}}\left(6 x_{2}-90 x_{3}-6 x_{4}+90 x_{6}\right), \\
& \frac{\partial U_{3}}{\partial X_{3}}=\frac{1}{E I_{c}}\left(-90 x_{2}+1800 x_{3}+90 x_{4}-1800 x_{6}\right), \\
& \frac{\partial U_{3}}{\partial X_{4}}=\frac{1}{E I_{c}}\left(-6 x_{2}+90 x_{3}+6 x_{4}-90 x_{6}\right), \\
& \frac{\partial U_{3}}{\partial X_{6}}=\frac{1}{E I_{c}}\left(90 x_{2}-1800 x_{3}-90 x_{4}+1800 x_{6}\right) .
\end{aligned}
$$

The total energy U is the sum of U_{1}, U_{2}, and $ण_{3}$. Thus,

$$
\begin{aligned}
& \frac{\partial U}{\partial X_{1}}=\frac{\partial J_{1}}{\partial x_{1}}+\frac{\partial U_{2}}{\partial X_{1}}+\frac{\partial U_{3}}{\partial X_{1}}=\frac{1}{E I_{c}}\left(40 x_{1}+20 x_{2}+1152 x_{3}\right) \\
& \frac{\partial U}{\partial X_{2}}=\frac{1}{E I_{c}}\left(20 x_{1}+46 x_{2}+1062 x_{3}-90 x_{6}\right), \\
& \frac{\partial U}{\partial X_{3}}=\frac{1}{E I}\left(1152 x_{1}+1062 x_{2}+54885.16 x_{3}+90 x_{4}-1800 x_{6}\right),
\end{aligned}
$$

$$
\frac{\partial U^{2}}{\partial X_{4}}=\frac{1}{E T_{c}}\left(-6 x_{2}+90 x_{3}+32.66667 x_{4}+13.33333 x_{5}+251.33333 x_{6}\right)
$$

$$
\frac{\partial J}{\partial X_{5}}=\frac{1}{B I_{c}}\left(13.33333 X_{4}+26.66667 X_{5}+341.33333 X_{6}\right),
$$

$$
\frac{\partial J}{\partial X_{6}}=\frac{1}{E I_{c}}\left(90 X_{2}-1800 X_{3}+251.33333 X_{4}+341.33333 X_{5}+8790.50667 X_{6}\right) .
$$

In matrix notation,

$\frac{\partial \pi}{\partial x_{1}}$		40	20	1152	0	0	0	$\left[x_{1}\right.$
$\frac{\partial U}{\partial X_{2}}$		20	46	1062	-6	0	90	x_{2}
$\frac{\partial U}{\partial X_{3}}$	$-\frac{1}{E I_{c}}$	1152	1062	54885.16	90	0	-1800	x_{3}
$\frac{\partial U}{\partial X_{4}}$		0	-6	90	32.66667	13.33333	251.33333	x_{4}
$\frac{\partial U}{\partial x_{5}}$		0	0	0	13.33333	26.66667	341.33333	x_{5}
$\frac{\partial u^{\prime}}{\partial x_{6}}$		0	90	-1800	251.33333	344.33333	8790.50667	x_{6}

Step 3 Find influence Ines for $X_{1}, 1=1,2, \ldots, 6$. The influence line for X_{j} is the deflection curve caused by $\left\{B_{1, j}\right\}$, $1=1,2, \ldots, 6$. The results are given in Flg .11 through Fig .16.

SINGLE ARCH INFLUENCE LINES

by

CHAO-SHYONG ESU

Diplora, Taipei Institute of Technology, 1963

AN ABSTRACT OF A MASTER'S REPCRTT submitted in partial fulfilgment of the requirements for the degree

MASTER OF SCIEACE

Department of Civil Eigineering

KANSAS STATE UNIVERSITY Manhattan, Kanses

1967

This report presents a matrix analysis of continuous arches on slender piers by obtaining influence lines for the redundants. The analysis is based on the displacement method.

The method consists of two main parts. First, each single arch is analyzed by applying single fixed arch theory. Second, continuous arches are solved by applying the displacement method.

The procedure is demonstrated by a dotailed flow diagram, given in Appendix A. The flow diagram is determined based on the assumptions that (1) the arches are parabolic, the equations of the centroidal axis of each arch with the origin at each end are given, (2) the ratio of the moment of inertia at any section of the arch to the moment of inertia at the crom is sece, where θ is the angle between the tangent to the arch and the horizontal adis; the ratio of the monent of the inertia of the pier to that of the crown is constant, (3) the interior Joints are on piers. The method applies to any number of arch spens.

A numerical example consisting of two parabolic arch spans with a central slender pier and two fixed ends is then presented. In addition to analyzing the exraple by the displacement method, the energy method is used to check the results. A comparison of the results obtained from the two methods shows excellent agreement.

The matrix method of analysis used in the report involves the application of the Ifinler-Breslau Principle and numerical double integration. In this study, the Gaussian 5-point Integration Formula is used for the first integration and Simpson's Rule is used for the second integration.

[^0]: 2. Charles H. Norris and John B. Wilbur, Elementary Structural Analysis, MeGraw-H111 Book Co., New York, 1960, p. 493.
 3. P. C. A. Concrete Information ST 41-2, "Concrete Building Frames Analyzed by Moment Distribution, " p.2,
[^1]: 4. S. D. Conte, Blementary Numerical Analysis, McGraw-Hill Book Company, New York, 1965, p. 138.
[^2]:

